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Abstract

With increasing data volumes and velocity, many applications are shifting from the classical
“process-after-store” paradigm to a stream processing model: data is produced and consumed
as continuous streams. Stream processing captures latency-sensitive applications as diverse
as credit card fraud detection and high-frequency trading. These applications are expressed as
queries of algebraic operations (e.g., aggregation) over the most recent data using windows,
i.e., finite evolving views over the input streams. To guarantee correct results, streaming
applications require precise window semantics (e.g., temporal ordering) for operations that
maintain state.

While high processing throughput and low latency are performance desiderata for stateful
streaming applications, achieving both poses challenges. Computing the state of overlapping
windows causes redundant aggregation operations: incremental execution (i.e., reusing
previous results) reduces latency but prevents parallelization; at the same time, parallelizing
window execution for stateful operations with precise semantics demands ordering guarantees
and state access coordination. Finally, streams and state must be recovered to produce
consistent and repeatable results in the event of failures.

Given the rise of shared-memory multi-core CPU architectures and high-speed net-
working, we argue that it is possible to address these challenges in a single node without
compromising window semantics, performance, or fault-tolerance. In this thesis, we analyze,
design, and implement stream processing engines (SPEs) that achieve high performance on
multi-core architectures. To this end, we introduce new approaches for in-memory processing
that address the previous challenges: (i) for overlapping windows, we provide a family of
window aggregation techniques that enable computation sharing based on the algebraic prop-
erties of aggregation functions; (ii) for parallel window execution, we balance parallelism
and incremental execution by developing abstractions for both and combining them to a
novel design; and (iii) for reliable single-node execution, we enable strong fault-tolerance
guarantees without sacrificing performance by reducing the required disk I/O bandwidth
using a novel persistence model. We combine the above to implement an SPE that processes
hundreds of millions of tuples per second with sub-second latencies. These results reveal the
opportunity to reduce resource and maintenance footprint by replacing cluster-based SPEs
with single-node deployments.
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Chapter 1

Introduction

In the Internet of Things (IoT) era, billions of network-connected devices [111] produce
massive amounts of data ready for analysis [186]. As data is now cheap to generate and
store [154], large organizations and internet companies, such as Amazon, Google, and
Microsoft, have shifted their focus to scalable data processing technologies. The explosive
growth of big data [174] volumes and velocity has fueled the development of several
processing systems that enable extracting valuable information and making critical decisions.
Performing big data analysis efficiently allows our society to accelerate its progress in a wide
variety of domains, ranging from finance to healthcare and environmental issues.

Along with the growth of big data, we also witness the emergence of a new type of
long-running applications [21, 86] that execute continuously as new data arrives in the
form of (possibly infinite) streams. According to recent estimates [186], by 2025, 30%
of all data will be analyzed in real-time. Therefore, it is not surprising that the stream
processing paradigm (i.e., consuming and producing data as streams) is established as the
fourth important data-intensive workload [206], next to transaction processing, reporting,
and online analytics.

In contrast to existing solutions [69, 230] that focus on offline batch processing (i.e.,
the classic “process-after-store” model), streaming applications require low end-to-end
processing latency results in addition to high processing throughput. Examples of such
applications are high-frequency trading [166, 197], clickstream analytics [6, 49, 95], credit
card fraud detection [79], live sensor monitoring [61, 62], social network analysis [54],
targeted advertising [6], and real-time visualization [209]. The common characteristic of
these latency-sensitive applications is the extraction of knowledge from data streams to
perform time-critical decisions in sub-second latencies. Delaying responses in such scenarios
either reduces their value or results in adverse effects (e.g., health monitoring requires
immediate actions) because the significance of each input tuple decays over time.
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As big data volumes and velocity grow continuously, and streaming applications de-
pend on more rigorous performance requirements, there is a demand for efficient real-time
data-parallel analytics on modern hardware. Existing stream processing engines (SPEs)
focus on solving the inherent problems of distributed and fault-tolerant stream process-
ing [6, 7, 45, 163, 231] on commodity clusters [196]. This leads to a lack of performance
guarantees, approximate window semantics1, and high resource and maintenance over-
heads. At the same time, the rise of shared-memory multi-core CPU architectures and
high-speed networking has established single-node SPEs as a reasonable alternative ap-
proach [137, 157, 158, 236]. Therefore, our idea is to provide a novel design for relational
SPEs: a single-node deployment that addresses the challenges of stateful data processing,
while achieving the same performance requirements as distributed SPEs, without compro-
mising fault-tolerance or application semantics.

1.1 Towards hardware-efficient data stream processing

Over the last two decades, data stream processing has been an active research field that
evolved from databases and distributed systems [85]. Stream processing enables continuous
applications [21] represented as a set of operators that apply computation on infinite stream
sequences and output streams. These operators can be stateless or stateful depending on
whether they have to remember previous data (i.e., state) using windows.

Windows allow streaming operators to apply algebraic operations (e.g., aggregations or
joins) on the most recent data by constructing finite views over unbounded streams. These
(potentially overlapping) views evolve over time and can be regarded as temporary rela-
tions [169]. To guarantee consistent and correct results, window-based applications must
account for precise window semantics [169]: constructing windows based on a windowing
attribute that establishes the order among data [147]. More specifically, the attribute deter-
mines when data becomes visible for processing (i.e., when to create a new window and
trigger computation). The most common windowing attributes are physically (i.e., event
time) or logically attached timestamps (i.e., ingestion time [7]) to input tuples. For example,
time-based windows rely on the input’s temporal ordering. With ever-growing data volumes
and velocities, the importance of window-based real-time analysis has increased.

To accommodate such data amounts, we have witnessed several distributed SPEs [45,
231, 163, 213, 6, 80, 120, 44] that rely on shared-nothing clusters of commodity machines 2

1Early distributed SPEs [231, 211] lack native support for event time windows [7] (i.e., windows based on
timestamps attached to input tuples).

2A shared-nothing architecture [196] is a distributed architecture that eliminates contention among nodes by
independently accessing memory or storage.
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to scale complex window-based analytics over massive data streams. These commodity
machines constitute the processing nodes (physical or virtual machines) that host fragments of
stream queries. Many research groups from both academia [20, 55, 80, 231, 45] and internet
companies [6, 120, 163, 49] have shaped the design of modern SPEs into sophisticated and
scalable engines, which produce correct results in the event of non-deterministic software or
hardware failures [134] (e.g., a node crashing).

Although current distributed SPE designs cover a wide range of real-world use cases and
achieve high processing throughput with a scale-out model, they face significant challenges
when performing parallel stateful computations. First, their design introduces cross-process
and network communication overheads (e.g., serialization) and assumes the availability
of compute clusters, especially for fault-tolerance. This results in an increased resource
and maintenance footprint. Furthermore, their designs exhibit unpredictable performance
guarantees due to the network communication latency of multiple nodes (e.g., TCP/IP latency
spikes). Finally, distributed SPEs struggle to provide efficient parallelization strategies for
precise window semantics: they either perform redundant computations [137] or approximate
window semantics due to the lack of a global clock in a distributed environment.

As a result, existing SPEs are not suitable for supporting a set of growing time-sensitive
applications, such as hospital medical monitoring, abnormally trajectory detection [235],
and high-frequency trading [166]. These applications require low end-to-end latency with
predictable spikes over vast data streams that distributed execution cannot guarantee. For
example, as recent analysis shows [166], a single stock symbol stream may reach up to
millions of messages per second with microseconds median latency requirements.

Given the emergence of highly-parallel scale-up architectures (i.e., multi-core CPUs and
GPUs) and modern network technologies in data centers and clouds [64], there is a demand
for new software solutions. Such solutions must exploit current hardware trends (e.g., non-
uniform memory access, SIMD/multi-core parallelism, and terabytes of memory [216]) to
provide more predictable performance guarantees. In addition, high-speed networking such
as Remote Direct Memory Access (RDMA) [125, 36, 41] makes scale-up designs practical
for many latency-critical scenarios, because it allows for fast stream ingestion and remote
storage [135].

As a response to this demand, many scale-up designs for single-node SPEs were de-
veloped as academic prototypes [137, 158, 236, 157] or enterprise solutions [49]. Modern
single-node SPEs achieve higher performance with fewer resources and costs by avoiding
abstractions for distributed processing [175]. However, existing scale-up designs implement
ad-hoc aggregation and parallelization strategies, which achieve high performance only for
specific queries depending on the window specification and aggregation function’s algebraic
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Fig. 1.1 Challenges for scalable and reliable single-node stream processing

properties. In addition, they neglect single-node fault-tolerance as existing fault-tolerance
mechanisms cannot handle their high query performance due to limited available resources
(e.g., disk I/O bandwidth).

Therefore, we identify a unique opportunity for revisiting the design of a hardware-
efficient SPE on multi-core CPU architectures. The rationale behind such a solution is
twofold: (i) supporting time-sensitive applications with predictable guarantees despite
increasing data volumes and velocity; and (ii) optimizing resource utilization of stream
processing on a single node. By achieving the latter, SPEs can also accelerate distributed
execution, as the footprint of processing nodes to achieve the same performance is reduced.
While single-node deployments pose physical limitations in terms of available resources,
most streaming applications’ memory requirements are in the order of GBs. For example,
Facebook’s processing ecosystem [54] handles hundreds of GB/s, while high-frequency
trading [166] or fraud detection applications [166] ingest hundreds of millions of tuples per
second during load peaks.

Yet, designing a general-purpose relational SPE that can transparently take advantage of
existing hardware while executing arbitrary streaming windowed [21] SQL queries remains
an open challenge. For such applications, it is necessary to provide precise window semantics
without compromising performance requirements (i.e., throughput and latency) or fault-
tolerance. Figure 1.1 illustrates the main challenges for a single-node SPE design. For
hardware-efficient single-core execution 1 , it is crucial to provide computation sharing for
window operators, which capture diverse streaming workloads not expressed by relational
operators. For the multi-core operator parallelization (i.e., scalability) 2 , the proposed
strategy must account for precise window ordering guarantees and state access coordination.
Finally, while current fault-tolerance mechanisms handle failures in a distributed environment,
the high query performance of single-node designs makes them impractical for scale-up
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scenarios. There is, thus, a demand for novel single-node fault-tolerance mechanisms that
provide correct results despite the limited available resources 3 . Let us now outline the
motivation of this thesis and discuss the three challenges in more detail.

1.2 Research motivation

To support the continuously growing data volumes, velocity, and performance requirements
of real-time analytics, there is a need to design scalable and fault-tolerant SPEs that efficiently
utilize modern hardware. Existing SPEs already scale streaming applications on shared-
nothing clusters of commodity machines reliably. However, the precise window semantics
and strict latency requirements of a wide range of time-sensitive applications demand more
sophisticated designs and abstractions on multi-core CPU architectures. As a response, in this
thesis, we argue that it is possible to address the scalability and fault-tolerance challenges of
stream processing in a single node and avoid the expensive scale-out approach. We provide
a novel solution that exploits today’s computing infrastructure in data centers and clouds to
accelerate scale-up performance.

As shown in Figure 1.1, there are three fundamental mismatches between the demands of
modern streaming applications and existing SPE designs:

• Lack of CPU-efficient computation sharing for window aggregation. Regarding
hardware-efficient single-core execution 1 , we focus on calculating windowed ag-
gregations [79, 95, 49, 6], a core streaming operator that performs redundancy-prone
computations, especially for windows with overlapping content. Use cases of overlap-
ping windows arise from either sliding window definitions (i.e., windows that slide
over data based on a specified interval smaller than the window size) or multiple
queries running concurrently over the same input stream. Existing approaches perform
redundant operations (affecting latency) or incremental execution (limiting throughput
and scalability). This results in significant execution overheads for SPEs [212, 40, 199]
and leads to expensive scale-out approaches.

• Lack of efficient parallelization strategies for window operators. Following the
implementation of hardware-efficient operators, a modern SPE design must consider
the parallel window execution strategy 2 on tens of CPU cores in a non-uniform-
memory-access (NUMA) architecture3 while preserving precise window semantics.
However, modern SPEs face a trade-off for windowed operators between exploiting
incremental execution (i.e., reusing previous results) and instruction/multi-core-level

3It is more expensive for a processor to access memory owned by or shared with another processor.
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parallelism (i.e., aggregation can be executed with either approach but not both).
Therefore, they incorporate ad-hoc solutions that achieve high performance only for a
limited range of applications and yield inconsistent performance based on the workload
characteristics (i.e., the window definition or the type of aggregation functions).

• Lack of efficient fault-tolerant techniques for single-node scale-up SPEs. Although
single-node multi-core SPEs can process hundreds of millions of tuples per second,
for an SPE to be practical for real-world scenarios, it is crucial to provide efficient
fault-tolerant mechanisms 3 . However, making single-node SPEs fault-tolerant with
exactly-once semantics without performance loss is an open challenge. Due to the
limited I/O bandwidth of a single-node SPE, it becomes infeasible to persist all stream
data and operator state (i.e., checkpointing) during execution. Thus, single-node SPEs
rely on distributed systems, such as Apache Kafka [16], to recover stream and operator
data after a failure, necessitating complex cluster-based deployments. This lack of
built-in fault-tolerance features limits the performance of existing SPEs and hinders
the adoption of single-node deployments.

1.3 Research contributions

This thesis tackles the aforementioned challenges in single-node deployments without com-
promising window semantics, performance requirements, and fault-tolerance. To address
the challenge of CPU-efficient window aggregation, we introduce two novel aggregation
techniques for data-parallel (using SIMD vector instructions) and incremental execution.
These approaches improve performance by: (i) accelerating the computation of the partial ag-
gregates (i.e., aggregations over non-overlapping parts of a window discussed in Section 2.1)
through hardware-conscious optimizations; and (ii) increasing the result-sharing efficiency
between multiple aggregate queries using their algebraic properties. To satisfy the window
operator parallelization challenge, we introduce LIGHTSABER, a state-of-the-art SPE that
balances parallelism and incremental processing for windowed stream queries using two
novel abstractions as well as JIT query compilation for efficient multi-core execution. Finally,
we introduce SCABBARD to provide strong fault-tolerance semantics in single-node deploy-
ments despite the limited resources. SCABBARD provides novel persistence abstractions
and adaptive compression techniques (i.e., encoding data with fewer bits than its original
representation) to enable reliable stream processing without compromising performance.
By combining the above contributions, we design an SPE that outperforms state-of-the-art
systems in throughput while providing sub-second latencies and poses a practical alternative
to scale-out models with fewer resources. Let us now present these contributions in detail.
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1.3.1 Efficient window aggregation and multi-query sharing

As discussed in Section 1.2, window aggregation is a core operation for streaming analytics
that introduces redundancy-prone computations in two cases: (i) when computing sliding
windows; and (ii) when answering concurrent queries that share intermediate aggregate
results. To tackle the first class of workloads, we introduce HammerSlide, a novel technique
that accelerates partial window aggregation by extending existing algorithms [106] for
CPU-efficient execution and providing data-level parallelization. When integrated with a
state-of-the-art multi-core SPE [137], HammerSlide yields up to 12× greater throughput
than the baseline. Regarding the second class of workloads, we introduce SlideSide. This
novel algorithm increases the sharing opportunities of intermediate aggregate results between
concurrent aggregation queries based on their algebraic properties, yielding up to 2.2×
greater throughput than existing solutions with comparable latency.

1.3.2 Scaling window operators on multi-core processors

For the parallelization of window operators, we first describe a general model for the design
space of window aggregation strategies that captures existing design decisions and enables
reasoning about entirely new ones. Based on this model, we introduce LIGHTSABER, a
new SPE that balances parallelism and incremental processing when executing window
aggregation queries on multi-core CPU architectures. Its design generalizes and extends
existing approaches: (i) for parallel processing, LIGHTSABER exploits the parallelism of
modern processors by constructing an aggregation tree. This tree divides window aggregation
into intermediate steps that enable the efficient use of both data-level (i.e., SIMD) and task-
level (i.e., multi-core) parallelism; and (ii) to generate efficient incremental code from the
aggregation tree, LIGHTSABER uses a graph data structure, which encodes the low-level
data dependencies required to produce aggregates over the stream. Therefore, the graph
generalizes state-of-the-art approaches for incremental window aggregation introduced in
the previous contribution, supports work-sharing between overlapping windows, and adapts
to workload characteristics (e.g., algebraic properties or number of queries). LIGHTSABER

achieves up to an order of magnitude higher throughput compared to existing systems —
on a 16-core server, it processes 470 million tuples/s with 132 µs median latency. Having
introduced our parallelization strategy for window aggregation, let us now focus on the
mechanisms required for single-node fault-tolerance.
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Fig. 1.2 Mapping challenges to contributions in thesis’ chapters

1.3.3 Efficient single-node fault-tolerant stream processing

For reliable stream processing, we describe SCABBARD, the first single-node SPE supporting
exactly-once fault-tolerance semantics despite limited local I/O bandwidth. SCABBARD

reduces the required disk I/O bandwidth by tightly integrating stream and state persistence
with query execution using a novel graph representation for the streaming operators. This
representation enables both compile-time and runtime optimizations. Within the operator
graph, SCABBARD determines when to persist streams based on the operators’ selectivity
(i.e., tuples produced for every tuple arrived as input): persisting streams after operators
discard data can substantially reduce the required I/O bandwidth. As part of the operator
graph, SCABBARD supports parallel persistence operations and uses markers to decide when
to discard persisted data. The persisted data volume is further reduced using workload-
specific compression: SCABBARD monitors stream statistics and dynamically generates
computationally efficient compression operators based on the data characteristics. Our
experiments show that SCABBARD can execute stream queries that process over 200 million
tuples per second while recovering from failures with sub-second latencies.

1.4 Dissertation outline

Figure 1.2 illustrates the mapping between the challenges we focus on in this thesis (Sec-
tion 1.2) and our contributions (Section 1.3). The remainder of this thesis is structured as
follows:

• Chapter 2 presents background and related work. It first describes basic concepts
and terminology for stream processing and then traces the evolution of SPEs with an
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emphasis on hardware-conscious designs. The chapter then introduces background
related to modern processors, storage, and the network stack found in data centers.
It discusses the underlying concepts behind window aggregation while comparing
existing solutions to showcase their limitations in terms of efficient partial aggregation
and intermediate result sharing. Subsequently, the chapter identifies the limitations
of current solutions for parallelizing window operators, which do not exhibit robust
performance across different workloads, through a series of experiments. Finally,
it examines how SPEs provide fault-tolerance and demonstrates their limitations,
especially when deployed in a single-node system.

• Chapter 3 describes HammerSlide and SlideSide, the two novel techniques proposed
for CPU-efficient window aggregation. The chapter performs an in-depth analysis of
existing solutions and presents an approach that addresses two individual challenges:
(i) how to accelerate partial window aggregation given the complex data dependen-
cies introduced with sliding windows; and (ii) how to efficiently share intermediate
aggregate results, especially when answering multiple concurrent queries through
incremental execution. It explains how HammerSlide addresses the first problem
through hardware-conscious optimizations (i.e., SIMD) and shows how it achieves up
to 12× better performance when integrated with an SPE. For the second problem, the
chapter presents SlideSide, which achieves up to 2× better throughput when computing
concurrent queries by exploiting their algebraic properties.

• Chapter 4 describes LIGHTSABER, a novel SPE that balances parallelism and incremen-
tal processing on multi-core CPUs. The chapter first explains a general aggregation
model that captures existing strategies. Then, it focuses on how window aggrega-
tion can be parallelized efficiently using an abstraction we call parallel aggregation
tree (PAT). The chapter discusses how LIGHTSABER generates code for streaming
applications at a query level and for workload-aware incremental execution, in which
case it uses an abstraction called generalized aggregation graph (GAG). Next, it
presents how LIGHTSABER performs memory management and NUMA-aware exe-
cution. Finally, in a range of experiments, it shows that LIGHTSABER outperforms
state-of-the-art systems, such as Apache Flink, by a factor of seven for standardized
benchmarks [58], and up to one order of magnitude for other queries.

• Chapter 5 describes SCABBARD, a novel single-node fault-tolerant SPE built atop
LIGHTSABER that provides exactly-once results without compromising performance.
It first introduces the data and fault-tolerance models of this work. Then, it presents
a new persistent operator graph model that allows SPEs to make workload-aware
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decisions when persisting data. Next, the chapter explains how an SPE can perform
query-specific adaptive compression through JIT code generation to accelerate per-
sistence and how we combine the above to design SCABBARD. Finally, through
experiments, it shows that SCABBARD introduces minimal overhead compared to a
system without fault-tolerance while outperforming existing systems, such as Apache
Flink, by at least one order of magnitude in throughput.

• Chapter 6 summarizes the contributions of the thesis and presents potential future
research directions.



Chapter 2

Background

This chapter describes the basic concepts, requirements, and open challenges related to
stream processing. First, it provides an intuition about the class of applications that we
address in this work, introduces a list of requirements for designing an efficient SPE, and
traces the evolution of SPEs (Section 2.1). It then provides a brief overview of the hardware
components involved when designing a hardware-efficient scale-up SPE, with a focus on
modern processors, the storage layer, and the network stack (Section 2.2). Subsequently, it
covers the underlying concepts behind window aggregation, a core component of streaming
analytics, and presents how existing approaches fall short of addressing the challenges of
efficient single-core execution (Section 2.3). The chapter introduces the parallelization
strategies of SPEs and showcases their limitations on multi-core execution (Section 2.4).
Finally, it presents existing mechanisms for fault-tolerant stream processing and illustrates
their limitations for single-node deployments (Section 2.5).

2.1 Characteristics and challenges of stream applications

According to estimates from recent studies [186], by 2025, the global datasphere will grow
to 175 ZB, and nearly 30% is likely to be analyzed in real-time. This exponential data growth
in volume and velocity encompasses new challenges for real-time applications aiming to
extract valuable information for companies and organizations. Web applications [95, 49, 6],
sensor networks [62, 61], location-based services, network traffic monitoring, and electronic
trading [197] are only a few application examples that rely on data stream processing to
perform analytics with high throughput and low end-to-end latency results. Data stream
processing refers to the evaluation of continuous queries [21] over unbounded data streams.
Let us now provide an example of a continuous application using the continuous query
language (CQL) [21].
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select timestamp , category , sum(cpu) as totalCpu
from TaskEvents [range 60 slide 1]
group by category

Fig. 2.1 CM1 query in CQL

Example: The query in Figure 2.1 taken from the Cluster Monitoring (CM) [220] benchmark
and emulates a monitoring application that computes the total CPU utilization of different
task categories with tuples collected from a compute cluster at Google as input. As new
data arrives, the query groups the input based on a grouping attribute (i.e., category), forms
time-based windows of 60 seconds interval updated every second, applies a sum operation
over them, and emits a new stream as an output.

Precise window semantics are important for such applications because they enable pro-
cessing infinite input streams with (temporal) ordering guarantees by constructing windows
over the most recent data (we explain windows comprehensively in Section 2.1.2). The
emitted output can be used as the input of another query, persisted on disk for later analysis, or
visualized using a dashboard [212]. Users can combine different relational operators [21] with
windows, such as projection, selection, join, or aggregation, to specify continuous queries,
perform complex analytics, and extract knowledge from the input streams. To execute
such analytics at scale, users utilize distributed SPEs such as Apache Flink [15] or Apache
Spark [17], which offer user-friendly programming interfaces and scale streaming compu-
tations transparently and reliably to shared-nothing clusters of commodity machines [196].
These systems focus on the inherent distributed stream processing problems [231, 163, 6]
and neglect efficiency on multi-core CPU architectures.

Yet, the fast-paced growth of data volumes and velocity, along with the strict performance
requirements of a wide range of emerging time-critical applications [235, 166] pose new
challenges to distributed SPE designs. While various approaches to perform analytics with
precise window semantics exist, we demonstrate experimentally how current solutions fail
to satisfy modern application requirements in terms of CPU efficiency and parallelization
in Sections 2.3 and 2.4. In addition, given that an SPE must deliver deterministic results
upon failures [211, 6, 80, 24], in Section 2.5, we discuss how existing mechanisms exhibit
limitations, especially in a single-node scale-up deployment. Therefore, we identify an
opportunity to revisit the design of SPEs on multi-core CPU architectures.

This section is structured as follows. First, in Section 2.1.1, we briefly introduce basic
application requirements that streaming algorithms and SPEs must satisfy. We then focus on
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the design characteristics of SPEs (Section 2.1.2) before proceeding with their evolution and
their limitations on exploiting modern hardware (Section 2.1.3).

2.1.1 Data stream processing requirements

Stream processing applications pose many unique challenges in the database community due
to their continuous nature, which requires low latency results not supported by the classical
“process-after-store” model. Examples of streaming problems are designing efficient algo-
rithms, programming interfaces, and scalable and reliable engines to analyze continuous data.
Throughout this thesis, we adopt the five following requirements introduced by Stonebraker
et al. [197]1 when designing a streaming algorithm or a system component and discuss how
they relate to the contributions from the following chapters:

1. Process and respond instantaneously: An SPE must utilize the available hardware
resources efficiently to perform high throughput and low-latency computation. Our
work exploits modern hardware, and we specifically focus on CPU-efficient execution,
storage, and data transfer in Chapters 3, 4, and 5.

2. Keep the data moving: An SPE must process messages in-memory, avoiding costly
memory allocation and storage operations in the critical process path, as we discuss
in Chapters 3 and 4. Regarding efficient streaming algorithms, in Chapter 3, we
contribute approaches for on-the-fly computation.

3. Query using a high-level language on streams: The support of a high-level language,
such as the continuous query language (CQL) [21], is required, as it is capable of
capturing the underlying complexity in a plethora of operations on data without expos-
ing the details to the user. Our solution uses a lower-level imperative API influenced
by CQL to support such operators, which is extensible by using the programming
interfaces discussed in Chapter 4 and Chapter 5.

4. Generate predictable results: The results of an SPE must be deterministic and
repeatable to be valuable without compromising window semantics, as we discuss
in Chapter 5.

5. Guarantee data safety and availability: An SPE should support high availability
services and ensure the integrity of data, even upon failures, as discussed in Chapter 5.

1We discuss in Section 6.2 how we can extend our work to support the remaining requirements.
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2.1.2 The design characteristics of SPEs

In this section, we introduce five fundamental design aspects of any modern SPE: (i) the data
model; (ii) the dataflow graphs that model application computation; (iii) window mechanisms;
(iv) the types of parallelism for streaming execution; and (v) the streaming execution models.
Next, in Section 2.1.3, we present the evolution of SPEs.

Data model. Following the semantics of the continuous query language (CQL) [21], we
adopt a relational stream model with windows.

Definition 2.1.1 (Data stream). A data stream s = ⟨t1, t2, ...⟩ is an infinite sequence of tuples.
Each tuple t = (ε, p) has: an event timestamp ε(t) ∈ E that denotes when the event occurred,
where E is an ordered time domain of discrete non-negative integer values; and p, a sequence
of values of primitive data types.

There are two "types" of streams: the source data streams that arrive at the SPE, called
base streams, and the streams produced by operators, called derived streams. Below, we
describe how the derived streams are assigned timestamps based on window semantics.

Definition 2.1.2 (Temporal ordering). The order of tuples in a stream respects their event
timestamps, referred to as the monotonicity property: ∀ ti, t j ∈ s, if i < j, then ε(ti)≤ ε(t j).

Temporal ordering influences window semantics in the following aspects: (i) window
construction becomes deterministic when using event timestamps; (ii) operator implementa-
tions become simplified, as there is no need to buffer and re-order tuples; (iii) no additional
logic is required to handle data that arrive late (see punctuations below).

The dataflow graph. SPEs model stream processing applications as directed operator
graphs [65], with operators as vertices and data (streams) flowing between operators as
edges. In most cases, streaming application graphs are considered acyclic, and streams are
implemented as FIFO queues. At a specific time instant ε(t), a queue (i.e., stream) contains
a finite sequence of data tuples, called in-flight data, which can be used for producing output
results. Every graph has special operators that act as sources and sinks by subscribing to
input streams or committing results externally.

An operator continuously ingests stream sequences, constructs finite views (i.e., windows)
over them, applies an algebraic transformation, and outputs streams as a result. The operators
can be stateless if they do not require state to compute their results, e.g., PROJECTION (π),
SELECTION (σ ); or stateful if they have to remember tuples from previous data to produce
concise results and change their state for each event they process, such as AGGREGATION (α),
GROUP-BY (γ), JOIN (⋊⋉). Operators with explicitly defined windows assign the upper bound
of the window as a timestamp to the tuples of the derived streams. Operators with unbounded
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windows [21] (i.e., windows that contain all tuples from the beginning of a stream) assign
the initial timestamp to the derived streams.

An important operator’s characteristic is its selectivity because it can lead to optimizations
such as executing specific operators earlier to reduce the intermediate results produced.
Using selectivity, we measure the data tuples produced for every data tuple that arrives as an
input. For example, operators such as SELECTION usually have selectivity less than one, and
operators like the Cartesian product of two streams (e.g., JOIN) can have selectivity greater
than one. Finally, stateful operators with windows are considered pipeline breakers [165], i.e.,
operators that require (partial) result materialization with windows before the next operators
can process their output in the context of stream processing [234].

Depending on the use case, the sources of an operator graph can be heterogeneous
and represent data with different formats (e.g., JSON or wire protocols such as Apache
Thrift [18], and Protocol Buffers [179]). To enable the data collection and distribution to
multiple machines with low overhead and fault-tolerance semantics, messaging systems can
be used as a temporal buffer between sources and the operator graph. Popular message brokers
and queuing systems are Apache ActiveMQ [14], RabbitMQ [182], ZeroMQ [233] (used by
Apache Storm [211] as the default messaging technology to inter-worker communication)
and publish-subscribe systems such as Apache Kafka [16].

Another characteristic of dataflow graphs is accessing previous data either to correlate
them with the latest results or to guarantee correct results upon failure (see Section 2.5).
Different solutions can be used for data storage for SPEs, ranging from key-value stores,
such as BigTable [53], to time-series databases (e.g., Druid [227]). However, the procedure
of storing these data should not be on the critical processing path. Finally, the output results
of a streaming application are published to sink(s), to visualize or further analyze them (e.g.,
using Grafana [96]).

Window types and measures. While stateless operators can apply computation over infinite
data steams, it is infeasible to maintain the entire stream history for some stateful operators.
It is, thus, common to keep only the most recent view of data using window operators. These
operators form a sequence of finite subsets of an input dataset for operators to apply their
transformation on each subset (e.g., JOIN or AGGREGATION). We refer to the rules [169] for
generating these subsets as the window definition. First, we must define a windowing attribute
that establishes the order among tuples from a stream: event or processing timestamps (i.e.,
timestamps attached during execution by the system). Then, we must define the measurement
unit, such as the number of tuples or time intervals, followed by the edge definition (i.e., when
a window starts/ends), and its progression step (i.e., how a window changes its contents).



16 Background

Sliding windows

Tumbling windows
w1 w2

w1

w2

w3

Fig. 2.2 Window types

In this work, we focus on two window types [7] as shown in Figure 2.2: tumbling windows
divide the input stream into segments of a fixed-size length (i.e., a static window size), and
each input tuple maps to exactly one window instance; and sliding windows generalize
tumbling windows by specifying a slide. The slide determines the distance between the start
of two windows and allows tuples to map to multiple window instances. Our work supports
only deterministic windows [46], i.e., windows that allow designating the beginning or end
of a window upon tuple arrival.

When performing computation on windows, it is crucial to make progress (i.e., identify
the start/end of a window) as quickly as possible since the significance of each individual
tuple decays over time. Making progress affects the stateful operators that must wait until
all data that belong to a window has arrived using concise synopses/summaries [19] before
applying their transformation or emitting the output stream [30]. We next discuss the most
general ways to make progress on streaming operators [7, 147, 169]:

• Time-agnostic execution is used when time is essentially irrelevant (e.g., all relevant
logic is data-driven). It can be considered the simplest stream processing scenario,
where timestamps are not required to compute the output.

• Windowing by processing time uses timestamps generated by the SPE during query
execution. This type of processing simplifies the check of window completeness but
leads to non-deterministic results across different runs of the same query [100].

• Windowing by tuples or count-based windows are a specific case of windowing by
processing time, where tuples have monotonically increasing timestamps. In Figure 2.2,
we show an example of a tumbling window of size three tuples and a sliding window
of equal measure and slide one tuple.

• Windowing by event time, also referred to as time-based windows, uses the event
timestamp ε(t) ∈ E from every tuple, which denotes when the event occurred. This
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type poses many challenges when data arrives out-of-order as more guarantees are
required for computing the results. In this thesis, we consider “in-order” or “slightly
out-of-order” tuples that can be buffered and reordered before applying the operator’s
logic (i.e., deterministic window construction). Handling out-of-order data is beyond
the scope of this work.

• Punctuations [215] (or low watermarks [6]) are introduced in a stream to define the
end of substreams. They are assertions inserted to a stream that help the SPE identify
whether tuples within a certain range of values can or cannot appear in the rest of
the stream, thus giving the notion that a set of smaller finite streams constructs an
infinite stream. In this dissertation, we use tuples similar to punctuation to perform
fault-tolerance operations as discussed in Chapter 5 of this thesis.

• Approximation algorithms [30, 92] is the last type of processing that allows making
progress with limited computing resources. Some approximation techniques are:
sketches [83, 209], counting or sampling methods [77] and wavelets [90] (e.g., wavelet
transforms over signals). Our work focuses on operators that produce accurate results.

Operator parallelism. There are three types of operator parallelism in a stream processing
graph [107]: pipeline, task and data parallelism. Pipeline parallelism occurs when the
execution of two tasks has interdependencies but can be overlapped if the first task pipes its
output to the second. Task parallelism occurs when two or more non-pipelined operators
execute concurrently. Finally, data parallelism occurs when multiple instances of an operator
process different portions of the same data. In the latter case, an SPE needs operators with
multiple output streams (e.g., SPLIT/PARTITION) and multiple input streams (e.g., MERGE).

Execution models. Any SPE can be classified into two distinct execution models: either the
continuous dataflow model [80, 8, 211, 45, 49] or the micro-batch approach [217, 231, 137].
The execution model influences the core features of an SPE’s architecture and defines the
whole execution process, starting from when the computation is triggered (i.e., per tuple or
per set of tuples basis).

With the continuous dataflow model, each operator is assigned to processing units
(e.g., CPU cores or cluster nodes) as long-running tasks, also referred to as materialized
tasks. These tasks are independent processing entities that can execute in parallel using
stream partitioning and communicate using messages. The input data streams flow through
a relatively static DAG of operators, keeping the mutable state locally and updating it
accordingly. The event-based granularity of this execution model offers low processing
latency because no communication with a centralized entity (driver) is required. In addition,
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the one-tuple-at-a-time computation gives the user more expressiveness to define the desired
operations over data.

The micro-batch approach replaces the tuple-at-a-time model with processing data in
batches of input tuples. This model is influenced by the bulk processing framework of the
MapReduce dataflow model [69] and became well-known through its implementation in
Apache Spark [231]. The incoming data streams are discretized into batches with a predefined
time interval that specifies the processing granularity of the tasks. These batches are then
scheduled sequentially to the available processing resources by a centralized driver based on
data locality [229], i.e., execute tasks where data resides. Similar to the continuous dataflow
model, query execution can be described by a DAG of operators, which can be translated
into multiple map-reduce phases or custom operators (e.g., join) chained one after the other.
This model requires repeated communication with the centralized driver, so synchronization
barriers are introduced between the computation stages, increasing processing latency. On
the other hand, micro-batching provides native fault-tolerance, straggler elimination (i.e., by
restarting slow tasks), high throughput, and the unification of batch processing and streams
without much effort.

In this thesis, we adopt a variation of the micro-batch approach: each pipeline fragment
(i.e., a subgraph of the dataflow DAG) maintains its own centralized driver that schedules
tasks to a pool of processing entities (i.e., CPU worker threads). In the context of scale-
up deployment, this execution model provides comparable end-to-end latency and higher
throughput results than the continuous dataflow model. It is interesting to investigate how
this approach can be extended for a distributed design as future work.
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2.1.3 The evolution of stream processing

This section provides a brief overview of how stream processing has evolved in recent years,
becoming the fourth significant data-intensive application workload. This growth of real-time
analytic use-cases, from card fraud detection to dynamic pricing, is translated into all cloud
vendors’ first-class support of stream processing technologies. While stream processing has
been an active research field for more than two decades, only recently did we witness the
emergence of hardware-conscious designs [137, 158, 236, 205, 208] that exploit parallel
hardware, such as multi-core CPUs, GPUs, and FPGAs. Subsequently, we identify three
distinct eras of SPEs, presented in Figure 2.3, and discuss their focus on different aspects of
stream processing.

Since the notion of stream processing was introduced [203], databases and distributed sys-
tems have influenced the fundamental concepts behind SPEs greatly. The first generation of
SPEs, also referred to as Active Database Systems (ADS) and Data Stream Management Sys-
tems (DSMS), emerged as extensions to traditional database management systems, enabling
the computation of dynamic data (i.e., streams) using continuous operators. NiagaraCQ [56],
TelegraphCQ [51, 150], and STREAM [22] have existed for decades but operated only on a
single CPU core. These systems along with Aurora [2] and Borealis [224, 5], were research
prototypes that set the architectural primitives for many modern SPEs while solving various
challenges, such as window operations [126, 146], fault-tolerance [112], scale-up designs,
and SQL extensions to represent a time-varying relational model (CQL [21]). This early
research influenced the first commercial SPEs, such as IBM System S [39], Esper [76],
Oracle CEP [167], and Microsoft StreamInsight [130, 9]. The latter commercial systems
focused on Complex Event Processing (CEP) [65] and window queries on multi-core CPUs
at the expense of weaker stream ordering guarantees for windows.

The second generation of SPEs was the result of joint research efforts from academia [80,
8, 231] and industry [163, 7, 6, 120, 49, 47, 211] that started after the introduction of
the MapReduce dataflow model [69]. To accommodate growing data amounts of real-
time analytics, distributed SPEs such as Flink [15] and Spark Streaming [231] scale out
transparently hard-coded dataflow graphs to a cluster of nodes through appropriate data
partitioning [45, 231]. The SPEs from this generation focus on distributed and fault-tolerant
processing on shared-nothing commodity hardware while incorporating streaming and batch
execution with a unified model [87, 7].

