
ENABLING INDEPENDENT

COMMUNICATION FOR FPGAS IN

HIGH PERFORMANCE COMPUTING

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2019

Joshua Lant

School of Computer Science

Contents

List of Tables 7

List of Figures 9

Abstract 13

Declaration 14

Copyright Statement 15

Acknowledgements 16

1 Introduction 19

1.1 FPGAs for HPC . 21

1.1.1 Our Interconnect Solution . 22

1.2 Contributions . 23

1.3 Publications . 26

1.4 Architectural Overview and Thesis Structure 27

1.4.1 Network Interface Design . 28

1.4.2 System Level Design . 31

1.4.3 Thesis Outline by Chapter . 33

2 Background and Related Work 35

2.1 Trends in High Performance Computing 36

2.1.1 Vector Machines . 36

2.1.2 Massively Parallel Machines 37

2.1.3 Many-Core and Heterogeneous Computing 38

2

2.1.4 Energy Efficiency and Data Movement 40

2.1.5 FPGA . 41

2.2 HPC Workloads . 44

2.2.1 Current Suitability . 44

2.2.2 Advancing System Architectures 45

2.2.3 Accelerator Optimization Techniques 46

2.3 Programming Models and Interfaces 48

2.3.1 MPI . 49

2.3.2 OpenMP . 50

2.3.3 Distributed Shared-Memory (NUMA/PGAS) 52

2.3.4 FPGA Programming Techniques 54

2.3.5 Extending Models to FPGA . 56

2.4 FPGA Clusters . 58

2.4.1 Early Examples . 59

2.4.2 Bus-Based Coprocessor . 60

2.4.3 System Bus Attached . 62

2.4.4 Disaggregated Network Peer 63

2.4.5 Bump-in-the-wire . 64

2.4.6 Global System Addressing . 65

2.5 Interconnection Networks . 66

2.5.1 Ethernet . 66

2.5.2 TCP . 66

2.5.3 UDP . 71

2.5.4 Infiniband . 73

2.5.5 Others . 77

2.6 Our Interconnect Requirements . 81

2.6.1 A Custom Interconnect Design 82

2.7 Concluding Remarks . 87

3 Network Interface for HPC Communications 89

3.1 System Architecture . 90

3.1.1 Hierarchical Interconnect . 90

3

3.1.2 Network Topologies . 91

3.1.3 Network Switch and Addressing Scheme 93

3.1.4 Unified Interconnect . 94

3.2 Hardware Platform . 95

3.2.1 Xilinx Zynq Ultrascale+ . 95

3.2.2 ARM Cortex-A53 . 98

3.2.3 Multi-Gigabit Transceivers . 99

3.3 Overview of Network Interface Design 100

3.3.1 AXI Interfacing . 100

3.3.2 Network Protocol and Bridge 101

3.3.3 Inbound Messages and Response Packets 103

3.3.4 Shared Memory Communications and RDMA Transfers . . . 105

3.4 Segregation of Traffic Types . 110

3.4.1 Small Transfer Latency . 110

3.4.2 Shared Memory Throughput Limitations 112

3.4.3 Testing Link Throughput . 116

3.5 Concluding Remarks . 117

4 Error Recovery and Memory Consistency 119

4.1 Shared-Memory Operations . 120

4.1.1 Remote Read . 120

4.1.2 Remote Write . 121

4.1.3 Acceleration Resources Performing Shared-Memory Ops . . . 122

4.1.4 Exclusive Accesses and Consistency 122

4.1.5 Summary . 125

4.2 RDMA Data Errors . 126

4.3 Header or Footer Errors . 126

4.4 Out-Of-Order Packet Delivery . 128

4.5 Duplicates in Retransmission . 132

4.6 Concluding Remarks . 133

5 Transport Layer for FPGA based HPC 135

5.1 Reliability Requirements for Reconfigurable HPC 136

4

5.2 Implementation of Transport Mechanism 137

5.2.1 Overview . 138

5.2.2 Shared Memory Retransmission IP 141

5.2.3 RDMA Retransmission IP . 144

5.3 Retransmission and Fault Tolerance Strategies 149

5.3.1 Latency and Fault Injection Mechanism 150

5.3.2 Measuring Latency and Jitter 154

5.3.3 Results and Discussion . 157

5.4 Concluding Remarks . 162

6 Performance Enhancements 165

6.1 Early Acknowledgement for AXI Writes 166

6.2 Receiver Registration . 170

6.2.1 Implementation . 170

6.3 Segmentation . 177

6.4 Performance of Receive Block . 179

6.5 Receive Module Scalability . 182

6.6 Concluding Remarks . 183

7 Enabling Standalone FPGA Computing 185

7.1 Reduced Complexity in Data/Control Path 186

7.1.1 TCP Communications . 187

7.1.2 Software Based Transport Using our Networking Stack 189

7.1.3 Fully Hardware-Offloaded Transport, CPU Bypass 189

7.2 Experiments . 190

7.2.1 Simple TCP Test . 190

7.2.2 Using Distributed FPGA Resources 193

7.2.3 Results . 196

7.3 Estimating Peak Computing Throughput 199

7.4 Concluding Remarks . 202

8 Conclusions and Future Work 203

8.1 Conclusions . 203

5

8.2 Future Work . 206

8.2.1 Global Virtual Addressing . 206

8.2.2 Virtualization of Transport Layer 207

8.2.3 Atomic Operations at the System Level 207

8.2.4 Extension of Transport Mechanism Scalability 208

8.2.5 Hardware Offloading for Collective Operations 209

8.2.6 Library/Framework Integration 210

8.3 Final Thoughts . 210

Bibliography 213

A Project Context 237

B Addressing on the Zynq Ultrascale+ 241

C AXI 4 Interface Standard 247

D Controllers for AXI-Network Protocol Bridging 251

Word count 54081

6

List of Tables

2.1 Survey of performance studies comparing GPU and FPGA. 43

3.1 Average distance between nodes in HPC topologies. 92

3.2 Specification of the Zynq Ultrascale+ device. 96

3.3 Packet types and their function. 102

3.4 Data structures used in the custom API. 108

3.5 User-space functions for programming the Network Interface. 109

3.6 Latency for a 16B transfer using RDMA and shared-memory. 111

3.7 Results for running STREAM benchmark. 114

4.1 Network error types and mitigation techniques. 125

5.1 Transport layer modules and their function. 140

5.2 Transfer descriptor for an RDMA operation. 146

6.1 Area utilization of the Receive Registration module. 183

7.1 Area utilization of full networking stack on ZCU102. 191

7.2 Latency comparision between MPI and custom solution. 193

7.3 Latency for distributed accelerator communications. 196

7.4 Area utilization of HLS synthesised matrix-multiply IP. 201

C.1 List of AXI signals and associated channels. 249

D.1 Controller for processing AXI requests to send to the network. 254

D.2 Controller for processing AXI responses to send to the network. . . . 254

D.3 Controller for processing incoming network request packets. 255

D.4 Controller for processing incoming network response packets. 255

7

8

List of Figures

1.1 Complete Network Interface design. 30

1.2 Complete system level design of networking stack. 32

2.1 Effect of post-Dennard scaling on core counts. 38

2.2 The rise of GPU accelerators within the TOP500 list. 39

2.3 Cost of a double precision FLOP. 41

2.4 One sided and two sided MPI operations. 50

2.5 UMA and NUMA node architectures. 51

2.6 Example of different remote and local variable accesses in UPC. . . . 53

2.7 System architectures and FPGA configurations. 61

2.8 Setup for a TCP connection. 67

2.9 TCP retransmission. 68

2.10 Interconnect Families in the TOP500 supercomputers. 74

3.1 Tiered system architecture of ExaNeSt. 91

3.2 Possible system topologies. 92

3.3 Block diagram of the Zynq Ultrascale+. 97

3.4 Block level system design for the networking IP stack. 101

3.5 CAM table entries for building response packets. 104

3.6 RDMA and shared memory setup through the Network Interface. . . 106

3.7 Adding transfer descriptor to work queues in the Network Interface. 107

3.8 Setup emulating distributed system on a single FPGA. 111

3.9 Setup with two FPGAs communicating through the network switch. 113

3.10 Link throughput for RDMA data path. 116

4.1 Out-of-order packets in an RDMA operation. 129

9

4.2 Map operation. 130

4.3 Reduce operation. 130

4.4 Mapping operation with large keys. 130

4.5 Non-commutative FIR filter operation. 131

4.6 Duplicate packet occurring due to retransmission. 132

5.1 Send-side transport layer within the Network Interface. 139

5.2 Mechanism to ensure consistency in shared-memory operations. . . . 142

5.3 Individual RDMA transactions added to transaction table. 145

5.4 Acknowledgement packet and its action in the Network Interface. . . 147

5.5 Rebuilding RDMA transfer descriptor for retransmission. 147

5.6 Store and forward and virtual cut-through switching. 149

5.7 Microarchitecture of the fault injection hardware. 152

5.8 Distance of node hops in a Dragonfly network. 153

5.9 Message format for BXI. 157

5.10 Average latency of transfers through the fault injection IP. 158

5.11 Throughput for RDMA transfers of differing message sizes. 160

5.12 Jitter for 4KB RDMA transfers under various error conditions. 161

6.1 Concurrent transactions and their effect on network saturation. . . . 167

6.2 Achievable throughput using Early Acknowledgements mechanism. 168

6.3 Latency for transfer when using Early Acknowledgements. 169

6.4 Timing diagram for registered and unregistered receive operations. . 171

6.5 Network Interface at receiver with registration architecture. 172

6.6 Adding a Registration Table entry. 173

6.7 Pushing out-of-order data into escape channel. 174

6.8 Creating a bitmask for new incoming RDMA data. 176

6.9 Computation/communication overlap with/without segmentation. . 178

6.10 Segmentation of a 1MB transfer into 64KB segments. 178

6.11 Reduced latency for registered receive operations. 180

7.1 Control and data path when using distributed FPGAs. 188

7.2 Full networking stack on Zynq Ultrascale+. 191

7.3 Simple setup to test MPI over a standard 10G TCP connection. 192

10

7.4 Setup emulating distributed system on a single FPGA. 194

7.5 Data processing throughput for network-bound compute. 197

7.6 Average latency for a single block of data to be processed. 198

A.1 Compute node developed in the ExaNoDe project. 239

A.2 The ExaNeSt storage architecture. 240

B.1 Block Diagram of the Zynq Ultrascale+. 243

B.2 Gloabl address map for the Xilinx Zynq Ultrascale+. 245

C.1 Independent request and response channels in the AXI interface. . . 248

C.2 Example timing diagram of AXI transactions. 248

D.1 State transition diagrams for the network bridging controller. 253

11

12

The University of Manchester

Joshua Lant

Doctor of Philosophy

Enabling Independent Communication for FPGAs in High Performance

Computing

June, 2019

The landscape of High Performance Computing is changing, with increasing
heterogeneity, new data-intensive workloads and ever tighter system power con-
straints. Given these changes there has been increased interest in the deployment
of FPGA technology within HPC systems. Traditionally FPGAs have been of lim-
ited use to the HPC community. However, there have been many architectural ad-
vances in recent years; hardened floating-point operators and on-die CPUs, greater
on-chip memory capacity, increased off-chip memory bandwidth but to name a few.
These advances have brought the opportunity to more readily exploit the FPGA’s
efficiency and flexibility in HPC. Unfortunately there are still a number of research
problems to be solved in order to allow this to happen. In this thesis we tackle one
such problem; regarding the interconnect and its relation to the system architecture.

The interconnect must have several key properties in order to satisfy the de-
mands of large, data-intensive applications and take advantage of dataflow pro-
cessing for FPGA based HPC. It must (i) allow for tight coupling between FPGA
and system memory in both local and remote nodes. This is required to enhance the
performance of a number of key workloads which exhibit irregular memory access
patterns. (ii) It must allow for the FPGA to issue and process network transactions
without any CPU intervention. This is required for high performance inter-FPGA
communication and independent scaling (disaggregation) of the FPGA resources.
(iii) The interconnect must maintain its key properties of scalability and reliability;
required for HPC systems but at odds with the other primary requirements.

In this thesis we present a novel Network Interface solution implemented en-
tirely within the fabric of the FPGA, which attempts to address all of these com-
peting factors. The Network Interface allows for a system architecture which better
supports distributed FPGA processing within a shared, global address space. It pro-
vides hardware primitives to support RDMA and shared-memory transfers over a
lightweight, custom network protocol. It allows for direct inter-FPGA communica-
tion without any CPU intervention; supported via a hardware-offloaded, reliable
and connectionless transport layer.

The microarchitecture of the Network Interface and transport layer are detailed,
as well as a number of performance enhancements which reduce the latency and
increase the achievable throughput of the system. We assess the consistency issues
and network errors which can occur, and show how the Network Interface is able
to support Out-Of-Order packets from the network. In the latter part of the thesis
we show the benefits of direct inter-FPGA communication for dataflow processing
when compared with a software based transport, and demonstrate how we can
estimate the expected performance of such a system for network-bound processing.

13

Declaration

No portion of the work referred to in the thesis has

been submitted in support of an application for an-

other degree or qualification of this or any other uni-

versity or other institute of learning.

14

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this the-

sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has

given The University of Manchester certain rights to use such Copyright, includ-

ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate,

in accordance with licensing agreements which the University has from time to

time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-

tellectual property (the “Intellectual Property”) and any reproductions of copy-

right works in the thesis, for example graphs and tables (“Reproductions”), which

may be described in this thesis, may not be owned by the author and may be

owned by third parties. Such Intellectual Property and Reproductions cannot

and must not be made available for use without the prior written permission of

the owner(s) of the relevant Intellectual Property and/ or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property and/

or Reproductions described in it may take place is available in the University IP

Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in

any relevant Thesis restriction declarations deposited in the University Library,

The University Library’s regulations (see http://www.manchester.ac.uk/library/

aboutus/regulations) and in The University’s Policy on Presentation of Theses.

15

Acknowledgements

There are of course a multitude of people to thank for their support and guid-

ance in helping me to reach this point. The first of these is obviously my Mother

and Father, who provided me with all the advantages in life that so many people

in this world are not afforded. I thank them, along with my sister Sian for their

continued love and support.

I must also thank my Auntie Christine for providing me with the money to

purchase my first laptop. Undoubtedly this enabled me to explore computer music

more deeply, helping me find my undergraduate degree. My late Uncle Christopher

was also a source of great inspiration to me; easily one of the most intelligent and

interesting people I have ever known. I miss him dearly and I wish I were able to

share this work with him as it would have interested him deeply.

I would also like to thank my old friends Lee and Al. They both provided me

with a lot of inspiration during my most formative years. I am very lucky to have

been able to learn so much from them at such a young age. Although computer

architecture is not a pursuit my teenage self would have ever envisaged for his

future, without Lee and Big Al I would likely be on an entirely different path!

Thank you to all my friends, and house-mates past and present over the past

three and a half years. They have kept me sane and having them all in my life has

brightened it immensely. Special mention must be given to Sophie Hayter, who wel-

comed me into her life with open arms and who provides me great joy. I must also

give special thanks and apologies to my other long suffering house-mates; Nelly

and Josh. Living with a PhD student cannot be easy at times, particularly one with

my temperament. I thank them for their patience and love.

Thank you to my beautiful girlfriend Stef. She has supported me so much over

the past year and a half it is beyond words. She has motivated me to continue

16

working and has taught me to view the world in a completely different way. She is

a remarkable human being.

I must now thank all of my colleagues over the years from the APT group and

beyond. Particularly my workmates Andrew Attwood, Jose Pascual and Caroline

Concatto. It was a joy to be able to work closely with them. I had a lot of fun

and learned many things. Our discussions were of immeasurable help in focusing

my work, with their guidance possibly preventing me from throwing in the towel

at certain points. I must also thank Fabian Chaix. He was a great friend during

my time on Crete and has given me many fond memories. His knowledge is deep

and he is a real workhorse of an engineer. Thanks as well go to John Mawer who

helped me with a lot of technical problems during the earlier stages of my time at

Manchester.

Last and in no respect least, I must thank my supervisor Javier Navaridas. He

has taught me so much about the world of academia, and has guided me through

my PhD with attentiveness; providing me assistance when it was needed most and

keeping me on track. Our discussions are always fruitful, and it has been a pleasure

to learn from him. I am deeply grateful for everything he has done for me, and

without hesitance I would recommend him as an advisor to anyone! Thank you.

17

Chapter 1

Introduction

In recent years there have been two great changes which have affected the way

systems architects must think about future technology within High Performance

Computing. The most obvious and devastating of these is the breakdown of Den-

nard scaling [1]. After around 2004 the single threaded performance of the pro-

cessor has seemingly plateaued. Continued transistor scaling has not been able

to deliver the same energy scaling due to the effects of rising current leakage. A

consequence of this has been that scale-out and the use of accelerators has become

the new norm for increasing performance. As such the power consumption of the

largest machines has become a major issue, thwarting further scalability of tradi-

tional HPC architectures. Energy efficiency is now without doubt the number one

concern of the HPC community, and achieving the target of 1 exaFLOP (1018 float-

ing point operations per second) at 20MW [2] requires efficiency to be squeezed

from every level; from applications down to transistor technology.

The second great change is that we have now entered the Fourth Paradigm of sci-

entific discovery [3]. Modern applications are moving from computational science

into the era of big-data analytics The rapid growth of data-intensive workloads has

instigated a convergence between data centre and HPC technology, and techniques

such as hyper-converged storage are increasingly used to bring data closer to com-

pute resources. The price of computation has been falling dramatically for decades,

to the point that the energy required for on-chip data movement is now signifi-

cantly higher than that of a double precision floating point operation [4]. As such,

architects must now focus on reducing data movement as a method for reducing

19

20 CHAPTER 1. INTRODUCTION

power consumption.

Given this current focus on reducing power consumption and given the chang-

ing profile of HPC workloads, we see that the currently dominant architectural

model of CPU coupled with bus-attached GPU accelerator has fundamental issues

and will not be able to provide for the scaling and efficiency requirements of future

systems. GPUs undeniably provides unbeatable performance for compute inten-

sive workloads with regular memory accesses due to its high memory bandwidth.

Despite this the GPU has some drawbacks; not only are high end GPUs growing

notably more power hungry [5], but their performance in certain domains is lim-

ited. In applications exhibiting irregular parallelism, lower computational intensity,

or close interaction with the CPU or network the GPU can be seriously hindered,

and thus requires alternative architectures. Coupling this with the fact that the PCIe

attached GPU model foments large amounts of data movement, it is reasonable to

question the scalability of such architectures when considering energy efficiency.

There has been growing interest recently in the feasibility of using FPGAs for

general HPC systems, and in FPGA technology in general. With Intel’s acquisi-

tion of Altera1, IBMs strategic partnership with Xilinx2, and as major players such

as Amazon3 and Microsoft [6] have introduced FPGAs into their data centres, it

seems that this interest is increasingly being shown in industry as well in academic

circles. FPGAs are highly regarded for their performance-per-watt over GPU tech-

nology [5], and their high performance for workloads able to take advantage of

fine-grained, deep pipelining and dataflow processing [7]. Unfortunately there are

a number of obstacles regarding programmability, reliability, system architecture,

libraries etc. which currently prevent FPGA technology from being exploited to its

full potential within the HPC domain [8]. Overcoming one such obstacle, with re-

gards to the interconnection network and its relation to the system architecture, is

the main goal of the work detailed in this thesis.

1Intel to Acquire Altera- https://www.hpcwire.com/off-the-wire/

intel-to-acquire-altera/, accessed April 2019.
2IBM and Xilinx at SC15- https://www.anandtech.com/show/9790/

ibm-xilinx-sc15-collaborating-for-better-powerfpga-system-integration, accessed
April 2019.

3Amazon EC2 F1 Instances- https://aws.amazon.com/ec2/instance-types/f1/, accessed
April 2019.

https://www.hpcwire.com/off-the-wire/intel-to-acquire-altera/
https://www.hpcwire.com/off-the-wire/intel-to-acquire-altera/
https://www.anandtech.com/show/9790/ibm-xilinx-sc15-collaborating-for-better-powerfpga-system-integration
https://www.anandtech.com/show/9790/ibm-xilinx-sc15-collaborating-for-better-powerfpga-system-integration
https://aws.amazon.com/ec2/instance-types/f1/

1.1. FPGAS FOR HPC 21

1.1 FPGAs for HPC

In order to make efficient use of FPGA technology within HPC systems the

FPGA must be upgraded from its status as a mere coprocessor, and be viewed as

the main compute element within the system, capable of issuing and processing

network data (for distributed FPGA computing), and capable of global, shared ac-

cess to system memory (to allow CPU and FPGA to use fine grained parallelism,

making several application domains far more viable [9]).

One of the main issues with FPGAs is that the off-chip memory bandwidth is

very limited when compared with GPUs [10]. However, the main aim in reducing

data movement is to reduce these off-chip memory accesses, instead using algo-

rithms which seek to maximise the reuse of on-chip memory, keeping data close to

the compute. Many of the issues with mapping algorithms onto current FPGAs is

the data-sets can be much larger than the available on-chip memory of the FPGA.

It is this reason why having the FPGA tightly coupled with the network is so vi-

tal for FPGA based HPC systems, enabling the efficient use of distributed FPGA

resources.

Using distributed FPGAs requires a high performance interconnect with which

FPGA resources can communicate directly with one another, without the additional

overheads of issuing network transactions via the CPU. There are many solutions

which exist that allow for FPGAs to communicate with one another. However,

current interconnect solutions are typically limited in one of the following ways:

• They provide only simple point-to-point connections between FPGAs; limit-

ing available topologies and scalability of solutions to those typically situated

within a single rack or chassis [11].

• They require CPU intervention to issue transactions to the network. This

causes additional latency/bandwidth overheads, with additional buffering,

system calls or control information required.

• They do not provide tight coupling to system memory, reducing the ability

of the system to take advantage of fine grained parallelism over distributed

FPGAs or proper coordination between CPU and FPGA, inhibiting certain

22 CHAPTER 1. INTRODUCTION

workloads such as N-body problems and FFTs [9].

• They do not guarantee reliable transfer, so are not amenable for production-

level systems.

• Their hardware offloaded transport layers require per-connection state infor-

mation/buffering to be stored within the hardware, limiting scalability or de-

grading performance by excessive connection setup/teardown.

1.1.1 Our Interconnect Solution

The main aim of this thesis is to provide a custom interconnect solution which

aims to provide functionality which overcomes each of the limitations listed in Sec-

tion 1.1. The first step to achieving this is to design a custom Network Interface

(NI) which provides hardware primitives to support a hybrid MPI+PGAS pro-

gramming model. Other work has discussed the need for custom interfaces, and

the pitfalls of using off-the-shelf solutions in an FPGA based environment [12]. The

desire to provide direct support for MPI via an RDMA (Remote Direct Memory

Access) mechanism stems from its complete ubiquity, and any HPC application

modified from prior work is almost guaranteed to use MPI in the medium to long

term, regardless of the demonstrated scalability and performance issues [13], [14].

We provide support for PGAS-like communications by providing a direct mecha-

nism to read/write into remote memory using a transparent load/store operation

from the CPU or FPGA fabric [15]. In encapsulating and extending the system bus

protocol to work over the network, there is no change from the user perspective in

accessing remote memory from local memory (other than the Non-Uniform Mem-

ory Access effects of additional latency).

The second, and most important way in which we provide for those properties

of the network described above is by creating a novel transport layer which is im-

plemented within the fabric of the FPGA. The CPU is not involved in network com-

munications between FPGA resources whatsoever, and the solution provides two

entirely separate methods for reliable transfer, depending on the primitive invoked

(RDMA transfer or shared-memory operation). Doing this enables some beneficial

properties of the interconnect. The first is that the shared-memory operations and

1.2. CONTRIBUTIONS 23

RDMA transfers have very different requirements, and our solution is tailored to in-

crease the performance of these two types of operation. Shared-memory operations

typically require lower latency as they comprise messages required for control or

synchronization, whereas RDMA transfers are used to saturate the high-speed links

which the network uses for data transfer and so require higher throughput.

The second benefit which arises from this is the fact that we allow for a con-

nectionless transport layer within the hardware, which is able to offer guaranteed

delivery of messages. What we mean by this is that no state information needs to

be held in the Network Interface, the connection information is implicit within the

transfer as all network transactions are effectively memory read/writes. Typically

to provide reliability requires a connection based transport, with persistent state

information required to be held within the Network Interface. In our solution we

only maintain transient information regarding outstanding operations which have

left the sender. We are able to do this by separating the transport layers, having

one for shared-memory operations in which retransmission information can safely

be held within the Network Interface. We then provide an entirely separate trans-

port for reliable RDMA transfer. In this instance one which is more scalable as the

information is held in its source memory location, rather than being copied into

retransmission buffers within the Network Interface.

In the latter part of the thesis we deal with several issues which arise in terms

of the performance of the system. These issues are primarily surrounding over-

lapping computation and communication, and present themselves owing to two

factors. The first is that the transport mechanism and lack of retransmission buffers

prevents overwriting of the data at the source before the transfer is complete. The

second is the fact that our network allows for out-of-order packet delivery, which

makes it difficult for the receiver to track the state of RDMA transfers. We provide

a mechanism to allow the receiver to acknowledge transfers without the sender

issuing a notification, thus reducing the latency of these transfers.

1.2 Contributions

A summary of the contributions of this thesis are as follows:

24 CHAPTER 1. INTRODUCTION

• The design and implementation of a novel microarchitecture for a Network In-

terface which provides direct hardware support for both PGAS/NUMA and

RDMA transfers, over a custom network protocol. The architecture has been

designed specifically to support High Performance Computing within FPGA

based systems. We show the benefits that arise from providing two sepa-

rate communication mechanisms, given that the latency for small, low latency

transfers over the global shared-memory path is over 25% lower than using

RDMA.

• The design and implementation of a fully hardware-offloaded, reliable and

connectionless (in the Network Interface) transport layer, which provides end-

to-end packet retransmissions for the transfer of data over a custom network

protocol. This novel solution separates out traffic classes, providing a lower

latency, high performance solution for global shared-memory accesses, and a

more scalable solution for RDMA transfers.

• We address several limitations in the baseline system, and propose several

enhancements to the architecture. (i) Direct receive-side notifications which

eliminate a round trip packet transmission for lower latency RDMA transfers.

(ii) Segmentation of large transfers in order to allow for more efficient commu-

nication/computation overlap. (iii) Early acknowledgement for system bus

transactions, preventing pipeline stalling and maximising RDMA transmis-

sion throughput. These have been implemented within the Network Interface

and are specifically designed to alleviate the issues we see from out-of-order

packet delivery from the network. An analysis of one of these performance

enhancements– the receive-side notifications– shows that this mechanism re-

duces the latency of smaller RDMA transfers by around 20% when compared

to the baseline solution.

• Our system allows the FPGA fabric to issue reliable network transactions for

both shared-memory and RDMA operations. We show how our system there-

fore allows distributed FPGA resources to communicate with one another di-

rectly, avoiding CPU intervention completely and providing a more suitable

model for dataflow style processing. We show that our architecture has two

1.2. CONTRIBUTIONS 25

fundamental properties, which we argue are both required for the uptake of

FPGAs within HPC systems, and that these two properties have not been seen

together in any prior architecture. The solution must provide tight coupling

to the main memory system of the CPU, and be available for access by local

and remote resources. Secondly the FPGA resources must be completely de-

coupled from the CPU with regards to the network; capable of issuing and

processing its own network transactions. Aside from this architectural ad-

vancement in disaggregating the CPU and FPGA resources, our results show

that the performance in terms of data processing throughput and latency is

enhanced by up to 8.6% and 29% respectively, when compared with a soft-

ware based transport mechanism.

• We show how the results of our experiments into distributed FPGA resources

can be used to estimate the performance and resource consumption of net-

work communication bound processing within an FPGA. Our results show

that we can achieve comparable performance to other recent work in the liter-

ature [11], while providing a much more sophisticated and scalable network-

ing solution.

• An analysis into the implications of network errors, specific architectural fea-

tures, and out-of-order packet delivery on data consistency within our system.

We show how inconsistencies can arise, and the ways in which we are able to

mitigate against these within the Network Interface and within our applica-

tion model.

• An analysis of different link-level and end-to-end fault tolerance mechanisms,

comparing the performance of these for the proposed system-wide network.

We conclude that for our case targeting a modern Dragonfly topology, there is

little requirement to provide link-level fault tolerance strategies, as the perfor-

mance in the normal case is heavily degraded.

26 CHAPTER 1. INTRODUCTION

1.3 Publications

Below is a list of publications from the author. Those with the author name in

bold text are those in which the material is directly related to the work presented

within this thesis:

Journal Articles

• Joshua Lant, Javier Navaridas, Mikel Luján, and John Goodacre. “Toward

FPGA-Based HPC: Advancing Interconnect Technologies.” Accepted 2019, To

appear in IEEE Micro.

• Joshua Lant, Caroline Concatto, Andrew Attwood, Jose A. Pascual, Mike Ash-

worth, Javier Navaridas, Mikel Luján, and John Goodacre. “Enabling shared

memory communication in networks of MPSoCs.” Concurrency and Computa-

tion: Practice and Experience: e4774.

• Jose A. Pascual, Joshua Lant, Caroline Concatto, Andrew Attwood, Javier

Navaridas, Mikel Luján, and John Goodacre. “On the effects of allocation

strategies for exascale computing systems with distributed storage and uni-

fied interconnects.” In Concurrency and Computation: Practice and Experience:

e4784.

Conferences

• Joshua Lant, Javier Navaridas, Andrew Attwood, Mikel Luján, and John

Goodacre. “Enabling Standalone FPGA Computing.” IEEE 26th Biennial Sym-

posium on High Performance Interconnects (HOTI) 2019.

• Javier Navaridas, Joshua Lant, Jose A. Pascual, Mikel Luján, and John

Goodacre. “Design Exploration of Multi-tier interconnects for Exascale sys-

tems.” In International Conference on Parallel Processing (ICPP), pp. 49, ACM

2019.

• Joshua Lant, Andrew Attwood, Javier Navaridas, Mikel Luján, and John

Goodacre. “Receive-Side Notificaton for Enhanced RDMA in FPGA Based

1.4. ARCHITECTURAL OVERVIEW AND THESIS STRUCTURE 27

Networks.” In International Conference on Architecture of Computing Systems,

pp. 224-235. Springer, Cham, 2019.

• Caroline Concatto, Jose A. Pascual, Javier Navaridas, Joshua Lant, Andrew

Attwood, Mikel Lujan, and John Goodacre. "A CAM-Free Exascalable HPC

Router for Low-Energy Communications." In International Conference on Ar-

chitecture of Computing Systems, pp. 99-111. Springer, Cham, 2018.

• Jose A. Pascual, Joshua Lant, Andrew Attwood, Caroline Concatto, Javier

Navaridas, Mikel Luján, and John Goodacre. “Designing an exascale inter-

connect using multi-objective optimization.” In 2017 IEEE Congress on Evolu-

tionary Computation (CEC), pp. 2209-2216. IEEE, 2017.

• Jose A. Pascual, Caroline Concatto, Joshua Lant, and Javier Navaridas. “On

the Effects of Data-Aware Allocation on Fully Distributed Storage Systems for

Exascale.” In European Conference on Parallel Processing, pp. 725-736. Springer,

Cham, 2017.

Workshops/Other

• Joshua Lant, and Javier Navaridas. “Direct Communication between Dis-

tributed FPGA Resources.” In Emerging Technology (EMiT) Conference, pp. 16-

19, 2019.

• Joshua Lant, “Reliable Communication in Networks of FPGAs” In Towards

Exascale HPC systems: co-design and technology development within the EuroEXA,

ExaNeSt, ExaNoDe and EcoScale projects, European HPC Summit Week 2018.

1.4 Architectural Overview and Thesis Structure

This Section contains an overview of the architecture of the entire Network In-

terface and system design which is presented within this work. Each of the relevant

components on the following diagrams is numbered and briefly introduced in the

listings. This can be used to direct the reader to the relevant location within the

thesis, in which the respective component is discussed in detail.

28 CHAPTER 1. INTRODUCTION

1.4.1 Network Interface Design

Figure 1.1 shows the microarchitecture of the Network Interface (NI). Each of

the labelled components are as follows:

1. Module Interfacing- The interfacing to the NI is discussed at various points

within the thesis. Section 3.3.1 and Appendix C give an introduction and

brief tutorial on the memory-mapped AXI protocol. Section 3.3.2 discusses

the packet format used for the wider network. Section 3.3.4 discusses the

segregation of traffic classes within the NI.

2. Packetization- Section 3.3.2.1 briefly discusses the bridging mechanism used

to encapsulate AXI into a format suitable for the network. A detailed descrip-

tion of the controllers which have been developed to perform the bridging

function is given in Appendix D.

3. Inbound Messages- Inbound messages require storage of metadata in or-

der to build the response packets. Request packets add to the table and as

responses are seen locally they are removed. This is discussed in Section 3.3.3.

4. Retransmission of Shared-Memory Operations- Shared memory operations

are stored in the NI until acknowledged, the mechanism supporting this is

shown in Section 5.2.2.

5. Retransmission of RDMA Operations- The reliability layer for RDMA op-

erations is more complex, requiring the reforming of partial operations into

new ones. This is shown in Section 5.2.3.

6. Early Acknowledgements- We implement a system of Early Acknowledge-

ments for write operations in order to reduce the performance limitations of

shared-memory operations. This has significant implications for the consis-

tency model of the system. This is analysed in Chapter 4. The design of the

mechanism is shown in Section 6.1.

7. Registered Receive for RDMA- In order to enhance the performance of RDMA

operations, and enable them to be truly one-sided, we introduce a mechanism

to post receive notifications directly from the receive-side NI. This is opposed

1.4. ARCHITECTURAL OVERVIEW AND THESIS STRUCTURE 29

to waiting for notification of completion from the sender. This is discussed in

Section 6.2 and analysed in Section 6.4.

8. Operation Segmentation- The DMA engine sits externally to the NI, with

RDMA work items being issued through the NI to enable us to manipulate

and track the operations. The mechanism for RDMAs is presented in Sec-

tion 3.3.4.2. To better overlap communication and computation, we can seg-

ment large RDMA transfers into smaller ones. This is discussed in Section 6.3.

30 CHAPTER 1. INTRODUCTION

PACKETIZER/DEPACKETIZER

RECEIVE

REGISTRATION

RDMA

OP

TABLE

RETRANSMIT

RDMA

COMMAND

LARGE

TRANSFER

PULL NEXT

DMA OP

SHM

TRANSACTION

ISSUE/EARLY

ACK

RDMA

OP PUSH

SLAVE

RDMA

OP PULL

SLAVE

SHM

DATA

SLAVE

RDMA

DATA

SLAVE

REMOTE

DATA

MASTER

STREAM

SLAVE
STREAM

MASTER

RDMA

TRANSACTION

ISSUE

TABLE

NOTIFY

BLOCK

PRIORITY

ARBITER

INBOUND

TABLE

UPDATE

REQUEST

ACK/

NACK

CURRENT

OP

ADD

REQUEST

PRIORITY

ARBITER

SEND TO

NOTIFY

BLOCK*

POLLING

SLAVE

Store

working

OP

Completed DMA local

Completed

registered

RDMA

operation

RDMA

RETRANSMISSION

 SHM OP REQUEST
RESPONSE/NOTIF

SHM

request/

retransmission

SHM

REQUEST/

EARLYACK/

RESPONSE

RDMA

ACK

decrease OP

count expected

Send

registered

RDMA

packets

head for

table entry

RDMA or

SHM request

SHM read/write

resp

TO SHM

TRANS-

ISSUE*

RDMA

REQUEST

STORE

&

FORWARD

SHM

RDMA

ESCAPE

RDMA

DATA

NACK seen, build

 retransmission work item

send

unregistered

RDMA

noti�cation

RDMA or

SHM data

SEND TO

NOTIFY

BLOCK*

non-registered

RDMA notif

RDMA resp

SEND TO

OUTPUT

QUEUES*

Get new

local ID for

transaction

RESPONSE

PACKETS

FROM

INBOUND

TABLE*

Response

Request

Request

Add to

table

w/ OP

number

New

packet

ACK/NACK packet

1

2

3

7

4

5

8

6

Figure 1.1: Complete Network Interface designed and implemented within this the-

sis.

1.4. ARCHITECTURAL OVERVIEW AND THESIS STRUCTURE 31

1.4.2 System Level Design

Figure 1.2 shows an overview of the full system design implemented within a

modern SoC device. Each of the labelled components are as follows:

1. Network Interface- The basic design of the Network Interface and associated

relevant information is contained in Chapter 3.

2. DMA Engine- The DMA engine we currently use is a simple off-the-shelf

IP from Xilinx [16], the basics are discussed in Section 3.3.4.2. We perform

a basic analysis of the DMA functionality in Section 3.4.3, extending this in

Section 6.1. As the DMA engine requires additional setup overheads, we pro-

vide a completely segregated data/control path through the NI, additionally

supporting remote load/store operations. The benefits of doing this on small,

latency critical packets is shown in Section 3.4.1.

3. Network Switch- The switch for the network is described in Section 3.1.3. As

a consequence of the switch functionality out-of-order packet delivery is per-

mitted from the network. The ramifications of this are detailed in Chapter 4.

4. MAC/PHY and Transceivers- We use the standard 10G Aurora MAC/PHY

from Xilinx for much of the analysis in this work [17]. This is discussed in

Section 3.2.3.

5. Processing System Elements (CPU)- The use of this particular processor

(ARM Cortex-A53) has implications for the design in a number of ways. This

is discussed in 3.2.2 and in Chapter 4.

6. Accelerator Logic- While the scope of this work does not extend to the per-

formance of real-world distributed acceleration of applications, we analyse

the potential performance that can be extracted from our solution for purely

network bound communications in an application. This work is detailed in

Chapter 7.

32 CHAPTER 1. INTRODUCTION

M_HPC0_FPD

S_HPC0_FPD

4x10G

SFP

RDMA

DATA

REMOTE

SHM

RDMA

DATA

RDMA

WORK

SHM

DATA

DATA FROM

NETWORK,

SHM/RDMA/

WORK

SUBMIT

WORK

PUSH/

PULL

LOCAL

DATA

SHARED

MEMORY

OPS

(LOCAL/

REMOTE)

NOTIF

3

4

2

PROGRAMMABLE LOGIC FABRIC (PL)

Figure 1.2: System level design of the full networking stack implemented on a Xil-
inx Ultrascale+ MPSoC device.

1.4. ARCHITECTURAL OVERVIEW AND THESIS STRUCTURE 33

1.4.3 Thesis Outline by Chapter

• Chapter 1 gives an introduction to our work and the motivation for pursuing

FPGA based High Performance Computing.

• Chapter 2 provides a background into many aspects of High Performance

and Reconfigurable Computing, workloads, interconnects and programming

models. It shows the ways in which the work presented within this thesis goes

beyond currently available solutions, providing the required functionality for

properly exploiting FPGAs within HPC.

• Chapter 3 shows the basic Network Interface design and provides basic per-

formance metrics for the two programming models targeted by the system

(MPI+PGAS). It also provides an overview of the target system, topology,

switching and interfacing, in order to give an appreciation of the framing of

this thesis and rationale behind certain design decisions.

• Chapter 4 explains the application and consistency model for the system, the

network errors and inconsistencies that can occur and the mitigation we pro-

vide against them.

• Chapter 5 details the microarchitecture of the hardware-offloaded, connec-

tionless, reliable transport layer we have developed as part of the thesis. We

discuss the issues surrounding its implementation, and at the end of the Chap-

ter an analysis is provided into possible fault tolerance strategies for the net-

work.

• Chapter 6 details the microarchitecture of three performance enhancements

we have added to the Network Interface. Experiments are provided which

demonstrate the efficacy of these.

• Chapter 7 provides a discussion of the reduced complexity we see in the

control and data path when using our hardware-offloaded transport layer

to allow distributed FPGA resources to communicate with one another. We

demonstrate how latency and throughput are enhanced over a software based

transport layer, and show how the results can be used to gain insight into the

34 CHAPTER 1. INTRODUCTION

possible computational power of arbitrary accelerator blocks constrained by

network communication.

• Chapter 8 gives a brief discussion on the thesis as a whole, and provides a

discussion into the future directions for research and the ongoing work which

would be required to enable production use of the Network Interface.

• Appendix A gives a brief overview of the projects in which the context of this

work is placed. Introduced are a set of EU Horizon 2020 projects tasked with

the design and implementation of system prototypes for future exascale class

systems, specifically targeting novel low-power architectures.

• Appendix B provides an overview into the manner in which we provide ac-

cess to the physical hardware within a user-space application without requir-

ing the use of an IO Memory Management Unit. We show the creation of small

windows of memory is performed using the mmap() system call, and then we

discuss the limitations on addressing within the target device in general,

• Appendix C provides a short tutorial on the ARM’s AXI interface standard.

This is the system bus protocol used to interface between FPGA and CPU

resources, and the overview is provided as an appreciation of certain elements

of the NI design require a basic knowledge of the AXI protocol.

• Appendix D details the state machines and controllers used to bridge between

the on-chip system bus protocol and the custom network protocol used for

off-chip communications.

Chapter 2

Background and Related Work

In this Chapter we introduce many of the concepts and works revolving around

High Performance Computing systems, and their communication models and pro-

tocols which have culminated in the work presented in this thesis. The 5 main

topics we discuss are:

1. We begin with a brief history on the trends of HPC systems which leads us to

conclude that the FPGA is a viable and attractive target for acceleration within

future machines.

2. We then discuss the sorts of workloads/algorithms which modern HPC present.

This informs the role of the FPGA within these future systems. We show that

it is essential for architectures to move beyond a simple coprocessor model

for accelerators, and view the FPGA as the main compute element within the

system.

3. Then we look at the programming and communication models which are typ-

ical within HPC systems and FPGA programming. We show that providing

hardware support at the Network Interface for both RDMA and direct remote

shared memory accesses is a necessary design choice to provide high perfor-

mance and simpler programmability.

4. Following this we will provide an overview of previous FPGA based HPC

and data centre clusters and show that they do not fit all of our requirements,

35

36 CHAPTER 2. BACKGROUND AND RELATED WORK

either in terms of the proposed architecture, or in terms of the network capa-

bilities. We indicate how our proposed system differs from those presented,

thus providing an alternative approach over the current state of the art.

5. Finally we will introduce and evaluate a number of common and bespoke

interconnect solutions for HPC systems. We conclude that a new custom in-

terconnect solution is required to provide better exploitation of distributed

FPGA resources in a HPC system with the FPGA viewed as the main compute

element. We show that a hardware-offloaded transport layer is necessary to

enable direct inter-FPGA communications. We argue that simpler intercon-

nect solutions will not enable complex topologies with reduced diameter, and

that common HPC network protocols are unsuited for FPGA based imple-

mentations. We also show that a connectionless transport layer is the only

way to ensure scalability, and that a reliable and connectionless solution is

possible given a globally shared address space.

2.1 Trends in High Performance Computing

There are many events and innovations throughout the years which have con-

tributed to the changing landscape of supercomputing since the term was coined

for the then-mighty CDC-6600 [18]. As we shall discuss in this section, over the

years the primary concern of the architect has shifted from computation to com-

munication costs. Advancements in compute have outstripped those of data move-

ment as the power-wall has been faced. At the end of this Section we will show that

new architectural approaches need to be sought to enable HPC systems to continue

advancing forwards.

2.1.1 Vector Machines

Through the 1970’s and 1980’s the vector machine ruled supreme [19]. Seymour

Cray’s adage that two strong oxen would always be preferable to 1024 chickens

for ploughing fields seemed irrefutable; particularly given the relative failure of

the first massively parallel machine, the ILLIAC-IV [20]. The machines of this age

2.1. TRENDS IN HIGH PERFORMANCE COMPUTING 37

extracted large data-level parallelism by using single instructions to take arrays of

data vectorized from memory to work on them in parallel, and typically employed

deep pipelining.

The rationale behind these machines was the fact that computation was very ex-

pensive. The cost of computation dominated the overall time for program comple-

tion, and so loop unrolling into vectors of concurrent operations reduced the time

for computation dramatically. In these early days communication was effectively

free.

2.1.2 Massively Parallel Machines

As computational requirements continued to grow, the use of small numbers of

very large and powerful nodes became untenable, with the last of the supercom-

puters based on a vector architecture, NEC’s Earth-Simulator1, claiming number 1

on the TOP500 spot until the end of 2004. Performance barriers were reached due

to limits on the speed of the transmission lines within the systems [21]. The use of

a single shared memory space could no longer be scaled effectively, so distributed

memory and message passing parallel programming techniques became the norm.

The development of machines such as the Connection Machine CM2/5 [22], Intel

Paragon [23], Cray T3E [24] and the ASCI Red/White [25] necessitated the use of

more interesting topologies such as hypercubes, tori and fat-trees in order to scale

beyond the limits of the simple crossbars which came before.

The first TOP500 machine to use a standard commodity Intel processor was the

ASCI Red. Along with this development and driven by the standardization of mes-

sage passing techniques for distributed memory systems, as well as the increasing

power of consumer grade processors, large clusters of standard commodity ma-

chines begin to emerge; Beowulf clusters [26]. Systems such as these democratized

supercomputing, bringing the costs of systems down significantly, causing an in-

dustry shift toward large volumes of lower cost, standardized components.

1We say based as it should also be classed as a parallel machine, as it used parallel processing
among its interconnected nodes, with shared-memory scaled only within the node.

38 CHAPTER 2. BACKGROUND AND RELATED WORK

Transistors
(thousands)

Single-thread
performance
(SpecINT)

Frequency
(MHz)

Typical power
(watts)

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

1E+7

1E+6

1E+5

1E+4

1E+3

1E+2

1E+1

1E+0

1E-1

Number of
cores

Figure 2.1: Shows the effects of post-Dennard scaling on ballooning core counts,
taken from [28].

2.1.3 Many-Core and Heterogeneous Computing

Through this period until the mid-2000s single threaded performance grew very

rapidly, with aggressive techniques to exploit greater instruction level parallelism;

ever deeper pipelining, superscalar architectures, out-of-order execution, branch

prediction and speculative execution, all alongside dramatically increasing clock

rates. This trend could not last however, and around 2004 Dennard scaling began

to break down [1]. The effects of exponentially rising current leakage that accom-

pany transistor scaling meant that energy-density in the chip no longer remained

constant. As a consequence clock speeds have stalled (see Figure 2.1) and because

transistor numbers still (for now) roughly track Moore’s Law the era of dark silicon

has emerged [27].

Chip manufacturers began to pursue multi-core and many-core architectures

as a method of exploiting thread-level parallelism. As this became the only way to

gain greater performance in systems, the core and component count in the largest

2.1. TRENDS IN HIGH PERFORMANCE COMPUTING 39

Figure 2.2: The rise of GPU accelerators within the TOP500 list. Image taken from
The Next Platform2.

machines exploded, and with it the overall power consumption. The first ma-

chine with sustained petaflop performance, the IBM Roadrunner, totalled 122,400

cores [29] when it knocked the Blue Gene/L [30] from the top spot in June 2008.