In the last years, we have witnessed a shift of SPEs towards hardware-conscious de-
signs [238, 204, 137, 208, 205] to handle latency-critical applications and provide more
predictable performance guarantees on single-node deployments [235, 166] with a lower
resource footprint. With highly-parallel heterogeneous architectures and modern network
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technologies (such as RDMA discussed in Section 2.2.3) becoming commonplace in data
centers and cloud offerings [64], SPEs can exploit previously unseen levels of parallelism
with terabytes of memory [216] and prevent scaling-out to multiple computing nodes. Con-
sequently, researchers have proposed a range of parallel streaming algorithms [128, 94, 237]
and SPE designs [137, 158, 236, 205, 157]. StreamBox [158] handles out-of-order event
processing and BriskStream [236] utilizes a NUMA-aware execution plan optimization
paradigm in multi-core CPUs. SABER [137] is a hybrid streaming engine that, in addition to
CPUs, uses GPUs as accelerators. However, these systems implement ad-hoc aggregation
and parallelization strategies, as we discuss in Section 2.4.1, yielding high performance
only for specific workloads (e.g., tumbling windows). In addition, their design overlooks
fault-tolerance as it is challenging to persist the streams and data required for recovery on a
single node without affecting performance.

Therefore, designing a general-purpose relational SPE that transparently utilizes existing
scale-up hardware to execute arbitrary streaming SQL queries with windowing [21] while
providing correct results under failures is still an open challenge. In the remainder of this
thesis, we focus on the last era of SPEs and study the design of a next-generation SPE that
reduces system complexity and increases efficiency.

2.1.4 Stream applications summary

To sum up, in this section, we provide the basic concepts and terminology behind stream
processing. We showcase that stream processing applications exhibit unique challenges
compared to the classical “process-after-store” model due to their continuous nature. Based
on the high throughput and low latency requirements, there is a demand for exploiting
modern hardware to achieve such performance levels. Yet, developing a hardware-efficient
and reliable scale-up SPE remains an open challenge, as existing solutions cannot provide a
comprehensive solution with robust performance across different workloads. In the following
(Section 2.2), we discuss the technology available in data centers for designing such an SPE.

2.2 Modern processors, storage and network stack

Let us now introduce the characteristics of modern hardware found in data centers today that
are essential to understanding how to utilize their resources efficiently. First, in Section 2.2.1,
we present the microarchitecture of modern processors. Then, we cover fundamental concepts
behind the storage (Section 2.2.2) and network stack (Section 2.2.3) that will help us design
an efficient scale-up SPE.
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2.2.1 Hardware features of modern CPUs

In this section, we introduce the hardware components of modern CPUs, as shown in Fig-
ure 2.4. Even though the functionality of a program is unaffected by these components,
their exploitation can accelerate program execution. Given that existing SPEs underutilize
modern CPUs, as recent research revealed [234, 235], it is crucial to consider such hardware
components when analyzing and designing stream processing algorithms and systems. Next,
we discuss the hardware components exploited in this thesis, i.e., CPU microarchitecture,
SIMD vector instructions, multi-core execution, and memory hierarchy.

CPU microarchitecture. Modern CPUs attempt to utilize their available hardware resources
by employing pipelining: 2 (i) dividing the program instructions into a series of sequential
low-level hardware steps or micro-ops ( µops). These µops describe basic operations on
CPU registers; and (ii) executing µops in parallel if they belong in different pipeline stages.

The pipeline stages include the following steps: (i) instruction fetch; (ii) instruction
decode; (iii) instruction execution; and (iv) result writeback, i.e., write the result of an
instruction back to CPU registers or memory. Figure 2.4 illustrates a simplified version of a
high-performance CPU’s pipeline, which is divided conceptually into the front-end and the
back-end component [116].

The front-end pipeline is responsible for fetching and decoding the program code into
µops. First, the instruction fetch units attempt to fetch instructions from the cache, i.e.,

2Also called instruction-level parallelism (ILP)
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the instruction translation look-aside buffer (ITLB) and the L1 ICache, or memory. These
instructions are pre-decoded and stored in the Instruction Queue. Finally, the instruction
decoder units, i.e., instruction decoders and instruction decode queue, transform the pre-
decoded instructions into µops. In more recent Intel CPU’s microarchitectures, the front-end
pipeline is accelerated using the Decoded ICache, which maintains up to 1.5K decoded µops
without requiring the execution of the above steps. As the Decoded ICache is associated with
instructions stored in L1 ICache, an L1 ICache miss invalidates the Decoded ICache.

The µops generated from the front-end component are fed into a process called allocation.
After the allocation process, the back-end stages are responsible for monitoring when the
execution units of a µop are available and execute them in an out-of-order manner. When the
execution of a µop completes, its results are committed. This stage is also called retirement,
and some operations may get canceled before retiring if there are branch mispredictions.

In the most recent Intel microarchitectures, applications can measure the hardware
utilization of CPUs and derive which component stalls the CPU pipeline using dedicated
hardware counters. The front-end can allocate up to four µops per cycle and feed them to
the back-end. When there are stalls due to fetching and decoding operations, the execution
becomes front-end bound, causing later stages to starve. If the front-end cannot deliver a µop
because the back-end is not ready to handle it, the execution becomes back-end bound. There
are different causes behind a back-end stall, such as stalls related to the memory subsystem
(i.e., memory-bound) and stalls related to the execution units (i.e., core-bound). Another type
of stalls is produced due to bad speculation from branch mispredictions, which results in
operations failing to retire. Finally, applications can measure the number of retiring cycles
that represent useful instructions using the hardware counters.

Data-level parallelism with SIMD instructions. Based on Flynn’s classification on com-
puter architectures [84], computer systems are divided into the following categories depend-
ing on the number of concurrent instruction streams and data streams: (i) a SISD system
processes a single instruction stream on a single data stream; (ii) a SIMD system executes a
single instruction stream on multiple data streams; (iii) a MISD system processes multiple
instruction streams on a single data stream; and (iv) a MIMD system executes multiple
instruction streams on multiple data streams.

Having discussed how modern CPUs perform instruction-level parallelism using pipelin-
ing, we now focus on the data-level parallelism achieved using single instruction, mul-
tiple data (SIMD) instructions. Most modern CPU architectures support SIMD instruc-
tions [116, 12] for a range of arithmetical, comparison, conversion, and logical instructions.
The degree of the data-level parallelism is defined by the size of a SIMD register (i.e., the
number of bits processed in parallel) and the data type size. For example, a 256-bit SIMD
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register executes a SIMD instruction on sixteen 16-bit or eight 32-bit data items. For the x86
architecture that we examine in this work, the Streaming SIMD Extensions (SSE) use 128-bit
registers, the Advanced Vector Extensions (AVX) 256-bit registers, and the AVX-512 instruc-
tions increased the width to 512 bits. While SIMD instructions can improve performance in
many scenarios, they also pose several challenges: (i) not all algorithms can be vectorized
easily (e.g., due to data dependencies); (ii) in many cases, manual labor is required to vector-
ize algorithms as compilers do not generate SIMD instructions from typical programs; (iii)
the developers must provide multiple implementations for different architectures; and (iv)
SIMD instructions may incur higher latency compared to scalar execution.

Multi-core CPUs and memory hierarchy. Since the mid-2000s, scaling single-core clock
frequency came to a halt [70, 190]. To combat these limitations, both multi-core and dis-
tributed architectures emerged. The first approach attempts to leverage the increased number
of cores per chip, enabling thread-level parallelism as an alternative to frequency scaling.
The second approach aggregates the resources of multiple machines with possibly similar
hardware characteristics instead of scaling up hardware. Therefore, modern applications
must utilize synchronization techniques to exploit multi-core or distributed parallelism. We
next provide an example of multi-core CPU architectures.3

Figure 2.5 shows the architecture of an Intel processor [116] with four physical cores per
socket. Each core has its own L1 Cache, L2 Cache, and execution units discussed above in
the microarchitecture section while sharing a common L3 Cache with all other cores. The

3Distributed execution is orthogonal and complementary to our contributions toward improving the perfor-
mance of modern SPEs.
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Integrated Memory Controller (IMC) [116] is used to exchange data with the main memory
with a bandwidth that depends on the memory frequency, the number of the bytes per width,
and the number of the channels supported for the processor. Finally, the communication with
other CPUs is established using the Quick Path Interconnect (QPI) interface [114] with up to
up to 25.6 GB/s bandwidth.

The caches and memory mentioned above, along with persistent storage mediums,
constitute a memory hierarchy with components that exhibit different response times. With
this hierarchy, the lower the access latency, the smaller the available storage is. The CPU
registers provide the fastest access and the smallest storage level, followed by the multi-
level cache hierarchy, i.e., L1 DCache and L1 ICache (up to 64 KB), L2 Cache (up to
256 KB), and L3 Cache (up to 30 MB). If the data is not resident in the core’s caches, it is
fetched from the main memory with additional latency. When accessing the main memory, if
multiple sockets are connected, their communication is based on the non-uniform-memory-
access (NUMA) memory design. Each processor has its own local memory that is faster
to access than non-local memory, which can be either memory local to another processor
or memory shared between processors. Thus, the access latency is affected by the physical
distance to the responsible memory controller. Finally, the highest latency is exhibited when
fetching data from a disk. We conclude that this complex memory hierarchy requires a
careful system design to achieve good performance.

2.2.2 Storage stack and asynchronous I/O

In the previous section, we discussed persistent storage mediums in the context of memory
hierarchy. This section covers the fundamentals for disk persistence essential for designing
an efficient storage layer. While most resources, such as input streams or storage devices, can
be accessed over the network, SPEs must consider disk I/O to store and retrieve data streams
and operator state efficiently. Next, we compare different approaches [133] to perform
disk operations using: (i) read()/write() syscalls; (ii) mmap() syscall; (iii) direct I/O
read()/write(); (iv) and asynchronous direct I/O.

Before analyzing these approaches, let us introduce the definition of a block device in
Unix-like operating systems: a special file type that provides access to hardware devices,
such as HDDs or SSDs, and some abstraction from their specifics [113]. While programmers
can read or write a block of any size and alignment, a block device performs operations at
the granularity of a sector (i.e., a fixed-size group of adjacent bytes, usually of size 512). For
a file system, the smallest addressable unit is a block, consisting of multiple adjacent sectors
with sizes ranging between 512 and 4 KB. A Unix-like operating system performs I/O using
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the virtual memory to map a program’s memory addresses into physical addresses such as
file system blocks using 4 KB pages. The virtual memory acts as a disk requests cache.

When using read()/write() syscalls, the kernel reads or writes to a file using a page
cache, as shown in Figure 2.6. In the case of a read, if the data requested resides in the cache,
the kernel immediately returns the result; otherwise, a page fault is triggered that blocks the
calling thread until data is fetched from the block device. In the case of a write, the kernel
copies the userspace buffers in the page cache and performs later the actual hardware write.
The writeback of dirty pages can be forced using a fsync() syscall or by closing the file,
which is blocking the calling thread until completion.

Another approach to perform disk operations is to use mmap() syscall to map a section
of the address space to refer to the contents of a file. If the requested data from the file is
in the page cache, the kernel is bypassed; if a cache miss occurs, a page fault and thread
blocking take place as above. Both approaches involve the kernel for caching and scheduling
I/O operations and thus are called buffered I/O.

However, there are use cases (e.g., implementing a write-ahead-log [178]) that it is desir-
able to bypass the page cache by opening files with the O_DIRECT flag. This is called direct
I/O and enables the disk controller to copy data directly to the userspace as demonstrated
in Figure 2.6. By bypassing the kernel, an application avoids the extra copy of data in the
page cache and reduces the CPU overhead. Using direct I/O requires that all operations are
aligned to sector boundary, i.e., have a starting offset and buffer size of a multiple of 512.
In addition, direct I/O can be performed asynchronously using Linux’ non-blocking API
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with asynchronous notifications [132], which allows the pipelining of disk operations with
computation without blocking the calling thread. In this work, we decide to use asynchronous
direct I/O and perform the cache and memory management of disk operations manually to
harvest the full potential of the hardware capabilities of modern SSDs.

2.2.3 Network stack

While an SPE can stream local files as its input, the most practical case is to use remote
sources such as network sockets (e.g., POSIX sockets), distributed file systems (e.g., HDFS)
or messaging systems (e.g., Kafka [16], Kinesis [11] or Pulsar [180]). Thus, it becomes
crucial to understand how data streams are ingested over the network and accelerate this
process to exploit the available hardware resources of a single node. This section aims to
overview modern networks, explicitly focusing on hardware mechanisms such as Remote
Direct Memory Access (RDMA).

With the emergence of modern network technologies, network I/O is no longer the bottle-
neck in many single-node scenarios [206, 157, 41]. RDMA-capable networks are becoming
a commodity in data centers today [125] and provide 200 Gbps per-port bandwidth with
microsecond latencies [26]. Such high-speed interconnects allow for fast stream ingestion,
distributed operator implementations [36] and remote storage [135], with the potential to
outperform main memory bandwidth [41]. However, existing cluster-based SPEs cannot
saturate these fast interconnects [234].

As shown in Figure 2.7, RDMA enables direct memory access from the memory of a
remote machine into that of another while bypassing both operating systems. In addition,
RDMA supports zero-copy networking and can bypass the remote machine’s CPU. This
allows high throughput, low-latency networking without involving any work from CPUs,
caches (which are not polluted), or context switches [35] and improves scalability, as a single
node can be a passive participant for many connections [159]. Common RDMA implementa-
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tions are Virtual Interface Architecture [63], RDMA over Converged Ethernet (RoCE) [25],
InfiniBand [25], and iWARP [115]. Running such implementations over common network
protocols such as TCP and UDP (e.g., via IPoIB) is possible but removes the aforementioned
benefits because of system calls and data copies involved [187].

The efficient utilization of RDMA requires the use of the InfiniBand RDMA verb interface,
which is a low-level abstraction for data transfer [73]. This interface provides: (i) one-sided
communication using read, write, and atomic primitives; and (ii) two-sided communication
with send and receive primitives. With one-sided communication, only the sender’s CPU is
involved, while both the sender and receiver participate with the two-sided communication.
The application must register with the network card the main memory regions participating
in the communication process to make them accessible for RDMA. These memory regions
are pinned to prohibit swapping them out, and their address translation information is
installed on the RNIC. The asynchronous nature of RDMA allows the pipelining of network
communication with other operations such as computation, which results in high-performance
data transfers. We adopt this asynchronous ingestion approach with two-sided communication
in our system design.

2.2.4 Modern hardware summary

Today’s network technologies enable data transfer with main memory bandwidth on scale-up
servers. While the network is no longer the performance bottleneck in stream processing,
existing designs fall short of exploiting modern hardware [234, 235]. Therefore, we identify a
need for a fundamental redesign of SPEs. Given that the first step to hardware-conscious algo-
rithms and systems requires a good understanding of the available hardware, we overviewed
its characteristics. The following sections use the concepts introduced to perform profiling,
determine a set of performance bottlenecks and mismatches found in modern SPEs, and
motivate our solution for scalable and fault-tolerant single-node execution.

2.3 Window aggregation

After discussing the characteristics of modern hardware, we now focus on the execution of
streaming applications and, more particularly, on windowed aggregation operators. Window
aggregation [21], i.e., the calculation of running aggregates from a FIFO buffer [6, 192], is a
core operator of analytical queries over continuous data streams (e.g., credit card transactions
or click logs). The importance of this class of applications spans outside the field of stream
processing to operations on persistent data such as time-series analysis [164, 202]. This
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section covers the underlying concepts of window aggregation required for the remainder
of this thesis. We provide background on the algebraic and mathematical properties of
aggregate functions (Section 2.3.1), aggregation sharing (Section 2.3.2), prefix- and suffix-
scans (Section 2.3.3), incremental computation (Section 2.3.4), and programming interfaces
for implementing aggregate functions (Section 2.3.5). Finally, we discuss the limitations of
existing solutions (Section 2.3.6).

2.3.1 Algebraic properties

An aggregation function, such as sum or max, is an algebraic operation that performs
arbitrary computations over a finite set of input tuples S. The output of these computations is
a summary of the tuples into a single aggregate result. Every aggregation function can be
classified based on its algebraic properties [97, 202] into the following categories:

• a distributive aggregate function (e.g., sum) can be applied in a distributive manner:
the result of applying the function on the set S is the same as the result produced from
partitioning S in n (non-overlapping) subsets, applying the function on every partition
to produce a partial result, and finally, on all partial results.

• algebraic aggregate functions can be computed from a number of distributive aggrega-
tions (e.g., avg from sum and count). Both distributive and algebraic functions have
fixed-sized intermediate results.

• holistic aggregate functions have no constant bound on the storage size of intermediate
results (e.g., rank or median). Even though handling such functions is beyond the scope
of this work, we discuss in the following chapters how we can extend our contributions
to incorporate holistic computations.

In this dissertation, we focus on distributive and algebraic functions, which can be
further classified by their mathematical properties: (i) associativity, (x⊕ y)⊕ z = x⊕ (y⊕ z),
∀ x,y,z; (ii) commutativity, x⊕ y = y⊕ x, ∀ x,y; and (iii) invertibility, (x⊕ y)⊖ y = x,
∀ x,y. Distributive and algebraic functions are associative and based on these mathematical
properties, we are able to perform incremental execution by reusing previous computed
intermediate results, as we will discuss next.

2.3.2 Partial aggregation

Unlike stateless operators, window aggregation requires that all tuples in the window have
arrived and, in some cases, are buffered before producing an output result. That property
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makes it hard to parallelize the window aggregation operator itself. A common approach is to
parallelize on top of the aggregation operator, i.e., process multiple windows in parallel. We
show this process in Figure 2.8 using: (i) tumbling windows of size six tuples; and (ii) sliding
windows with the same size and slide of two. When processing tumbling windows in case (1),
Windows 1, 2, and 3 can be processed independently without redundant work. In case (2), the
sliding windows are processed separately, but with redundant work: e.g., tuple 5 (i.e., the last
tuple of Window 1) contributes to Windows 1, 2, and 3 and, thus, is processed three times. In
the last case (3), the stream is broken down into fixed-size chunks, commonly referred to as
panes [146] or partial aggregates, which are processed independently and in parallel.

The latter approach, i.e., case (3), is a typical execution strategy for window aggregation
that exploits the associativity of aggregation functions: tuples can be (i) partitioned logically,
(ii) pre-aggregated in parallel, and (iii) the per-partition aggregates, referred to window
fragment results in this dissertation, can be merged. This technique is known as hierarchical
or partial aggregation in relational databases [34, 74] and window slicing in stream processing.
Several different partitioning techniques (also called slicing) have been proposed, e.g.,
Panes [146], Pairs [140], Cutty [46], and Scotty [212], which remove redundant computation
steps by reusing partial aggregates. To further improve performance with overlapping
windows, slices can be pre-aggregated incrementally to produce higher-level aggregates.

We introduce the term sashes to refer to these window fragment results and use it
throughout Chapter 4. In Figure 2.9, we present an example of sashes over a sliding window
with six tuples window size and two tuples slide. The size of a sash is defined equal to that
of the slide to increase the sharing opportunities between consequent window results. In the
general case, multiple non-overlapping partial aggregates (i.e., panes) constitute a sash and
adjacent sashes can be overlapping for sliding window semantics.
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2.3.3 Prefix- and suffix-scan

Before presenting the intuition behind incremental execution and existing algorithms, it is
necessary to provide the definitions of the prefix- [42] and the suffix-scan.

Definition 2.3.1 (Prefix-scan). Given an associative operator ⊕ with an identity element
I⊕, and an array of elements A[a0,a1, ...,an−1], the prefix-scan operations are defined as
PS[I⊕,a0,(a0⊕a1), ...,(a0⊕a1⊕ ...⊕an−1)].

Definition 2.3.2 (Suffix-scan). Given an associative operator ⊕ with an identity element
I⊕, and an array of elements A[a0,a1, ...,an−1], the suffix-scan operations are defined as
SS[I⊕,an−1,(an−1⊕an−2), ...,(an−1⊕an−2⊕ ...⊕a0)].

The first n−1 elements of these arrays represent an exclusive prefix- or suffix-scan, while
the elements without the identity I⊕ represent an inclusive scan.

2.3.4 Incremental aggregation

Although windows are finite subsets of tuples, they can be arbitrarily large. It is, therefore,
preferable to use partial aggregation combined with incremental processing to reduce the
number of operations (i.e., redundancy) required for window evaluation. Incremental process-
ing involves maintaining and reusing intermediate results obtained by the unchanged parts of
a window without re-evaluating them to increase the computational efficiency. Depending on
the aggregation type, we can use different algorithms to incrementally summarize data in the
granularity of tuples or partial results.

Table 2.1 provides an overview of different incremental aggregation algorithms: the sec-
ond column denotes whether the algorithm uses different processing schemes for computing
invertible and non-invertible aggregate functions; the third and fourth columns present the
time and space complexities when computing either a single or multiple concurrent queries
over the same data stream. In particular, Table 2.1 reports both the amortized and worst-case
time complexities.
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Table 2.1 Complexity of window aggregation approaches (n partial aggregates, q queries)

Algorithm

Time Space

Queries single multiple single multiple
amort. worst amort. worst

SoE [106] inv. 2 2 q q n qn
non-inv. n n qn qn n qn

TwoStacks [106] 3 n q qn 2n 2qn

Slick- inv. 2 2 2q 2q n q+n
Deque [194] non-inv. <2 n q qn 2 to 2n 2 to 2n

Slide- inv. 3 n q q 3n 3n
FlatFAT [202] log(n) log(n) q log(n) q log(n) 2n 2n

Side [207] non-inv. 3 n q qn 2n 2n

Single-query aggregation. For single-query invertible functions, Subtract-on-Evict (SoE) [106]
reuses the previous window result to compute the next one by evicting expired tuples and
merging in new additions. This approach has a constant cost per tuple for invertible functions
but rescans the window if the functions are non-invertible (O(N) complexity).
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Fig. 2.10 TwoStacks algorithm

For single-query non-invertible functions, TwoStacks [4, 106] achieves O(1) amortized
complexity. As shown in Figure 2.10, it maintains a back and a front stack, operating as a
queue, to store the input values (white column) and the aggregates (blue/green columns).
Each new input value v is pushed onto the back stack, and its aggregate is computed based on
the value of the back stack’s top element. When a pop operation is performed, the top of the
front stack is removed and aggregated with back stack’s top. When the front stack is empty,
the algorithm flips the back onto the front, reversing the values’ order and recalculating the
aggregates. The flip step requires re-scanning the contents of the whole window, but as it
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occurs infrequently (i.e., when evicting expiring tuples from a window), it exhibits O(1)
amortized complexity.

Multi-query aggregation. While the previous algorithms process efficiently single query
aggregations, when executing multiple queries over the same data stream, their time and
space complexity is tightly coupled with the number of queries, as shown in Table 2.1.
Therefore, another set of algorithms is designed to share the work between multiple queries.
An example of such a multi-query application is a live-visualization dashboard that plots line
charts of aggregates on time-series data at different zoom levels [212].

For multiple invertible functions, SlickDeque [194] generalizes SoE by creating multiple
instances of SoE that share the same input values; for non-invertible functions, instead
of using two stacks to implement a queue, SlickDeque uses a deque structure to support
insertions/removals of aggregates. It, therefore, reports results in constant amortized time but
exhibits large latency spikes due to the deque structure. FlatFAT [202] stores aggregates in a
pointer-less binary tree structure. It has O(logn) complexity for updating and retrieving the
result of a single query by using a prefix- [42] and suffix-scan over the input, which hinders
scalability with increasing window sizes. Finally, SlideSide [207] is our novel algorithm
for multiple concurrent aggregate queries over the same data stream, which we discuss
in Chapter 3. It uses a similar idea with FlatFAT but computes a running prefix/suffix-scan
with O(1) amortized complexity.

2.3.5 Programming interface for aggregation functions

Having discussed partial and incremental aggregation, next, we focus on the programming
interface exposed by SPEs to express aggregation functions [202] and used throughout this
dissertation. To implement an aggregation function, we decompose its operations into three
functions: lift, combine, lower. If the function has the invertibility property, then an additional
invert function is required to accelerate result sharing. We describe the interface using the
average function as a running example:4

• lift computes a partial aggregate from an input tuple. When we want to compute the
avg function over data values v, we perform the following operation lift(v) = ⟨v,1⟩.

• combine merges partial (i.e., intermediate) aggregates into another partial. For the avg
function, if we combine two partial aggregates we get: combine(⟨v1,n1⟩,⟨v2,n2⟩) =
⟨v1 + v2,n1 +n2⟩.

• lower turns a partial aggregate to the final output (e.g., lower(⟨v,n⟩) = ⟨v/n⟩).
4Refer to [202] for an overview of how to implement different aggregation functions.
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Fig. 2.11 Gap between memory and processing bandwidth for sliding windows

• invert removes incrementally a partial aggregate from another (e.g., invert(⟨v2,n2⟩,⟨v1,n1⟩)
= ⟨v2− v1,n2−n1⟩).

2.3.6 Challenges in window aggregation performance

We now identify the limitations of existing window aggregation approaches for single and
multiple concurrent queries, starting from the efficiency of single query execution. As
discussed in Section 2.1.2, window aggregation partitions the input into finite subsets and
calculates an aggregation result over them. While conceptually similar, tumbling and sliding
windows are distinguished by their opportunities for intermediate result sharing as shown
in Figure 2.8: in tumbling windows, every input tuple contributes to precisely one window
aggregate; in sliding windows, a tuple contributes to more than one. In other words, the
amount of necessary work per input tuple is bounded (upwards) by the maximum number of
open windows that include a particular tuple. In the worst case, i.e., when the slide is one,
this is equal to the window size. As a result, the performance of sliding window queries is
typically dominated by factors other than the memory bandwidth, which distinguishes them
from tumbling windows and classic relational aggregation optimization techniques.

To illustrate this mismatch, we implement a single-threaded running avg query5 over
a window of 1024 integers and vary the slide from 1 to 1024 (at which point the query
turns into a tumbling window). Figure 2.11 shows that, for the tumbling window, the query
saturates approximately a tenth of the per-core bandwidth. There is, thus, the potential to
improve the performance of window aggregation by introducing data parallelism through
SIMD instructions. As discussed in Section 2.2.1, SIMD-parallel implementations can
increase the processing bandwidth of an algorithm. While tumbling windows are equivalent

5We implement in C++, compiled with gcc using -O3 -mtune=skylake.
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Fig. 2.12 Evaluating window aggregation queries

to relational aggregation and such optimizations are well documented [102, 177], there are
no relevant approaches to achieve similar results for sliding windows. In particular, the
gap between memory and processing bandwidth in the sliding window case is striking: an
imbalance of more than three orders of magnitude.

Fortunately, there are many opportunities for intermediate result sharing in sliding win-
dow aggregation using the incremental algorithms and data structures [38, 202, 200, 106]
discussed above. Considering our previous example of a running average query, an incre-
mental algorithm does not recompute the average over 1024 values for each window slide.
It instead adds the new values that entered the window and subtracts those that fell out of
it. Incremental algorithms, however, commonly expose many control and data dependen-
cies in the CPU instruction stream. These dependencies, in turn, hinder opportunities for
efficient superscalar execution and SIMD parallelism, and make it challenging to perform
CPU-efficient window aggregation, especially in the case of sliding windows or multi-query
execution. Therefore, window aggregation can be executed either in parallel or incrementally,
which exposes a trade-off between CPU- and work-efficient execution. However, given the
demand from industry [40, 199] to increase CPU efficiency and prevent scale-out execution,
it is crucial to resolve this trade-off.

The efficient window aggregation problem is amplified depending on the workload char-
acteristics. Different aggregation function properties or window definitions (e.g., tumbling
or sliding windows) make it challenging to design algorithms that adapt across workloads.
As Table 2.1 indicates, there is no one size fits all solution: existing algorithms exhibit
better performance or lower storage requirements in different scenarios. Given that cur-
rent SPE designs [15, 211, 139, 24] pick a point in this trade-off space when evaluating
window aggregation queries, they do not exhibit robust performance across query types.
Figure 2.12 illustrates this problem by comparing the state-of-the-art approaches from above
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for the evaluation of window aggregation queries [106, 194, 200, 4, 207]. The queries,
taken from a sensor monitoring workload [122], calculate a rolling sum (invertible) and min
(non-invertible) aggregation, with uniformly random window sizes of [1,128K] tuples and
a worst-case slide of one. Some approaches exploit the invertibility property [106, 194]
to increase performance; others [207, 200] efficiently share aggregates for non-invertible
functions. To assess the impact of overlap between windows, we increase the number of
concurrently executed queries.

As Figure 2.12 shows, each of the four presented approaches outperforms the others
for some part of the workload but is suboptimal in others: on a single query, the SoE and
TwoStacks algorithms perform best for invertible and non-invertible functions, respectively;
with multiple overlapping queries, SlickDeque and SlideSide achieve the highest throughput
for invertible functions, while SlideSide is best in the non-invertible case. Based on our
analysis, while the most efficient algorithms have a O(1) complexity, they only achieve
the best performance for specific window definitions. We conclude that there is a need to
generalize window aggregation across different workloads.

2.3.7 Window aggregation summary

To sum up, while tumbling windows are amenable to “classic” relational query implemen-
tation techniques, the performance of sliding windows is more challenging to compute
efficiently. Incremental algorithms introduce inherent control and data dependencies in the
CPU instruction stream, as intermediate results from previous window instances have to
be used to calculate the next ones. Thus, it is challenging to parallelize sliding windows
in modern hardware with data-parallel approaches (i.e., SIMD intrinsics). In the case of
multiple queries performing aggregation over the same stream, the optimization opportu-
nities are obstructed even more, and accelerating such workloads has yet to be explored
comprehensively [194]. Finally, existing techniques do not exhibit robust performance across
different aggregation functions and concurrency levels. Thus, an SPE either performs poorly
for various points within this design space or must maintain multiple algorithms using a
complicated cost model to adapt to different workloads.

In Chapter 3, we describe how to achieve significantly better performance for state-of-
the-art incremental window-aggregation algorithms through careful, hardware-conscious
optimizations using HammerSlide. In the same chapter, we introduce a novel algorithm,
called SlideSide, that extends TwoStacks for multiple concurrent queries over the same data
stream. SlideSide accelerates intermediate result sharing by computing running prefix/suffix-
scans over windows with O(1) amortized complexity based on the algebraic properties of the
aggregate functions. Finally, in Chapter 4, we introduce an abstraction that generalizes the
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different state-of-the-art incremental approaches and generates code for efficient incremental
execution by adapting to the workload characteristics.

2.4 Scalable data stream processing

In the previous section, we focused on window aggregation operations and the challenges be-
hind their single-core execution. This section describes how SPEs scale complex applications
with multiple streaming operators to many CPU cores or cluster nodes, focusing on parallel
window aggregation. First, in Section 2.4.1, we present the parallelization strategies adopted
by modern SPEs. We then discuss the limitations of existing approaches (Section 2.4.2 and
Section 2.4.3), and summarize our findings in Section 2.4.4.

2.4.1 Parallelization strategies for stream processing

Let us now expand our analysis over the parallelization strategies employed to accelerate
processing depending on the number of available processing units (i.e., workers). Every
stream processing application can be translated into an operator graph (see Section 2.1.2),
where the operators represent transformations over the input streams. Naturally, parallelizing
stateless operators is straightforward: replicating the operator logic among a set of work-
ers (i.e., parallelism degree), and assigning them tuples from the input streams based on
scheduling policy (e.g., round-robin). On the other hand, parallelizing stateful operators is
more challenging because of data dependencies between input, intermediate state, and output
streams. The main problems that arise for stateful strategies are: (i) preserving the ordering
semantics required by stream processing operators (i.e., precise windowing); (ii) expiring and
updating windows concurrently; and (iii) balancing computations among workers regardless
of the workload characteristics (i.e., number of distinct keys). In a distributed environment,
these problems are amplified due to the lack of a global clock, leading to redundant oper-
ations [33] or approximate window semantics [231]. Distributed systems, such as Apache
Storm [211] or Spark Streaming [231], lack clear definition and support for event-based
window semantics and required extensions [213] or custom solutions.

The most common parallelization strategy for stateful operators is partitioning-by-key [24,
15, 211] . This approach requires a PARTITION operator that maps input tuples to workers
based on a partitioning function (e.g., consistent hashing). The workers execute the same
operations over distinct data partitions and create independent intermediate results called
window fragments. The final step of this approach is to assemble the output stream by
concatenating these intermediate results with a MERGE operator (e.g., in parallel using a
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Table 2.2 Parallel window aggregation in stream processing systems

System Shared
memory

Single-node
aggregation

Parallelization Incremental Slicing/query
sharing

Flink [15],
Spark [24]

✗ ✗ partition-by-key within
window

✗

Cutty [46],
Scotty [212]

✗ ✓ partition-by-key within/across
window

✓

Borealis [33] ✗ ✗ partition-by-pane within/across
window

✓

StreamBox [158],
BriskStream [236]

✓ ✓ partition-by-key within
window

✗

SABER [137] ✓ ✓
late merging [234, 143],
single-threaded merge

within/across
window

✗

LIGHTSABER ✓ ✓
late merging [234, 143],
parallel merge

within/across
window

✓

distributed file system). Other partitioning techniques involve partitioning by either windows
or panes [33, 68] and attempt to load balance execution at the expense of redundant data sent
between multiple nodes in the event of overlapping windows.

The second approach for parallel stateful operator execution is called Late Merging [234]
and was first introduced in main-memory databases [143, 168] and then in stream process-
ing [137]. In the first stage of Late Merging, the system partitions the input streams, and
independent workers pull the produced partitions on their own to balance the processing
load. Finally, the intermediate results from each worker are merged to construct the output
stream. Compared to partition-by-key concatenation, the merging step of Late Merging is
more challenging to parallelize because of the intermediate results’ data dependencies.

2.4.2 Trading-off parallelization for incremental execution

Having introduced existing parallelization strategies employed by modern SPEs, we now
focus on parallel window aggregation due to its importance in complex streaming analytics.
As discussed in Section 2.3.6, window aggregation, by its very nature, can be executed
either in parallel, if there is independent work, or incrementally, which introduces dependent
work—but not both. Consequently, the work-sharing benefits between overlapping windows
must be traded off against the parallelization benefits. This section extends the notion of
parallelism from SIMD-parallel to multi-core execution by summarizing the design decisions
of existing SPEs for parallel window aggregation in Table 2.2.
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We first present Table 2.2: the second column denotes whether a system considers shared-
memory architectures; the third column describes whether data must be available on a single
node for aggregation; the “parallelization” column specifies how computation is parallelized;
the “incremental” column describes when incremental computation is performed; and the
last column considers slicing/inter-query sharing.

Scale-out systems (Spark [24] and Flink [15]) distribute processing to a shared-nothing
cluster and parallelize it with key-partitioning. This approach requires a physical partitioning
step between operators that enables both intra- and inter-node parallelism. However, with key-
partitioning, not only significant partitioning overhead is introduced, but also the parallelism
degree is limited to the number of distinct aggregation keys, which reduces performance
for skewed data. In terms of incremental computation, these systems directly aggregate
individual tuples into full windows, following the bucket-per-window approach [147, 148].
This aggregation step becomes expensive for sliding windows with a small slide when a
single input tuple contributes to multiple windows.

Slicing frameworks, like Cutty [46] and Scotty [212] developed on top of Flink, reduce
the aggregation steps for sliding windows and enable efficient inter-query sharing. Eager
slicing [46] performs incremental computation both within and across window instances
using FlatFAT; lazy slicing [212] evaluates only the partial aggregates incrementally and
yields better throughput at the cost of higher latency. However, the parallelization method is
still key-partitioning, and these approaches perform aggregation on a single node. Therefore,
they suffer from the overheads of distributed execution without the ability to scale out to
multiple nodes.

Borealis [33] applies slicing differently: it extends panes [146] for distributed execution.
However, partitioning-by-panes still requires a centralized partitioning step that limits perfor-
mance, introduces additional data transfers for overlapping windows, and couples window
semantics with performance.

Scale-up systems, such as StreamBox [158] and BriskStream [236], are designed for
NUMA-aware processing on multi-core machines. Both systems use key-partitioning for
parallelization and use the bucket-per-window approach for incremental computation, over-
looking the optimization opportunities of window aggregation.

SABER [137] is a scale-up system that parallelizes stream processing on heterogeneous
hardware. Instead of partitioning by key, it assigns micro-batches to worker threads in a
round-robin fashion, which are processed in parallel but merged in-order by a single thread
(i.e., late merging step).

SABER’s approach decouples the window definition from the execution strategy and,
thus, permits even windows with small slides to be supported with full data-parallelism, in
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contrast to slice-based processing [33, 146]. SABER decomposes the operator functions
into: (i) a fragment function, which processes a sequence of window fragments and produces
fragment results (or sashes); and (ii) an assembly function (late merging [234, 143]), which
constructs complete window results from the fragments and reorders them based on window
semantics. In terms of incremental computation, SABER shares intermediate results both
within and across window instances at a tuple level, which results in redundant operations.

While most systems apply key-partitioning for parallelization, this approach does not
exploit all the available parallel hardware. Parallelizing by panes in a distributed environment
introduces additional data transfers that hinder performance. In addition, when evaluating
overlapping windows, no system from Table 2.2 combines effectively partial aggregation with
incremental computation, which results in sub-optimal performance, as we show in Chapter 4.

2.4.3 Revisiting the COST of parallel execution in modern SPEs

Let us now drill down on the performance characteristics of existing SPEs to understand
their bottlenecks when parallelizing stream processing operators on modern CPUs. We
compare the performance of efficient scale-up SPEs, such as SABER and StreamBox, with
that achieved by popular distributed SPEs, such as Apache Flink [15] or Apache Spark [17],
in terms of parallel (i.e., multi-core and distributed) and single-core execution.

Hardware. We perform the experiments on six servers (one for coordination and five for
execution), each with two Intel Xeon E5-2660 v3 2.60 GHz CPUs with 20 physical cores,
a 20 MB LLC cache, and 32 GB of memory. The machines are connected with 10 Gbps
Ethernet. We used only eight cores per node for the distributed experiments, as we did not
see any significant change in throughput after this number.

Workload. We evaluate Yahoo Streaming Benchmark (YSB – see Section A.1) [58] with
SABER (without its GPU support) against Apache Spark (version 2.4.0), Apache Flink (ver-
sion 1.3.2), and the latest version of StreamBox. YSB emulates an advertisement application
with four operators: SELECTION, PROJECTION, JOIN (with relational data) and AGGREGATION (a
windowed count). In our implementation, input tuples have 128B size.

We designed our experiments with the explicit intention of isolating the performance of
SPEs from external influences. For that purpose, we conduct the experiments as follows:

• For SABER, we initially generated the data on a separate machine. Since only a single
CPU core manages to saturate the 10 Gbps network connection (8.3 million tuples/s),
we instead generate data in-memory.
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• For Spark and Flink, we follow the approach from previous blogposts [99, 228]. More
specifically, for both systems, we use a static table for the join instead of Redis and
generate data in memory. Finally, we enable object reuse for Flink.