Both of these machines favoured much higher volumes of modestly powered CPUs

or coprocessor/accelerator cores, as opposed to fewer, large cores (Roadrunner

used the IBM Cell as coprocessing elements for function offload from the main

Opteron CPUs, as well as for standalone compute tasks [29]).

As the desire for ever more performance outstripped the need for simplistic pro-

gramming models, the Roadrunner gave a taste of the heterogeneous CPU+accelerator

solutions that have followed, and have now become fairly typical. The use of GPU

acceleration has become commonplace in the largest machines, and the Intel Xeon

Phi (originally designed from a GPU architecture) and Nvidia Tesla currently fea-

ture in a substantial number of the world’s top machines. Figure 2.2 shows this rise

in GPU accelerated computing within the TOP500 over time.

.
2The Widening Gyre of Supercomputing- https://www.nextplatform.com/2018/11/12/

the-widening-gyre-of-supercomputing/ , accessed April 2019.

https://www.nextplatform.com/2018/11/12/the-widening-gyre-of-supercomputing/
https://www.nextplatform.com/2018/11/12/the-widening-gyre-of-supercomputing/

40 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.4 Energy Efficiency and Data Movement

Unfortunately, the massive developments in performance that have been af-

forded to GPUs in recent years has come at a price. The power consumption of

the GPU has increased dramatically along with its floating point performance and

memory bandwidth [5]. While high-end GPUs are shown to be more efficient than

using a CPU alone for computation, this gap is narrowed by appropriate optimiza-

tions [31] and their performance scalability must be questioned in relation to their

current configuration within HPC architectures.

The main issue with these more traditional forms of architecture is the fact that

many still view the GPU accelerator as a coprocessor for the CPU. While they may

allow for limited inter-GPU communication directly between a subset of the accel-

erators using protocols such as NVLink3, such limitations can cause additional data

copying and decreased locality depending on the workload.

The current number 1 on the TOP500 list (November 2018), the IBM Summit,

uses Nvidia Volta GV100 GPUs, and is currently the third most efficient system

in the world, topping 14.6 GFLOP/Watt. However, despite this the system uses

≈9.8MW of power. Simply scaling such a system up to exascale (1018 FLOPS)

would require around 70MW. This is well over the acceptable 20-30MW budget

for an exascale machine, and infeasible in terms of both the sheer infrastructure

requirements and operating costs alone.

For many years the main focus of HPC architects was to reduce the cost of com-

putation. Data movement was not of primary concern. However, reductions in

computational cost along with continued transistor scaling has far outstripped any

advances in reducing the cost of data movement. We have reached a point where re-

ducing data movement is the key factor for improving energy efficiency. Figure 2.3

shows that at an 11nm process the cost of a single double precision float is less than

that of on-chip movement.

Given this shift toward the importance of energy efficiency, and the fact that

reducing data movement is now the key to reducing power consumption in these

3For example in the IBM Summit- https://www.olcf.ornl.gov/for-users/

system-user-guides/summit/summit-user-guide/, accessed April 2019.

https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/
https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/

2.1. TRENDS IN HIGH PERFORMANCE COMPUTING 41

1

10

100

1000

10000

D
P

FL
O
P

Re
gi

st
er

1m
m

 o
n-

ch
ip

5m
m

 o
n-

ch
ip

15
m

m
 o

n-
ch

ip

O�
-c

hi
p/

D
RA

M

lo
ca

l i
nt

er
co

nn
ec

t

C
ro

ss
 s
ys

te
m

2008(45nm)

2018(11nm)

P
ic

o
jo

u
le

s
 P

e
r

6
4
b
it

 o
p
e
ra

ti
o
n

Figure 2.3: Cost of a double precision FLOP has now been reduced below the level
of on-die data movement [4].

systems, the GPU’s high off-chip memory bandwidth and raw floating point per-

formance capability (see Figure 2.3) looks less important for many workloads than

using techniques to reduce the power consumption by increasing data locality. In

order to increase the efficiency of HPC systems, new architectures and interconnect

technologies must therefore be sought. . .

2.1.5 FPGA

Given the discussion above FPGAs should be viewed as a promising candi-

date for increasing the energy efficiency of heterogeneous HPC systems. In [5] a

range of example application domains are provided which show that in general the

FPGA is far more power efficient than the GPU. In scenarios where performance

reaches comparable levels we can say with fair certainty that the FPGA will be

more efficient than the GPU, given the dramatically reduced operating frequency

of the FPGA; and thus the reduced wattage. High end GPUs can consume as much

as 300W4. FPGA power consumption is more difficult to measure (being highly

4NVIDIA TESLA V100 SXM2 GPU Accelerator- https://images.nvidia.com/content/

technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf, accessed April
2019.

https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf

42 CHAPTER 2. BACKGROUND AND RELATED WORK

implementation dependent) but works show them typically operating at a maxi-

mum of around 40W [32]. Table 2.1 shows a comparison of the operating wattage

from a number of studies which compare the performance and/or efficiency of FP-

GAs against GPU accelerators (methods of power evaluation are discussed in detail

in [33]). From this we can see clear performance/watt advantages in using FPGAs

for a number of applications.

FPGA vendors are now becoming aware of this possible penetration into the

HPC/data centre arena5. They are slowly addressing the gap between GPUs and

FPGAs, attempting to create a more suitable environment for their exploitation. We

are now starting to see advanced memory systems such as High-Bandwidth Mem-

ory (HBM) [48] integrated on the same package [49]. As well as this the floating

point performance of FPGAs is increasing, with the addition of hardened floating

point blocks [50], and more DSP capability within the architecture. All of these

advances are key to enabling the FPGA to be fully exploited in the HPC domain.

As well as this, with shrinking transistor sizes FPGA vendors have been able to

significantly increase the amount of distributed on-chip memory, providing further

tools with which the FPGA can use to widen the von Neumman bottleneck [51].

Given that memory bandwidth is the limiting factor for a number of HPC work-

loads, reducing the number of off-chip DRAM accesses and storing data on-chip

and closer to compute is not only desirable for reduced power consumption, but

also as a method of increasing performance. One of the main justifications for the

use of FPGA technology is the ability to use novel algorithms and custom memory

layouts to optimize the number of accesses. Increasing the available on-chip mem-

ory and using multiple FPGAs is a key method to enable larger datasets to be stored

closer to the compute. Numerous works have shown optimizations which can be

used to increase the computational efficiency of FPGA based computing, using ap-

proaches which are not as readily exploited on the GPU. In the following Section

we will review some of the work which shows the sorts of workloads which can

exploit the FPGA, and we will identify the system architecture which is required to

best facilitate this.
5Intel Launches FPGA Accelerator Aimed at HPC and HPDA Applications- https://www.

top500.org/news/intel-launches-fpga-accelerator-aimed-at-hpc-and-hpda-applications/,
accessed April 2019.

https://www.top500.org/news/intel-launches-fpga-accelerator-aimed-at-hpc-and-hpda-applications/
https://www.top500.org/news/intel-launches-fpga-accelerator-aimed-at-hpc-and-hpda-applications/

2.1. TRENDS IN HIGH PERFORMANCE COMPUTING 43

Table 2.1: Survey of comparative studies between FPGA and GPU efficiency and
performance.

Study FPGA
(Watts)

GPU
(Watts) Notes on Performance

A comparison of CPUs, GPUs, FPGAs, and mas-
sively parallel processor arrays for random num-
ber generation [34].

30 178 FPGA has 3X higher perfor-
mance.

Acceleration and energy efficiency of a geomet-
ric algebra computation using reconfigurable
computers and GPUs [35].

8.3 170 GPU ≈2-8x higher throughput,
FPGA 18.7x lower latency.

A comparative study on ASIC, FPGAs, GPUs
and general purpose processors in the gravita-
tional n-body simulation [36].

5-30 122-148 (multiple FPGA and GPU
configurations) GPU 1.4x-2.8x
higher performance.

BLAS comparison on FPGA, CPU and GPU [37]. ≈10 ≈128 FPGA performance comparable,
at 2.7-293x higher energy effi-
ciency.

Comparing performance and energy efficiency
of FPGAs and GPUs for high productivity com-
puting [38].

79-103 71-85 (multiple FPGAs on a Convey
coprocessor) about 2x more effi-
cient than GPU.

Highly parameterized k-means clustering on
FPGAs: Comparative results with GPPs and
GPUs [39].

15 59 FPGA 2-6.7x higher perfor-
mance over GPU.

An energy efficient FPGA accelerator for monte
carlo option pricing with the heston model [40].

35-40 148-310 FPGA with laptop runs 2.4-4.2x
slower than GPU+server, con-
sumes 1.7-2.5x less energy.

Floating-point mixed-radix FFT coregeneration
for FPGA and comparison with GPU and
CPU [41].

96-109 142-236 CPU+FPGA achieves 1.2/2.06
GFLOP/W, CPU+GPU
achieves 5.5/3.2 GFLOP/W
for medium/large size FFTs. .

Accelerating a random forest classifier: Multi-
Core, GPGPU, or FPGA? [42].

11-13 ≤225 FPGA ≈26.4-31.2x more energy
efficient.

Comparison of Processing Performance and Ar-
chitectural Efficiency Metrics for FPGAs and
GPUs in 3D Ultrasound Computer Tomogra-
phy [43].

35/35 35/235 FPGA 6-8X higher perfor-
mance/FPGA within 10% of
GPU performance when GPU
power consumption is limited.

Optimization schemes and performance evalua-
tion of smith-waterman algorithm on CPU, GPU
and FPGA [44].

25 190 FPGA performance 3.4x higher
than GPU.

High performance biological pairwise sequence
alignment: FPGA versus GPU versus cell BE ver-
sus GPP [45].

100-139 70-126 FPGA has 23x higher perfor-
mance per watt over GPU.

A comparison of FPGA and GPU for real-time
phase-based optical flow, stereo, and local image
features [46].

5.5 244 FPGA 4.6x higher performance
per watt, but 9.58x lower abso-
lute performance.

A Performance and Energy Comparison of Con-
volution on GPUs,FPGAs, and Multi-Core Pro-
cessors [47].

40 ≈250 FPGA and GPU performance
comparable.

44 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 HPC Workloads

Following on from our discussion of the advancements in HPC system architec-

tures and the requirements for reducing power consumption, we will show some

application domains and workload characteristics where FPGA architecture can

outperform the GPU. In doing this we further reiterate the possibility for FPGAs

to emerge in next generation HPC solutions.

2.2.1 Current Suitability

Traditionally FPGAs have been viewed as excellent architectures in areas where

irregular memory accesses are exhibited, or where dataflow type processing is pos-

sible, making use of much deeper pipelining and fine grained parallelism. While

the memory bandwidth for GPUs is incredibly high, and is certainly important for

a number of high performance applications, there are many applications which are

far more sensitive to memory latency, messaging rate and overlap. These have been

overlooked in the development of GPU architectures [52].

In a recent survey [9] the suitability of FPGAs for use within HPC systems is

analysed. They use the Berkeley classification for HPC applications [53], which

identifies 13 different dwarves (patterns of communication and computation) of HPC

workloads. Using this prior classification they assess their suitability for execution

within FPGAs, GPUs or on traditional multi-cores based upon the results of prior

literature. The Berkeley paper shows that over half of the application types they

classify have their performance limited by memory-latency, as opposed to memory-

throughput. This sort of work is beneficial for FPGAs as they are able to make better

use of custom memory layouts and reduce the external memory accesses, thereby

reducing memory latency.

They show that irregular memory access patterns combined with high levels

of arithmetic computation already provide for more efficient FPGA based solutions

over CPU or GPU solutions. Workloads such as stencil codes are suited to the FPGA

due to the high volume of on-chip memory, reducing DRAM accesses [54]. Other

computations such as sparse matrix-matrix/matrix-vector multiplication are very

good for implementing on the FPGA, as they feature a relatively low FLOP count

2.2. HPC WORKLOADS 45

per memory access, meaning that on-chip storage for values is preferable in this

situation (as in [55]).

They find that the main limitation with FPGAs is currently in their floating

point capabilities, so algorithms containing high arithmetic computation combined

with regular memory access patterns are best performed on GPUs (dense matrix-

matrix/matrix-vector multiplication, FFTs N-body simulations etc.).

2.2.2 Advancing System Architectures

Despite these limitations, in [9] they show works which suggest that the evolu-

tion of the FPGA beyond a simple coprocessor solution–integrating hard-core CPUs

with coherent access to the FPGA fabric–will allow for the effective acceleration of

workloads with more complex memory handling. Examples include graph traver-

sal algorithms and branch-and-bound problems. This inference is backed up by

recent work [56] which examines pointer-chasing on modern FPGA substrates with

direct, shared-memory access between tightly-coupled accelerator and CPU. They

conclude that memory access latency is the main area of concern for these sorts of

problems, and that interleaving memory access over several concurrent traversals

can alleviate this problem.

Extending beyond this tight memory coupling is the idea the FPGA should be

viewed as the main, standalone compute element within the system, capable of

accessing the network as well as the main memory system. They argue for the

use of custom Network Interfaces (as is also argued in [12]) to make better use of

the high speed serial links in cluster setups, suggesting that with suitable work

distribution FPGAs may eventually be able to compete with GPUs even on dense

linear-algebra problems where the GPU excels.

There have been several prior works towards this goal; upgrading the FPGA to

a more central role within the system, eliminating the CPU entirely from computa-

tion (or at least forcing all data movement through the FPGA. Examples of this sort

of architecture are shown to readily accelerate cryptographic functions [57] or map-

reduce type operations [58] within the network for example. Forcing all network

traffic through the accelerator is known as a bump-in-the-wire architecture and im-

plementations have been shown to be effective in enabling pools of FPGA resources

46 CHAPTER 2. BACKGROUND AND RELATED WORK

to be used for scaled acceleration [6]. This is discussed further in Section 2.4.

2.2.3 Accelerator Optimization Techniques

There are two main areas in which the performance and/or energy efficiency

can be improved in a system which utilizes FPGA based technology which GPU

based accelerators typically cannot utilize (aside from techniques such as deeper

pipelining etc. leading to greater instruction level parallelism):

• Custom memory layouts, reducing the number of DRAM accesses or off-chip

communications.

• Using custom data types, reduced precision and memory compression for re-

ducing the volume of data being moved around the system.

2.2.3.1 Efficient Memory Use

There has been a lot of studies into improving data locality in HPC systems

generally, using a variety of techniques and tools [59]. Several works have recently

been able to show the efficacy of some of these techniques within the context of

FPGAs.

In [55] they perform a set of experiments on optimized iterative solvers for large

matrix-vector calculations. They first present an optimized GPU implementation

which reduces memory accesses by using redundant computation. Instead of pass-

ing all the intermediate values between neighbouring cores, they simply compute

some of them multiple times in multiple cores; trading off additional compute for

reduced memory access frequency. However, in their FPGA based implementation

they make use of the greater abundance of distributed on-chip memory and rout-

ing resources. They implement small FIFOs to pass the intermediate information

between different processing elements, and are able to eliminate the memory ac-

cesses for these intermediate values altogether. They show that for randomly gen-

erated matrices they can get between 0.3-4.4x speedup over the optimized GPU

implementation.

The authors of [60] introduce FPDeep; a framework for mapping Convolutional

Neural Network Problems onto multi-FPGA networks. Their solution uses deeply

2.2. HPC WORKLOADS 47

pipelined processing to spread computation over distributed FPGAs, providing a

dataflow type model. In using this fine-grained pipelining their solution requires

no external memory, utilizing only the on-chip memory of the FPGA. As a result

they report 7.6x higher energy efficiency over a Titan X GPU with comparable per-

formance, and 4x higher energy efficiency than a prior FPGA implementation.

In [61] they show how three common signal processing tasks can be optimized

by increasing locality. They show that Gaussian Mixture models can benefit from

increasing the number of processing elements, in order to place greater numbers of

smaller memories closer to the compute. In a Window Filtering kernel they show

how they use line buffers to store information from neighbouring processing ele-

ments. In many instances this data may be required for further computation, in

which case they can use the data immediately rather than retrieving the values re-

peatedly from main memory. In an FFT they reduce the cost of memory accesses by

changing the order of computation, reducing the size of the memories needed for

early stages of computation. Finally they propose Continuous Hierarchical Memory,

a modification to the architecture of on-chip memory in an Altera device, which

allows the block memory to be used in one of 3 configurations in a hierarchy, re-

ducing the energy spent on memory accesses for large memory, thus enhancing the

energy efficiency.

In [62] genomic sequencing is accelerated using FPGAs. They identify tech-

niques to enable an FPGA coprocessor (implemented on the Convey HC1) to mit-

igate against memory inefficiencies. The Read Mapping portion of their algorithm

requires many non-contiguous memory accesses. These are optimized in the Con-

vey’s coprocessor by utilizing the scatter-gather DIMMs and its tight coupling to

system memory (attached to the host via the Intel Front-Side Bus). These sorts of

optimizations are simply not possible on the multi-core machine due to limitations

of the memory controller (which is customized in the FPGA solution), and they

show performance increases of around 189x compared with a single CPU solution.

In [63] they accelerate a 3D Reverse Time Migration algorithm; a key component

of which performs stencil operations. The performance of these operations is en-

hanced by customizing the block RAM of the FPGA in order to allow for better

48 CHAPTER 2. BACKGROUND AND RELATED WORK

data reuse on the FPGA. Typically these kernels require a lot of buffering and suf-

fer from many cache misses which arise from accesses to the rows and columns of

3D arrays. However, they optimize the problem to fit within the on-chip storage

of the FPGA by decomposing the 3D arrays into a series of smaller 2D problems,

achieving a performance-scalable solution as FPGA size increases.

2.2.3.2 Reduced Precision and Custom Data Types

The GPU’s high performance for floating-point operations is well established.

However, there are numerous workloads which do not require such precision. The

ability for FPGAs to exploit completely custom data types allows it to reduce the

overheads for computation and communication dramatically. The majority of this

work is for Deep Learning algorithms, which are able to tolerate reduced accuracy

in results.

In [64] they assess the use of ternary weights and full single precision neurons in

a sparse general matrix-matrix multiplication (GEMM). Comparing against a GPU

implementation using the same reduced precision data type they deliver 60% bet-

ter performance and 2.3x increase in performance/watt. The algorithm produces

results with an accuracy within 1% of those using full precision data types.

The work in [65] is the first to implement a Binarized Neural Network on FPGA.

They use common high level synthesis tools (Vivado HLS) to demonstrate the effi-

cacy of these tools for increasing designer productivity. Their results demonstrate

efficiencies in the design, showing a 4.5-15.2x more efficient use of FPGA resources

than standard Convolutional Neural Network (CNN) implementations on FPGA.

(Although they admit that this comparison may not be completely fair.)

2.3 Programming Models and Interfaces

Having shown the potential benefits that FPGAs can bring to future HPC sys-

tems for a number of viable workloads, we now assess existing programming mod-

els in use within existing HPC systems and accelerators. We will show the models

which may be amenable to High Performance Reconfigurable Computing (HPRC).

2.3. PROGRAMMING MODELS AND INTERFACES 49

2.3.1 MPI

MPI (Message Passing Interface) is the ubiquitous standard for message passing

communications, used for over two decades within the parallel computing commu-

nity [66]. Today it is used in virtually every HPC application running on distributed

systems. MPI gained popularity due to its high performance, which comes at the

cost of exposing the parallelism heavily to the applications programmer, making

task mapping, data distribution and (in the case of one-sided communication) syn-

chronization explicit.

MPI communications are typically formed of two-sided send and receive op-

erations; for which both blocking (MPI_Send() / MPI_Recv()) and non-blocking

(MPI_Isend() / MPI_Irecv()) versions are available. Introduced as part of the stan-

dard in MPI 2.0 (and heavily updated in MPI 3.0 [67]) one-sided (RMA) Remote

Memory Access (MPI_Put() and MPI_Get()) operations are also supported. Stan-

dard two-sided operations synchronize implicitly, as shown in Figure 2.4a, requir-

ing the post of an MPI_Recv() before the data can actually be placed in the receiver’s

memory, indicating the receiver is ready. This model is as opposed to one-sided

communication, which requires the initialisation of a synchronization epoch for trans-

fer of data into abstract objects called windows. These are used to specify regions of

memory for remote operations to target (Figure 2.4b).

Any new HPC system produced in the near to medium term future is almost

certain to use MPI as one of its communication paradigms. This is not only because

of the sheer volume of legacy MPI code but also the lack of suitable alternatives.

However, it is clear that continuing to scale MPI into the future is untenable, as

many-core architectures and increasing heterogeneity have exposed additional lev-

els of finer-grained parallelism to the user [68]. While MPI is highly efficient for

the CSP [69] (Communicating Sequential Processes) model for parallelism, modern

architectural features are not easily represented or exploited in MPI7 and shared

memory cannot be utilized within MPI ranks on the same node.

6MPI Performance Topics- https://computing.llnl.gov/tutorials/mpi_performance/, ac-
cessed April 2019.

7While technologies such as NVIDIA’s GPUDirect can be used to expose accelerator buffers to
MPI [70], it is unclear as to whether this could be extended beyond a host-accelerator architectural
model, as the GPU kernels cannot act as MPI processes in and of themselves.

https://computing.llnl.gov/tutorials/mpi_performance/

50 CHAPTER 2. BACKGROUND AND RELATED WORK

Req send

Ready to Receive

Transfer data

Recv return

Send return

ACKs

DATA

(a) Two sided MPI send and receive operation. Note this is a rendezvous implementation
which requires pre allocation of space in the receive buffer; for short messages implemen-
tations may use an eager protocol6.

Win Alloc

Put
DATA

Win Alloc

Win Lock All
Sync

Put

Win Unlock All

DATA

...

(b) One-sided MPI put operation, shows the window allocation which must first occur,
followed by a lock on the window. Following this data can be freely transferred until the
window has been unlocked.

Figure 2.4: One sided and two sided MPI operations.

Due to this limitation of MPI on modern multi- and many-core machines, many

HPC applications today run MPI+X (a hybrid model; where X refers to some sort

of programming support threads8). This allows for the use of the shared memory

within a node and message passing across the distributed memories for inter-node

communication, and is very popular due to the standard model for HPC architec-

tures over the past 20 years. (This model consisting of many interconnected nodes,

with multiple processors per-node, and multiple cores per processor.)

2.3.2 OpenMP

OpenMP9 is an API for writing multithreaded applications within a shared-

memory environment. It has created a standardized method of performing SMP

8Compilers and more: MPI+X- https://www.hpcwire.com/2014/07/16/compilers-mpix/- ac-
cessed April 2019.

9For an OpenMP tutorial, see- https://computing.llnl.gov/tutorials/openMP/, accessed
April 2019.

https://computing.llnl.gov/tutorials/openMP/

2.3. PROGRAMMING MODELS AND INTERFACES 51

CPU CPU

MEMORY

(a) Uniform Memory Access.

CPU CPU

MEMORY MEMORY MEMORY MEMORY

(b) Non-Uniform Memory Access.

Figure 2.5: Types of shared memory node architecture which can be exploited by
OpenMP.

(Symmetric Multi-Processing), and allows for a much higher level and more portable

way of multi-processing than pthreads for example. OpenMP consists of a set of

compiler directives that can be used to simply divide computational tasks and

distribute loop iterations over multiple threads of execution. It can be used in a

multi-core Uniform Memory Access (UMA) and/or multi-processor Non-Uniform

Memory Access (NUMA) node architecture (see Figure 2.5), but cannot be used in

a distributed memory environment.

As OpenMP on its own is solely used for intra-node communications, its contin-

ued use within the HPC community will have little bearing on the wider network-

ing solution we propose within this thesis. It can also traditionally not be used to

program and exploit parallelism within FPGA accelerators, however recent works

are attempting to address this:

Developed at Barcelona Supercomputing Centre (BSC), OmpSs [71] is a pro-

gramming model which aims to extend OpenMP with new directives to allow for

asynchronous parallelism to be exploited (implemented within the OpenMP stan-

dard as of OpenMP 4.0 [72]). By expressing tasks and data dependencies explicitly

with #pragmas, a dataflow type execution can be expressed within sequential code.

52 CHAPTER 2. BACKGROUND AND RELATED WORK

Heterogeneity can be exploited using a target directive, making it simple to inter-

face with FPGA accelerators. While this is a step forward in heterogeneous parallel

programming it does not allow for distributed accelerator resources to be exploited,

only those within the local shared-memory of the processor [72]. The target cannot

be a remote distributed accelerator.

2.3.3 Distributed Shared-Memory (NUMA/PGAS)

Initially proposed and developed around same time as the MPI standard, Par-

titioned Global Address Space (PGAS) languages aim to combine the performance

and data locality provided by MPI with the much simpler programmability of a

shared memory model. PGAS languages such as Unified Parallel C (UPC) [73], Co-

Array Fortran [74], and Titanium [75] provide language extensions for explicit par-

allel programming to C/C++, Fortran and Java respectively. Whereas other PGAS

languages such as X10 [76] or Cray’s Chapel [77] have been built from scratch.

Library based implementations of the PGAS model also exist, such as OpenSH-

MEM [78].

PGAS languages allow for private memory, visible only to the local process, and

shared memory which is made accessible to some or all of the processors within

the system. They also introduce the concept of places (memory affinity), which is

exposed to the programmer in order to allow them to explicitly give the compiler

information about which data is where on the system. Since the data is either local

or remote, the relative speed of memory access (NUMA awareness) is known using

a cost function, where remote accesses are obviously more expensive. Accesses to

remote memory can therefore be performed by simple references while ensuring

that differentiation between local and remote memory is explicit. Of course this is

only a general description and the many PGAS languages provide different models

of execution, access cost, data distribution and access [79]. An example of memory

access and affinity using UPC as an example is shown in Figure 2.6.

There has been a lot of recent interest in the potential for the PGAS model within

future HPC systems as means of overcoming the challenges associated with MPI,

and the restrictions with OpenMP [80]. As the memory accesses are naturally one-

sided, PGAS models more easily eliminate issues with overlapping computation

2.3. PROGRAMMING MODELS AND INTERFACES 53

CPU

int A; /* private local variable */

shared int sv[4]; /* variables in shared space (1 per thread) */

int B = sv[0];

int C = sv[1];

/* access shared variable with local affinity */

/* access shared variable with remote affinity */

Figure 2.6: Example of different remote and local variable accesses in UPC.

and communication [81], increasing performance. There are also major concerns

regarding the memory footprint of MPI. As memory scaling has not kept pace with

the scaling number of cores, the memory per-core has been decreasing. Since many

of MPI’s functions and data structures scale linearly with the number of processes,

this problem is amplified as the number of cores and processes increases [13].

Adoption of PGAS languages has been slow however, due to a lack of direct

hardware support for the communication primitives that PGAS requires; the ability

to write directly into global address spaces. This is as well as a lack of significant

enough performance benefits to merit the arduous task of rewriting legacy code.

Although, this is not to say that there are not clear benefits to the PGAS model

over message passing. Several works have shown the benefits which arise from

one-sided communication, which the PGAS model is much more suited for than

MPI [81], [82].

Due to these facts, many believe that future systems will use PGAS models in

a hybrid setup to compliment MPI10, as this will allow programmers to exploit the

benefits to scalability and programmability that PGAS can offer without having to

rewrite entire code bases [83]. This shift is evident from the push to further develop

the one-sided communication capabilities afforded in MPI 3.0. However, there are

advantages to using dedicated languages for PGAS support over the library based

MPI. One main advantage is the simpler programmability of PGAS languages when

10Melding Hyperscale and HPC to Reach Exascale- https://www.nextplatform.com/2016/08/
10/melding-hyperscale-hpc-reach-exascale/, accessed April 2019.

https://www.nextplatform.com/2016/08/10/melding-hyperscale-hpc-reach-exascale/
https://www.nextplatform.com/2016/08/10/melding-hyperscale-hpc-reach-exascale/

54 CHAPTER 2. BACKGROUND AND RELATED WORK

compared to MPI’s RMA (Remote Memory Access) semantics; requiring the need

for explicit communication management within MPI [14].

The first such hybridization of MPI and a PGAS language came in [14], where

they present a programming model to support MPI and UPC. Given that the MPI

implementation is as a library, and the UPC language is an extension to C, they

can compile their code normally and simply link to the MPI library. Their hybrid

MPI+UPC shows far superior scaling over a simple global shared space. Under

normal circumstances the number of non-local memory references is detrimental

to the performance of UPC on its own, particularly as the number of processors

scales. However, using the MPI+UPC approach they are able to replicate the data

over multiple nodes as opposed to distributing it, and so they increase the number

of local accesses.

In [84] they measure the performance of a “Concurrent Search” kernel from the

Graph 500 benchmark11. They compare a standard MPI implementation against

their hybrid MPI+PGAS runtime over Infiniband, and show a 59% reduction in the

execution time over the standard MPI model. In this instance the communication

patterns are identical for both hybrid and standard MPI, showing the benefits of us-

ing a one-sided communication strategy. Their solution also highlights the positive

scaling characteristics of using a hybrid MPI+PGAS model.

2.3.4 FPGA Programming Techniques

Whilst we have discussed common programming techniques for the CPU, we

have yet to discuss the FPGA programming techniques which will likely be em-

ployed. Traditionally the main hurdle in the uptake of FPGAs for HPC (or any other

domain) has been programmability, with traditional Register Transfer Languages

(RTL) having a steep learning curve, long development time and requirements for

specialist knowledge of the hardware. Over the past few years there has been dra-

matic advances in the capability of High Level Synthesis (HLS) techniques, with

many new languages (BSV [85], Chisel [86], System-C [87], MaxJ) and toolchains

(Vivado HLS [88], Intel’s HLS compiler [89], FCUDA [90]) being introduced. The

vast majority of these HLS tools target Verilog/VHDL as their output, requiring the

11Graph 500 Benchmark- https://graph500.org/, accessed April 2019.

https://graph500.org/

2.3. PROGRAMMING MODELS AND INTERFACES 55

use of standard synthesis tools to create the final bitstream for the hardware. Their

development is regarded as vital for increasing programmer productivity, and its

uptake has caused RTL to be viewed as the assembly language of the hardware

world; with respect to it’s abstraction level.

OpenCL [91] is an open source framework for programming heterogeneous sys-

tems, and is one of the most established methods for programming GPUs. Altera

(now Intel) have pushed for OpenCL as the preferred way to create FPGA based ac-

celerators, with an SDK and compiler supporting development. However, OpenCL

(like many other HLS solutions) offers only a host/device model of programming.

The code is split into two portions; the host code which runs on the CPU, and the

device or kernel code which runs on the accelerator. An API allows the host code

to use the hardware kernel, loading data into the hardware for execution and then

transferring the data back out to the host once computation has been completed.

This model therefore does not typically extend beyond the scope of a single

node, meaning that the use of distributed acceleration resources requires additional

memory copying and CPU intervention. However, there are works attempting to

address this. The ECOSCALE project [92] is one such example. They aim to extend

OpenCL and create a runtime system which will enable the aggregation of multiple

hardware devices, allowing multiple accelerators to work as a single compute ele-

ment spanning multiple FPGAs. Groups of hardware blocks form workers, whose

memory is formed into a Partitioned Global Address Space (PGAS), allowing com-

munication via direct load/store operations or via DMAs.

Vivado HLS is another common tool from Xilinx. As opposed to OpenCL, which

provides an API to manage calls between the host and accelerator kernel, Vivado

HLS uses a set of pragmas and directives, which indicate to the compiler how stan-

dard C/C++/System-C should be compiled into regular RTL. It provides abstrac-

tions for data type, algorithm and interface, and is used to develop IP blocks which

can then be integrated into other designs. Using OpenCL for the kernel develop-

ment (within Xilinx tools) can actually use Vivado HLS to generate the IP for the

kernel, if the kernel is being synthesised directly from C/C++.

The main concern with respect to the development of our interconnect is with

respect to the interfacing methodology, and to ensure that these standard tools do

56 CHAPTER 2. BACKGROUND AND RELATED WORK

not require heavy modifications in order to enable the FPGA logic to initiate net-

work transfers. We will discuss this in the following Section.

2.3.5 Extending Models to FPGA

Given the discussion above, we see that facilitating both MPI and PGAS like

communication models will be incredibly useful for future HPC systems. The vast

majority (if not all) modern interconnect solutions intended to run MPI over the

top do so using Remote Direct Memory Access (RDMA) as the primary vehicle

for communication. Infiniband [93], iWarp [94], RoCE (RDMA over Converged

Ethernet) [95], Blue Gene [96], Tofu [97], Cray’s Gemini [98] etc. all facilitate MPI

communications via the use of RDMA, thus reducing latency and freeing the CPU

from the burden of communication. It is necessary and desirable to support this in

the Network Interface (NI), and multiple examples of RDMA enabled networking

solutions already exist for FPGA, showing the viability of the model [99]–[101].

As we have identified, one of the main barriers for uptake of the PGAS model

is the fact that direct hardware support is often lacking in most common intercon-

nect solutions. Attaching the Network Interface as a PCIe peripheral device and

requiring DMA initiation precludes the use of transparent memory accesses being

issued through the network, which could be used to improve the latency of transfer

dramatically for small messages.

While RDMA can offload much of the processing for network transfer to the

NI, for small transfers it still provides unnecessary overheads when compared with

a simple load/store operation issued to a global, distributed address space [15].

Smaller transfers are more likely to be latency critical transfers such as synchro-

nization and control messages, whereas larger data transfers can be left to RDMA.

If we know that the latency critical messages will be small, reducing the latency

of smaller messages becomes paramount. The difference in latency between an

RDMA transfer and a direct message of a single word length can be shown thusly:

TRDMA = TstoreN + TDMAInit + TMR + Ttrans f er + Tack

TSharedMemoryOp = Tstore1 + Ttrans f er + Tack

2.3. PROGRAMMING MODELS AND INTERFACES 57

Where MR is the word read from main memory, DMAInit is the time taken to

initiate a work item to the DMA engine from the NI, and store is the time taken to

write a given number of words into the NI, where N is the number of words in an

RDMA work item (transfer descriptor).

Providing direct hardware support for PGAS memory requests can massively

improve the performance of such systems. Cray’s work on their Gemini Intercon-

nect shows this, where they provide a Fast Memory Access mechanism which per-

mits the use of native CPU stores into the NI. They indicate that for short messages

the speedup when using one-sided communication can be as much as 5-10x [82].

The Aries Interconnect is an enhanced version of Gemini, and is discussed in greater

detail in Section 2.5.5.1.

We therefore propose a similar method to that in the Cray Gemini/Aries inter-

connect [102], where small low latency transfers have a special, faster path through

the NI. Upon initialization a process is allocated a descriptor, which when written

to will send the data to the address held by the descriptor. Our mechanism dif-

fers from this in that we simply accept read and writes to any address through the

system, and a transaction destined for a remote location requires translation in an

MMU (Memory Management Unit), as opposed to holding static addresses in these

pre-allocated descriptors.

Older work at Cray on their T3D shared memory system [103] performs similar

functionality, where they separate the methods of communication based upon the

volume of data being transferred. They use a standard shared memory, global ad-

dress space method for small transfers, but once the transfer size reaches a certain

threshold they use a Block Transfer Engine, which is essentially a DMA device. The

threshold for using this engine is 7900B, which is the point where the latency for

sending through the normal channel becomes greater than the initialization time

for the Block Transfer Engine.

Other previous work allowing this direct shared-memory communication is pre-

sented in [104], where they have developed a Network Interface which allows lo-

cal load/store transactions in the HyperTransport protocol to be forwarded and

sent over a custom network to be received by remote nodes. By using the Hyper-

Transport protocol directly over the network and between the network controller

58 CHAPTER 2. BACKGROUND AND RELATED WORK

and host they avoid any bridging or protocol conversion. They maintain coherence

within the node, but by not allowing global coherence their solution forms an ideal

interface for PGAS models.

With regards to the FPGA, in order to direct inter-FPGA communication be-

tween local and remote accelerator logic the use of hardware support within the

Network Interface to allow for RDMA and simple load/store transactions makes a

lot of sense; for programmability and performance. This sort of model provides a

natural way for accelerators to orchestrate work among themselves, as these models

of communication are frequently used between local CPU and accelerator in more

traditional architectures.

For example, Xilinx’s Vivado HLS tool [88] used to synthesise C code into RTL

fits this model well. It provides a memcpy() function which basically acts as a DMA,

pulling data in and pushing it back out when a descriptor is passed to it. It also en-

ables simple memory mapped accesses as pointer dereferencing, meaning that the

FPGA fabric can easily pass transfer descriptors to remote accelerators if every com-

ponent within the system is viewed as a global, shared memory location. Having

the whole network rely on direct memory addressing for global communications

(as opposed to using IP addresses for example, or via PCIe transactions) means that

the performance is enhanced as no protocol conversion is needed, and no additional

memory copies are required. It also ensures that the minimum of extension to tradi-

tional FPGA programming models will be required, as OpenCL Kernels or Vivado

HLS is perfectly capable of forming hardware with this functionality already.

2.4 FPGA Clusters

There are examples of the use of FPGAs as accelerators within HPC systems

dating back over a decade. The vast majority of these systems are limited however;

providing limited scope for use in much larger scale systems or beyond a very nar-

row set of applications. This stems from a number of historical issues. One of these

is the comparatively limited capacity of older FPGAs, preventing the development

of more complex on-chip networking solutions and cementing the bus-based copro-

cessor model. Another reason is that only recently has the development of mixed

2.4. FPGA CLUSTERS 59

hard-core CPUs and FPGA on the same die become available, providing much

tighter coupling between these resources and eliminating the need for costly and

latent off-chip protocols between them. A third reason is the programmability is-

sues surrounding FPGAs. Traditionally these devices were inaccessible to software

developers, requiring dedicated hardware engineers to write custom RTL. How-

ever, there have been many recent advances in High Level Synthesis techniques

which have reduced this burden somewhat.

In this Section we will review a series of solutions for HPC clusters, and demon-

strate that they are not viable for our requirements. We frame this around the sys-

tem architecture; which is only now reaching a point where we are able to have

both tight coupling with system memory as well as a completely standalone solu-

tion where the FPGA is regarded as a full peer within the network. Both of which

we deem essential for the uptake of FPGAs within the HPC arena.

2.4.1 Early Examples

Early examples of systems including FPGA technology include the SRC-6, the

Cray XD1, and the SGI-Altix. These machines were the first to attempt to over-

come the problems with system integration between the FPGA and host CPU. The

Cray XD1 contains an FPGA connected to the host via a simplified HyperTrans-

port interconnect, and contains a separate memory bank with closer proximity to

the FPGA than the host memory [105]. The SRC-6 has a board containing two FP-

GAs connected to the host via a separate network. The FPGAs cannot communi-

cate directly with the host memory, however work can be distributed between the

two FPGAs to expand the capabilities of the accelerator [106]. SGI’s Altix, contain-

ing their RASC (Reconfigurable Application Specific Computing) module [107] is

among the first systems to bring tight coupling between the host and accelerator

memory systems, giving shared NUMA access via the NUMAlink [108] system in-

terconnect. Notwithstanding the scalability issues of a fully coherent shared mem-

ory system, this early system allows for completely disaggregated scaling and tight

coupling between CPU and accelerator components using the reconfigurable ele-

ment as a separate module. Unfortunately FPGA technology and programmability

at the time was far more limited and the potential benefits of this early architecture

60 CHAPTER 2. BACKGROUND AND RELATED WORK

were never fully explored. This is especially true as the reconfigurable element is

supplied as a separate module; the system was mainly sold and run as a standard

non-accelerated cluster.

2.4.2 Bus-Based Coprocessor

A key barrier in the development and exploitation of distributed FPGA resources

within the context of HPC systems is the traditional use of the FPGA as a mere co-

processor [109], loosely coupled to the CPU and network resources—attached via

PCIe or other equivalent bus-based interconnect (see Figure 2.7a). This architec-

tural model exacerbates the limited off-chip memory bandwidth of the FPGA by

distancing the accelerator from the main memory hierarchy of the CPU. In addition

it severely limits the feasibility of dataflow processing among distributed FPGA

resources because they depend on the CPUs for performing network transactions.

QP [110] is one such system which uses this model. They provide a node which

contains two Opteron CPUs with GPUs and an FPGA attached as coprocessors on

separate PCI buses. In this instance the FPGA is only connected to one of the two

Opteron CPUs and must communicate through the CPU for any networking capa-

bility.

The vast majority of example systems which fit this coprocessor category use

multiple FGPAs within a node/blade/rack, providing a dedicated separate net-

work to interconnect the FPGAs. Higher level communication must be directed

through the CPU. While these systems may allow for scaled applications over mul-

tiple FPGAs, they are typically limited internally by point-to-point topologies, lim-

iting the scope of applications somewhat. In this scenario the distributed FPGAs

are used in such a manner that they effectively create one large FPGA distributed

over multiple chips, as they are still often attached to a single CPU.

A prime example of this sort of architecture is Maxwell [111]. This is a proof of

concept for a general purpose FPGA based supercomputer, comprising Intel Xeon

CPUs and a total of 64 Xilinx FPGAs configured in a 2D torus, with CPUs and FPGA

connected via PCI. This solution obviously suffers the many pitfalls discussed re-

garding a coprocessor architecture with regards to communication being directed

through the CPU for network operations beyond a given scale. It allows only point

2.4. FPGA CLUSTERS 61

CPU

FPGA

NIC NIC

FPGA

CPUDRAM DRAM

N
E
T
W
O
R
K

(a) FPGA attached as a bus-based coprocessor (e.g. PCIe).

NIC NIC

FPGA
N
E
T
W
O
R
K

CPUDRAM

FPGA

CPU DRAM

(b) FPGA attached via system-bus, able to access local memory directly but not the network.

N
E
T
W
O
R
KNICCPUDRAM

NICFPGADRAM

NIC CPU DRAM

NIC FPGA DRAM

(c) Disaggregated FPGA, able to act as a full network peer but unable to address remote
memory directly.

CPU NIC

FPGA

N
E
T
W
O
R
K

NIC CPU DRAM

NIC FPGA DRAM

(d) Global address space in which the system bus protocol is extended over the network.
The FPGA can act as a full network peer, access remote and local memory directly, and can
also be scaled independently.

Figure 2.7: Possible system architectures and FPGA configurations. The shaded
regions represent the limits of the addressability from a given node.

62 CHAPTER 2. BACKGROUND AND RELATED WORK

to point connections between the FPGA for parallel communications, severely lim-

iting the topology.

Another example is Novo-G# [112]; a system based on multi-FPGA servers with

a host CPU. While the FPGAs within a server can communicate directly with one

another over a 3D torus network, inter-server communication is made through the

CPU via PCIe, and then via Gigabit Ethernet or Infiniband. This limitation means

that direct communication between FPGAs is again limited in scale. RCC [113]

is another project which enables direct communication amongst FPGAs. Out of

this project came the AIREN network [114], with a multi-gigabit RocketIO network

for inter-FPGA communication (limited to point-to-point communications), and a

separate network to connect a host PC. Like us they propose to use essentially a

wrapped internal protocol for communication between FPGAs, allowing transpar-

ent use of the network from the user perspective (the only difference is latency for

communication). However, their limited functionality in the network inhibits scal-

ability.

2.4.3 System Bus Attached

Modern FPGA devices such as Xilinx Zynq Ultrascale+ and Intel Stratix 10 (com-

plete with integrated hard-core processors including IO Memory Management Units)

allow for the configuration seen in Figure 2.7b, where shared memory and cache-

coherence is possible between the CPU and FPGA. While this tight coupling allows

for lower latency transfers between local accelerator and memory, it does nothing

inherently to alleviate the overhead of the cumbersome software networking stack.

Typical methods such as TCP/IP are required to provide reliable transfer of data

with costly memory copies between network layers.

Larger systems following this model have been designed to use the system bus

of the processor in order to couple them far more tightly with the memory system of

the CPU. Systems such as the Cray XD-1 [105], which uses AMD’s HyperTransport

fall into this category. The work of Ling et al. at Intel [115], which uses the Front-

Side-Bus, also provides this sort of architectural configuration. They allow for direct

access into the system memory of the CPU, allowing for much higher throughput

between system memory and accelerator. However they still require the CPU to

2.4. FPGA CLUSTERS 63

initiate network transfers, meaning that the use of dataflow style processing over

multiple FPGAs is inhibited by traditional networking techniques. Other works in

this domain include LEAP [116], which creates coherent memory between multi-

ple FPGAs, as opposed to between host and accelerator. Although their work is

more concerned with the on-board caching mechanism than with the networking,

and describes only simple chip-to-chip communications. The Convey HC2 [117] is

another machine which allows coherent access between a single host and FPGA,

paired as a tightly coupled coprocessor. Again though communication beyond the

node must be performed through the CPU.

2.4.4 Disaggregated Network Peer

Like others have argued [8] we see that the remedy to the issues with the archi-

tectures discussed above is to promote the FPGA resources to the status of a full

peer within the network, capable of issuing its own reliable transactions as well

as being able to process inbound network traffic directly. In enabling the FPGA to

perform RDMA operations directly and offloading traditional networking stacks

into hardware (e.g. TCP offloading) this gives rise to the configuration seen in Fig-

ure 2.7c. Here we see that the FPGA is fully disaggregated from the CPU resources,

meaning that FPGA resources can be scaled without increasing the corresponding

number of CPUs. However, in this setup the FPGA is unable to exploit a lower

latency, shared memory model with other distributed memory spaces; a property

which is vital for many workloads and for providing the FPGA better control of the

data flow. All this is without mentioning the significant scalability and complexity

issues associated with TCP offloading [118] (discussed in detail in Section 2.5.2).

Recent work at IBM created a network attached FPGA system, which completely

disaggregates the CPU from accelerator resources [119], [120]. This is done in order

to allow CPU and FPGA resources to be scaled independently in data centres. They

use a hardware offloaded transport layer in order to allow the FPGA to communi-

cate directly with the network. However, this means that all communication must

traverse the full networking stack. As the intention for this type of architecture

is data centre applications there is no possibility to perform NUMA type accesses,

and therefore tight coupling between the FPGAs and CPU memory hierarchies is

64 CHAPTER 2. BACKGROUND AND RELATED WORK

not supported.

In [121] they have created a customized transport layer for data-intensive appli-

cations on distributed FPGAs. The transport sits over the top of the Aurora PHY,

and offers in-order lossless delivery of data. The protocol is very simple and uses

static dedicated routing paths for a 2D mesh or torus topology, as such it is unclear

whether this solution can be scaled beyond the fanout of the single router they pro-

pose.

The work in [11] presents an incredibly low latency communication protocol

for direct inter-FPGA communication, achieving an impressive per-hop latency of

272ns. This comes at the expense of dramatically reduced scalability however, with

no guaranteed reliability mechanism and only a simple ring topology possible.