• For StreamBox, we extend the word count example and create our source and operators.
StreamBox represents windowed operations as session windows with watermarks that
define the end of a window (see Section 2.1.2). To avoid a bottleneck, we generate
ordered data with at least one source thread per worker. We emit watermarks every
10 seconds to create 10-second tumbling windows.

Fig. 2.13 Single server throughput for YSB

Throughput Comparison. Figures 2.13 and 2.14 show the scalability of the four systems in
terms of throughput as we increase the number of cores. With a single node, Flink performs
better than both Spark and StreamBox (around 12 million tuples/s), increasing throughput
by more than 1.9×. Compared to the other systems, SABER exhibits nearly 7×, 3×, and
7× better throughput than Spark, Flink, and StreamBox, respectively, as it processes almost
79 million tuples/s. SABER surpasses the best single-node throughput of the other systems
with just two CPU cores and competes for the performance of distributed execution.

Apart from not exploiting the memory hierarchy and minimizing data copying, the
throughput of both Flink and Spark is affected adversely by communication and serialization
overheads. These overheads are expected -– their distributed designs try to take advantage
of the aggregated performance of multiple nodes. On the other hand, SABER binds worker
and generator threads to CPU cores to minimize the memory accesses beyond the L2
cache. In addition, it maintains an input buffer of 512 KB, which ensures that data is kept
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Fig. 2.14 Cluster throughput for YSB

in the LLC. SABER uses atomic operations to write and read parts of this buffer with
negligible synchronization cost. Its design showcases the benefits of single-node scale-up
SPEs. However, we still want to investigate missed optimization opportunities for such a
design with the following experiment.

Table 2.3 Single CPU core throughput for Yahoo Streaming Benchmark

Spark Flink SABER Handwritten C++

Throughput (106 tuples/s) 2 4.8 11.8 39

Single-core performance. According to the previously-proposed Configuration that Outper-
forms a Single Thread (COST) metric [155], we analyze the performance of these systems
by comparing their single-core implementations with a handwritten C++ program. The
C++ implementation processes 39 million tuples/s (i.e., it is 4× faster than SABER) on
our testbed server. Table 2.3 compares our reported throughput results with that of the
single-threaded C++ implementation: there remains a large performance gap between the
handwritten code and current SPEs. As we see from these results, removing expensive
function calls, instruction cache misses (due to JVM), and memory cache misses (caused
by serialization, copying, and object allocation) already causes a major performance benefit.
We confirm that existing SPEs underutilize cache hierarchies, especially when parallelizing
window operations. Consequently, we need to revisit their design in multi-core architectures.
In Chapter 4, we perform a more extensive analysis to identify the bottleneck sources and
provide a more robust scale-up design.
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2.4.4 Scalable data stream processing summary

This section reviewed existing parallelization strategies of modern SPEs and focused on
parallel window aggregation. More specifically, we presented that SPEs implement ad-hoc
strategies for window aggregation. As a result, they only achieve high performance for
specific queries depending on the window definition and the type of aggregation function.
We identified, thus, the importance of designing a system that generalizes the design space
of existing aggregation strategies. In addition, from our experiments in Section 2.4.3, we
demonstrated a performance gap between existing SPEs’ implementations and handwritten
code, which is yet to be analyzed if we want to design hardware-conscious SPEs. To address
these challenges, in Chapter 4, we design compilation-based techniques to keep data in
CPU registers as long as possible, maximizing data and code locality [165], and balance
parallelism with incremental processing on modern scale-up architectures.

2.5 Fault-tolerant stream processing

In the previous sections, we discussed the emergence of hardware-conscious scale-up designs
for single-node SPEs [137, 158, 236, 205, 157] (see Section 2.1.3) that rival the performance
of cluster-based deployments (see Section 2.4.3). The performance gap becomes more
evident when performing stream ingestion or remote storage [135], as existing cluster-based
SPEs cannot saturate high-speed networking [234], such as RDMA [125, 36]. In contrast,
single-node SPEs yield up to an order of magnitude higher performance with fewer resources
and lower maintenance costs [175]. Such high execution efficiency is achieved by avoiding
abstractions for distributed processing and incorporating techniques such as just-in-time (JIT)
code generation [205, 100], as we present in Chapter 4.

Despite these advantages, single-node SPEs have seen limited adoption in practice
due to a lack of fault-tolerance mechanisms that guarantee correct results upon system
failures [197, 15, 118]: repeatable results and high availability are critical requirements of
real-world streaming applications, as discussed in Section 2.1.1. Given the long-running
nature of stream queries, the failure of computing nodes is common. Existing cluster-based
SPEs achieve at-least-once or exactly-once delivery semantics using different resiliency
strategies [112, 48] by persisting input tuples along with the computational state [45, 80] or
logic [230] (i.e., state checkpointing). Systems typically offload persistence to: (i) external
distributed messaging systems for streams (e.g., Kafka [16], Kinesis [11] or Pulsar [180]);
and (ii) external stores for operator state (e.g., RocksDB [78], Faster [50], or BigTable [53]).
The use of external systems for persistence introduces overheads [185, 183, 72] that increase
the size of scaled-out deployments. While the same persistence approaches could be used
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for single-node SPEs, relying on an external cluster-optimized system for persistence, such
as Kafka, counteracts the benefits of a single-node deployment and misses optimization
opportunities, as we discuss below.

This section presents the fault-tolerance approaches for stream processing and explores
the challenges faced when designing a single-node fault-tolerant system. First, we describe
our failure model (Section 2.5.1). We then discuss how fault-tolerance is realized in SPEs
and present the limitations of existing solutions (Section 2.5.2).

2.5.1 Failure model and processing guarantees

SPEs [45, 231, 80, 137, 118] execute continuous queries that translate into the operator
graphs that we introduced in Section 2.1.2. We now define the operator graph used by our
failure model.

Definition 2.5.1 (operator graph). An operator graph is represented as a graph q = (O,S,B),
where O is a set of operators, S is a set of streams and B is a set of feedback channels used
for acknowledgments between operators. The graph’s nodes o ∈ O represent computations
over data streams. The directed edges between the nodes (i.e., streams s ∈ S and feedback
edges b ∈ B) are reliable FIFO communication channels.

The operators of such a graph can be stateless (e.g., SELECTION) or stateful (e.g., AGGRE-
GATION) and maintain arbitrary state, usually defined with finite windows [21] of tuples.
However, given typical failure rates in large data centers [91], stateful operators pose a
challenge for providing correct results under failures.

We consider non-deterministic software or hardware failures [134] that cause an SPE
node to fail-stop [75], such as exhausting a node’s memory or a node crashing. We assume
each SPE node is connected with external sources and sinks via a high-bandwidth, low-
latency network and has access to stable storage that survives failures (i.e., remote flash
storage [101, 10, 138, 93]). The network layer provides a reliable FIFO delivery protocol
(e.g., TCP/IP protocol).

Upon failure, operators must resume processing from the point they failed. For stateful
operators, recovery requires redundant storage [210] of: (i) the computational logic to replay
past tuples; and (ii) the computational state [118] to avoid data replay, as the state can depend
on the entire stream history.

SPEs can achieve high availability [112] using passive standby, active standby, or
upstream backup: with passive standby, streams (and state) are maintained in stable storage
or the memory of another node; with active standby, redundant nodes are deployed that
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receive and process the same streams as the primary ones; with upstream backup, each node
retains its output and, in case of failure, restores the downstream node’s state by replaying it.

When designing a fault-tolerant SPE, it is crucial to consider the processing guarantees
it can support. There are three different types of recovery guarantees: (i) at-most-once (or
gap recovery), if there is no guarantee that all the tuples will be delivered and eventually
processed; (ii) at-least-once (or rollback) when all tuples are guaranteed to be processed
without handling duplicate results; and (iii) exactly-once (or precise recovery) when the
system guarantees that all tuples are reflected exactly once on the state and final output.

To fully mask the effects of failure, an SPE must remove duplicate tuples when restoring
the state. Fragkoulis et al. [85] distinguish between exactly-once state and output: with the
former, the system restores its state consistently but cannot handle duplicates in the output,
whereas in the latter case, it avoids duplicates. Providing exactly-once output is also referred
to as the output commit problem [75], precise recovery [112] or strong productions [6]. In
the following sections, we assume exactly-once output processing guarantees.

2.5.2 Failure recovery in SPEs and their limitations

We now examine how SPEs achieve fault-tolerance with exactly-once results and discuss
the challenges for single-node designs. For data replay upon failures, modern SPEs utilize
external distributed messaging systems (e.g., Kafka [16]), coupling, thus, their performance
to how fast such systems can ingest and transfer data. To provide exactly-once output, SPEs
outsource the problem to external sinks that support transactional or idempotent writes [139].
Finally, for exactly-once state, the four most common fault-tolerance approaches are:

(i) Transaction-based: Trident [213, 211] and MillWheel [6] remove duplicates by assigning
unique identifiers to tuples and committing state updates or produced tuples to an external
transactional store [53]. Both approaches, however, add non-negligible overhead with large
state and increase end-to-end latency.

(ii) Lineage-based: Spark Streaming [24], StreamScope [149], and TimeStream [181] track
and persist the input/output dependencies of operators (i.e., lineage [230]) before execution,
which would compromise performance for scale-up designs. Using the lineage of the failed
operators, these systems restore the previously computed state by re-executing tasks.

(iii) Checkpointing: Flink [44] and IBM Streams [120] use a distributed protocol for global
checkpointing [52] that asynchronously persists operator state with epochs, referred to as
aligned checkpoints, on distributed file systems (e.g., HDFS). Other approaches [80, 81, 163]
log tuples from streams for better runtime performance at the expense of higher recovery
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times [85], called unaligned checkpoints. With an embedded key-value store, such as
RocksDB [78], the previous systems can checkpoint their state incrementally [210].

(iv) Changelog-based: To enable state recomputation without persisting state dependencies,
Kafka Streams [118] persists state metadata in a changelog, which is stored in Kafka [139].
Although its design combines computation with storage, the use of Kafka as the messaging
system between operators increases end-to-end latency.

The above approaches require external cluster-optimized systems for persistence. There-
fore, relying on them in a scale-up design not only counteracts the benefits of a single-node
deployment but, in some scenarios, can limit performance. For example, in the case of stream
ingestion, we observe that a single Kafka node cannot support the performance requirements
of modern single-node SPEs (as discussed in Chapter 5). While it is possible to scale out
the Kafka deployment to increase its throughput linearly through stream partitioning, this
requires a large cluster (with associated maintenance costs) just to support a single SPE node.

A strawman solution is to design a “self-contained” fault-tolerance mechanism for a
single-node SPE in which the engine persists all input data streams (and temporary process-
ing state) to stable storage to recover processing after failure. We observe that, for such an
approach, disk I/O bandwidth becomes the limiting factor for many queries, capping perfor-
mance (e.g., to 950 MB/s for the experiments shown in Chapter 5). While I/O bandwidth can
be increased through hardware solutions (e.g., NVMe SSDs [226] or RAID [170]), this also
increases the maintenance costs.

Thus, designing a fault-tolerant single-node SPE with exactly-once semantics while
retaining this performance is an open challenge, especially when considering the limited I/O
bandwidth of a single node. In addition, such a system is expected to provide sub-second
recovery upon failure. Lowering the system’s downtime is crucial given the time-sensitive
nature of real-time workloads that must report results with low end-to-end latency, such as
online gaming [48].

2.5.3 Fault-tolerant stream processing summary

To conclude this section, while existing fault-tolerance approaches offer strong guarantees
under failures in a distributed environment, they face limitations for single-node SPEs.
First, they rely on external messaging systems [139, 180] to create fault-tolerant sources.
These messaging systems require non-trivial tuning [71, 37] and do not maintain compact
representations of stream data, which can lead to higher recovery times [152]. Second, they
use key-value stores for state management, often not designed for stream applications [124].
This limits performance [99, 151, 127] and misses optimization opportunities.
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As existing approaches cannot guarantee the performance requirements of hardware-
conscious single-node SPEs, in Chapter 5, we propose SCABBARD, a new single-node
fault-tolerant SPE that provides exactly-once semantics without compromising processing
throughput. SCABBARD’s fault-tolerance approach is to persist input streams and transient
operator state to an SSD using novel persistence abstractions and adaptive compression
techniques that reduce disk bandwidth.

2.6 Summary

In this chapter, we described the basic concepts related to stream processing, focusing on the
trend to design hardware-efficient scale-up systems. We then introduced the hardware features
of modern CPUs, storage, and network technologies, which are essential for developing the
next-generation SPEs. Next, we discussed the fundamentals behind window aggregation
and existing approaches while presenting the challenges of single-core execution. We then
analyzed existing parallelization strategies and their limitations on multi-core architectures.
Finally, we traced existing solutions for fault-tolerant stream processing and described the
different approaches used by SPEs to achieve exactly-once results upon failures.

Using a range of real-world and synthetic data and applications, we experimentally
demonstrated the limitations of existing solutions. We described how state-of-the-art aggre-
gation approaches leave substantial room for improvement, starting from the single-core
execution. Experimenting with an advertisement streaming application [58], we revealed
existing designs’ limitations for parallelizing window computations (both at a data and task
level). Based on our observations, we identified the challenges addressed in the next chapters.



Chapter 3

Efficient Window Aggregation and
Multi-Query Sharing

In the previous chapter, we discussed the challenges of single-core window aggregation [21]
and the missed optimization opportunities of existing solutions. Window aggregation refers
to the calculation of running aggregates over FIFO data streams (i.e., in-order) [6, 192]
using windows. This class of operators is one of the most common in complex streaming
applications. Therefore, given the ever-growing amount of data collected and analyzed in
real-time [186] and the bottlenecks that emerge from performing window aggregation [212,
40, 199], it is crucial to ensure scalability without sacrificing the response latency.

This chapter revisits the design of window aggregation operators on modern CPUs: we
examine hardware-conscious stream processing in the context of CPU- and work-efficient
single-core execution. CPU-efficient execution refers to exploiting the hardware components
from Section 2.2.1, such as data-parallelism. Work efficiency refers to minimizing redundant
operations, such as computations upon overlapping windows, using incremental execution.
In particular, we target two distinct workloads: single and multi-query applications. An
example of a single-query application is the calculation of statistics over user click logs [95,
49, 6] or compute cluster traces [220] using a sliding window. Regarding multi-query
applications, users want to perform the same aggregate functions over a data stream with
different window definitions. Typical multi-query applications debug a stream, report near
real-time behavior over small and large windows (e.g., a second vs a day), or support live
visualization dashboards for different periods. For the latter use case, a dashboard can report
analytics on time-series data at different zoom levels [212] or various telemetries from the
same IoT device reading [29].

As discussed in Section 2.1.2, data streams are conceptually infinite, and thus, partitioned
into finite subsets of tuples, called windows. A window has a definition, which maps each
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input tuple to a window instance that yields a result upon aggregation. Windows can be
distinguished by whether their instances are disjoint (“tumbling windows”) or not (“sliding
windows”). Tumbling (a.k.a. fixed) windows slice up the input stream into segments with a
fixed size temporal length (static window size). Sliding (a.k.a. hopping) windows generalize
tumbling windows by specifying a slide parameter in addition to the size that specifies the
distance between the start of two windows.

Unlike tumbling windows that are amenable to classic “relational” query optimizations,
sliding windows introduce repeated computations that hinder optimizations and create a
tension between data parallelism and work efficiency. While employing an incremental
algorithm to prevent redundancy is possible (see Section 2.3.4), such algorithms lead to
control and data dependencies in the CPU instruction stream that make it challenging to
introduce data-parallelism (e.g., SIMD intrinsics). Therefore, incremental execution reduces
latency but affects CPU efficiency negatively, compromising throughput performance. We
observe the consequence of this trade-off in Figure 2.11: there is an orders of magnitude gap
between memory and processing bandwidth.

As a step further, evaluating multiple concurrent queries amplifies the complexity of win-
dow aggregation, introducing additional data dependencies that harm query performance. As
we identified in Section 2.3.4, sharing efficiently intermediate computations over concurrent
queries has not been explored comprehensively. There is, thus, a mismatch between contin-
uous applications that aggregate data and the available techniques of performing efficient
window aggregation for overlapping windows in industry [40, 199]. This results in expensive
scale-out approaches and increased end-to-end latency.

Opportunity. In this chapter, we argue that there is a need for efficient single-core execution
of window aggregation. By developing hardware-conscious window aggregation operators,
SPEs can minimize their resource footprint, prevent scaling out to multiple computing nodes,
and reduce the end-to-end latency of time-critical applications. Therefore, we identify as
the first step towards hardware-efficient SPEs the design of such operators and target the
following mismatches: (i) CPU-efficient execution; and (ii) operation redundancy.

Requirements. To sufficiently support window aggregation for both single and multi-query
workloads, our approaches must address the following requirements (R1-R3):

1. Minimize end-to-end latency and maximize throughput regardless of the workload
characteristics, i.e., aggregation function type or the number of concurrent queries.

2. Ensure both work and CPU efficiency without sacrificing general applicability (i.e.,
support all associative aggregate functions).



3.1 Overview 49

3. Increase sharing opportunities and prevent repeated computations, even when process-
ing multiple concurrent queries. An incremental algorithm should determine the order
of evaluating different window results to maximize work efficiency.

The remainder of this chapter is organized as follows: in Section 3.1 we provide an
overview of our proposed approaches. We then conduct a performance analysis of state-of-
the-art incremental algorithms in Section 3.2. Based on our findings, we develop and present
HammerSlide in Section 3.3 that addresses the R2 requirement. Section 3.4 introduces
SlideSide, our novel multi-query incremental algorithm (R3). We evaluate our approaches
and present advice on how to select the most appropriate aggregation algorithm in Section 3.5.
The chapter finishes with the discussion of our approaches and their limitations (Section 3.6),
and conclusions (Section 3.7).

3.1 Overview

The core objectives of this chapter are to analyze, design, and implement work- and CPU-
efficient window aggregation operators for single-core execution. In Section 2.3, we discussed
that efficient calculation of overlapping windows (i.e., sliding or multi-query workloads)
involves two orthogonal techniques to prevent repeated computations: (i) partial aggregation
of non-overlapping window chunks [146, 140, 46, 212]; (ii) incremental execution for sharing
intermediate aggregates between overlapping windows [106, 194, 4].

Example: Figure 3.1 presents an example of the two approaches. On the left, the data paral-
lelization opportunities (i.e., SIMD) are presented by partial aggregates p1-p4, which are
CPU-efficient but work-inefficient. On the right, incremental algorithms offer opportunities
for work-efficient execution at the expense of parallelism.

p1

Incremental ExecutionParallel Execution

+ Work Efficient

- Sequential+ Parallel

- Work Efficient

w2

w1

+ +- -Panes

p2

p3

p4

Fig. 3.1 Opportunities for data-parallel and incremental computation for sliding windows
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To address the tension between incremental execution and data-parallelism, we provide
a family of window aggregation techniques that accelerate partial aggregation while en-
abling computation sharing for overlapping windows. For partial aggregation, we accelerate
computation through SIMD-parallelization and introduce a set of novel hardware-conscious
optimizations, such as internal data structure decomposition and data minimalism. Our
approach is called HammerSlide and resolves requirement R2 for work- and CPU-efficient
execution. SPEs can use HammerSlide to handle both incremental and non-incremental ag-
gregation, resulting in simpler and faster system designs. Regarding the computation sharing
opportunities of multi-query workloads (requirement R3), we introduce a novel algorithm,
called SlideSide, that uses different processing schemes for invertible and non-invertible
functions. SlideSide, thus, exploits their algebraic properties to increase work efficiency. Both
techniques achieve significantly better performance (requirement R1) for window aggrega-
tion than existing solutions through careful, hardware-conscious optimizations. In addition,
they can be integrated into modern SPEs (e.g., Apache Flink [45] or Apache Spark [231])
as drop-in replacements for any associative aggregation operator. We next outline the key
components of our solution.

Performance analysis. We first analyze in Section 3.2 the performance of the three best-
performing window-aggregation algorithms for single-query execution from recent litera-
ture [106] to identify the characteristics of existing solutions. We show how all approaches –
and arguably the entire problem of streaming window aggregation – expose fundamentally
different performance patterns than classic relational database problems with various experi-
ments. Window aggregation tends to suffer much less from memory bandwidth starvation
and much more from L1-data cache latency and control hazards.

Accelerating partial aggregation. Based on the observations from our analysis, we study
the applicability of several optimization techniques for partial aggregation, including the
design and implementation of vectorized operators, to address the identified bottlenecks. Fur-
thermore, we demonstrate how these optimizations affect the runtime of window aggregation.

In Section 3.3, we combine the aforementioned optimizations to design HammerSlide, a
novel window aggregation technique that extends the best-performing incremental algorithms
for sliding window computation [4]. HammerSlide is competitive with a highly optimized
non-incremental algorithm, even when processing tumbling windows, and there is no need
to share intermediate window results. Besides the potential of simplifying SPEs for both
tumbling and sliding windows, HammerSlide yields almost 2× better performance for sliding
windows with a slide greater than one tuple (requirement R1). Finally, we also conduct
experiments inside a state-of-the-art SPE and measure the end-to-end performance of our
approach, which yields up to 12× throughput improvement. Since many of the most widely
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Fig. 3.2 Evaluating min function with window slide of one

used SPEs are built on a JVM [211, 45, 231], we demonstrate the steps for integrating our
C++ implementation efficiently into a Java-based SPE.

Accelerating incremental execution. With respect to result sharing between multiple
queries, we use our performance study from Section 2.3.4 to propose a novel approach
for incremental processing in multi-queries scenarios called SlideSide (Section 3.4). Our
solution extends the logic of TwoStacks [106] using the insight that the algorithm maintains
a running prefix-/suffix-scan over the input stream (see Section 2.3.3). SlideSide optimizes its
performance for associative aggregation functions based on their algebraic properties and can
serve as a drop-in replacement for the aggregation operator in an SPE. We demonstrate that
SlideSide is competitive with highly optimized single-query algorithms, while it yields up to
2× better throughput and comparable latency in the multi-query scenario (requirement R1).
After presenting both HammerSlide and SlideSide, we distinguish sections of the window
aggregation problem space in which different approaches perform best.

3.2 Revisiting the design of window aggregation

Before designing algorithms that accelerate window aggregation, it is crucial to identify
the bottlenecks of existing solutions presented in Section 2.3.4. To simplify the process,
we conduct performance analysis for single-query execution using the best-performing
algorithms [106] for three different workloads: (i) tumbling windows; (ii) sliding windows
with invertible functions; and (iii) sliding windows with non-invertible functions. Next,
in Section 3.4, we use our findings as a guideline for accelerating multi-query execution. All
algorithms evaluated in this section have O(1) insertion time complexity per tuple and O(n)
space complexity, while the window computation time ranges from O(1) to O(n). To make
this chapter self-contained, we briefly present these algorithms:
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Algorithm 1: TwoStacks algorithm from [106]
1 fun query()
2 return Σ

⊕
F ⊕Σ

⊕
B

3 fun insert(v)
4 B.push(v, Σ

⊕
B ⊕ v)

5 fun evict()
6 if F.isEmpty() then ◃ Flip Phase
7 while not B.isEmpty() do
8 F.push(B.top().val, B.top().val⊕Σ

⊕
F )

9 B.pop()

10 F.pop()

11 fun Σ
⊕
F

12 if F.isEmpty() then return neutralVal
13 else return F.top().agg

14 fun Σ
⊕
B

15 if B.isEmpty() then return neutralVal
16 else return B.top().agg

• The non-incremental algorithm recalculates the aggregate result for each window from
scratch. Its time complexity per window slide is O(n), but it does not introduce any
overhead for tumbling windows (i.e., disjoint sets).

• Subtract-on-Evict (SoE) [106] is the best-performing approach in the case of invertible
functions, e.g., sum. With SoE, the result of the previous window instance is reused to
compute the next in constant time by removing the expired tuples and merging the new
data. However, SoE cannot efficiently compute non-invertible functions (e.g., min), as
the whole window needs to be rescanned in the worst-case scenario with O(n) time
complexity (i.e., the previous minimum value is evicted).

• TwoStacks [4, 106] implements a queue using two stacks, a back and a front stack.
As shown in Figure 2.10, each stack element contains a value (white column) and an
aggregation of everything below it (blue/green columns). To clarify how TwoStacks
works, we provide its pseudocode from previous work [106] in Algorithm 1. The
stacks are denoted as F and B (i.e., front and back), while val and agg are the values
and aggregates of a stack element. The symbol ⊕ denotes a combiner function
from Section 2.3.1, and neutralVal is its neutral element [202]. TwoStacks relies on
three functions for window aggregation: (i) insert for adding elements in a window
and incrementally computing the aggregate; (ii) evict for removing expired elements;
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(iii) query for computing the current aggregate result. When new elements enter the
window, they are pushed on B (line 4). Elements that fall off the window are evicted
from F in line 10. During the eviction, if F is empty, the algorithm flips B onto F,
reverting the order of elements. This allows TwoStacks to evict the oldest elements
first in constant amortized complexity from the front stack, as the aggregates of the
remaining elements are precomputed. To compute the aggregate result of the current
window, we must combine the top elements of both stacks in line 2. For a window
size of n tuples, TwoStacks requires 2n partial aggregates and exhibits O(1) amortized
complexity for both invertible and non-invertible functions, as all operations invoke ⊕
constant times, on average.

Having introduced the three basic algorithms, we now measure their throughput perfor-
mance after exploiting possible optimization opportunities, such as storing data in fixed-sized
arrays. First, we evaluate them in the most challenging case in terms of repeated computa-
tions: a non-invertible min aggregate over a count-based window of slide one tuple. For our
experiments, we vary the window size from eight to two million tuples to stress the efficiency
of incremental execution. Finally, we generate a stream of random uniformly distributed
integers as input (see Section 3.5 for our hardware set-up details).

In Figure 3.2a, we observe that the TwoStacks algorithm is affected negligibly by the
window size as expected due to its aggregation time complexity. However, the other two
algorithms experience severe performance degradation as the window size increases. For the
SoE algorithm, we observe that the cost of computing the new minimum if the current value
is evicted increases with the window size and dominates the performance for large windows.
The computation is executed by re-scanning the entire window. The decreasing performance
of the naïve, non-incremental algorithm is consistent with the explanation from above. Thus,
we deduce that for non-invertible functions, the TwoStacks algorithm is the most efficient
without applying any hardware-conscious optimizations.

However, the results dramatically change when performing invertible computations, as
SoE outperforms the remaining algorithms for small slides, and the non-incremental approach
yields the best results for larger slides. In addition, when comparing the throughput results
with the per-core bandwidth, as shown in Figure 2.11, we observe a striking gap between
memory and processing bandwidth. Therefore, it is unclear how to design an approach that
bridges this gap while exhibiting comparable or better performance for different workloads.

To identify which parts of the microarchitecture are the bottleneck, we break down
the elapsed cycles by CPU component, as described in Section 2.2.1. For this execution
time breakdown, we use as workload the min function over count-based windows with
size 1024 tuples and slide one. Figure 3.2b shows that all algorithms spend at least 50%
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of their cycles retiring instructions. When calculating a window result, all algorithms
perform incremental aggregation,1 introducing control and data dependencies that affect
work efficiency but not CPU efficiency. The execution is back-end bound in most remaining
cycles due to L1 cache accesses. This is consistent with our expectations since most data
accesses are performed to manage the window state that resides in the L1 cache. Overall,
we found that the best performing algorithm, i.e., TwoStacks, spends less than 10% on
bad speculation or front-end bound. This indicates two opportunities for performance
improvement: (i) improving CPU efficiency with SIMD-intrinsics; and (ii) reducing the
number of L1 data accesses. Next, we discuss how we optimize both ends to design
HammerSlide.

3.3 Work- and CPU-efficient window aggregation

In this section, we address the bottlenecks identified in Section 3.2 to design a work- and CPU-
efficient single-core execution. We propose a family of window aggregation optimizations
that focus on data layout, data storage format, data-parallel operations, and compression
techniques. For each optimization and design decision introduced, we provide a graph to
show its effect on the runtime and evaluate its importance. As a running example for all
microbenchmarks throughout this section, we use the computation of the min function for
windows of size 1024 and slide 64 tuples while generating a stream of random uniformly
distributed integers.

Storing data in circular buffers. Our first optimization is about the data layout of window
state, and it applies to both TwoStacks and SoE algorithms. A generic implementation can
allow the state of these algorithms to grow arbitrarily, offering the flexibility to process
windows that vary in size (e.g., time-based windows). This flexibility, however, comes
at the cost of more complex addressing logic and bounds checking (indexed access must
dereference two pointers). We avoid these overheads by using circular buffers, allocating
sufficient space for count-based windows to fit the entire window. For time-based windows,
we allocate space according to generous estimates and resize the buffer during execution
if required. The logic of circular buffers allows us to process unbounded data streams by
wrapping around to the beginning of the underlying allocated memory and offers a predictable
memory access pattern. This data layout is CPU-cache-friendly because tuples can be pre-
loaded at a hardware level. Below, we evaluate our structure in comparison to stacks from
the C++ Standard Template Library (STL) that use deque as their standard container and
require two pointer dereferences.

1The non-incremental approach does not perform incremental execution across windows.
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Fig. 3.3 Example of HammerSlide with TwoStacks

We implement the circular buffers as fixed-size arrays and a modulus-divide on the access
cursors. Storing such a “flat” sequence of tuples in contiguous memory regions enables
optimizations, such as data-parallel execution with SIMD instructions. Therefore, we decide
to use circular buffers for all our data structures, both queues, and stacks, because of their
simplicity and high efficiency.

In Figure 3.3, we present the implementation of the TwoStacks algorithm with a flat
circular buffer in the case of min aggregate, using a window of size four and slide one for
simplicity. The circular buffer (i.e., white boxes) stores the actual stream values, while
the boxes above store the aggregates of the back (blue) and front stack (green). The two
stacks are overlayed atop the circular buffer using the respective pointers (i.e., back_ptr
and front_ptr). We move these pointers according to the window semantics to perform the
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Fig. 3.4 Performance improvement with circular buffers

operations discussed in Section 3.2: insertions to the back stack, evictions from the front
stack, or flipping the back stack onto the front. Assuming tuples with an integer value as a
payload for simplicity, they enter the system in the order: 8, 2, 1, 5, 0, 7, 9, 3, 6.

In phase (t1), 8 is inserted in the back stack, which is reflected by moving the back_ptr

and writing the value in both the circular buffer and the back stack’s aggregate, while the
front stack is empty. Next, in phases (t2), (t3), and (t4), we insert new values by moving
the back_ptr and changing the back stack’s aggregate, if necessary, by applying the min
function to the previous aggregate and the new value. At this point, the window has four
elements, and we are ready to emit the result, but the front stack is still empty. Thus, we have
to perform the flip phase (t5) of the algorithm shown in Algorithm 1.

For the flip phase, we need to copy the elements from the back stack to the front. As the
back stack elements are removed in a LIFO order, their values and aggregates are computed
and pushed in the front stack in reverse (i.e., from right to left). However, storing the actual
stream values in a circular buffer and using the stack pointers means we do not have to copy
data between the stacks. Instead, we traverse the buffer backwards to calculate the front stack
aggregates. More specifically, we fill the green boxes from 5 to 8: 5 is the first min as there is
no other value yet, and then 1 becomes the min of the remaining aggregates. The back_ptr

is set to null, as the back stack is empty, the front_ptr points at the beginning of the circular
buffer, and the aggr_idx pointer denotes the aggregate of the front stack’s top element.

Finally, in phase (t6), we have to evict a tuple in order to insert a 0 into the back stack.
Evictions are performed on the front stack by moving the front_ptr to the next element
(value 2) and the aggr_idx to the next aggregate (value 1). Removals do not require additional
writes, as both the circular buffer and the front stack aggregates are eventually overwritten by
new values without additional overhead.

Avoiding data copies removes the unnecessary writes in the flip phase. Moreover, com-
bined with the contiguous memory’s data locality, this optimization significantly improves
the performance, reducing the runtime from 286 s to 153.5 s (80%) in Figure 3.4.

Decomposed intermediates & data minimalism. We now examine the data storage format
of the window state. As SoE maintains a single accumulator value for each aggregation, we
focus on the TwoStacks algorithm that maintains two stack data structures. In particular,
each element stored in the stacks has two attributes: the inserted value and the aggregate of
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Fig. 3.5 Decomposing intermediates and reducing data

all the values beneath it. It is a fact that these can be stored in n-ary form (also known as
struct-of-arrays or, more colloquially, columnar format). While decomposition does not yield
an immediate performance benefit (as the application is not memory-bandwidth bound), it
enables several subsequent optimizations, which we discuss in the following.

First, we observe that the back and the front stack are used differently (see Figure 2.10).
From the back stack, only the value column and the top element of the aggregate column
are ever read. The value column is only needed to perform the flip. From the front stack,
only the aggregates are read by the pop operation. By exploiting the decomposed format of
the stacks, we can thus elide the allocation and maintenance of the respective data buffers.
Instead, we only store the value column and the top element of the aggregate stack from
the back stack and only the aggregates from the front stack. This reduces the number of L1
cache misses since fewer attributes have to be stored in the cache.

Based on these observations, we implement the TwoStacks algorithm as shown in Fig-
ure 3.3 and maintain the least possible values that allow us to compute the aggregation result.
For window slides greater than one, we realize that it’s sufficient to maintain one single value
per window slide (also equivalent to a partial aggregate in this case) for the front stack, as all
the elements of a specific slide will be evicted simultaneously. These optimizations yield an
effective reduction of the runtime by 33% in Figure 3.5.

Bulk insertion & SIMD scanning. To increase CPU efficiency, it is natural to use vector
instructions to insert new values into the respective data structures in bulk. We also pre-
aggregate the values upon insertion for slides greater than one (i.e., partial aggregates),
implying reduced output granularity. Since we have replaced the stacks with circular buffers
in the TwoStacks approach, this optimization naturally applies to SoE too. For example, in
the insertion phases like (t2), (t3), (t4), and (t6) of Figure 3.3, if the slide is large enough,
we can apply our aggregation functions with SIMD intrinsics on each slide to compute the
running partial aggregate inserted in the back stack.

The main benefit of decomposed storage introduced before is that it enables SIMD
instructions for scanning the buffers when calculating aggregates. We implement a SIMD-
parallel version for the standard SQL aggregation functions (min, max, sum, count, avg) and
many statistical properties (e.g., standard deviation) using AVX-256 bit compiler intrinsics.
More precisely, in the case of the SoE algorithm, we apply these parallel versions during
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Fig. 3.6 Performance with bulk insertion and SIMD scanning

the eviction phase when we want to recompute the running value of the aggregation. For
the TwoStacks approach, we utilize this optimization within the flip phase, as we show in
(t5) of Figure 3.3, in which we compute a single aggregate value per slide. These optimized
functions for scanning the buffers reduce the runtime from 155.6s to 37s (i.e., 4.2× speedup),
as shown in Figure 3.6.

One may assume that the use of SIMD is not contingent on decomposed storage because
shuffle or gather instructions may be used to arrange the values of a column in a contiguous
memory region. We find, however, that the overhead of those instructions is both high and
avoidable by using decomposed storage.

Both SIMD scanning and bulk insertion apply to aggregation functions other than the
ones we implement in this work. Their combination introduces parallel processing within
a partial aggregate (i.e., pane) for single-core execution and is our optimizations’ most
important improvement factor.

Stack RLE compression. In Figure 2.10b, we notice that the aggregate values on the front
stack2 expose an exploitable pattern: since each slot contains the minimum of the slot beneath
it and its aligned value, the probability is high that the value in a slot is equal or smaller
to the value in the slot beneath it. This data pattern is naturally amenable to run-length
encoding (RLE) [189]. Instead of inserting a new value and increasing the top pointer, only
the top count must be increased. This reduces the size of the stack and allows us to make fast
comparisons and scan the front-stack using SIMD instructions.

Unfortunately, we found that while this optimization reduces the number of L1 cache
accesses, it introduces additional data dependencies in the stack flipping code and yields a
performance reduction between 9% and 18%.

Discussion. As presented in the performance analysis above (Section 3.2), for designing
hardware-efficient aggregation operators, we must improve the CPU efficiency and reduce
the L1 accesses of existing solutions [4]. However, while incremental algorithms are work-
efficient (see the retiring instruction cycles in Figure 3.2b), it is challenging to increase their
CPU efficiency due to their inherent data and control dependencies. For that reason, we
contribute a set of novel optimizations that can transform existing work-efficient incremental

2Technically, the back-stack as well, but we have eliminated the aggregates from it.
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algorithms, such as TwoStacks or SoE, to both work- and CPU-efficient approaches. The
following optimizations lead to the design of hardware-conscious operators: (i) cache-friendly
storage data layout; (ii) removal of redundant storage requirements that lower the L1 cache
misses; and (iii) CPU-efficient execution with data-level parallelism (SIMD instructions).
As future work, we want to investigate how to apply these optimizations to other window
operators (e.g., joins [126]).

Q2

Q1w1

Q1w2- +

Q1w3+-

Q1

Q2w1

Q2w2- +

Input stream

Output window 
results

Fig. 3.7 Answering two concurrent queries over the same data stream

3.4 Efficient incremental aggregation for multiple queries

Having addressed the challenge of work- and CPU-efficient computation for single-query
execution, we now focus on accelerating incremental aggregation in a multi-query environ-
ment. For such workloads, it is important to identify result-sharing opportunities to avoid
redundant work and reduce end-to-end latency.

Example: As shown in Figure 3.7, when answering two queries Q1 and Q2 with windows
of size three and four and slide one tuple, there is an overlap of intermediate results due to
their window specifications. This overlap results in performing redundant operations that
can be avoided upon updating the window contents (the minus and plus symbols denote
removing and adding a tuple in a window). For example, in this scenario, if we compute
the first window result of Q1 (i.e., Q1w1), we can then compute the first window of Q2 (i.e.,
Q2w1) by simply adding the fourth tuple from the input stream. We can, therefore, reduce
the number of aggregations by two, as we do not need to compute Q2w1 from scratch.
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However, with the increasing number of concurrent queries, sharing efficiently intermedi-
ate results between different windows becomes more challenging. To address this challenge,
we contribute SlideSide, a novel incremental algorithm that aggressively reuses intermedi-
ate results among concurrent queries. Instead of processing invertible and non-invertible
functions with a uniform approach similar to HammerSlide though, we decide to distinguish
SlideSide’s execution strategies. SlideSide uses different processing schemes based on the
invertibility property to eliminate redundant operations in multi-query workloads. Regarding
the algebraic properties of the aggregate functions, SlideSide has the same requirements as the
state-of-the-art algorithms described in Section 2.3.4 (associative aggregate functions) and
can be applied to FIFO windows (i.e., in-order data). Fundamentally, SlideSide is an extension
of the TwoStacks algorithm that exploits the design principles introduced in Section 3.3 (e.g.,
data structures with sequential memory layout).