2.4.5 Bump-in-the-wire

By far the largest and most sophisticated work so far in this domain is Cata-

pult2, developed at Microsoft. Fitting primarily into category of a disaggregated

solution, their system allows for FPGAs to communicate among themselves at the

cloud scale [6]. The FPGAs are situated as a bump in the wire, placed between the

CPU’s NIC and a Top-of-Rack switch, and are used for in-network processing or

local acceleration. They implement Lightweight Transport Layer (LTL) in the fabric

of the FPGA which supports the free flow of TCP/IP traffic from the CPU into the

network and uses simple UDP frames for inter-FPGA communication. While the

UDP traffic uses lossless traffic classes it can never be guaranteed to be lossless in

the switches. As such their LTL offers guaranteed packet delivery and ordering at

the endpoints. They effectively turn UDP into a connection based protocol, keep-

ing persistent connection tables at the sender and receiver, along with dedicated

retransmission buffers to store unacknowledged packets.

A huge benefit of this type of architecture is that all network traffic is directed

through the FPGA, allowing for in-network processing. This could be in-flight pro-

cessing directed towards remote nodes (for example encrypted network traffic for

deep packet inspection), processing for network attached or local hyper-converged

storage solutions, or to create simple dataflow engines over distributed resources.

2.4. FPGA CLUSTERS 65

This Near Data Processing (NDP) [122], [123] is seen as a promising way to re-

duce the data movement within systems and tackle the growing prevalence of data-

intensive workloads, thereby enhancing the performance and reducing power con-

sumption. By enabling a reconfigurable fabric to take control of the network, the

storage capability, local memory or caches, near-data processing which is tailored

to specific applications can be achieved.

While this architecture has many desirable features such as placing the pro-

cessing capabilities directly into the network and allowing reliable transfer for dis-

tributed FPGA computing at scale, there are several drawbacks which make it un-

suitable for use in general purpose HPC. The main drawback is the fact that CPUs

still use the traditional stack of TCP/IP for reliable data transfer. Their solution

includes a dedicated NIC, which may offload functionality to the hardware, but

it is still likely to suffer from the scalability and/or performance issues related to

TCP in general. Another limitation is that there is no possibility to perform NUMA

type shared-memory accesses, and therefore tight coupling between the FPGAs and

CPU memory hierarchies is not supported. They state explicitly that this is not their

aim however, as they note that tight coupling to reduce the latency of these trans-

fers is unnecessary for them. This is because their main target application– ranking

for the Bing search engine– requires only simple memory sharing [124].

2.4.6 Global System Addressing

Our work solves these issues by creating a Network Interface (NI) which sits

in the fabric of the FPGA, leveraging a custom network protocol where the target

node addresses are seen simply as the upper regions of a fully global memory space.

Our desire to enable close system bus coupling with the FPGA along with a fully

hardware offloaded transport layer enables us to reach the configuration shown in

Figure 2.7d. In this instance the FPGA can act alone as a fully disaggregated peer

on the network, but can also write directly into a shared memory space between

the CPU and other resources (local or remote). This opens up the possibility for

fine grained acceleration across distributed FPGAs, providing maximum flexibility

in the architecture. By using standard memory mapped AXI transactions to issue

reliable inter-FPGA communications with no complex API we enable the simple

66 CHAPTER 2. BACKGROUND AND RELATED WORK

development of distributed FPGA compute using readily available HLS tools.

2.5 Interconnection Networks

The interconnect is obviously one of the most important components within

massively parallel architectures, and is fundamental to the overall performance of

applications running on it. This is particularly true given the shift toward data-

centric workloads and the current focus on power consumption (data movement

has been shown to account for up to 40% of the power consumption in HPC work-

loads [125]). The network protocol and transport mechanism is an important com-

ponent of the interconnect, as it dictates things such as buffering requirements, pos-

sible topologies and scalability. In this Section we review some of the most popular

interconnect technologies used in HPC and data centres today, and discuss their

feasibility in relation to FPGA based HPC systems.

2.5.1 Ethernet

Ethernet networks form the backbone of internet and have featured heavily in

the TOP500 list since the rise of commodity clustering, simply owing to ubiquity

of the technology. With 25G, 100G and now 400G link technology12, Ethernet net-

works continue to be used for HPC despite serious issues; with solutions such as

RoCE [95], iWARP [94] , TRILL [126] and TCP Offloading aiming to fix some of the

problems associated with Ethernet based interconnect solutions.

2.5.2 TCP

The Transmission Control Protocol (TCP) [127] is the de facto standard for re-

liable communications over Ethernet networks. It is a connection based proto-

col which provides mechanisms for ordered and error-checked message reception,

message segmentation, and retransmission of lost packets using an end-to-end slid-

ing window protocol, which in addition establishes a congestion-control mecha-

nism to help ensure reliable delivery. It provides an abstraction of the network for

12EETimes, 400G Ethernet is Here, as are Other Speeds- https://www.eetimes.com/author.asp?
section_id=36&doc_id=1333680#, accessed April 2019

https://www.eetimes.com/author.asp?section_id=36&doc_id=1333680#
https://www.eetimes.com/author.asp?section_id=36&doc_id=1333680#

2.5. INTERCONNECTION NETWORKS 67

CONNECTION ESTABLISHED

SYN REQUEST

SYN ACK

ACK

HOST 1 HOST 2

SEQ=0

ACK=1

SEQ=1

ACK=1

Figure 2.8: Setup for a bi-directional TCP connection for send() and rec() socket
based reliable data transfer.

the application layer, obfuscating details of network congestion, packet loss and

such from the programmer. Typically implemented in software, the design of TCP

is focused on reliability and portability over performance. As such, traditional im-

plementations are highly unsuited for the types of dedicated, “lossless” and low

latency networks required for HPC applications.

2.5.2.1 Establishing a TCP Connection

A bidirectional TCP connection is set up using a three way handshake (shown in

Figure 2.8). Firstly both sender and receiver must indicate that they wish to estab-

lish a connection (SYN). One side is the active participant in this, sending a message

to the passive participant which includes the desired sequence number from which

to start counting incoming data packets for ordering. The passive participant then

sends a packet back to acknowledge (SYN-ACK) this synchronization stage, with

its own starting sequence number for the reverse direction of traffic. One final mes-

sage must then be sent to acknowledge (ACK) the sequence number for the other

direction. Only then is a connection established. The sequence number (SEQ) at

each side is incremented as bytes are sent, and the ACK number at each side is in-

cremented as bytes are received and acknowledgements of these received bytes are

posted to the sender.

2.5.2.2 Retransmission

Due to the ordering restrictions on the transfer buffers and the desire not to

acknowledge every network packet, additional latency is seen on retransmissions.

Upon the receipt of a negative acknowledgement or in the event of a timeout, the

68 CHAPTER 2. BACKGROUND AND RELATED WORK

SEND RECEIVE SEND RECEIVETRANSFER RETRANSMIT

Figure 2.9: TCP retransmission strategy. In the event that a NACK or timeout is re-
ceived, retransmission must begin from that point, regardless of whether following
transactions have been completed successfully.

transfer state is discarded and transmission begins again from the first segment fol-

lowing on from the previous acknowledgement, this is described in Figure 2.9. Not

only does this require resetting the transaction but it can cause duplicate packets.

I.e. packets that were received properly from deeper within the transmission buffer

cannot be used, and must be discarded by the receiver and resent after the lost

packet is received. The retransmission mechanism we implement in this thesis re-

quires only the corrupt packets to be resent. Although retransmissions are rare, the

best-effort nature of Ethernet switches means that retransmission is a more common

occurrence than in a lossless fabric, as packet drops occur on buffer overflow.

2.5.2.3 Latency and Memory

The latency of setup for connection establishment is a huge issue for short trans-

fers. As such it is typical in HPC contexts to establish these connections at the

initialization phase of the program and then leave them open for the lifetime of

the application. However, in this instance the memory usage can become an issue.

Connection state information is held for each connection, along with dedicated send

and receive buffers for each connection pair. This means that many thousands of

concurrent connections can create a heavy burden on the system. Our proposed

solution only requires setup of the RDMA buffers at initialisation, after which (as-

suming proper locking and synchronization methods are used) any node is free to

write into any of these buffers for the duration of the application lifetime.

Not only does the use of send and receive buffering create scalability issues with

2.5. INTERCONNECTION NETWORKS 69

respect to memory, but this also incurs a heavy latency penalty. Additional mem-

ory copies are required to the connection buffers. In typical implementations sys-

tem calls are required to transfer data, with context switching and memory copies

between user-space and kernel space adding additional latency. As TCP uses ded-

icated send and receive buffers and reassembly queues at each end, copying be-

tween these buffers and back into user-space adds significant latency to the soft-

ware stack.

2.5.2.4 Offload Engines

Over time, Wide Area Networks (WANs) have grown in scale and complexity,

and so the complexity of implementing TCP/IP stack has increased proportion-

ally. The code for TCP often reaches thousands of lines13, with many system calls

needed over a number of software layers, and a large number of data copies being

produced [128].

There are many solutions which attempt to offload the TCP protocol into ded-

icated hardware in order to eliminate many of the software overheads associated

with excessive memory copying and context switching within the TCP software

stack. These are known as TCP Offload Engines (TOEs), and either implement

the full stack (full-offload) [118], [129], or only given functions to suit a more spe-

cific purpose (partial-offload) such as performing checksumming or TCP segmen-

tation [130].

As the TCP protocol is considerably complex the area overhead of implement-

ing a full TCP offload engine on an FPGA device is significant. Full offload into

hardware is only an option for a very narrow class of applications. The complexity

lies not only in offloading all the features of TCP, but in the heavy memory burden

which is placed upon the system in maintaining dedicated per-connection buffers

and state information. As such the only FPGA implementations for full TOEs that

we are aware of are used for financial trading. In this latency-critical domain the

number of possible simultaneous active connections is heavily sacrificed for the

benefits of full offload. This dramatically reduced scalability is at odds with the

13An implementation of the TCP/IP protocol suite for the LINUX operating system- https://
github.com/torvalds/linux/blob/master/net/ipv4/tcp.c, accessed April 2019.

https://github.com/torvalds/linux/blob/master/net/ipv4/tcp.c
https://github.com/torvalds/linux/blob/master/net/ipv4/tcp.c

70 CHAPTER 2. BACKGROUND AND RELATED WORK

needs of HPC applications.

Attempts have been made which seek to increase the scalability of TCP offload-

ing. In [118] a solution is proposed to overcome the issue and their approach al-

lows for over 10,000 simultaneous connections. However, this connection based

approach still suffers massive memory utilization. They require external session

buffers in DRAM amounting to 1.3GB for 10,000 sessions. Without a huge dedicated

RAM for the offload engine this is extremely wasteful in terms of both memory us-

age and memory bandwidth. More recent work by Sidler et al. [131] reduces this

footprint to 650MB by using optimizations which tailor the stack towards data pro-

cessing applications for a data-centre environment. However this is obviously still

huge, and is well beyond the on-chip memory capacity of state-of-the-art FPGAs.

Due to the fact that we propose not to use these connection based techniques, scal-

ing the number of communicators does not scale the memory overheads associated

with our solution.

2.5.2.5 IP Routing

Ethernet networks typically route using the Internet Protocol (IP). Routing in IP

requires tables to be established to associate a destination IP address with a given

output port. A route between source and destination may have a number of differ-

ent paths to choose from, and because the route may contain cycles the spanning

tree protocol must be used in order to prevent broadcast storms and bridge loops.

This creates a logical topology on top of the physical topology. Unfortunately this

creates a limitation in that each source-destination pair can only follow one route

through the network. While allowing for fault tolerance (if a link goes down an-

other path can be set up), it does not allow for full exploitation of path diversity.

Our arithmetically routed switch [32] used in this thesis allows for fully adaptive

routing at the packet level, meaning that we can take full advantage of the path

diversity of our chosen topology.

In practise what this limitation means for IP is that some topology types which

promote high path diversity will perform suboptimally when using TCP/IP. There

have been efforts to combat this issue and allow for multipath routing, but their

adoption and success has been limited. Recently the IETF (Internet Engineering

2.5. INTERCONNECTION NETWORKS 71

Task Force) have developed guidelines for multipath TCP development [132], but

actual implementations are scarce. At the link-level, multipath routing has been

proposed by the use of TRILL technology [126]. TRILL (TRansparent Interconnec-

tion of Lots of Links) was created to avoid the pitfalls of the spanning-tree protocol,

and allows for layer-3 routing techniques to be used over layer-2 links. Unfortu-

nately adoption for this technology has also been very limited, and is supported by

very few vendors.

2.5.3 UDP

UDP (User Datagram Protocol) is the connectionless transport layer used for

sending unreliable data on top of IP. It provides only a very basic transport; the

packet header contains only source/destination IP address and port numbers, data,

length and a checksum. The header is a mere 8B, compared with the 20B TCP

header. The protocol is unreliable, providing no guarantee of delivery for packets.

It does not have the concept of acknowledgement, retransmissions or timeouts. As

such any reliability mechanism not requiring direct user intervention would need

to be implemented at the library level. There are a couple of examples of this sort

of work in the literature. In [133] they introduce LA-MPI, which allows for retrans-

mission of unacknowledged and timed out message fragments within MPI running

over UDP/IP, Quadrics [134] or Myrinet [135] networks. However, as UDP is an un-

acknowledged protocol it is difficult to see how this solution can be employed for

one-sided MPI communication.

There has also been work which adds reliability into MPI running over Infini-

band’s Unreliable Datagram (UD) transport [136], and they have actually shown

that their software reliability can actually increase the performance of a molecular

dynamics application by up to 25% using the UD transport instead of Reliable Con-

nections (RC). This is due to the number of simultaneous communicators becoming

a bottleneck, needing large concurrent numbers of connections. Unfortunately it

is very difficult to envisage how implementing reliability at this high level might

translate into FPGA hardware issuing its own network transactions.

Where the connectionless element of UDP is helpful is in the sheer number of

72 CHAPTER 2. BACKGROUND AND RELATED WORK

clients that can be serviced simultaneously from a single endpoint. As the pro-

tocol is completely stateless, holding no information about in flight transactions,

source-destination flows etc. the protocol is highly scalable. This is why it is a

good transport layer for applications such as media streaming, where servicing a

large number of clients with a low latency is more important than delivery of every

single packet.

UDP is not typically used for HPC applications, due to the necessity of reliable

transfers at scale. It is conceivable to see the use of UDP for certain deep learning

applications where acceptable results can still be garnered even with the loss of sig-

nificant amounts of information. Although it is difficult to see how essential control

information could be guaranteed without using the TCP protocol additionally. Re-

cent works have shown that distributed machine learning algorithms can produce

adequate results in the presence of a high degree of errors and noise [137]. This

noise is typically introduced due to lossy compression/quantization, but in dis-

tributed algorithms can be introduced by relaxing communication/synchronization

models. While there is very little work on running these algorithms directly over

an unreliable transport, recent simulations injecting packet loss have demonstrated

that it is feasible [138].

In terms of the infrastructure requirements to achieve this, there has been pre-

vious efforts to extend RDMA to an unreliable transport. Typically only supported

over TCP, solutions such as RoCE [95] and iWARP [94] allow RDMA in Ethernet

networks. In [139] a method is provided to allow for iWARP to be used over UDP.

They modify the traditional one-sided sender based RDMA, where the sender must

notify the receiver that new data has arrived as the receiver is oblivious to the data

transfer. They introduce Write-Record, where the data which is sent to the receiver

is placed in memory as normal, but then also posts to a completion queue to no-

tify the receiver of a partial message transfer. The independent UDP packets and

notifications can be coalesced if the message is small enough, and the receiver is

2.5. INTERCONNECTION NETWORKS 73

therefore notified of every 64KB that is transferred. This solution can provide scala-

bility inherently, by removing the need for connection state information and source-

destination pair buffering. Unfortunately however they do not afford reliable trans-

fers. While this may be acceptable for some data centre workloads it is very diffi-

cult to envisage a scaled HPC application being able to tolerate packet loss in such

a manner with reliability provided at the application layer.

2.5.4 Infiniband

Infiniband is a high performance, low latency interconnect for HPC systems

which began life in 1999 as the merging of two separate projects; Future I/O and

Next Generation I/O. The Infiniband consortium members are comprised of most

of the major vendors within the HPC arena, and it is now the most popular in-

terconnect solution for HPC systems after Ethernet. However, whilst making up

27% of the systems share on the TOP500 list it constitutes over a third of the total

performance share (Figure 2.10). It is a well established and proven interconnect

solution which overcomes many of the performance and latency issues associated

with TCP/IP. Infiniband networks offer a lossless link layer, with link-level credit

based flow control to provide a lossless fabric.

Infiniband provides two sets of semantics for communicating; channel, and

memory. Channel semantics provide the standard, two-sided send/receive type

operations used in sockets programming, where the receiver must be aware of the

communication taking place. Memory semantics allow for one-sided communi-

cations using RDMA. The hosts must first register memory within the Infiniband

hardware to provide the location of the DMA buffers which are pinned in memory.

These buffers can be read or written by Infiniband, as functions are provided for

remote read as well as write. However, these semantics do not aid in the provision

of direct shared-memory operations. As Infiniband uses global and local identifiers

to route through the network, rather than direct memory addresses, there is no way

to issue direct load/store commands to Infiniband.
14As of November 2018. Image taken from TOP500 sublist generator.

74 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.10: Interconnect Families in the TOP500 supercomputers14.

2.5.4.1 Transport Types

The standard Infiniband specification allows for 5 transport types; Reliable Con-

nection (RC), Unreliable Connection (UC), Reliable Datagram (RD), Unreliable Data-

gram (UD), and Raw Datagram (RAW). The RC and UD transport form the most

typical methods of communication, and are analogous to reliable connection based

TCP, and unreliable connectionless UDP within Ethernet networks. Reliable Con-

nection sets up a connection between source and destination pairs prior to transmis-

sion, providing dedicated send and receive Queue Pairs (QPs) for these messages.

This requires large amounts of memory for many active connections, creating a

scalability issue. Attempts have been made to reduce this issue with software ser-

vices layered on top of the transport layer [140], such as the SRQ (Shared Receive

Queue), which uses a single queue at the receiver to be associated with multiple

Queue Pairs.

The Reliable Datagram (RD) transport would appear to solve all of the issues

associated with scalability, allowing a single QP to send and receive from any other

RD QP. However, this has proven very difficult to implement and as far as we

are aware no hardware implementation exists; certainly no manufacturer currently

supports this transport. Efforts have been made to extend the functionality of the

UD transport, providing reliability in software [136], [141], but these have not been

adopted as replacements for connection based approaches.

The XRC (eXtended Reliable Connection) [142] is a transport service which ex-

tends the SRQ and gives improved scalability to multi-core machines, further re-

ducing the memory footprint of the connections. Whereas the normal RC trans-

port requires P2N connections at each endpoint, XRC requires only PN, where P

2.5. INTERCONNECTION NETWORKS 75

is the number of processors per node and N is the number of nodes. This is be-

cause instead of requiring a process to have a connection to every other process, it

only requires a connection to every node. However, the problem still remains that

the memory footprint is bound by the number of connections, so scaling beyond a

certain point becomes difficult. Decoupling the transport from the number of con-

nections is possible via dynamic setup and teardown of the connections. However,

this will introduce additional latency over static, dedicated connections which are

set up during the initialisation phase of the application and remain for the duration

of the run.

2.5.4.2 Complexity

The Infiniband specification is very complex, and whilst Infiniband capable Net-

work Interface Cards (NICs) offload transport mechanisms to hardware, is not very

well suited for FPGA implementations due to its complexity. The main problem

with regards to FPGA implementation of Infiniband is the complex Verbs specifica-

tion [143], which acts as an interface to the Host Channel Adapter (the Infiniband

equivalent of an Ethernet Network Interface). This provides vendors with a set of

functions that must be implemented as a software interface to the interconnect. If

we wish for applications to be able to utilize the full Infiniband specification then

the accelerator would need to be able to communicate using this software inter-

face. Attempts have been made to implement the Verbs API on a GPU in [144], and

they found that the large overheads involved in work request generation are not

compensated by the savings in context switching; concluding that CPUs are better

suited for this task. They go further than this and suggest that GPU architectures

will need to be adapted for future systems; including an on-board processor to han-

dle IB (Infiniband) interactions. The alternative being to seek a different RDMA

capable networking hardware.

Another option would be to use a Target Channel Adapter (TCA), which has

no required software interface, and allows for a far more limited feature set to be

included (implementation defined). However (as the name suggests) the TCA is

intended as a target for I/O, often bridging between other protocols and provid-

ing specialized hardware. They are not intended to replace the HCA as a more

76 CHAPTER 2. BACKGROUND AND RELATED WORK

lightweight communications interface for accelerators, and cannot be used to up-

grade the FPGA’s status beyond that of a network attached accelerator. Current

implementations of Infiniband adapters on FPGAs only implement TCAs and have

limited capability. For example the Polybus IP core15 does not allow for reliable

transfers and is limited to 1024 Queue Pairs (over the Unreliable Connection trans-

port). Our interconnect solution avoids the issues with such a complex API as we

use a simple network protocol designed specifically to facilitate lightweight imple-

mentation within the FPGA.

2.5.4.3 Routing

Infiniband, much like IP, uses deterministic table based routing. As such it suf-

fers from many of the same pitfalls as described in Section 2.5.2.5, being unable to

route adaptively and utilize path diversity in certain topologies. Each connection

pair can only have a single path through the network. Attempts have been made

to enable multipath routing within Infiniband [145], however these solutions are

often limited by the existing specification and available hardware. They are not

implemented as genuine extensions of the protocol, and we are unaware of their

widespread adoption as genuine techniques for multipathing.

In [146] a method is proposed to enable multipath routing within Infiniband by

changing the switch architecture. The Infiniband specification states that forward-

ing tables must contain only a single output port per destination, but by changing

the internal architecture of the switch multiple ports can be used without changing

the specification. However, this has never been implemented.

An alternative which has been implemented is to assign multiple Local Identi-

fiers (LIDs) to the same physical node, and create multiple entries in the routing

table. This is proposed in [147] and implemented in [148]. This is a very simple

method to enable multipath routing but has some drawbacks. The number of ta-

ble entries required will grow very large in a network with many connections and

high path diversity, as multiple entries are required for each endpoint. The solution

works by simply using multiple LIDs for a single location and then routing to one of

15Polybus Xilinx IB Link Layer IP Core- http://www.polybus.com/ib_link_layer_website/ib_
cores_brochure_xil.pdf, accessed April 2019.

http://www.polybus.com/ib_link_layer_website/ib_cores_brochure_xil.pdf
http://www.polybus.com/ib_link_layer_website/ib_cores_brochure_xil.pdf

2.5. INTERCONNECTION NETWORKS 77

these LIDs which are actually destined for the same node. (Infiniband routes using

a Global ID, intended to represent the subnet, and a Local ID intended to represent

the endpoint within a subnet.)

2.5.5 Others

2.5.5.1 Cray Aries Interconnect

Cray’s Aries NIC/Gemini interconnect technology [102] (later acquired by In-

tel16) was formed of an ASIC which allowed for four connected nodes within a

blade via four independent Network Interfaces. As well as this they provide a

router which enabled connections in a Dragonfly [149], at the time a completely

novel topology.

They created a global addressing scheme, and the software stack enabled the use

of a hybrid MPI and SHMEM programming model, providing direct hardware sup-

port for PGAS operations. The NIC is interfaced via PCIe, with the blade designed

such that future incarnations could include CPU+accelerator configurations. Their

system allows for caching at local nodes only, as remote operations are performed

as PUT/GET, and are thus not cacheable by the initiator. They use two methods of

communication within the NIC, offering Fast Memory Access and Block Transfer, with

the fast path for single word transfers, facilitating lower-latency accesses for PGAS

shared-memory operations. They also allow for out-of-order delivery on RDMA

data, presumably to take advantage of the path diversity of the Dragonfly topology

they have used for system implementations They require only a 128-bit write into

the NIC and an x86 SFENCE instruction in order to initiate a fast transfer.

Unlike our solution, their NIC is interfaced using PCIe, and so would require ac-

celeration hardware to implement elements of the PCIe’s kernel driver if it were to

be used as a master device. Not only this but the use of PCIe in this instance makes

it difficult to envisage a simple solution in which the use of global shared-memory

could be extended to include the FPGA as an initiator, due to the area complexity

and difficult programmability that this number of protocol layers may involve. The

16Intel Makes a Deal for Cray’s Interconnect Assets- https://www.hpcwire.com/2012/04/25/

intel_makes_a_deal_for_cray_s_interconnect_technology/, accessed April 2019.

https://www.hpcwire.com/2012/04/25/intel_makes_a_deal_for_cray_s_interconnect_technology/
https://www.hpcwire.com/2012/04/25/intel_makes_a_deal_for_cray_s_interconnect_technology/

78 CHAPTER 2. BACKGROUND AND RELATED WORK

use of distributed FPGAs may also be difficult, although recent work has demon-

strated the feasibility of direct GPU-FPGA communication over PCIe [150].

2.5.5.2 Intel Omni-Path

Intel’s Omni-Path interconnect [151] is descended from Cray’s Aries, and has

been designed to enable the largest systems in both HPC and data centre contexts. It

uses both link-level and end-to-end retransmission schemes, and uses the standard

physical layer of Ethernet or Infiniband. It provides full support for the standard

Infiniband Verbs API, and supports the use of the Shared Receive Queue connec-

tion type (Section 2.5.4.1). It allows for out-of-order delivery at the interface, with

hardware reordering within the NIC. Omni-Path uses a connectionless approach,

holding no connection state in the NIC, and like its predecessor it offers a reduced

latency path into the NIC for short messages. Unfortunately only limited informa-

tion is available on this proprietary technology, but given the support for Verbs API

it is likely to suffer the same complexity issues for FPGA implementation we raised

in Section 2.5.4.2. As such they utilize an onloading model, with lots of the work

being done by the processor17.

2.5.5.3 Blue Gene/Q

IBM’s Blue Gene/Q is the third instance of their Blue Gene systems [152]. It

offers a 5 dimensional torus topology, with 10 bidirectional links emanating from

their compute nodes (each chip consists of compute nodes and I/O nodes for the file

system). It supports hybrid programming models, with multi-threading enabled

within the nodes and message passing for inter-node communication. In the earlier

L/P instances a separate network was used for collective operations, whereas the

Blue Gene Q integrates collectives operations into the router for the torus network.

The network accesses the memory subsystem via a Messaging Unit [96], which

provides direct hardware support for RDMA read and write, as well as hardware

network FIFOs which can be used for sending and receiving direct point-to-point

messages. Unlike our proposed solution there is no special mechanism for handling

17Battle of the Infinibands, Part Two- https://www.nextplatform.com/2018/04/13/

the-battle-of-the-infinibands-part-two/, accessed April 2019.

https://www.nextplatform.com/2018/04/13/the-battle-of-the-infinibands-part-two/
https://www.nextplatform.com/2018/04/13/the-battle-of-the-infinibands-part-two/

2.5. INTERCONNECTION NETWORKS 79

lower latency, small message transfers, and no method for sharing memory beyond

the boundary of a node; with RDMA being the main vehicle for communication.

However, the messaging unit features the ability for atomic operations during the

course of a transfer, effectively performing in-network processing. This can enhance

the performance of locking mechanisms and notification to work queues etc.

2.5.5.4 BXI

The Bull eXascale Interconnect (BXI) [153] has been developed by Atos for future

exascale computing, providing direct hardware support for the Portals 4 interface18.

All primitives (one-sided RDMA, as well as two-sided send/recv) are offloaded

into the NIC, decoupling computation and communication fully. A dedicated fast

path for PGAS messages is provided enabling lower latency transfers for these.

As well as this atomic operations are offloaded into the hardware, further aiding

implementation of PGAS models. The NIC contains a virtual-to-physical address

translation unit, providing the ability to directly access shared virtual memory re-

gions of remote nodes. Their router supports the implementation of many modern

topologies including Dragonfly and Slimfly [155].

BXI provides an end-to-end reliability technique offloaded into the NIC hard-

ware to bypass the need for soft retransmissions, with local flit-level link CRCs

to detect transient errors and retransmit at the link-level. Our analysis in Sec-

tion 5.3.2.3 and 5.3.3 shows that this sort of link-level retransmission is unnecessary

in our system except at the most extreme error rates. In the end-to-end scheme they

implement a go-back-N protocol to retransmit lost or corrupted packets and hold

copies of the messages in retransmission buffers. We are able to solely retransmit

lost packets as we do not require byte-ordering on reception. They acknowledge

the expense of these buffers within the NIC and aim to mitigate against this by

merging these buffers with stored connection state information. As the BXI NIC

is interfaced using PCIe, it will suffer the same complexity issues when using dis-

tributed FPGAs as we discussed in 2.5.5.1, with any attached FPGAs likely to be

viewed as a networked coprocessor.

18Portals provides a network programming interface for supporting the simple implementation
of upper-layer communication protocols such as MPI, SHMEM or UPC [154].

80 CHAPTER 2. BACKGROUND AND RELATED WORK

2.5.5.5 Tofu

Fujitsu’s K-computer uses their custom Tofu interconnect solution [156]. Tofu

uses a 6D mesh/torus topology, providing similar characteristics and bisection band-

width to the Blue Gene/Q [157]. They use link-level retransmissions in order to

reduce the latency overhead when compared with the go back-N style of TCP/IP.

Our solution differs in that our analysis shows that link-level techniques are unnec-

essary for our targeted network as we do not require go back-N for end-to-end re-

transmissions and we target a lower diameter network than Tofu (see Section 3.1.2).

In Tofu collective operations such as broadcast, barrier, and reductions are all of-

floaded into hardware. The controller supplies a method for using RDMA, and

short messages can be sent via a piggyback method; this reduces the latency of trans-

mission by embedding the payload into the transfer descriptor as it is sent to the

Network Interface [158].

2.5.5.6 FPGA Based Interconnects

There are a number of architectures in the literature which are either pure FPGA

clusters using a custom interconnect, or in which the FPGA is used as the Network

Interface implementing a custom network protocol, but not used as an accelerator.

Bluehive [159] is one such pure FPGA cluster which uses a custom reliability and

link layer; Bluelink. The system is designed for latency critical and small message

transfers in neural network applications [12], rather than targeting general purpose

HPC. It uses a short replay buffer at the sender to retransmit unacknowledged/timed

out packets. This creates a short window for in-flight transactions and requires a

point-to-point network as routing is performed hop-by-hop.

In terms of FPGA based NICs, EXTOLL aims to support both PGAS and MPI

type communications in their custom network [160], connecting to host processors

over HyperTransport. NetFPGA is an open source platform for implementing net-

work interfaces on FPGAs, interfaced to hosts via PCIe [161]. APENet+ [162] is an

FPGA based network interface designed for GPU based HPC communication in a

3D torus. They provide RDMA and enable direct GPU-GPU communications. In

all these designs the FPGA is intended solely for use as a NIC, rather than as an

2.6. OUR INTERCONNECT REQUIREMENTS 81

accelerator as well.

2.6 Our Interconnect Requirements

We have shown in Section 2.5 that there are many pitfalls to traditional network-

ing methods, and other works have demonstrated similar requirements for fully

customized solutions [12]. There are a great many solutions which provide TCP/IP

capabilities to FPGAs, and given its continued presence in commodity HPC clusters

it would seem an ideal candidate. Unfortunately as we mentioned in Section 2.5.2

TCP based reliability suffers severe performance degradation when implemented in

software, and hardware offloaded techniques are non-scalable due to the complex-

ity of the TCP protocol and the dedicated per-connection send/receive buffering

requirements. While scalable, the use of more lightweight UDP transport cannot

afford us the strong reliability we require for a scaled HPC system.

Alternative ASIC based solutions with the NIC on a separate die suffer from

the fact that PCIe connection is (typically) required. Direct chip-to-chip commu-

nications would require a fully customized ASIC and PCB design. While modern

FPGAs now typically contain hardened PCIe cores to reduce the complexity of im-

plementing solutions within the FPGA fabric, there are many downsides to the use

of PCIe. The first is that it decouples the network from the compute, creating a hard

boundary between the two. This prevents shared memory operations from extend-

ing beyond the node level. The second is that for the FPGA fabric to communicate

through PCIe to distributed resources will require an extension to the typical pro-

gramming models for FPGA design. A more traditional solution would require

CPU intervention for communications, which is something we deem unacceptable.

This fact precludes the use of Infiniband technology for FPGA based HPC, because

as we discussed in Section 2.5.4.2 it is too complex for Host Channel Adapter im-

plementation within the fabric itself.

Other works [12] have also questioned the suitability of commodity intercon-

nect solutions, arguing that the complexity of some standard solutions is unneces-

sary and the software reliability/unreliability of others is unacceptable for given

82 CHAPTER 2. BACKGROUND AND RELATED WORK

application requirements. They offer a lightweight solution with hardware reliabil-

ity, and low latency transmission for small packets. This solution is not feasible for

our needs however, as the focus on small packet sizes, while useful for their neural

computation engine is not suited for more general use [159].

2.6.1 A Custom Interconnect Design

Having examined an array of possible interconnection technologies and existing

FPGA-based HPC systems, we have determined that a custom solution is needed

to fulfill our requirements for the interconnect. The primary goal of the work pre-

sented in this thesis is to support communication between distributed FPGA re-

sources at rack-scale in a general heterogeneous HPC system with the FPGA as

the main compute element. We have shown that no existing technology can sup-

port this without imposing severe limitations on the network; either in terms of

the performance, scalability, complexity or reliability. As such we propose our own

interconnect design which is implemented within the fabric of the FPGA.

This work has been done amid the context of a set of pan-European projects [92],

[163]–[165] which aim to demonstrate a prototype heterogeneous computing sys-

tem based upon FPGA compute resources. The central tenet of these projects is that

the only viable way forward for future exascale class HPC systems is for the use of

the FPGA as the main compute element, with dense packaging and close coupling

of network/storage/memory to achieve the ambitious power envelopes to which

future systems will be constrained (≈ 1018FLOPS at 20MW). A detailed background

into the motivation and activities of these projects is provided in Appendix A.

The system our interconnect targets is a generalized HPC system, but obviously

there are some caveats to the potential use cases of FPGAs for generalized HPC

workloads [9]. As we have discussed at length in Section 2.2, there are a number of

workloads which are of course more suitable for execution in GPUs; those involving

high arithmetic computation and regular memory accesses for example. However,

our work builds upon the principle that there are a number of highly relevant (in-

deed some emerging) workloads which will benefit from tightly coupling the net-

work, accelerator and host, using a global address space allowing for distributed

and shared virtual memory between FPGA and host CPU [9]. Such workloads will

2.6. OUR INTERCONNECT REQUIREMENTS 83

be heavily control-based with pointer-rich data structures, and will need to take ad-

vantage of the high volume of on-chip memory in the FPGA to reduce the level of

communications.

The majority of applications which will be able to take advantage of such a sys-

tem architecture are those which are heavily data intensive, such as those from the

domain of data-analytics and deep learning. However in order to fully exploit the

use of this system for these applications where traditional multi-cores excel it must

be noted that advancements in many areas beyond the scope of this thesis will also

be required. The software ecosystems used to program these systems will need

advancing, as design reuse is a key concern in classes of problems such as branch-

and-bound, map-reduce and neural networks. The development of standard HPC

libraries for FPGA acceleration is required, along with simpler programmability

and scalability across distributed resources. Our custom interconnect addresses

some of these issues by making inter-FPGA communication far simpler, providing

hardware primitives for shared-memory operations across the network.

Given that we have determined that a custom interconnect solution implemented

within the fabric of the FPGA is the only way that we can satisfy all of our require-

ments. The Network Interface design we describe in this thesis advances beyond

the current state of the art by supporting the following features. Note that exist-

ing solutions may address some of these issues individually, but we are the first to

address every one in combination:

1. We offload the reliability layer into hardware wherever this is possible. (Fall-

back on software mechanisms is still required to provide application level re-

liability and tolerance for terminal network errors). This eliminates the re-

quirement for CPU intervention for network communications, vastly improv-

ing the performance over a similar software based transport layer. We of-

fer a relatively lightweight networking infrastructure which permits FPGA

networking capability to easily accommodate for accelerator resources in the

same FPGA fabric.

2. We provide hardware primitives to support an MPI+PGAS programming model,

84 CHAPTER 2. BACKGROUND AND RELATED WORK

which we identify as being the most appropriate solution for future heteroge-

neous FPGA based HPC systems, in terms of the user programmability and

performance (by breaking the reliance on the host/accelerator programming

model). We also offer a number of performance enhancements to better facil-

itate true one-sided MPI communications.

3. We allow for scalability of the transport layer to a comparatively high num-

ber of concurrent communicators. Our solution requires no static information

to be held in the Network Interface, as would be typical in a traditional of-

floaded, connection based transport layer. Instead we only require transient

information to be held regarding outstanding network transactions.

4. Inter-FPGA communication is extended beyond the limit of a single blade/chas-

sis. Many existing solutions require software initiated communication to ex-

tend beyond a given scale. Our Network Interface is capable of handling out-

of-order packet delivery. In doing this we enable the use of a lightweight,

custom FPGA based switch design19 which means that we requires no addi-

tional networking capability for communication outside of a restricted point-

to-point topology.

2.6.1.1 Hardware Offload

As we discussed in Section 2.4, traditionally HPC or data centre architectures

have used accelerators as PCIe attached coprocessors, either only capable of com-

munication between themselves and their host CPU [110], [111], or to other accel-

erator resources via limited, point-to-point networks [11], [114]. Others have de-

coupled the CPU and FPGA completely, allowing the FPGA to stand alone within

the system issuing and processing its own network transactions. The recent work

at Microsoft on their Catapult 2 system [6] provides the most advanced example of

this. This sort of architecture lends itself incredibly well to in-network processing,

and distributing compute over multiple FPGAs in the instance where a problem is

too large for a single device.

We view this sort of architecture as the prime candidate for reconfigurable HPC,

19The implementation of this switch is beyond the scope of this thesis, but is detailed in [32].

2.6. OUR INTERCONNECT REQUIREMENTS 85

as the FPGA should be regarded as the main compute element within the system,

and the network should be as tightly coupled to compute and storage as possible

to minimize data movement. Transforming the communication element into a pro-

grammable compute element which can utilize in-network processing and dataflow

style computation is necessary to reduce the power consumption and push com-

pute closer to the memory and storage resources. Such an architecture opens up

the possibility of Near Data Processing (NDP) [122], [123].

In order to provide the FPGA with the capabilities it needs for tighter coupling

with the network a full hardware-offload for reliable transmission is required, by-

passing the CPU in order to maintain performance with direct FPGA-FPGA com-

munication. Offloading the transport layer into hardware has long been known

to solve the performance issues associated with software based transports, but in

this instance it is also necessary to disaggregate the FPGA from the CPU. Going

through the CPU has been shown to be detrimental to the achievable throughput

and latency within the system. As well as this the use of the CPU is antithetical

to the idea that the FPGA should be viewed as a stand-alone resource, decoupling

the CPU from the FPGA completely and allowing scaling of the FPGA resources

independently of the CPU.

2.6.1.2 A Novel Transport Layer

The primary issue with traditional connection based transport layers is that

large numbers of short lived communication channels (typical of many HPC work-

loads) are not well supported by this model. Establishment of the connection state

information at sender and receiver are required prior to data transfer, and teardown

is required to free this state. This means that additional latency is seen due to the

additional handshaking required to continually establish and teardown these con-

nections.

A related problem to this is the fact that if a great number of these connections

are simultaneously created but are left open in order to reduce the latency of fu-

ture communications, then the burden on the memory utilization of the host can

become very expensive. Typical one-to-all (scatter) type collective communications

seen in many HPC workloads can create enormous numbers of these connections

86 CHAPTER 2. BACKGROUND AND RELATED WORK

simultaneously, making connection based transport layers unsuitable at scale.

Connectionless transport mechanisms forgo this stored state information and

explicit handshaking which ensures strict parameters for guaranteed delivery and

ordering. Instead they force the application or software library to deal with any

erroneous or missing data at the receiver. This approach allows for much lower

overhead on communications but is obviously incompatible for applications which

require a lossless fabric. Typically it is streaming applications which can handle

missing information or reduced precision via interpolation or error detection/cor-

rection are able to take advantage of connectionless transport protocols.

Our interconnect is able to provide the high performance, hardware based relia-

bility of a connection based transport layer, without any of the explicit communica-

tion overheads and static state information overheads associated with them. We can

offer this because within our target system the destination of each network trans-

action is simply a memory address located within a virtual, global address space.

Since every network transaction is simply an extension of the system-bus protocol,

we need no information regarding source-destination pairs, target buffers etc.

The only information required which needs to be stored in the Network Inter-

face is transient information regarding in-flight transactions which have been is-

sued to the network20, which is used to rebuild failed transfers. In doing this the

scalability of the transport layer is no longer determined by the number of possi-

ble concurrent communicators, but on the number of concurrent in-flight network

packets from a given source node. Many of the traditional issues regarding or-

dering, packet sequencing and such are also eliminated simply because we write

to target memory locations using RDMA, rather than writing to target connection

buffers. In this manner the traditional “connection” between source and destina-

tion is made implicit within the transfer, as RDMA buffers are set up at initialisation

time and determination of the state of these buffers is done at the application layer,

completely independent of the transport and reliability mechanisms.

20Our performance enhancements also store information regarding the progress of in-flight
RDMA transfers being received.

2.7. CONCLUDING REMARKS 87

This solution offers reliability without the scalability issues of traditional hardware-

offloaded reliability layers, and this is perhaps the most important overarching con-

tribution of this work. This is because the requirements for efficient distributed

FPGA based communication demand such a solution. One which offers the ability

to have the rich feature-set of a traditional HPC interconnect, with the low hardware

overheads of a connectionless transport layer and complete independence from the

CPU. In separating the reliability aspect of the transport layer from the connection

aspect which is made implicit in the RDMA or shared-memory transfer, we vastly

simplify the operation of the Network Interface. In this manner, in the points at

which we refer to our transport layer as being connectionless within this thesis, we

mean to say that there is no requirement for the hardware to store and maintain

static connection information.

2.7 Concluding Remarks

We have seen in this Chapter that burgeoning application domains and ever

tighter power constraints are turning systems architects toward FPGAs. While

GPUs are capable of providing very high floating-point performance, the FPGA

has been shown to outperform GPUs in terms of their performance-per-watt, as

well as showing promising performance for more data-intensive workloads. We

have shown that if the FPGA is to be effectively utilized then it must be regarded

as the main compute unit within the system, with the CPU being used for simple

synchronization and management tasks.

We argue that a custom interconnect solution providing hardware primitives

for NUMA accesses and RDMA is the most efficient and effective option, given the

problems with existing FPGA based interconnects and the communication patterns

expected for general purpose HPC on distributed FPGAs. The programming model

for modern FPGAs must be easily able to drive the Network Interface in order to

promote programmability and portability between platforms.

Therefore our custom interconnect solution must offload the capability for reli-

able network transfer onto the hardware of the FPGA (or at least out of the software

of the CPU). However, in order to enable this on the FPGA and maintain scalability

88 CHAPTER 2. BACKGROUND AND RELATED WORK

of the solution we must ensure that no connection state is held or source-destination

pair transmission buffers are required in order to maintain reliability.

We have demonstrated the benefits which arise from tight CPU-FPGA memory

coupling, as well as from the full decoupling of the CPU and FPGA with regards

to network communication beyond the node. In this respect we see that there are

many prior works which enable either one of these requirements, but very little

work in synthesising these two solutions. Our Network Interface must therefore

enable the FPGA fabric to communicate simply with remote memory and accel-

erators, using the same communication models as it communicates with the local

CPU.

This solution fits the model described in Section 2.4.6, and is something that

no available solution currently offers. Other shared memory systems containing

FPGA accelerators such as [105] are either fixed in their scalability and/or topol-

ogy among the FPGAs [116], inhibiting the use of distributed FPGA resources in a

dataflow architecture. Typically they also do not provide for disaggregation of the

FPGA from the CPU resources [117]. Other network-attached FPGA systems such

as [119] which allow this decoupling typically have limited scalability or they do

not allow for low latency access into shared memory since they rely on standard

protocols such as TCP/IP or UDP. Those solutions that offer custom and dedicated

hardware offloading for reliability are limited in their scope, typically providing

only lightweight point-to-point networking capability [11].

Chapter 3

Network Interface for HPC

Communications

In Sections 2.4 and 2.5 we discussed the limitations of current interconnect tech-

nologies with regards to wider uptake and effective exploitation of FPGA based

HPC systems. We argue that current solutions and standardized network protocols

are inherently unworkable. This is mainly due to architectural designs causing per-

formance or latency issues (such as the use of a software based transport layer) or

scalability and reliability problems due to the nature of the protocols themselves

(using connection states for reliable transfers).

Given this viewpoint, the design of a new custom Network Interface (NI) is

proposed and described within this chapter. This NI uses a custom lightweight

network protocol (which solves some of the issues discussed previously), and aims

to address the requirements to support two distinct hardware primitives for HPC

communications; remote shared memory operations and RDMA transfers. These

two primitives are supported to enable two very disparate communication types to

use the same physical interconnect (small low latency synchronization messages,

and larger high bandwidth data transfers). One of the driving factors behind the

design is the need for a high performance FPGA based interconnect which en-

ables tight coupling between the FPGA fabric and the network, but maintains low

enough logic overheads to enable effective accelerators to be placed within the fab-

ric as well. These are key features for enabling the uptake of FPGA devices for

HPC.

89

90 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

This Chapter provides an overview of the proposed system architecture and

topology, and the most basic properties of the Network Interface and switch. We

discuss the interfacing required between the system bus, NI and network, and show

our segregated traffic paths for shared memory and RDMA operations with an anal-

ysis at the end of the Chapter justifying our design decisions.

3.1 System Architecture

It is obvious that the Interconnection Network is one of the major limiting fac-

tors in system scalability, performance and power consumption. As overheads on

communication and synchronization become heavier as the system scales, main-

taining a high bandwidth, low latency solution is key. Currently the largest HPC

systems are supporting in the order of a hundred thousand nodes, and this is ex-

pected to rise to the order of a million endpoints [166]. Scaling many of today’s

fixed topologies to this level is simply not feasible, especially given that network

costs and power consumption are among the main concerns in practical deploy-

ments of large scale systems [167], [168]. Supporting a tiered interconnect with

hybrid topologies is viewed as an essential way to keep power consumption and

costs under control without sacrificing performance [169].

3.1.1 Hierarchical Interconnect

The targeted system architecture is based around the one which is used in the

ExaNeSt project [163], which uses a tiered interconnect solution and offers topol-

ogy hybridization, with a fixed lower level topology at the node and within the

blade and flexibility in the upper tiers. Figure 3.1 shows this system architecture.