In the remainder of this section, we discuss how SlideSide employs different processing
strategies for invertible (Section 3.4.1) and non-invertible (Section 3.4.2) functions to speed
up incremental execution.

3.4.1 Result sharing for multiple invertible aggregates

The most straightforward case is applying the same invertible aggregation functions, such as
sum, over a data stream. The natural approach of evaluating simultaneous windows would
be to run multiple loop-fused instances of SoE, the best performing algorithm for invertible
functions. However, we found that we can extend the TwoStacks algorithm to support the
workload of concurrent queries as well, yielding a more cache-efficient approach similar to
what we discussed in Section 3.3. Somewhat surprisingly, we implement this using only two
stacks (illustrated in Figure 3.8). Like the single query case, the elements of the back and
front stacks share the same memory space, while their aggregates are kept separately. Next,
we will explain the algorithm, and then we will present an example execution using the two
queries shown in Figure 3.7.

During the initialization phase of Algorithm 2, the back stack, the front stack and a
circular buffer of elements are allocated with size equal to the largest window from a given
set of queries (Q), and initialized with the neutral element [202] of the aggregate function
(lines 1-4). For every input value val from the stream, we call the insert function and compute
the results for every query in Q with emitResults in lines 6-8.

Upon the arrival of a new element, using the insert function (Algorithm 3), its value
is stored in the next available slot of the circular buffer, defined by the curPos variable in
line 4. The back stack is used for maintaining the prefix-scan of the input with every insertion
(line 5), similar to Section 3.3. Suppose we reach the end of the circular buffer. In that case,



3.4 Efficient incremental aggregation for multiple queries 61

Algorithm 2: SlideSide (INV) PSEUDOCODE

Input: A set of aggregate queries Q, a combine operation ⊕, an inverse operation ⊖
Output: The results of the window queries in Q

1 windowSize← Q.getMaxWindowSize()
2 backStack[windowSize+1]←{neutralVal} ◃ used for prefix-scan
3 frontStack[windowSize+1]←{neutralVal} ◃ used for suffix-scan
4 elements[windowSize]←{neutralVal} ◃ used for input stream
5 curPos← 0
6 for val ∈ stream do
7 insert(backStack, frontStack,elements,curPos,windowSize,val)
8 emitResults(backStack, frontStack,curPos,windowSize,Q)

Algorithm 3: Algorithm for insert(...) – SlideSide (INV)
1 if curPos = 0 then ◃ compute suffix-scan
2 for i← 0,1, . . . ,windowSize do
3 frontStack[i+1]← frontStack[i]⊕ elements[windowSize− i−1]

4 elements[curPos]← val
5 backStack[curPos+1]← elements[curPos]⊕backStack[curPos]
6 curPos← (curPos+1)%windowSize ◃ wrap around the circular buffer

we wrap around to the beginning and compute a suffix-scan over the input (lines 2-3) before
applying the new insertion, which guarantees correct results after evictions. The evictions are
performed by overwriting obsolete data as in Section 3.3. Finally, note that, as in TwoStacks,
the computation of the suffix-scan occurs infrequently, and the algorithm, thus, yields O(1)
amortized complexity.

After the insertion, the emitResults function (Algorithm 4) is called for computing the
results for each query with the set Q. Based on the values of curPos and the window size of
each query, this algorithm first computes the startPtr and endPtr pointers (lines 2-10) that
are used for “bookkeeping”. Next, we distinguish three different cases based on the value
of these pointers: (a) if the startPtr is 0, the result is already computed by the prefix-scan
and returned in line 12; (b) if the startPtr is greater than 0 and the endPtr does not wrap
around the beginning of the circular buffer, the result value is computed by applying the
inverse function (⊖) on the values from the back stack in the positions of startPtr and
endPtr (line 16); (c) if the endPtr has wrapped, the result is computed by combining (⊕)
backStack[endPtr] and frontStack[windowSize-startPtr] in line 14.

In Figure 3.8, we present an example of SlideSide for the windows from Figure 3.7: Q1

and Q2 with size three and four respectively, and slide one. The red boxes represent the result
of the queries (i.e., sum function) on each phase. The white boxes hold the values of the start
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Algorithm 4: Algorithm for emitResults(...) – SlideSide (INV)
1 for query q : Q do
2 curWindowSize← q.getSize()
3 hasWrapped← false
4 endPtr← curPos
5 if endPtr = 0 then
6 endPtr← windowSize

7 startPtr← endPtr− curWindowSize
8 if startPtr < 0 then
9 hasWrapped← true ◃ window wraps around the circular buffer

10 startPtr← startPtr+windowSize

11 if !hasWrapped&&startPtr = 0 then
12 res← backStack[endPtr] ◃ use the result from prefix-scan

13 else if hasWrapped then
14 res← backStack[endPtr]⊕ frontStack[windowSize− startPtr]

15 else
16 res← backStack[endPtr]⊖backStack[startPtr]

17 forward answer res to query q
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Fig. 3.8 Example of the SlideSide (Inv) algorithm

and end pointers we discussed above. At our initial phase t0, the values 3, 4 and 2 have been
already inserted in the elements buffer (from left to right) and their prefix-scan is computed
in the back stack above (3, 7, 9). In the next phase t1, we have an insertion in the last slot of
the elements buffer, which triggers the computation of the prefix-scan for backStack[4] by
combining 9 (previous result) and 8.

After the insertion, the algorithm emits results for both queries. For Q2, the result
contains all the elements and the window starts from position 0 (case (a) from above). Thus
the result is already computed by the prefix-scan and can be obtained by accessing the value
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of backStack[3] which is 17. For Q1, the result contains only the latest three elements and
the window points at positions 1 and 3 (case (b)). Thus, the result is computed by applying
the inverse function on the elements from the back stack placed at that positions.

When we reach the end of the elements buffer (t2), we wrap around to the beginning, and
we compute a suffix-scan over the input using the front stack. In phase t3), we have the first
eviction, where the latest input value 5 replaces value 3 and backStack[1] becomes equal to
5. Now, both query windows have wrapped (case (b)). This operation is going to return the
suffix-scan of the remaining elements after evictions using the front stack and the current
running aggregate from the back stack, which results in 15 and 19 respectively.

Algorithm 5: SlideSide (NON-INV) PSEUDOCODE

Input: A set of aggregate queries Q, a combine operation ⊕
Output: The results of the window queries in Q

1 windowSize← Q.getMaxWindowSize()
2 flipRange← Q.getMinWindowSize()
3 backStackVal← neutralVal ◃ used for prefix-scan
4 frontStack[windowSize]←{neutralVal} ◃ used for suffix-scan
5 elements[windowSize]←{neutralVal} ◃ used for input stream
6 curPos← 0 for val ∈ stream do
7 insert(backStackVal, frontStack,elements,curPos,windowSize,val,flipRange)
8 emitResults(backStackVal, frontStack,curPos,windowSize,Q)

Algorithm 6: Algorithm for insert(...) – SlideSide (NON-INV)
1 if curPos%flipRange = 0 then ◃ compute suffix-scan
2 tmp← neutralVal
3 inIdx← curPos
4 for outIdx← (windowSize− curPos−1), . . . ,windowSize do
5 tmp← neutralVal
6 tmp← elements[inIdx]⊕ tmp
7 frontStack[outIdx]← temp
8 inIdx← inIdx−1 ◃ we can stop when encountering the again same value

9 backStackVal← neutralVal

10 elements[curPos]← val
11 backStackVal← elements[curPos]⊕backStackVal
12 curPos← (curPos+1)%windowSize ◃ wrap around the circular buffer
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Algorithm 7: Algorithm for emitResults(...) – SlideSide (NON-INV)
1 for query q : Q do
2 curWindowSize← q.getSize()
3 pos← curPos− curWindowSize+1
4 if pos < 0 then
5 pos← pos+windowSize

6 res← backStackVal⊕ frontStack[windowSize−pos−1]
7 forward answer res to query q

3.4.2 Result sharing for multiple non-invertible aggregates

Let us now discuss the logic behind processing multiple non-invertible functions, illustrated
in Algorithm 5, which is similar to Algorithm 2. Yet, the suffix-scans have to be triggered
more frequently, and we have to keep track of the smallest size from queries Q. Next, the
insertion algorithm for non-invertible functions is presented in Algorithm 6. The intuition
behind insertion is that, while each of the queries maintains and operates on its own pair of
stacks, these can be overlayed and start at the same memory address. In effect, the smallest
stack is stored in the same memory region as the bottom part of the next larger, and so
forth. To preserve correctness among the query results, the computation of the suffix-scan is
triggered every time the query with the smallest window size starts to evict (denoted with the
flipRange variable).

The non-invertible execution can be further optimized, similar to the single-query eval-
uation in Section 3.3 by maintaining only the top value of the back stack. Regarding
performance challenge of frequently triggered suffix-scans based on the smallest window
size in Algorithm 6, we observe that we can reduce the number of updates required. During
the suffix-scan computation, if the algorithm finds the same partial aggregate twice, it can
stop propagating the changes from the current position until the end of the front stack, as the
remaining partials hold already the correct value. This dramatically reduces the overhead of
multiple flip phases and results in constant amortized complexity, as shown in Table 2.1.

Finally, the emitResults function (Algorithm 7) illustrates how SlideSide answers multiple
non-invertible queries. The process is simpler than invertible functions: for each query,
SlideSide always uses the back stack with the appropriate value from the front stack.

Discussion. To simplify the description of SlideSide, in Algorithms 2 and 5, we assumed that
all window semantics have a slide of one. For slides greater than one, HammerSlide can be
used to accelerate partial aggregation, while SlideSide performs incremental execution over
the partial aggregates for work efficiency. In addition, both Algorithms 2 and 5 must change
to keep track of when the emitResults is called similar to previous work [212, 194]. Finally,
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when answering queries with invertible and non-invertible functions, SlideSide overlaps the
stacks of both types and updates partial results accordingly.

3.5 Evaluation

To evaluate the benefits of our solutions,3 we conduct experiments against the state-of-
the-art incremental algorithms using synthetic and real-world datasets described in detail
along with our evaluation set-up in Section 3.5.1. First, we explore the robustness of
different single-query algorithms based on the window slide, number of recomputations due
to data evictions, and window size and explore the efficiency of HammerSlide for time-based
windows (Section 3.5.2). Then, we integrate HammerSlide with an SPE (Section 3.5.3)
to perform an end-to-end performance evaluation. Finally, we evaluate SlideSide for both
multi-query and single-query execution (Section 3.5.4) and advise which approach to use
based on the workload characteristics (Section 3.5.5).

3.5.1 Experimental set-up and workloads

Hardware. All experiments are performed on a server with two Intel Xeon E5-2640 v3
2.60 GHz CPUs with a total of 16 physical cores, a 20 MB LLC cache, and 64 GB of memory.
We use Ubuntu 18.04 with Linux kernel 4.15.0-50 and compile all code with Clang++
version 9.0.0 using -03 -march=native. We evaluate all approaches with single-threaded
execution. To achieve the minimum NUMA interference, we bind our experiments to
processor 0 (on NUMA node 0). The same applies to all our memory allocations, which
were bound on that NUMA node.

Workloads. For our microbenchmark evaluation, we generate data streams of 32-bit integer
values drawn from a uniform distribution. On this input dataset, we evaluate min and avg,
which are representative of the two classes of functions we study. We identify two separate
experiments: (i) we keep the slide constant at one while changing the size; and (ii) we
keep the size constant at 1024 tuples and alter the slide from one until the window becomes
tumbling.

For the macro-evaluation, we study two workloads: (i) one that emulates a cluster
management scenario; and (ii) one that emulates an anomaly detection scenario. The first
dataset represents a trace of time-stamped measurements taken from an 11,000-machine
Google’s cluster [220]. Each tuple contains information about metrics related to tasks
executed on the cluster, such as CPU utilization or task priority. On that dataset, we evaluate

3The source code is available at https://github.com/grtheod/Hammerslide ( 2K lines of C++14).

https://github.com/grtheod/Hammerslide
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Fig. 3.9 Count-based windows with window size of 1024 tuples and variable slide

a query that expresses a common cluster monitoring task [129] and reports the global average
requested CPU utilization of submitted tasks (i.e., without a GROUP-BY clause). The second
dataset uses the energy consumption trace from a smart electricity grid containing smart
meter data from households’ electrical devices in households [123]. We use two queries
to perform analysis over the stream and detect outliers: SGsum and SGmin that compute a
sliding global sum and min respectively over the meter load (see SG1 from Section A.1 for
reference).

To avoid any possible network bottlenecks, we generate ingress streams in memory by
pre-populating buffers and replaying tuples continuously.

Metrics. The main performance metrics considered in the following benchmarks are through-
put and end-to-end latency. We define throughput as the average number of tuples processed
within a time unit (e.g., one second). The end-to-end processing latency [217] is defined as
the difference between the time when a tuple enters the system and when a window result is
produced. Candlesticks in plots show the 5th, 25th, 50th, 75th and 95th percentiles.

3.5.2 Studying workload characteristics for single-query execution

We measure the impact of different workload characteristics, such as window semantics
and aggregation types, on the performance of HammerSlide for single-query execution. We
compare HammerSlide applied on TwoStacks and SoE with their unoptimized versions and
the non-incremental approach that performs best for tumbling windows.

The impact of window slide. To study the effect of the slide on the throughput of the
aforementioned approaches, we use avg and min in Figures 3.9a and 3.9b respectively.
For both functions, we observe that the plain TwoStacks algorithm performs robustly but
almost across the board worst of all our studied approaches. For avg, the plain SoE is quite
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competitive and outperforms the non-incremental algorithm for slides less or equal to 64.
However, we find that both algorithms with HammerSlide optimizations perform significantly
better than their unoptimized counterparts: up to 11× better in the case of the TwoStacks
algorithm. For min, the SIMD-enabled TwoStacks algorithm outperforms all others (by
almost 80%) for slides less than half of the window size and is never more than 10% worse
than the best algorithm. Given the intricate nature of the implementation and the fact that
there is no potential for results reuse to exploit, one might expect worse behaviour due to the
complex CPU instruction stream. However, it turns out that our careful optimization yielded
an implementation with very little overhead.
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Fig. 3.10 How evictions influence throughput (min with window size 1024 and slide 1)

The impact of window re-computations. When comparing the SoE to the TwoStacks
approach for min, the advantage of TwoStacks lies in the robustness against adversarial
input distributions: in the worst case, every eviction causes a re-computation of the window
for SoE. To quantify the problem, we study the performance degradation of the different
algorithms with the rescan rate (i.e., the percentage of evictions that cause a re-compute) by
setting the window size to 1024 and the slide to one tuple. Further, we restrict the number of
unique values in our input distribution to force more re-computations and present the results
in Figure 3.10. We observe that both SoE implementations experience severe performance
degradation when the re-compute rate increases. Figure 3.10 shows that the TwoStacks
implementations are robust against that input distribution.

The impact of window size. Next, we vary the size of a count-based window with a constant
slide of one and consider again two aggregates, avg (Figure 3.11a) and min (Figure 3.11b).
In both cases, for all window sizes, the TwoStacks algorithm has the highest throughput at
approximately 110 million tuples/s. Since the slide is 1, the optimized version of TwoStacks
is slightly slower because of the overhead of checking for opportunities to vectorize code,
but in this case, there are none.
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Fig. 3.11 Count-based windows with variable window size and slide one tuple
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Fig. 3.12 Time-based 64-seconds windows over the Google cluster stream (avg)

For min (Figure 3.11b), the throughput of TwoStacks is not affected by the frequent
evictions of the minimum value from the current window, as it recomputes the result in
constant time. Note that the percentage of inserts that evict the current minimum is 6.25%. All
other algorithms are affected by the growth of the window size: the overhead of recomputing
min from scratch over the entire window dominates and causes a significant throughput drop,
up to 100×. Only the optimized SoE algorithm can cope with that overhead, achieving only
a 2× slow-down compared to TwoStacks when the window size is less than 4096 tuples
because it benefits from vectorized instructions to re-scan the window.

For avg (Figure 3.11a), the superior performance of TwoStacks over SoE is less pro-
nounced: it is only 1.5× faster. The non-incremental algorithm experiences a similar fall in
throughput as in the case of min. The non-incremental algorithm can be up to 300× slower
than TwoStacks when the window size is 32K tuples.

The impact of time-varying window semantics. Next, let us examine how HammerSlide
optimizations apply to time-based window queries using the Google’s cluster trace. This use
case differs from the previous workloads, as both window size and slide are now defined by
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the time dimension instead of the number of tuples. Noteworthy is that the load exposed by
the trace is very spiky: the event rate varies from 0 to 100K events per second. Thus, this
benchmark significantly stresses all implementations’ ability to cope with variable window
semantics and changes in the workload during runtime. On this dataset, we evaluate avg with
a time-based window of 64 seconds and a varying window slide from 1 to 64 seconds.

Figure 3.12 shows that the plain TwoStacks algorithm does not perform well on time-
based windows: its throughput, steady at roughly 150 million tuples/s for all slides, is
hindered by frequent, unoptimized flipping the front stack to the back. The non-incremental
algorithm, on the other hand, outperforms TwoStacks when the slide is greater than 1 second
and matches the throughput of SoE when the slide is 16 seconds or higher. This can be
explained by the fact that slides from 16 onwards contain a big percentage of the window data
because of the skewed input data distribution; thus, recomputing a window result from scratch
imposes no extra computation overhead—in fact, it is even cheaper than maintaining state
for SoE. Both versions of TwoStacks and SoE with HammerSlide optimizations perform best,
achieving a speed-up between 1.2−4.3×. These benefits are due to vectorized instructions
and the re-design of the flip operation in TwoStacks. Similarly, the SoE algorithm benefited
from avoiding redundant memory copies.

With the time-based windows, though, we observe that the non-incremental approach
is not the best performing for tumbling windows, as it was before. This occurs because the
compiler can not optimize the code as it did in the previous micro-benchmarks, in which we
provided the fixed window size and slide in advance. Thus, HammerSlide presents robust
performance and can deal with variations in the workload compared to the other approaches.

Latency results. Both TwoStacks implementations exhibit median latency lower than 15
nanoseconds. They maintain such a low median latency but exhibit periodic latency spikes
caused by the flip phase, as we expected. SoE has comparable latency in the case of invertible
functions, but without the latency spikes. For non-invertible functions, the latency is affected
negatively by the number of evictions (see the impact of evictions above).

Discussion. To sum up, let us briefly discuss a final performance analysis while isolating the
effects from an SPE: the by-CPU-component breakdown of all presented approaches for a
tumbling window. This breakdown allows us to assess if there is still untapped performance
potential in the implementations. By analyzing the cost components of tumbling windows
with a size of 1024 tuples, we want to understand the difference in performance between
all the algorithms. In Figure 3.13, we witness that the best performing approaches (non-
incremental AND HammerSlide) become nearly 30% DRAM bounded, which indicates that
they approach the main memory bandwidth limits. This is consistent with our observations
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Fig. 3.14 Integrating HammerSlide with SABER (window size 1024 and variable slide)

in Figure 3.9b in which the tumbling window throughput reached almost 2 billion tuples (or
8 GB) per second.

Overall, our conclusion from Figure 3.13 is that HammerSlide has transformed the
performance profile of the plain SoE and TwoStacks algorithms to be closer to that of the
non-incremental algorithm, which is the best performing for fixed window sizes and slides:
strongly dominated by memory-bandwidth but only little by computational resources (retiring
instructions). Thus, our optimized approaches bridge the gap between sliding and tumbling
windows and present a significant improvement in throughput compared to the rest, with more
than 1.6× greater throughput. In particular, the TwoStacks algorithm with HammerSlide
optimizations exhibits comparable or better performance across all examined workloads.
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3.5.3 Integrating HammerSlide with a Java-based SPE

For our end-to-end evaluation, we choose to use SABER [137], an SPE that utilizes a hybrid
processing model on heterogeneous processors within a single node. In SABER, data is
represented in a row-oriented format and stored in a circular buffer, which does not allow us
to directly integrate our operators’ logic. We extended SABER to support a columnar input
format by decomposing streams into multiple circular buffers based on their attributes.

During the dispatch stage of SABER, the system splits the input stream into fixed-sized
tasks that may include fragments from multiple windows. Whenever a task is created, we
keep track of the respective buffers’ offsets according to the data type and dispatch data
to the workers. Each worker computes the window boundaries before processing the data
during a task’s execution. We leverage this approach to compute the partial aggregates of
open, closed, or pending windows (see [137]) incrementally within a task. Finally, we utilize
the Java Native Interface (JNI) calls and the Java NIO Direct Buffers to avoid unnecessary
copies from the Java heap memory when accessing data with our C++ implementation.

In Figures 3.14a and 3.14b, we evaluate the performance of HammerSlide-optimized
TwoStacks algorithm for both invertible and non-invertible functions. SABER uses unop-
timized SoE for invertible functions and does not support incremental computation for the
non-invertible ones. Both figures illustrate how the bottlenecks change in this end-to-end
evaluation, causing lower performance results than the micro-benchmarks.

Figure 3.14a shows that for avg, when the slide is greater than one, the vectorized
TwoStacks approach outperforms the baseline up to 2.7×. For min (Figure 3.14b), we
observe more than 78× performance benefit for slide one; this is the worst case for SABER
as it has to recompute every partial aggregate from scratch. When the slide is greater than
one, the SIMD-enabled TwoStacks demonstrates up to 12.2× speed-up for slide equal to 32.
When we increase the window slide, the speed-up drops to 2.2× for tumbling windows.

3.5.4 Evaluating multi-query incremental algorithms

In this section, we measure the performance efficiency of SlideSide for multi-query execution
and its overhead compared to single-query algorithms. We compare SlideSide against
TwoStacks, SoE, FlatFAT, and SlickDeque (see Section 2.3.4) for windows with slide one,
for a fair comparison without the HammerSlide optimizations.

In the multi-query experiments, we generate queries of uniformly random window sizes
(within the range [1, 32K] of tuples) while maintaining a constant window slide of 1 tuple
for all. In this setup, we created workloads that contain from 1 up to 65 concurrent queries.
TwoStacks and SoE can not evaluate multiple queries, so we replicate their data structures
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Fig. 3.15 Evaluating SlideSide for multi-query throughput

for every single window definition, as illustrated in Table 2.1. For the performance overhead
of SlideSide in single-query workloads, we use queries SGsum and SGmin to measure the
throughput and latency of different approaches.

Multi-query invertible functions. For invertible functions, we are computing SGsum over
different window definitions. Figure 3.15a demonstrates that SoE is the fastest algorithm
and outperforms the multi-query solutions by up to 2.5× for a single query. However, as the
number of queries increases, the overhead of maintaining multiple data structure replicates
becomes noticeable. Thus, we observe that the multi-query algorithms perform nearly 4×
better in throughput. Comparing SlideSide with SlickDeque reveals a small performance
benefit that reaches up to 40% with the increase of query concurrency. SlideSide’s approach
allows the compiler to generate more efficient code because of the simpler CPU instruction
stream while providing more predictable memory access.

Multi-query non-invertible functions. For the non-invertible functions, we are computing
SGmin over the generated windows. In Figure 3.15b, we observe that the multiple instances
of TwoStacks outperform both SlideSide and SlickDeque for the first two and three workloads
respectively. After that point, SlideSide is from 70% up to 2.2× faster compared to SlickDeque
and more than 4× compared to the other two techniques in terms of throughput. This
illustrates that even though SlideSide requires more memory compared to SlickDeque, its
CPU-cache-friendly data layout scales better with the number of queries in comparison to
the deque data structure.

Single-query throughput. For this experiment, we use SGsum and SGmin over windows with
window sizes that vary between one and 1M tuples. Figure 3.16a illustrates the throughput
penalty introduced by our algorithm for invertible functions in a single query scenario.
SlideSide exhibits throughput nearly 3× worse than SoE and TwoStacks. In Figure 3.16b, we
observe that TwoStacks is the best-performing non-invertible algorithm for different window
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Fig. 3.16 Evaluating SlideSide for single-query throughput
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sizes. In contrary, SlideSide is 3× worse but exhibits better performance than SlickDeque,
because of its underlying data structure’s sequential memory layout.

Latency comparison for single-query execution. To measure the latency of all the previous
approaches, we use a fixed window size of 32K and slide of one tuple. In Figure 3.17, we
omit the latency of FlatFAT, as it consistently is an order of magnitude higher than the other
algorithms. We show that SlideSide exhibits latency that is comparable to the best-performing
solutions for both invertible and non-invertible functions (minimal overhead) and better
compared to the other multi-query solution, i.e., SlickDeque.

Discussion. Overall, we observe that SlideSide outperforms the remaining approaches up to
2.2× in multi-query workloads and scales better with the number of concurrent workloads.
However, for single query evaluation, SlideSide results in nearly 3× worse performance in
throughput with comparable latency against the best-performing approaches. This results
from the memory pressure of maintaining extra dependencies (not needed by a single query)
and a more complex CPU instruction stream that hinders optimizations.
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Fig. 3.18 Decision tree for selecting an aggregation algorithm based on different workload
characteristics: all approaches (i.e., from Non-incremental to SlideSide-Inv) use the optimiza-
tions discussed in Section 3.3 to accelerate the tuple aggregation to partial aggregates when
the slide is greater than one.

3.5.5 Deciding based on the workload characteristics

We summarize our observations using the decision tree of Figure 3.18: we propose a different
aggregation algorithm that performs best or is comparable to other approaches based on the
workload characteristics. Given that the HammerSlide optimizations are beneficial when the
window slide is greater than one (i.e., the common case), we assume that all algorithms shown
in Figure 3.18 utilize them for partial aggregation (even the Non-incremental approach).

First, we notice from Figures 3.9a and 3.9b that when the slide is equal or greater to
half the window size, it is best to recompute the window results from scratch. For single-
query invertible functions, SoE exhibits the best throughput, while for non-invertible ones,
TwoStacks is the optimal choice. However, as we observe in all micro-benchmarks, it is also
reasonable to use TwoStacks with HammerSlide for both cases without noticing significant
performance degradation. In the case of multi-query workloads, SlideSide outperforms the
other solutions, except for cases with less than three concurrent queries, when SlickDeque or
TwoStacks perform better. To simplify the decision tree, we omit the relationship between
the window slide and the size for multi-query workloads. While single-query algorithms
(i.e., SoE, TwoStacks, Non-incremental) may yield better performance results depending
on the window slide, their implementation requires data replication and does not scale with
many concurrent queries as shown in Section 3.5.4. It is, therefore, better to use SlideSide
regardless of the window slide.

Figure 3.18 shows that an SPE will perform poorly for different workloads or would have
to maintain all these algorithms using a cost model. However, this cost model can become
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more complicated than our decision tree when more workload variables affect performance.
We address this challenge in Chapter 4 by generalizing the aforementioned algorithms with a
novel abstraction that captures their performance characteristics.

3.6 Limitations and discussion

In this section, we highlight some of HammerSlide’s and SlideSide’s limitations and discuss
how they can be addressed as part of future work.

Time-based windows. For SlideSide, we assume incremental computation over partial
aggregates, simplifying the implementation and data structure allocation of the algorithms
described in Section 3.4. For example, a window of size 60 and size 1 second requires a
circular buffer with 60 slots, as we only store the partial aggregates of every second, not
individual tuples. To perform incremental aggregation directly on the input stream for time-
based windows, additional logic is required for resizing all data structures if the initial size is
insufficient.

Holistic functions. While HammerSlide can accelerate the computation of holistic functions,
similar to SlideSide, it will have to recompute the result from scratch after every insertion.
Existing approaches incorporate a queue for the input tuples with an order statistics tree [105]
or an indexable skiplist [104] to keep track of holistic aggregates in O(log(n)) time. We
leave for future work the design of hardware-efficient operators that compute optimally such
functions.

Out-of-order data. With respect to the ordering guarantees of the input data, HammerSlide
can handle “in-order” or “slightly out-of-order” tuples that can be buffered and reordered.
SlideSide can perform incremental aggregation of partial aggregates over “out-of-order”
tuples lazily, similar to previous approaches [212]. For low latency use cases, in which
buffering data is prohibitive, both algorithms could employ punctuation tuples [32] or low
watermarks [6] to sort tuples deterministically within a stream.

Workload adaptivity. As discussed in Section 3.5.5, our results reveal that current win-
dow aggregation techniques do not exhibit robust performance across different aggregation
functions and concurrency levels. Thus, an SPE will perform poorly for different points
within this design space or maintain multiple algorithms with a cost model. In Chapter 4, we
address this demand by introducing an abstraction that generalizes the approaches above and
generates code based on the workload characteristics.

Applicability. HammerSlide can be integrated into Java-based SPEs, such as Apache
Flink [45] or Spark Streaming [231], by utilizing the Java Native Interface (JNI) calls
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and the Java NIO Direct Buffers, as we demonstrated in Section 3.5.3. However, to exploit
HammerSlide performance benefits, it is crucial to manually manage memory outside of
the JVM (similar to our solution above or as Apache Flink operates) to avoid expensive
copying. SlideSide can be used as a drop-in replacement for any associative aggregation
operator in a commercial streaming system, such as Flink [45] (e.g., as an aggregate store for
Scotty [212]).

3.7 Summary

In this chapter, we studied the efficient implementation of single-core window aggregation.
We first conducted an in-depth study of the best performing algorithms for sliding and tum-
bling windows and concluded that incremental algorithms are highly CPU-inefficient while
work efficient. To address that problem, we developed HammerSlide, a set of optimization
techniques, and applied them to the two fastest incremental aggregation algorithms, i.e., SoE
and TwoStacks. The result is highly CPU-efficient incremental algorithms that perform par-
allel processing within a partial aggregate. In fact, they are competitive with non-incremental
algorithms for tumbling windows and up to 80% faster for sliding windows. This prevents
the need for non-incremental streaming window aggregation and, thus, holds the potential to
not only make SPEs faster but simpler as well.

In the second part of this chapter, we presented a novel algorithm for the highly efficient
sharing between multiple aggregate queries, called SlideSide. SlideSide complements the
SIMD-parallel processing of HammerSlide by performing incremental computation with
a prefix- and a suffix-scan over the partial aggregates generated. SlideSide outperforms
the state-of-the-art algorithms in multi-query scenarios by up to 2× in throughput while
exhibiting better latency.

We consider the presented work the first step towards a highly hardware-conscious
SPE. Naturally, many components of that system are still missing, such as a complete set
of efficient streaming operators on modern scale-up architectures using just-in-time code
generation. In Chapter 4, we introduce a novel system design to tackle this challenge.



Chapter 4

Scaling Window Operators on Multi-Core
Processors

In the previous chapter, we described a family of techniques that provide CPU-efficient
execution and reduce repeated computations for window aggregation. While these techniques
accelerate single-core execution, scaling window aggregation to multiple processing units
(i.e., multi-core or distributed parallelism) is challenging (see Section 2.4.2). This results in
SPEs incorporating ad-hoc execution strategies with suboptimal performance for different
queries based on the workload characteristics (e.g., window semantics).

However, given the ever-growing amount of data [186] acquired by multiple sources
(e.g., smart home sensors, industrial appliances, and scientific facilities), and the importance
of this class of applications in many domains [197, 166, 95, 49, 6], modern SPEs must be
designed precisely for the efficient parallel execution of many window aggregation queries.
In particular, as processing throughput is a key performance metric in such use cases, SPEs
must exploit the multi-core parallelism of modern CPUs [158, 236].

This chapter focuses on the system aspects of a modern scale-up SPE and, more specifi-
cally, the analysis, design, and implementation of a hardware-efficient engine that exploits
multi-core CPU architectures for window aggregation queries. While many approaches exist
for parallelizing stream processing operators [128, 94, 33, 68], SPEs have not yet addressed
the scalability challenge of window aggregation on modern CPUs. The first challenge faced
by SPEs is the resolution of the trade-off between parallelism and incremental execution
required to increase resource utilization. The second challenge is the need to preserve the
ordering semantics of window operations while allowing concurrent state access (i.e., ex-
piring and updating windows). Finally, to enable multi-core scaling, SPEs must account for
memory hierarchies and address the overhead of the NUMA effect.



78 Scaling Window Operators on Multi-Core Processors

8

0.01

0.1

1

10

100

SG1 SG2Th
ro

ug
hp

ut
 (1

06
tu

pl
es

/s
 )

Scotty (Incremental)

SABER (Parallel)

Global Aggregation
Large Window

Grouped Aggregation
Small Window

Fig. 4.1 Need to balance incremental and parallel execution

As discussed in Section 2.3, window aggregation queries with tumbling windows process
data streams in non-overlapping batches, which makes them amenable to the same types of
efficient execution techniques as classic relational queries [59, 184, 193]. In contrast, sliding
windows offer a new design challenge, which has not been comprehensively explored, espe-
cially on multi-core execution. When answering a query with sliding window aggregation,
we observe a tension between techniques that use (i) task- and data-level parallelism; and
(ii) incremental processing, avoiding redundant computation across overlapping windows and
queries. Parallel execution provides CPU efficiency but requires synchronization primitives
for concurrent window operations and hardware-conscious designs (i.e., utilize memory hier-
archies). At the same time, incremental processing introduces control and data dependencies
among CPU instructions, reducing opportunities for exploiting parallelism (see Section 3.2).
Therefore, existing engines implement ad-hoc aggregation and parallelization strategies that
achieve high performance for specific queries.

To demonstrate this problem, in Figure 4.1, we compare SABER against Flink using
Scotty 1 for two different queries over event traces generated by a smart electricity grid [123]:
(i) a query that computes a global aggregate with a large sliding window (SG1); and (ii)
a query that computes a grouped aggregate with a smaller sliding window (SG2).2 These
two systems represent two distinct approaches: one that performs efficient parallelization
and one that performs efficient incremental execution. For the first query, we observe that
the efficiency coming from incremental execution is not enough, while for the second, the
parallel system now does not yield the best performance. As a result, we conclude that we
need to consider both for designing a general solution.

When focusing on how SPEs implement incremental execution, we observe no domi-
nating approach. In particular, in Sections 2.3.6 and 3.5.4, we demonstrated experimentally

1See Section 2.4.2 for details on their execution strategies.
2The queries SG1-2 are denoted with the CQL Syntax in Section A.1.
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that existing SPE designs [15, 211, 139, 24] pick a point in the trade-off space of win-
dow aggregation approaches. Consequently, they do not exhibit robust performance across
query types. For example, as Figure 2.12 shows, when comparing four state-of-the-art
approaches [106, 194, 200, 4, 207], each approach outperforms the others for some part of
the workload but is suboptimal in others. Some approaches exploit the invertibility prop-
erty [106, 194] to increase performance; others [207, 200] efficiently share aggregates for
non-invertible functions. We conclude that a modern SPE should provide a general evalua-
tion technique for window aggregation queries that always achieves the best performance
irrespective of the query details.

Opportunity. In this chapter, we argue that with highly-parallel heterogeneous architectures
and modern network technologies (Section 2.2.3) becoming a commodity in data centers
today, there is a unique opportunity for designing SPEs that exploit previously unseen levels
of parallelism. We identify such novel scale-up designs as a practical alternative to expensive
scale-out approaches. In addition, they avoid end-to-end latencies prohibitive for a set of time-
critical applications. For such an SPE design, we target the following mismatches: (i) revisit
the trade-off between parallel and incremental execution for window aggregation; (ii) enable
parallelization while preserving precise window semantics; and (iii) design operators that
utilize hardware resources efficiently.

Requirements. To design a general-purpose relational SPE that can transparently take
advantage of existing hardware, our system must meet the following requirements (R1-R3):

1. Generalize the pallalel window aggregation strategies of existing SPEs. It is crucial to
balance parallelism and incremental execution to increase the execution efficiency for
all window aggregation queries without compromising window semantics.

2. Generalize the incremetal strategies of the state-of-the-art algorithms to exhibit robust
performance across different query types. An efficient SPE must achieve high perfor-
mance irrespective of the window definition and the aggregation function type of the
executed queries.

3. Ensure high throughput and low-latency results despite the workload characteristics
(i.e., number of distinct keys or aggregation function). For continuous queries to make
progress quickly, SPEs have to guarantee high resource utilization.

In this chapter, we describe LIGHTSABER, a novel scale-up SPE that balances paral-
lelism and incremental processing and uses JIT query compilation for the efficient execution
windowed stream queries. We start with an overview of LIGHTSABER and its compo-
nents in Section 4.1. In Section 4.2, we introduce a general model that not only captures
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window aggregation strategies found in existing SPEs but also allows us to define new
ones. Subsequently, in Section 4.3, we describe LIGHTSABER’s approach for parallel ag-
gregation (R1) using a tree abstraction, called a parallel aggregation tree (PAT). We then
describe how LIGHTSABER generates code for stream queries (Section 4.4) and focus on
efficient incremental code generation (R2) based on the generalized aggregation graph
abstraction (Section 4.5). In Section 4.6, we discuss LIGHTSABER’s implementation de-
tails (R3), followed by our experimental evaluation (Section 4.7), the limitations of our
system (Section 4.8), and conclusions (Section 4.9).
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Fig. 4.2 LIGHTSABER system design

4.1 Overview

With the elimination of interpretation overhead due to the recent trend to implement query
engines as code generators [165, 191], the differences in the window evaluation approaches
have a more pronounced effect on performance. Even though generating executable code
from a relational query is non-trivial (as indicated by the many papers on the matter [176,
165, 191]), it is fundamentally a solved problem: most approaches implement a variant
of the compilation algorithm by Neumann [165]. No such algorithm, however, exists
when overlapping windows are aggregated incrementally. This is challenging because code
generation must be expressive enough to generalize different state-of-the-art approaches
mentioned above, as stated in R1 and R2 requirements.

A common approach employed by compiler designers in such situations is to introduce
an abstraction called a “stage”—an intermediate representation that captures all of the cases
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that need to be generated beneath a unified interface [188, 176]. This chapter aims to
develop just such a new abstraction for evaluating window aggregation queries. We do so by
dividing the problem into two parts: (i) effective parallelization of the window computation
(R1) and (ii) efficient incremental execution as part of code generation (R2). We develop
abstractions for both and demonstrate how to combine them to design a novel scale-up SPE,
LIGHTSABER.