Each node (QFDB, Quad FPGA Daughter Board) is comprised of four Xilinx Zynq

Ultrascale+ FPGAs (detailed in Section 3.2.1), connected directly in an all-to-all

fashion with high-speed serial links. Within the mezzanine the nodes are connected

in a fixed, direct torus topology which allows for lower latency communication be-

tween neighbouring nodes. The upper tiers of the network will be formed from

indirect, high radix switches which are able to interconnect large numbers of these

lower tier networks while keeping the overall diameter of the system low. This has

3.1. SYSTEM ARCHITECTURE 91

Figure 3.1: Tiered system architecture of ExaNeSt.

been shown to be an effective means of scaling the system when compared with

extension of the torus beyond the blade. We demonstrate this enhanced scalability

and reduced cost in [170], although the work is beyond the scope of this thesis.

3.1.2 Network Topologies

As mentioned above, the chosen topology is very important for the performance

of the system, as it directly affects the latency of communication and the available

92 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

...

Figure 3.2: Possible topologies for the system. One quarter of a 4-Ary 3-Tree Fat-
Tree (left) and Dragonfly (right).

bandwidth. In the upper tiers of the network our system targets modern, low diam-

eter topologies such as the Fat-Tree and Dragonfly. Examples of these topologies are

shown in Figure 3.2. On the left is a portion of a fully connected Fat-Tree network

with 3 tiers and 4up/down links per switch (4-ary 3-tree). Table 3.1 demonstrates

the average number of hops required to reach any destination node from a given

source node in varying scales of network. As we can see the high radix, indirect

solutions– Dragonfly and Fat-Tree– have superior scaling properties.

Table 3.1: Average distance to reach any node in different network topologies at
scale, taken from [171].

Nodes 3D
torus

BGQ
(5D)

Tofu
(6D)

Fat-
tree
(R32)

Fat-
tree
(R64)

Dragon
fly

1,024 7.50 6.00 6.53 4.46 3L 2.94 2L 3.50
2,048 9.46 7.00 7.48 4.83 3L 2.97 2L 3.62
4,096 12.00 8.00 9.21 4.87 3L 4.48 3L 3.69
8,192 15.00 9.00 11.21 4.93 3L 4.74 3L 3.72
16,384 19.00 11.00 10.43 6.26 4L 4.87 3L 3.73
32,768 24.00 13.00 16.21 6.73 4L 4.94 3L 3.74
65,536 30.23 15.00 20.54 6.86 4L 4.97 3L 3.75
131,072 37.99 17.00 24.37 6.97 4L 6.48 4L 3.75
262,144 48.00 21.00 30.24 8.47 5L 6.74 4L 3.75

3.1. SYSTEM ARCHITECTURE 93

3.1.3 Network Switch and Addressing Scheme

Our system employs an FPGA based switch design, presented in [32]. This has

been developed to enable flexibility in the topology, scalability when implemented

within the fabric of the FPGA, and support our custom network protocol. Our

switch utilizes a geographic addressing scheme to route packets to their destination

arithmetically, using the upper 22 bits of the address (allowing for over 4 million

possible endpoints). Two routing algorithms have been developed which enable

Dragonfly or Fat-Tree topologies to be easily constructed.

The switch is able to eliminate the need for costly routing tables due to the arith-

metic routing scheme, making it highly suitable for FPGA based implementations.

It also allows for multiple endpoints to be reached directly between interconnected

FPGAs, in a torus topology for the lower tiers for example.

One of the main implications of the design of the switch (specifically the lack

of routing tables) on the Network Interface is that it allows for fully adaptive mul-

tipath routing, taking full advantage of the path diversity of the network [172].

What is meant by this is that any packet can take any path through the network

to reach its destination. In standard interconnect technologies such as Ethernet or

Infiniband this is not a simple task, rendering topologies with high path diversity

ineffective [171].

Typically a table based routing mechanism will perform a lookup on a destina-

tion and output the packet to a particular port depending on the lookup. In our

system if the arithmetic routing scheme sees that several ports can be utilised to get

to the same destination, one will be chosen at random1. The ability to utilize the

path diversity of the network is desirable for balancing load over the links. While

multiple paths can be taken in Ethernet or Infiniband solutions these are typically

not able to balance load optimally. This is because HPC and data centre traffic

tends to be non-uniform and because any single flow/connection between source

and destination is routed deterministically, using a single path for all packets. Only

different flows can be sent along different paths. This load balancing issue caused

by non-uniformity of traffic is particularly exacerbated by recent developments in

1Minimal routing is known not to balance traffic very well in Dragonfly topologies for example,
so randomized Valiant routing is typically used [173].

94 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

unifying the storage and network traffic on the same physical interconnect [174].

However, the ability to utilize fully adaptive routing within the network has

a significant impact on the design of the Network Interface, due to the ability for

Out-of-Order (OOO) packet delivery. Since forwarding happens in the switches on

a packet-by-packet basic arithmetically, ordering cannot be guaranteed. Techniques

such as employing reorder buffers [175] can be used to alleviate this problem, but

are expensive in hardware. In Chapter 4 it is shown that our system needs no re-

ordering for OOO packet delivery in all but the most exotic circumstances, and that

the novel, hardware-offloaded transport layer we present is sufficient for maintain-

ing memory consistency despite the properties of the network.

3.1.4 Unified Interconnect

The interconnect within HPC systems has been shown to consume as much as

35% of the total system power even when idle [125]. It is also the case that tradi-

tional HPC systems employ a number of separate networks; a network for commu-

nications and data, a separate network for storage, and maybe one for management

traffic also. This was typically tolerated due to the fact that storage has traditionally

had very high latency access. This meant that storage can be kept in separate phys-

ical blades/racks from the compute nodes, with the increased access latency being

much less of an issue. However, due to the fact that modern persistent storage de-

vices2 can now provide accesses in the order of 10µs, there is increased pressure to

place the compute closer to storage, giving us hyper-converged architectures.

Given the fact that the interconnect consumes so much power and we can utilise

hyper-converged solutions, the system will therefore use a single unified intercon-

nect to carry all network traffic; storage, data, control and inter-processor commu-

nication. This will create a more energy efficient interconnect, purely due to the fact

that there will be less physical cabling and transceivers to consume static power.

Also given that we provide an FPGA based solution this opens up the possibility of

placing processing elements within the path to the network and storage elements,

further reducing data movement costs. Recent work has shown the feasibility of

2Intel Optane SSD DC P4800X Review- https://www.storagereview.com/intel_optane_ssd_
dc_p4800x_review, accessed April 2019.

https://www.storagereview.com/intel_optane_ssd_dc_p4800x_review
https://www.storagereview.com/intel_optane_ssd_dc_p4800x_review

3.2. HARDWARE PLATFORM 95

this solution [176], showing a solution which allows access to storage from the

FPGA fabric without the involvement of the processor. What this unified, single in-

terconnect means for our work on the Network Interface is that MPI traffic (RDMA)

and PGAS (shared memory) traffic will both be issued over the same fabric, using

the same packet formats and protocols.

3.2 Hardware Platform

As mentioned above in Section 3.1.1, each of the lowest tier nodes is comprised

of four interconnected FPGA based Multi-Processor System-on-Chips (MPSoCs),

with these nodes providing a number of uplinks into the higher tiers of the inter-

connect. In this Section we will provide an overview of the Zynq Ultrascale+, and

discuss the merits of using this modern MPSoC device.

3.2.1 Xilinx Zynq Ultrascale+

While the design of the NI facilitates the use of distributed FPGAs completely

decoupled from any CPU, the work presented across the entirety of this thesis is

implemented within Xilinx ZCU102 development boards3. The ZCU102 board con-

tains a Xilinx Zynq Ultrascale+ FPGA as well as a number of IO interfacing tech-

nologies, although for our work we only make use of the four SFP+ cages available

for interfacing between the boards using a number of the 16.3Gb/s transceivers on

the FPGA device.

The Xilinx Zynq Ultrascale+[177] (shown in Figure 3.3) is a cutting edge MPSoC

(Multi-Processor System-on-Chip), containing a hardened processing system (PS),

based around a quad-core ARM-v8 A53 with shared L2 cache, dual-core ARM-v7

Cortex-R5 processor, as well as a wealth of reconfigurable logic (PL), all on the same

die (full system details in Table 3.2). The FPGA fabric interfaces with the PS via var-

ious AXI master and slave ports (the AXI interface is discussed in Section 3.3.1 and

detailed in Appendix C). A number of these are internally connected to the Cache-

Coherent Interconnect, enabling the user to create caches within the programmable

3Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit- https://www.xilinx.com/products/
boards-and-kits/ek-u1-zcu102-g.html, accessed April 2019.

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

96 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

Table 3.2: Specification of the Zynq Ultrascale+ device.

Part Number ZU9EG
Processor 4x ARMv8 A53 (<=1.5GHz)
cache L1- 128KB Private Instruction & Data

L2- 1MB Shared
Real-Time Core 2x ARMv7 Cortex-R5 (<=600MHz)
cache L1- 32KB Private Instruction/Data

128KB Private Tightly Coupled Memory
Memory 4GB DDR4
FPGA ZU9EG
CLB LUTs 274,080
CLB Flip-Flops 548,160
Block RAM 32.1Mb (912x36Kb)
DSP Slices 2520
Tranceivers 24x 16.3Gb/s

logic of the device and enable coherent access to distributed shared memory.

There are three main reasons we target this device. The first one is that we

wish to allow for the hybrid decoupled network/tightly-coupled system memory

architectural model described in Section 2.4, so we target a modern SoC device

which can easily provide system-bus access to the FPGA resources. The choice

between Altera and Xilinx SoCs which both provide this functionality lies with the

inclusion of the hardened ARM processor cores. There has been much excitement

recently surrounding the use of smaller, lower power cores for more energy efficient

High Performance Computing [178], and as the supporting tools mature for 64-bit

ARM processors, their processors are now being adopted at even the largest scale4.

The third reason we target such a device is due to the fact that these modern

FPGA based SoCs such as the Xilinx Zynq Ultrascale+5, and the Intel Stratix 106

have made a crucial step forward over previous technology toward adoption in

HPC and data centre contexts; that is the inclusion of an IO Memory Management

Unit (IOMMU). Traditionally used for system protection against malicious or faulty

peripheral devices [179], providing a memory management unit to peripheral de-

vices can be used to extend virtualization to the fabric of the FPGA, enabling a

4Fujitsu Begins Production of Post-K- https://www.fujitsu.com/global/about/resources/

news/press-releases/2019/0415-01.html, accessed April 2019.
5https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html,

accessed April 2019.
6https://www.intel.com/content/www/us/en/products/programmable/soc/stratix-10.

html, accessed April 2019.

https://www.fujitsu.com/global/about/resources/news/press-releases/2019/0415-01.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2019/0415-01.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.intel.com/content/www/us/en/products/programmable/soc/stratix-10.html
https://www.intel.com/content/www/us/en/products/programmable/soc/stratix-10.html

3.2. HARDWARE PLATFORM 97

Figure 3.3: Block diagram of the Zynq Ultrascale+, taken from [177] (pp. 18).

98 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

unified, global address space [180]. Until recently FPGA vendors gave this feature

little attention. However, the paradigm for accelerator based computing has begun

to shift away from the traditionally decoupled PCIe attached coprocessor toward a

fully integrated solution. One in which the FPGA fabric and CPU are tightly cou-

pled to the same shared memory space, thus enabling lower latency and higher

memory bandwidth to the accelerator, as discussed in Section 2.4.

In a complete system the function of the IOMMU is imperative to the function-

ing of a large-scale globally shared address space. However, the work to enable

this functionality is outside of the scope of this thesis, which focuses on the inter-

connect and the ability of the FPGA to operate independently in an efficient and

reliable manner. As such, we provision for the use of a distributed, shared-memory

system by use of a small region of physical memory, mapped into a user-space

application’s virtual memory. Appendix B details how this workaround is set up

using the mmap() system call, and also discusses the addressing limitations which

are faced in using the Zynq Ultrascale+ device.

3.2.2 ARM Cortex-A53

The ARM A53 processor is a dual issue, in-order processor [181]. The Zynq

Ultrascale+ contains four of these cores, which share interfacing and resources

within the FPGA fabric. While the development of highly complex cores has been

instrumental in attaining high single threaded performance, they are notoriously

power hungry [182]. In order to achieve greater energy efficiency there have been

suggestions about using lower power cores with less aggressive techniques for ILP

(Instruction Level Parallelism), sacrificing performance for efficiency [125], [183],

[184]. In the context of a HPC system in which the FPGA is viewed as the main

compute element, this sacrifice seems appropriate.

Since each core can only issue a maximum of two concurrent instructions, and

the pipeline must remain in-order, this causes an enormous latency penalty for re-

mote memory accesses, as the pipeline must stall until the response is returned. We

implement a technique for alleviating this issue on remote write operations, pro-

viding an early acknowledgement before the actual completion of the operation. This

mechanism is discussed in detail in Section 6.1.

3.2. HARDWARE PLATFORM 99

This issue may raise concerns about the use of such a simple processor (which

is simply a product of the SoC we currently use), and while it certainly makes the

issue of remote operations more problematic the issue could still occur on other

processors. Modern superscalars are designed to mask a limited amount of local

memory latency, but will readily stall if latency is more than a few tens of cycles. As

the latency for remote memory accesses is far in excess of the latency for instruction

issuing, the maximum depth for out-of-order transfers could still easily be reached.

In order to enable this mechanism of offering early acknowledgements for shared

memory operations some modifications are required to the NI. Certain operations

must be blocked in order to maintain consistency. This is implemented within the

transport layer and is discussed in Section 5.2.2. A discussion of the implications of

the relaxed memory model on the network is given in Chapter 4.

3.2.3 Multi-Gigabit Transceivers

The Zynq Ultrascale+ MPSoC has several different transceiver types (GTH-

/GTY/GTR), with different properties and performance characteristics. The GTH

transceivers used for the high speed serial links in our system are set up to run with

a line rate of 10.3125Gb/s, with a full duplex link- parallel lanes for TX (transmit)

and RX (receive). The transceivers are grouped into banks of four; called a Quad,

each containing TX and RX lines, along with shared reference clock IO pins. One

such Quad is connected to a 2x2 SFP cage which provides access to switches and

other endpoints in our system.

Note- For testing in many parts of this thesis we use a direct connection between two

nodes or have the transceivers in loop-back, in order to more accurately take timing mea-

surements from a user-space application. This is because of the current lack of a distributed

run-time for the system. However, experiments have been conducted in which the NI and

switches are used in conjunction, in order to demonstrate that these two IPs are completely

functionally compatible (see Section 3.4.2, 3.4.3 and 6.1).

The reference clock is typically set up in Input Mode, in which the reference clock

input is used to clock the transceiver. There is also available an Output Mode, in

which the transceiver is clocked from another transceiver using a recovered clock

(RXRECCLK-OUT) [185]. The resulting output clock can then be routed to use in

100 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

other locations.

A MAC (Media Access Control) layer is required prior to serialization in order

to add preamble, end of packet sequences and idle cycles, required for ensuring

data integrity and synchronization of the link. Following this the information is

serialized and transferred across the link. For this work we use the Xilinx Aurora

64/66b MAC and PHY IP [17]. Aurora is a link layer communications protocol

developed by Xilinx. It can also be used with 8b/10b line encoding, but in order to

achieve lower packet overheads we use 64b/66b encoding, reducing the overhead

from 24% to ≈3%.

3.3 Overview of Network Interface Design

The most basic function of the Network Interface is to act as a bridging mecha-

nism between the on-chip memory-mapped AXI (the processor’s system bus pro-

tocol), and the custom protocol we use for the wider network. In this section we

discuss these protocols and the design of this basic functionality, and show how the

traffic into the NI is segregated depending on the type of operation being performed

(an RDMA operation or a shared-memory type operation).

Figure 3.4 shows the block level design for the complete networking IP stack

on the Zynq Ultrascale+. All of the hardware used to support the 10G network-

ing capability is implemented within the reconfigurable logic (PL) of the device. A

single AXI interface port (M_HPM0_FPD) is used to access the NI from the process-

ing system (PS); providing the functionality for issuing RDMA transfers, as well as

directly performing remote shared-memory operations.

3.3.1 AXI Interfacing

The static regions of memory mapped into user-space which give access to the

NI and other hardware within the FPGA fabric are interfaced with AXI ports. ARM’s

AMBA (Advanced Microcontroller Bus Architecture) AXI (Advanced eXtensible In-

terface) protocol [186] and its coherent extensions (ACE) are interface standards

3.3. OVERVIEW OF NETWORK INTERFACE DESIGN 101

4x10G

SFP

DATA

SHM

WORK/

CONFIG

SHM

RDMA

DATA

WORK

WORK/

CONFIG

SHM

DATA

SHM

DATA

Figure 3.4: Block level system design for the networking IP stack.

which are suitable for use in high performance on-chip interconnects. As SoC de-

signs increase in complexity, standard interfaces are adopted to increase productiv-

ity and design reuse. As such AXI has been adopted by Xilinx and forms the back-

bone of communication between the Processing System and Programmable Logic

fabric in their "Zynq" product line, as well as in much of their IP catalogue. Given

that certain characteristics of the AXI protocol affect the design of the Network In-

terface, a brief overview of the protocol is given in Appendix C.

Unfortunately the AXI protocol, while being highly suitable for on-chip com-

munications is inappropriate for communication over a much wider distance. This

is primarily due to the lack of support for retransmission or bit error checking in

the standard. As well as this AXI has a very wide and awkwardly sized bus width,

not simply amenable to transmission over serial links using typical physical layer

encodings such as 8/10b or 64/66b [187]. It is for this reason that one of the main

functions of the Network Interface is to serve as a bridge between AXI and the

custom network protocol which has been defined for use across the inter-chip in-

terconnects within the system.

3.3.2 Network Protocol and Bridge

The custom protocol for the off-chip network consists of a 128-bit header, fol-

lowed by the payload (if any), and then a 128-bit footer. Each flit of the packet is

64-bits, as this is the maximum that can be clocked into the 10G ports per cycle.

Widening the datapath to 128-bits, while allowing for a lower clock rate inside the

NI, would increase the area footprint. The requirement for a smaller overhead in

102 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

Table 3.3: Packet types and their function.

Packet Type Operation
AR Shared memory operation, read request.
R Shared memory operation, read response.
B Shared memory operation, write response.
AW Shared memory operation, write request
RDMA_WRITE RDMA write operation, request/data

packet.
RDMA_WRITE_REGISTER RDMA write operation, first packet of a

transfer, to be registered for quick notifica-
tions (see Section 6.2).

RDMA_ACK RDMA write operation, response packet.
COMPLETION_NOTIFICATION Completion notification packet used be-

tween local and remote NI to indicate a
completed RDMA transfer for unregistered
transfers.

the FPGA is regarded as more important.

The maximum payload size for a single packet has been set to 512B. This means

that the largest payload constitutes 64-flits of data (64 × 64−bits= 512 Bytes). This

incurs additional packet overhead in the form of packet header and footer ((4/68)×

100 ≈ 6% overhead) over larger packet sizes. For example, given a maximum pay-

load size of 4KB (a full page on ARM-v8), the packet overhead would be a minus-

cule 0.78% ((4/516)×100 = 0.78%). However, having such large packets traverse the

network not only increases the buffering required within the switching elements

and the NI, but could cause higher jitter for small, latency critical packets. Even us-

ing priority based flow-control this may occur if a large packet has been allocated

the switching resources before a small packet arrives. For this reason we use a

smaller maximum packet length. This will also enable better load balancing within

the network, as switching resources will not be held as long. This is particularly

true given that the system allows for packet level multipath routing.

In the header is contained information regarding the target node and address,

the packet type (see Table 3.3), payload size and error correcting code, as well as

other information. The footer contains the source node ID, the ID for the transac-

tion, a packet level CRC code, and other fields relating to the reconstruction of the

responding packet. Note that the full source address is not required in the footer,

and is not provided by the system bus protocol which initiates the transaction. Once

3.3. OVERVIEW OF NETWORK INTERFACE DESIGN 103

a response is routed back to the initiating node a transaction ID is then used to route

back through the on-chip interconnect to the actual source of the transaction.

3.3.2.1 Bridging

To translate between the on-chip AXI protocol and the custom, off-chip network

protocol used over the 10G serial links of the nodes and switches, four distinct

controllers are implemented within the NI:

• Sender

– Memory-mapped AXI request to network packet.

– Memory-mapped AXI response to network packet.

• Receiver

– Network packet to memory-mapped AXI request.

– Network packet to memory-mapped AXI response.

These are formed of a set of independent state machines which parse incoming

data, direct it to the correct location based upon the type of operation encountered,

and initiate/clean up any tasks associated with the transaction. These tasks include

jobs such as keeping track of incoming requests in order to build the corresponding

response packet, providing notifications for completed transactions, or checking

the validity of the packet. The action of the controllers is described in detail in

Appendix D.

3.3.3 Inbound Messages and Response Packets

Given that the AXI response channels are routed back to the source using ID

signals rather than a source address, information must be stored within the NI to

enable the response packet to be built. When an inbound request packet arrives

from the MAC a high-speed CAM (Content Addressable Memory) is used to issue

a new ID for the transaction, as well as storing the original ID and the coordinates

of the geographic address for the source node. In this way the response can be

routed back to the source node, and then from the source NI it can be reformed

104 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

Original

 Channel ID
New

Channel ID

Source Node

Coordinates
Transaction

Count
Available

0x0FFE01 0x0124 0x0 0x1 FALSE

0xXXXXX 0xXXXX 0x1 0x0 TRUE

0xXXXXX 0xXXXX 0x2 0x0 TRUE

0x0FFE01 0x0220 0x3 0x4 FALSE

...

0x08EE00 0x0124 0x3

RESPONSE

0x02200x1

REQUEST

0x0FFE01

Figure 3.5: CAM table entries for building response packets.

as an appropriate AXI response. A CAM structure is used so as not to incur any

latency penalty on forming the request packet; issuing the new ID within a single

cycle.

Figure 3.5 shows the structure of the CAM. Upon the arrival of a remote request

packet, the incoming source node and ID are checked against the contents of the

CAM. If a matching entry already exists in the table then the same ID is issued

to the new transaction, and the count is incremented in the CAM on the number

of outstanding transactions. This is required, as it is possible to see multiple out-

standing transactions with the same ID from the same source in quick succession.

For example if the DMA issues many packets, or some data structure is sent using

several shared memory operations.

If there is no corresponding entry already in the table, then a new entry is added

to the CAM. If the CAM is full then the transaction must be held until an entry be-

comes available. The CAM is very small, with only 8 entries. This value was chosen

because large CAM structures are not feasible on an FPGA device due to their area

overheads. As well as this the expected number of concurrent transactions with

separate IDs is expected to be very small, as the round trip latency between the NI

and DRAM is only ≈30 cycles. This means that only under extreme circumstances

such as many-to-one collective operations with a large number of very short mes-

sages arriving in bursts could this become an issue. While the work presented here

3.3. OVERVIEW OF NETWORK INTERFACE DESIGN 105

does not treat collective operations in any special manner in the hardware, a sim-

ple solution could be sought segregating collective operations from this mechanism

using a new entry in the packet type field in the header.

3.3.4 Shared Memory Communications and RDMA Transfers

The Network Interface has completely separate AXI interfacing for issuing shared-

memory, PGAS operations into the network than it does from standard RDMA

transfers. The decision to have a segregated datapath through into the network

comes from the disparate requirements of these communication models.

3.3.4.1 Shared Memory Operations

Reducing the latency of shared memory operations is critical as these often

form synchronization tasks such as barrier and fence operations, and typically with

small message sizes. Having the overhead (regardless of how low) of setting up an

RDMA transfer for small operations such as these is unnecessary as the system will

use a global virtual address space, with the uppermost bits identifying the target

remote node’s physical location geographically within the system. In doing this

the processor can issue direct load/store instructions into the NI. These are pre-

sented as standard memory mapped AXI transactions at the interface between the

PS and PL. The concept of this utilization of standard load and store operations into

a global address space is presented in [15]. Figure 3.6a and 3.6b show how the setup

for an RDMA transfer differs in terms of complexity from a simple read/write into

the global address space. We evaluate the performance seen in our system when

issuing these two communication types in Section 3.4.1.

3.3.4.2 RDMA Transfers

In order to perform RDMA transfers the user must write into a work buffer

inside the NI. The DMA engine is the AXI Central Direct Memory Access IP core

from Xilinx [16], which pulls and pushes memory mapped data. It is set up during

initialization to continually pull work items from the NI whenever there is work

to be performed. In doing this we are able to catch and manipulate the transfers

106 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

3. AW/W

(a) Setup for an RDMA transfer, requiring multiple AXI writes and a read from main mem-
ory.

(b) Performing a shared memory operation (STR instruction) directly into the Network In-
terface.

Figure 3.6: RDMA setup and shared memory operation within the Network Inter-
face.

within the NI, which allows for tracking of the RDMA operations. This is used as

the basis for forming the hardware-offloaded transport layer, described in detail

in Chapter 5. Once the transfer has successfully completed a notification is placed

on a queue, which the local process can then poll to confirm that a transfer has

completed.

Figure 3.7 shows the data which must be written into the work queue inside the

NI to initiate a DMA operation. A 64-bit source address must be written, followed

by a 64-bit destination address, and finally a control register must be written. This

control register contains the number of bytes to be transferred, as well as setup

information regarding the transfer addressing mode, interrupt thresholds etc.

There are currently two distinct buffers; one for work originating from the pro-

cessing system, and one for work originating from the FPGA. This is done to allow

for notifications to be built and provided to the correct initialiser. While this suffices

for the purposes of this thesis within our prototype, it means that currently there is

no method of assigning the same physical work buffer to multiple logical buffers.

3.3. OVERVIEW OF NETWORK INTERFACE DESIGN 107

SRC ADDR

DEST ADDR

CTRL/STATUSCPU

DRAM

RETRANSMISSIONS

CPU RDMA

ACCEL RDMA

AXI

READAXI

READ

AXI

WRITE

AXI

WRITE

Figure 3.7: Mechanism for adding transfer descriptor to work queues within the
Network Interface.

Only one process may currently take ownership of each work buffer. This can be

easily remedied by returning an operation number which is assigned to the work

item to the issuing process. This can be placed with the notification to associate a

process to the completion of a specific work item.

3.3.4.3 API

The NI is configured and accessed using several user-space functions which al-

low an application to set up data transfers and confirm their success. A simple no-

tification queue is currently used within the NI, forcing the user to poll the queue

until a transfer has completed. In the event of a catastrophic failure in the system

such as multiple failed delivery attempts, an interrupt must be raised to the system.

This should be used to force the system into a checkpoint-restart procedure or data

migration [188]. Tables 3.4 and 3.5 give an overview of the functions available to

the programmer, and their action within the NI. All instances of map* refer to the

base address at which the local FPGA resources are mmap()’ed into the application’s

memory space. The accelerator related functions are specific to the dummy accel-

erator block we use to test our network for direct inter-FPGA communications in

Chapter 7.

108 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

Table 3.4: Data structures used in the API for the networking stack and accelerator
blocks.

Structure Members
RecvStruct uint64_t n: number of bytes received, void* data: location in

memory of data that has been received.
AccelConfig

Struct

uint64_t intermediate_bram_addr: location to put re-
sults from work that has been performed, uint64_t la-
tency_computation: artificial latency added to dummmy
accelerator block (see Chapter 7), uint64_t dma_queue_addr:
physical location of the RDMA work queue within the
Network Interface, uint64_t remote_bram_addr: uint64_t
remote_work_dest_addr: physical location of a remote
accelerator work queue, uint64_t remote_accel_bytes: num-
ber of bytes which are to be snet to remote accelerator via
RDMA. uint64_t local_notification_addr: location of local
queue to place notification of competed work. uint64_t
local_or_remote: Used in dummy accelerator only, deter-
mines whether this is local or remote accelerator. uint64_t
local_dma_notif: uint64_t remote_block_work_source:
uint64_t remote_block_work_notif:

AccelWorkStruct uint64_t src_addr: source address from which to take data,
uint64_t bytes_to_dma: number of bytes to pull to work on,
uint64_t dest_addr: where to place the work once completed,
uint64_t dest_bytes: number of bytes to push once work is
complete, uint64_t notification_addr: address of queue to
send notification of completed work.

3.3. OVERVIEW OF NETWORK INTERFACE DESIGN 109

Table 3.5: User-space functions for programming the Network Interface.

Function Name Action
int send(uint64_t * map,

uint64_t src, uint64_t

dest, uint64_t bytes);

Puts an RDMA work item onto the Network
Interface, returns 0 when RDMA operation
is successfully initiated and data pushed into
the network.

int confirm_notif(uint64_t

* map)

Awaits notification of a completed RDMA op-
eration form a previous send() operation, re-
turns 0 if successful, returns 1 if timeout.

int send_blocking(uint64_t

* map, uint64_t src,

uint64_t dest, uint64_t

bytes)

Puts an RDMA work item onto the Network
Interface, and awaits acknowledgement of
completion of the operation from the receiver.
Returns 0 if successful, returns 1 if timeout.

int recv(uint64_t* map,

RecvStruct* data)

Awaits notification of received data from a
remote source, places data memory location
and number of bytes received into the passed
RecvStruct argument.

quick_recv(uint64_t* map,

RecvStruct* data)

Awaits notification of received data from a
registered receive operation from the Net-
work Interface, places data memory location
and number of bytes received into the passed
RecvStruct argument. Returns 0 if successful,
else 1.

void

config_accelerator(uint64_t*

map, AccelConfigStruct*

data)

Configures an accelerator block to enable it
to work independently of the CPU, arranging
data movement following operations etc.

int

work_accelerator(uint64_t*

map, AccelWorkStruct* data)

Send a work item to an accelerator block. Re-
turns 0 if work successfully placed on work
queue, else returns 1.

shm_write(void* addr, void*

data, uint64_t length)

A simple wrapper for a store instruction into
remote memory.

shm_read(void* addr,

uint64_t length)

A simple wrapper for a load instruction from
remote memory.

110 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

3.4 Segregation of Traffic Types

As discussed above in Section 3.3.4, the system offers two methods of commu-

nication over the network; small low latency transfers in the form of direct shared-

memory operations, and traditional bulk data transfer over RDMA. In this Section

we perform some experiments to show the advantages to having a segregated dat-

apath through the NI for these two different traffic types.

3.4.1 Small Transfer Latency

Typically smaller and more latency critical transfers for synchronization or con-

trol messages will be performed using the shared-memory data/control path through

the NI, directly translating load/store instructions from the processor into network

packets via local AXI transactions. Obviously this has reduced latency over the

setup and transfer of similar small data via the RDMA datapath, due to the addi-

tional latency of writing to the DMA work buffer and pulling the data from local

memory to be sent to the NI.

A simple experiment is set up to show the advantage of using the shared-memory

datapath through the NI for small transfers as opposed to the setup and processing

of an RDMA transfer. The setup on a single FPGA in loop-back mode is shown

in Figure 3.8. This uses two completely independent Network Interfaces and data

paths from the processing system in order to emulate exactly the action of sending

a message over two distributed boards connected via a 10G SFP link.

In the experiment 16 bytes of data are transferred from an application in user-

space to a BRAM located within the programmable logic of the “remote-side” of

the FPGA. For the shared memory operation the time measurement taken is from

the cycle in which the initial AXI transaction is seen in the PL to the cycle when the

response packet is transferred back to the PS. For the RDMA transfer the measure-

ment is taken from the cycle in which the first write transaction into the DMA work

buffer is seen in the PL, until the return notification is seen once the transfer has

been acknowledged.

The benefits of performing small transfers using the dedicated datapath for

3.4. SEGREGATION OF TRAFFIC TYPES 111

10G

SFP

DATA

SHM

RDMA

DATA

WORK

WORK/

CONFIG

WORK/

CONFIG/

DATA/

SHM

DATA

SHM

RDMA

DATA

WORK

WORK/

CONFIG

WORK/

CONFIG/

DATA/

SHM

Figure 3.8: Setup emulating distributed system on a single FPGA, with logic for two
implementations containing completely isolated address maps on a single FPGA.

Table 3.6: Latency for a small 16 byte transfer using the shared-memory datapath
and the RDMA datapath through the NI.

latency
component

Shared
memory (ACK’d)

RDMA
(w/ notif.)

cycles ns cycles ns
Total 172 1101 232 1485
Initial write- last flit
at NI output 24 154 69 442

Read from RAM - - 30 192
TX MAC in-
RX MAC out x2 59 378 59 378

RX MAC out-
Resp/Notif at TX MAC in 21 134 23 147

RX MAC out- Completion 9 58 22 371

112 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

shared-memory operations is clear, reducing the round trip latency for full ac-

knowledgement of the write operation by over 25%. This value would be enhanced

given the opportunity to optimize the retransmission table of the shared-memory

operations. Currently only a single 64-bit value can be associated with a single table

entry in the NI, meaning that to send a 16 byte transfer requires the NI to produce

two packets (this is discussed in detail in Section 5.2.2). This increases the packet

overhead on these operations substantially and adds over 10 cycles latency (≈5.5%)

when compared with sending a single 8 byte packet. As the main area consump-

tion in this module is not associated with the data storage but the CAM (Content

Addressable Memory) which identifies the addresses of prior entries, increasing

the amount of data storage capacity for individual entries is negligible. This would

enable greater performance enhancement over that already seen.

As well as this there is a lot of additional overhead from the use of an off the

shelf MAC/PHY layer. The Aurora IP constitutes 68.6% and 50.9% of the round trip

time for the shared-memory and RDMA operations respectively. This is a shocking

latency penalty, and merits the implementation of a custom physical and data-link

layer. The ability of a custom protocol solution to dramatically reduce the latency of

transfers over both standard Aurora and Ethernet solutions has been demonstrated

in [11], although performing this work would be far beyond the scope of this thesis.

3.4.2 Shared Memory Throughput Limitations

While we have shown that shared-memory operations are favourable for short

messages in which lower-latency is required, they are very unsuitable for heavy

loads and are not intended for bulk data transfer. We have set up an experiment

to demonstrate the shared-memory capability of the system, and show the perfor-

mance implications of using shared-memory operations for data transfer. In this

experiment two interconnected ZCU102 evaluation boards are used, connected us-

ing a 10G SFP link and routed using our custom switch design (Section 3.1.3). Each

board is loaded with the same bitstream, and set up as shown in Figure 3.9. In

this instance we use a small IP module, the Address Remapper, in order to adjust

the target address to a correct value which will enable proper routing through the

network switch. In a full scale system a TLB (Translation Lookaside Buffer) would

3.4. SEGREGATION OF TRAFFIC TYPES 113

AXI

M

Figure 3.9: Distributed setup with two FPGAs communicating through the net-
work switch, used to run the STREAM benchmark. Red and green shows the path
through to remote memory from the local CPU, with the blue path indicating com-
munication with local fabric memory.

be used here in order to translate from a physical address sent out to the PL to a

virtual address in the global address space. In our prototype we simply map the

upper bits to be routed to the correct port of the switch.

We configure the address mapper to send to address 0x0520140011110000 (upper

22-bits 0x00014805). Configuring the local port value of the two routers thusly will

emulate the routing of the packet to a node in another chassis of the network:

Address Cabinet Chassis Daughter Card
Switch 1 0x00014403 00000101 0001 0000000011
Switch 2 0x00014805 00000101 0010 0000000101

This means that the packet will be routed out of the network switch over the

first output (port o0/TX_o0), towards the node in chassis 2. As the receiving node

matches the node ID in the destination address we route out of the second switch

through the local port (Local_o0). If the packet was destined for a different cabinet

the packet would be directed out of the uplink port (port 3 in this implementation).

The experiment we run shows the discrepancy in bandwidth that can be ex-

pected when accessing remote memory as a simple shared memory operation. The

STREAM benchmark [189] was run on one of the nodes. This benchmark runs a se-

ries of memory operations using different access patterns in order to test the whole

memory subsystem. The code was compiled from C source using GCC with the

114 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

Table 3.7: Results for running STREAM benchmark.

PS DRAM
Function Best Rate (MB/s) Avg Time (s) Min Time (s) Max Time (s)

Copy: 3345 0.0489 0.04784 0.0497
Scale: 1826 0.0887 0.0876 0.0905
Add: 2033 0.118 0.118 0.119
Triad: 1683 0.144 0.142587 0.151

Local BRAM
Copy: 45.4 3.52 3.52 3.53
Scale: 44.0 3.64 3.64 3.64
Add: 44.2 5.43 5.43 5.43
Triad: 44.6 5.38 5.38 5.38

Remote BRAM
Copy: 4.8 33.6 33.6 33.6
Scale: 4.7 33.8 33.8 33.8
Add: 4.7 50.8 50.8 50.8
Triad: 4.7 50.8 50.8 50.9

-O2 optimization flag, with OpenMP multithreading switched off. The results are

shown in Table 3.7 and show the achievable memory throughput for the benchmark

in three configurations:

1. Memory is allocated in local DRAM accessed directly through the intercon-

nect of the Processing System and the cache hierarchy.

2. Memory is allocated in local Block RAM (BRAMs) inside the Programmable

Logic, having to be accessed through the Full Power Domain AXI master port

(see HPM in Figure 3.3).

3. Memory is allocated in a remote BRAM on the second board, accessed through

the network.

We see that the degradation in performance is significant (≈2 orders of mag-

nitude) when we have to use the PL to access memory. There are several factors

which cause these poor results. As the user accesses this memory transparently as

a simple STR/LDR instruction, the limitations of the processor come heavily into

play. As we discussed previously, the ARM Cortex-A53 is an in-order dual issue

CPU, meaning a maximum of only two read/write transactions can be in flight at

any point in time. The processor’s pipeline will block until it receives the acknowl-

edgement of successful write or the data from a read operation. If we were to use

3.4. SEGREGATION OF TRAFFIC TYPES 115

an Out-Of-Order core then this limitation would be dependent on the issuing depth

and the number of concurrent shared-memory transactions which can be handled

by our NI. This is dependent on the size of a CAM used within our implementation

which is discussed in detail in Section 5.2.2.

Another cause of the performance degradation is the fact that the entire memory

hierarchy can be used when accessing the DRAM in the PS. By accessing the PL

through the AXI master ports we are unable to cache the resulting data. Obviously

this is required as there is no way of keeping track of stale data in the PS side. Since

it cannot be known what a given hardware block or remote processor is doing at

any point in time without exclusive access it cannot be known that the data remains

valid in the cache and so must be marked uncacheable.

It is shown that the throughput to access remote memory is about an order of

magnitude slower than using local PL BRAM. This makes sense from the observa-

tions on the basic latency of a remote shared-memory access and given the CPU

blocking. We have previously observed that it takes around 150ns round-trip time

for a simple AXI write/read issued from the CPU into a local BRAM in the pro-

grammable logic. This is around an order of magnitude less latency than we see in

the round-trip time for a remote operation (see Table 3.6). Given the blocking na-

ture of these operations the latency in acknowledgements causes the degradation

of the performance we observe here.

It is obvious that this model of communication is not suitable for large data

transfer between remote memory regions and that the RDMA operation is required

to provide a far more appropriate method to transfer larger chunks of data. The

shared-memory path to the network here is only suitable for simple low-latency

communication between processors, as typically seen in synchronization messages

or control packets. The advantage in having this kind of communication present in

the system is that the latency of giving access to the user of the whole memory space

allows us to reduce the latency of transfer for these small packets. It is also worth

noting that the NI prioritizes the forwarding of the shared memory requests over

RDMA transfers. It is able to do this very simply due to the separated data paths

through the network, so no additional software overhead is incurred by marking

116 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

Number of Concurrent Transactions Permitted

Max pkt size = 128B
Max pkt size = 512B

Figure 3.10: Throughput over number of concurrent packets permitted from single
source in network, shows saturation.

these packets manually as high priority. Due to the limitations of the shared mem-

ory operations for larger transfers our system will rely on RDMA for bulk data

transfer, which we test in the next Section.

3.4.3 Testing Link Throughput

In order to test the performance of larger RDMA transfers through the network

we use a traffic generator to vary the packet size and number of possible simultane-

ous in-flight transactions to show the maximum attainable throughput of the sys-

tem over a single link. Figure 3.10 shows the increase in the achievable throughput

when transmitted over our NI and custom switch by varying the number of pos-

sible outstanding transactions the DMA can issue simultaneously, and by varying

the burst length (and thus network packet size) of the DMA transfers. By increas-

ing the maximum payload size from 128B (16×64-bit) to 512B 64×64-bit) we are

able to increase the saturation point for the throughput by ≈32%. Using a packet

size greater than this may have adverse effects on the network. Keeping packet

length relatively short allows us to perform better load balancing (and will thus aid

in lowering the congestion in the network). The increase in throughput is due to

the packet header and footer, which contribute 4 flits of overhead on the link per

packet, given our 64-bit datapath. This gives a reduction in the packet overhead

3.5. CONCLUDING REMARKS 117

from 20% (20/16) to 6.3% (68/64). If we were to increase the data width to 128-bits

(reducing header and footer to a single flit each) the packetization overhead will

drop further still to 3.1%.

The saturation occurs at 8.56Gb/s, which is seemingly lower than the 9.4Gb/s

promised by the GTH transceivers (given our packet overhead and the link being

run at 10Gb/s). However, this additional drop can easily be accounted for. The

MAC layer adds a preamble at the beginning of transmission and an end-of-packet

flit at the end. An inter-frame gap is also required between packet transmission to

aid in keeping the transceiver clocks synchronized. This results in a raw throughput

drop of about 9% in our specific case (though this is dependent on frame size). It is

unclear as to whether a customised MAC/PHY layer would make any significant

difference to this value. These idle cycles are required to account for the difference

in clock rates which may be seen between the transmitter and receiver, synchroniz-

ing the two. Although this throughput is around 15% lower than the raw link rate,

we deem it acceptable given that this value is actually the goodput of the NI, switch

and link, having taken into account the packet overheads and leaving strictly the

payload data.

3.5 Concluding Remarks

In this Chapter we have presented a novel hardware networking stack which

enables modern FPGA devices to communicate with distributed shared memory re-

sources. Hardware primitives are provided to support two separate models of com-

munication; NUMA-style read and write operations into remote regions of memory,

and RDMA for data transfers between remote nodes. The author’s specific contri-

butions to the work presented in this Chapter are as follows:

1. Design and implementation of a novel NI microarchitecture which enables (i)

Transparent read/write operations (in user-space) to regions of remote mem-

ory/accelerators, as well as (ii) User-initiated RDMA operations to allow high

throughput data transfer to remote memory. This is the first such network

infrastructure of which we are aware that provides direct hardware support

118 CHAPTER 3. NETWORK INTERFACE FOR HPC COMMUNICATIONS

for these two communication primitives together in a reconfigurable environ-

ment.

2. A low-latency protocol translation mechanism between the on-chip memory-

mapped AXI and a custom interconnect solution intended for networking in

High Performance Reconfigurable Computing. This allows for transparent

use of remote memory-mapped AXI transactions.

3. Implementation of a hardware prototype able to perform full end-to-end re-

mote memory operations between two MPSoC devices, connected via 10Gbps

serial links.

4. Experimentation which shows basic performance metrics of the system. We

show the clear benefits in small transaction latency from our dedicated shared-

memory datapath, as well as showing the level of performance degradation

seen in shared-memory operations when repeatedly accessing remote mem-

ory using the in-order A53 processor.

Chapter 4

Error Recovery and Memory

Consistency

In this Chapter we evaluate the different types of error which can occur within

our network, and evaluate the ways in which they can be mitigated. Error in this

context refers to bit-level errors which can occur on the high-speed serial links dur-

ing network traversal. As a result of these errors packets can be misrouted or lost,

but we do not allow for regular packet dropping due to buffer overflow within the

network (as happens in Ethernet networks). Although not currently implemented

(and beyond the scope of this thesis) a link-level, credit-based flow control mech-

anism is envisaged in order to prevent packet dropping. Buffer overflow is by far

the main source of lost packets. We do not concern ourselves with the flow control

technique employed, as this work is pushed beyond the Network Interface into the

switch. Owing to our use of a connectionless transport it may be unnecessary to

handle the flow control mechanism at an end-to-end level. Rather, it makes sense

to utilize link-level credit techniques to prevent buffer overflow, given that we can

utilize the full path diversity of adaptive routing at the packet level [32].

There are numerous types of error which are made problematic due to the abil-

ity of the system to deliver Out-Of-Order (OOO) packets. This is a consequence of

the connectionless transport layer (presented in Chapter 5) and the switch architec-

ture which permits full adaptive routing [32]. We show that this is not an issue in

all but the most exotic cases, due to the fact that our system writes directly into tar-

get memory locations rather than copying from send/recv buffers at the Network

119

120 CHAPTER 4. ERROR RECOVERY AND MEMORY CONSISTENCY

Interface.

An important note regarding this analysis is that the fallback of checkpoint-

restart mechanisms discussed are to be a very rare occurrence indeed, being used

when multiple retransmission attempts have already been made. Given the statis-

tical improbability of this happening repeatedly to the same packet given modern

link error rates of ≈ 10−12, it is safe to assume that severe network failure or node

failure is the likely cause of such an event. The checkpoint-restart mechanism we

make reference to in these cases is an application level fault tolerance technique; the

implementation of which is far beyond the scope of this thesis since it falls outside

the realm of hardware techniques and into much higher level reliability mecha-

nisms.

4.1 Shared-Memory Operations

Shared-memory operations are typically formed of very small messages and

should not be used with sufficient frequency to overload the NI with requests (typ-

ically these would be unicast or many-to-one messages). As such the data to repro-

duce these transactions is stored within the NI. In the event of a negative acknowl-

edgement (NACK) being returned the entire message can then be rebuilt without

involving the CPU. Multiple failures/timeouts of these shared-memory operations

requires the assistance of the CPU.

4.1.1 Remote Read

If a remote read transaction posted through the shared-memory interface of the

NI repeatedly fails then the result for the system is catastrophic. If the initiator

of the transaction is the CPU, in this instance there is no way to recover as the

processor will stall until data is retrieved, due to the in-order pipeline of the CPU

in our system (ARM Cortex-A53). Even in an out-of-order processor progress can

only be made until the point where we hit data dependencies on the missing values

or the depth of out-of-order issuing has been reached.

If a NACK is encountered after multiple retry attempts (ruling out the possi-

bility of misrouted packets), then the error must originate from a failure on the

4.1. SHARED-MEMORY OPERATIONS 121

receiving node, from the network fabric, or from a programming error. The NI

must be used in order to handle this situation. The CPU is incapable of being re-

turned an incorrect value (NACK’d) from a load instruction; the processor simply

hangs in this instance. In order to prevent lockup of the system we must provide

a positive acknowledgement with fake data from the sending NI to the CPU. After

this has taken place we must interrupt the processor and initialise a software-based

checkpoint-restart mechanism in order to restart the program safely.