At a high-level, users submit queries to LIGHTSABER that get translated into logical
operator graphs. These graphs are optimized with logical optimizations before window
aggregation operators are expanded to parallel aggregation trees, which manage parallel
execution. From partially evaluating the parallel aggregation trees, aggregation graphs are
constructed for efficient incremental execution. After these steps, LIGHTSABER generates
code for different operators. Finally, as new data arrives, it creates and schedules new tasks
for workers based on data locality. Next, we discuss the key components of our design shown
in Figure 4.2.

Imperative API. LIGHTSABER allows users to express relational stream window queries [21]
with the operators discussed in Section 4.4.1. To illustrate a simple streaming operator graph,
in Figure 4.3, we implement an application that filters an input stream with tumbling windows
using LIGHTSABER’s imperative API.

Example: In the application of Figure 4.3, we employ the SELECT operation with a tumbling
count-based window (i.e., ROW_BASED). In lines 1-2, a selection is defined with a predicate
expression that checks if the first column of an input tuple is equal to 3. An operator
is constructed (lines 4-7), and multiple operators can be connected to create a dataflow
execution graph, which we refer to as Query in line 8. Next, multiple execution graphs can
be combined, resulting in an QueryApplication that ingests and analyzes data continuously
(e.g., from a TCP socket) in lines 12-13. The parallelism degree is set by the number of
available processing units (i.e., NUM_OF_WORKERS).
Compiler. LIGHTSABER uses a compiler to perform JIT query compilation based on the
following steps: (i) it parses and optimizes the execution graph defined by the imperative
API using a set of logical rules [218, 21, 107] in stage 1 ; (ii) it translates the execution
graph into a parallel aggregation tree (PAT) that defines the execution strategy of parallel
processing in stage 2 ; (iii) it partially evaluates the tree into an aggregation graph used for
incremental execution in stage 3 ; and (iv) it code-generates an incremental algorithm from
the aggregation graph in stage 4 . Let us now analyze the individual steps of the compiler by
introducing our general window aggregation model and then discussing the abstractions for
parallel and incremental aggregation (requirements R1 and R2 respectively).
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1 auto predicate = new ComparisonPredicate(EQUAL_OP , new ←↩
ColumnReference (1), new IntConstant (3));

2 auto selection = new Selection(predicate);
3 auto window = new WindowDefinition(ROW_BASED , 60, 60);
4 auto cpuCode = new OperatorKernel ()
5 .setInputSchema(getSchema ())
6 .setSelection(selection)
7 .setup();
8 auto query = new Query(new QueryOperator (* cpuCode), *window);
9 auto application = new QueryApplication(query)

10 .setup(NUM_OF_WORKERS);
11 while (true) {
12 input = ...; / * g e t a p o i n t e r t o a b a t c h o f d a t a * /
13 application ->processData(input);
14 }

Fig. 4.3 Imperative API for LIGHTSABER (SELECTION operator example)

In Section 4.2, we formalize window aggregation strategies as part of a general model
that allows us to express approaches found in existing systems and define entirely new ones.
Our model splits window aggregation into intermediate steps, allowing us to reason about
different aggregation strategies and their properties. Based on these steps, we determine
execution approaches that exploit data-level (i.e., SIMD) and task-level (i.e., multi-core)
parallelism while retaining a degree of incremental processing.

For the parallel computation of window aggregates 2 , in Section 4.3, we use a parallel
aggregation tree (PAT) with multiple query- and data-dependent levels, each with its own
parallelism degree. A node in the PAT is an execution task that performs an intermediate
aggregation step: at the lowest level, the PAT aggregates individual tuples into partial results,
called panes. Panes are subsequently consumed in the next level to produce sequences of
window fragment results, which are finally combined into a stream of window results.

To generate executable code from nodes in the PAT 3 , in Section 4.5, we propose a
generalized aggregation graph (GAG) that exploits incremental computation. A GAG is
composed of nodes that maintain the aggregate value of the data stored in their child nodes.
It can, thus, efficiently share aggregates, even with multiple concurrent queries. By capturing
the low-level data dependencies of different aggregate functions and window types, the
GAG presents a single interface to the code generator. The code generator traverses an
initially unoptimized GAG and specializes it to a specific aggregation strategy by removing
unnecessary nodes.

Runtime. LIGHTSABER provides a runtime that manages query execution on multi-core
CPUs (requirement R3). It uses a centralized task scheduler for each query pipeline [165]
that creates tasks when new data arrives at 5 using the parallelization strategy defined by
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the PAT, as discussed in Section 4.4. These tasks are placed in system-wide queues based on
their NUMA-locality, and workers execute them and place the partial or complete results in
output queues in stage 6 . During this stage, the workers attempt to perform the last level
of PAT, i.e., merge window fragments in an out-of-order manner while respecting window
semantics. To execute long-running applications efficiently, LIGHTSABER manages its own
memory and utilizes all available resources using NUMA-aware scheduling (see Section 4.6).

LIGHTSABER engine. Based on the above components, we design and implement LIGHT-
SABER, an SPE that balances parallelism and incremental processing on multi-core CPUs.
Even though our main contributions tackle the challenge of parallel window aggregation,
our design also addresses inherent problems of efficient multi-core parallelization, such as
utilizing cache hierarchies and scaling under the NUMA effect. We, thus, provide a general
approach for accelerating streaming SQL queries [21] with relational windowed operators
(e.g., JOINs, AGGREGATIONs, or SELECTIONs) for both single and multi-query applications.

Our experimental evaluation demonstrates the benefits of PATs and GAGs: LIGHTSABER

outperforms state-of-the-art systems by a factor of seven for standardized benchmarks, such
as the Yahoo Streaming Benchmark [58], and up to one order of magnitude for other
queries. We confirm that GAGs generate code that achieves high throughput with low latency
compared to existing incremental approaches through micro-benchmarks. On a 16-core
server, LIGHTSABER processes tuples at 58 GB/s (470 million tuples/s) with 132 µs latency.

4.2 Modeling window aggregation strategies

As discussed in Section 2.3.6, we can exploit the properties of the aggregation functions to
compute aggregates either in parallel or incrementally. Surprisingly, we found that current
stream processing designs do not take advantage of this. Evidently, there is a design space
for SPEs without a dominating strategy for window aggregation. Therefore, what is lacking
is a model that captures the design space and allows reasoning about design decisions and
their impact on system performance.

We formalize different aggregation strategies as part of a general model: an aggregation
strategy is represented as a word over the alphabet of intermediate result classes, Pane,
Sash, Window, and combiner strategies, parallel (P), incremental (I), and sequential (S).
As described in Section 2.3.2, a pane is a non-overlapping partial aggregate and a sash is a
window fragment that consists of multiple panes. The DFA in Figure 4.4 shows the possible
sequences of intermediate steps to produce a window aggregate from a set of tuples. From
left to right, tuples are aggregated into panes (or slices [46]), which can be merged and
aggregated into sashes in one or more (i.e., hierarchical) steps. Sashes are combined into
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Tuple Pane Sash Window
P/S

∗
P/S

S/I

∗

∗

∗

∗

I: Incremental P: Parallel S: Sequential

Fig. 4.4 Model of window aggregation design space (* is the Kleene-star)

complete windows (also, potentially hierarchically). Conceptually, each of those aggregation
steps can be sequential, parallel or incremental.

Given this model, a system is described by a word of the form (S→Pane,PPI→Sash, I→
Window).3 The previous word encodes a design in which tuples are aggregated into panes se-
quentially; panes are hierarchically aggregated into sashes in two parallel and one incremental
step; and the final windows are produced in a single incremental step.

To illustrate this further, let us encode a number of real systems in the model using the
SPEs from Table 2.2. Systems that utilize the bucket-per-window approach, such as Flink,
Spark, StreamBox or BriskStream, have an aggregation tree that has only one (incremental)
level (I→Window) in our model. Slicing techniques atop Flink, such as Cutty [46] and
Scotty [212], remove redundant computations and are either (S→Pane, I→Window) or
(S→Pane,S→Window).

In Section 2.4.2, we discussed how SABER decomposes its operator execution into: a
fragment function, which processes a sequence of window fragments and produces sashes;
and an assembly function that constructs complete results from the sashes and reorders
them based on the window semantics. Therefore, it has three processing states for its CPU
execution model: it incrementally aggregates tuples into sashes, aggregates multiple sashes
in parallel but generates complete windows sequentially. Formally, SABER implements
(I→Sash,PS→Window).

While SABER is arguably the most advanced of these systems, it still does not exploit all
available parallelism: (i) it does not parallelize slice creation and (ii) because the aggregation
strategy is fixed, the degree of parallelism is determined by the window definition, which
limits scalability. The following section describes how LIGHTSABER overcomes these
limitations by occupying a new point in this design space.

3Note that spaces, commas, and→ are merely for readability and do not have formal semantics.
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LSDS Large-Scale Data & Systems Group 11

Decide How To Compute Intermediate Steps

Sequential Parallel Incremental

Design choice

Fig. 4.5 Defining a window aggregation strategy

4.3 Parallelizing window aggregation with trees

Having formalized the design space, let us now describe how to select an appropriate
physical evaluation strategy. Figure 4.5 illustrates an aggregation scenario in which the boxes
represent window computations: all of them could be parallel, incremental, or sequential. If
these computations were randomly assigned a different execution strategy, the interpretation
overhead would complicate the code-generation process. Therefore, we limit the design
space by selecting a common computation approach for every level.

The execution strategy now is a slice through the tree of Figure 4.5, and we have a
design space where the optimal strategy is highly query-, input- and system-specific. In
particular, the aggregation step from sashes to windows can be performed hierarchically
(i.e., following the self-referencing loop at the sash-node in Figure 4.4 multiple times). The
optimal number of hierarchical merge steps is challenging to determine statically. For this
reason, we determine the number of hierarchical merge steps (i.e., based on the runtime state
of the system). To express this fact, we use the Kleene-star as a suffix to a literal encoding
the processing strategy: I∗, e.g., indicates a dynamically determined number of incremental
aggregations. In this formalism, LIGHTSABER is a (P→Pane, I→Sash,P∗S→Window)
system: parallel aggregation of tuples into panes, incremental aggregation of panes into
sashes and a dynamic number of parallel aggregations with a final sequential step to produce
windows from sashes.

However, implementing such a design is non-trivial because it combines static sub-plans
(the tuples to panes and panes to sashes) with dynamic ones (sashes to windows). For
that reason, the plan is encoded in a structure we call a Parallel Aggregation Tree (PAT)
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Fig. 4.6 Parallel aggregation tree in LIGHTSABER: (i) the green and blue colors indicate the
computation of prefix- and suffix-scan by GAG (see Section 4.5); (ii) the red color indicates
the computation of higher level aggregates.

(see Figure 4.6). A PAT has three distinct levels for each intermediate result class in the
formalism. While the two bottom levels are statically defined based on the properties of the
query, the depth of the last level is data-dependent and can have arbitrarily many layers, as
P∗ indicates. This increases the degree of parallelism available in the workload, allowing
LIGHTSABER to scale to more parallel hardware for queries that do not have high degrees of
inherent parallelism (i.e., those with either an expensive aggregate combiner function or a
small slide). Next, we describe each of the processing levels of the PAT in more detail.

4.3.1 Multi-level parallel window aggregation

Level 1: Tuple merge. The goal of the first level is to aggregate the tuples of a pane. Since
there is no sharing potential, this level can be parallelized without downsides. LIGHTSABER

partitions the input stream into panes similar to the strategies pioneered by Pairs [140] or
Cutty [46]. Within each pane, LIGHTSABER exploits data-level parallelism in line with
HammerSlide optimizations (see Section 3.3).

The panes are computed using a specialized data structure, which we call a pane ag-
gregation table (see Figure 4.7). The pane aggregation table is shared between the two
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bottom levels of Figure 4.6. For each active key, it maintains a separate pane result and
a generalized aggregation graph (GAG) instance. GAGs are an abstract data structure
supporting incremental aggregation of values and will be described in Section 4.5. GAGs
are abstract because their implementation is generated at query compilation time. The result
of the tuple level merge is either a hashtable with per-key aggregates or a single aggregate
value for ungrouped aggregations.

Level 2: Pane merge. The pane merge level combines the window panes into sashes. It does
so by iterating over the pane aggregation table and merging each per-pane aggregate into
a GAG. GAGs support the insertion of new elements with an interface similar to a queue,
which triggers the emission of a window aggregate. If a pane produces no results for a key,
the neutral element for the combiner function is merged into the GAG to trigger the emission
of an aggregate. To reduce the memory pressure, LIGHTSABER maintains a timeout value for
each key, marking the time when it no longer contributes to windows and is safe to remove it.

While evaluating the tuple merge level can be an individual task, and the merging of
values into the GAG can be parallelized across CPU cores, LIGHTSABER combines the
bottom levels of the PAT to generate code executed as a single, fully-inlined task at runtime.
This reduces the number of function calls and improves data and instruction locality. However,
SIMD parallelization for grouped aggregations is an interesting optimization, which we leave
for future work. The output of this level is a sash, which is passed to the next level using a
simple result buffer.

Level 3: Sash merge. In the final level of the PAT, the sash results are combined and
emitted as a stream of complete window results. While the previous two levels operate on
disjoint sets, the sash merge requires coordination for preserving precise window semantics:
sashes from multiple individual tasks may contribute to the same complete window result.
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At first, each window fragment is tagged as opening, closing, complete, or pending, and
an increasing logical identifier (i.e., window id) is assigned to it, similar to SABER [137].
Instead of performing a single-threaded merge, though, LIGHTSABER merges the window
fragments in an aggregation tree: for each pair of sashes, a task is created with the respective
aggregate combiner function and a pointer to the sashes. Each task designates one of its inputs
as the “higher-level aggregate” side and merges the values from the other input into it to
decrease the memory footprint of this level. LIGHTSABER keeps track of the active window
fragments’ dependencies to ensure ordering guarantees. When the merge is done, it returns
the intermediate buffers to statically allocated pools of objects. The worker that merges the
last two windows emits its output as the complete window result. Finally, complete windows
are sent downstream ordered by their window ids.

4.3.2 Discussion

While we have identified a (P→Pane, I→ Sash,P∗S→Window) strategy as optimal for
window aggregation on multi-core CPUs, our generalized model also allows us to express
novel strategies for distributed or heterogeneous architectures [137, 208]. For example, when
executing streaming applications with ungrouped aggregations on GPGPUs, previous work
has shown [137] that it is more beneficial to employ a (P→Window) design. We want to
investigate the optimal aggregation strategies for more SPE designs in future work.

4.4 Generating code for operators at the query level

LIGHTSABER generates code for two different purposes: at the query level, code is generated
to implement the operator semantics (selections, joins, etc.) of the query but abstracts away
the incremental aggregation strategy (SoE, TwoStacks, etc.); at the level of aggregation
strategies, the query semantics are abstracted. As discussed in the previous section, the pane
aggregation table connects these two processing levels. In this section, we first introduce the
query-level code generation before presenting our code generation approach for incremental
aggregation in Section 4.5.

4.4.1 Supported relational operators

Let us define the set of operators supported by LIGHTSABER: (i) the PROJECTION (π) and
SELECTION (σ ) operators, which are stateless and require a single scan over the data stream
batch; (ii) the WINDOW AGGREGATION (α) operator for both tumbling and sliding windows,
which supports GROUP-BY (γ) as well as standard aggregation functions (min, max, sum,
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count, avg); and (iii) the JOIN (⋊⋉) operator, which allows joining a stream with another
stream using WINDOWS or a static table. All operators are deterministic and expect “in-order”
input streams (see temporal ordering in Section 2.1.2). Users can extend LIGHTSABER with
new deterministic operators by implementing a fragment function and an assembly function,
as discussed in [137].

GROUP-BY and JOIN with a static table are implemented using generated (and, thus, inlined)
hashtables as well as aggregation code. Following common practice, we use Intel’s SSE
CRC instruction [131] and bit masking for hashing, open addressing for hashtable layout,
and linear probing for conflict resolution. The hashtables are pre-allocated according to
(generous) cardinality estimates but can be resized (and rehashed on overflow).

WINDOW JOIN between two streams is implemented as a streaming θ -join [126]. Similar to
SABER, LIGHTSABER achieves parallelism by the data-parallel execution of tasks instead
of utilizing a task-parallel implementation [89].

For each query pipeline [165], a centralized task scheduler: (i) buffers the input stream
(or streams from both sides for JOIN); (ii) creates tasks over disjoined sets based on window
semantics; and (iii) assigns each task monotonically increasing task identifiers. These task
identifiers allow LIGHTSABER to reorder complete window results before emitting them
downstream. In the case of JOINs, LIGHTSABER discards data from a stream only if they
have been joined with all relevant data from the other.

4.4.2 Generating query code using LLVM

To translate the non-incremental operators to executable code, we follow the approach by
HyPeR [165]: we traverse the operator tree and append instructions to a code buffer until
reaching an operator that requires materialization of its result (i.e., a pipeline breaker). The
pipeline breakers for LIGHTSABER are stream-to-stream JOIN and WINDOW AGGREGATION.
Every sequence of pipelineable operators translates to a single execution task for the workers
(see stage 5 in Figure 4.2), which minimizes task overhead (i.e., allocation, result passing,
and scheduling). Subsequently, each execution task is decomposed into a fragment and an
assembly function similar to SABER [137], but the assembly functions can be performed in
parallel as discussed in the previous section. As we show in Figures 4.8b and 4.9b, the main
work of the fragment functions is performed in a tight loop over the input stream(s), which
improves data and instruction locality. Each task is optimized and compiled into executable
code by the LLVM compiler framework [142].

To illustrate this process for WINDOW AGGREGATION, consider the query in Figure 4.8a
(denoted in continuous query language syntax [21]). Taken from the Linear Road Bench-
mark [22], it reports the road segments on a highway lane with an average speed lower than 40
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select timestamp , highway , direction ,
(position /5280) as segment , AVG (speed) as avgSpeed

from PosSpeedStr [range 300 slide 1]
group by highway , direction , segment
having avgSpeed < 40.0

(a) CQL for LRB1 query
1 paneAggregationTable.reset_panes ();
2 for (tuple &t: input) {
3 if (paneAggregationTable.pane_has_ended(t)) {
4 sashes.append(paneAggregationTable.extract_sashes ());
5 paneAggregationTable.reset_panes ();
6 }
7 key = {t._1, t._3 , t._5, (t._6 / 5280) };
8 val = t._2;
9 paneAggregationTable.tuple_merge(key , val);

10 }

(b) Generated code for the fragment function of LRB1

1 size_t pos = find(key);
2 hashNode[pos].pane._1 += val;
3 hashNode[pos].pane._cnt ++;

(c) Function tuple_merge(key, val)
1 sashesTable;
2 for ( / * i t e r a t e i o v e r t h e h a s h n o d e s * / ) {
3 gag[i].evict ();
4 val = {hashNode[i].pane_1 , hashNode[i].pane._cnt};
5 gag[i]. insert(val);
6 sashesTable.append(gag[i].query(WINDOW_SIZE));
7 }
8 return sashesTable;

(d) Function extract_sashes()

Fig. 4.8 Query code generation for WINDOW AGGREGATION in LIGHTSABER

over a sliding window with size 300 and slide 1 second. A simplified version of the generated
code for the fragment function of this query (in C++ notation) is shown in Figure 4.8b. Note
that the LIGHTSABER query compiler combines levels 1 and 2 from Section 4.3, as illustrated
in Figure 4.6, into a single, fully-inlined task (line 9 implements level 1, lines 4-5 implement
level 2). The generated query code reflects only the query semantics (projection, grouping-by
key calculation) but expresses aggregation purely in terms of the pane aggregation table
API. The pane aggregation table implementation (Figures 4.8c and 4.8d) is a very thin
wrapper over the GAGs: the tuple_merge function acts like an ordinary hashtable while
the extract_sashes function spills the pre-aggregated pane results into the GAG using
three functions: insert, evict and query. While LIGHTSABER supports only tumbling
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select L.timestamp , L.plug , L.household , L.house
from LocalLoadStr [range 1 slide 1] as L,

GlobalLoadStr [range 1 slide 1] as G
where L.localAvgLoad > G.globalAvgLoad

(a) CQL for the join sub-query of SG3

1 while (index1 < lBatch.size() && index2 < rBatch.size()) {
2 time1 = lBatch.getTimestamp(index1);
3 time2 = rBatch.getTimestamp(index2);
4 / * P r o c e s s t h e r i g h t window * /
5 if (time1 <= time2) { / * s i m p l i f i e d windowing c o n d i t i o n * /
6 lTuple = lBatch[index1 ];
7 / * s c a n t h e r i g h t window and e v a l u a t e p r e d i c a t e * /
8 for (tuple &rt: rightWindow) {
9 if (rt._1 == lTuple._4) { / * . . . * / }

10 }
11 / * add c u r r e n t t u p l e t o l e f t W i n d o w * /
12 leftWindow.add(lbTuple);
13 / * remove o l d t u p l e s f rom l e f t W i n d o w and r i g h t W i n d o w * /
14 } else {
15 / * p r o c e s s s y m m e t r i c a l l y t h e l e f t window * /
16 }
17 }

(b) Generated code for the fragment function of SG3

Fig. 4.9 Query code generation for WINDOW JOIN in LIGHTSABER

and sliding windows, it can be extended to support user-defined windows by generating a
more complex condition for window construction in line 3.

For WINDOW JOIN, we consider the query SG3 in Figure 4.9a that detects anomalies in a
trace from a smart electricity grid [123] and present a simplified version of the generated
fragment function in Figure 4.9b. The main loop of the generated code iterates over input
batches from the left and right side of the θ -join to create windows similar to the logic from
previous work [126]. Before a new tuple is added to a window (line 12), it is joined with all
the tuples from the window constructed from the other stream (lines 8-10), and it invalidates
old tuples from both windows (line 13). Additional SELECTION and PROJECTION operators
can be applied in line 9.
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4.5 Generating code for aggregation strategies with Gener-
alized Aggregation Graphs

In the previous section, we discussed generating code at a query level (i.e., operator seman-
tics). Next, we introduce our code generation approach for incremental aggregation based
on an abstraction called a generalized aggregation graph (GAG). The objective of GAGs
is to combine the benefits of code generation (hardware-conscious, function-call-free code)
with those of efficient incremental processing. It allows us to capture the design space of the
best (known) in-order incremental processing algorithms described in the previous sections
and generate optimized code. This is implemented by instantiating the appropriate query
fragments (i.e., “templates”) at runtime.

Let us now discuss the different aspects of GAGs in the order that they become relevant
in the code generation process: starting with the interface that connects them with the pane
aggregation table (Section 4.5.1), the creation of an initial generic GAG that captures different
strategies (Section 4.5.2), the specialization to a specific aggregation strategy (Section 4.5.3),
and the translation into executable code (Section 4.5.4). Finally, we discuss the optimizations
related to multi-query processing (Section 4.5.5).

4.5.1 Programming interface for GAGs

As discussed in Section 4.4.2, the generated code of GAGs relies on three functions to enable
efficient shared aggregation within a pane aggregation table:4

• void insert (Value v): inserts an item of type Value in the GAG and performs any
internal changes necessary to accommodate further operations.

4Note that these functions are conceptual and do not exist in generated code.
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• void evict (): removes the oldest value and perform the necessary internal changes.

• Value query (size_t windowSize): returns the result with respect to the current state
and a given window size.

While the first two are rather obvious, the query function is interesting in that it indicates
that GAG produces results for different window sizes. Such inter-query sharing requires
maintaining partial aggregates in memory and efficiently supporting in-order range queries.
LIGHTSABER generates shared partials (see Figure 4.8b), and GAGs take care of storing
them and producing window results by invoking the query function.

4.5.2 Capturing incremental algorithms’ dependencies with a graph

Since each of the presented algorithms in Table 2.1 is the best-performing in parts of the
problem space, a GAG must capture their behavior. Subsequently, based on the workload
characteristics (window semantics, aggregation function, and number of queries), a GAG
must be translated into a dataflow graph that exhibits the same performance characteristics
as SoE, TwoStacks, SlickDeque, or SlideSide. At first glance, this seems to be a challenging
problem that requires a complex solution. However, the observation that any associative
aggregation function can be represented as a binary combination of an element of a prefix-
scan and a suffix-scan of the input simplifies the problem (see definitions in Section 2.3.3).
This representation is sufficient to capture the low-level dependencies of the aforementioned
incremental algorithms.

Tangwongsan et al. [202] make a similar observation when developing FlatFAT, a binary
aggregation tree (see Section 2.3.4). While FlatFAT performs poorly due to the runtime
overhead of the tree, we found that the principle can be applied to generalize a data structure
that is efficient for non-invertible combiners: TwoStacks [106]. This results in a dataflow
graph as the one shown in Figure 4.10, which can represent any associative aggregation.
As indicated by the color-coded nodes (which mirror those of Figure 2.10), the front stack
corresponds to the blue prefix-tree parent nodes (abbreviated as ps). The ps values effectively
constitute a running prefix-scan over the input values (leaves in the graph, which can be
panes or individual elements). On the right-hand side of Figure 4.10, the green suffix-scan
parent nodes (abbreviated as ss) correspond to the back stack.

Extracting an aggregate from this graph is as simple as combining the two nodes from
the prefix- and suffix-scan using the appropriate combiner function (see Section 2.3.5). These
nodes’ values can be updated either lazily (upon calling the query function) or eagerly (upon
tuple insertion). Next, we describe how we exploit this property to specialize the initial
GAG into one of the previous aggregation algorithms.
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1 result = 0;
2 for ( / * i t e r a t e i o v e r i n p u t * / ) {
3 ps = ps + input[i] - input[i-WINDOW_SIZE ];
4 / * e m i t r e s u l t * /
5 result = ps;
6 }

(c) Generated code for invertible functions (sum)

Fig. 4.11 GAGs with invertible functions

4.5.3 Specializing GAGs depending on the workload characteristics

A GAG must turn a workload specification (i.e., window and aggregation function type)
into specialized generated code. The first step in GAG specialization is the removal of
unnecessary nodes, which would lead to “dead code”. This removal is performed as a simple
“mark and sweep” optimization: every node needed to produce final aggregates is marked as
required. Afterward, the GAG is traversed top-down, and each unnecessary node is replaced
by its children. If multiple nodes have the same inputs, they are eliminated as duplicates.

The second step is defining a lazy or eager dataflow computation strategy based on the
rationale that follows. A prefix-scan can be efficiently calculated without buffering (i.e.,
eagerly) because it only requires access to the last computed element and the current one.
At the same time, a suffix-scan requires buffering because it needs to access older tuples
from the input stream. In addition, a suffix-scan must scan the whole window, which incurs
a linear cost. It is, therefore, beneficial to perform the suffix-calculation lazily whenever
tuples are evicted from the window. We refer to the respective tuple ingestions as a “trigger
point” and represent it with a dashed vertical line in Figure 4.12b. Note that the suffix-scan
directly corresponds to the “stack-flipping” of the TwoStacks algorithm, and it is required to
guarantee correctness, as discussed in Chapter 3.
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1 result = INT_MAX;
2 ss[WINDOW_SIZE +1] = {INT_MAX };
3 ps = INT_MAX;
4 leafIterator = 0;
5 for ( / * i t e r a t e i o v e r i n p u t * / ) {
6 / * compute a s u f f i x − s c a n o v e r t h e c u r r e n t v a l u e s * /
7 if (leafIterator == WINDOW_SIZE) {
8 for (j = 0; j < WINDOW_SIZE; j++)
9 ss[j+1] = min(ss[j], input[i-WINDOW_SIZE+j]);

10 leafIterator = 0;
11 }
12 ps = min(ps , input[i]);
13 / * e m i t r e s u l t * /
14 result = min(ps , ss[WINDOW_SIZE -leafIterator ]);
15 leafIterator ++;
16 }

(c) Generated code for non-inv functions (min)

Fig. 4.12 GAGs with non-invertible functions

To illustrate the expressive power of this approach, let use describe the two most illustra-
tive cases: single-query aggregation using an invertible (Figure 4.11b) and a non-invertible
(Figure 4.12b) combiner function. Note that we draw eager computation edges in blue and
lazy edges in black.

Figure 4.11a shows the case of an invertible function. Here only the root of the prefix-scan
is marked as required (indicated by the red arrow) — all other values are unnecessary and
can be eliminated. After removing all unmarked nodes and replacing the parent edges with
their children, only a single node remains (Figure 4.11b). This representation corresponds to
the dataflow graph of the SoE algorithm.

In the case of a non-invertible function (Figure 4.12a), each of the values of the suffix-
scan, as well as the root of the prefix-tree, are required. Only the prefix-scan tree can be
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collapsed, resulting in the dataflow graph in Figure 4.12b. Since the graph has lazy (black)
compute-edges, it requires a “trigger-point” (indicated by the dashed green line). This graph
corresponds to the TwoStacks algorithm.

4.5.4 Generating code for single-window processing

In the previous section, we briefly presented the generated code for two separate scenarios
of single-window processing. We now provide a more extensive discussion starting with
the simplest case: computing an invertible function. The code (displayed in Figure 4.11c)
iterates over the input and, for each tuple, adds the current value to an accumulator while
evicting the appropriate value (line 3). Note that, for clarity, the code accesses the evicted
value directly from the input stream. In practice, LIGHTSABER buffers only a window’s
worth of values. After the value is processed, a result is emitted (line 5).

The case of a single-window computing a non-invertible function is more complicated.
Conceptually, it corresponds to the TwoStacks algorithm (in particular its implementation in
HammerSlide from Chapter 3): as illustrated in Figure 4.12c, the implementation maintains
a single aggregate value for the back stack (line 12) as well as a buffer for the back stack.
Whenever the number of inserted elements is equal to the window size, it triggers the
computation of the suffix-scan (lines 7 through 11). The result is emitted in line 14.

When computing multiple aggregation functions that belong to both categories (i.e.,
invertible and non-invertible) over the same window, the specialized graph generated from
the GAG is a combination of Figures 4.11b and 4.12b. For the generated code, instead of
maintaining a single ps back stack value, it now has a separate variable for each aggregation.

4.5.5 Generating code for multi-window processing

The naïve approach to evaluate multiple concurrent window queries with the same aggregation
functions would be to have several instances of the single-window code. Instead, we find that
we can answer multiple window queries (over the same stream) by extracting and combining
specific values from the GAG. Unfortunately, determining which values to combine is
challenging: the problem stems from the fact that the input tuples are stored in a circular
buffer, which leads to the start and end cursors of a window changing their relative order
while processing the stream. This case is referred to as the inverted buffer problem [202].

To illustrate this problem, consider the example in Figure 4.13a: it shows the evaluation
of two queries, Q1 and Q2, both calculating an invertible window sum but with different
window sizes (3 and 4 elements, respectively). Figure 4.13a shows the state at time t0,
when Q1’s window contains the values {4,2,8}. Their sum (i.e., 14) can be calculated by
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Fig. 4.13 Example of multi-window processing

subtracting the exclusive prefix-scan of the window start cursor, PS(s1)− s1, from the
inclusive prefix-scan of the end, PS(e1). Similarly, the result of Q2 at time t0 is calculated as
17. When transitioning to time t1, the value 5 is inserted at the insert cursor, and all cursors
are advanced. The end cursors of both windows are now to the left of the start cursors:
the windows are inverted. The sum of the window elements can now be calculated as the
prefix-scan of the end, PS(e), and the suffix-sum of the start, SS(s).

The case of multiple non-invertible functions generalizes the single-window scenario,
using only the root of the back stack array ps. The key difference between the two workloads
is that instead of maintaining a single front stack, the algorithm operates on multiple stacks,
one for each query. However, these stacks can be overlayed and start at the same memory
address, which results in a more efficient update process. We discuss in more detail how to
overlay these front stacks over the same memory address space in Section 3.4.2.

4.6 Implementation

In this section, we describe how our abstractions for parallel and incremental aggregation
can be realized in a system implementation of a multi-core engine called LIGHTSABER.5

We implement LIGHTSABER in 24K lines of C++14 and use Intel TBB [117] for concurrent

5The source code is available at https://github.com/lsds/LightSaber.

https://github.com/lsds/LightSaber
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queues and page-aligned memory allocation. We focus on the code generation process of
LIGHTSABER (Section 4.6.1) and its runtime components (Sections 4.6.2 and 4.6.3).

4.6.1 Code generation

As discussed in Section 4.1, LIGHTSABER uses a compiler to parse an imperative pro-
gram and translate it to query tasks ready for execution. First, using its imperative API,
LIGHTSABER generates a logical execution plan that is optimized based on existing tech-
niques [218, 21, 107]. Our current implementation includes the following optimizations:
it (i) reorders operators according to selectivity and moves more selective operators up-
stream [218] (e.g., for selection-window commutativity [21]); (ii) inlines and applies the
HAVING clause when a complete window result is constructed; and (iii) reduces instructions by
removing components related to cross-process and network communication, that introduce
conditional branches [236]. Subsequently, the logical plan is translated into a PAT and
partially evaluated using GAGs to generate incremental code. After this step, LIGHTSABER

instantiates the appropriate query fragments in C. Using the Clang front-end, it parses these
fragments to generate LLVM bitcode, which gets optimized by multiple LLVM transforma-
tion passes. The generated code for different query tasks can be executed by any processing
unit (i.e., worker).

4.6.2 Memory management

As we demonstrate in Section 4.7, the performance of LIGHTSABER is restricted mainly
by memory accesses and, hence, it performs its own memory management for improved
performance. The processing of window operators requires the allocation of memory chunks
for storing intermediate window fragments and complete window results. However, dynamic
memory allocation on the critical path is costly and reduces overall throughput.

We observe that, for fixed-sized windows, the amount of memory required over exe-
cution time is the same. Thus, based on the window definition and the system batch size,
LIGHTSABER infers the amount of memory needed and allocates it once at the start. It
uses dynamic memory allocation only when more memory is required. Each worker thread
is pinned to a CPU core to limit contention while initializing and maintaining a pool of
data structures and intermediate buffers per operator pipeline. For example, each grouped
AGGREGATION operator manages its own pool of hashtables. Finally, LIGHTSABER also uses
statically allocated pools of objects for tasks.
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4.6.3 Query execution and NUMA-aware scheduling

A lock-free circular buffer per input stream stores incoming tuples. Each query task has a
start and end pointer on the circular buffer with read-only access and a window operator
function pointer. It also contains a free pointer, indicating which memory has been processed
and can be freed in the result stage. During this stage of each operator pipeline, LIGHTSABER

assembles and reorders the task results before pushing them downstream at 6 in Figure 4.2.
For efficient result reordering, it uses a lock-free queue with atomics per pipeline while
each worker stores task results based on their identifier. In contrast to systems such as Flink
and Spark, LIGHTSABER delays window computation until the query execution stage, thus
avoiding a sequential dispatching stage that becomes the bottleneck of window operators.

In a multi-socket NUMA environment, high CPU utilization depends on whether tasks
are scheduled efficiently to individual worker threads based on data locality [229]. First,
LIGHTSABER spills the circular buffers for the input streams between all available CPU
sockets. To balance computation, the size of the buffers’ fragments varies based on the
number of worker threads per NUMA node. For example, instantiating a circular buffer with
four slots on two NUMA nodes with the same workers means that: (i) the first two slots are
allocated on the first node (using numa_alloc); and (ii) the remaining slots are allocated on
the second node. In addition to circular buffer spilling, LIGHTSABER employs NUMA-aware
scheduling to reduce remote memory accesses. Specifically, it maintains a separate lock-free
task queue for each NUMA node. When a new task is created, it is placed in a queue based
on locality (i.e., where the circular buffer it points to resides). A worker thread favors tasks
from its local queue, and only when there is no more work available does the worker attempt
to steal from other nodes to avoid starvation.

4.7 Evaluation

In this section, we evaluate LIGHTSABER and its components to show the benefits of our
window aggregation approach over a range of synthetic and real-world datasets described
along with our evaluation set-up in Section 4.7.1. Subsequently, we demonstrate that
LIGHTSABER achieves higher performance compared to existing solutions in multi-core
execution (Section 4.7.2). Then, we explore the CPU-efficiency of the generated code
(Section 4.7.3), the scalability and the application latency of LIGHTSABER (Section 4.7.4).
In Section 4.7.5, we evaluate the performance benefit of PAT’s parallel merge step and
LIGHTSABER’s memory overhead. Finally, we analyze the efficiency of GAG’s generated
code against state-of-the-art incremental algorithms (Section 4.7.6).
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Table 4.1 Evaluation datasets and workloads

Datasets Queries

Name # Attr. Name Windows Operators Values

Cluster Moni- 12 CM1 ω60,1 π,γ,αsum

toring (CM) [129, 57] CM2 ω60,1 π,σ ,γ,αavg

Smart Grid (SG) [123] 7 SG1 ω3600,1 π,αavg

SG2 ω128,1 π,γ,αavg

Linear Road 7 LRB1 ω300,1 π,σ ,γ,αavg

Benchmark (LRB) [22] LRB2 ω30,1 π,γ,αcount

Yahoo 7 YSB ω10,10 σ ,π,⋊⋉relation,

Streaming (YSB) [58] γ,αcount

Sensor 18 SMf various α f f ∈ {sum,

Monitoring (SM) [122] min}

4.7.1 Experimental setup and workloads

Hardware. All experiments are performed on a server with two Intel Xeon E5-2640 v3
2.60 GHz CPUs with a total of 16 physical cores, a 20 MB LLC cache, and 64 GB of memory.
We use Ubuntu 18.04 with Linux kernel 4.15.0-50 and compile all code with Clang++
version 9.0.0 using -03 -march=native. Unless stated otherwise, all experiments use all
cores from the server.

Stream processing engines. We compare LIGHTSABER against both Java-based scale-out
SPEs, such as Apache Flink (version 1.8.0) [15], and engines for shared-memory multi-
cores, such as StreamBox [158] and SABER [137]. For Flink, we disable the fault-tolerance
mechanism and enable object reuse for better performance. For SABER, we do not utilize
GPUs for a fair comparison without acceleration. To avoid any possible network bottlenecks,
we generate ingress streams in-memory by pre-populating large buffers. We then replay these
tuples continuously while updating their timestamps.

Workloads. Table 4.1 summarizes the datasets and the workloads used for our evaluation
(see Section A.1 for their CQL definition). The workloads capture a variety of scenarios
that are representative of stream processing, while window sizes and slides are measured in
seconds if not stated otherwise:

• Compute cluster monitoring (CM) [220]. This workload emulates a cluster manage-
ment scenario using a trace of timestamped tuples collected from an 11,000-machine
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compute cluster at Google. Each tuple contains metrics about monitoring events, such
as task completion or failure, task priority, and CPU utilization. We execute two
queries from previous work [137] to express common monitoring tasks [129, 57].