Unfortunately this method means that debugging the error could be more dif-

ficult given the fact that the processor will have moved on from the offending in-

struction, making it harder to locate the error. The NI can be instrumented to retain

information regarding the failed transaction and mitigate against this. In this in-

stance we envisage that the interrupt routine for handling this error can read this

information back from the NI and log the error.

4.1.2 Remote Write

Repeated failures of a shared-memory remote write transaction forms an equally

catastrophic failure condition, requiring the initialisation of a checkpoint-restart

mechanism which must be present in any HPC system beyond a certain scale [188].

In order to enhance the performance of the system and prevent stalling of the in-

order pipeline of the ARM Cortex-A53 the NI is instrumented to perform an early

ACK of remote store instructions (see Section 6.1 for more details). The NI provides

an acknowledgement and we must store the data to rebuild the transaction in case

of retransmission. In this instance the processor can carry on, but software mech-

anisms must be used to confirm with the NI that the operation has successfully

completed or whether it is still in flight.

If the early acknowledgements feature is disabled then an error here does not

prove as much of an issue for debugging as for remote read operations. This is

because returning a negative acknowledgement to the CPU for a store instruction

results in a segmentation fault, crashing the program and automatically invoking a

checkpoint-restart mechanism. If the early ACK system is in use then the NI must

interrupt the CPU after multiple retry attempts, in the same manner as an error in

remote read operations.

122 CHAPTER 4. ERROR RECOVERY AND MEMORY CONSISTENCY

4.1.3 Acceleration Resources Performing Shared-Memory Ops

If a (repeated) failure is seen in a remote read/write transaction issued by an

acceleration resource, the course of action is much the same as described above.

Some of the issues with pipeline stalling can be made less problematic as the ac-

celerator can be permitted to issue a higher number of transactions than the dual-

issue Cortex-A53. The significant problem to be overcome in this instance is when

the FPGA resources are completely disaggregated from the CPU. In the instance

where a network attached FPGA is working without any CPU resources1 provision

must be made within the FPGA to transmit a failure message to associated CPU

resources, allowing it to take control of the situation. This could be done within

the NI in order to prevent an increase in complexity in acceleration IP designed by

the end-user. The NI is aware of the origin of the transaction and so can change

behaviour based upon the initiator of the transaction. If the origin is an acceleration

resource it would be simple to change the error-raising mechanism.

4.1.4 Exclusive Accesses and Consistency

For remote write operations the early acknowledgement system (detailed in Sec-

tion 6.1) can obviously cause some consistency issues if extra steps are not taken.

There are two ways in which consistency can be enforced for shared memory com-

munications:

4.1.4.1 Software Based Consistency

The first is to use the early ACK system for performance to free the CPU to per-

form other work. In this instance the programmer must communicate with the NI to

ensure that any subsequent work which is dependent on the successful completion

of the operation is able to do so. For example, this may occur when exclusive access

on a shared resource is required and the CPU cannot write data to this resource

until it has locked access. These software locks can be very common in distributed

applications, and this is a typical way to gain access.

1We can easily envisage this situation in a configuration where multiple large FPGAs are used for
acceleration with a single CPU being used for management, rather than having a network of CPUs
with FPGA logic on the same die.

4.1. SHARED-MEMORY OPERATIONS 123

The use of this technique is a common way to see performance gains by hid-

ing messaging latency in the CPU. It is required of the programmer when writing

one-sided communications in MPI for example [67], where MPI models comple-

tion, consistency and synchronization entirely separately. The result is that the pro-

grammer must reason about the possible data dependencies in their program and

explicitly handle cases where data races can occur with barrier and synchronization

methods. This is typically required of HPC programming models, because imple-

menting strict sequential consistency at the hardware level is far too expensive.

4.1.4.2 Hardware Exclusive Accesses

The second way we can maintain consistency is via the use of a hardware ex-

clusive access operation (LDREX/STREX in ARM’s Thumb assembly) which when

used via an AXI interface use the AxLOCK signals (see Appendix C). In the case

where an exclusive access is seen on a write transaction (i.e. the AWLOCK signal

is high) we bypass the early ACK system within the NI, forcing the CPU or other

resource to wait for the real ACK packet from the network before returning it to the

initiator. This gives the programmer the option of providing a hardware oriented

exclusive access where delivery is guaranteed on receipt, or a more relaxed software

version in which other non-dependent work can be performed while awaiting a full

response.

When an LDREX instruction is issued an exclusive monitor in the CPU is writ-

ten with the associated process and transaction ID, in order to prevent access from

others2. The monitor does not allow other accesses until a corresponding STREX

is seen from the same master device. The issue with using these locked accesses is

that only a single AXI bus is supported; the function is not intended for use over

a networked system. The processor prevents unauthorized access based upon the

IDs, but is unaware of the initiating node. This means that in order to allow this

functionality the Network Interface must track all inbound exclusive accesses at the

receiver, providing its own monitor which tracks not only IDs but also the source

node of a transaction. This is because the two different nodes may use the same

2ARM Software Development Manual- http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.dht0008a/ch01s02s01.html, accessed April 2019

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/ch01s02s01.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0008a/ch01s02s01.html

124 CHAPTER 4. ERROR RECOVERY AND MEMORY CONSISTENCY

outbound ID, but obviously originate from separate AXI buses.

With respect to the failure of these transactions, it is simple to differentiate be-

tween the transaction failing correctly (due to a prior locking of the resource from

another node) and incorrectly (due to bit-errors etc.). This is because the error code

returned will be different. In the case of an exclusive access failing due to prior

locking, retransmission can be attempted until the resource is free and normal steps

can be taken if the failure is a repeated CRC failure or lost packet for example.

4.1.4.3 Performance of Exclusive Load

As described above, the remote read must register the exclusive access in the

remote NI, and return an error if exclusive access cannot be gained (another pro-

cess/node has access locked). Following successful registration a corresponding

exclusive store will eliminate the entry in the NI. Unfortunately there is little op-

portunity to enhance the performance of these operations if two nodes contend for

the same resources, as the result of the read operation is obviously required before

returning the response. The system and programmer must therefore aim to mini-

mize the number of remote memory accesses, which is a well established practise

for NUMA-style systems anyway [190].

It may be of some use to cache failed LDREX instructions at the receiver and

stall on sending a NACK back to the sender. This could be done in order to allow

for the operation to be performed once the node with exclusive access has unlocked

the resource. Doing this could decrease the incidence of multiple retransmissions

on these accesses. However, it could introduce certain issues such as duplicate

packets in the network. An example of this is if the timeout for retransmission is

much shorter than the amount of time a node may require exclusive access to the

resource.

It could also be useful to store the data that has been read from remote memory

in the sending NI, thus enabling multiple read/writes to this “remote” location

to actually comprise local accesses to the NI hardware, reducing latency for the

operation. This will prevent use of the network for multiple processes within a

single node attempting to access the same resource. However, this can obviously

create consistency issues if the data is able to be cached at another remote node

4.1. SHARED-MEMORY OPERATIONS 125

(i.e. a normal non-exclusive access). Also this does not prevent a remote node’s

access travelling over the network before failure/success of the exclusive access

transaction, unless the access were from another process local to the node which

has exclusive access rights.

4.1.5 Summary

The following Table 4.1 shows a summary of the errors which can present them-

selves in shared-memory operations, and the ways in which we can mitigate against

them:

Table 4.1: Shared-memory operation error types, the complexity for handling them
in the NI, and their mitigation.

Error Type Complexity
in NI (1-3)

Mitigation (following multiple retransmis-
sion attempts)

Remote Write 1 Return error and let program segmentation
fault occur.

Remote Read 2 Return incorrect value with non-error code,
store debugging information in NI, raise in-
terrupt to local CPU.

Remote Write
Early ACK’d

2 Store negative ACK in notifications and await
CPU check, or store debugging information in
NI, raise interrupt to local CPU.

Accelerator
Write

3 NI returns error, send error information to
designated CPU in group, or to centralised ac-
celerator error handling. CPU must then in-
terrupt and begin checkpoint-restart.

Accelerator
Read

3 NI returns error, send error information to
designated CPU in group, or to centralised ac-
celerator error handling. CPU must then in-
terrupt and begin checkpoint-restart.

Load Exclusive 3 NI must differentiate. If access error, retry.
If network error return incorrect value with
non-error code, store debugging information
in NI, raise interrupt to local CPU.

Store Exclusive 2 NI must differentiate. If access error, retry.
If network error return error and let program
segmentation fault occur.

126 CHAPTER 4. ERROR RECOVERY AND MEMORY CONSISTENCY

4.2 RDMA Data Errors

Due to the fact that it is possible for large amounts of data to be processed

through the RDMA mechanism, the shared-memory reliability model cannot be fol-

lowed in this instance. The required buffering for outstanding transactions would

be too great a burden for the NI to bear. Instead we track RDMA operations and out-

standing transactions, enabling us to rebuild any negatively acknowledged packets.

In the event that an RDMA packet fails after multiple attempts to reach its des-

tination the CPU must again be invoked into handling the issue. This is because

a repeated failing RDMA operation can only come from either a severe network

failure, node/DRAM failure (assuming program correctness) or some other simi-

lar hardware issue. However, once the system is interrupted other methods can be

brought into play to solve the issue as opposed to checkpoint-restart. This is be-

cause an RDMA operation in and of itself is not fundamental to the operation of the

program, it simply prevents progress with computation.

Fault detection mechanisms can be used to identify the problem [191] and pos-

sible migration of the process and data to another node can be performed [188], at

which point the operation can be retried. This causes significantly more issues if

the originator of the transaction is an acceleration resource. As the accelerator will

need to pass state information to a CPU in order for the CPU to get the accelerator

and its associated NI to a state where it can attempt the failed RDMA operation

once again.

4.3 Header or Footer Errors

Errors within the header and footer of a packet can cause numerous problems

with the system. If the upper portion of the source or destination address become

corrupted then the packet or its response can become misrouted. Due to the ge-

ographic routing scheme, if an illegal address is seen within the system then this

could theoretically cause livelock; where the packet is continually redirected in a

loop round the system.

There are a number of mechanisms to avoid this situation. The first includes

4.3. HEADER OR FOOTER ERRORS 127

packet ageing, where the packet is only permitted to travel a given number of hops

before it is dropped. Inclusion of this mechanism in the switch requires modi-

fication of one of the packet fields and incrementing an age value, although this

would require use of a number of reserved bits in the header. One issue here is that

this must be placed in the header in order to prevent the requirement of store and

forward switching within the network. Another more important issue is that this

method takes no account of the buffering time required in the switches. A packet

may be held in a single switch for a substantial amount of time but not incur any

ageing.

A second method to combat this issue would be to use the concept of an epoch

within the system (similar to that used in the arbitration mechanism presented

in [192]). Each packet is sent within a given epoch and labelled as such, and if

the system then rolls over to an epoch too far in the future and the packet remains

in the system it will be dropped. This method means that packets will age with

buffering, but may be difficult to implement within a large-scale system due to the

need for synchronization. Every switch and endpoint must be aware of the current

epoch and roll over simultaneously.

In a situation where the packet header or footer is corrupted, if only a single

packet level CRC is used then a negative acknowledgement cannot be routed back

to the source because the source address may be corrupt. Due to this fact, and be-

cause maintaining correct header information is so important to the functioning of

the network, an Error Correcting Code (ECC) is used to protect the header. This can

be used end-to-end in order to fix erroneous packets. If the packet has been previ-

ously misrouted then it can then be directed to the correct node. The additional

overhead of protecting the header and footer is not great, given the importance

of maintaining correct information in this portion of the packet. Alternatively er-

ror correction on the header could be performed at the link-level as the check and

correction can be performed while the remainder of the packet is being received,

thereby not incurring a store and forward penalty. In this instance the switch will

see additional complexity, which would be highly dependent on the given imple-

mentation [193].

128 CHAPTER 4. ERROR RECOVERY AND MEMORY CONSISTENCY

4.4 Out-Of-Order Packet Delivery

To enable a lightweight implementation we require a connectionless transport

for minimizing state information within the NI. As well as this the switch architec-

ture targeted for the system (see Section 3.1.3) allows for fully adaptive routing at

packet-level granularity. What this means is that out-of-order packet delivery for

normal and retransmitted packets is a very real possibility. Ethernet and Infiniband

networks do not have to deal with this issue as they do not allow for adaptive rout-

ing at this level. Given that they use table based routing, the route over the network

between any connection (TCP) or Queue Pair (Infiniband) is fixed, so necessarily the

packets arrive at the destination in-order. This is at the expense of a reduced ability

for dynamic load balancing within the network.

While it may be natural to think that the burden of reordering packets at the

destination limits scalability at the receiver, we show that this is not true for our

system. While there may be exotic cases in which maintaining packet ordering is

required, given our communication model, network protocol, and framed in the

context of a fully global address space; in the majority of cases ordering is not an

issue.

We identify four possible types of destination for shared-memory and RDMA

transfers, with only one of these requiring proper sequencing. Every packet travel-

ling over the network originates from a memory-mapped transaction and is trans-

lated back into a simple memory-mapped transaction at the receiver, destined for

some location within a global address space. The network packet includes the

source and destination node IDs corresponding to their geographic location, and

the destination memory address. This means that we can acknowledge the indi-

vidual portions of a much larger DMA transfer for example, as each segment of

the transfer forming these packets generates individual target addresses (see Fig-

ure 4.1). Effectively if the sender receives a NACK on a packet it will be able to

calculate the original source address and be able to resend just that portion of the

transfer. The receiver is notified of new data when each of the segments of the DMA

transfer is in place. In this manner reordering occurs naturally within memory, as

the “sequence number” for the transfer is just a virtual memory address, offset from

4.4. OUT-OF-ORDER PACKET DELIVERY 129

SRC

DEST

BYTES

0x3000

0x6000

0x1000

FULL RDMA OP

DEST

BYTES

0x6600

0x0200

DRAM DRAM

NETWORK

ACK

ACK
DEST

BYTES

0x6E00

0x0200

0x3000

0x3E00

ACK

Figure 4.1: Ordering does not matter for RDMA operations directly into memory,
as each packet has complete destination memory address associated with it.

the base of the transfer.

The first identified destination type is the situation described above, where a

simple RDMA is placing data into the main memory of the system. We see that

packets are arriving out of order, but because the destination is simply a memory

location this does not matter as the target memory address is present in the packet

header. This is the same manner in which the Cray Aries Interconnect is able to

handle out-of-order delivery in block transfers [102]. Likewise, ACK packets con-

tain special bit fields within the ID they carry, which enable the original transaction

to be identified and reconstructed or retrieved (depending on the traffic type) for

retransmission.

In Figure 4.2 and Figure 4.3 we see an example of map and reduce type opera-

tions. These operations are used heavily within data-centric HPC applications and

may be suitable for FPGA acceleration in a tightly coupled SoC environment with

CPUs [9], [194] (as we demonstrate in this thesis). In both these instances the op-

erations are commutative, so permutations on the arrival of data will not affect the

final result.

In 4.3 we see some function performed on the input data, perhaps for a database

operation. The input to this function may be a large data structure, spanning mul-

tiple packets. In this instance ordering of the data is important, but not within

our system. Given that access to the network is given via a memory-mapped in-

terface, it is possible to use the address offsets for a data structure being sent to

determine the boundaries of each key for the map operation. All that is required in

130 CHAPTER 4. ERROR RECOVERY AND MEMORY CONSISTENCY

Figure 4.2: Map type operation. Transaction ordering is not required in this instance
given the commutative nature or the operation.

Figure 4.3: A reduction or other typical many-to-one type operation, where order-
ing is irrelevant.

OBJECT 1

OBJECT 2

0x000

0x400

0x600

f(x)

...

0xA00

INPUT BUFFER

Figure 4.4: Mapping with large keys is still possible without guaranteed ordering
within the network, as addressing offsets can be used to reorder easily.

this instance is a small amount of additional logic to create buffers which naturally

rebuild the key, as opposed to a simple register map being used. This is shown in

Figure 4.4.

Finally, in Figure 4.5 we see data being sent to a non-commutative operation; in

this example an FIR-filter. In this sole instance is data ordering of real significance,

as the output depends on the sequence of the input values. Reordering at the re-

ceiver is required in this instance. However, we only expect to see instances such

4.4. OUT-OF-ORDER PACKET DELIVERY 131

Figure 4.5: An FIR filter, non-commutative operation where the ordering of indi-
vidual values is important. This sort of operation will require a dedicated reorder
buffer, but is atypical of many-to-one operations, so concurrent multiple user access
this would be unusual.

as this in very specialized hardware blocks in the accelerator and it would not be

typical of most memory-memory RDMA type operations for HPC communications.

Much more typically this sort of computation would be performed locally on data

being streamed from/into memory where ordering would normally be maintained.

These sorts of operations would also typically not be involved in many-to-one

type communications, and we are unaware of any such example in the literature.

As such it is reasonable to assume that any specialized block in this instance can

contain re-order buffers to handle OOO packet delivery. Only one such buffer will

be required. This buffer’s ownership will be acquired and locked when the block

is used. Using a single reorder buffer here is a reasonable way to handle OOO

packets, as multiple masters will not be expected to communicate with this sort of

block simultaneously.

From the send side, the DMA engine has a mode of operation known as “key-

hole” read and write. This allows full DMA operations to target a single memory

address as if streaming to a FIFO. In the instance where a node wishes to commu-

nicate with this sort of hardware block the keyhole write mode can be used. Thus

allowing the NI to identify this type of operation and act accordingly, perhaps plac-

ing sequencing numbers as additional flits in the header, allowing the reorder buffer

at the receiver to operate.

132 CHAPTER 4. ERROR RECOVERY AND MEMORY CONSISTENCY

W0

REG = W0

ACKW0

RTW0

T0

Tt

REG = W1

REG = W0

ACKRT0

W1

ACKW1

Figure 4.6: Duplicate packet occurring due to retransmission.

4.5 Duplicates in Retransmission

The overwriting of previously acknowledged data can occur and cause consis-

tency issues in the situation described in Figure 4.6. Here, a packet W0 is sent, and

the ACK is returned as normal, but takes sufficiently long to cause a timeout at the

sender. A retransmission RTW0 occurs, and another write operation W1 (possibly

from a different source) is issued to the same location, arriving before the packet

RTW0, which then overwrites the new value upon arrival.

There are several ways in which duplicate packets could be protected against in

end-to-end retransmission, for example those described in [172] or [195]. However,

these methods either suffer from scalability issues or severely impact the useful

bandwidth of the links. In a typical RDMA transfer this problem is mitigated natu-

rally because the sender sends an ACK packet to the receiver once it has received a

positive ACK from all the individual packets within the DMA transfer. Only at this

point will the receiver begin working on the data which it has been sent.

While eliminating this issue, this method of RDMA acknowledgement requires

an additional round-trip latency for the ACK packet between sender and receiver.

We have devised an improvement to the architecture which enhances the perfor-

mance of the RDMA by allowing the receiver to track RDMA operations targeting

it. It provides receipt of a successful RDMA transfer to itself locally, eliminating

the need for the additional round-trip latency for the ACK packet. However, this

means that duplicate packets must be handled differently in this instance. In Sec-

tion 6.2 we present the architecture which allows for this optimization and discuss

4.6. CONCLUDING REMARKS 133

how the duplicate packets are mitigated against.

4.6 Concluding Remarks

This Chapter provided a review of the possible errors that are introduced to our

network as a consequence of some of the properties of our system. We have shown

how to mitigate against these using a relaxed consistency model, pushing respon-

sibility for synchronization onto the programmer in some instances. We identify

areas where the performance can be enhanced and show the effects of this for con-

sistency and correctness. The main takeaway points from this chapter are:

1. We allow for out-of-order delivery of packets within the network. This does

not cause issues in all but the most exotic circumstances, which are atypical

of many HPC workloads. This is mitigated against in most cases due to the

direct addressing of memory.

2. We describe the need for strong protection of the header in order to prevent

misrouted packets and livelock. What we mean by this is that an error cor-

recting code (ECC) will be placed within the header, and used to detect and

recover from errors in destination address and other integral header infor-

mation. Forward error correction can either be performed end-to-end with

slight modifications to the packet, or at link-level at the expense of additional

latency of error checking and correction as well as additional switch complex-

ity. Due to the fact that the foot of the packet does not require this protection

to prevent these issues, store and forward would not be required in the net-

work to perform link-level error checks, meaning that we can retain virtual

cut-through switching.

3. We introduce several performance enhancements later in this thesis (the tech-

nical contributions for which are presented in Section 6.1 and 6.2). In this

Chapter we have provided contributions in our discussion of the issues that

these enhancements can cause with regards to consistency, and how the issues

are mitigated against.

Chapter 5

Transport Layer for FPGA based HPC

Previously (Chapter 3) we have discussed the basic Network Interface devel-

oped for HPC communications within networks of reconfigurable devices. In this

Chapter we expand on this work, introducing a novel transport layer which allows

reliable, connectionless communications directly between CPU or FPGA fabric and

remote resources.

Our solution is fully offloaded into the hardware of the NI, requiring no soft-

ware intervention in order for the accelerator to issue reliable transactions into the

network, and no OS intervention in order for the user to issue reliable transactions

to the network. In doing this the FPGA accelerator resources are disaggregated

from the CPU and the user application avoids costly OS system calls. Thus enabling

much better capabilities for dataflow type applications over distributed FPGAs and

for lower latency communications between distributed resources. As the RDMA

data cannot be stored within the NI due to memory limitations on the device, and

the shared memory data cannot be sent off-chip due to latency overheads, the ac-

tion of these two types of transport is completely segregated, just as the data/con-

trol paths are segregated within the NI. We present the design and implementation

of these two mechanisms, and of a fault injection mechanism used to test different

fault tolerance mechanisms.

Our analysis at the end of this Chapter in Section 5.3 suggests that under varying

bit-error-rate conditions an end-to-end reliability mechanism is preferable in terms

of performance over link-level error checking/correction for all but the most ad-

verse conditions (bit error rates > 10−7). This is particularly true when accounting

135

136 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

for the fact that costly retransmission buffers are required for link-level error check-

ing and retransmission, or additional bandwidth overheads are required to include

packet level error correcting codes or flit level error checking. As well as this, these

mechanisms will both require a more latent store and forward switch architecture.

Our findings run contrary to existing solutions such as [153] which provide link-

level retransmission, but given a topology with a short diameter we argue that this

level of error checking is unnecessary.

5.1 Reliability Requirements for Reconfigurable HPC

Hardware Offloading

In order to properly utilize distributed FPGA resources for acceleration, the

memory copies traditionally required between accelerator and host CPU in order

to issue reliable communications to the network must be eliminated. In order to

achieve this we propose a fully hardware-offloaded transport layer, bypassing the

CPU completely from FPGA issued network transfers. This has long been known

to solve the performance issues associated with software based transports, but in

our instance it is also necessary to disaggregate the FPGA from the CPU.

Connectionless Transport

Maintaining scalability with regards to the memory footprint on the FPGA is

very important. Given that the entire networking stack is implemented within the

fabric of the FPGA, in order to decouple the CPU from the accelerator the transport

layer must not hold connection states within the NI. Doing so would present a sig-

nificant challenge to scalability. One option is to hold connection states in off-chip

DRAM, although this presents problems of its own [118]; reducing the available

memory bandwidth for useful work and increasing the latency of transmission. The

second option is to maintain a connectionless (i.e. datagram based) approach, stor-

ing only the information required to reinitialise current outstanding transactions

within the network in the event of failed delivery or packet corruption.

Our solution is able to offer reliability with no connection state owing to the fact

5.2. IMPLEMENTATION OF TRANSPORT MECHANISM 137

that network packets are simply an extension of the system bus protocol. We write

directly into memory, and RDMA is set up directly from user-space with little over-

head. The NI stores information regarding outstanding RDMA transfers only, as

opposed to open source-destination connections. Therefore the memory required

at the sender is bound only by the number of possible outstanding RDMA opera-

tions concurrently in flight, rather than the possible number of source-destination

pairs.

5.2 Implementation of Transport Mechanism

Given that our NI provides hardware primitives to support shared-memory,

NUMA-like operations, as well as RDMA operations for larger data transfer, we

provide two separate methods for reliability in our transport. The need for low

latency and the smaller burden that shared-memory operations place upon the sys-

tem in terms of memory use mean that we can directly support data storage and

retransmission in the NI. When shared-memory operations are issued the data to

reconstruct the full operation is held in the NI until the transaction has been ac-

knowledged.

For larger RDMA transfers we cannot afford to store this data in the NI. The re-

quired retransmission buffers would be too large to provision a sufficient number

of packets given the scale of the network we target. This means the data consistency

must be handled by the sender (middleware or user). Data must remain unaltered

in the sender’s memory until the whole RDMA operation has been acknowledged.

The upside of this is that we do not require additional buffering unless absolutely

necessary. The sender initiates an RDMA transfer and the data may not be overwrit-

ten until notification of the completion of the RDMA transfer is seen. In instances

where the user wishes to overwrite and work on this data in parallel with commu-

nication then they must copy the data and provide double buffering. In this way

the NI remains lightweight with only very small retransmission buffers, but also

the data can be worked on if it is required. The downside of this is that at some

level software must be given charge of maintaining consistency of the RDMA data.

This duty can be given to the user, in which case performance would be maximised

138 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

at the cost of programming complexity. However, a simple user-level library could

also be created which would wrap and obfuscate calls to the NI, checking comple-

tion status and performing additional allocation and data-copying if required.

In this section we present the microarchitecture of the two transport mecha-

nisms developed for use in our system. One created for shared-memory operations,

providing storage within the Network Interface for retransmission of small (in fre-

quency and packet size), latency sensitive packets. A second is created to handle

RDMA operations, which will form bulk data transfers, thus being unsuited for

in-NI storage for retransmission.

5.2.1 Overview

Figure 5.1 shows the full transport layer within the Network Interface. Clearly

marked at the top are the memory-mapped AXI interfaces which provide access

to the shared-memory datapath, RDMA datapath and RDMA work buffers. At the

bottom are marked the stream wrapped interfaces which carry our custom network

packets. As can be seen the datapath for shared-memory operations and RDMA

operations are completely segregated within the memory-mapped side of the NI.

Separate modules provide the transport layer reliability for each of the two com-

munication types on the send side, with all data destined for the network being

passed through one of these two mechanisms.

The mechanism to provide reliable transfer relies solely on modules within the

sender. All that is required of the receiver is to track the inbound requests in or-

der to rebuild response packets appropriately. Although in order to enhance the

performance of the system we introduce a receive side module to track outstand-

ing RDMA operations. This is described in Section 6.2. As packets are sent they

are assigned a special “Type” within the header which enables the receiver to iden-

tify how to handle the received packet, this is discussed in Section 3.3.2. Table 5.1

shows a breakdown of the individual modules and sub-modules which comprise

the transport layer of the Network Interface.

5.2. IMPLEMENTATION OF TRANSPORT MECHANISM 139

PACKETIZER/DEPACKETIZER

RDMA

OP

TABLE

RETRANSMIT

RDMA

COMMAND

LARGE

TRANSFER

PULL NEXT

DMA OP

SHM

TRANSACTION

ISSUE/EARLY

ACK

RDMA

OP PUSH

SLAVE

RDMA

OP PULL

SLAVE

SHM

DATA

SLAVE

RDMA

DATA

SLAVE

REMOTE

DATA

MASTER

STREAM

SLAVE
STREAM

MASTER

RDMA

TRANSACTION

ISSUE

TABLE

PRIORITY

ARBITER

ACK/

NACK

CURRENT

OP

SEND TO

NOTIFY

BLOCK*

POLLING

SLAVE

Store

working

OP

Completed DMA local

RDMA

RETRANSMISSION

 SHM OP REQUEST
RESPONSE/NOTIF

SHM

request/

retransmission

SHM

REQUEST/

EARLYACK/

RESPONSE

RDMA

ACK

decrease OP

count expected

SHM rea

re

TO

TRA

ISS

RDMA

REQUEST

RDMA

DATA

NACK seen, build

 retransmission work item

send

unregistered

RDMA

notification

RDMA resp

Add to

table

w/ OP

number

New

packet

ACK/NACK packet

Figure 5.1: Highlighted here is the send-side transport layer within the NI, showing
the separated methods for shared-memory and RDMA transfers.

140 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

Table 5.1: Transport layer modules (and sub-modules) within the Network Interface
and their function.

Module (Sub-module) Function
SHM Transaction Is-
sue/Early Ack

This module provides the retransmission mech-
anism for shared-memory operations. Read and
Write transactions passing through this module
are wholly stored, and directly rebuilt in the
event of a negative acknowledgement.

Transaction CAM The addressing information is stored in a CAM
in order to rebuild transmissions in the event of
failure. The associated data is also stored.

Transaction Timers A bank of timers is stored here and associated
with the CAM table entries for timed-out re-
transmission.

Early ACK Module The notification portion of the module sends
early acknowledgements back to the sending
process to enhance performance, this is dis-
cussed in Section 6.1.

RDMA OP Table New entries are added as the DMA engine pulls
new work items from the queues. The OP Table
updates the new entry in the Current OP struc-
ture, used to build individual network packets.
The table can currently hold 16 outstanding op-
erations in flight at any one time.

RDMA Transaction Issue Ta-
ble

Every time a new DMA packet is sent, it is
recorded in the transaction table with the oper-
ation number and its virtual offset number. Ac-
knowledgements (positive or negative) are sent
back here to clear the table entries. In the event
of a NACK the metadata stored here is used to
build a partial operation for retransmission.

Transaction Timers A bank of timers is stored here and associated
with the RDMA transaction table entries for
timed-out retransmission.

5.2. IMPLEMENTATION OF TRANSPORT MECHANISM 141

5.2.2 Shared Memory Retransmission IP

When a shared-memory operation is presented to the NI via the SHM Data Slave

port it is sent to the SHM Transaction module. This module is composed of a table

which is used to store all the information required to rebuild the transaction if a

retransmission is required. The data (for write operations) is stored along with the

transaction ID, destination address, burst length etc.

A list of available table entries is kept and an empty entry is popped from the

list when a new transaction is presented. A timer which is linked to this entry is

then loaded with a timeout value for retransmission and initialised. Currently the

timeout value for retransmission is fixed. An appropriate baseline value must be

determined. This value will be dependant on the latency of transmission which is

affected by many things; the topology, system size, workload characteristics, other

network load etc. Once a table entry has been found an ID equating to the table

location is issued to the request. This enables the response packet to identify the

corresponding table entry and to clear the associated retransmission timer.

A CAM (Content Addressable Memory) is used to store the outstanding trans-

action’s destination address, as the full list of outstanding transactions must be

checked every time a new transaction is presented. This is done to ensure mem-

ory consistency. In the event that a transaction is issued to the same address as

an existing in-flight transaction it must be stalled in order to avoid the possibility of

write-after-write or read-after-write data hazards. In normal programming practice

write-after-write hazards should not really occur, however they must be protected

against. The inclusion of the early acknowledgement mechanism (described in Sec-

tion 6.1) to increase the performance of remote write instructions can increase the

probability of this occurring, although repeated NUMA writes to the same address

in quick succession would indicate poor programming practice.

Figure 5.2 shows the mechanism for keeping consistency among the shared-

memory operations. At the arrival of a new transaction the table entries are checked

for their destination address. Any used entry (in flight transaction) which matches

the address will be placed in a list for pending transactions so as not to block the

pipeline in the NI. Once a response is seen and the entry has been cleared from the

table the list is checked. If any transactions match the destination address then they

142 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

ADDRESS ID

0xF0F0_F0F0_0000_0000 0x3

0xF0F0_F0F0_0000_0008 0x4...

USED

0

1

0xF0F0_F0F0_FFFF_FFFF

READ REQ (AR)
HIT? MISS

(AR)

ADDRESS ID

0xF0F0_F0F0_0000_0000 0x3

0xF0F0_F0F0_0000_0008 0x4

...

USED

0

1

READ REQ (AR)
HIT?

HIT

(AR)

0xF0F0_F0F0_0000_0008

TRANSACTIONS WAITING

TRANSACTIONS WAITING

ADDRESS ID

0xF0F0_F0F0_0000_0000 0x3

0xF0F0_F0F0_0000_0008 0x4

...

USED

0

0

WRITE RESP (B)
ERASE

(AR)

0x4

TRANSACTIONS WAITING

0x40x50x60x7

0x40x50x60x7

0x40x50x60x7

...

...

Figure 5.2: Mechanism to ensure consistency in shared-memory operations.
Reads/writes to the same address will stall in the NI.

are processed again as normal.

5.2.2.1 Current Limitations

A suitable value for the timeout for retransmissions cannot really be found until

a larger-scale prototype system is available to use, so for now it is set to an arbitrary

value of 64µs. This value was chosen as it is simply 10000 cycles at 6.4ns within the

logic fabric, and other works [6] provide similar timeout values of 50µs for example.

This length is easily sufficient so as not to cause premature timeouts within our test-

ing. Although the timeout value is fixed, a simple enhancement to the mechanism

may have a dramatic improvement on the efficiency of timeout usage. Since the sys-

tem utilizes a geographic addressing scheme (see Section 3.1.3) we can determine

the distance of any destination node using very simple arithmetic. The (average)

hop distance can then be used to set a higher or lower timeout value accordingly.

This distance could change depending on the routing mechanism used. If the rout-

ing scheme is minimal [196] then the hop distance will not change. However, if a

non-minimal scheme is used [24] then under high network load or when a given

flow heavily saturates a link then the path may be longer than normal, as vary-

ing paths/distances are possible by misrouting. This may make estimation more

5.2. IMPLEMENTATION OF TRANSPORT MECHANISM 143

difficult.

Currently a single table entry in the data table corresponds to a single 8-byte

transaction only. If a burst transaction is presented to the shared-memory retrans-

mission IP the transaction is split into multiple single beat transactions (burst length

0), and multiple entries in the table. This corresponds to a much larger packet over-

head for shared-memory operations as a packet is generated for every one of these

entries. The additional memory required to store larger transactions is marginal

however, and can easily be accommodated. For example, if we plan to store a max-

imum of 64-bytes per transaction (cache line size for the A53 processor1) we could

accommodate for a 72 entry table using only a single 36Kb BRAM element on the

Zynq Ultrascale+ device (out of a total 912). Note that this is to store the data asso-

ciated with the transaction only, not including transaction metadata.

It may seem to limit the scalability of the system to use a CAM for storing the

in-flight addresses for lookup, as the area overheads for a large CAM are not fea-

sible for FPGA implementation. Currently we only support 16 concurrent entries.

This value was chosen because all four cores of the Processing System on the Zynq

device can issue two concurrent transactions (dual-issue, in-order cores), and as the

interface path is 128-bits wide when we downsize to our 64-bit internal datapath

this can produce up to 16 simultaneous 8-byte transfers. However, it is not ex-

pected that a given node will produce a large number of concurrent point-to-point

shared-memory operations. It is much more likely that these are to occur in multi-

cast synchronization messages; in this instance sending replicated data to multiple

endpoints. As we discuss in Section 8.2.5, providing dedicated hardware to support

collective operations is something which would be highly beneficial to the perfor-

mance of the system, but unfortunately is beyond the scope of the work within this

thesis.

Despite this fact, there are many possibilities to extend the number of entries

in order to support software implementations of these collective operations. We

can do this without incurring heavy performance penalties or increasing the area

complexity of the mechanism dramatically. By simply reducing associativity levels

1ARM Cortex-A53 MPCore Processor TRM- http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.ddi0500e/BABCFDAH.html, accessed April 2019.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500e/BABCFDAH.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500e/BABCFDAH.html

144 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

and checking portions of the table in batches we can avoid increasing the size of

the N2 scaling of the matching logic of the CAM, while increasing the number of

possible entries in the table. While this will increase the latency of lookup if the

table is heavily populated, doing so in order to dramatically increase the size of the

table should be viewed as a very reasonable trade-off.

There is also the possibility to increase the efficiency of the CAM in general, as

our implementation is generally unoptimized. Recent work has attempted to ad-

dress the scalability of CAMs within reconfigurable logic using the on-chip RAMs

to implement the matching logic for the CAMs [197]. They stack bits of the words

in columns of separate RAMs rather than having the whole word within a single

row, thus enabling parallel lookups.

5.2.3 RDMA Retransmission IP

As mentioned previously (Section 3.3.4.2), the RDMA engine is currently a Xil-

inx AXI CDMA [16]. This sits outside of the NI within the FPGA fabric, but all

operations directed to the RDMA engine must pass through the NI (see RDMA OP

PUSH SLAVE and RDMA OP PULL SLAVE ports in Figure 5.1). This is because in-

formation is gathered inside the NI which enables it to track the operations which

are currently being performed. In the event of a retransmission being required the

NI is therefore able to rebuild partial transfers from the information about the initial

operation which was submitted.

We are unable to keep all the data from outstanding operations within the Net-

work Interface because the on-chip memory requirements for retransmission buffers

in the FPGA would be too large. It is possible to envisage the use of link-level re-

transmission buffers to enable the burden to be distributed over many switches in

the network, thus reducing the buffer requirements at the send-side NI. However

this would be insufficient; copies of the data must still be kept for end-to-end re-

transmission in case there is any major issue with the network, for example faulty

links or endpoints. It is impossible to simply push the data into the network and

guarantee delivery of the packets. There also has to be some sort of end-to-end retry

and acknowledgement mechanism. The only mechanisms which allow this (such

as UDP) can only ever be best-effort transport mechanisms. Another reason this

5.2. IMPLEMENTATION OF TRANSPORT MECHANISM 145

BASE TFERS OP No

0x...FFFF0000 16 0x2

OP TABLE ENTRY

ACKs LEFT

13

CURRENT OP

0x2

NEW TRANSACTION

0x...FFFF0C00SRC=

OFFSET OP No

4 0x2

5 0x2

6 0x2

TRANSACTION TABLE

512B (0x200) PACKET

Figure 5.3: Shows how current DMA operation is marked for the individual trans-
actions that comprise the full transfer, using offsets from the base virtual address,
as opposed to storing direct addresses.

is not feasible is that ensuring consistency would become far more difficult if the

network rather than the endpoints were in control of acknowledgements. A full,

end-to-end acknowledgement would still be required.

The RDMA transport mechanism shown in Figure 5.3 is formed of a hierarchy

of two tables. There is an Operation table which tracks the list of RDMA transfers/-

operations which have been issued. There is also a Transaction table which monitors

the individual in-flight packets which are associated with one or more full RDMA

transfers.

To issue an RDMA transfer the CPU or accelerator logic writes a work descriptor

into the RDMA OP PUSH SLAVE port of the NI (Figure 5.1). Table 5.2 shows the

transfer descriptor, which must be 64-bit aligned. Source and Destination address

are written, as well as a Configuration register which gives the transfer size and

options relating to interrupts and transfer modes. These work descriptors are sent

to queues within the NI which are pulled by the DMA engine every time a new

transfer can be processed.

As the DMA engine pulls the transfer descriptor in to begin processing it is

logged within the DMA OP Table. The DMA operation table entry consists of a base

address, the number of expected transfers, an operation number, as well as a field

to track errors. Every new transaction that enters is assigned an OP number for the

current working operation. The transaction is then logged in the Transaction table.

The individual transactions are given an offset number in the table entry, calculated

146 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

Table 5.2: Transfer descriptor for an RDMA operation.

Struct Entry Details
next_desc_ptr Address of the following work item, 64-bits.
src_addr Base virtual address of the data to DMA, 64-bits.
dest_addr Base virtual address of the target for the DMA opera-

tion, 64-bits.
control Control register for work item 32-bits, 25:0 = bytes to

transfer (max 64MB), 31:26 = reserved.
status Status of transfer 32-bits, 31 = transfer complete status,

30:28 = decode error (incorrect address), slave error
(slave could not accept data), internal error (internal
DMA engine error), 27:0 reserved.

from the base address, as the DMA transfers within a single operation must be con-

tiguous in virtual memory. The DMA OP number is sent with the packet in order to

mark the responses as they return. The offset value can be placed in the transaction

table along with the OP number to reduce the size of the table entry, rather than

storing the source and destination address for every outstanding transaction.

Figure 5.4 shows how individual packets are sent through the transport layer

and what happens on return of an acknowledgement packet. As the individual

packets are entered into the Transaction Table an associated timer is started, with

retransmission performed upon timeout or receipt of a negative acknowledgement.

When a response packet arrives back it is sent to both the OP Table and the Trans-

action Table. If the response is positive then the OP table decrements a counter on

the number of expected responses remaining, if not then the operation is marked as

failed but remains in the table to handle other acknowledgement packets.

Figure 5.5 shows how a retransmission works in the case of a negative acknowl-

edgement. The transaction table builds a transfer descriptor from the table element

in the event of a failed transaction or timeout and places it into a retransmission

queue for the DMA engine to process. When the DMA engine processes the failed

transaction and retries, the address is checked against the OP table. The OP marked

failed whose range contains this address is then refreshed. This is done in order to

prevent the system from sending a notification packet to the receive side until ev-

ery transaction has completed successfully, including retransmissions. Only once

5.2. IMPLEMENTATION OF TRANSPORT MECHANISM 147

MEM

DMA

0x0A00

0x0C00

0x0E00

READ

DEST =0x...11110000

BYTES =0x1000

WORK DESCRIPTOR

Figure 5.4: Return of an acknowledgement packet, and its effect on the OP Table
and Transmission Table within the NI.

MEM

DMA

NIC
WRITE

OFFSET OP No

4 0x2

5 0x2

6 0x2

3 0x2

2 0x2

USED

0

0

0

0

0

OFFSET=6

NACK

OP=0x2

SRC BASE TFERS OP No

0x...FFFF0000 1 0x2

OP TABLE ENTRY

ACKs LEFT

1

7 0x2 0

BUILD NEW DMA WORK DESCRIPTOR

DEST =0x...11110C00

SRC =0x...FFFF0C00

BYTES =0x200

DEST BASE

0x...11110000

WORK DESCRIPTOR

Figure 5.5: Rebuilding a new DMA transfer descriptor from a negative acknowl-
edgement, using the original base from the OP table entry and the offset of the
negatively acknowledged packet.

148 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

the count of expected transactions in the DMA OP Table entry is zero will a no-

tification packet be constructed and sent to the receiver. On the receive side the

notification packet is processed very simply; being added to queues which must be

checked by the CPU or accelerator resources.

5.2.3.1 Current Limitations

The current implementation has static, dedicated queues for notifications and

for RDMA operations. This means that we have two separate physical ports on the

NI to handle accelerator based transactions and CPU based transactions. Having

a single physical interface with the ability to handle multiple logical interfaces is

necessary to allow more than one process to issue RDMA operations simultane-

ously. This can easily be done by associating logical queue identifiers to RDMA

operations, with the CPU or accelerator passing additional information to the NI.

Processes can set up these queue identifiers during initialization of the program.

Providing these logical queues does not limit the scalability of the system in

any way, as the notifications given to the user show the information about which

operation has completed. Only one queue ID is needed per process, per node in this

instance. This is as opposed to requiring a queue per source-destination pair, or a

queue per source-subnet (as in more scalable implementations of the Infiniband RC

transport [142]).

Given that all of the RDMA operations pass through the NI we can begin to

provide priority scheduling for the RDMA transfers. The DMA engine operates

by issuing read transactions to a single address repeatedly (the physical address

of the work queue in the NI). We can therefore easily modify the transfer descrip-

tor (which has redundant bits already) to include a priority level field, and send

the descriptor to separate queues within the NI. As well as this, another feature

which can simply be implemented is the ability to segment very large transfers into

smaller ones. This prevents smaller transfers from being starved of resources and

also helps enable increased overlap of computation and communication. This is

discussed in further detail in Section 6.3.

Unfortunately these features are insufficient for providing complete, priority-

based QoS within the full system, as the network itself must be made aware of

5.3. RETRANSMISSION AND FAULT TOLERANCE STRATEGIES 149

HBBBT B B

XPACKET

CRC FAIL

(a) Packet-level CRC checking, which requires a store and forward architecture in the
switch. The whole packet is required prior to error checking.

HBB

BB

FLITS

TRANSFERRED

BT

(b) Virtual cut-through switching, where switch allocation occurs and flits are able to
progress to the next switch before the entire packet has been buffered in the previous stage.

Figure 5.6: Store and forward and virtual cut-through switching.

the priority placed upon packets and act accordingly. All we are able to provide

at the Network Interface is the priority level information, and to arbitrate between

different priority RDMA transfers in the event that multiple operations are simul-

taneously issued.

5.3 Retransmission and Fault Tolerance Strategies

Many interconnection fabrics today provide link layer error checking with CRCs

(Cyclic Redundancy Checking), or forward error correction (FEC). While techniques

such as these can provide added reliability and reduce the latency or frequency of

retransmissions, they come at a price. Including a packet level CRC at every switch

increases the average latency of transmission for all packets. The switch necessarily

incurs additional latency as its architecture must be store and forward in this case.

Figure 5.6a shows the store and forward nature of a switch, where the whole packet

is buffered before switch allocation. Using a Virtual-Cut-Through [198] technique

would allow packets to be processed and begin leaving the switch before the CRC

at the end of the packet can be checked. Including CRCs at the flit level is not fea-

sible either, as a flit can be erroneous but prior flits may have been processed and

left the switch already (see Figure 5.6b), meaning a technique for dropping these

forwarded flits would be very complex indeed.

150 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

Using Forward Error Correction in the form of an Error-Correcting Code (ECC),

would enable highly reliable transmission with low jitter even on erroneous pack-

ets, but also requires a store and forward switch architecture. Obviously this comes

from the fact that errors which are introduced on the fabric are to be fixed before

transmission. The price that is paid in this case is reduced bandwidth of the links.

The packet overhead from adding an ECC varies dramatically depending on the

type of code used and the number of bit-errors in a flit which can be identified and

fixed. It is important to note here that the chances of bit-errors occurring raises

temporally with respect to a previous bit-error being seen, as described by Gilbert

in his Markov model for burst error probability [199]. Therefore multiple errors can

become much more likely if a single error is seen. This means that forward-error-

correction is not an absolute guarantee to prevent retransmissions. However, typ-

ical high speed serial links using traditional copper cabling operate at an expected

maximum bit-error-rate (BER) of ≈ 10−12, which is very low.

In our opinion having such low error rates on the links means that the cost of

ECC on the useful bandwidth available is not worth the price. Additional aver-

age latency on the links by adding CRC is also not worthwhile. In this section we

evaluate two possible techniques for link level error checking and forward error

correction against a purely end-to-end technique and find that even under very

aggressive error conditions there seems to be little advantage in using link-level

techniques. Partly this is due to the fact that latency penalties for end-to-end re-

transmission are not as high as the requirements for store and forward switching

given the fact that we are able to take advantage of a low diameter topology such as

Dragonfly [149] (see Figure 5.8), which is permitted by the system switch described

in Section 3.1.3.

5.3.1 Latency and Fault Injection Mechanism

The work presented in this thesis cannot be tested easily beyond a small sys-

tem. There is currently no distributed runtime system available for our hardware,

making testing of real-world distributed applications impossible. There is also no

port of programming interfaces such as MPI onto our simple API. Another issue is

5.3. RETRANSMISSION AND FAULT TOLERANCE STRATEGIES 151

the fact that we do not have access to the virtual-physical and physical-global map-

ping hardware which is required for a larger system to be created. The IOMMU

configuration is complex and would only serve as half of the required translation

scheme (because only physical addresses can be mapped to the CPU-FPGA inter-

face, a translation stage inside the FPGA fabric is also required). Due to this fact we

only have access to small windows of statically mapped physical regions of mem-

ory, suitable for testing the raw capabilities of our design. Testing the hardware in a

real-world system with real world applications would require many person-months

(possibly years) of effort, which are clearly beyond the scope of this thesis.

Due to this fact, we have created a fault injection IP which mimics the flow

of data and response packets between nodes over multiple hops within a larger

system. The IP (seen in Figure 5.7) adds an artificial latency to any incoming traffic

to simulate large scale network traversal, and creates positive (ACK) or negative

(NACK) acknowledgements based upon the error injection rate and the distance

travelled.

The Rand Addr IP block shows how we manipulate the target address to rep-

resent a weighted, randomly assigned distance to which the packets must travel.

We desire (and are able given the proposed switch design for the system, see Sec-

tion 3.1.3) to use modern low diameter topologies, such as Dragonfly or Jellyfish.

In our case we assume a Dragonfly and so we model path lengths between 2 and

5 hops; distance 1 is not possible here as we assume an indirect network topology.

For example, see how Figure 5.8 illustrates the number of hops it takes to traverse

a Dragonfly network between any two given points. The address of the transac-

tion is changed to simply reflect the number of hops we wish the packet to travel.

This value is then used to multiplex the packet into the correct path through the

fault-injection circuit.

We test with two different traffic distribution models; a local distribution (-L)

that gives higher probability to communications that are closer with ratios of 8:4:2:1

for distances 2 to 5 hops, and a remote distribution (-R) which uses ratios of 1:2:4:8.

In the Injector block we see how the manipulated address is used to send the packet

information through an array of delays and comparators to emulate link latency

and error injection. The width of this array is attributed to the distance the packets

152 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

ROUND

ROBIN

ARBITER

A/N

A/N

>T
A/N

>T
MODE

>T
ADDRESS

...

A/N

A/N

>T
A/N

>T
MODE

>T

A/N

A/N

>T

>T
MODE

A/N

A/N

>T

>T
MODE

A/N

A/N

>T

>T
MODE

A/N

A/N

>T

>T
MODE

A/N

A/N

>T

>T
MODE

A/N

A/N

>T

>T
MODE

A/N

A/N

>T

>T
MODE

A/N

A/N

>T

>T
MODE

A/N >T

A/N >T

0x2

0x3

0x4

0x5

LFSR

A/N

P0 P1 P2 P3 P4

P0 P1 P2 P3

P0 P1 P2

P0 P1

A0 A1 A2 A3 A4

A0 A1 A2 A3

A0 A1 A2

A0 A1

ERR THRESHOLD

LFSR SEED

HOP LATENCY

ECC/CRC MODE

ECC LATENCY

START LFSR

STREAM WRAPPED

AXI, NETWORK DATA

A/N

>T

A/N

>T

A/N

>T

A/N

>T

AW/AR

MEMORY MAPPED

AXI TRANSACTION

NIC

ERROR/

LATENCY

INJECTOR

MEMORY MAPPED

AXI, CONFIG
STREAM WRAPPED

AXI,

ACKNOWLEDGEMENT

Figure 5.7: Microarchitecture of the fault injection hardware used to test the trans-
port layer.

5.3. RETRANSMISSION AND FAULT TOLERANCE STRATEGIES 153

2 3

4

5

Figure 5.8: The number of hops to cross a fully connected Dragonfly network.

must “travel”. Errors can be introduced and NACKs generated at any number of

these stages (hops).

The relevant data from the packet header/footer required to form the response

packets are held as a structure until the entire packet has entered the block. The

redundant data is discarded. Upon the arrival of the last flit of the packet, the held

data is placed into the network at P0, with a timestamp T which denotes the time

it is able to progress. The timestamp is calculated given the current time T0, the

per-hop latency HL, and the ECC latency (if there is any) EL as T = T0 + HL + EL

in cycles. At every cycle the timestamp is checked against the current time t, and is

allowed to progress once it has been reached.

The Px (packet) and Ax (acknowledgement) structures used to hold the response

packet structure represent short buffers. This is required to account for the fact that

collisions may occur in the delay network, as can be seen in the fact that arbitration

between the source of the Ax structures is required between Ax+1 and Px. Once a

structure is allowed to progress one hop its timestamp is recalculated, but also it

goes through a process of fault injection.

154 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

The A/N fault injection blocks take the error threshold from the configuration

register, and a random number generated by a 32-bit LFSR (Linear Feedback Shift

Register) to determine whether a fault should be injected. If the result is positive

the response entry will be adjusted to provide a negative acknowledgement for that

given transaction. If the mode of operation dictates that link level error checking is

in place, then the resulting packet will be inserted directly into Ax, where x is the

number of hops the packet travelled before having the error injected.

5.3.2 Measuring Latency and Jitter

The fault injection IP is used to test three possible scenarios for error detection

and correction within our prototype in order to determine which would be most

suitable for a full-scale system. We use measurements and parameters from other

experiments (Section 6.1) to model the properties of the network such as hop la-

tency and CRC store and forward latency. By doing this we hope to gain a better

understanding of which method may be most suitable when incorporated into a

larger system. The three scenarios are:

• End-to-end CRC checking (E2E). In this instance there is no link layer error

checking performed, allowing for minimized latency for normal transfers, but

requiring far higher latency for retransmission.

• Link-level CRC checks (LLV). In this instance the switch performs error check-

ing and drops the packet if an error is observed. This solution offers a higher

average latency for regular transfers, but reduces the latency of retransmission

and does not waste network bandwidth propagating erroneous packets.

• Link-level ECC (ECC). In this instance there is an additional bandwidth over-

head which is modelled by simply sending more packets in order to reach the

required amount of data to be sent, reducing the goodput of the network. This

solution offers a higher average latency for normal packets but very low jitter,

as unexpected errors are mitigated against.

5.3. RETRANSMISSION AND FAULT TOLERANCE STRATEGIES 155

5.3.2.1 Basic Parameters

In the end-to-end CRC check mode (E2E), the packet must travel the full round

trip through the network and cannot use the faster path out of the array of fault

injection blocks (see the shorter path through the multiplexers and Px/Ax buffers

in Figure 5.7). Link level CRC check and ECC mode add a fixed latency EL to each

hop. This corresponds to the requirement for a store and forward architecture in

any switch using this error checking method. The delay equates to the number of

flits in the packet, as the whole packet must be present and verified correct before

progressing to the next delay block (switch). However, since ECC is intended to

protect the packet from corruption we assume a fault can never be injected in this

mode. This assumption is not entirely realistic as ECC can only recover from a small

number of bit errors (although the probability of undetected errors over a copper link

in common ECC implementations is effectively nil). If burst errors are seen on the

link and there are too many errors to correct then retransmission would be required.

Note that this simplification favours the ECC model in terms of performance, pack-

ets simply take on the latency of the full round trip for the data and acknowledge-

ment, ignoring the fault injection blocks. As we will see, even with this favourable

conditions for ECC, and end-to-end mechanism will still outperform it in terms of

latency and throughput.

For the link-level CRC check (LLV) instead of waiting for a timeout for retrans-

mission (introducing additional latency) we choose a more performant solution. We

generate negative acknowledgements in the switch where the error is introduced

and send them back to the NI. In doing this we minimize the delay for retransmis-

sion, and the fact that we do not have a suitable concrete value for retransmission

timeouts becomes irrelevant.

From other experiments (Section 6.1) we see that the round-trip time for a single

RDMA packet is around 1.9µs. For simplicity we therefore use a baseline latency

of ≈1µs per hop (156 cycles). In link level CRC/ECC mode an additional 64 cycles

(number of payload flits) latency is added at the end of each hop to account for the

fact that store and forward switching would be required in this instance, as opposed

to virtual cut through.

156 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

5.3.2.2 ECC Bandwidth Overhead

There is a large corpus of research on Error Correcting Codes (ECC), which are

generally categorized into three classes [200]; classical ECC, concatenated codes,

and LDPC (Low Density Parity Check) or turbo codes. The most suitable, LDPC

codes, are routinely implemented within FPGAs [193] and are used in many stan-

dards such as WiMAX [201] and 10GBase-T Ethernet [202]. However, for the pur-

pose of the following analysis we will use values for the overhead of ECC on band-

width of 12.5% from [203]. This value was chosen as it is the most optimistic value

for ECC, being easily among the lowest overhead we found in terms of coding ef-

ficiency [193]. The performance of the ECC mode will therefore likely be lower

than this in any real world implementation on the FPGA. The ECC overhead is ac-

counted for in the delay network by transferring additional packets to make up for

the bandwidth overhead.

5.3.2.3 Link-Level Retransmission

There are two methods for performing link-level retransmissions; with CRC per-

flit, and a CRC per-packet. We choose not to implement either of these retransmis-

sion methods in our experiments. The most important reason for this is that it is

very difficult to estimate the latency for retransmission given that it will be heavily

implementation dependent. First a negative ACK must be sent back upstream, and

then the retransmission buffer must be allocated resources within the switch before

resending the packet/flit. There are too many unknowns to put a sensible estimate

on these values without some form of implementation.

The second reason that we have chosen not to implement flit-level CRC retrans-

missions is that using the ECC mechanism gives an acceptable indication of how

this flit-level retransmission may perform. A flit-level CRC and retransmission

would incur additional bandwidth overhead like ECC, and for our ECC model

there is no additional retransmission latency (as we recover from the error). As

such we can assume that the ECC would perform better in the event of retrans-

missions, and similar under conditions of correct transmission. This is true as long

5.3. RETRANSMISSION AND FAULT TOLERANCE STRATEGIES 157

Figure 5.9: Message format for BXI. Taken from [153].

as the bandwidth overheads are the same. We can see in examples of other state-

of-the-art interconnect technology using link-level CRC-checks that this is the case.

In the BXI interconnect [153] they perform link-level retransmissions and require

an additional overhead of up to 12.5% (depending on the amount of payload per

packet). For packets with negligible overhead from header/footer we see that the

CRC overhead is therefore very similar to the bandwidth overhead we use in our

ECC calculations. Figure 5.9 shows the message format for the BXI interconnect.

It is therefore correct to assume that our ECC model would perform the same or

better than a flit-level retransmission mechanism.

5.3.3 Results and Discussion

Latency

Using the local (L) and remote (R) traffic distributions discussed above we find

the following results for our three fault tolerance techniques, shown in Figure 5.10.

These graphs show the average latency for data transmission and acknowledge-

ment for different transfer sizes as we vary the Bit-Error-Rate of the fault injection

IP. Each graph shows the time for the end-to-end (E2E), link-level CRC (LLV) and

link-level ECC (ECC) mechanisms.

Notice that the BER of the links used for testing starts from zero (completely

error free link), but then reaches very aggressive levels in the order of 10−7. This

158 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

 11

 12

 13

 14

 15

 16

 17

 18

 19

 0 1
e

-0
7

 2
e

-0
7

 3
e

-0
7

 4
e

-0
7

 5
e

-0
7

 6
e

-0
7

 7
e

-0
7

A
v
e

ra
g

e
 T

ra
n

s
fe

r
T

im
e

 (
u

s
)

Bit Error Rate

E2E-R
LLV-R

ECC-R
E2E-L
LLV-L

ECC-L

(a) Average latency for 4KB transfer..

 70

 80

 90

 100

 110

 120

 130

 0 1
e

-0
7

 2
e

-0
7

 3
e

-0
7

 4
e

-0
7

 5
e

-0
7

 6
e

-0
7

 7
e

-0
7

A
v
e

ra
g

e
 T

ra
n

s
fe

r
T

im
e

 (
u

s
)

Bit Error Rate

E2E-R
LLV-R

ECC-R
E2E-L
LLV-L

ECC-L

(b) Average latency for 64KB transfer.

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0 1
e

-0
7

 2
e

-0
7

 3
e

-0
7

 4
e

-0
7

 5
e

-0
7

 6
e

-0
7

 7
e

-0
7

A
v
e

ra
g

e
 T

ra
n

s
fe

r
T

im
e

 (
m

s
)

Bit Error Rate

E2E-R
LLV-R

ECC-R
E2E-L
LLV-L

ECC-L

(c) Average latency for 2MB transfer.

Figure 5.10: Average latency of transfers through the fault injection IP.

5.3. RETRANSMISSION AND FAULT TOLERANCE STRATEGIES 159

is far beyond the expected error rates of 10−12 required for 10G SFP+ cables. How-

ever, we use these high error rates in order to find the error rate at which ECC

becomes a viable alternative to end-to-end error checking. It can be seen that even

for relatively small message sizes ECC cannot outperform end-to-end checking un-

til a bit-error-rate of ≈ 5 × 10−7 is reached. If we were to run these tests around a

standard BER of 10−12, the incidence of bit errors would be so low that the latency

would appear to be near constant.

The results suggest that there is no real value in performing link-level CRC

checks. The only rationale behind the decision to use this feature would be if the

switch architecture required implementation using a store and forward technique

regardless of the error checking. The additional average latency on normal packets

far outweighs any benefits from retransmission. There is a reason that the higher av-

erage latency can never be amortized by the reduced round trip time for erroneous

packets even with extreme link error rates. This is caused by the implementation of

the retransmission scheme. The NACK’d packets are not handled until the whole of

the initial DMA transfer has been issued, meaning that even if the NACK’d packets

arrive back at the source earlier they will not be serviced straight away unless they

are at the end of the full DMA transfer.

For smaller transfers the implications of the ECC bandwidth overheads are less

pronounced because link saturation is nowhere near achieved for these smaller

message sizes (see Figure 5.11). Even under these conditions with small transfers

we see that the link-level error correction does not begin to outperform the end-to-

end mechanism until a very high bit-error-rate of ≈ 3 × 10−7 for the local traffic

distribution. For the remote traffic distribution the ECC performs even worse com-

paratively.

For larger message sizes of 64K and 2M (where we begin to see link saturation)

the results show similar, higher crossover points for performance of end-to-end and

link-level techniques at ≈ 5 × 10−7. This is for both the local and the remote traffic

distributions. Given the difference between these results and those at much smaller

message sizes and the similarity between local and remote distributions for larger

sizes, this suggests that the performance of these techniques is more affected by

the message size than the distance the messages travel. This is perhaps due to the

160 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

Message Size (B)

E2ER (0)
ECCR (0)
E2EL (0)
ECCL (0)

Figure 5.11: Throughput for RDMA transfers of differing message sizes.

low diameter network which we target, so the latency for retransmission is not a

huge factor when compared to the higher average latency when using a store and

forward mechanism.

Throughput

The achievable throughput and saturation point for ECC and E2E is shown for

different message sizes in Figure 5.11. This shows us two things. Firstly is the

extent of the negative effect of the ECC overhead on the saturation point for the

payload throughput. Secondly is the fact that the remote distributions lower the

achievable throughput. For the local traffic distribution we see link saturation at

the levels achieved in Section 3.4.3, but this is not the case when extended out. This

is due to limitations within the system for issuing concurrent RDMA transactions.

The RDMA transaction table currently only permits 16 entries (in-flight transac-

tions) as this is the maximum that the Xilinx CDMA IP [16] can allow for. Our

work on allowing early acknowledgements for AXI write transactions within the

NI overcomes this issue, and will permit the issuing of a larger number of concur-

rent transactions. This is discussed in Section 6.1.

5.3. RETRANSMISSION AND FAULT TOLERANCE STRATEGIES 161

 10

 100

 1
⋅1

0
-6

 1
⋅1

0
-5

J
it
te

r
(u

s
)

Bit Error Rate

E2E-R
LLV-R

ECC-R
E2E-L
LLV-L

ECC-L

Figure 5.12: Jitter for 4KB RDMA transfers under various error conditions.

Jitter

In Figure 5.12 we show the jitter seen for small 4K message transfers within

varying bit-error rate conditions. We only care about the jitter on these smaller

message sizes, as small messages are far more likely to comprise latency sensitive

data. The graph shows that the ECC massively outperforms the end-to-end retrans-

mission technique for all but the lowest recorded error rate ≈ 3.3 × 10−7. At these

low levels the jitter rates are very similar for E2E and ECC. This would suggest that

the jitter at these levels is merely due to the distance travelled by the packets rather

than retransmissions. However, notice that this cannot be the case as the LLV solu-

tion has a much higher jitter even at the lower error rates. Given that the ECC and

E2E results are so similar at lower error levels, this suggests that in all but the most

highly jitter sensitive applications the E2E solution would be beneficial to use due

to the large bandwidth overheads.

Discussion

These results seem to contradict the current practise in the field, which is tending

towards greater levels of error correction as link speeds become higher. However,

given the context of our implementation (short diameter network, area constraints

in the FPGA, 10G links etc.) and the ramifications of added switch complexity and

requiring store and forward latency, we argue that these results hold true. We show

162 CHAPTER 5. TRANSPORT LAYER FOR FPGA BASED HPC

that under anything approaching the expected low error rates of the links then the

additional overheads are not worthwhile. It remains to be seen whether the higher

jitter could cause problems within real-world applications (preventing timely syn-

chronizations), or whether the low expected error rate on the links mean that this

would not affect overall application runtime too heavily. In order to evaluate this

we would require a full prototype system, able to present realistic workloads with

real dependencies. Unfortunately getting to this point would require many person-

years more work, and so is obviously well beyond the scope of this thesis.

Network Load

These results do not take into account any possible network load within the

system, which obviously effects the latency of transfers through the network due

to packet buffering etc. In an instance where high network load causes significant

delays to packets reaching the allocation stage of the next router it is possible that

the entire packet may already be buffered within the switch, masking the additional

latency of performing link-level CRC checks. In this case the link-level CRC or

ECC techniques may outperform a simple end-to-end solution. However, given the

fact that such high BERs are required to make the solution worthwhile, it seems

unnecessary to provide such a solution given the additional FPGA area overhead

incurred for these features. This is particularly true given the low diameter of our

target network, and the small effect that the chosen mechanism has on the jitter at

low error rates (which are still quite high error rates in reality, given the 10−12 rate

on standard link technology).

5.4 Concluding Remarks

In this Chapter we detailed the design of a fully hardware-offloaded transport

layer which is implemented within the fabric of the FPGA and enables reliable data

transfer without the need for CPU intervention. Our design maintains a connection-

less approach, and we show that we can maintain reliability without maintaining

information regarding connection state. The only state information required is with

regards to current outstanding transfers in the network, making it inherently more

5.4. CONCLUDING REMARKS 163

scalable than connection based approaches. Our novel solution uses two separate

transport mechanisms depending on the communication types. This means that

our solution has a low memory footprint within the FPGA.

Our analysis at the end of the Chapter attempts to determine whether link-

level error checking or correction techniques should be employed within the sys-

tem. Given the fact that our system is targeted towards a low diameter Dragonfly

topology and that we utilize the 10G links of the FPGA, our analysis shows that an

end-to-end reliability scheme is easily sufficient given the bit-error rate on modern

high speed links.

The work in this Chapter provides contributions in the following ways:

1. A novel hardware implementation for a transport layer designed for FPGA

based communications which has both the following properties; it is reliable

and connectionless. Previous techniques are either best-effort, or require con-

nection state to be held, thereby requiring dedicated per-flow send and receive

buffers. The transport layer uses two separate retransmission strategies to

provide less latent retransmissions for NUMA-like remote memory accesses,

as opposed to RDMA messages.

2. An analysis based upon our specific system properties which suggests that

end-to-end reliability is sufficient for our needs, and that modern ECC tech-

niques are unnecessary for such short diameter networks as ours and for the

expected error rates of the transceivers.

Chapter 6

Performance Enhancements

The basic structure of the Network Interface and our custom, hardware-offloaded,

reliable transport layer has been described in Chapters 3 and 5. In this Chapter we

discuss several enhancements to the architecture and demonstrate their effective-

ness. Firstly we discuss the method for providing early acknowledgement of write

transactions within the NI, and show the performance benefits which arise from

this. We discussed in detail the implications of using this technique on the consis-

tency model in Chapter 4.

In this Chapter we also describe a technique to improve the performance of

RDMA operations at the receiver by registering certain operations and tracking

their progress. In doing this we are able to provide notifications of RDMA operation

completion directly to the receiver from its own Network Interface. The standard

method of acknowledgement from the sender is bypassed in this instance, saving a

round-trip latency for the full communication.

Closely associated with the analysis of the experiment performed is a further

optimization that can help enhance the productivity of computing on our system by

allowing overlapping communication and computation to a much higher degree.

We discuss the possibility for segmenting RDMA transfers into smaller chunks in

order to enable computation to be performed earlier than would be expected at the

receive side. We show how our Network Interface can be simply modified in order

to accommodate this optimization and discuss the possible implications of this.

165

166 CHAPTER 6. PERFORMANCE ENHANCEMENTS

6.1 Early Acknowledgement for AXI Writes

As mentioned in Section 3.2.2, we provide a method of Early Acknowledge-

ments for AXI write transactions in order to increase the performance of the system,

and reduce stalling in the pipeline of the in-order A53 processor. This performance

enhancement is included for both shared-memory accesses and RDMA transfers.

Obviously there is no performance enhancement that can speed up remote read op-

erations as the data is required to allow the processor to continue. Therefore the

systems software must aim to reduce the number of remote read operations us-

ing better memory management techniques and scheduling decisions, as they will

have a severe effect on the performance of the system. This is a well understood

limitation when programming on NUMA systems [204], [205].

It seems counter-intuitive to include such a mechanism for RDMA transfers,

as the DMA engine does not suffer the same pipeline stalling issue as the Cortex-

A53. However, the IP which is used to perform the DMA transfers, the Xilinx AXI

CDMA engine (Central Direct Memory Access [16], providing memory-mapped

interfaces) has a limitation in the number of concurrent outstanding transactions it

permits, which limits the capability of the RDMA engine to saturate the network

over long distances. This phenomenon is shown in Figure 6.1, and we have seen

and discussed the implications of this issue arising in the Network Interface during

our experiments in Section 5.3.3. Therefore we will include this mechanism in the

RDMA transport in order to extend the number of transactions in future. The value

required will need to be calculated based upon the number of packets which can

form a fully pipelined flow to each end of the system, and must be set accordingly

in a real world system.

Another reason for doing this is that the DMA engine is incapable of handling

erroneous transfers and will simply set an interrupt pin high when an error is en-

countered. This must then be dealt with by some external mechanism such as a con-

troller which will raise an interrupt to the OS and allow software handling. Since

the design of our Network Interface includes a hardware mechanism for handling

erroneous transfers there is no need to rely on software. As such, all transfers from

the DMA engine are acknowledged as successful once the data has been transferred

6.1. EARLY ACKNOWLEDGEMENT FOR AXI WRITES 167

X

Figure 6.1: Limiting the number of outstanding operations limits the saturation of
the network at certain distances.

into the NI from local memory/accelerator etc.

In order to allow for the early acknowledgement of the AXI write transactions

a bank of timers is used; each of which has an associated ID. Upon the arrival of a

write request, once the transport mechanism issues a timer the early acknowledge-

ment response packet will be formed and returned to the initiator. Currently the

design uses only 16 outstanding timers on the RDMA transactions. This is easily

sufficient to saturate a 10G link at a distance of one hop, but should be extended in

a full scale system to accommodate for an uninterrupted stream of data to be issued

over a larger network. This value was initially used because the maximum possi-

ble concurrent transactions that the Xilinx CDMA can accept is 16 (although this is

not the default configuration [16]), and so is an artefact of the implementation prior

to the use of the early ACKs. An appropriate value for the maximum number of

possible outstanding transactions is dependent on many factors, such as the net-

work diameter and topology, network load, workload characteristics due to typical

transfer sizes, routing algorithms, congestion control mechanisms etc. As such it is

very difficult to determine an appropriate number of table entries to cater for with

a prototype at this scale and sophistication.

If the timer overflows then a message is sent to the retransmission mechanism

within the NI to handle the issue. This will either reinitialise the transaction, or in

the event of multiple time-outs raise a system level interrupt in order to initialise

the checkpoint-restart mechanism, as described in Section 4.1. If a correct acknowl-

edgement of the packet is seen then the timer is simply stopped and replaced in

the bank of unused timers. A notification is given on the receipt of the genuine

acknowledgement to allow the user to poll to confirm the operation was successful.

168 CHAPTER 6. PERFORMANCE ENHANCEMENTS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

T
h

ro
u

g
h

p
u

t
(G

b
/s

)

Number of Concurrent Transactions Permitted

Max pkt size = 128B
Max pkt size = 512B

Early ACK, Max pkt size = 128B
Early ACK, Max pkt size = 512B

Figure 6.2: Throughput over outstanding packets, showing quicker saturation us-
ing early acknowledgement system.

The early ACK mechanism is bypassed when exclusive (atomic) accesses are is-

sued (AXLOCK=1, see Appendix C). This allows for hardware exclusive accesses to be

used. The system must wait for the full remote response in this instance, with no

notification being sent but a direct AXI response packet being returned. In this man-

ner the programmer must be aware of whether hardware or software based lock-

ing/synchronization messages are being used. As we discussed in Section 4.1.4.2 a

method to allow this at the remote node is required, due to the inability of the CPU

to give remote access based upon the specific source node. Unfortunately this is not

yet implemented.

In Figure 6.2 we compare the results presented in Section 3.4.3 with the early

acknowledgements mechanism. It is seen that the latency of waiting for acknowl-

edgements is masked completely if more than a single packet can be in flight at

any one time. The reason that there is degraded performance in the event that we

have a single in-flight transaction limit comes from the implementation of the timer

module for the early acknowledgement. When a transaction is presented a request

for an available timer to begin takes 2 clock cycles. This timer can only be requested

once the footer has been presented. What this means is that there is a bubble in the

pipeline which is only masked when a separate request can begin writing data into

the NI while the timer is being started for the previous transaction.

6.1. EARLY ACKNOWLEDGEMENT FOR AXI WRITES 169

 1

 10

 100

 1000

 8 1
6

 3
2

 6
4

 1
2

8

 2
5

6

 5
1

2

 1
0

2
4

 2
0

4
8

 4
0

9
6

 8
1

9
2

 1
6

3
8

4

 3
2

7
6

8

 6
5

5
3

6

 1
3

1
0

7
2

 2
6

2
1

4
4

T
im

e
 f

o
r

T
ra

n
s
fe

r
(u

s
)

Message Size (Bytes)

RDMA w/ Early Ack
RDMA Standard

Figure 6.3: Reduced latency for transfer when using Early Acknowledgements
mechanism.

We have set up an experiment which uses the full RDMA engine to send varying

sizes of messages, pulling memory from the DRAM in the PS and sending it over

the network, writing into the DRAM of the remote PS and waiting for every trans-

action to be properly acknowledged. This shows the effectiveness of adding early

acknowledgements to the NI in improving the performance of the RDMA transfers.

Figure 6.3 shows the time taken for an RDMA operation to process and receive

(genuine) acknowledgement for a given message size. The baseline for small sized

messages is around 1.9µs, which stays consistent until the message size grows to

over 64B. This latency is higher than the baseline we see in the results in Sec-

tion 3.4.1, which is due two reasons. The first is that in this instance additional

latency is incurred as the DMA destination is remote DRAM, as opposed to BRAM

on the remote FPGA fabric. This DRAM access is obviously slower than accessing

the static RAM on the FPGA.

The second difference is that the setup for these experiments uses a different,

open-source 10G MAC/PHY layer1. We saw that the latency for transmission over

the serial links was actually higher in this configuration than when using the Au-

rora PHY from Xilinx [17]. This was found to be due to a store and forward within

this open-source MAC layer at the receiver.

1The IP was created by Alex Forencich, and can be found at-https://github.com/
alexforencich/verilog-ethernet, accessed 2017.

https://github.com/alexforencich/verilog-ethernet
https://github.com/alexforencich/verilog-ethernet

170 CHAPTER 6. PERFORMANCE ENHANCEMENTS

We see the divergence in performance in the results such that for larger mes-

sages adding early acknowledgements to the system results in a transfer time of

roughly half. This difference arises because the RDMA engine reaches its limit for

concurrent transactions per channel. This difference would become even more pro-

nounced if the distance between source and destination were more than a single

hop, as the latency between issuing new transactions would grow even further.

6.2 Receiver Registration

In order to reduce the latency of RDMA operations at the receiver an optimiza-

tion is required to enable the receiver to identify when an operation has been com-

pleted. The standard method for notifying the receiver that new RDMA data has

been posted is to have the sender issue a notification/acknowledgement packet

for the whole operation (this is issued separately, following on from the individual

packet acknowledgements that the receiver posts back to the sender).

Figure 6.4 shows how we hope to improve the latency of RDMA transfers for

the receiver. In this example there is an RDMA operation initiated, which is com-

prised of three data packets D0, D1, D2. In the unregistered (unoptimized) version

the sender must see that all the packets have been correctly acknowledged before

issuing a notification that the entire operation is complete. This is because the re-

ceiver has no knowledge of how much data it is to expect, as no state or connection

information is held and the operation is one-sided.

In the registered (optimized) version we see that the NI at the receiver is now

made aware of how many transactions it is expecting within the entire RDMA op-

eration, and so can notify the processor or acceleration resources as soon as it sees

all the data arrive correctly, saving a full round-trip latency for the notification.

6.2.1 Implementation

Figure 6.5 shows the NI with the Receiver Registration portion highlighted. Note

that the module can be bypassed, necessitating the use of the unoptimized RDMA

notification path. This is required and even desirable in certain situations which are

discussed in Section 6.4. Operations are registered using a special packet type in the

6.2. RECEIVER REGISTRATION 171

D0

D1

D2 A0

A1

A2

Noti�� cation

Send

Complete

Recv

Complete

UNREGISTERED

D0

D1

D2 A0

A1

A2

Send

Complete

Recv

Complete

REGISTERED

Figure 6.4: Time taken for send and receive operations to complete for registered
and unregistered transfers.

“Type” field of the header. There are three possible “Types” for incoming RDMA

data; RDMA_WRITE, RDMA_WRITE_REGISTER, and RDMA_UNREGISTERED

(see Table 3.3 for all possible packet types). If the header indicates an RDMA_WRITE

or RDMA_WRITE_REGISTER then the incoming packets are directed to the reg-

istration module. If the packet type is RDMA_UNREGISTERED then the packet

bypasses the module and uses the standard path.

The first RDMA transfer which is sent (i.e. from the base virtual address of

the sender) is given the RDMA_WRITE_REGISTER type. The address range for the

RDMA operation is logged in a table. The upper range for the addresses is found by

using another field in the header which contains the number of expected packets in

the entire RDMA operation. Subsequent packets associated with the same RDMA

transfer are then checked to confirm whether they lie within the expected range

(and are from the same sending node). Once all of the expected transactions have

been seen the entry is wiped from the table and the notification is built and sent to

the local notification queue. Figure 6.6 shows how the registration is entered into

the table when the RDMA_WRITE_REGISTER packet arrives. The associated data

for the packet is queued inside the NI until the entry has been added, or in the case

172 CHAPTER 6. PERFORMANCE ENHANCEMENTS

PACKETIZER/DEPACKETIZER

RECEIVE

REGISTRATION

RDMA

OP PUSH

SLAVE

RDMA

OP PULL

SLAVE

SHM

DATA

SLAVE

RDMA

DATA

SLAVE

REMOTE

DATA

MASTER

STREAM

SLAVE
STREAM

MASTER

NOTIFY

BLOCK

INBOUND

TABLE

UPDATE

REQUEST

ADD

REQUEST

POLLING

SLAVE

Completed

registered

RDMA

operation

Send

registered

RDMA

packets

head for

table entry

RDMA or

SHM request

STORE

&

FORWARD

SHM

RDMA

ESCAPE

RDMA or

SHM data

SEND TO

OUTPUT

QUEUES*

Get new

local ID for

transaction

Response

Request

Request

Figure 6.5: Highlighting of the receive-side of the Network Interface with registra-
tion architecture.

6.2. RECEIVER REGISTRATION 173

ESCAPE

CHANNEL

...

BASE MASK0xF000
DEST

4
EXPECT

RDMA

WRITE

REGISTER

USED

INPUT DATA

REGISTRATION TABLE

STORE &

FORWARD

NODE ID0xF200
DEST

0x200
BYTES

0x200
BYTES

0xF400
DEST

0x200
BYTES

0xF600
DEST

0x200
BYTES ...

0xF000 1

1

0

RDMA

WRITE

RDMA

WRITE

RDMA

WRITE

... ...

ENTRY

ADDED

FULL RDMA OP

Figure 6.6: Adding a Registration Table entry when an RDMA_WRITE_REGISTER
packet is seen, with subsequent packets in the full RDMA transfer arriving behind.

of subsequent packets the corresponding table entry has been found. Once the table

entry has been successfully allocated the data is permitted to progress.

There are several architectural features here which mitigate against new issues

presented by performing this optimization. In the unoptimized version of the RDMA

transfer the intrinsic properties of the RDMA communications mean these issues do

not present themselves normally. These issues are as follows:

• Maintaining a connectionless transport within the NI; any information stored

regarding the RDMA operation must be transient, only being stored while the

operation is in progress. This property is implicit in our implementation.

• Supporting Out-Of-Order (OOO) packet delivery; the system switch allows

for OOO delivery of packets. In order to properly register and track the

RDMA operation special measures must be taken to handle OOO delivery.

• Duplicate packets; under normal operation this is not an issue but given that

the sender and receiver become further decoupled during the communication

process duplicates must now be considered.

6.2.1.1 Out-Of-Order Delivery

Out-of-order packet delivery is handled by using the escape channel (Figure 6.7)

for any packets which currently have not had a table entry created. Out-of-order

174 CHAPTER 6. PERFORMANCE ENHANCEMENTS

ESCAPE

CHANNEL

111100xF000

...

BASE MASK0x3400

RDMA

WRITE

DEST

011
0xC000 00000001?0x200

BYTES

NO ENTRY

FOUND

Figure 6.7: RDMA data arriving not associated with an active table entry, sent to
the escape channel to prevent blocking.

packet delivery does not matter for data beyond the first RDMA packet which regis-

ters the transaction (see Figure 6.6). If an RDMA_WRITE packet is received before

the corresponding RDMA_WRITE_REGISTER packet then there will be no valid

table entry for the packet to match with.

Until the first packet arrives any out-of-order packets which arrive prior to this

will be put in the escape channel in order not to stall the pipeline within the NI.

We are able to do this because the data that enters the NI is written to memory

in a store and forward fashion. The data can never be allowed to be written into

memory until a CRC has confirmed the validity of the packet. This means there

is N cycles latency between the first flit arriving and the packet beginning to be

written to memory, where N is the number of flits within the full packet. During

this time we are able to drain the previous packet into the escape channel, meaning

that no additional latency is seen. Any packets sent to the escape channel have a

timer associated with them. Once this timer expires the packet will be dropped.

This can happen with OOO packets if the first packet in the operation is severely

delayed or lost in the network, so registration never happens. In this case dropping

the packet is safe because the sender will have received no acknowledgement or

negative acknowledgement, and will itself time out and retransmit the packet. In

normal operation once the RDMA_WRITE_REGISTER packet is seen the escape

channel can be drained and the data sent to memory. In the event that duplicate

RDMA_WRITE_REGISTER packets occur, these packets are also checked against

the current table entries regardless, and so duplicates will be handled in the way

we discuss below.

6.2. RECEIVER REGISTRATION 175

6.2.1.2 Masking for Duplicates and Completion

Once the RDMA operation has been registered a bitmask is used to determine

when all corresponding packets have been received for the operation, and to drop

duplicates. A 'b1 representing a packet that has arrived, and a 'b0 representing a

packet yet to arrive. An initial mask needs to be calculated at the time of registra-

tion. This is required to account for the fact that an operation may be smaller than

the maximum possible registered operation size (Maskbitwidth × Packetsize).

This mask is created by a barrel shifter which uses a field in the header of the

RDMA_WRITE_REGISTER packet which denotes the number of expected packets.

We shift in zeroes to form the appropriate initial operation state. A single 1 is added

to the end of this process (as the RDMA_WRITE_REGISTER packet has obviously

arrived to begin this registration process). For example, if we assume a 4KB oper-

ation, a 16KB maximum mask size and a packet size of 512B, the initial mask after

registration would be:

'b1111_1111_1111_1111_1111_1111_0000_0001

This is because 8 packets are needed for the transfer 512B × 8 = 4KB and the

first one has been received (the payload along with the RDMA_WRITE_REGISTER

header). The bit mask has a width of 32 as each bit represents a 512B packet (for a

16KB maximum).

Every time a new packet arrives the table is checked in order to determine

whether any existing entry matches with the new packet, calculating whether the

incoming destination is within the range of the entry currently being checked. If

the table entry being checked is found to match the incoming data then it proceeds

to update the mask. Figure 6.8 shows how the mask is updated upon receiving a

new packet. The base address of the entry and the number of bytes of the operation

are used to calculate whether the operation being checked in the table relates to the

new packet arriving. An offset is then created for a barrel shifter, which generates a

mask to cause a bit flip. If the mask is found to be all 1’s then the operation must be

completed. If Newmask = Originalmask then the packet must be a duplicate and

can be dropped immediately.

Duplicate packets can also occur in the instance where the corresponding op-

eration has already completed, and there is no longer a corresponding table entry.

176 CHAPTER 6. PERFORMANCE ENHANCEMENTS

NEW PACKET

EXISTING TABLE ENTRY

0x1000_0400
BASE

0x1000_0000
BASE

BYTES
0x0001_0000

DMA OP MATCH?

BASE NEW - BASE EXISTING = OFFSET ADDRESS

BARREL SHIFT << X SHIFT IN 0x1

DATA OFFSET MASK = 'b...0000_0100

ORIGINAL TABLE MASK = 'b...0110_0011

NEW TABLE MASK = 'b...0110_0111

YES

OFFSET ADDRESS/MAX PACKET SIZE = X

Figure 6.8: Creating the bitmask for the new DMA data, to check for duplicates and
completion status.

In this case the packet will therefore be sent to the escape channel. Once the timer

expires the packet is finally dropped. In this case dropping the packet is completely

safe because the previous packet must have sent a correct acknowledgement back

to the sender. In the event that data is found to correspond to an entry in the table

but is a duplicate, the data can be safely dropped straight away and there is no need

for the timer.

The stale duplicate data awaiting timeout can cause a blockage in the escape

channel for the period before timeout occurs. This is self correcting after a time

but may cause packet drops if the escape channel overflows. This should be an

incredibly rare event however, and should occur only under exceptional circum-

stances. The possible negative effects on performance here being acceptable given

the simplicity of implementation.

6.3. SEGMENTATION 177

6.3 Segmentation

A key method for improving the performance of any distributed applications

is to overlap computation with communication, ensuring that no resources are left

starved of data to process. In our RDMA communication technique one of the main

issues that arise from the transport mechanism is that an entire RDMA operation

must be completed before computation can begin on the remote node.

In TCP for example this issue does not arise because of the use of send/receive

queues and guaranteed ordering on data. To this end the receiver knows implicitly

which data has arrived if it is aware of how many bytes it has received. In our trans-

port layer this is not the case. As data may arrive out of order the receiver can only

be notified of message reception at the granularity of a full RDMA operation. For

a large RDMA data transfer this obviously causes huge issues for concurrent com-

munication and computation, as the receiver must await notification of the entire

RDMA operation’s completion before it can work on the data.

In order to ameliorate the effects of this issue we aim to reduce the granularity

for RDMA transfer notification from the operation level down to an arbitrary block

level granularity. We do this by simply splitting a single operation into a number

of smaller operations. Doing this obviously gives more frequent notifications at the

receiver and allows them to use the data which has already been acknowledged.

An example of this is shown in Figure 6.9 where in one instance a 3MB transfer is

acknowledged in 1MB portions, allowing work to begin before the whole transfer

is finished and thus completing work before the normal instance. Obviously the

use of this technique requires that data dependencies do not affect computation on

the data which has been acknowledged.

This technique can be performed very simply in the sender NI, as we catch is-

sued RDMA requests before they are processed by the DMA engine. We can use

this to create modifications to the RDMA operation which are completely transpar-

ent to the sending node. These modifications will segment an RDMA operation into

multiple smaller operations, providing notifications to the receiver for each one.

Figure 6.10 shows how this segmentation mechanism works. If a given RDMA

178 CHAPTER 6. PERFORMANCE ENHANCEMENTS

Notify work

Send 3MB

Notify work

Send 1MB

Notify work

Notify work

Complete

Complete

Figure 6.9: Timing for computation and communication with and without segmen-
tation.

SOURCE

DEST

BYTES

CONTROL 0x0000_0000_0000_0000

0x0000_0000_0010_0000

0x2305_000A_0000_0000

0x1804_000A_0000_0000

NO NOTIF FALSE

SOURCE

DEST

BYTES

CONTROL 0x0000_0000_0000_0000

TRUE

SOURCE

DEST 0x2305_000A_0000_0000

0x1804_000A_0000_0000

RDMA

COMMAND

LARGE

TRANSFER

P
U

L
L
 N

E
X

T

D
M

A
 O

P

RDMA

OP PULL

SLAVE

RDMA

OP PUSH

SLAVEPRIORITY

ARBITER

ORIGINAL

COMMAND = 1MB

NO NOTIF

DMA

ENGINE

WRITE DMA

OP

0x0000_0000_

0x2305_000A_

0x1804_000A_

000F_0000

0001_0000

0001_0000

MODIFIED

COMMAND

= 960KB

BYTES 0x0000_0000_0001_0000

DMA OP SEGMENT

= 64KB

Figure 6.10: Segmentation of a 1MB transfer into 64KB segments.

work descriptor is seen on the NI and involves a transfer over a given size (config-

urable at runtime) it is sent to a special large transfer queue. In this instance when

the operation comes to be processed and sent to the DMA engine it is assigned a

special NO NOTIF status flag as it is issued an entry in the RDMA Operation Table

(described fully in Section 5.2.3). Whenever an operation with this status flag set is

completed we do not issue a local notification of completion to the sender. Only a

notification to the receiver is posted.

If the command is of size M, and the maximum segment size is N, then the

head of the Large Transfer Queue will remain in place for M/N RDMA operations.

Following the issuing of each partial (segmented) operation we simply update the

base address and number of bytes for transfer in the queue entry. We must also

maintain a copy of the original base address and number of bytes for the eventual

local send notification. As the last RDMA operation is issued (when the bytes to be

transferred is below the threshold segmentation level) the NO NOTIF status flag is

6.4. PERFORMANCE OF RECEIVE BLOCK 179

deasserted. In this instance the local send notification is issued upon completion.

The threshold level at which this segmentation may be useful is highly depen-

dent on many parts of the system. The structure of the application will have a great

effect; with data dependencies within computation, the amount of data being trans-

ferred and any other unrelated processing all affecting effective exploitation of this

technique. As well as this things such as the system scale and application task map-

ping within the system will have an effect. The use of this feature should therefore

be left to the discretion of the application programmer, possibly with hints from the

runtime system in order to exploit overlapping communication and computation

during configuration of the NI. It is therefore very difficult to set up a blanket test

to evaluate the effectiveness of this feature.

Once configured the use of this technique is transparent to the sender, as local

notification only happens upon receipt of the full transfer. The user is therefore free

to transfer very large blocks of data using a single work entry to the RDMA engine,

with the NI handling the segmentation. An extension of this modification to the NI

is the ability to schedule smaller RDMA operations before larger ones. We naturally

separate out larger transfers and segment them, and also priority can easily be given

to one of the other queues (retransmission or normal operation). Adding more

queues for more complex arbitration schemes would be a trivial extension, but is

beyond the scope of this thesis.

6.4 Performance of Receive Block

The receiver registration block can obviously provide benefits to communica-

tions with low-latency requirements. The question remains as to how far these ben-

efits will be seen within the context of actual communications within a large scale

system. There may be types of communications for which it is undesirable to pro-

vide fast receive notifications, such as in large-scale many-to-one/many-to-many

collective operations. In instances such as these there may be too many simultane-

ous operations directed to a single node, causing the table within the receive regis-

tration module to fill to capacity. If this happens then packet dropping can occur.

On the other hand these collective operations are likely to be comprised of small

180 CHAPTER 6. PERFORMANCE ENHANCEMENTS

 10

 100

 1 2 4 8 1
6

 3
2

 6
4

 1
2

8

L
a

te
n

c
y
 (

u
s
)

Message Size (KB)

Send
Recv

Registered Recv

Figure 6.11: Latency for send, receive and registered receive operations over a single
hop distance.

to medium sized messages, meaning that the registration table entry may be very

short lived, in which case the hardware may be able to cope with this.

Another way of avoiding this issue is for collective operations to be imple-

mented such that they use algorithms which share data in tree-like structures, re-

ducing the volume of messages dramatically. Performing collective operations as

a series of point-to-point messages with optimized algorithms for data-size is stan-

dard practise within MPI implementations; using algorithms such as recursive dou-

bling or binomial tree for broadcasts for example [206].

Another important aspect in the decision of whether or not to register the re-

ceive operation is the latency savings that can be found against the overall time for

RDMA operations to complete. If the latency of sending the data is large enough,

then the additional latency of the round-trip for notification will be amortized. Fig-

ure 6.11 shows the results of an experiment to show the performance benefits of reg-

istered receive side transactions and the gradual amortization of the performance

benefits as the transfer size increases.

The results show the latency for the transfer of data and notification of comple-

tion in a user-space application for a single hop transfer. The latency of the send

operation is the time taken to configure the DMA engine from user-space and for

6.4. PERFORMANCE OF RECEIVE BLOCK 181

receipt of the transaction to be given back to the user, indicating that the DMA en-

gine has pushed all the data into the network. The measurement we take is thus for

a send() function within our API (see Section 3.3.4.3); the time for the data to sim-

ply enter the network. A blocking send_blocking() function would have higher

latency than the registered receive operation since it must wait for the last ACK to

arrive, ensuring the data has been correctly received. The latency of receive oper-

ations are measured from the time that the sender begins to initialize the transfer

until the receiver gets notification that the RDMA data is placed in memory; either

by local notification from the NI (Registered) or as a notification packet from the

sender (Non-Registered).

It is important to note that conceptually these functions are different from the

non-blocking and blocking MPI functions, in that the blocking MPI_Send() will

return once the send buffer is free (assuming MPI_Recv() has been posted). This

means that the data could simply be copied out to another buffer rather than hav-

ing been actually sent to the network and seen at the receiver. The non-blocking

MPI_ISend()will return regardless of whether the receiver has posted an MPI_Recv()

or whether the send buffer is free for reuse.