• Anomaly detection in smart grids (SG) [123]. This workload performs anomaly
detection in a smart electricity grid trace. The trace contains smart meter data from
electrical devices in households. We use two queries for detecting outliers: SG1

computes a sliding global average of the meter load, and SG2 reports the sliding load
average per plug in a household.

• Linear Road Benchmark (LRB) [22]. This workload is widely used for the evaluation
of stream processing performance [80, 232, 121, 2] and simulates a network of toll
roads. We use queries three and four from [137], which correspond to LRB1 and LRB2

in this work.

• Yahoo Streaming Benchmark (YSB) [58]. This benchmark simulates a real-world
advertisement application in which the performance of a windowed count is evaluated
over a tumbling window of 10 seconds. We perform the join query, and we use
numerical values (128 bits) rather than JSON strings [175].

• Sensor monitoring (SM) [122]. The final workload emulates a monitoring scenario
with an event trace generated by manufacturing equipment sensors. Each tuple is a
monitoring event with three energy readings and 54 binary sensor-state transitions
sampled at 100 Hz.

Metrics. The main performance metrics considered in the following benchmarks are through-
put and end-to-end latency. We define throughput as the average number of tuples processed
within a time unit (e.g., one second). We define end-to-end latency as the time between when
an event enters the system and when a window result is produced [217]. Candlesticks in
plots show the 5th, 25th, 50th, 75th and 95th percentiles, respectively.

4.7.2 Window aggregation performance

To study how LIGHTSABER balances incremental and parallel execution, we use six queries
with sliding window semantics from different streaming scenarios and compare its perfor-
mance against Flink and SABER. Flink represents the bucket-per-window approach [147,
148] that replicates tuples into multiple window buckets. We use the Scotty [212] framework
with Flink to provide a representative system with only the slicing optimization.6 In contrast,

6Note that we use lazy slicing, which exhibits higher throughput with lower memory consumption.
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Fig. 4.14 Performance for application benchmark queries

SABER is a representative example of a system that performs incremental computation on a
per-tuple basis and not on partial aggregates.

Figure 4.14a shows that LIGHTSABER significantly outperforms the other systems in all
benchmarks. Queries CM1 and SG1 have a small number of distinct keys (around 8 for CM1)
or a single key, respectively, which reveals the limitations of systems that parallelize with
the partition-by-key strategy. Flink’s throughput, even with slicing, is at least one order of
magnitude lower than that of both SABER and LIGHTSABER. This result shows that current
SPE designs do not efficiently support this type of computation out-of-the-box and require
explicit load balancing between the operators with custom logic. Compared to SABER,
LIGHTSABER achieves 14× and 6× higher throughput for the two queries, respectively, due
to its more efficient intermediate result sharing with panes.

For query CM2, Flink performs better and has comparable throughput to SABER because
of the low selectivity of the SELECTION operator. LIGHTSABER still has 4×, 9×, and
15× better performance than SABER, Scotty, and Flink, respectively, because it removes
redundant computation steps required by the sliding window semantics.

Queries SG2 and LRB1–2 group multiple keys (3 for SG2 and LRB1; 4 for LRB2), increas-
ing the cost of the aggregation phase due to the expensive hashing operation. In addition,
all three queries contain multiple distinct keys, which incurs a higher memory footprint
when maintaining the window state. LIGHTSABER achieves two orders of magnitude higher
throughput for SG2 and LRB1 and 17× higher throughput for LRB2 compared to Flink,
because of the redundant computations. With slicing, Flink has 6×, 11×, and 3× worse
throughput than LIGHTSABER for the three queries, respectively. Scotty outperforms SABER
for SG2 by 4×, demonstrating how the single-threaded merge step becomes the bottleneck.
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During this step, SABER merges the hashtables from intermediate window results to generate
complete windows, which involves the expensive operation of hashing composite group-by
keys. Compared to SABER, LIGHTSABER has 23×, 7× and 2× higher throughput for SG2,
LRB1, and LRB2, respectively. This is due to the more efficient partial aggregate sharing, the
NUMA-aware placement, and the parallel merge optimization from PAT.

Discussion. Overall, we observe that LIGHTSABER outperforms state-of-the-art scale-out
SPEs, such as Flink, and efficient scale-up SPEs by at least an order of magnitude and 2×
respectively for a range of real-world queries. LIGHTSABER manages to balance parallelism
and incremental execution on multi-core CPUs. Therefore, it provides a general and robust
design despite the workload characteristics (i.e., number of distinct keys or window semantics)
in contrast to existing solutions (see Figure 4.1).

4.7.3 Code generation efficiency

Next, we explore the efficiency of LIGHTSABER’s generated code. We use YSB to compare
LIGHTSABER to Flink, SABER, StreamBox, LIGHTSABER without operator fusion (denoted
as LightSaber-NF or LS-NF), and a hardcoded C++ implementation. StreamBox is a NUMA-
aware in-memory SPE with an execution model [143] similar to LIGHTSABER that uses
the interpretation-based processing [234]. For this workload, the GAG does not wield
performance benefits because there is no potential for intermediate results sharing to exploit.
We omit Scotty for the same reason, as slicing does not affect the performance of tumbling
windows in Flink. Finally, we conduct a micro-architectural analysis to identify bottlenecks.
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As Figure 4.14b shows, Flink achieves the lowest throughput because of its distributed
shared-nothing execution model. A large fraction of its execution time is spent on tuples
(de)serialization, introducing extra function calls and memory copies. We do not observe
similar behavior for the other systems, as tuples are accessed directly from in-memory data
structures. LIGHTSABER exhibits nearly 2×, 7×, 12× and 20× higher throughput than
LIGHTSABER without operator fusion, SABER, StreamBox, and Flink, respectively. When
compared to the hardcoded implementation, we find only a 3% difference in throughput,
which reveals the small performance overhead introduced by LIGHTSABER’s code generation
approach. We omit the results for the other benchmarks from Section 4.7.2 as we observe
similar results when comparing LIGHTSABER with a hardcoded implementation or with an
execution strategy without operator fusion.

Figure 4.15 shows a breakdown by CPU components following Intel’s optimization
guide [116], demonstrating the stalls in the CPU pipeline. The components are categorized
as: (i) front-end stalls due to fetch operations; (ii) core-bound stalls due to the execution
units; (iii) memory-bound stalls caused by the memory subsystem; (iv) bad speculation due
to branch mispredictions; (v) retiring cycles representing the execution of useful instructions.
We provide a more detailed description of CPU’s hardware components in Section 2.2.1.

Flink suffers up to 15% of front-end stalls because of its large instruction footprint. Com-
pared to LIGHTSABER and the hardcoded C++, the other approaches have more core-bound
stalls, indicating that they do not efficiently exploit the available CPU resources. At the same
time, all solutions, apart from Flink, are memory-bound but exhibit different performance
patterns. Although Streambox is up to 58% memory-bound, its performance is affected by its
centralized task scheduling mechanism with locking primitives and the time spent on passing
data between multiple queues due to its interpretation-based model. LIGHTSABER without
operator fusion exhibits similar behavior and requires extra intermediate buffers that increase
memory pressure and hinder scalability. When compared to LIGHTSABER, SABER’s Java
implementation exploits only 10% of the memory bandwidth, while our system reaches up to
65%. The Java code spends most of the time waiting for data [234] and copying it between
operators; LIGHTSABER and the hardcoded C++ implementation utilize the CPU resources
and the memory hierarchy more efficiently. Despite exhibiting better data and instruction
locality, they have the highest bad speculation (up to 4%) because slicing and computation
are performed in a single tight loop, as shown in Figure 4.8b.

Discussion. Our code generation approach results in highly CPU-efficient code that exhibits
the same performance characteristics as optimized handwritten C++ implementations. The
SPEs that use an interpretation-based execution strategy (i.e., Flink, StreamBox, and SABER)
are core-bound as they fall short of utilizing the CPU resources efficiently. At the same
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time, the Java-based solutions are more front-end bound and suffer from JVM overheads,
such as large instruction footprint or cache misses due to random memory access patterns
of allocated objects. On the other hand, our solution induces a higher data and instruction
locality, which leads to saturating up to 65% of the memory bandwidth.

4.7.4 Scalability and end-to-end latency

Next, we evaluate the scalability and the end-to-end latency of LIGHTSABER. Starting with
the scalability experiments, we use the seven queries from the previous benchmarks and
report the throughput speedup over the performance of a single worker when varying the core
count. Note that the first core is dedicated to data ingestion and task creation, and we, thus,
report the results up to 15 worker threads (i.e., we do not use hyperthreading as it reduces the
performance due to cache misses).

The results in Figure 4.16 show that LIGHTSABER scales linearly up to seven cores for
all queries, with latencies lower than tens of ms. By conducting a performance analysis
of our implementation, we observe that queries CM1–2, SG1 and YSB do not scale beyond
seven cores, even though the remote memory accesses are kept low. For these four queries,
the system is memory bound (up to 60%) and operates close to the memory bandwidth.
Therefore, we observe a throughput comparable to 400 million tuples/s and only a 15%
performance benefit when LIGHTSABER crosses NUMA sockets. We investigate whether
applying software prefetching can yield better performance in Section 5.5.2.

On the other hand, for queries LRB1–2 and SG2, we observe up to 3× higher throughput
because they are more computationally intensive because of the expensive hashable probing
with composite group-by keys. In this case, the reduction of the remote memory accesses
improves the scalability of LIGHTSABER.
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Fig. 4.18 Parallel merge leads to scalability

Figure 4.17 shows that the median latency remains lower than 50 ms in SG1–2 and LRB1-2.
The latency is in the order of microseconds for the other queries: for YSB, LIGHTSABER

exhibits 132 µs of median latency, which is an order of magnitude lower compared to the
reported results of other streaming systems [217, 99]. The main reason for this is that LIGHT-
SABER efficiently combines partial aggregation with incremental computation, which leads
to very low latencies.

Discussion. Overall, LIGHTSABER manages to scale to multiple NUMA nodes when
evaluating compute-intensive queries. When utilizing another NUMA socket for memory-
bound applications, the performance drops slightly or remains comparable to that of seven
cores (i.e., first socket only), which reveals that a CPU with increased memory bandwidth
could benefit our design. In terms of end-to-end latency, LIGHTSABER exhibits ms results
even under high input load. Therefore, it satisfies the strict latency requirements of the
time-critical applications [235, 166] discussed in Section 2.1.

4.7.5 Measuring parallel merge performance and LIGHTSABER’s
memory consumption

We now focus on the performance improvement induced by our aggregation approach and
its memory requirements, starting from the benefits of PAT’s parallel merge phase. In
queries SG2 and LRB1, aggregations are grouped-by multiple keys with many distinct values,
which makes the aggregation expensive, as shown in Section 4.7.2. Probing a large hashtable
with many collisions and updating its entries cannot be done efficiently by SABER’s single-
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threaded merge. LIGHTSABER’s parallel merge approach removes this bottleneck for such
workloads.

In Figure 4.18, we compare the scalability of SABER, Scotty, and LIGHTSABER with
and without parallel merge. For SG2 and LRB1, the parallel merge yields 3× and 2× higher
throughput speedup, respectively. In contrast, SABER’s performance is affected by its merge
phase, which results in it being outperformed by Scotty for SG2 after 5 cores. Although Scotty
exhibits good scaling, it is consistently more than 6× worse compared to LIGHTSABER,
revealing the overhead of Flink’s runtime [155].

Figure 4.19 evaluates the memory consumption for the different systems while con-
sidering the memory required for storing partial aggregates and metadata as in previous
work [212]:

• Flink stores an aggregate and the start/end timestamps per active window.

• Scotty with lazy slicing [212] maintains slices that require more metadata used for
out-of-order processing.

• LIGHTSABER only stores the required partial aggregates for the slices along with the
maximum timestamp seen so far along and a counter. It uses less metadata compared
to Scotty as it operates on deterministic windows.

• SABER directly accesses tuples from the input stream without storing partial aggre-
gates in contrast to the other approaches.

SABER’s design exhibits three orders of magnitude lower memory consumption than
LIGHTSABER. Without slicing over the input stream, LIGHTSABER can adopt this approach:
e.g., apply algorithms from Figures 4.11c and 4.12c on the input stream instead of partial
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aggregates. This is more computationally expensive, however, because it requires repeated
applications of the inverse combiner, leading to worse performance (see Section 4.7.2).
Compared with the other approaches, LIGHTSABER requires at least 3× and 7× less memory
than Flink and Scotty, respectively.

Discussion. To sum up, PAT’s parallel merge phase enables LIGHTSABER to scale the
execution of compute-bound window queries. At the same time, its memory requirements
are lower than Flink and Scotty while yielding better performance results. In contrast to
SABER, though, LIGHTSABER trades off memory consumption for higher throughput.

4.7.6 Evaluation of incremental code generation

In this section, we explore the efficacy of the code generated from GAG for both single- and
multi-query workloads using the SM dataset with count-based windows. To evaluate different
aggregation algorithms in an isolated environment, we run our experiments as a standalone
process to avoid any system interference. Each algorithm maintains sliding windows with a
slide of one tuple by performing an eviction, insertion, and result generation, which incurs
a worst-case cost. We compare GAG to (i) SlickDeque (for non-invertible functions, we
use a fixed size deque to get better performance); (ii) TwoStacks (using prior optimizations
from Chapter 3); (iii) SlideSide; (iv) FlatFAT; and (v) SoE when applicable (e.g., for invertible
functions). We evaluate the aforementioned algorithms in terms of throughput, latency, and
memory requirements (i.e., partial aggregates to be maintained).
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Fig. 4.20 Comparison of incremental processing techniques for a single-query

Single-query evaluation. For this experiment, query SMsum computes a sum of an en-
ergy measure over windows with variable window sizes between 1 and 4 M tuples. As



4.7 Evaluation 109

 0

 20

 40

 60

 80

 100

 120

L
a

te
n

c
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

SoE
SlickDequeInv

SlideSideInv
GAGInv

TwoStacks
SlickDeque

SlideSide
GAG

Fig. 4.21 Latency for 16K tuples window size

 0.25

 1

 4

 16

 64

 256

 1  10  20  30  40  50  60  70  80  90 100

T
h

ro
u

g
h

p
u

t 
(1

0
6
 t

u
p

le
s
/s

)

# Queries

FlatFat
Multiple TwoStacks

Multiple SoE
SlickDequeInv

SlideSideInv
GAGInv

(a) Multi-query throughput (sum)

 0.25

 1

 4

 16

 64

 256

 1  10  20  30  40  50  60  70  80  90 100

T
h

ro
u

g
h

p
u

t 
(1

0
6
 t

u
p

le
s
/s

)

# Queries

FlatFat
Multiple TwoStacks

SlickDeque
SlideSide

GAG

(b) Multi-query throughput (min)

Fig. 4.22 Comparison of incremental processing techniques for multiple queries

Figure 4.20a shows, GAG behaves as SoE, exhibiting a throughput that is up to 1.4× higher
than SlickDeque, because it avoids unnecessary conditional branch instructions.

For the non-invertible functions, we use min function with the same window sizes as
before (SMmin). Figure 4.20b shows that GAG has an up to 1.3× higher throughput compared
to TwoStacks, due to the more efficient generated code, and 1.7× higher than SlickDeque,
given its more cache-friendly data layout.

For a fixed window size of 16 K tuples and slide one tuple, we measure the latency for the
SMsum and SMmin queries. We omit results that exhibit identical performance (TwoStacks) or
latency that is one order of magnitude higher (FlatFAT). Figure 4.21 shows that our approach
exhibits the lowest latency in min, max, median, and the 25th and 75th percentiles. This
result is justified since GAG generates the most efficient code and removes the interpretation
overhead in both cases.
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Multi-query evaluation. In these experiments, we generate multiple queries with uniformly
random window sizes in the range of [1,128K] of tuples). The window slide for all queries is
one tuple, which constitutes the worst case. We create workloads with 1 to 100 concurrent
queries. For invertible functions, we use SMsum and, for non-invertible ones, we use SMmin.
For TwoStacks and SoE, we replicate their data structures for each window definition because
we cannot use them to evaluate multiple queries out-of-the-box.

For invertible functions shown in Figure 4.22b, GAG has comparable performance to
SlideSide and outperforms SlickDeque by 45%. In Figure 4.22b, we show that GAG for
non-invertible functions outperforms SlideSide by 1.3× and SlickDeque by 2.7×, because it
handles updates more efficiently.

In terms of memory consumption (see Figure 4.23), GAG maintains 3× more partial
aggregates than SlickDeque for multiple invertible functions, similar to SlideSide. With
non-invertible functions, GAG requires the same number of partial aggregates as FlatFAT
and SlideSide, which is 2× more compared to SlickDeque. Note that for non-invertible
functions, SlickDeque can use less memory with a dynamically resized deque, incurring a
2× performance degradation.

Discussion. In summary, GAG captures the performance behavior of the state-of-the-art
incremental algorithms and generates code that achieves the highest throughput and lowest
latency in all evaluated scenarios. We, therefore, designed an abstraction that allows SPEs
to exhibit robust performance irrespective of the window definition and the aggregation
function type of the executed queries. Our approach demonstrates higher consumption
regarding the memory requirements, only for multi-query workloads. In this case, GAGs
trade-off performance with memory by requiring at most 3× more partials than the next best
performing approach. However, based on the benchmark queries from above, the number of
partials is in the order of hundreds.
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4.8 Limitations and discussion

In this section, we highlight some of LIGHTSABER’s current limitations and initiate a
discussion on how they can be addressed as part of future work.

Optimizing scale-up execution. Our focus in LIGHTSABER is scaling window aggregation
queries on multi-core architectures. Therefore, an interesting future direction is to utilize
other types of parallel hardware, such as GPUs [137] or FPGAs [208], to accelerate streaming
applications. In terms of parallel join implementations, we want to explore how existing
solutions [237] integrate with our execution model. Furthermore, given that LIGHTSABER

generates code that worker threads execute based on data locality, we want to study more
advanced solutions for complex CPU topologies similar to recent work [236]. Finally, it
would be interesting to investigate how we can extend our system design to handle out-of-
order event processing [158] and applications with transactional [156] or iterative semantics.

Distributed and out-of-core execution. In this work, we addressed the challenge of accel-
erating latency-critical streaming applications with intermediate operator state that fits in
single-node multi-core architectures. However, such an assumption may not be practical for
several scenarios, resulting in a distributed processing model [24, 15, 80, 211] that exploits
the data-parallelism on a shared-nothing cluster. Given that scale-out approaches could
significantly impact the complexity of the system and the end-to-end processing latency, we
want to explore a novel out-of-core design that offloads operator state to local or remote disks
and non-volatile memory to handle such applications.

Window aggregation. For in-memory relational window operators, Leis et al. [144] propose
a general algorithm that utilizes intra-partition parallelism for large hash groups and a
specialized data structure for incremental computation. However, this work neither exploits
the parallelism and incremental computation opportunities nor is expressive enough to
support time-based windows as LIGHTSABER. Compared to distributed window aggregation,
existing solutions perform redundant operations [33] or approximate window semantics [231]
due to the lack of a global clock for synchronization. Distributed SPEs such as Storm [211],
Spark Streaming [231] or SEEP [80] do not respect window semantics by default and require
extensions [213] or custom solutions, which are error-prone. Millwheel [6] supports rich
window semantics, but it assumes partitioned input streams and does not compute windows
in parallel. Finally, a noteworthy future direction for LIGHTSABER is the extension of its
model to incorporate other window types (i.e., session windows [7]).

Incremental execution. Recent work on window aggregation [23, 202, 200, 194, 38, 207]
has focused on optimizing different aspects of incremental computation. Instead of alternating
between different solutions, with GAGs we generalize existing approaches and exhibit
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robust performance across different query workloads. Our work focuses on in-order stream
processing, and we defer the handling of out-of-order algorithms, such as FiBA [201], to
future work. GAGs can handle FIFO windows with “in-order” or “slightly out-of-order”
events that end up in the same partial aggregate. Panes [146], Pairs [140], Cutty [46],
and Scotty [212] are different slicing techniques, which are complementary to our work—
LIGHTSABER can generate code to support them.

Before concluding this section, let us discuss the conditions under which GAGs are
applicable. In terms of the aggregation types, the aggregate functions must be only associative,
similar to existing approaches (see Table 2.1). These conditions hold for the standard SQL
aggregation functions (min, max, sum, count, avg) as well as many statistical properties
(most notably standard deviation) but exclude percentiles [106]. GAGs can handle holistic
functions by inserting a “trigger point” for every tuple insertion, which is, however, inefficient
compared to other approaches [105, 104]. New functions can be added similar to recent
work [202, 46] using the interface from Section 2.3.5. The collapsing of the GAG to SoE
requires an extra invert function during the specialization phase.

4.9 Summary

To achieve efficient window aggregation on multi-core processors, SPEs need to be designed
to exploit parallelism as well as incremental processing opportunities. However, we found that
no state-of-the-art system exploits both of these aspects to a sufficient degree. Consequently,
they all leave orders of magnitude of performance on the table. To address this problem, we
developed a formal model of the stream processor design space and used it to derive a design
that exploits parallelism and incremental processing opportunities.

We developed two novel abstractions to implement this design, each addressing one
of the two aspects. The first abstraction, parallel aggregation trees (PATs), encodes the
trade-off between parallel and incremental window aggregation in the execution plan. The
second abstraction, generalised aggregation graphs (GAGs), captures different incremental
processing strategies and enables their translation into executable code. By combining
GAG-generated code with the parallel execution strategy captured by the PAT, we developed
LIGHTSABER. It outperforms state-of-the-art systems by at least a factor of two on our
benchmarks. Some benchmarks even show improvement beyond an order of magnitude.

We consider LIGHTSABER a comprehensive solution towards a general-purpose rela-
tional SPE that exploits multi-core architectures. However, given the nature of single-node
execution, we still need to address the challenge of fault-tolerance to make such a design
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practical for real-world use cases. In Chapter 5, we introduce a novel system to achieve
single-node scale-up fault-tolerance.





Chapter 5

Accelerating Fault-Tolerant Stream
Processing on a Single Node

In the previous chapter, we described a tree abstraction (parallel aggregation tree) and a
graph abstraction (generalized aggregation graph) that allow SPEs to balance parallelism
and incremental processing for stream queries. We combined these abstractions to design
LIGHTSABER, a state-of-the-art SPE that uses JIT query compilation and rivals the perfor-
mance of cluster-based deployments. While LIGHTSABER addresses the high throughput
and low latency performance requirements [186, 166] on multi-core architectures, our design
faces limitations for reliable stream processing. In particular, LIGHTSABER, similar to
existing scale-up solutions, does not provide deterministic results or data integrity guarantees
upon failures [197, 15, 118]. However, producing consistent and repeatable results is a
crucial stream processing requirement (see Section 2.1.1), especially when considering the
expected failure rates in large data centers [91] nowadays.

This chapter describes the fault-tolerance aspects of a modern, reliable scale-up SPE and,
more precisely, focuses on designing such systems with exactly-once semantics. However,
providing reliable stream processing on a single-node deployment without sacrificing per-
formance remains an open challenge. First, due to the limited I/O bandwidth of a single
node, it becomes infeasible to persist all stream and operator data of continuous applications.
Second, existing fault-tolerance mechanisms rely on distributed systems [16] to recover
stream and operator state upon failures. These systems require cluster-based deployments,
leading to a higher resource and maintenance footprint. With single-node SPEs lacking
built-in fault-tolerance mechanisms, their adoption in real-world scenarios is hindered.

As discussed in Section 2.5, existing SPEs achieve at-least-once or exactly-once delivery
semantics by persisting streams and processing state [45, 80, 230]. These persistence
operations are offloaded to external distributed messaging systems [16, 11, 180] or key-value
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Fig. 5.1 Data ingestion rates for stream queries in single-node SPE (LIGHTSABER) vs.
persistent message queue (Apache Kafka)

stores [78, 50, 53], which, however, induce performance overheads [185, 183, 72] and lead
to scaled-out deployments.

To illustrate the magnitude of the problem, Figure 5.1 shows the difference in inges-
tion throughput for a set of real-world stream queries [205] (see Section A.1) between
LIGHTSABER [205], a high-performance single-node SPE with query compilation, and
Kafka, a popular persistent message queue system. As the results show, a single Kafka
node can only ingest data streams at rates that are several orders of magnitude lower than
LIGHTSABER’s query performance and does not even saturate the SSD bandwidth (indicated
by a dashed line). However, addressing the problem by scaling out the Kafka deployment
counteracts the benefits of a single-node deployment.

At the same time, the strawman solution of persisting all input streams and processing
state to stable storage is impractical. For a set of real-world stream queries [205] in Figure 5.1,
disk I/O bandwidth becomes the limiting factor trailing performance to 950 MB/s. While
hardware solutions (e.g., NVMe SSDs [226] or RAID [170]) can increase bandwidth at the
expense of additional costs, in this chapter, we argue that a modern SPE should provide
reliable stream processing mechanisms without increasing the resource footprint or affecting
processing performance.

Opportunity. The emergence of scale-up SPEs [137, 158, 236, 205, 157] that compete with
the performance of distributed systems provides an unprecedented opportunity for rethinking
the design of reliable single-node stream processing mechanisms. To prevent expensive
scale-out approaches while retaining predictable latency for time-critical applications, we
need to revisit the following mismatches: (i) the limited single-node resources make existing
fault-tolerance mechanisms impractical; (ii) messaging systems, such as Kafka, do not
provide efficient storage and, thus, cannot saturate the bandwidth of modern SSDs (indicated
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by a dashed line in Figure 5.1); and (iii) while high-speed networking [41, 125, 36] enable
fast stream ingestion and remote storage [135], existing SPEs cannot saturate these fast
interconnects [234].

Requirements. To design a reliable relational single-node SPE, our system must must
address the following requirements (R1-R3):

1. Reduce the required I/O bandwidth irrespective of the workload. Given the limited
available single-node disk bandwidth, an efficient SPE must make workload-aware
decisions to accelerate persistence.

2. Ensure high throughput and low-latency results during execution without failures. To
guarantee high resource utilization, an SPE must interleave persistence and network
communication with query execution.

3. Provide fast recovery upon failure. Given the single-node nature of query execution, it
is crucial to provide sub-second recovery latencies to lower the system’s downtime.

In this chapter, we describe SCABBARD, the first single-node SPE that supports exactly-
once fault-tolerance semantics despite limited local I/O bandwidth. First, we present an
overview of SCABBARD and its components in Section 5.1. We, then, introduce our data
and fault-tolerance models in Section 5.2. In Section 5.3, we discuss how SCABBARD

integrates persistence operations with the query workload through a set of novel abstractions
and optimizations to achieve efficient persistence (requirement R1). Subsequently, in Sec-
tion 5.4, we describe how SCABBARD further reduces persisted data volume (R1) using
workload-specific compression: it monitors stream statistics and dynamically generates com-
putationally efficient compression operators. In Section 5.5, we discuss SCABBARD’s design
and implementation (R2 and R3), followed by our experimental evaluation (Section 5.6), the
limitations of our solution (Section 5.7), and summary (Section 5.8).

5.1 Overview

Our goal is to design and implement a single-node fault-tolerant SPE whose fault-tolerance
mechanism (i) accounts for the limited available I/O bandwidth (R1), especially when using
remote storage [10]; (ii) has a low impact on processing performance without failures (R2);
and (iii) allows fast recovery after failures (R3). Our key idea is to reduce the required disk
I/O bandwidth by tightly integrating stream and state persistence with the operator dataflow
graph of the query. This way, the SPE can apply workload-specific optimizations to (a) reduce
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I/O bandwidth by persisting stream and operator state only after high selectivity operators
have executed and (b) compress data before persistence with query-specific compression.

To address requirements R1-R3, we introduce SCABBARD, a new single-node fault-
tolerant SPE that provides exactly-once semantics without compromising processing through-
put. SCABBARD’s query execution engine is based on LIGHTSABER, which we describe
in Chapter 4, and its fault-tolerance approach is to persist input streams and transient operator
state to a local or remote SSD. SCABBARD introduces a novel persistent operator graph
model and adaptive compression techniques that enable workload-aware persistence. At the
same time, to realize efficient data storage and fast recovery, it introduces a Block Manager
and a Checkpoint Controller that orchestrate persistence operations and recovery. Next, we
discuss the key components of our design shown in Figure 5.2,1 highlighting in red the
features introduced by SCABBARD.

Imperative API. SCABBARD extends the imperative API of LIGHTSABER to enable users
to express relational stream window queries [21] with exactly-once semantics upon failure.

1For simplicity, the figure omits the interaction of the query execution layer with the Block Manager and the
Checkpoint Controller.
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Example: In Figure 5.3, we illustrate an example of a fault-tolerant query pipeline with
a SELECT operation and highlight the changes required to LIGHTSABER’s applications
(see Figure 4.3) to transform them to fault-tolerant. In particular, in line 7, we specify
that the SELECT operator is considered fault-tolerant. Then, in line 12, we determine that
the query’s input stream requires persistence due to the absence of a fault-tolerant stream
source. Finally, in line 13, we initialize this pipeline fragment [165] with a predefined
compression scheme. We explain how SCABBARD performs workload-aware compression
in Section 5.4.

1 auto predicate = new ComparisonPredicate(EQUAL_OP , new ←↩
ColumnReference (1), new IntConstant (3));

2 auto selection = new Selection(predicate);
3 auto window = new WindowDefinition(ROW_BASED , 60, 60);
4 auto cpuCode = new OperatorKernel ()
5 .setInputSchema(getSchema ())
6 .setSelection(selection)
7 .setFaultTolerant ()
8 .setup();
9 auto persistInput = true;

10 auto query = new Query(new QueryOperator (* cpuCode),
11 *window ,
12 persistInput);
13 query ->setCompression ([](...) -> {...});
14 auto application = new QueryApplication(query)
15 .setup(NUM_OF_WORKERS);
16 while (true) {
17 input = ...; / * g e t a p o i n t e r t o a b a t c h o f d a t a * /
18 application ->processData(input);
19 }

Fig. 5.3 Imperative API for SCABBARD (SELECTION operator example)

Compiler. SCABBARD extends LIGHTSABER’s compiler to perform JIT query compilation
based on the following steps: (i) it parses the execution graph defined by the imperative API
in stage 1 ; (ii) it translates the execution graph into a persistent operator graph (POG),
which enables workload-aware decisions for data persistence, and performs optimizations
using a set of logical rules [218, 21, 107] in 2 ; and (iii) it code-generates persistence,
checkpoint, and query tasks using the optimized plan in stage 3 . Let us now focus on the
last two steps of the compiler by introducing our persistent operator graph model and then
discussing the mechanism of code-generating query-specific adaptive compression.

In Section 5.3, we introduce a new persistent operator graph model that allows for
workload-aware decisions about data persistence: operators can be reordered to reduce the
required I/O bandwidth for persistence. Based on query characteristics, an SPE can “push per-
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sistence up”,2 i.e., pruning data with high-selectivity operators. To enable parallelism when
persisting streams and operator state, the persistent operator graph uses two compile-time
abstractions: persistent streams, or p-streams, and fault-tolerant operators, or ft-operators.
P-streams are reliable FIFO channels that support the parallel logging of streams; ft-operators
enable the parallel checkpointing and recovery of stateful operators’ state.

In Section 5.4, we examine how to reduce the persisted data further using p-streams
adaptive compression. To achieve this, an SPE generates custom compression operators
in 5 , taking stream statistics (e.g., data ranges, sequences of equal values, etc.) into account.
This exposes the trade-off between the computational cost of a compression algorithm and
the compression benefit in terms of saved I/O bandwidth. The SPE then selects a suitable
compression algorithm (e.g., run-length encoding, null suppression, delta-encoding, etc.) and
inserts compression operators dynamically into the persistent operator graph. The choice of
compression algorithm is adaptive: when the statistics of the p-stream change, SCABBARD

switches to a new compression algorithm while processing.

Runtime. In Section 5.5, we discuss how SCABBARD provides a runtime that manages query
execution, consistent checkpointing, and recovery on multi-core CPUs during stages 3 ,
4 , and 6 . It extends LIGHTSABER’s runtime using control tuples (markers) from the

POG to coordinate persistence decisions. These markers flow between operators and trigger
storage and garbage collection operations. At the same time, SCABBARD introduces a Block
Manager and a Checkpoint Controller that orchestrate persistence and recovery operations.

To achieve sub-second recovery latencies, SCABBARD reduces the data loaded from
storage. It persists the ft-operator state frequently with low overhead through asynchronous
checkpointing. Furthermore, it avoids the overhead of query compilation during recovery by
storing the optimized code of compiled queries in a native binary format. To recover only
the minimum data, persisted data is garbage collected when the dependent results have been
emitted or persisted.

SCABBARD engine. Based on the above components, we design and implement SCABBARD,
the first single-node SPE that supports exactly-once fault-tolerance semantics on multi-
core CPUs. Our evaluation shows that SCABBARD introduces less than 30% overhead in
processing throughput compared to execution without fault-tolerance. On a 16-core server, it
processes over 200 million tuples per second with 8 ms latency (95th percentile) and recovers
below a second. It outperforms Apache Flink, a state-of-the-art fault-tolerant SPE, by at
least an order of magnitude for all our benchmarks. SCABBARD achieves stream persistence
similar to a 20-node Kafka cluster with 3× lower 95th percentile latency. It achieves a
throughput of up to 10.5 GB/s using 100 Gb/s InfiniBand with RDMA for stream ingress.

2We use a relational view in which “up” means closer to the output.
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5.2 Stream processing and fault-tolerance models

Before presenting the compile-time and runtime abstractions of the POG model, it is neces-
sary to revisit the definition of the data, operator, and failure models provided in Section 2.1.2
and Section 2.5.1. We start by extending both data and operator models to express the
fault-tolerance mechanisms introduced next.

Data model. In this work, we also adopt a relational stream model with windows that follows
the semantics of the continuous query language (CQL) [21].

Definition 5.2.1 (data stream). A stream s is an infinite sequence of tuples, t ∈ s. Each tuple
t = (ε,τ, p) has: an event timestamp ε(t) ∈ E that denotes when the event occurred, where
E is an ordered time domain of discrete non-negative integer values; a logical timestamp
τ(t) ∈ N+ assigned by a monotonically increasing logical clock at each operator upon
receipt [80]; and p, a sequence of values of primitive data types.

We assume that tuples in a stream adhere to a temporal ordering, i.e., arrive in-order
based on their event timestamps.

Operator model. Each operator o receives tuples from n upstream operators to its input
queues, I = {s1, ...,sn}. It then applies a deterministic operator function f , and produces
tuples for its downstream operators stored in a result buffer, denoted by R. An operator keeps
track of exchanged tuples with two progress vectors, PV in and PVout [222], while stateful
operators have processing state Θ. For ease of presentation, we denote an operator snapshot
as C = (I,R,Θ,PV in,PVout) and use the notation Cτe to indicate that it has all values up to τe.

Every operator function f is composed of: (i) a state transition function ρ that accepts
the current state Θi and an input tuple ti and yields the new state Θi+1; and (ii) an output
function ω that accepts a state and an input tuple and outputs one or more3 tuples ⟨t j, ..., t j+x⟩.

We consider queries that use window functions over streams to transform them into finite
sequences, called window fragments [137]. For efficient operator parallelization [205, 137]
without depending on distinct keys, every state transition function is decomposed into: (i) a
fragment function ρ f that processes a sequence of fragments and produces immutable partial
results; and (ii) an assembly function ρα that constructs and reorders complete window
results. Each operator generates computational tasks by bundling fixed-sized data batches
from its inputs with ρ f and ρα functions 4.

Failure model. Regarding the failure model, we adopt the assumptions discussed in Sec-
tion 2.5.1: (i) non-deterministic software or hardware failures [134] cause an SPE node

3e.g., join operators produce multiple output tuples per input tuple
4See previous work [137] for details of how different operators are decomposed into ρ f and ρα .
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(select timestamp , vehicle , highway , direction , segment , count (*)
from SegSpeedStr [range 30 slide 1]
group by highway , direction , segment , vehicle) as R
--
select timestamp , highway , direction , segment , count(vehicle)
from R
group by highway , direction , segment

Fig. 5.4 LRB3 query in CQL

to fail-stop [75]; (ii) the SPE is connected with external sources and sinks via high-speed
networking that provides a reliable FIFO delivery protocol; and (iii) the SPE has access
to stable storage that survives failures. We assume deterministic operators and “in-order”
input streams as mentioned above. Finally, Definition 2.5.1 provides the operator graph
representation of our model.

5.3 Scale-up fault-tolerance using persistent operator graphs

Having presented our fault-tolerance assumptions, we now introduce the persistence mech-
anisms required to perform the storage and recovery operations in a single-node SPE. As
discussed in Section 2.5, to resume processing from the point of failure and achieve exactly-
once results, an SPE must track the query’s execution progress and recover the state of
stateful operators. This process demands the redundant storage of: (i) the input streams to
rebuild the lost operator state through data replay; (ii) the computational state [45, 80] or
logic [230] to avoid replaying all state dependencies (e.g., entire stream history for global
windows or hours of data for large time-based windows).

While performing these redundant storage operations efficiently in a cluster-based solu-
tion has been studied extensively [211, 6, 80, 24], a single-node SPE faces several limitations
in terms of disk bandwidth, disk space, and CPU capacity. Therefore, its fault-tolerance
mechanisms must persist only the required parts of streams and operator state to enable
recovery. However, selecting what to store or how to manage persistence and recovery
operations are non-trivial tasks, which are highly query- and input-specific. In particular,
which data to persist and discard cannot be determined statically and instead requires runtime
knowledge about e.g., the data lifetime and its distribution.

Our idea is to exploit the information of a stream query to enable optimizations related
to persistence by encoding it in a structure that we call a persistent operator graph (POG).
The POG contains aspects of both query compile-time and runtime. Figure 5.5 shows the
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Fig. 5.5 Persistence operator graph (POG) with p-streams, ft-operators, and markers for
LRB3 query

POG for the third Linear Road Benchmark query [22] (defined in Section 5.6.1, listed in
Figure 5.4). The POG extends the operator graph defined in Sections 2.1.2 and 2.5.1 with
two new compile-time abstractions (shown in red) and two coordination abstractions (shown
in green). Through its compile-time abstractions, persistent streams (p-streams) and fault-
tolerant operators (ft-operators), a POG supports stream and state persistence. As these
persistence operations require runtime coordination to achieve consistency when recovering,
the POG also introduces persistence units (p-units) and a set of coordination markers. A
p-unit is a batch of data (i.e., a finite subsequence of a stream or operator state, usually
around 512 KB) with associated metadata (i.e., lineage information). Persistence, recovery,
and garbage collection operations on each p-unit are performed atomically. Markers are
special control tuples in a stream [44, 52], similar to watermarks discussed in Section 2.1.2,
that coordinate the flow between operators and trigger persistence and removal operations.