We see that the latency of a receive operation for a 1KB transfer is around 5.23µs,

and for a registered receive is only 4.21µs, cutting ≈20% from the latency of the

operation for the receiver. We also see that the performance gains from this reg-

istration technique diminish with transfer size and become insignificant at around

32KB. At much larger transfers the measured latency for send/recv/registered recv

are very similar, as is seen in the convergence of the results.

What this means in practice is that registered transactions will only show sig-

nificant benefits within a certain range of smaller message sizes. The extent of this

range is highly dependent on the distance from the destination and the network

load, as both of these properties of the network increase the average latency of

transmission. As the distance between source and destination increase or the load

of the network goes up, we would see larger and larger message sizes be able to

benefit from receive side registration.

Given the destination address we are able to determine very simply the dis-

tance between sender and receiver. This is because the geographic addressing

182 CHAPTER 6. PERFORMANCE ENHANCEMENTS

scheme employed within the system [32] makes this a simple arithmetic operation.

It should therefore be very simple to adjust the threshold levels for performing re-

ceiver registration based upon the source-destination distance. This is particularly

true given the fact that the technique can be employed transparently from the point

of view of the application. Unfortunately there is currently no simple way of ad-

justing the threshold value for receiver registration and notification based upon the

network load. Doing this would require input from monitors within the network,

and then fine tuning of latency models based upon these inputs. This is complex

work which lies well beyond the scope of this thesis.

6.5 Receive Module Scalability

As we discussed above in Section 6.4 there will be high variability in the ex-

pected performance gains which can be found from utilizing the registered receive

module. This depends on the distance of communications, the expected size of

RDMA operations, the network load and the communication patterns (e.g. many

collectives or lots of point-to-point messages). It is therefore appropriate to provide

information regarding different possible configurations for the module, in order to

trade off the capabilities of the module against the overheads (in terms of area) on

the FPGA.

In our parameter sweep we vary the width of the bit-mask which determines

the maximum possible RDMA operation size that can be registered and tracked.

We also vary the number of table entries, which determines the number of possible

concurrent outstanding registered operations. Table 6.1 shows the area utilization

under different configurations. We consider bit-masks which provide for maximum

RDMA transfers of between 32KB and 512KB. This uses a maximum packet payload

length of 512B. This small packet length is used throughout the thesis, as we wish

to maintain a small packet size in order to maximise the load balancing within the

network when used in conjunction with the proposed packet-level adaptive routing

algorithm (Section 3.1.3). The number of outstanding operations is varied between

64 and 1024 entries.

From the results we see that varying the maximum possible size for the RDMA

6.6. CONCLUDING REMARKS 183

Table 6.1: Area utilization (% total) for various combinations of maximum packet
size and table depth. Total LUTs = 274080, total BRAMs = 912. Implemented on the
Xilinx Zynq xczu9eg-ffvb1156-2-i FPGA.

Bitmask Vector Size
64 (32KB) 128 (64KB) 256 (128KB) 512 (256KB) 1024 (512KB)

LUT BRAM LUT BRAM LUT BRAM LUT BRAM LUT BRAM

Table
Size

64 2230
(0.81)

47
(5.15)

2936
(1.07)

49
(5.37)

4286
(1.56)

53
(5.81)

6589
(2.40)

60
(6.58)

11072
(4.04)

74
(8.11)

128 2282
(0.83)

47
(5.15)

2942
(1.07)

49
(5.37)

4289
(1.56)

53
(5.81)

6501
(2.37)

60
(6.58)

11092
4.04)

74
(8.11)

256 2266
(0.82)

47
(5.15)

2973
(1.08)

49
(5.37)

4366
(1.59)

53
(5.81)

6842
(2.49)

60
(6.58)

11124
(4.05)

74
(8.11)

512 2298
(0.84)

47
(5.15)

2974
(1.08)

49
(5.37)

4367
(1.59)

53
(5.81)

6843
(2.49)

60
6.58)

10965
(4.00)

74
(8.11)

1024 2273
(0.83)

47
(5.15)

2976
(1.09)

52
(5.70)

4363
(1.59)

57.5
(6.30)

6575
(2.39)

68
(7.45)

11088
(4.04)

89.5
(9.81)

operations has little effect on the number of LUTs used. This is because the logic to

decode/encode the mask is not significant, compared with other components in the

module. The number of BRAMs jumps considerably at certain boundaries, which

is due to the odd bit width of the table entries. Effectively this creates a scenario

where we can gain “free” entries to the table because of the fixed size BRAMs on

the FPGA being utilized more efficiently. It is also worth noting that the number

of BRAMs for the smallest 64x64 configuration does not arise from the implemen-

tation of the table. This utilization is because the storage for the data in the escape

channel is set to enable 64 full packets to be held in the NI. This uses 43 BRAMs,

which is why we still see this baseline value for the BRAM utilization even in small

configurations. This value is acceptable and not prohibitive for the implementation

of accelerators in combination with our NI; with the largest possible configuration

only requiring 10% of the total BRAMs and uses no DSP slices, which are key for

performing efficient floating point arithmetic in the accelerator.

6.6 Concluding Remarks

In this Chapter we have addressed some of the limitations which present them-

selves in the design of our basic Network Interface and transport layer, describing

several optimizations to enhance the performance of the system. This work pro-

vides contributions in the following ways:

184 CHAPTER 6. PERFORMANCE ENHANCEMENTS

1. We present a novel microarchitecture for a module at the receiving side of the

NI, which permits true one-sided communication and eliminates the require-

ment for the sender to acknowledge the completion of an RDMA operation.

2. We analyse the performance benefits that can be seen when using the regis-

tered receive module, showing that latency improvements of around 20% can

be seen when sending small amounts of data over short distances (single hop)

when compared with a standard receive operation. We also demonstrate the

diminishing returns in performance benefits which are seen as the latency of

posting completion notifications from the sender becomes amortized by the

overall data transfer time.

3. We show the scalability of the receive-side module solution, and show that

modest area overheads are seen even in the most aggressive implementations.

4. We provide simple architectural enhancements which can segment large RDMA

transfers very easily into smaller ones, and show that providing early ac-

knowledgement for AXI transactions can lead to higher performance due to

the widening window of concurrent transactions within the network.

Chapter 7

Enabling Standalone FPGA

Computing

In the previous Chapters we have presented a novel Network Interface design,

capable of providing reliable shared-memory and RDMA transfers between dis-

tributed resources. The design includes hardware offloading of the transport layer

and a connectionless approach which maintains little state information within the

NI. This is necessary for facilitating the uptake of FPGAs within the context of HPC.

Our solution provides the capability for the FPGA to gain access to remote re-

sources within a fully global address space, with memory, accelerators and stor-

age all accessible as memory-mapped regions within this space. This facilitates not

only the use of the FPGA as a full peer on the network, decoupled from the CPU

resources, but also enables the FPGA to be upgraded to the status of the main com-

pute element within the system. The aim is to reduce the role of the CPU to that of

a mere control unit, managing the computation and datapath on the FPGAs, leav-

ing the vast majority of the computational work to be performed within the FPGA.

This is viewed by many as the only way to effectively exploit the extreme paral-

lelism and reduced energy consumption afforded by FPGAs, and is key to their

uptake within the wider HPC community.

As we discussed in Section 2.4, there are many works which have attempted

either to bring the compute closer to the network, or have tried to provide a shared-

memory environment for the FPGA by attaching it to the system-bus of the pro-

cessor. However, there has been very little work in marrying these two concepts,

185

186 CHAPTER 7. ENABLING STANDALONE FPGA COMPUTING

enabling irregular memory accesses over the network in a distributed FPGA envi-

ronment. This is the main way in which our system goes beyond the current state of

the art. We provide a general interconnect which enables tight FPGA-system mem-

ory coupling (for both local and remote resources) as well as tight FPGA-network

coupling, all using a simplistic programming model for applications designers.

We have already demonstrated the additional flexibility our NI offers with re-

gards to disaggregating CPU and FPGA resources for network functionality, whilst

maintaining the ability of NUMA-like shared-memory accesses between CPU and

FPGA. In this Chapter we demonstrate the effectiveness of our solution, showing

the performance gains that can be seen when using our fully hardware-offloaded

transport layer. We compare our solution against the control and data path that

would be necessary for a software based approach to support reliable transmission

over the network. Our experiments show that the reduced path complexity and

memory copying can provide great benefits to the latency and throughput charac-

teristics of the system.

We will also demonstrate how our results can be used to estimate the memory-

bound bandwidth of the network when using arbitrary accelerator blocks. This can

be used to allow potential applications developers to gain insight into the suitability

and scalability of their accelerator on the system, and help them to ensure that the

network does not become a bottleneck to performance.

7.1 Reduced Complexity in Data/Control Path

One of the main reasons for decoupling the CPU from the FPGA and providing

a hardware-offloaded transport layer is to reduce the complexity of the control and

data path when performing networked operations from the FPGA. As discussed in

Section 2.4 the traditional means of allowing FPGAs to communicate with one an-

other without the use of the CPU is by using a dedicated network, segregated from

the CPU. This typically limits the scalability of the distributed FPGA resources to

a single rack, as these separate inter-FPGA networks are typically formed of point-

to-point links only [111], [112], [114], requiring communication through a separate

network accessed via the CPU to communicate beyond the rack. These often simple

7.1. REDUCED COMPLEXITY IN DATA/CONTROL PATH 187

chip-to-chip communication layers may also prevent interesting topologies from

being built, as they may be incapable of switching. Every FPGA must be an end-

point. This increases the diameter of the network and limits potential workloads to

those which form large rings of dataflow for example.

The other typical method for inter-FPGA communication is typically via the

software networking stack. OS intervention is often required with the FPGA only

able to communicate with its local CPU via the local system bus, or worse still over

PCIe lanes. Relying on the CPU for performing inter-FPGA communications is anti-

thetical to the idea of the FPGA as a standalone compute resource, and will often in-

volve extra data copying or additional stages of synchronization between the CPU

and FPGA. All this does not lend itself to a dataflow paradigm, or to low latency ac-

cess to remote resources (key for irregular memory accesses/pointer chasing [56]).

In the following Sections we will show how our solution reduces the complexity of

inter-FPGA communications.

In each of the following scenarios (shown in Figure 7.1) we see a different setup

for data and control flow in distributed FPGA computing. The aim is for data to

be sent from local DRAM to an accelerator, the products of the accelerator block

on a first FPGA (F1) are then to be sent to a remote accelerator block on a second

FPGA (F2) for further processing. The results of this second computational stage

are then moved into main memory on the second FPGA. This provides an exam-

ple of a simple dataflow type application utilizing distributed FPGA resources for

computation. In each of the setups we show the complexity of the control and data

paths accordingly.

7.1.1 TCP Communications

In Figure 7.1a we see the critical path for data and control flow when using a

standard software TCP solution to perform the distributed FPGA computing task.

In order to perform reliable transfers from source to destination TCP sets up ded-

icated send and receive buffers for every connection. The TCP protocol requires

copies of the data to be made and placed in the send buffer for transfer, which cre-

ates additional latency. A copy is also required between the receive buffers and

user-space memory in F2. This is why we see two redundant data copies to the

188 CHAPTER 7. ENABLING STANDALONE FPGA COMPUTING

Control

Data

CPU

ACC

SRAM

DRAM

NIC
CPU

ACC

SRAM

DRAM

NIC

1

23

4

5

6

7

1

3

4
2

FPGA 1 (F1) FPGA 2 (F2)

(a) Using TCP to utilize distributed FPGA resources.

Control

Data

CPU

ACC

SRAM

DRAM

NIC
CPU

ACC

SRAM

DRAM

NIC

1

2

3

1

3

2 4
5

FPGA 1 (F1) FPGA 2 (F2)

(b) Using a software-based transport mechanism with our custom network.

Control

Data

CPU

ACC

SRAM

DRAM

NIC
CPU

ACC

SRAM

DRAM

NIC3

1

2

4
5

2

1

FPGA 1 (F1) FPGA 2 (F2)

(c) Using our hardware offloaded transport layer.

Figure 7.1: Flow of data and control when using distributed FPGA resources using
different transport layers.

same RAM. Offloading of these buffers to hardware to be closer to the Network In-

terface would still require an additional copy stage, and also use excessive memory

resources. Doing this would require limiting the scalability of either the window

size, or the number of concurrent TCP connections that can be kept track of.

As well as this additional data copying the CPU at F2 needs to be responsible

for notifying its accelerator of new work to be done, requiring additional control

information to be sent. Therefore additional latency is added as the CPU in F1

cannot initialize work directly on the remote FPGA (F2). Our solution alleviates this

requirement by writing directly into memory, and using a geographic addressing

scheme as a means to locate the destination node.

7.1. REDUCED COMPLEXITY IN DATA/CONTROL PATH 189

7.1.2 Software Based Transport Using our Networking Stack

In Figure 7.1b is shown a solution which utilizes our custom network protocol,

with the ability to write directly into memory-mapped regions within a global ad-

dress space. However, this scenario still uses a software based transport layer. In

this instance the CPU at F1 is able to submit work directly to the remote accelerator

at F2 using a direct shared-memory communication mechanism similar to our own.

However, the data to be transferred must still first be copied back into DRAM

by the F1 accelerator in order for the transport layer to send it. This is because

the CPU has no knowledge of the accelerator’s work status, and the accelerator

has no knowledge of the RDMA transfer status. In order to copy directly from the

block RAM in the FPGA fabric to the remote accelerator there would have to be an

additional synchronization stage between CPU and accelerator. This is to ensure

that data in the process of being copied to remote locations is not overwritten. This

solution also results in additional communication requirements between the CPU

and accelerator. As shown in the diagram there is an additional stage of notification

between the accelerator and CPU in the critical path, used to inform the CPU that it

has completed its work and the RDMA transfer can be initiated. This is not required

if the accelerator can initiate network transfers itself.

7.1.3 Fully Hardware-Offloaded Transport, CPU Bypass

Figure 7.1c shows the control and data path when using our hardware-offload

transport solution. In this instance once the accelerator has completed its work

it issues an RDMA operation directly to the NI, and then writes shared memory

operations to the F2 accelerator’s work buffer. This informs the F2 accelerator that

there is new work to be performed. Once this is completed then the F2 accelerator

notifies its local CPU that the work has been done and it has new data to process.

As is shown, this solution is far more amenable to dataflow type processing,

allowing for simpler pipelining of data through the distributed FPGA resources

than in a traditional software approach. Since the accelerator is in control of both

the RDMA transfer to the remote note as well as its own work scheduling, it can

be used to simply coordinate the transfers and destination buffers for work. This

190 CHAPTER 7. ENABLING STANDALONE FPGA COMPUTING

creates a solution where it is feasible for the accelerator to issue RDMA transfers

directly from its own internal memory.

While several other solutions [11], [111], [124] allow for this sort of dataflow

processing it is typically performed using only point-to-point links between the FP-

GAs, severely limiting the topologies which can be created [11]. This in turn limits

the scalability of the utilization of FPGA resources to those located within a single

rack (inter-FPGA connections are typically not performed using suitable wider net-

work protocols, but on their own internal dedicated network). Combined with our

switch design [32], our solution can exploit modern HPC topologies such as Jelly-

fish, Dragonfly and Fat-Trees. As well as this there is typically no mechanism to

enable tightly coupled shared-memory between CPU and FPGA, or between dis-

tributed FPGA resources. This has been identified in [9] as a key barrier to enabling

a number of HPC workloads to be efficiently implemented on FPGAs.

7.2 Experiments

Our solution offers an architectural advancement over the current state of the

art, in that it allows full disaggregation of the FPGA fabric from CPU resources,

whilst maintaining the possibility for tight coupling between CPU and accelerator

memories. We also wish to show the benefits which are achievable in terms of la-

tency and throughput for distributed acceleration resources, which the experiment

in this Section provides. Figure 7.2 shows the complete system networking stack,

which includes all the necessary interconnection components to support interfac-

ing for accelerator IP and the Processing System. Table 7.1 gives a breakdown of

the individual components on the FPGA. The full stack uses around 17% of the

logic resources of the FPGA. This is a typical range [207], and we see that the re-

source consumption of our Network Interface is in line with others in the literature

which provide similar performance/connectivity [12].

7.2.1 Simple TCP Test

Our experiment following on from this Section in 7.2.2 and 7.2.3 tests the scenar-

ios discussed above in Section 7.1. Setting up the TCP example scenario to utilize

7.2. EXPERIMENTS 191

M_HPC0_FPD

S_HPC0_FPD

4x10G

SFP

RDMA

DATA

REMOTE

SHM

RDMA

DATA

RDMA

WORK

SHM

DATA

DATA FROM

NETWORK,

SHM/RDMA/

WORK

SUBMIT

WORK

PUSH/

PULL

LOCAL

DATA

SHARED

MEMORY

OPS

(LOCAL/

REMOTE)

NOTIF

Figure 7.2: Full networking stack supporting accelerator and CPU access to the NI,
implemented within the Xilinx Zynq Ultrascale+ device.

Table 7.1: Resource consumption of the full networking stack, and breakdown of in-
dividual components, implemented on the Xilinx Zynq xczu9eg-ffvb1156-2-i FPGA.

LUTs (%) REG (%) BRAMs (%)
Available 274080 100 548160 100 912 100
Total Networking Stack 46915 17.1 58734 10.7 140.5 15.4
Network Interface 22670 8.27 19486 3.55 95.5 10.5
Shared Memory Transaction 4204 1.15 5042 0.9 0 0
RDMA OP 2839 1.0 903 0.2 9 1
RDMA Transaction 1978 0.7 3421 0.6 0 0
Inbound Messages 3294 1.2 1512 0.3 0 0
Receive Registration 3347 1.2 559 0.1 49 5.4
Other 7008 2.5 8049 1.5 37.5 4.1
Processing System Interconnect 5589 2.0 4031 0.7 0 0
CDMA Engine 2822 1.0 4043 0.7 0 0
Memory Interconnect 6060 2.2 6124 1.1 0 0
Network Switch (4 port +1) 2020 0.7 2211 0.4 25 2.7
Aurora IPs and FIFOs (4x10G) 3672 1.3 8564 1.6 20 2.2
Other 4082 1.4 14275 2.6 0 0

192 CHAPTER 7. ENABLING STANDALONE FPGA COMPUTING

PL

ZCU102

PL

ZCU102

10G SFP

Figure 7.3: Simple setup to test MPI over a standard 10G TCP connection.

distributed acceleration resources would be a cumbersome and unnecessary pro-

cess, as we are already aware of the severe limitations in using TCP. Instead we pro-

vide a simple comparison between two send operations to show the performance

degradation which arises when using this more traditional FPGA networking solu-

tion.

We have set up two Zynq Ultrascale+ ZCU102 boards up to utilize the 10G SFP

ports, as is shown in Figure 7.3. We have then run a very simple test, sending

data using MPI over sockets based TCP over these 10G links. The MAC and PHY

layer are provided by the standard Xilinx 10/25G MAC/PHY IP [208], which is

implemented within the fabric of the FPGA. While the Zynq chip provides many

transceivers, these are only accessible via the programmable logic. The only Ether-

net port available directly from the hardened processing system is a 1G connection.

It is for this reason we must go through the FPGA fabric.

Table 7.2 shows the results of a simple MPI_BSend() operation of a small and

large message, against a send() operation using our hardware-offloaded, custom

solution. The MPI_BSend() MPI Buffered Send is a send operation which uses a pre-

allocated buffer (in our case set to 1MB in size), which will return as soon as the

send buffer is freed, meaning that the data to be sent must have been copied out

of this buffer and into the network. This enables a fairer comparison versus our

sending function when compared with a standard MPI_Send.

It is very difficult to create a completely fair test in this manner, as our hardware

currently has no available runtime system for distributed applications, so the op-

erations act at a lower level than when running MPI. While this fact may affect the

latency of the smaller packet transfer, this overhead would be easily amortized in

7.2. EXPERIMENTS 193

Table 7.2: Latency for a send() using our network protocol, and a buffered
MPI_Bsend() MPI message over a 10G TCP/IP connection.

Send Transfer Size
1KB 1MB

10G Ethernet (TCP) 8.5µs 1.58ms
Custom 10G NI 3.4µs 957µs

the larger message by the network transfer. Since we see a dramatic difference in the

latency of large transfers, we can see that using a standard TCP solution (as many

FPGA based networking solutions do) is inferior to using our custom interface.

7.2.2 Using Distributed FPGA Resources

We currently have no available runtime environment for running distributed

applications on our hardware, so in order to measure the latency of the system

accurately at the application level we are restricted to the use of a single FPGA

for our experiments. We do this in order to ensure clock consistency and accurate

timing measurements. By measuring the time from a single user-space application

controlling two separate networking stacks there is no need for synchronization

between distributed CPUs. Nor is there any need to perform averaging of ping-

pong communications. We can run this experiment with no interference between

the two stacks at the application level due to the nature of the send() operation in

our API, discussed in Sections 3.3.4.3 and 6.4.

To ensure we emulate the distributed setup with complete accuracy the entire

hardware acceleration and networking stack is implemented twice within the same

FPGA fabric. We then use a partitioned memory space to maintain complete inde-

pendence between the two portions. Not only are the memory spaces segregated,

but the data path to the memory hierarchy of the CPU is also completely segregated.

Every component of the networking stack and the accelerator block is implemented

on the board twice (with the exception of the MAC/PHY block, which cannot be

duplicated as there are only 4 SFP ports on the development board). A simplified

version of this setup is shown in Figure 7.4. The second instantiation interfaces with

the hard-core Processing System via separate master and slave interface ports, and

the two subsystems are connected to each other as a network via separate TX/RX

194 CHAPTER 7. ENABLING STANDALONE FPGA COMPUTING

10G

SFP

DATA

SHM

RDMA

DATA

WORK

WORK/

CONFIG

WORK/

CONFIG/

DATA/

SHM

DATA

SHM

RDMA

DATA

WORK

WORK/

CONFIG

WORK/

CONFIG/

DATA/

SHM

Figure 7.4: Setup emulating distributed system on a single FPGA, with logic for two
implementations containing completely isolated address maps on a single FPGA.

ports of the transceivers and interfaces of the MAC/PHY block. This eliminates any

contention for resources, and emulates accurately a fully distributed environment.

In the experiment we create the two scenarios described in Figure 7.1b and 7.1c.

A user-space application takes a system time-stamp before submitting work to the

local F1 accelerator. We use a dummy accelerator block which does not perform

any function, but merely adds a latency between blocks of data being pulled in and

written back out. The accelerator blocks on both F1 and F2 instances are configured

with the same latency, emulating the computation time for the IP block. For simplicity

equal amounts of data are written out as are read in. Once the CPU is notified of

completion of the final write stage from the accelerator at F2 into memory it will

take another system time-stamp to determine the overall time for the application to

run at the application-level.

It is worth noting that in the setup for Figure 7.1b, we only perform the addi-

tional communications for the control and datapath that would be required when

using a software based transport layer. Additional performance degradation would

7.2. EXPERIMENTS 195

be seen in any genuine implementation due to the additional overheads of the soft-

ware transport layer (system calls/additional memory copies etc.).

In our system the user is able to issue RDMA commands and perform NUMA

operations directly from user-space with no OS intervention. This is currently per-

formed by mmap()’ing regions of dedicated memory space, but could be done using

a global address space translation mechanism if the available IOMMU within the

hard-core processing system is properly configured. This limitation is discussed in

greater detail in Section 3.2.1 and Appendix B.

7.2.2.1 Data Blocks into Accelerator

Data must be transferred to the accelerator and worked on in blocks, as would

be the case in typical implementations for HPC operations such as matrix-matrix or

matrix-vector multiplication. This is opposed to creating a fully streamed pipeline

of data in and out of the accelerator block (as in FIR filtering perhaps). This model

emulates how a common HLS accelerator implementation may process data, copy-

ing chunks in using the memcpy() function available in the Vivado HLS tool for

example1.

We adjust the block granularity for the data and adjust the computation latency

with relation to the pure communication time for a given solution (latency for trans-

fer of data of a given block size and control information through system). A com-

putation/communication ratio of zero denotes instantaneous processing time; data

(at block level granularity) is simply written into the accelerator block and back out.

A communication/computation ratio of R denotes that the system spends R times

as long computing inside the accelerator as the communication path on moving

data and control information around the system. For instance, with R = 1, each

accelerator will spend the same time computing as the whole system does commu-

nicating. Table 7.3 shows the latency for transfer through the whole data/control

path at R = 0 for different block sizes at zero computation latency. So for example

when we perform the experiment using a 1KB block size at R = 2, the latency of

the accelerator block will be set to 2814 cycles.

1Vivado High-Level Synthesis- https://www.xilinx.com/products/design-tools/vivado/

integration/esl-design.html, accessed April 2019.

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

196 CHAPTER 7. ENABLING STANDALONE FPGA COMPUTING

Table 7.3: Latency for data and control path through distributed accelerator with
zero computation latency.

Data block size Latency of operation
(µs)

Latency of oper-
ation (cycles at
156.25MHz)

512B 6.33 989
1KB 9.01 1407
2KB 14.5 2268
4KB 25.5 3984
8KB 475 7422
16KB 911 14231
32KB 1787 27925

7.2.3 Results

Figure 7.5 shows throughput results for the experiment setup discussed above.

Here it is important to note that throughput is not in reference to the communication

throughput over the links or the raw computing power in FLOPS. It is a measure of

the throughput at which we are able to process data, when we have a distributed ac-

celeration resource performing computation across two FPGAs on dependant data.

In these results we see how the achievable throughput diminishes with decreasing

communication block sizes and with increasing computational latency. Figure 7.6

shows the average latency for a single block to be processed through the two accel-

erators and the network.

7.2.3.1 Block Size

As one would expect, the larger the block size for computation the higher the

sustainable throughput, as more data is transferred for every set of notification/ACK-

s/control messages which must be sent. We are able to achieve a gain in the max-

imum achievable throughput of 8.6% over the software transport solution. How-

ever, there appears to be a saturation point towards the upper limit of the block

sizes, suggesting that further increases in the maximum block size for a single ac-

celerator module will not lead to much higher performance. The current solution

is not optimized in terms of overlapping computation and communication. After

the accelerator has performed computation and initializes the RDMA to the remote

accelerator, it must wait for completion notification of the RDMA before beginning

7.2. EXPERIMENTS 197

 1000

 0 1 2

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Computation/Communication Ratio

32K HW
32K SW
16K HW
16K SW
8K HW
8K SW

(a) Large block sizes.

 100

 1000

 0 1 2 3 4

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Computation/Communication Ratio

512B HW
512B SW

1K HW
1K SW
2K HW
2K SW
4K HW
4K SW

(b) Small block sizes.

Figure 7.5: Data processing throughput for network-bound compute.

to write out new data to the local intermediate buffer. This could be solved by

means of double buffering so to overlap the RDMA transfer and computation more

efficiently.

198 CHAPTER 7. ENABLING STANDALONE FPGA COMPUTING

 10

 100

 1000

 0 1 2 3 4 5 6 7 8

L
a
te

n
c
y
 (

u
s
)

Computation/Communication Ratio

512B HW
1K HW
2K HW
4K HW
8K HW

16K HW
32K HW

512B SW
1K SW
2K SW
4K SW
8K SW

16K SW
32K SW

Figure 7.6: Average latency for a single block of data to be processed through the
distributed accelerator network with two accelerators used.

7.2.3.2 Hardware Offloading

The results clearly show the benefit of offloading the transport layer into hard-

ware, reducing the complexity of the control messages and delays awaiting noti-

fication. We see a higher throughput is achievable, as well as much improved la-

tency for small and medium block sizes (see Figure 7.6). This reduced latency could

have dramatic effects on applications which exchange small data blocks or con-

trol messages with irregular parallelism and access patterns between distributed

resources. These sorts of access patterns can be seen in workloads which involve

large memory-resident data structures involving pointer-chasing, such as lists, trees

and graphs [56]. The interest in these workloads on FPGA has been growing with

the emergence of shared memory systems with tightly-coupled memory between

CPU and accelerator. Our NI extends this paradigm out and provides the acceler-

ator with a method of performing shared memory operations directly on remote

nodes. We see that for smaller data transfers we can reduce the latency of com-

munication by as much as ≈29%. These results show that enabling the accelerator

to reliably issue shared memory operations directly to remote resources may be

highly beneficial to workloads exhibiting these irregular memory access patterns

over distributed resources.

7.3. ESTIMATING PEAK COMPUTING THROUGHPUT 199

7.2.3.3 Link Saturation

As discussed above, the achievable throughput for a single processing element

could be enhanced by overlapping between communication and computation us-

ing additional buffering to pre-fetch data for future computation. Another way of

extracting additional memory bandwidth to enable us to saturate the 10G links be-

tween FPGA devices would be to use additional accelerator blocks. Typical HPC

workloads which can benefit from FPGA acceleration will be able to take advan-

tage of the spatial parallelism within the FPGA [11], [209], as well as finer grained

parallelism. Having many blocks performing the same function in parallel should

enable saturation of the links in this scenario, which we discuss in the following

section.

7.3 Estimating Peak Computing Throughput

The data-processing throughput results we have presented in Section 7.2.3 can

be used as a tool to estimate the achievable FLOPS in our system for network-bound

compute. This can be done for any arbitrary synthesized accelerator block, and sim-

ply requires the latency and utilization of a given block. This knowledge should

give an application designer a good idea of the limitations of their design if they

are aware of the memory access patterns when distributing workloads over mul-

tiple accelerators. We use methods which are similar to those presented in [210]

and [207].

As a basic example to show how this estimation can be found we have gener-

ated a simple accelerator IP block using the Vivado HLS tools. The functionality of

the block is to perform a simple double-precision matrix-matrix multiplication, and

we have used a modified version of the standard example code provided by Xil-

inx2. This block is very simple and the only additions we have made is to include

#pragma directives for loop unrolling and pipelining of the solution, and to mod-

ify the interfaces to the block. We have altered the matrix data inputs to the block

to use AXI interfaces, to ensure that the resource consumption is made realistic by

2The example code can be found in version 2018.2 at: <install

location>/Xilinx/Vivado/2018.2/examples /design/linear_algebra/matrix_multiply_alt

200 CHAPTER 7. ENABLING STANDALONE FPGA COMPUTING

maintaining compatibility with our networking stack.

By giving the data processing throughput results in terms of the block size for

data sent to the accelerator, we enable design space exploration in this regard. Us-

ing different granularity of accelerators will enable either higher spatial parallelism,

or greater processing power within a single processing element. Knowing the limi-

tations of the network-bound FLOPS can aid in achieving an optimal design.

In this IP we feed 1KB blocks of data in for processing, meaning we will take

values from the 1KB entry on the graph (Figure 7.5b). This means that the block

receives 128 double precision (64-bit) floats to perform an 8 × 8 matrix-matrix mul-

tiplication, with 64 entries in each matrix. We use this operation as it is typical in

many HPC applications and the output could be quickly synthesized from example

code produced by Xilinx. This operation and matrix size gives us 1024 FLOPs per

IP block, made up of 512 multiply-add operations.

The output of the Vivado HLS tools indicate that the block has a latency of 288

cycles. Looking at our results, given a zero computation/communication ratio la-

tency of 1,407 cycles for a 1K transfer (see Table 7.3) this gives a data processing

throughput of ≈1.1Gb/s when we extrapolate the computation/communication

ratio out to ≈0.20 (288 cycles).

This means that we can make approximately 134,277 block transfers per-second.

(1.1×109/8,192 bits per block transfer.) Using this we see that we can extract ap-

proximately 137 MFLOPS per IP block (1,024 FLOP/block transfer). According to

the HLS synthesis output (shown in Table 7.4) each block requires 30194 Flip-Flops,

with the implementation being Flip-Flop (FF) bound on the ZCU102 device. (Note

that the results take into account the networking stack implementation. We have

added this row to the table.)

Taking into account the fact that the entire networking stack when implemented

on the FPGA requires around 10.7% of the FF resources (Table 7.1), given our HLS

block’s utilization we could theoretically fit 16 IP blocks on a single FPGA ((548160

total FFs*0.893)/30194 FFs per-block). However, 16 blocks would exceed the single

10G link bandwidth (although aggregating the link bandwidth within our solution

would allow for even higher performance) and full utilization of the FPGA is sim-

ply impossible for place and route tools to achieve. Given these facts we will allow

7.3. ESTIMATING PEAK COMPUTING THROUGHPUT 201

Table 7.4: Vivado HLS Synthesis Report for device utilization on the ZCU102, with
highlighted values taking into account available area once the networking stack is
also implemented.

Name BRAM_18K DSP48E FF LUT URAM
DSP - - - - -
Expression - - 0 20 -
FIFO - - - - -
Instance 12 56 21687 8838 -
Memory 36 - 0 0 -
Multiplexer - - - 2864 -
Register - - 8507 0 -
Total 48 56 30194 11722 0
Available 1824 2520 548160 274080 0
Utilization (%) 2 2 5 4 0
Available w/ Net-
working stack

1543 2520 489426 227165 0

Utilization w/
Networking stack
(%)

3.11 2 6.17 5.16 0

for 9 blocks transmitting over a single link. This is a conservative estimate as the

switch can scale to many more ports, and multiple FPGAs can feasibly be accessed

simultaneously. This would allow for a much larger aggregated bandwidth.

These calculations give a total expected memory-bound computing power in

this instance of 1.233 GFLOPS (double precision) per FPGA (9 Blocks × 137 MFLOPS).

These results are completely bound by the network, rather than the much larger

bandwidth to main memory. Comparing these results against recent literature [11]

calculating the network-bound compute, they give a theoretical peak of 8.9 GFLOPS

over 8 FPGAs (1.11 GFLOPS per FPGA) for their solution. Given these results we

see that our communication solution is very effective for the achievable comput-

ing power for network bound communications. This is particularly true given that

in [11] they are limited to a basic ring topology, given the simple point-to-point

network they offer. This creates a completely non-scalable solution.

As well as this, it is worth noting that the IP block created is very crude, with

only simple optimizations; it has a very low usage of the DSP logic slices and a very

high usage of Flip-Flops as opposed to BRAMs. It is likely that higher spatial local-

ity could be achieved with suitable optimizations. This work is simply shown as

202 CHAPTER 7. ENABLING STANDALONE FPGA COMPUTING

an example of how readily we can estimate the computational capacity for applica-

tions constrained by the network, and how easily the standard output of Vivado’s

HLS tools can be mapped onto our networking hardware and provide a model for

dataflow type workloads.

7.4 Concluding Remarks

This Chapter has shown the ability of our system to support direct and sim-

ple communications between distributed FPGA resources, providing an effective

model for dataflow style processing. Our experiments have shown the efficiencies

that can be gained when using our hardware-offloaded transport as opposed to

a software based mechanism. We have also shown that the area footprint on the

FPGA is sufficiently low to accommodate a reasonable number of real-world accel-

erator blocks. The main contributions of this Chapter are as follows:

• Demonstration of the system supporting direct communication and data move-

ment between distributed accelerator resources.

• An evaluation of the reduced complexity in control and dataflow through the

system using our hardware-offloaded transport, as opposed to using a soft-

ware based mechanism.

• An analysis which shows the real world potential of the system and shows

that our results are comparable with those of other works in the literature,

whilst providing higher capabilities with regards to the network.

Chapter 8

Conclusions and Future Work

Until the previous decade system architects had been able to rely on scaling tran-

sistor technology and increasing clock speeds for increasing performance. Since the

breakdown of Dennard scaling and scale out has become the new paradigm, the in-

terconnect has become a serious bottleneck in the performance of HPC systems. We

argue that the FPGA is now well placed to penetrate into the domain of HPC, owing

to the strict power requirements and flexibility that the FPGA can afford. However,

as we have identified in this work, placing the FPGA within the context of cur-

rent architectures will not work. Major architectural advancements are required; in

terms of both the role of the accelerator within the system, and the interconnection

between accelerator, network, and traditional compute elements.

8.1 Conclusions

In this thesis we have addressed some of the failings/limitations of existing in-

terconnect technologies to adequately provide for the requirements for future FPGA

based HPC systems, which are quickly becoming a reality. Interest in these sys-

tems is now burgeoning not only because of the energy characteristics of these de-

vices, but also due to the evolution of data-intensive workloads more suitable for

FPGA execution. We have identified that the two most important requirements

for the interconnect are in (i) enabling direct communication between the fabric of

distributed FPGA resources, and (ii) maintaining tight coupling between system

memory and the FPGA (both local and remote).

203

204 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

With respect to the first point: we have shown that common solutions in which

the FPGA is dependent on the CPU for network communication are a fundamental

impediment to achieving high performance in distributed FPGA based systems.

Decoupling these two resources from one another and allowing the FPGA to act as

a full peer within the network is essential for low overhead communications and

for enabling dataflow style processing over multiple FPGAs.

However, addressing the second requirement: typical solutions which provide

this standalone networking capability limit the ability of the system to take advan-

tage of tight system memory coupling. There are a number of workloads which

benefit from tight coupling between system memory and accelerator, such as those

exhibiting irregular memory accesses; graph traversal and the like. Keeping this

tight coupling over a distributed system is key for performance when scaling be-

yond single host-accelerator algorithms.

As such we have developed a Network Interface solution which is able to achieve

both of these goals by utilizing a fully hardware offloaded, reliable transport layer

which eliminates the scalability issues of traditional connection based mechanisms.

Scalability is afforded to the hardware due to the fact that the transport layer re-

quires only a small volume of transient data to be stored within the Network In-

terface, which tracks in-flight transactions within the network. This is opposed to

the work of prior hardware-offloaded transport technologies which use traditional

connection based approaches; requiring non-scalable storage of connection state in-

formation or sacrificing core network functionality. The scalability of our solution

is therefore not bound by the number of concurrent communicators, but but the

number of possible in-flight transactions issued to the network from a given source

node.

The Network Interface provides hardware primitives to support two distinct

communication paradigms; RDMA and shared memory operations. As we detail

in the thesis, this is done because like many others we see that future application

scaling and efficient accelerator exploitation are dependent on new models of com-

munication which MPI alone cannot support. Properly supporting one-sided com-

munication and PGAS shared-memory operations in the hardware is key to en-

abling the breakdown of the host/accelerator copy-in, process, copy-out model of

8.1. CONCLUSIONS 205

computing, and for enabling algorithm scaling beyond the bounds of a single accel-

erator. Providing a simple method of allowing the accelerator to use the network

independently of the CPU is one of the key achievements within this thesis.

This work demonstrates how the capabilities of our interconnect solution go be-

yond currently available technology in creating a solution specifically designed for

FPGA based High Performance Computing. Existing solutions are either limited

in terms of network capability of the FPGAs, constrained by the fact they are de-

pendent on the CPU for issuing transfers, or they are too heavy for implementation

within the FPGA fabric. We show that our system provides a lightweight solution

which sits in the fabric of the FPGA, and provides direct access over a distributed

global shared-memory space for accelerator and CPU resources alike.

Our baseline system shows that allowing for a dedicated hardware path in the

NI for shared-memory accesses can reduce the latency of small transfers by over

25%. The target for these shared memory operations being small control/synchro-

nization messages (which are typically highly latency sensitive), with larger data

transfer being left to the RDMA transport, and being more dependent on through-

put. Our baseline solution shows effective throughput for these RDMA transfers,

achieving up to 8.56Gb/s bandwidth for payload over 10G links. We have shown

that performance enhancements to the architecture can further aid in reducing the

latency of these RDMA transfers at the receiver by as much as 20%. Finally, we have

presented an analysis of the performance of our system when using distributed

FPGA resources, and have shown that the latency and throughput characteristics

of our system can outperform an equivalent software-based transport layer by 8.6%

and 29% respectively.

As well as the presentation of the performance aspects of our system, we pro-

vide several analyses for our interconnect. We choose an end-to-end reliability

mechanism for our system. This is because an investigation into the benefits of pro-

viding link-level error checks or forward error correction show that under normal

operating conditions the impact of these techniques on performance is too great.

We also provide an analysis of the consistency model and network errors which

can occur within our system. Despite the complications we see given that our in-

terconnect must allow for out-of-order packet reception our interconnect is able to

206 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

maintain consistency under the majority of normal operating circumstances, and

we have addressed those in which we cannot by providing appropriate solutions.

8.2 Future Work

This thesis has tackled some of the main problems in providing an adequate

interconnect solution for FPGA based HPC. However, there remains a number of

critical elements to be developed, as well as several possible extensions to the ar-

chitecture which could have a dramatic effect on the performance of the system.

8.2.1 Global Virtual Addressing

As we have discussed in Section 3.2.1, one of the key components which is

required is a translation mechanism to support a global, virtual address space.

In our particular platform this means configuration of the IOMMU on the Zynq

Ultrascale+ (Xilinx name this the SMMU in their documentation). This will allow

transactions which are received from the NI to be translated into physical addresses

as they access the main memory or cache-coherent interconnect of the processing

system.

Unfortunately, this alone is insufficient for all of the requirements of the system.

The SMMU is only designed to give master devices within the Programmable Logic

the use of virtual addresses. The interface between the Programmable Logic and

the Processing System has a physical address at the interface when a transaction

is produced from the PS side (PS master). While this is sufficient for virtualized

RDMA (as the data is first read out locally so uses a slave interface to the PL), this

causes issues with respect to the shared-memory path through the network. In this

instance a page table will be required in the programmable logic which can convert

physical addresses which are routed out, into global virtual addresses. These can

then be passed through the network and into the IOMMU or the remote acceleration

resources etc. at the remote side.

In the case where remote physical resources on the FPGA are being targeted

rather than a remote DRAM access, one might wonder how translation works in

this case. If the hardware requires support for virtual addressing then another stage

8.2. FUTURE WORK 207

of translation will be required in the receiver. If not then merely the upper bits of

the virtual address (corresponding to the node ID) can be stripped off, and having

a one-to-one mapping between global virtual addresses and physical addresses in

the lower bits.

8.2.2 Virtualization of Transport Layer

Another issue we have identified (discussed in Section 5.2.3.1) is that the cur-

rent prototype is limited in the number of processes which can access the hardware

simultaneously. Currently the notification mechanism for the transport layer uses

dedicated queues (at separate physical addresses) in order to service notifications.

In a production system this would require a method of forming logical queues at

the same physical interface in order to provide notifications to a larger number of

processes. This would be relatively simple to provide and could be done in a num-

ber of ways.

The first would be to assign each process an ID which relates to the queue they

are provided for notifications, and tokens to dictate individual transfers. In this

manner the CPU or accelerator could issue multiple transfers and simply poll the

individual queues for notifications (the queue being accessed by an address offset in

the map for the interface). The precise notification would then be handled internally

by the process performing the access.

The second method would be to store all process and transfer IDs within the NI,

and handle requests to the notification block individually, using a more complex

structure within the NI to sort the notifications. In either scenario the effects on the

scalability of the system will be negligible as the number of processes in each node

will be limited, given we target HPC applications.

8.2.3 Atomic Operations at the System Level

As we discussed in Section 4.1.4, a mechanism is required in the receiver in

order to facilitate hardware exclusive accesses. Using the load/store exclusive in-

structions within the CPU locks registers according to the process and transaction

ID, which is insufficient for use over a distributed system. Since multiple nodes

208 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

will be capable of issuing the same process+transaction IDs we must take into ac-

count the source node and block any accesses within the NI to previously locked

locations. It is currently unclear as to the impact of implementing this mechanism

within the NI, as this will depend on the extent of the support and any additional

performance enhancing features which may be desired.

This solution of locking will suffer performance issues as it requires that the data

be read back to the issuing node over the network, and then written. The data must

be pulled back toward the master which issued it. Obviously a more performant

solution would send a full atomic operation as a single request, bundling the data

we wish to update the exclusive register with. In this way it can be locked, written

and unlocked in the same transfer. Adding support for this can come from one of

two places.

The first is to implement this within the Network Interface, providing a dedi-

cated messaging unit which will build full atomic transactions. We must do this

because the alternative is to use a different system bus interface which provides

this capability. Our solution uses AXI4, encapsulating and extending the proto-

col to make it suitable for larger off-chip networking. In the recent AMBA AXI5

specification atomic operations are provided as part of the interface standard. If

this protocol were available then no additional hardware would be required at the

sender (other than adjusting the encapsulation mechanism). The additional hard-

ware already required at the receiver for handling exclusive accesses with multiple

AXI domains could be extended to take into account these operations also.

8.2.4 Extension of Transport Mechanism Scalability

Currently the number of concurrent in-flight transactions which are serviced

by the RDMA engine is limited to 16, as we use a simple implementation for the

table which was used to match the CDMA engine prior to the inclusion of the early

acknowledgements mechanism. Extending this out will benefit a full scale system

greatly by preventing stalling in DMA transaction issuing over long network paths.

As well as this, we do not envisage that doing this will have a great impact on the

area overheads for the system. This is because the amount of data stored for each

transaction and its associated timer is small. An additional latency penalty will be

8.2. FUTURE WORK 209

incurred in this instance however, as checking the returning packets will need to

be performed in a sequential manner. Extending the number of concurrent match

lookups beyond 16 will negatively affect the area overheads, as the CAM’s area

scales N2 with the number of parallel checks it must perform. It could also possibly

cause problems in allowing the implementation to reach timing constraints during

place and route. This is owing to the long combinatorial circuit which is required

of the matching logic.

8.2.5 Hardware Offloading for Collective Operations

Another area which could see huge performance gains over standardized im-

plementations is in offloading collective operations into the hardware. In order

for MPI implementations to maintain portability the vast majority use default soft-

ware implementations to realize collective operations. Typically these collectives

are built up of a series of point-to-point messages, and so are very inefficient in

terms of latency, bandwidth consumption and software intervention (2-sided calls,

OS intervention etc.). Offloading the capability into hardware in order to reduce

either the number of messages through the network or the number of steps in the

algorithm for collectives could have a dramatic effect on the network load or the

latency of collectives, and as such the performance of the system.

A traditional software implementation such as MPICH may use several point-

to-point communication algorithms in order to optimize collective messages. This

provides a trade-off between reducing the number of messages in the network and

reducing the time it takes to transfer all the data. Actually duplicating these mes-

sages in the network and forming true multicast trees to send to multiple destina-

tions simultaneously could have a large effect on the performance of these opera-

tions and the amount of data in the network. However, our switch and Network

Interface currently have no capability for generating multicast packets.

Given that our intended topology uses a geographic addressing scheme, it should

be feasible to work out possible multicast trees within the network by examining

the list of destinations. Other methods could be sought which take advantage of the

use of a hierarchical topology. Wildcard addresses could be used to send a single

210 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

message to a switch, which then performs a broadcast to lower tiers of the net-

work. In this manner the upper layers of the topology will carry a single message,

and then lower tiers with smaller latency communications could invoke more tra-

ditional algorithms for collectives. However, it is clear that this functionality would

be complex to implement within the system, and is a significant research task in

and of itself.