5.3.1 Compile-time abstractions for persistence

The compile-time abstractions of POGs expose operations for the persistence management
of streams and computational state in an operator graph, which can be executed in parallel at
runtime. These abstractions are accessible through intuitive interfaces that we summarize in
Table 5.1 and describe next:

A persistent stream (p-stream) provides a reliable FIFO communication channel be-
tween two operators in the POG, supporting asynchronous stream persistence at the gran-
ularity of p-units. For example, p-streams can be used as ingress streams to persist the
incoming data in the absence of a reliable stream source. Every p-unit in a p-stream is
assigned a monotonically increasing logical timestamp τ(t) upon insertion, which maps to
the offset from the logical position of the first tuple in the stream. If a p-stream is marked for
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persistence with coordination markers (see Section 5.3.2), its data becomes available only
after disk storage to provide consistent results.

While a p-stream is related conceptually to the well-known notion of upstream backup
[112], upstream backup persists only ingress streams by utilizing an external system to create
backups. In contrast, a POG allows persistence anywhere in the operator graph, which
enables new optimizations later introduced in Section 5.3.4.

The p-stream interface allows to subscribe to, write to and read from its channel as
shown in Table 5.1. As multiple operators can subscribe to a single p-stream, a p-stream
must track their progress using a stream Offset for every subscriber.

A fault-tolerant operator (ft-operator) extends streaming operators with support for
consistent checkpointing and recovery through progress tracking. In Table 5.1, we describe
its interface to create checkpoints and loadState from the last consistent snapshot. In
general, ft-operators can be stateless (Θ= /0), e.g., PROJECTION (π), SELECTION (σ ), or stateful
with WINDOW semantics, e.g., AGGREGATION (α), GROUP-BY (γ), JOIN (⋊⋉). For stateful operators,
the ft-operator partitions its state Θ into immutable p-units, which can be persisted to and
recovered from storage atomically.

However, tracking data dependencies poses a challenge, as a p-unit may contribute to
multiple results (e.g., in the case of sliding window aggregation). An ft-operator solves this
problem by computing the dependencies between p-units: it attaches a lightweight graph
structure using setDependencies. The p-unit dependencies are calculated based on the log-
ical timestamps, the input ordering, and the window semantics (similar to Timestream [181]
or D-Streams [231]). Therefore, these dependencies capture the relationship: (i) between
p-units from different streams (i.e., stream-to-stream dependencies); and (ii) p-units from
state and streams (i.e., state dependencies). The logical timestamps of the graphs can be
serialized to vector clocks VC [153], which determine the event ordering upon recovery.

Although every deterministic operator in the POG can become an ft-operator, checkpoint-
ing overhead can be traded off against recovery time by replacing only the most downstream
operators with ft-operators. Depending on the window semantics (e.g., sliding windows) or
operator selectivity (e.g., JOINs), it may be preferable to avoid checkpointing. To prevent
inconsistent operator state after a failure [75], if an operator is marked as fault-tolerant,
the POG replaces all its downstream operators with ft-operators. Without this strategy,
checkpoints do not ensure recovery to a consistent state and require additional logic upon
failures or during garbage collection (see Section 5.3.3). Next, we formally define POGs,
each consisting of data streams and operators that can be fault-tolerant, and describe in detail
the POG of Figure 5.5.
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Definition 5.3.1 (Persistent operator graph). A POG is represented as an operator graph
similar to Section 2.5.1, i.e., q = (O,S,B). While a node o ∈ O can be an ft-operator only if
all its downstream operators are fault-tolerant, all POG’s edges s ∈ S can be p-streams.

Example: Figure 5.5 shows an instance of POG with four operators: the stateless
PROJECTION and COMPRESSION and two stateful grouped AGGREGATIONS. Only the stateful
operators (i.e., a1 and a2) are marked as fault-tolerant, while the communication channel
between COMPRESSION and a1 operator is a p-stream. By pushing-up persistence further
from the input stream, POGs manage to reduce disk bandwidth (we discuss how they enable
such optimizations in Section 5.3.4). Regarding POG’s runtime components, Figure 5.5
shows how both the data stream and operators’ state are partitioned in p-units and stored
to disk using monotonically increasing identifiers. The following section discusses how
POGs utilize the different types of markers (depicted in green) to coordinate fault-tolerant
operations.

5.3.2 Persistence and recovery coordination

After a failure, the SPE must recover and recompute the data required to recreate the POG’s
operator state. However, it is challenging to provide exactly-once semantics when recovering,
as it involves runtime knowledge about the query’s progress. To manage the operations
required to achieve this on a single-node SPE, we introduce a persistence protocol using
markers. POGs support three types of markers: (i) checkpoint markers trigger operator
checkpoints; (ii) retain markers mark a p-unit in a p-stream for persistence; and (iii) release
markers signal that a specific p-unit is no longer required for recovery. The persistence
protocol uses consistent snapshots to perform state recovery. Following the state recovery, all
data that is not part of the last checkpoint must be replayed while tuples already produced are
dropped. The persistence protocol has five asynchronous primitives, shown in Algorithms 8
and 9 that are described next.

Consistent checkpoint coordination is achieved by checkpoint markers similar to the
Chandy-Lamport algorithm [52]. These markers are injected with insertCheckpoint-
Marker at regular intervals or using a custom dynamic trigger. When an ft-operator
receives a checkpoint marker (line 7 of Algorithm 8): (i) on the first invocation, the
prepareCheckpoint function triggers the synchronous prepare phase for all the p-units of
the operator’s transient state Θ and its queues I and R; and (ii) once all checkpoint markers
are received from its upstream operators, the operator creates and dispatches asynchronous
tasks to write the p-units to storage. We decide to accelerate persistence with asynchronous
I/O operations because they can overlap with CPU operations (i.e., query execution). The
checkpoint completes when all marked p-units have been persisted.
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Algorithm 8: POG’s persistence protocol executed by operator o
1 init ◃ Initialize local variables
2 C = (I,R,Θ,PV in,PV out)← ({ /0}, /0, /0,{0},{0})
3 U ←{oi, . . . ,oi+x}, D←{o j, . . . ,o j+y} ◃ Upstream and downstream operators
4 snapshot← /0, marked← /0, taskQueue← /0, persist←{false}
5 upon receive < marker > from in ∈ I
6 (type,VC)← marker
7 if type = checkpoint then
8 marked← marked∪ in
9 if |marked|= 1 then ◃ The first marker overtakes all t ∈ I or R

10 broadcast(D,marker)
11 snapshot← snapshot∪ I∪R∪Θ

12 if marked = I then ◃ Store to disk when all markers are received
13 taskQueue← taskQueue∪ checkpointTasks(snapshot)
14 snapshot← /0, marked← /0

15 else if type = release then ◃ Remove obsolete data from C
16 C =C \CVC[D],broadcast(U,marker)

17 else persist[in]← true

18 upon receive < punit > from in ∈ I
19 (tuples,offset,VC)← punit
20 if offset > PV in[in] then ◃ Persist channels that have not sent a marker
21 if |marked| ̸= 0∧ in /∈ marked∧persist[in] = false then
22 snapshot← snapshot∪punit

23 (Q, id,offset)← in
24 taskQueue← taskQueue∪persistTask(Q, tuples, id,offset,persist[in])
25 in← (Q, id+1,offset+ |tuples|)
26 PV in[in]← PV in[in]+ |tuples|, persist[in]← false

27 upon receive < notification > from in ∈ I
28 taskQueue← taskQueue∪queryTask(ρ f ,ρα , I,R,Θ)

29 upon receive < notification > from R
30 for out ∈ D do ◃ Simplified version of sending data downstream
31 (punit,offset,VC)← read(R,out)
32 if offset > PVout[out] then
33 ack← send(out,punit)
34 if ack then
35 PVout[out]← PVout[out]+ |tuples|
36 if o = mostDownstream then
37 marker← (release,VC), broadcast(U,marker)
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Algorithm 9: POG’s recovery protocol executed by operator o
1 upon recovery
2 VC = loadMetadata()⊕ requestMetadata(D)
3 broadcast(U,VC)
4 PV in← VC[U ]
5 PVout← VC[D]
6 taskQueue← taskQueue∪ recoveryTasks(C)

Definition 5.3.2 (At-least-once property). Given a global checkpoint GCτe of graph q at
τe and a snapshot Coi

τei
of operator oi at τei , the Chandy-Lamport algorithm guarantees that

every tuple from GCτe is captured either in the upstream operator’s queue or the downstream
operator’s queue or state: ∀Co1

τe1
∈ GCτe∀C

o2
τe2
∈ GCτe,(o1,o2) ∈ S ∀τn : (τn ≤ τe1 ⇒ to1

n ∈
Ro1)∧ (τn > τe1 ⇒ to1

n ∈ Io2 ∨ τe2 ≥ τn). We refer to that as the at-least-once property.

Efficient data replay. The persistence protocol replays tuples that are not captured in the
last consistent checkpoint by determining what data to persist and remove with retain and
release markers, respectively. The retain markers are injected into the ingress p-streams at
periodic intervals using the POG’s insertRetainMarker function. They flow through the
POG (e.g., Figure 5.5 shows a retain marker between operators COMPRESSION and a1). Upon
receipt of a retain marker (line 17, Algorithm 8), the p-stream creates a sequence of p-units
with the tuples that follow. To remove parts of the p-stream no longer required for the output
result, the POG provides release markers (line 15), which are sent on feedback channels
to discard p-units. This is shown in Figure 5.5, where a release marker is being sent from
operator a2 to a1.

Data deduplication is achieved by exploiting the data dependencies between p-units to track
the query progress and remove duplicates (line 32). As operators are deterministic and data
are assigned monotonically increasing logical timestamps, filtering data already captured in
the operators’ progress vectors becomes trivial. However, persisting the dependency graphs
for all operators before execution introduces a substantial overhead.

Therefore, to achieve exactly-once output, the persistence protocol persists only the most
downstream operators’ progress with two different methods. The first method requires a
transactional sink [139, 180]. At the same time, the most downstream operator performs a
two-phase commit to persist progress, which guarantees atomicity. The second approach
requires the sink to store a serialized vector clock VC with every output result before making
data available. The most recent vector clock is returned upon request and is used to filter
duplicate tuples similar to line 20 of Algorithm 8.
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To perform deduplication for single-input operators (e.g., AGGREGATION), assigning in-
creasing logical timestamps to the p-units and using them to track progress is straightforward.
For operators that ingest multiple streams, such as JOINs [126], before assigning logical
timestamps, their inputs require to be buffered, ordered, and emitted deterministically based
on the window semantics. An alternative approach for JOINs is to join the input streams
greedily (i.e., non-deterministically without sorting), which accelerates execution but requires
logging and replaying all join decisions upon failure. These decisions concern the order in
which the p-units of both streams are joined.
The recovery protocol retrieves the query progress from storage before deciding which
stream and state parts to restore. Recovery is divided into four phases (lines 1–6 of Algo-
rithm 9): progress recovery, upstream requesting, data recovery and upstream replay.

All operators in progress recovery (line 2) load the timestamp intervals captured by
their latest checkpoints and most recent committed dependencies. In upstream requesting
(lines 2-3), operators send requests downstream for the latest persisted vector clock. At
the end of this phase, every operator has sufficient information to reload the data from the
last consistent checkpoint or streams and drop results already processed with its progress
vectors (i.e., PV in and PVout). Next, the protocol moves on to the data recovery phase
(line 6) using the loadState and loadStream functions, while parallelizing the process for
effective hardware utilization. In the final upstream replay phase (line 27), operators send
data downstream as they would during normal operation. This last phase transitions into
regular execution as ingress streams receive new data.

5.3.3 Discarding obsolete data with garbage collection

In contrast to relational data processing, stream queries perform computation over infinite
streams. The stream processing paradigm raises two challenges when persisting data: (i) the
finite disk capacity, especially when considering faster non-volatile memory or the storage
cost in a cloud infrastructure [136]; and (ii) the high recovery latency when replaying large
amounts of data to ensure exactly-once semantics. Therefore, it is necessary to remove
persisted tuples, state, and recovery metadata that is no longer required.

To discard obsolete data, an SPE can use garbage collection (GC) based on either retention
policies [139] or classic mark & sweep. Neither approach, however, applies to a single-node
SPE deployment: retention policies require the user to define a threshold for data removal for
each query, which cannot be automatically derived from the query semantics; mark & sweep
has a high runtime overhead [163]. Therefore, we propose a garbage collection approach
that is semantically partitioned and optimistic under failure.
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With semantic partitioning, a single p-stream or ft-operator retains ownership of each
p-unit. Given that each operator tracks the dependencies of p-units and manages their
ownership when passing them downstream, it is easier to reason about correctness when
discarding data. Semantic partitioning also simplifies garbage collection under concurrency.

Given that p-units in streams are ordered, and the checkpoints capture the progress of
ordered data and deterministic operations, garbage collection can be performed at a coarse
granularity. This approach minimizes overhead because previous p-units with an Offset less
or equal to a given value can be discarded in bulk. Without data loss, a p-unit can be removed
if all its dependent results [141] have been either (i) persisted to disk or (ii) committed to
the outside world. When these conditions are met, a reverse topological ordered traversal of
the dependency graph is performed to send release markers upstream (lines 37 and 16). We
refer to this garbage collection approach as optimistic because it guarantees that all p-units
are eventually removed: when p-units with a larger Offset are discarded, they invalidate all
previous p-units.

Example: Figure 5.6 shows the emission of tuple e1 at which point its dependencies (shown
in green) can be garbage collected. Note that all transitive dependencies of e1 appear
earlier than the dependencies of e2 because p-units are ordered by monotonically increasing
Offsets in their operator’s partition. By using the trimFrom function, each operator
removes obsolete stream and operator state data.

5.3.4 Optimizing POG with persistence push-up

We now describe the optimizations enabled by the POG to reduce disk I/O bandwidth and
shorten the recovery process. Stream queries often consist of highly-reductive, inexpensive
operators early on in their operator graphs, e.g., SELECTION or PROJECTION. These operators
eliminate input tuples and significantly reduce the data volume that reaches stateful operators.
Considering persistence as an operator node of the POG allows it to be “pushed up”, i.e., exe-
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cuted after the data reducing operators. This optimization provides a compact representation
of the stream required for recovery and accelerates persistence.

To perform persistence push-up, the POG is traversed in topological order, and a set of
transformation rules are applied to rewrite it. These transformation rules identify unused
attributes and insert appropriate PROJECTION operators to prune them or push down selective
operators (e.g., SELECTION). Persistence push-up is restricted to the stateless operator types
that decrease the data size. Examples of such operators are: (i) operators with selectivity
below one (e.g., SELECTION or a HAVING clause), i.e., ones that output fewer tuples than they
consume; (ii) operators that reduce the number of bytes required to represent a tuple (e.g.,
PROJECTION or COMPRESSION).

Figure 5.5 shows a POG instance after persistence push-up, where the PROJECTION and
COMPRESSION operators are placed to the left of the p-stream, thus decreasing I/O bandwidth
for persistence. In particular, for query LRB3, persistence push-up leads to 8× disk I/O
bandwidth reduction.

The rationale behind the choice of the previous operator types for persistence push-up
is straightforward: stateful operators (e.g., AGGREGATION or JOIN) would amplify the output
stream size based on the window semantics (e.g., for sliding windows with small slides),
increasing the amount of stored data. Therefore, persistence push-up avoids pushing down
stateful operators, as this would increase recovery latency and burden the external sources
with buffering data for longer periods before the protocol acknowledges their persistence.

5.3.5 Persistence protocol correctness

Next, we formally show the correctness of the persistence protocol. The protocol considers
the operator graph q as a single fail-stop recovery unit [198], i.e., if one or more operators
fail, the whole graph must recover. The SPE has access to persistent storage that survives
failures (i.e., remote block storage), allowing recovery to a different node. It communicates
over reliable FIFO network channels with external sources/sinks to guarantee data delivery;
the ingress channels5 allow replay even under failure. To ensure exactly-once output, the
protocol requires: (i) deterministic operators without side effects; (ii) a consistent checkpoint
mechanism; (iii) and that the last externally committed tuple’s vector clock VC is persisted.

First, let us prove that the persistence protocol guarantees exactly-once output for a single
operator and then generalize this to arbitrary operator graphs. We start by defining the infinite
sequence of all result tuples F based on the operator function definition from Section 5.2.

5For non-fault-tolerant external sources, the channels are replaced with p-streams.
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Definition 5.3.3 (Infinite tuple sequence F). Each operator function is modeled as a pair of
a state transition function ρ and an output function ω . F denotes the infinite (deterministic
and correct) sequence of all tuples produced by an operator without failures. To restrict a
tuple sequence to an interval, we use the notation F [m,n] to denote ⟨ω(Θi, ti)|i ∈ [m,n]⟩. We
denote the deduplication function that uses logical timestamps to filter tuples as φ .

Theorem 1. Given a single operator graph, failure at timestamp τ f and recovery from
timestamp τr, the persistence protocol produces a recovery sequence Fr, Fr = φ

(
F
[
0,τ f

]
+

⟨ω (Θi, ti) |i ∈ N, i≥ τr⟩
)

that is equal to the correct sequence, i.e., Fr = F.

Proof. Let Cτe = (I,R,Θτe,PV in,PVout) be the checkpoint at timestamp τe; let τp be the
timestamp of the last persisted input tuple in the operator’s p-streams such that τe ≤ τp; let
X [τp+1,∞] =

〈
ti|i ∈ N, i≥ τp+1]

〉
be the sequence of tuples held by the external sources (i.e.,

all tuples after τp); and let VC = ⟨τvI ,τvR⟩ be the last committed vector clock at recovery
time (τvI and τvR being the timestamps of input and output streams, respectively).

The first part of the recovery sequence F [0,τ f ] denotes the tuples emitted before failure,
while ⟨ω (Θi, ti) |i ∈ N, i≥ τr⟩ denotes the sequence produced after failure. For the latter
sequence, the operator retrieves its input sequences I[τvI ,∞] and state Θτ f in one of three
ways: (i) if τp = 0 (i.e., no data has been persisted and Θτ f = /0), all data is received from
X [τp+1,∞] and the recovery sequence becomes F [τ p+1,∞] =

〈
ω (Θi, ti) |i ∈ N, i≥ τp+1]

〉
;

(ii) if τvR ≤ τe (i.e., all output dependent to the checkpoint has been emitted), the operator
reconstructs its state Θτ f from an empty set by using the state transition function and
replays all data persisted in its p-streams until τp. The remaining data is received from the
sequence X [τp+1,∞] and the operator uses the reconstructed Θτ f to produce the sequence〈
ω (Θi, ti) |i ∈ [τvI ,τp]

〉
+F [τ p+1,∞]; (iii) if τvR > τe (i.e., there is output that depends on

the checkpoint), Θτ f is restored from Cτe and data replay from the p-streams and used to
produce the recovery sequence as in case (ii). Thus, in all three cases, Fr can be reconstituted
from the last checkpoint and a finite external source buffer (i.e., only data between τp and the
timestamp at the beginning of recovery).

Given that there may be overlap between the output before and after failure, the duplicate
elimination function φ ensures at-most-once output. As the concatenated output stream before
and after failure guarantees at-least-once, Fr equals F and has the exactly-once property.

After proving the exactly-once output property for a single operator, we generalize it to
arbitrary graphs.

Theorem 2. Given an arbitrary execution graph with a single most-downstream operator od

that is fault-tolerant,6 a global coherent checkpoint GC, a failure at timestamp τ f and

6Decomposing a query with multiple outputs into multiple queries with a single output is straightforward.



5.4 Workload-aware stream compression 133

recovery from timestamp τr, the exactly-once guarantee of the final operator extends to the
entire operator graph.

Proof. Let us prove the theorem by induction, using Theorem 1 as the base case. The
exactly-once fault-tolerance property of the graph is equivalent to the fault-tolerance of the
most downstream operator od . Analogous to the single operator case, the fault-tolerance of
od is proven for three cases: just as for Theorem 1, in cases (i) and (ii), the operator replays
data from its inputs. By induction, the sequence produced by each input has the exactly-once
property, even under failure; in case (iii), the operator loads its state from the last snapshot Cτe

before triggering a downstream replay.
While the at-most-once guarantee stems from the φ -function, we must prove at-least-

once processing of every input tuple, i.e., that every input tuple is either in its producer’s
output queue, the operator’s input queue, or already reflected in the operator state. Formally,
∀oi ∀t j ∈ Foi ∃τx |τx < τ f : τ j > τx⇒ t j ∈ Roi ∨ t j ∈ Iod ∨τe ≥ τx. This follows trivially from
the at-least-once property of a snapshot, as defined in Section 5.3.2. As od guarantees at-most
and at-least once results, the operator graph guarantees exactly-once.

Having discussed how stream execution graphs are transformed into POGs to allow
efficient single-node fault-tolerance, let us now explain how SPEs can further reduce the
required disk I/O through workload-aware compression in the following section.

Table 5.2 Compression algorithms

Name Description

Base-delta [172] Represents values as differences (deltas) from a base value
Delta-of-delta [173] Delta-encoding over the delta-encoded data
Null suppression (NS) [189, 1, 13, 145] Omits leading zeros from the bit representation
Simple-8b [13] Stores integers in fixed-size blocks, first bits denote minimum

values’ bit-length
Variable byte (Var-Byte) [66] Represents integers as variable number of bytes, using 1 status

and 7 data bits per byte
Run-length encoding (RLE) [189] Represents repeated sequences as pairs of values & counts
XOR compression [173] Uses XOR’ed floating-point values
Dictionary [189, 1] Data-agnostic compression scheme that replaces each value

with a unique key from a dictionary
Snappy [241] Dictionary encoding according to LZ77 [241]

5.4 Workload-aware stream compression

Since stream queries are long-running, it is beneficial to react to changing workload char-
acteristics at runtime [31]. Therefore, we decided to reduce the required I/O bandwidth for
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p-stream persistence using adaptive compression. Our approach considers the dynamic work-
load characteristics of data by monitoring p-streams and generating suitable compression
operators. However, the best choice of a compression algorithm exposes a trade-off between
compression ratio and throughput and depends on stream and query characteristics [67]. In
this section, we first present a set of compression schemes (Section 5.4.1) and their perfor-
mance characteristics by focusing on how to apply them to different data types (Section 5.4.2).
We then analyze the process of adaptive compression and give examples on how to choose
the most suitable algorithm (Section 5.4.3).

5.4.1 Lightweight compression for streaming data

Prior work in stream processing [171] shows that heavyweight schemes [221, 110] with high
compression ratios are prohibitively expensive for real-time applications. Therefore, we
consider lightweight techniques [1] that combine high-performance with resource efficiency,
which we summarize in Table 5.2. Each lightweight compression algorithm takes as input
a finite sequence of uncompressed values and produces a compressed representation (i.e.,
using as few bits as possible). The query processing model, however, affects the applicability
of these algorithms: some approaches require either row or columnar format [43], and others
can be applied to both. We next describe the compression schemes considered in this work:

• Base-delta encoding [172] represents each value as the difference (or delta) between
that value and a reference value. It can be used with row and columnar format as input.

• Delta-of-delta encoding [173] applies delta-encoding over the delta-encoded data.
Similar to base-delta, it is not affected by the query processing model.

• Null suppression (NS) [189, 1, 13, 145] omits leading zeros from values’ bit represen-
tation. It can be applied to both input formats.

• Simple-8b [13] stores a series of integers in fixed-size blocks, with the first bits of each
block denoting the minimum bit-length for its values. It is a specialized instance of NS
that requires a columnar format.

• Variable byte encoding (Var-Byte) [66] represents an integer in a variable number of
bytes, using 1 status and 7 data bits per byte. It is a specialized instance of NS that
requires a columnar format.

• Run-length encoding (RLE) [189], which can be combined with other compression
techniques, represents repeated sequences as a pair of the value and the number of
repetitions (or runs). It requires a columnar format.
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• XOR compression [173], uses XOR’ed floating-point values. It can be applied to both
input formats.

• Dictionary encoding [1, 189] is a data-agnostic compression scheme that replaces each
value with a unique key from a dictionary. It supports both input formats.

• Snappy [241] performs dictionary encoding according to LZ77 [241]. It can be applied
to both input formats.

Most of the compression schemes presented above require a columnar format to be
applicable or to exhibit better performance. In addition, the columnar representation leads to
higher compression ratios. Therefore, we decided to store and compress data in columns that
are more compressible [1, 3] but increase the decompression overhead. This decision results
in faster execution when no failures occur, which we consider the typical case compared to
the recovery process.

5.4.2 Exploiting workload characteristics

We base the decision which compression algorithm to use at runtime on three factors:
(i) stream data distribution; (ii) compression ratio; and (iii) compression throughput. Fig-
ure 5.7 shows the associated performance trade-offs by plotting the compression ratio and
throughput for different compression algorithms. Each line represents an input data type,
and the marker location indicates the performance (in terms of throughput) for different
algorithms. For example, the red line refers to a stream of timestamps; the markers show
the compression ratio and throughput for each algorithm applicable to timestamp data. We
next categorize the compression algorithms introduced above based on their applicability to
different data types.

Timestamps. While timestamps are not a workload-specific data type, we consider them
separately because they have discrete non-negative integer values with a relative order.
In Figure 5.7, we explore RLE, Delta-of-delta, and Base-delta algorithms for two different
distributions. If timestamps occur in fixed intervals (Timestamp 1), Delta-of-delta exhibits
the best compression ratio and, thus, is used as the default. If multiple events occur within
the same interval (Timestamp 2), Base-delta & RLE offers better performance.

Integers. We apply three compression schemes to integer types: Var-Byte, RLE with word-
aligned NS (NS & RLE), and Simple-8b. With random not repeated values (Integer 1),
Simple-8b achieves the best compression ratio and is, therefore, used by default. If there
are multiple runs of values though (Integer 2), combining NS & RLE yields better results.
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Fig. 5.7 Compression for various data types and distributions

Var-Byte has the highest throughput and is suitable for lower compression ratios when there
is sufficient disk I/O bandwidth.

Floating-points. The nature of floating-point values makes them more challenging to
compress efficiently with low overhead. XOR and lossy compression offer a good trade-off
here. If full precision is unnecessary, the user can set the decimal point precision to a fixed
error bound to improve compression. This lossy approach converts floating-point values into
integers, allowing for integer compression schemes. In Figure 5.7, we use a floating-point
stream with a predefined error bound, thus showing the performance difference between
XOR and lossy compression.

Data-agnostic. For other data types in streams (e.g., fix-length strings), we observe, based
on our evaluation, that dictionary compression works well, especially for a limited set
of repeating values. When no statistics are available, Snappy is considered the default
compression scheme. When it is possible to infer that the data can be mapped to a limited
range of distinct values, it is better to use a static hashtable, shown as Dictionary in Figure 5.7.

Discussion. As shown in Figure 5.7, while some algorithms achieve the highest compression
ratio, they have low throughput. The decision of the appropriate algorithm becomes even
more complicated when considering that algorithms, such as lossy compression for floating-
points or dictionary encoding, produce new data types that can be further compressed with
other approaches. Therefore, there is a need to choose the compression algorithms adaptively.

5.4.3 Adaptive stream compression

The first step of adaptive stream compression involves profiling each pipeline fragment. For
every pipeline fragment and input column in a p-stream, information is collected about the
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value distribution (e.g., the min/max value) and characteristics specific to the compression
schemes (e.g., the average run-length of consecutive equal values).

Following the metrics collection, analysis is performed using static information, e.g., the
p-stream schema, and heuristics about the algorithms (i.e., we use a decision tree similar
to previous work [1]). This analysis allows to reason about the data characteristics (e.g.,
data range) and choose the most appropriate scheme from a set of compression algorithms.
Finally, code is generated for new compression operators and deployed back to the pipeline
fragments of the POG.

At the beginning of query execution, each pipeline fragment starts with a predefined
compression scheme per column (or without compression), as shown in line 13 of Figure 5.3.
Upon detecting workload changes for a pipeline fragment, the adaptive optimization loop
(shown in Figure 5.8): (i) JIT-compiles new compression and decompression operators; (ii)
fuses them with the query-specific pruning operators from Section 5.3; and (iii) injects the
generated function pointers into the respective pipeline fragments. In Section 5.5.3, we
discuss the implementation details of the previous steps.

This adaptive approach supports a wide range of optimizations, such as selecting the most
resource-efficient algorithm or specializing the underlying data structures (e.g., the hashtable
for dictionary encoding). An example of such optimizations is using integers’ bit precision
to replace the more expensive Simple-8b algorithm with word-aligned NS; another example
is using average run-length statistics to decide whether to use RLE.
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5.5 System design and implementation

While POGs provide a high-level interface for fault-tolerance operations, an SPE must coordi-
nate these operations efficiently, considering the limited single-node resources and workload
characteristics. We describe SCABBARD, an SPE for multi-core CPUs that realizes the POG
model and implements efficiently adaptive data compression. Its goal is to provide exactly-
once fault-tolerance with minimal performance impact by making workload-aware decisions
during execution. After an overview of the SCABBARD architecture (Section 5.5.1), we ex-
plain how SCABBARD manages persistent data, and reduces the recovery time (Section 5.5.2).
Finally, we discuss how SCABBARD implements adaptive compression (Section 5.5.3).

5.5.1 SCABBARD system overview

SCABBARD is based on the query execution engine and compiler from LIGHTSABER [205].
To support persistence, SCABBARD introduces: (i) a Block Manager that stores streams and
state; and (ii) a Checkpoint Controller that orchestrates consistent checkpoints and recovery.
For efficient persistence, SCABBARD uses task-based parallelization for multi-core execution
and adaptive data pruning for I/O bandwidth reduction. SCABBARD schedules tasks to a
set of worker threads, with each worker bound to a physical CPU core. Depending on the
number of pipeline breakers [234] (e.g., AGGREGATION), it instantiates one task dispatcher for
each pipeline fragment when creating computational tasks.

In Figure 5.2, we introduced SCABBARD’s architecture with a single operator pipeline,
highlighting in red the features for workload-aware persistence. Next, we describe the
different query execution stages, from the logical plan input to the generation of in-order
complete window results.

In stage 1 , a user provides a stream query that is transformed into a logical plan. This
plan is optimized in 2 with rule-based optimizations including (i) operator reordering (i.e.,
persistence push-up) and (ii) operator fusion. SCABBARD uses the optimized plan to generate
code for persistence, checkpoint, and query tasks.

The task creation stage 3 follows after code generation. As data and markers arrive in
the input queues of a query pipeline [165] through network sockets or RDMA, different tasks
with their data dependencies are created and placed in system-wide queues based on NUMA
data locality [229]. When the task queues contain tasks, the workers execute them in 4 .

To provide an up-to-date view of data characteristics (e.g., value distributions), the
workers profile a subset of tuples before persistence in 5 . The profiling information may
trigger another code generation process for workload-aware data reduction in step 2 (see
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Sections 5.4.3 and 5.5.3). Finally, the execution of a query task produces results in immutable
batches, which are reordered and assembled in 6 using the assembly function ρα .

5.5.2 Managing fault-tolerance operations

We now explain the role of SCABBARD’s components, its data storage format, and how it
accelerates persistence and recovery.

The Block Manager manages the persistent data of a query. When a p-stream or the
Checkpoint Controller issue read/write requests to stable storage, they invoke the Block
Manager, which returns a valid file pointer for these operations. The Block Manager maintains
a pool of files, uniquely identified by a FileId, to reduce the overhead of OS file allocation.
For p-streams (i.e., fixed-size queues based on the query configuration), the Block Manager
maintains a circular list of files that maps directly to stream offsets because data is stored
in offset order. The Block Manager also tracks which files must be garbage collected and
returned to the pool.

The Checkpoint Controller coordinates persistence and recovery operations as discussed
in Section 5.3.2. During normal execution, it injects markers to trigger the persistence of
p-units and creates asynchronous tasks in stage 3 for parallel execution. Task completion is
monitored using a lock-free queue with atomics per pipeline to minimize overhead. When
the Controller triggers a checkpoint, the operators withhold their outputs until checkpoint
completion to ensure consistency. Regular processing is not disrupted, as the immutable
p-units support persistence without an application-level copy-on-write operation.

Storage format. For data persistence, our goal is to perform parallel non-sequential disk
operations without conflicts. Therefore, we partition each file into smaller logical segments
(aligned 256 KB blocks), accelerating reads/writes at the expense of storage space [27].

Serialization costs are reduced by using state management primitives (e.g., vectors or
hashtables) that contain tuples with primitive data types (e.g., integers) based on a fixed
predefined schema. These primitive types do not require deserialization from storage without
compression. For the retrieval of compressed data, however, metadata must be stored at the
start of each segment: (i) the offsets of data; (ii) its representation (e.g., data types, row/-
column format); and (iii) the used compression algorithms, which may change dynamically.
For example, for dictionary encoding [189, 1], the hashtable’s file offset (implemented with
open addressing) and the metadata (e.g., schema) are stored to deserialize it. For windowed
operators, the number and sizes of window fragments [205, 137] (e.g., open or closing
windows) must be stored for state reconstruction.
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I/O optimizations. SCABBARD supports NUMA-aware persistence: the task placement
respects the affinity of p-units to reduce cross-socket communication. It also uses software
prefetching of data from remote NUMA nodes, which leads up to 35% better performance for
memory-bound queries. To saturate the I/O bandwidth of SSDs and minimize latency, it uses
Linux’s non-blocking API with asynchronous notifications [132]. All files are opened using
the O_DIRECT flag to bypass the kernel’s page cache and reduce the CPU overhead when
performing I/O operations. Workers bulk up writes into chunks to decrease fragmentation
and the number of entries in the disk’s device queue.

To saturate the network bandwidth of RDMA-capable networks, SCABBARD uses the
InfiniBand RDMA verb interface [73] with the two-sided communication primitives (see Sec-
tion 2.2.3). Before initiating data processing, SCABBARD initializes a memory region for
the circular buffers that act as input or output queues and guarantee FIFO delivery. Then, it
registers these regions with the network card and establishes a connection with data sources
or sinks. Every slot of these queues is a fixed-size (i.e., 1 MB), RDMA-capable buffer,
reused after data ingestion or emission. SCABBARD performs network communication
asynchronously to interleave network I/O with query execution.

Reducing recovery time. Fast recovery necessitates frequent checkpoints, short initialization
times, and fast data loading from storage. SCABBARD reduces the checkpointing impact
by performing them asynchronously. It also partitions streams and state into p-units to
enable parallel persistence and recovery (see Sections 5.6.4 and 5.6.5). During recovery,
SCABBARD avoids costly code generation by recovering previously-persisted compiled
operators: it compiles queries using the LLVM compiler [142] and stores the binaries on
disk. Upon restart, it loads the compiled operators, which reduces the restart time by an order
of magnitude. Finally, dependency tracking allows SCABBARD to load only required p-units.

Making progress. As discussed above, SCABBARD adopts asynchronous execution using
fixed-size lock-free queues protected by atomics for: (i) the assembly phase in 6 ; (ii) stream
and operator state persistence; and (iii) networking communication. To achieve high resource
utilization, all tasks for the above operations finish in a finite number of steps without waiting
to receive notifications for completeness. As this can block query execution for complex
pipelines, the task dispatcher of every pipeline fragment tracks the size of these fixed-size
queues and creates tasks that deque and resolve notifications. This helping pattern is similar
to techniques found in concurrent programming to guarantee progress [103].
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5.5.3 Efficient adaptive compression

Given the low latency requirement R2 discussed at the beginning of this chapter, it is
crucial to perform adaptive compression without disrupting normal execution. Therefore,
SCABBARD generates query-specific lightweight instrumentation code and injects it into
each pipeline fragment to perform fine-grained profiling. To further reduce the overhead of
adaptive compression, we choose to analyze the statistics gathered at runtime periodically at
a configurable interval7 and decide whether to generate new operators. These operators are
memoized and maintained as function pointers, inserted dynamically into the operator graph.

As the compression operators are stateless, the above approach may lead to different
operators being executed simultaneously in SCABBARD. Therefore, workers must store the
metadata of each approach (see Section 5.5.2) and use the appropriate generated decompres-
sion functions on the persisted p-units upon failure. If the p-stream characteristics change,
e.g., a column’s bit precision changes, a worker may decide for deoptimization [82, 100, 109]
by falling back to the default compression scheme to ensure correct results without data loss.
Following the deoptimization phase, the worker continues to use the default scheme (e.g.,
no compression if no operator is defined) until the next optimization interval of the adaptive
mechanism generates a new operator.

Given the difference in size between p-streams and operator state, we decided to perform
adaptive compression on p-streams as they have a greater impact on performance. To
compress the operator state, we provide predefined compression functions in the current
implementation. However, SCABBARD’s compiler can be extended to enable adaptive
compression for workloads that maintain large window state.

5.6 Evaluation

In this section, we evaluate SCABBARD to explore the benefits of its design in a top-down
fashion over a range of synthetic and real-world datasets, which are presented in our evalua-
tion set-up (Section 5.6.1). We start by comparing SCABBARD with state-of-the-art SPEs
in terms of throughput and latency under a range of real-world query benchmarks (Sec-
tion 5.6.2). We then investigate the efficiency of stream persistence against state-of-the-art
messaging systems to reveal their overheads (Section 5.6.3). Subsequently, we demonstrate
the efficiency of SCABBARD’s checkpointing (Section 5.6.4) and recovery mechanisms (Sec-
tion 5.6.5). Finally, we provide a breakdown of the optimization approaches (i.e., persistence

7It is statically defined, but it could change dynamically based on the collected statistics.
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Table 5.3 Evaluation datasets and workloads

Datasets Queries

Name # Attr. / Size (B) Name Windows (s) Operators

Cluster Moni- 12 / 64 CM1 ω60,1 π,γ,αsum
toring (CM) [129, 57] CM2 ω60,1 π,σ ,γ,αavg

Smart Grid (SG) [123] 7 / 32 SG1 ω3600,1 π,αavg
SG2 ω128,1 π,γ,αavg
SG3 ω1,1,ω1,1 π,σ ,⋊⋉

Linear Road 7 / 32 LRB1 ω300,1 π,σ ,γ,αavg
Benchmark (LRB) [22] LRB2 ω30,1 π,γ,αcount

LRB3 ω30,1,ω1,1 π,γ,αcount

Yahoo Streaming (YSB) [58] 7 / 128 YSB ω10,10 σ ,π,⋊⋉relation,γ,αcount

NEXMark (NQ) [214] 9 / 128 NQ ω60,1 π,γ,αcount,αmax,⋊⋉

Sensor Monitoring (SM) [122] 14 / 64 SM ω60,1 π,αavg

push-up and compression) in Section 5.6.6 and analyze the performance of SCABBARD with
remote sources, sinks, and storage in Section 5.6.7.

5.6.1 Experimental setup

Hardware. We run experiments on three servers: Server A with two Intel Xeon E5-2640
v3 2.60 GHz CPUs (16 physical cores), a 20 MB LLC cache, 64 GB of memory, and a
local 256 GB SSD (950 MB/s write bandwidth; 72k IOPS); a c5.4xlarge AWS EC2 instance
(Server B) with EBS [10] for remote storage (700 MB/s write bandwidth; 16k IOPS);
Server C with four Intel Xeon E5-4660 v4 2.20 GHz (64 physical cores), a 40 MB LLC
cache, 528 GB of memory, and a local 1.6 TB SSD (1.5 GB/s write bandwidth; 90k IOPS).
We use Ubuntu 18.04 and Clang 9.0.0 with -03 -march=native. Unless stated otherwise, all
experiments are executed on Server A using all cores.

Stream persistence systems. To identify the performance characteristics of stream persis-
tence, we compare to (i) Apache Kafka v2.3.0 [16], a persistent messaging system; and (ii) a
C++ prototype (Kafka++) that flushes data to disk before acknowledging it.

For a fair comparison, we tune Kafka for high throughput by: (i) batching input mes-
sages; (ii) using multiple partitions and producers per topic; and (iii) maintaining a median
latency of less than 90 ms, which we deem acceptable given the latency results measured
below. We use acks= "all" mode to persist tuples to disk before acknowledging them, and
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replication.factor="1". We find that, in most cases, the compression algorithms sup-
ported by Kafka lead to performance degradation or increased latency; thus, we disable this
feature. For the prototype, we manage memory and execution as in SCABBARD, pre-partition
the input to avoid the additional cost, and use Snappy [241] compression.

Stream processing engines. For our end-to-end performance measurements, we compare to
(i) Apache Flink v1.12.0 [15], a Java-based scale-out SPE; (ii) a hardcoded C++ implemen-
tation of Flink’s execution strategy (Flink++); and (iii) LIGHTSABER [205], a single-node
SPE without fault-tolerance.

When considering a persistent input source in the following benchmarks, we use Kafka
and Kafka++ for the Java-based and the C++ version of Flink, respectively. Following best
practices [60] for data ingestion, we configure Kafka to use as many partitions as Flink
workers. We enable object reuse and preload the input data into Kafka partitions before
starting experiments to avoid bottlenecks. For Flink++, we pre-partition the input, perform
operator fusion, and manage memory as in SCABBARD. We denote as Flink-Kafka++ the
hardcoded C++ implementation that uses Kafka++.

We examine SCABBARD with and without stream persistence (denoted as Scabbard-Chk).
If not stated otherwise, we checkpoint all operators every second and generate in-memory
ingress streams for the remaining systems. We pre-populate large buffers and replay tuples
continuously by updating their timestamps to avoid network bottlenecks.

Workloads. Table 5.3 summarizes the workloads used for our evaluation (see Section A.1
for their CQL definition), with the window sizes and slides measured in seconds8 if not stated
otherwise. We use the macro-benchmark stream queries from Section 4.7 and introduce four
additional queries:

• The first workload emulates two cluster monitoring applications (CM) [220] that
apply a grouped aggregation over a sliding window.

• Smart grid queries (SG) [123] perform anomaly detection: SG1 calculates a sliding
global average of a meter load, SG2 reports the sliding load average per plug in a
household, and SG3 joins their results with a tumbling window.

• Linear Road Benchmark (LRB) [22] computes three queries on a network of toll
roads with multiple key groupings: LRB1 performs a grouped window aggregation
with a selection to find congested road segments; LRB2 and LRB3 (a tumbling window
count over LRB2) count the number of vehicles in road segments.

8All window sizes and slides are defined using event time to be independent of processing latency.
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Fig. 5.9 Application benchmark queries

• Yahoo Streaming Benchmark (YSB) [58] emulates an advertisement application with
a table join and a windowed count using numerical values (128 bits) [175].

• The fifth query (NQ) from NEXMark benchmark [214] that monitors auction items
with the most bids over a sliding window.

• Sensor monitoring (SM) [122] query computes the running average of three energy
sensor readings.

Metrics. The main performance metrics considered in the following benchmarks are through-
put and end-to-end latency. We define throughput as the average number of tuples processed
within a time unit (e.g., one second). Following prior work [217], we define end-to-end
processing latency as the difference between the time when a tuple enters the system and
when a window result is produced. Candlesticks in plots show the 5th, 25th, 50th, 75th and
95th percentiles, respectively.

5.6.2 System comparison using application benchmarks

To study how efficiently SCABBARD supports exactly-once fault-tolerance in a single node,
we use ten queries from diverse streaming use cases with tumbling and sliding window
semantics. Figure 5.9a compares the performance of Flink with 1-sec checkpoints (denoted
as Flink-FT) with that of Flink without fault-tolerance, LIGHTSABER (no fault-tolerance),
and SCABBARD. In particular, SCABBARD uses 1-sec checkpoints and persist its input
streams. The results show that for compute-intensive queries (SG3, LRB1-3), SCABBARD

exhibits less than 11% performance drop over LIGHTSABER, and effectively hides the cost
of persistence. For the remaining memory-intensive queries, we observe that the overhead of
persistence leads to a greater degradation: 69% for CM1, 45% for CM2, 12% for SG1, 23%
for SG2, up to 2× for YSB, and 28% for NQ, respectively.
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Fig. 5.10 Ingestion of streams

Compared to Flink-FT, SCABBARD performs at least an order of magnitude better for all
queries, even though it performs additional work for stream persistence. To investigate the
fault-tolerance overhead, we use the bpftrace tools [98] and measure the average block I/O
device latency for disk operations. While Flink has an average latency of 16 ms with frequent
spikes (up to 64 ms), SCABBARD exhibits low and predictable (around 64 µs) average latency
with 1 ms spikes by bypassing the kernel’s page cache. The average disk latency explains the
increased number of memory stalls for Flink that lead to a 4–6× performance overhead for
LRB2-3 and YSB.

Next, we compare the end-to-end latency of SCABBARD against LIGHTSABER (we
omit the results for Flink, as they are an order of magnitude worse [217, 99]). Figure 5.9b
shows that, similar to LIGHTSABER, SCABBARD exhibits median latency lower than 50 ms
for all queries, except for LRB3, in which both systems have sub-second latency. For the
compute-intensive queries (SG3 and LRB1-3), the increase in latency is shown mostly in the
95th percentile, while for the rest, we observe that the median latency is more than 2× higher.

Discussion. Overall, the experiments show that SCABBARD achieves at least an order of
magnitude higher throughput compared to state-of-the-art fault-tolerant SPEs, which reveals
the benefits of our design in single-node deployments. Compared to efficient scale-up
execution without fault-tolerance, SCABBARD achieves only an up to 10× increase in the
95th percentile latency and minimal throughput overhead due to its persistence abstractions
and optimizations that reduce significantly disk bandwidth. Having established SCABBARD’s
high-level performance profile, we study the factors contributing to its performance.

5.6.3 Stream persistence cost

As a first step, we analyze SCABBARD’s stream persistence mechanism against that of Kafka
to reveal the overhead of existing approaches. Figure 5.10a shows that Kafka achieves
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comparable performance for all applications (up to 4 million tuples/s). However, SCABBARD

has at least two orders of magnitude greater throughput for all benchmarks. When analyzing
resource utilization, we observe that Kafka introduces more instruction cache misses (the
JVM leads to a large code footprint) and memory cache misses (caused by serialization,
copying, and object allocation), which prevent scaling even with compression.

Subsequently, we remove the aforementioned bottlenecks with a hardcoded C++ imple-
mentation to provide a more comprehensive analysis. Kafka++ achieves up to an order of
magnitude higher throughput and performs almost the same as SCABBARD for queries SG2-3

and LRB2-3, at the expense of a 7× latency increase, as shown in Figure 5.10b. This increase
is caused by the large batch size required to achieve high throughput when performing
synchronous disk writes.

In addition, we observe a significant percentage of stalls and high I/O device latency for
both implementations that perform synchronous flushes to the page cache using fsync()
(see Section 2.2.2). SCABBARD, in contrast, has more efficient resource utilization (e.g.,
NUMA locality), writes fewer bytes to disk per tuple, and reduces the transmission over-
head with compression and block-aligned writes. Finally, it overlaps query execution with
persistence and manages to submit more asynchronous I/O requests per second to disk.

Discussion. SCABBARD’s persistence mechanism stresses less the device queues of SSDs
and saturates their bandwidth with asynchronous I/O requests. By manually managing
the memory for disk operations, as discussed in Section 2.2.2, and performing a set of
optimizations (e.g., compression), SCABBARD achieves more than an order of magnitude
better throughput or end-to-end latency compared to existing solutions.

Table 5.4 Checkpointing based on application characteristics

App State (MB) Avg checkpoint time (ms) Overhead
SCABBARD Flink SCABBARD Flink SCABBARD Flink

CM1 18 0.08 25.7 292 4% 5%
CM2 10 0.08 44.3 275 9% 3%
SG1 2 0.03 89.6 291 1% 1%
SG2 41 0.08 68.6 290 7% 11%
SG3 115 3.3 103.6 > 60000 2% 17%
LRB1 114 4.2 122.7 9000 5% 15%
LRB2 105 5.9 168.6 1000 14% 20%
LRB3 143 6 361 2000 1% 10%
YSB 23 0.13 23.1 311 6% 1%
NQ 27 2.68 49.1 932 4% 10%
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Fig. 5.11 Yahoo Streaming Benchmark
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Fig. 5.12 Performance with failure for LRB1

5.6.4 Checkpointing overhead

This section measures the performance overhead of checkpointing with a 1-sec interval for
SCABBARD without p-streams (Scabbard-Chk) and Flink. Table 5.4 summarizes the results
in terms of the average checkpoint size in MBs, the average checkpointing time in ms, and
the performance overhead compared to execution without checkpoints.

First, we observe that for LRB1-3, the checkpoint time is affected by the persisted state
size. Compared to Flink, SCABBARD has higher throughput for all queries, which leads to
larger state sizes. When the state grows to several MBs, checkpointing affects performance
adversely over time. Therefore, for queries SG3 and LRB1-3, we had to increase Flink’s
checkpoint interval. Overall, SCABBARD combines efficient parallelization of persistence
with data reduction and predictable I/O latency, allowing frequent snapshots and fast recovery.

We then consider the efficiency of unaligned checkpoints (i.e., persisting streams along
with state) in a single-node SPE using Flink++ and YSB: we choose a workload with tumbling
windows that allows a comparison without aggregation optimizations [205]. Flink++ uses
aligned checkpointing in our implementation, i.e., persisting only state at the expense of
increasing latency due to synchronization barriers.

Figure 5.11 compares Flink++ for different batch sizes with and without stream persis-
tence (using Kafka++ from Section 5.6.3) to SCABBARD and Scabbard-Chk. With only
checkpointing, the prototype exhibits 5× worse performance, two orders of magnitude
higher latency, and 6× greater checkpoint time when the batch size is greater than 1 MB.
This latency increase is due to message passing [234] and the alignment phase required
during Flink’s shuffle stage. While Flink++ waits for the checkpoint completion before
committing results, SCABBARD uses its dependency tracking mechanism to output the results
immediately. However, Flink++ stores to disk 100× less data with aligned checkpoints,
demonstrating how the additional I/O pressure can become a bottleneck for SCABBARD with-
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out the persistence optimizations. However, with stream persistence enabled, SCABBARD

interleaves persistence with normal execution and yields 7× higher throughput.

Discussion. Overall, SCABBARD’s checkpointing mechanism induces minimal performance
overhead compared to execution without checkpoints. SCABBARD achieves lower average
checkpoint time and latency than existing approaches for single-node fault-tolerance due
to its asynchronous persistence and data reduction optimizations. Finally, we observe that
unaligned checkpoints benefit the execution in a single node and reduce latency significantly.

5.6.5 Recovery with remote storage

In this experiment, we evaluate SCABBARD’s behavior during recovery with remote storage,
using an AWS EC2 instance with Elastic Block Storage (EBS). We exclude the time for failure
detection and machine restart in our measurements. We use LRB1 (the other queries exhibit
similar behavior) and persist the ingress stream while checkpointing every second. To allow
SCABBARD to catch up with the input when recovering, we configure the in-memory data
generator to generate the stream at 300 MB/s (i.e., half the maximum sustainable throughput).

Figure 5.12 shows the throughput before and after manually triggering a failure by
terminating the SCABBARD process, which is indicated by the red vertical line. Upon failure,
SCABBARD initializes (memory pre-allocation and precompiled code loading), which takes
approximately 360 ms, followed by 100 ms of recovery time. In terms of average latency,
there is an initial increase while SCABBARD is down and restarts, but it then recovers to the
pre-failure latency within 2 s.

To emulate a failure in Flink, we stop and restart the worker process (TaskManager) and
collect the logged events. The restart time of the TaskManager is 38 s, and recovering the
state from disk takes 2 s. This is the effective recovery time expected from a hot-standby
system and, thus, the key metric of this experiment. Therefore, using this metric, SCABBARD

performs roughly 20× better than Flink.

Discussion. SCABBARD achieves sub-second recovery even when using remote block storage.
Its restart time is two orders of magnitude lower than existing solutions, making SCABBARD

a practical solution for a single-node deployment. As future work, we want to automate the
recovery process using efficient failure detection mechanisms and a pool of hot-standbys.

5.6.6 SCABBARD’s optimization breakdown

We now study SCABBARD’s data reduction techniques. In the first experiment, we execute
the queries bound by the disk bandwidth (i.e., CM1-2, SG1, YSB, NQ, SM) and evaluate
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Fig. 5.14 Adaptive compression for SM

SCABBARD using six configurations: (i) no compression and no persistence push-up (no-
opt); (ii) only persistence push-up (p-pu); (iii) only compression (only-cmp); (iv) both p-pu
and lossless floating-point compression (both-lossless); (v) both p-pu and two-decimal digit
precision floating-point compression if applicable (both-lossy); and (vi) both optimizations
without persistence to emulate a fast storage medium (both-no-disk). The last configuration
assumes that disk bandwidth is no longer a bottleneck in future hardware architectures (i.e.,
faster non-volatile memory).

Figure 5.13 shows that SCABBARD without data reduction reaches up to 780 MB/s, which
is close to the disk bandwidth of Server A. For all queries apart from CM2, which exhibits low
filter selectivity, using only one of the techniques does not yield the optimal throughput. With
both data reduction optimizations, SCABBARD outperforms the baseline (no-opt) from 7× to
50×, depending on the input data characteristics. For CM1 and SG1, the lossy compression
yields 20–40% performance improvement.

We conclude that SCABBARD benefits from disks with higher bandwidth and lower
latency operations, as we observe a 1.2–4× speedup for both-no-disk. With a faster disk, it
may become necessary to sacrifice the compression ratio for throughput. We want to develop
a cost-based model to resolve this as future work.

In the second experiment, we explore the performance benefit of adaptive compression
when the data characteristics change over time. We execute the SM query, and after 10 secs,
we change the value distribution of the integer columns.

Figure 5.14 compares SCABBARD with adaptive compression against the default com-
pression approach and without compression. While SCABBARD profiles the runtime charac-
teristics and decides to switch the compression function every 4 secs, this does not affect
performance. Based on the collected statistics, SCABBARD generates a more efficient com-
pression scheme, resulting in a 5–10% performance improvement. After 10 secs, the data
characteristics change, invalidating the assumptions of the generated code, and SCABBARD

falls back to the generic compression algorithms. Finally, after 12 secs, it uses the most
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Fig. 5.16 Remote storage

recent statistics to generate a new compression function, yielding a 2× improvement. The re-
optimization interval can be reduced to adapt more quickly at the cost of higher overhead. We
deduce that SCABBARD adapts effectively to changing workload characteristics at runtime,
resulting in up to a 2× performance gain.

Discussion. Overall, the experiments in Figures 5.13 and 5.14 show that both data reductions
techniques improve the performance of memory-intensive queries with high ingestion rates
up to an order of magnitude. In addition, adaptive compression can yield a 2× speedup for
changing data characteristics without affecting normal execution.

5.6.7 Network and remote storage I/O bottlenecks

In the following experiments, we consider the impact of the network that interconnects
SCABBARD with remote sources/sinks and storage. We observe its behavior when ingesting
data over the network with and without data reduction (no-opt). To have sufficient bandwidth,
we connect Server C (see Section 5.6.1) using RDMA over 100 Gb/s with two separate
machines (similar to Server A) to generate streams and commit output results.

In Figure 5.15, for the memory-intensive queries, SCABBARD manages to saturate
the RDMA bandwidth with less than 6 physical cores, which shows the importance of
SCABBARD’s data reduction techniques when the ingestion rate is higher than the disk
bandwidth. The performance improvement for SG2-3 is up to 65%, and for the remaining
queries, data reduction does not improve performance and increases latency. This experiment
reveals that data reduction plays a crucial role when utilizing fast networks.

In Figure 5.16, we compare SCABBARD’s performance with and without (no-disk) remote
block storage in terms of throughput and latency using the EC2 instance (Server B). For
queries CM1-2, SG1, and YSB, SCABBARD exhibits greater throughput degradation compared
to the local disk experiments (Section 5.6.2) because it saturates the IOPS of the EBS volume.
Thus, we increase the batch size to reduce IOPS, which results in up to 12× higher 75th
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percentile latency. The remaining queries exhibit similar performance to local storage with
less than a 2× latency increase. We conclude that high-speed networking allows for remote
storage with low overhead.

Discussion. In contrast to existing solutions [234], SCABBARD manages to saturate high-
speed networking interconnects and allows for fast stream ingestion and remote storage.
Therefore, its design is practical for many time-critical applications with strict end-to-end
latency guarantees.

5.7 Limitations and discussion

In this section, we discuss related work, highlight some of SCABBARD’s limitations, and
initiate a discussion on how they can be addressed as future work.

POG assumptions and extensions. To guarantee exactly-once results upon failures, the
persistence protocol described in Section 5.3.2 assumes that the data stream sources can buffer
and replay data for a sub-second period (i.e., recovery interval). For stronger guarantees, the
stream sources have to broadcast data to multiple replicated single-node deployments or a
reliable distributed messaging system. Finally, the protocol assumes that the sink participates
in the process to perform data deduplication.

Let us now discuss how to extend our persistence protocol for out-of-order data process-
ing and non-deterministic operations. With respect to out-of-order data, SCABBARD can
incorporate punctuation tuples [32] that act as markers for sorting tuples deterministically
in a stream. For the support of non-deterministic operations, the protocol must log all non-
deterministic decisions and replay them for recovery [219, 6]: input and output channels must
be replaced with p-streams for logging all tuples [75], which may incur a high overhead. New
operators can be specified as user-defined functions (UDFs) by implementing the interface
from Table 5.1, while a similar approach to [195] can be used to capture all the sources of
non-determinism.

Fault-tolerance and data migration mechanisms. This work addressed the challenge
of designing a single-node fault-tolerant SPE with exactly-once semantics. Compared to
systems with partial fault-tolerance [112, 119] that sacrifice the precision of recovered results,
SCABBARD offers stronger processing guarantees. More recent scale-out systems [213, 6,
80, 120, 44, 44] use checkpointing for fault-tolerance: IBM Streams, Apache Flink, and
Naiad employ a variation of the Chandy-Lamport algorithm [52] but are not designed for
persisting streams efficiently. Instead, these systems rely on messaging systems [16, 11, 180]
and general-purpose stores [78, 50]. In contrast, SCABBARD integrates persistence with the
operator graph to enable workload-aware optimizations. Another common approach is the use
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of a lineage-based mechanism [24, 149, 181] that persists all data dependencies, which would
compromise performance for scale-up designs. To achieve high availability with minimal
downtime after a failure, SCABBARD can be combined with active replication [112, 48].
Finally, data migration (e.g., Rhino [161] or Megaphone [108]) is an orthogonal technique
that uses fast remote storage to speed up recovery to a new machine, and it also enables query
reconfiguration at runtime.

Adaptive optimizations in stream processing. Adaptive techniques have been used
extensively in SPEs [28, 55, 240, 88, 137, 100]. Early research focused on plan migra-
tion [55, 240, 88] in distributed deployments or operator reordering [28]. SABER [137]
uses an online algorithm to choose between CPU and GPU execution of operators. Griz-
zly [100] employs adaptive optimizations with query compilation to accelerate execution.
These approaches are orthogonal to our work, which uses adaptive compression to reduce
I/O bandwidth, and we want to incorporate them into our design for improved performance.

Compression algorithms. In this work, we consider only a subset of existing approaches for
lightweight compression, and we want to explore more schemes for future work. In particular,
we utilize compression schemes for stream timestamps and floats [173] and variations
of null-suppression methods [189, 1, 13, 145]. While SCABBARD uses compression to
accelerate persistence, Tersecades [171] compresses data with hardware accelerators and
performs computations directly over compressed formats. A noteworthy future direction is
the extension of the adaptive compression and execution model to support such operations.

5.8 Summary

To enable fault-tolerance with exactly-once semantics in a single-node SPE without compro-
mising performance despite the limited available resources, we developed SCABBARD. It
tightly couples the persistence operations with the operator graph through a novel persistent
operator graph model and dynamically reduces the required disk bandwidth at runtime
through adaptive compression. SCABBARD achieves sub-second recovery latencies by
performing frequent checkpointing and optimistic garbage collection. Consequently, it out-
performs the state-of-the-art fault-tolerant SPEs by at least an order of magnitude on all our
benchmarks, processing hundreds of millions of tuples/s with millisecond latencies.

We consider SCABBARD a comprehensive design for hardware-efficient, reliable, and
general-purpose scale-up SPE. SCABBARD exploits existing hardware in terms of multi-core
execution, network, and storage stack and provides a practical solution for real-world use
cases. Therefore, it is a step towards next-generation SPEs that can replace cluster-based
designs’ complexity and operational costs with single-node deployments.



Chapter 6

Conclusions and Future Work

Over the past decade, we have witnessed unprecedented magnitudes of data volumes and
velocity that demand real-time processing. Based on recent predictions [186], by 2025, data
will reach 175 ZB with 30% being analyzed in real-time. Therefore, it is not surprising
that stream processing has become the fourth most important data-intensive application
workload. The stream processing paradigm is extensively used in a wide variety of domains
ranging from finance [79, 197, 166] to transportation [22], healthcare [235], and e-commerce
services [95, 49, 6]. With the continuously growing data volumes, velocity, and performance
requirements (i.e., high throughput and low latency), there is a need to revisit the design
of SPEs based on current hardware trends (e.g., non-uniform memory access, multi-core
parallelism, and high-speed networks).

To accommodate the requirements of modern stream processing applications, many
distributed SPEs were developed by large internet companies [163, 7, 6, 120, 49, 47, 211]
and academia [80, 8] to scale out processing to a cluster of nodes through appropriate
data partitioning [45, 231] – at substantial operational cost [155]. At the same time, with
the rise of parallel hardware, such as multi-core CPUs and GPUs, and modern network
technologies [64], we observe that scale-up SPE designs [137, 158, 236, 205, 157] have
become a practical alternative. In particular, for a class of time-critical applications [235,
166], scale-up designs achieve higher performance and more predictable latency using fewer
resources [175]. However, existing single-node systems neglect tolerating failures and
implement ad-hoc aggregation and parallelization strategies, yielding high performance only
for specific workloads.

With this thesis, we propose a novel general-purpose relational SPE that transparently
exploits modern hardware trends to permit streaming windowed [21] SQL queries. Our
solution achieves performance desiderata of stateful streaming applications regardless of the
workload characteristics (e.g., number of distinct keys or window semantics). To address
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the reliability challenge, we introduce single-node fault-tolerance mechanisms that provide
predictable low latency results upon failures. Therefore, we present a practical single-node
design for adoption in real-world use cases, which reduces the resource and maintenance
footprint of stream processing systems.

Single-node SPEs provide an effective solution for scalable and reliable stream processing
without compromising window semantics, performance requirements, or fault-tolerance.

In the remainder of this chapter, we summarize the contributions of this thesis and then
discuss potential future work.

6.1 Thesis summary

This thesis began by describing the importance of big data analysis to various domains of
our everyday lives (Chapter 1). With the recent technological advancements, the bottleneck
of analyzing big data has shifted from generating and storing data to processing systems.
Therefore, big internet companies and organizations have focused on efficiently processing
these ever-growing data volumes to extract valuable information and gain insights.

While the classical “process-after-store” model was sufficient for processing increasing
data volumes, a new type of latency-sensitive applications has gained attention in the last
decades, posing a velocity challenge. These applications continuously produce “fresh” results
as new data streams arrive. Given the predicted data volumes and velocities, high throughput
and low latency performance are key requirements for stream processing.

To target these requirements, existing SPEs scale out data processing on commodity
clusters, paying a substantial operational and maintenance cost. However, such designs
face challenges in providing predictable latency guarantees and parallelizing window com-
putations. Witnessing the emergence of shared-memory multi-core CPU architectures and
high-speed networking, single-node SPEs have become a reasonable alternative.

In the background chapter (Chapter 2), we described the basic concepts and terminology
for stream processing. Next, we traced the evolution of SPEs from single-core research
prototypes to distributed stream processing, which has become a first-class service in cloud
vendors nowadays. While current SPEs focus on the inherent problems of distributed
execution, a wave of hardware-conscious systems has emerged to exploit parallel hardware
(e.g., multi-core CPUs, GPUs, or FPGAs). However, existing solutions lack a comprehensive
design for scalable and reliable single-node execution. After presenting the SPEs’ evolution,
we introduced the characteristics of modern hardware found in data centers, essential for
profiling and designing efficient processing systems. We cover basic knowledge related
to modern processors (i.e., microarchitecture), storage (i.e., asynchronous direct I/O), and
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the network stack (RDMA capable networks). Subsequently, we focused on the single-
core execution of window aggregation, a key component for streaming analytics. We
then identified the limitations of existing solutions for overlapping windows caused by
sliding semantics or multi-query execution. Following the challenges of efficient single-core
execution, we track the well-known limitations of current parallelization strategies for window
operations by analyzing different workloads. Finally, we examined existing fault-tolerant
streaming approaches and demonstrated their limitations for single-node deployments due to
resource constraints with a range of real-world applications.

To overcome the shortcomings related to single-core window aggregation, we presented
two techniques that accelerate computation sharing for overlapping windows (Chapter 3).
As a first step, we performed an in-depth analysis of existing approaches to identify the
performance patterns of streaming algorithms. Based on this analysis, we proposed a solution
that addresses two individual challenges: (i) accelerating partial window aggregation despite
the complex data dependencies of overlapping windows; and (ii) performing incremental
execution over multiple concurrent queries efficiently. For the first problem, we contributed
HammerSlide that applies hardware-conscious optimizations (i.e., SIMD intrinsics) for partial
aggregation and achieves up to 12× performance improvement when integrated with an SPE.
For multi-query execution, we introduced SlideSide, an incremental algorithm that increases
intermediate result sharing by exploiting the algebraic properties of aggregate functions.
SlideSide achieves up to 2× better throughput and comparable latency against state-of-the-art
incremental algorithms.

In Chapter 4, we address the challenge of parallelizing window aggregation without
compromising semantics on multi-core CPUs with LIGHTSABER, a novel SPE that balances
parallelism and incremental execution. In particular, we introduced a general aggregation
model that captures existing design decisions and enables reasoning about entirely new ones.
Based on this model, we introduced abstractions that generalize existing approaches for both
parallel and incremental processing. For parallel aggregation, LIGHTSABER constructs an
aggregation tree abstraction that exploits the parallelism of modern processors: it divides
computation into intermediate steps that enable data- and task-level parallelism. Next, we
focused on the design of a component that generates code for streaming applications at a query
level (e.g., operator fusion) and incremental execution level. For the latter case, we introduced
a second abstraction called generalized aggregation graph (GAG) that encodes the low-level
data dependencies required to produce aggregates incrementally over a stream. This graph
generalizes state-of-the-art incremental algorithms and adapts to workload characteristics
(e.g., algebraic properties or number of queries). Before evaluating LIGHTSABER, we
discussed how to perform memory management and NUMA-aware execution. LIGHTSABER
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processes 470 million tuples/s with 132 µs median latency on a 16-core server. At the same
time, it outperforms state-of-the-art systems, such as Apache Flink, by at least a factor of
seven over a range of workloads. Our system is publicly available as open-source.

Then, in Chapter 5, we showed how we can implement single-node fault-tolerance
without compromising performance as part of SCABBARD, a novel SPE that reduces the
required disk I/O bandwidth while providing exactly-once results upon failures. To achieve
this, we introduced a novel persistent operator graph model that enables workload-aware
decisions for data persistence: persist streams based on the operators’ selectivity. To further
reduce the persisted data, we designed a mechanism for query-specific adaptive compression.
SCABBARD uses JIT code generation to select suitable compression algorithms based on
stream statistics collected at runtime. By combining both approaches, SCABBARD induces
minimal overhead and recovers with sub-second latencies from failures. Therefore, it achieves
processing throughput of 200 million tuples/s while outperforming existing systems, such as
Apache Flink, by at least one order of magnitude. It is publicly available as open-source.

6.2 Future work

During the writing of this thesis, we have identified several topics for future work that we
will discuss next.

Distributed stream processing. In this work, we focus on designing scalable and reliable
SPEs for single-node execution based on the assumption that existing streaming workloads
fit in shared-memory multi-core architectures. However, the appearance of applications with
more complex requirements (e.g., maintaining machine learning models), along with the
increase in data volumes and velocity, stress single-node resources for real-time analytics.
Therefore, extending our abstractions for distributed execution models would be an interesting
future direction. For example, as discussed in Section 4.3, our generalized aggregation model
allows us to express novel distributed execution strategies. To avoid the expensive partitioning
step incorporated by modern SPEs, such a strategy would perform computations locally
in each node, similar to LIGHTSABER, before merging results in a distributed fashion.
The distributed merge phase is required for operators that materialize their results (e.g.,
pipeline breakers) and can be accelerated by exploiting high-speed network interconnects
and distributed consistency protocols.

In the context of distributed execution, our design would also have to revisit its execution
model to support the parallelization strategy discussed above. As described in Section 2.1.2, in
this thesis, we adopt a variation of the micro-batch approach to control task placement, which
results in comparable end-to-end latency and higher throughput compared to materialized
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tasks. It is interesting, thus, to investigate whether the task placement model is better suited
for a distributed parallelization strategy.

Elastic execution. As a step further, our solution could also account for elasticity [80],
i.e., scale computational resources dynamically depending on resource demand. This is an
important property for applications running on public clouds, preventing overprovisioning of
computing resources and cutting operational costs. Given the unpredictable load peaks of
streaming workloads, providing cost-efficient elastic scaling for SPEs without compromising
the quality of service becomes a major challenge.

Handle stream imperfections. In this thesis, the proposed solutions consider “in-order”
or “slightly out-of-order” tuples from a single ingestion point, which can be buffered and
reordered before applying any computations. However, in many scenarios, tuples from
data streams are missing or arrive out-of-order [158] (i.e., late, out-of-sequence, or from
multiple ingestion points). Therefore, SPEs must account for such imperfections [197,
9] without blocking execution. For missing tuples, our solution could apply lightweight
imputation methods (i.e., filling missing values), similar to previous approaches in relational
databases [160]. For out-of-order tuples, we can extend our processing and fault-tolerance
models by using punctuation tuples [32] or low watermarks [6] to sort tuples deterministically
within a stream and provide correctness guarantees.

Unify streaming and historical data analytics. While in our work, we consider only
window computations over most recent data, many streaming applications require access
to previously stored state [197]. With SCABBARD, we propose a storage management
solution for stream and state persistence that leverages modern hardware. However, our
proposal neglects open questions regarding storage formats [124], indexing techniques [223]
or transactional semantics [156] for streaming applications. We leave for future work the
extension of our storage layer to support analytics over both streaming and stored data.

Hardware accelerators. Even though we proposed an execution model that benefits from
shared-memory multi-core CPU architectures, single-node performance can be enhanced by
heterogeneous architectures [238, 208, 137] for different operations, such as query execution
and cross-operator communication. Prior approaches [137, 239] have utilized GPUs for
streaming operators, as they provide much higher bandwidth than CPUs. Glacier [162] is an
engine that applies streaming computations on data from networks using FPGAs. Finally, we
could extend SCABBARD to compress data using hardware accelerators [171], such as GPUs,
and apply computations directly over compressed data formats.

Multi-tenant execution. As many streaming applications involve simple transformations
over data streams with low input rates, there is an opportunity to exploit all available
hardware resources by supporting multi-tenancy, i.e., multiple queries collocated on shared
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resources. However, it is challenging to design a multi-tenant SPE that maintains high
resource utilization without overprovisioning [225]. As a future direction, we could integrate
resource managers with application-level metrics, such as load spikes, to dynamically change
resource allocation among tenants.
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Appendix A

Workloads

A.1 Benchmark queries

A.1.1 Cluster monitoring

-- Query 1
--
-- Input: TaskEvents
-- long timestamp
-- long jobId
-- long taskId
-- long machineId
-- int eventType
-- int userId
-- int category
-- int priority
-- float cpu
-- float ram
-- float disk
-- int constraints
-- Output: CPUusagePerCategory
-- long timestamp
-- int category
-- float totalCpu
--
select timestamp , category , sum(cpu) as totalCpu
from TaskEvents [range 60 slide 1]
group by category
--
-- Query 2
--
-- Input: TaskEvents
-- Output: CPUusagePerJob
-- long timestamp
-- long jobId
-- float avgCpu
--
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select timestamp , jobId , avg(cpu) as avgCpu
from TaskEvents [range 60 slide 1]
where eventType == 1
group by jobId

A.1.2 Smart grid

-- Query 1
--
-- Input: SmartGridStr
-- long timestamp
-- float value
-- int property
-- int plug
-- int household
-- int house
-- Output: GlobalLoadStr
-- long timestamp
-- float globalAvgLoad
--
select timestamp , avg(value) as globalAvgLoad
from SmartGridStr [range 3600 slide 1]
--
-- Query 2
--
-- Input: SmartGridStr
-- Output: LocalLoadStr
-- long timestamp
-- int plug ,
-- int household
-- int house
-- float localAvgLoad
--
select timestamp , plug , household , house , avg(value) as localAvgLoad
from SmartGridStr [range 128 slide 1]
group by plug , household , house
--
-- Query 3
--
-- Input: GlobalLoadStr , LocalLoadStr
-- Output: Outliers
-- long timestamp
-- int house
-- float count
--
(
select L.timestamp , L.plug , L.household , L.house
from LocalLoadStr [range 1 slide 1] as L,

GlobalLoadStr [range 1 slide 1] as G
where L.localAvgLoad > G.globalAvgLoad
) as R
--
select timestamp , house , count (*)
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from R
group by house

A.1.3 Linear Road Benchmark

-- Query 0
--
-- Input: PosSpeedStr
-- long timestamp
-- int vehicle
-- float speed
-- int highway
-- int lane
-- int direction
-- int position
-- Output: SegSpeedStr
-- long timestamp
-- int vehicle
-- float speed
-- int highway
-- int lane
-- int direction
-- int segment
--
select timestamp , vehicle , speed , highway , lane , direction , (position /5280) as

segment
from PosSpeedStr [range unbounded]
--
-- Query 1
--
-- Input: SegSpeedStr
-- Output: CongestedSegRel
-- long timestamp
-- int highway
-- int direction
-- int segment
-- float avgSpeed
--
select timestamp , highway , direction , segment , avg(speed) as avgSpeed
from SegSpeedStr [range 300 slide 1]
group by highway , direction , segment
having avgSpeed < 40.0
--
-- Query 2
--
-- Input: SegSpeedStr
-- Output: SegVolRel
-- long timestamp
-- int highway
-- int direction
-- int segment
-- float numVehicles
--
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select timestamp , vehicle , highway , direction , segment , count (*)
from SegSpeedStr [range 30 slide 1]
group by highway , direction , segment , vehicle
--
-- Query 3
--
-- Input: SegSpeedStr
-- Output: SegVolRel
-- long timestamp
-- int highway
-- int direction
-- int segment
-- float numVehicles
--
(

select timestamp , vehicle , highway , direction , segment , count (*)
from SegSpeedStr [range 30 slide 1]
group by highway , direction , segment , vehicle

) as R
--
select timestamp , highway , direction , segment , count(vehicle) as numVehicles
from R
group by highway , direction , segment

A.1.4 Yahoo Streaming Benchmark

-- Query 1
--
-- Input: InputStr
-- long eventTime
-- long userId
-- long pageId
-- long adId
-- long adType
-- long eventType
-- long ipAddress
-- Output: OutputStr
-- int numCampaigns
-- long lastUpdate
--
select count (*), max(eventTime) as lastUpdate
from
(

select campaignId , RS.adId , eventTime
from InputStream [range 10 slide 10] as IS
join Campaigns as C
on C.adId = IS.adId
where eventType = "view"

)
group by campaignId
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A.1.5 Sensor Monitoring

-- Query 1
--
-- Input: SensorStr
-- long timestamp
-- int messageIndex
-- int mf01
-- int mf02
-- int mf03
-- int pc13
-- int pc14
-- int pc15
-- unsigned int pc25
-- unsigned int pc26
-- unsigned int pc27
-- unsigned int res
-- bool bm05
-- bool bm06
-- bool bm07
-- bool bm08
-- bool bm09
-- bool bm10
-- Output: OutputStr
-- long timestamp
-- int gloabalAvgMf01
-- int gloabalAvgMf02
-- int gloabalAvgMf03
--
select timestamp , avg(mf01), avg(mf02), avg(mf03)
from SensorStr [range 60 slide 1]
--
-- Query f
--
-- Input: SensorStr
-- Output: OutputStr
-- long timestamp
-- int aggregateFunction
--
select timestamp , f(mf01) as aggregateFunction
from SensorStr [range (_) slide 1]

A.1.6 NEXMark

-- Query 1
--
-- Input: BidStr
-- long timestamp;
-- long id;
-- long itemName;
-- long description;
-- long initialBid;
-- long reserve;
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-- long expires;
-- long seller;
-- long category;
-- Output: OutputStr
-- long timestamp
-- long id
--
select id
from bid [range 60 slide 1]
where
(

select count(id)
from bid [range 60 slide 1]
group by id

) >=
all (

select count(id)
from bid [range 60 slide 1]
group by id

)
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