8.2.6 Library/Framework Integration

Obviously one of the main constraints with regards to the level of experimenta-

tion open to us is the lack of a distributed runtime system and lack of proper user-

level library support. Our simple API provides basic user-level functionality to

control and test the Network Interface and provide simple notifications. However,

extending the hardware capabilities and extending our low-level API to provide

more of a direct mapping to MPI functions or to the Portals API will certainly be

required. This will only provide a port for the communication and synchronization

primitives however, and even more work will be required for process initialization

across the nodes for example, or setting up a global virtual address mapping for

PGAS. This is all work which is far beyond the scope of this particular thesis. . .

8.3 Final Thoughts

There are many in the High Performance Computing community who have seri-

ous doubts about the viability of reconfigurable computing within this domain. It is

certainly true that there are many impediments to the uptake of FPGA technology

and many research questions still to be answered; such as standard HPC library

support, portability, and reliability at scale. However, it is the hope of the author

that we have provided a sufficient argument to show that there is much scope for

the use of FPGAs within HPC.

While the body of work within this thesis has tackled a small piece of the puzzle–

regarding the requirements of future interconnect technologies to enable the effi-

cient exploitation of reconfigurable accelerators– we believe an inflexion point is

8.3. FINAL THOUGHTS 211

being reached. We see that many other important areas are reaching sufficient ma-

turity to push the use of FPGAs into mainstream heterogeneous HPC systems. . .

High level synthesis techniques have progressed enormously, as has the archi-

tecture of FPGAs themselves. We are seeing ever denser SoCs, enhanced floating-

point capabilities, hardened high-speed transceiver technology and more complex

memory systems. Coupling this with growing system power constraints and bur-

geoning data-intensive workloads, we see that demand is also growing. It is our

view that as the pressures on Moore’s Law become greater, so will the pressure to

seek alternative technologies.

Bibliography

[1] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-S. P.

Wong, “Device scaling limits of si mosfets and their application dependen-

cies,” Proceedings of the IEEE, vol. 89, no. 3, pp. 259–288, 2001.

[2] A. Sodani and C Processor, “Race to exascale: opportunities and challenges,”

in Keynote at the Annual IEEE/ACM 44th Annual International Symposium on

Microarchitecture, 2011.

[3] A. J. Hey, S. Tansley, K. M. Tolle, et al., The fourth paradigm: data-intensive

scientific discovery. Microsoft research Redmond, WA, 2009, vol. 1.

[4] A. Tate, A. Kamil, A. Dubey, A. Größlinger, B. Chamberlain, B. Goglin, C.

Edwards, C. J. Newburn, D. Padua, D. Unat, et al., “Programming abstrac-

tions for data locality,” PADAL Workshop 2014, April 28–29, Swiss National

Supercomputing Center, 2014, p. 7.

[5] S. Mittal and J. S. Vetter, “A survey of methods for analyzing and improving

gpu energy efficiency,” ACM Computing Surveys (CSUR), vol. 47, no. 2, p. 19,

2015.

[6] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-

man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, et al., “A cloud-scale accel-

eration architecture,” in The 49th Annual IEEE/ACM International Symposium

on Microarchitecture, IEEE Press, 2016, p. 7.

[7] V. Milutinović, J. Salom, N Trifunović, and R. Giorgi, Guide to dataflow su-

percomputing, Basic Concepts, Case Studies, and a Detailed Example. Springer,

2015.

213

214 BIBLIOGRAPHY

[8] K. D. Underwood, K. S. Hemmert, and C. D. Ulmer, “From silicon to science:

the long road to production reconfigurable supercomputing,” ACM Transac-

tions on Reconfigurable Technology and Systems (TRETS), vol. 2, no. 4, p. 26,

2009.

[9] F. A. Escobar, X. Chang, and C. Valderrama, “Suitability analysis of fpgas for

heterogeneous platforms in hpc,” IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 2, pp. 600–612, 2016.

[10] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, “Understanding per-

formance differences of fpgas and gpus,” in 2018 IEEE 26th Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines (FCCM),

IEEE, 2018, pp. 93–96.

[11] R. S. Correa and J. P. David, “Ultra-low latency communication channels for

fpga-based hpc cluster,” Integration, the VLSI Journal, vol. 63, pp. 41–55, 2018.

[12] A. T. Markettos, P. J. Fox, S. W. Moore, and A. W. Moore, “Interconnect for

commodity fpga clusters: standardized or customized?” In 2014 24th Inter-

national Conference on Field Programmable Logic and Applications (FPL), IEEE,

2014, pp. 1–8.

[13] R. Thakur, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar,

E. Lusk, and J. L. Träff, “Mpi at exascale,” Procceedings of SciDAC, vol. 2,

pp. 14–35, 2010.

[14] J. Dinan, P. Balaji, E. Lusk, P Sadayappan, and R. Thakur, “Hybrid parallel

programming with mpi and unified parallel c,” in Proceedings of the 7th ACM

international conference on Computing frontiers, ACM, 2010, pp. 177–186.

[15] M. G. Katevenis, “Interprocessor communication seen as load-store instruc-

tion generalization,” in In The Future of Computing, essays in memory of Stama-

tis Vassiliadis, K. Bertels ea (Eds.), Delft, The Netherlands, Citeseer, 2007.

[16] Axi central direct memory access, logicore ip product guide, PG034, v4.1, Xilinx

Inc., Apr. 2018.

[17] Aurora 64b/66b, PG074, v10.0, Xilinx Inc., Apr. 2015.

BIBLIOGRAPHY 215

[18] J. Impagliazzo and J. A. Lee, History of Computing in Education: IFIP 18th

World Computer Congress, TC3/TC9 1st Conference on the History of Computing

in Education, 22-27 August 2004, Toulouse, France. Springer, 2004.

[19] R. M. Russell, “The cray-1 computer system,” Communications of the ACM,

vol. 21, no. 1, pp. 63–72, 1978.

[20] H. Falk, “What went wrong v: reaching for a gigaflop: the fate of the famed

illiac iv was shaped by both research brilliance and real-world disasters,”

IEEE spectrum, vol. 13, no. 10, pp. 65–70, 1976.

[21] A. Marowka, “Back to thin-core massively parallel processors,” Computer,

vol. 44, no. 12, pp. 49–54, 2011.

[22] W. D. Hillis and L. W. Tucker, “The cm-5 connection machine: a scalable

supercomputer,” Communications of the ACM, vol. 36, no. 11, pp. 30–41, 1993.

[23] R. Esser and R. Knecht, “Intel paragon xp/s-architecture and software envi-

ronment,” in Supercomputer’93, Springer, 1993, pp. 121–141.

[24] S. L. Scott and G. M. Thorson, “The cray t3e network: adaptive routing in a

high performance 3d torus,” in HOT Interconnects IV, Citeseer, 1996.

[25] M. S. Warren, J. K. Salmon, D. J. Becker, M. P. Goda, T. Sterling, and W

Winckelmans, “Pentium pro inside: i. a treecode at 430 gigaflops on asci red,

ii. price/performance of $50/mflop on loki and hyglac,” in SC’97: Proceed-

ings of the 1997 ACM/IEEE Conference on Supercomputing, IEEE, 1997, pp. 61–

61.

[26] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak, and C. V.

Packer, “Beowulf: a parallel workstation for scientific computation,” in Pro-

ceedings, International Conference on Parallel Processing, vol. 95, 1995, pp. 11–

14.

[27] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,

“Dark silicon and the end of multicore scaling,” in 2011 38th Annual interna-

tional symposium on computer architecture (ISCA), IEEE, 2011, pp. 365–376.

[28] K. M. Bresniker, S. Singhal, and R. S. Williams, “Adapting to thrive in a new

economy of memory abundance,” Computer, vol. 48, no. 12, pp. 44–53, 2015.

216 BIBLIOGRAPHY

[29] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and J.

C. Sancho, “Entering the petaflop era: the architecture and performance of

roadrunner,” in Proceedings of the 2008 ACM/IEEE conference on Supercomput-

ing, IEEE Press, 2008, p. 1.

[30] N. R. Adiga, G. Almási, G. S. Almasi, Y Aridor, R. Barik, D Beece, R Bellofatto,

G Bhanot, R Bickford, M Blumrich, et al., “An overview of the bluegene/l

supercomputer,” in SC’02: Proceedings of the 2002 ACM/IEEE Conference on

Supercomputing, IEEE, 2002, pp. 60–60.

[31] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,

M. Smelyanskiy, S. Chennupaty, P. Hammarlund, et al., “Debunking the 100x

gpu vs. cpu myth: an evaluation of throughput computing on cpu and gpu,”

ACM SIGARCH computer architecture news, vol. 38, no. 3, pp. 451–460, 2010.

[32] C. Concatto, J. A. Pascual, J. Navaridas, J. Lant, A. Attwood, M. Lujan, and

J. Goodacre, “A cam-free exascalable hpc router for low-energy commu-

nications,” in International Conference on Architecture of Computing Systems,

Springer, 2018, pp. 99–111.

[33] K. O’brien, I. Pietri, R. Reddy, A. Lastovetsky, and R. Sakellariou, “A survey

of power and energy predictive models in hpc systems and applications,”

ACM Computing Surveys (CSUR), vol. 50, no. 3, p. 37, 2017.

[34] D. B. Thomas, L. Howes, and W. Luk, “A comparison of cpus, gpus, fpgas,

and massively parallel processor arrays for random number generation,” in

Proceedings of the ACM/SIGDA international symposium on Field programmable

gate arrays, ACM, 2009, pp. 63–72.

[35] H. Lange, F. Stock, A. Koch, and D. Hildenbrand, “Acceleration and energy

efficiency of a geometric algebra computation using reconfigurable comput-

ers and gpus,” in 2009 17th IEEE Symposium on Field Programmable Custom

Computing Machines, IEEE, 2009, pp. 255–258.

[36] T. Hamada, K. Benkrid, K. Nitadori, and M. Taiji, “A comparative study on

asic, fpgas, gpus and general purpose processors in the o (n2̂) gravitational

n-body simulation,” in 2009 NASA/ESA Conference on Adaptive Hardware and

Systems, IEEE, 2009, pp. 447–452.

BIBLIOGRAPHY 217

[37] S. Kestur, J. D. Davis, and O. Williams, “Blas comparison on fpga, cpu and

gpu,” in 2010 IEEE computer society annual symposium on VLSI, IEEE, 2010,

pp. 288–293.

[38] B. Betkaoui, D. B. Thomas, and W. Luk, “Comparing performance and en-

ergy efficiency of fpgas and gpus for high productivity computing,” in 2010

International Conference on Field-Programmable Technology, IEEE, 2010, pp. 94–

101.

[39] H. M. Hussain, K. Benkrid, A. T. Erdogan, and H. Seker, “Highly parameter-

ized k-means clustering on fpgas: comparative results with gpps and gpus,”

in 2011 International Conference on Reconfigurable Computing and FPGAs, IEEE,

2011, pp. 475–480.

[40] C. De Schryver, I. Shcherbakov, F. Kienle, N. Wehn, H. Marxen, A. Kostiuk,

and R. Korn, “An energy efficient fpga accelerator for monte carlo option

pricing with the heston model,” in 2011 International Conference on Reconfig-

urable Computing and FPGAs, IEEE, 2011, pp. 468–474.

[41] B. Duan, W. Wang, X. Li, C. Zhang, P. Zhang, and N. Sun, “Floating-point

mixed-radix fft core generation for fpga and comparison with gpu and cpu,”

in 2011 International Conference on Field-Programmable Technology, IEEE, 2011,

pp. 1–6.

[42] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger, “Accelerating a ran-

dom forest classifier: multi-core, gp-gpu, or fpga?” In 2012 IEEE 20th Inter-

national Symposium on Field-Programmable Custom Computing Machines, IEEE,

2012, pp. 232–239.

[43] M. Birk, M. Balzer, N. Ruiter, and J. Becker, “Comparison of processing per-

formance and architectural efficiency metrics for fpgas and gpus in 3d ultra-

sound computer tomography,” in 2012 International Conference on Reconfig-

urable Computing and FPGAs, IEEE, 2012, pp. 1–7.

[44] D. Zou, Y. Dou, and F. Xia, “Optimization schemes and performance evalu-

ation of smith–waterman algorithm on cpu, gpu and fpga,” Concurrency and

Computation: Practice and Experience, vol. 24, no. 14, pp. 1625–1644, 2012.

218 BIBLIOGRAPHY

[45] K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu, and X. Tian, “High perfor-

mance biological pairwise sequence alignment: fpga versus gpu versus cell

be versus gpp,” International Journal of Reconfigurable Computing, vol. 2012,

p. 7, 2012.

[46] K. Pauwels, M. Tomasi, J. D. Alonso, E. Ros, and M. M. Van Hulle, “A com-

parison of fpga and gpu for real-time phase-based optical flow, stereo, and

local image features,” IEEE Transactions on Computers, vol. 61, no. 7, pp. 999–

1012, 2011.

[47] J. Fowers, G. Brown, J. Wernsing, and G. Stitt, “A performance and energy

comparison of convolution on gpus, fpgas, and multicore processors,” ACM

Transactions on Architecture and Code Optimization (TACO), vol. 9, no. 4, p. 25,

2013.

[48] G. Singh, “Xilinx 16nm datacenter device family within-package hbm and

ccix interconnect,” in 2017 IEEE Hot Chips 29 Symposium (HCS), IEEE, 2017,

pp. 1–22.

[49] M. Wissolik, D. Zacher, A. Torza, and B. Day, Virtex ultrascale+ hbm fpga:

a revolutionary increase in memory performance, WP485, v1.1, Xilinx Inc., Jul.

2019.

[50] U. Sinha, “Enabling impactful dsp designs on fpgas with hardened floating-

point implementation,” Altera White Paper, WP-01227-1.0 (Aug. 2014), 2014.

[51] J. Backus, “Acm turing award lectures,” in, New York, NY, USA: ACM, 2007,

ch. Can Programming Be Liberated from the Von Neumann Style?: A Func-

tional Style and Its Algebra of Programs, ISBN: 978-1-4503-1049-9.

[52] M. Nüssle, H. Fröning, S. Kapferer, and U. Brüning, “Accelerate commu-

nication, not computation!” In High-Performance Computing Using FPGAs,

Springer, 2013, pp. 507–542.

[53] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, et al., “The land-

scape of parallel computing research: a view from berkeley,” Technical Re-

port UCB/EECS-2006-183, Tech. Rep., 2006.

BIBLIOGRAPHY 219

[54] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske, “Efficient tem-

poral blocking for stencil computations by multicore-aware wavefront par-

allelization,” in 2009 33rd Annual IEEE International Computer Software and

Applications Conference, IEEE, vol. 1, 2009, pp. 579–586.

[55] A. Rafique, G. A. Constantinides, and N. Kapre, “Communication optimiza-

tion of iterative sparse matrix-vector multiply on gpus and fpgas,” IEEE

Transactions on Parallel and Distributed Systems, vol. 26, no. 1, pp. 24–34, 2015.

[56] G. Weisz, J. Melber, Y. Wang, K. Fleming, E. Nurvitadhi, and J. C. Hoe,

“A study of pointer-chasing performance on shared-memory processor-fpga

systems,” in Proceedings of the 2016 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, ACM, 2016, pp. 264–273.

[57] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, D. Firestone, J. Fowers,

M. Haselman, S. Heil, M. Humphrey, P. Kaur, et al., “Configurable clouds,”

IEEE Micro, vol. 37, no. 3, pp. 52–61, 2017.

[58] D. Unnikrishnan, S. G. Virupaksha, L. Krishnan, L. Gao, and R. Tessier,

“Accelerating iterative algorithms with asynchronous accumulative updates

on fpgas,” in 2013 International Conference on Field-Programmable Technology

(FPT), IEEE, 2013, pp. 66–73.

[59] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Cham-

berlain, R. Cledat, H. C. Edwards, H. Finkel, et al., “Trends in data locality

abstractions for hpc systems,” IEEE Transactions on Parallel and Distributed

Systems, vol. 28, no. 10, pp. 3007–3020, 2017.

[60] T. Geng, T. Wang, A. Sanaullah, C. Yang, R Xuy, R. Patel, and M. Herbordt,

“Fpdeep: acceleration and load balancing of cnn training on fpga clusters,”

in Proc. IEEE Symp. on Field Programmable Custom Computing Machines, 2018.

[61] E. Kadric, K. Mahajan, and A. DeHon, “Kung fu data energy-minimizing

communication energy in fpga computations,” in 2014 IEEE 22nd Annual

International Symposium on Field-Programmable Custom Computing Machines,

IEEE, 2014, pp. 214–221.

220 BIBLIOGRAPHY

[62] G. Tan, C. Zhang, W. Tang, P. Zhang, and N. Sun, “Accelerating irregular

computation in massive short reads mapping on fpga co-processor,” IEEE

Transactions on Parallel and Distributed Systems, vol. 27, no. 5, pp. 1253–1264,

2016, ISSN: 1045-9219.

[63] H. Fu and R. G. Clapp, “Eliminating the memory bottleneck: an fpga-based

solution for 3d reverse time migration,” in Proceedings of the 19th ACM/SIGDA

international symposium on Field programmable gate arrays, ACM, 2011, pp. 65–

74.

[64] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock,

Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra, et al., “Can fpgas beat

gpus in accelerating next-generation deep neural networks?” In Proceedings

of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, ACM, 2017, pp. 5–14.

[65] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta,

and Z. Zhang, “Accelerating binarized convolutional neural networks with

software-programmable fpgas,” in Proceedings of the 2017 ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays, ACM, 2017, pp. 15–

24.

[66] D. W. Walker and J. J. Dongarra, “Mpi: a standard message passing inter-

face,” Supercomputer, vol. 12, pp. 56–68, 1996.

[67] T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, and K. Under-

wood, “Remote memory access programming in mpi-3,” ACM Transactions

on Parallel Computing, vol. 2, no. 2, p. 9, 2015.

[68] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elnohazy,

M. Hall, R. Harrison, W. Harrod, K. Hill, et al., “Exascale software study: soft-

ware challenges in extreme scale systems,” DARPA IPTO, Air Force Research

Labs, Tech. Rep, pp. 1–153, 2009.

[69] C. A. R. Hoare, “Communicating sequential processes,” in The origin of con-

current programming, Springer, 1978, pp. 413–443.

BIBLIOGRAPHY 221

[70] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda, “Ef-

ficient inter-node mpi communication using gpudirect rdma for infiniband

clusters with nvidia gpus,” in 2013 42nd International Conference on Parallel

Processing, IEEE, 2013, pp. 80–89.

[71] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and

J. Planas, “Ompss: a proposal for programming heterogeneous multi-core

architectures,” Parallel Processing Letters, vol. 21, no. 02, pp. 173–193, 2011.

[72] A. Filgueras, E. Gil, D. Jimenez-Gonzalez, C. Alvarez, X. Martorell, J. Langer,

J. Noguera, and K. Vissers, “Ompss@ zynq all-programmable soc ecosys-

tem,” in Proceedings of the 2014 ACM/SIGDA international symposium on Field-

programmable gate arrays, ACM, 2014, pp. 137–146.

[73] Upc language specifications v1. 2, UPC Consortium, 2005.

[74] R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,” in

ACM Sigplan Fortran Forum, ACM, vol. 17, 1998, pp. 1–31.

[75] P. N. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham, A. Kamil, B. Li-

blit, G. Pike, J. Su, and K. Yelick, “Titanium language reference manual,”

Computer Science, 2006.

[76] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove, “X10 lan-

guage specification,” Specification, IBM, janvier, 2012.

[77] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel programmability

and the chapel language,” The International Journal of High Performance Com-

puting Applications, vol. 21, no. 3, pp. 291–312, 2007.

[78] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and L.

Smith, “Introducing openshmem: shmem for the pgas community,” in Pro-

ceedings of the Fourth Conference on Partitioned Global Address Space Program-

ming Model, ACM, 2010, p. 2.

[79] M. De Wael, S. Marr, B. De Fraine, T. Van Cutsem, and W. De Meuter, “Par-

titioned global address space languages,” ACM Computing Surveys (CSUR),

vol. 47, no. 4, p. 62, 2015.

222 BIBLIOGRAPHY

[80] W. Gropp and M. Snir, “Programming for exascale computers,” Computing

in Science & Engineering, vol. 15, no. 6, pp. 27–35, 2013.

[81] S. Potluri, P. Lai, K. Tomko, S. Sur, Y. Cui, M. Tatineni, K. W. Schulz, W. L.

Barth, A. Majumdar, and D. K. Panda, “Quantifying performance benefits of

overlap using mpi-2 in a seismic modeling application,” in Proceedings of the

24th ACM International Conference on Supercomputing, ACM, 2010, pp. 17–25.

[82] H. Shan, N. J. Wright, J. Shalf, K. Yelick, M. Wagner, and N. Wichmann, “A

preliminary evaluation of the hardware acceleration of the cray gemini inter-

connect for pgas languages and comparison with mpi,” ACM SIGMETRICS

Performance Evaluation Review, vol. 40, no. 2, pp. 92–98, 2012.

[83] J. Jose, S. Potluri, H. Subramoni, X. Lu, K. Hamidouche, K. Schulz, H. Sun-

dar, and D. K. Panda, “Designing scalable out-of-core sorting with hybrid

mpi+ pgas programming models,” in Proceedings of the 8th International Con-

ference on Partitioned Global Address Space Programming Models, ACM, 2014,

p. 7.

[84] J. Jose, S. Potluri, K. Tomko, and D. K. Panda, “Designing scalable graph500

benchmark with hybrid mpi+ openshmem programming models,” in Inter-

national Supercomputing Conference, Springer, 2013, pp. 109–124.

[85] R. Nikhil, “Bluespec system verilog: efficient, correct rtl from high level spec-

ifications,” in Proceedings. Second ACM and IEEE International Conference on

Formal Methods and Models for Co-Design, 2004. MEMOCODE’04., IEEE, 2004,

pp. 69–70.

[86] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek,

and K. Asanović, “Chisel: constructing hardware in a scala embedded lan-

guage,” in DAC Design Automation Conference 2012, IEEE, 2012, pp. 1212–

1221.

[87] S. Swan, “An introduction to system level modeling in systemc 2.0,” Cadence

Design Systems, Inc., draft report, 2001.

[88] Vivado design suite user guide, high-level synthesis, UG902, v2017.1, Xilinx Inc.,

Apr. 2017.

BIBLIOGRAPHY 223

[89] Intel high level synthesis compiler: reference manual, MNL-1083, Intel, Sep. 2019.

[90] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong, and W.-

M. W. Hwu, “Fcuda: enabling efficient compilation of cuda kernels onto

fpgas,” in 2009 IEEE 7th Symposium on Application Specific Processors, IEEE,

2009, pp. 35–42.

[91] A. Munshi, “The opencl specification,” in 2009 IEEE Hot Chips 21 Symposium

(HCS), IEEE, 2009, pp. 1–314.

[92] I. Mavroidis, I. Papaefstathiou, L. Lavagno, D. S. Nikolopoulos, D. Koch,

J. Goodacre, I. Sourdis, V. Papaefstathiou, M. Coppola, and M. Palomino,

“Ecoscale: reconfigurable computing and runtime system for future exascale

systems,” in 2016 Design, Automation & Test in Europe Conference & Exhibition

(DATE), IEEE, 2016, pp. 696–701.

[93] J. Liu, J. Wu, and D. K. Panda, “High performance rdma-based mpi imple-

mentation over infiniband,” International Journal of Parallel Programming, vol.

32, no. 3, pp. 167–198, 2004.

[94] M. J. Rashti and A. Afsahi, “10-gigabit iwarp ethernet: comparative perfor-

mance analysis with infiniband and myrinet-10g,” in 2007 IEEE International

Parallel and Distributed Processing Symposium, IEEE, 2007, pp. 1–8.

[95] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn, “Rdma

over commodity ethernet at scale,” in Proceedings of the 2016 ACM SIGCOMM

Conference, ACM, 2016, pp. 202–215.

[96] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S. Kumar,

V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and J. J. Parker, “The

ibm blue gene/q interconnection network and message unit,” in SC’11: Pro-

ceedings of 2011 International Conference for High Performance Computing, Net-

working, Storage and Analysis, IEEE, 2011, pp. 1–10.

[97] Y. Ajima, T. Inoue, S. Hiramoto, Y. Takagi, and T. Shimizu, “The tofu inter-

connect,” IEEE Micro, vol. 32, no. 1, pp. 21–31, 2012.

224 BIBLIOGRAPHY

[98] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system interconnect,”

in High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium

on, IEEE, 2010, pp. 83–87.

[99] R. Ammendola, A. Biagionil, O. Frezza, F. L. Cicero, A. Lonardo, P. S. Paolucci,

D. Rossetti, F. Simula, L. Tosoratto, and P. Vicini, “Design and implementa-

tion of a modular, low latency, fault-aware, fpga-based network interface,”

in 2013 International Conference on Reconfigurable Computing and FPGAs (Re-

ConFig), IEEE, 2013, pp. 1–6.

[100] Xilinx embedded target rdma enabled, PG294, v1.0, Xilinx Inc., Apr. 2018.

[101] G. Kalokerinos, V. Papaefstathiou, G. Nikiforos, S. Kavadias, M. Katevenis,

D. Pnevmatikatos, and X. Yang, “Fpga implementation of a configurable

cache/scratchpad memory with virtualized user-level rdma capability,” in

2009 International Symposium on Systems, Architectures, Modeling, and Simula-

tion, IEEE, 2009, pp. 149–156.

[102] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray xc series network,”

Cray Inc., White Paper WP-Aries01-1112, 2012.

[103] R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. G. Steinberg, and K. Yelick,

“Empirical evaluation of the cray-t3d: a compiler perspective,” in ACM SIGARCH

Computer Architecture News, ACM, vol. 23, 1995, pp. 320–331.

[104] H. Fröning and H. Litz, “Efficient hardware support for the partitioned global

address space,” in 2010 IEEE International Symposium on Parallel & Distributed

Processing, Workshops and Phd Forum (IPDPSW), IEEE, 2010, pp. 1–6.

[105] C. Ulmer, R. Hilles, and D. Thompson, “Reconfigurable computing aspects

of the cray xd1,” Proceedings of the CUG 2005, 2005.

[106] S. Shida, Y. Shibata, K. Oguri, and D. A. Buell, “Implementation of a barotropic

operator for ocean model simulation using a reconfigurable machine,” in

2007 International Conference on Field Programmable Logic and Applications, IEEE,

2007, pp. 589–592.

[107] Reconfigurable application-specific computing user’s guide, 007-4718-004, Silicon

Graphics Inc., Mar. 2006.

BIBLIOGRAPHY 225

[108] Sgi numalink industry leading interconnect technology, J14820, Silicon Graphics

Inc., 2005.

[109] C. Kachris and D. Soudris, “A survey on reconfigurable accelerators for

cloud computing,” in 2016 26th International conference on field programmable

logic and applications (FPL), IEEE, 2016, pp. 1–10.

[110] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R. Penning-

ton, W.-m. Hwu, et al., “Qp: a heterogeneous multi-accelerator cluster,” in

Proc. 10th LCI International Conference on High-Performance Clustered Comput-

ing, 2009.

[111] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson,

A. Trew, A. McCormick, G. Smart, et al., “Maxwell-a 64 fpga supercom-

puter,” in Second NASA/ESA Conference on Adaptive Hardware and Systems

(AHS 2007), IEEE, 2007, pp. 287–294.

[112] A. D. George, M. C. Herbordt, H. Lam, A. G. Lawande, J. Sheng, and C.

Yang, “Novo-g#: large-scale reconfigurable computing with direct and pro-

grammable interconnects,” in 2016 IEEE High Performance Extreme Computing

Conference (HPEC), IEEE, 2016, pp. 1–7.

[113] R. Sass, W. V. Kritikos, A. G. Schmidt, S. Beeravolu, and P. Beeraka, “Re-

configurable computing cluster (rcc) project: investigating the feasibility of

fpga-based petascale computing,” in 15th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2007), IEEE, 2007, pp. 127–

140.

[114] A. G. Schmidt, S. Datta, A. A. Mendon, and R. Sass, “Investigation into scal-

ing i/o bound streaming applications productively with an all-fpga cluster,”

Parallel Computing, vol. 38, no. 8, pp. 344–364, 2012.

[115] L. Ling, N. Oliver, C. Bhushan, W. Qigang, A. Chen, S. Wenbo, Y. Zhihong, A.

Sheiman, I. McCallum, J. Grecco, et al., “High-performance, energy-efficient

platforms using in-socket fpga accelerators,” in Proceedings of the ACM/SIGDA

international symposium on Field programmable gate arrays, ACM, 2009, pp. 261–

264.

226 BIBLIOGRAPHY

[116] H. J. Yang, K. Fleming, M. Adler, and J. Emer, “Leap shared memories: au-

tomating the construction of fpga coherent memories,” in 2014 IEEE 22nd

Annual International Symposium on Field-Programmable Custom Computing Ma-

chines, IEEE, 2014, pp. 117–124.

[117] The convey hc-2 computer, architectural overview, CONV-12-030.2, Convey Com-

puter Corporation, 2012.

[118] D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers, and R. Carley, “Scal-

able 10gbps tcp/ip stack architecture for reconfigurable hardware,” in Field-

Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd Annual

International Symposium on, IEEE, 2015, pp. 36–43.

[119] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached fp-

gas for data center applications,” in 2016 International Conference on Field-

Programmable Technology (FPT), IEEE, 2016, pp. 36–43.

[120] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling fpgas

in hyperscale data centers,” in 2015 IEEE 12th Intl Conf on Ubiquitous Intel-

ligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted

Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communica-

tions and Its Associated Workshops (UIC-ATC-ScalCom), IEEE, 2015, pp. 1078–

1086.

[121] S.-W. Jun, M. Liu, S. Xu, et al., “A transport-layer network for distributed

fpga platforms,” in 2015 25th International Conference on Field Programmable

Logic and Applications (FPL), IEEE, 2015, pp. 1–4.

[122] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair,

and S. Swanson, “Near-data processing: insights from a micro-46 workshop,”

IEEE Micro, vol. 34, no. 4, pp. 36–42, 2014.

[123] R. Nair, “Evolution of memory architecture,” Proceedings of the IEEE, vol.

103, no. 8, pp. 1331–1345, 2015.

[124] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J.

Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, et al., “A reconfig-

urable fabric for accelerating large-scale datacenter services,” ACM SIGARCH

Computer Architecture News, vol. 42, no. 3, pp. 13–24, 2014.

BIBLIOGRAPHY 227

[125] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the energy

cost of data movement in scientific applications,” in 2013 IEEE international

symposium on workload characterization (IISWC), IEEE, 2013, pp. 56–65.

[126] R. Perlman, D Eastlake 3rd, D Dutt, S. Gai, and A. Ghanwani, “Routing

bridges (rbridges): base protocol specification,” Tech. Rep., 2011.

[127] J. Postel, “Dod standard transmission control protocol,” SIGCOMM Comput.

Commun. Rev., vol. 10, no. 4, pp. 52–132, Oct. 1980, ISSN: 0146-4833.

[128] S. Seth and M. A. Venkatesulu, TCP/IP architecture, design and implementation

in Linux. John Wiley & Sons, 2009, vol. 68.

[129] Intilop Corporation, 10 G bit TCP Offload Engine + PCIe/DMA SOC IP. 2012.

[130] D. Freimuth, E. C. Hu, J. D. LaVoie, R. Mraz, E. M. Nahum, P. Pradhan, and J.

M. Tracey, “Server network scalability and tcp offload.,” in USENIX Annual

Technical Conference, General Track, 2005, pp. 209–222.

[131] D. Sidler, Z. István, and G. Alonso, “Low-latency tcp/ip stack for data cen-

ter applications,” in 2016 26th International Conference on Field Programmable

Logic and Applications (FPL), IEEE, 2016, pp. 1–4.

[132] A. Ford, C. Raiciu, M. Handley, S. Barre, J. Iyengar, et al., “Architectural

guidelines for multipath tcp development,” IETF, Informational RFC, vol. 6182,

pp. 2070–1721, 2011.

[133] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnich, C. E.

Rasmussen, L. D. Risinger, and M. W. Sukalski, “A network-failure-tolerant

message-passing system for terascale clusters,” International Journal of Paral-

lel Programming, vol. 31, no. 4, pp. 285–303, 2003.

[134] F. Petrini, W.-c. Feng, A. Hoisie, S. Coll, and E. Frachtenberg, “The quadrics

network: high-performance clustering technology,” Ieee Micro, vol. 22, no. 1,

pp. 46–57, 2002.

[135] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.

Seizovic, and W.-K. Su, “Myrinet: a gigabit-per-second local area network,”

IEEE micro, vol. 15, no. 1, pp. 29–36, 1995.

228 BIBLIOGRAPHY

[136] M. J. Koop, S. Sur, Q. Gao, and D. K. Panda, “High performance mpi de-

sign using unreliable datagram for ultra-scale infiniband clusters,” in Pro-

ceedings of the 21st annual international conference on Supercomputing, ACM,

2007, pp. 180–189.

[137] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep

learning: an in-depth concurrency analysis,” ACM Computing Surveys (CSUR),

vol. 52, no. 4, p. 65, 2019.

[138] C. Yu, H. Tang, C. Renggli, S. Kassing, A. Singla, D. Alistarh, C. Zhang, and

J. Liu, “Distributed learning over unreliable networks,” in International Con-

ference on Machine Learning, 2019, pp. 7202–7212.

[139] R. E. Grant, M. J. Rashti, P. Balaji, and A. Afsahi, “Scalable connectionless

rdma over unreliable datagrams,” Parallel Computing, vol. 48, pp. 15–39, 2015.

[140] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda, “Shared receive queue based

scalable mpi design for infiniband clusters,” in Proceedings 20th IEEE Inter-

national Parallel & Distributed Processing Symposium, IEEE, 2006, 10–pp.

[141] M. J. Koop, R. Kumar, and D. K. Panda, “Can software reliability outperform

hardware reliability on high performance interconnects?: a case study with

mpi over infiniband,” in Proceedings of the 22nd annual international conference

on Supercomputing, ACM, 2008, pp. 145–154.

[142] M. J. Koop, J. K. Sridhar, and D. K. Panda, “Scalable mpi design over infini-

band using extended reliable connection,” in 2008 IEEE International Confer-

ence on Cluster Computing, IEEE, 2008, pp. 203–212.

[143] Mellanox ib-verbs api (vapi), 2088AN, Mellanox Technologies, 2001.

[144] L. Oden, H. Fröning, and F.-J. Pfreundt, “Infiniband-verbs on gpu: a case

study of controlling an infiniband network device from the gpu,” in 2014

IEEE International Parallel & Distributed Processing Symposium Workshops, IEEE,

2014, pp. 976–983.

[145] P. Geoffray and T. Hoefler, “Adaptive routing strategies for modern high

performance networks,” in 2008 16th IEEE Symposium on High Performance

Interconnects, IEEE, 2008, pp. 165–172.

BIBLIOGRAPHY 229

[146] J. C. Martinez, J. Flich, A. Robles, P. Lopez, and J. Duato, “Supporting fully

adaptive routing in infiniband networks,” in Proceedings International Parallel

and Distributed Processing Symposium, IEEE, 2003, 10–pp.

[147] X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang, “A multiple lid routing scheme

for fat-tree-based infiniband networks,” in 18th International Parallel and Dis-

tributed Processing Symposium, 2004. Proceedings., IEEE, 2004, p. 11.

[148] A. Vishnu, M Koop, A. Moody, A. R. Mamidala, S. Narravula, and D. K.

Panda, “Hot-spot avoidance with multi-pathing over infiniband: an mpi

perspective,” in Seventh IEEE International Symposium on Cluster Computing

and the Grid (CCGrid’07), IEEE, 2007, pp. 479–486.

[149] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable

dragonfly topology,” in 2008 International Symposium on Computer Architec-

ture, IEEE, 2008, pp. 77–88.

[150] R. Bittner, E. Ruf, and A. Forin, “Direct gpu/fpga communication via pci

express,” Cluster Computing, vol. 17, no. 2, pp. 339–348, 2014.

[151] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer,

K. D. Underwood, and R. C. Zak, “Intel R© omni-path architecture: enabling

scalable, high performance fabrics,” in 2015 IEEE 23rd Annual Symposium on

High-Performance Interconnects, IEEE, 2015, pp. 1–9.

[152] D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara, S. Kumar, V.

Salapura, D. Satterfield, B. Steinmacher-Burow, and J. Parker, “The ibm blue

gene/q interconnection fabric,” IEEE Micro, vol. 32, no. 1, pp. 32–43, 2012.

[153] S. Derradji, T. Palfer-Sollier, J.-P. Panziera, A. Poudes, and F. W. Atos, “The

bxi interconnect architecture,” in 2015 IEEE 23rd Annual Symposium on High-

Performance Interconnects, IEEE, 2015, pp. 18–25.

[154] B. W. Barrett, R. Brightwell, S. Hemmert, K. Pedretti, K. Wheeler, K. Under-

wood, R. Riesen, A. B. Maccabe, and T. Hudson, “The portals 4.0 network

programming interface,” Sandia National Laboratories, November 2012, Techni-

cal Report SAND2012-10087, 2012.

230 BIBLIOGRAPHY

[155] M. Besta and T. Hoefler, “Slim fly: a cost effective low-diameter network

topology,” in Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, IEEE Press, 2014, pp. 348–359.

[156] Y. Ajima, S. Sumimoto, and T. Shimizu, “Tofu: a 6d mesh/torus interconnect

for exascale computers.,” IEEE Computer, vol. 42, no. 11, pp. 36–40, 2009.

[157] Y. Ajima, T. Kawashima, T. Okamoto, N. Shida, K. Hirai, T. Shimizu, S. Hi-

ramoto, Y. Ikeda, T. Yoshikawa, K. Uchida, et al., “The tofu interconnect d,”

in 2018 IEEE International Conference on Cluster Computing (CLUSTER), IEEE,

2018, pp. 646–654.

[158] T. Toyoshima, “Icc: an interconnect controller for the tofu interconnect archi-

tecture,” in Hot Chips, vol. 22, 2010.

[159] S. W. Moore, P. J. Fox, S. J. Marsh, A. T. Markettos, and A. Mujumdar, “Bluehive-

a field-programable custom computing machine for extreme-scale real-time

neural network simulation,” in 2012 IEEE 20th International Symposium on

Field-Programmable Custom Computing Machines, IEEE, 2012, pp. 133–140.

[160] M. Nüssle, B. Geib, H. Fröning, and U. Brüning, “An fpga-based custom

high performance interconnection network,” in 2009 International Conference

on Reconfigurable Computing and FPGAs, IEEE, 2009, pp. 113–118.

[161] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, “Netfpga

sume: toward 100 gbps as research commodity,” IEEE micro, vol. 34, no. 5,

pp. 32–41, 2014.

[162] R. Ammendola, A. Biagioni, O. Frezza, F. L. Cicero, A. Lonardo, P. S. Paolucci,

D. Rossetti, A. Salamon, G. Salina, F. Simula, et al., “Apenet+: high band-

width 3d torus direct network for petaflops scale commodity clusters,” in

Journal of Physics: Conference Series, IOP Publishing, vol. 331, 2011, p. 052 029.

[163] M. Katevenis, R. Ammendola, A. Biagioni, P. Cretaro, O. Frezza, F. L. Cicero,

A. Lonardo, M. Martinelli, P. S. Paolucci, E. Pastorelli, et al., “Next generation

of exascale-class systems: exanest project and the status of its interconnect

and storage development,” Microprocessors and Microsystems, vol. 61, pp. 58–

71, 2018.

BIBLIOGRAPHY 231

[164] A. Rigo, C. Pinto, K. Pouget, D. Raho, D. Dutoit, P.-Y. Martinez, C. Doran, L.

Benini, I. Mavroidis, M. Marazakis, et al., “Paving the way towards a highly

energy-efficient and highly integrated compute node for the exascale revo-

lution: the exanode approach,” in 2017 Euromicro Conference on Digital System

Design (DSD), IEEE, 2017, pp. 486–493.

[165] M. Ashworth, G. D. Riley, A. Attwood, and J. Mawer, “First steps in porting

the lfric weather and climate model to the fpgas of the euroexa architecture,”

Scientific Programming, vol. 2019, 2019.

[166] P. M. Kogge, P. La Fratta, and M. Vance, “[2010] facing the exascale energy

wall,” in 2010 International Workshop on Innovative Architecture for Future Gen-

eration High Performance, IEEE, 2010, pp. 51–58.

[167] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: a cost-efficient topology

for high-radix networks,” ACM SIGARCH Computer Architecture News, vol.

35, no. 2, pp. 126–137, 2007.

[168] J. A. Pascual, J. Lant, A. Attwood, C. Concatto, J. Navaridas, M. Luján, and

J. Goodacre, “Designing an exascale interconnect using multi-objective op-

timization,” in 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE,

2017, pp. 2209–2216.

[169] A. K. Kodi, B. Neel, and W. C. Brantley, “Photonic interconnects for exascale

and datacenter architectures,” IEEE Micro, vol. 34, no. 5, pp. 18–30, 2014.

[170] J. Navaridas, J. Lant, J. A. Pascual, M. Lujan, and J. Goodacre, “Design ex-

ploration of multi-tier interconnects for exascale systems,” in To appear in

the proceedings of the 48th International Conference on Parallel Processing, ACM,

2019.

[171] R. Trobec, R. Vasiljević, M. Tomašević, V. Milutinović, R. Beivide, and M.

Valero, “Interconnection networks in petascale computer systems: a survey,”

ACM Computing Surveys (CSUR), vol. 49, no. 3, p. 44, 2016.

[172] W. J. Dally and B. P. Towles, Principles and practices of interconnection networks.

Elsevier, 2004.

232 BIBLIOGRAPHY

[173] L. G. Valiant, “A scheme for fast parallel communication,” SIAM journal on

computing, vol. 11, no. 2, pp. 350–361, 1982.

[174] M. Katevenis, N. Chrysos, M. Marazakis, I. Mavroidis, F. Chaix, N Kalli-

manis, J. Navaridas, J. Goodacre, P. Vicini, A. Biagioni, et al., “The exanest

project: interconnects, storage, and packaging for exascale systems,” in 2016

Euromicro Conference on Digital System Design (DSD), IEEE, 2016, pp. 60–67.

[175] S. Murali, D. Atienza, L. Benini, and G. De Micheli, “A multi-path routing

strategy with guaranteed in-order packet delivery and fault-tolerance for

networks on chip,” in 2006 43rd ACM/IEEE Design Automation Conference,

IEEE, 2006, pp. 845–848.

[176] A. Stratikopoulos, C. Kotselidis, J. Goodacre, and M. Luján, “Fastpath: to-

wards wire-speed nvme ssds,” in 2018 28th International Conference on Field

Programmable Logic and Applications (FPL), IEEE, 2018, pp. 170–1707.

[177] Zynq ultrascale+ device, technical reference manual, UG1085, v1.7, Xilinx Inc.,

Dec. 2017.

[178] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and M. Valero,

“Supercomputing with commodity cpus: are mobile socs ready for hpc?” In

Proceedings of the International Conference on High Performance Computing, Net-

working, Storage and Analysis, ACM, 2013, p. 40.

[179] O. Peleg, A. Morrison, B. Serebrin, and D. Tsafrir, “Utilizing the iommu scal-

ably.,” in USENIX Annual Technical Conference, 2015, pp. 549–562.

[180] P. Vogel, A. Marongiu, and L. Benini, “Exploring shared virtual memory for

fpga accelerators with a configurable iommu,” IEEE Transactions on Comput-

ers, 2018.

[181] Arm cortex-a53 mpcore processor, ID021414, Revision r0p2, ARM Ltd., Feb.

2014.

[182] D. Folegnani and A. González, “Energy-effective issue logic,” in ACM SIGARCH

Computer Architecture News, ACM, vol. 29, 2001, pp. 230–239.

BIBLIOGRAPHY 233

[183] E. Blem, J. Menon, and K. Sankaralingam, “Power struggles: revisiting the

risc vs. cisc debate on contemporary arm and x86 architectures,” in 2013

IEEE 19th International Symposium on High Performance Computer Architecture

(HPCA), IEEE, 2013, pp. 1–12.

[184] M. A. Laurenzano, A. Tiwari, A. Jundt, J. Peraza, W. A. Ward, R. Camp-

bell, and L. Carrington, “Characterizing the performance-energy tradeoff of

small arm cores in hpc computation,” in European Conference on Parallel Pro-

cessing, Springer, 2014, pp. 124–137.

[185] Ultrascale architecture gth transceivers, user guide, UG576 pp. 24, v1.6, Xilinx

Inc., 2019.

[186] Amba axi and ace protocol specification, IHI 0022D, ID102711, ARM LTD., 2011.

[187] 10g ethernet pcs/pma, PG068, v6.0, Xilinx Inc., Oct. 2016.

[188] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault tolerance

mechanisms and checkpoint/restart implementations for high performance

computing systems,” The Journal of Supercomputing, vol. 65, no. 3, pp. 1302–

1326, 2013.

[189] J. D. McCalpin, “A survey of memory bandwidth and machine balance in

current high performance computers,” IEEE TCCA Newsletter, pp. 19–25,

1999.

[190] W. Bolosky, R. Fitzgerald, and M. Scott, “Simple but effective techniques for

numa memory management,” ACM SIGOPS Operating Systems Review, vol.

23, no. 5, pp. 19–31, 1989.

[191] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive process-level

live migration in hpc environments,” in Proceedings of the 2008 ACM/IEEE

conference on Supercomputing, IEEE Press, 2008, p. 43.

[192] D. Abts and D. Weisser, “Age-based packet arbitration in large-radix k-ary

n-cubes,” in Proceedings of the 2007 ACM/IEEE conference on Supercomputing,

ACM, 2007, p. 5.

234 BIBLIOGRAPHY

[193] P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “A survey

of fpga-based ldpc decoders,” IEEE Communications Surveys & Tutorials, vol.

18, no. 2, pp. 1098–1122, 2016.

[194] D. Yin, G. Li, et al., “Scalable mapreduce framework on fpga accelerated

commodity hardware,” in Internet of Things, Smart Spaces, and Next Gener-

ation Networking, Springer, 2012, pp. 280–294.

[195] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Xanthopoulos, “The re-

liable router: a reliable and high-performance communication substrate for

parallel computers,” in International Workshop on Parallel Computer Routing

and Communication, Springer, 1994, pp. 241–255.

[196] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N.

Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. S. Pierre, D. S. Wells,

et al., “The network architecture of the connection machine cm-5,” Journal of

Parallel and Distributed Computing, vol. 33, no. 2, pp. 145–158, 1996.

[197] W. Jiang, “Scalable ternary content addressable memory implementation us-

ing fpgas,” in Proceedings of the ninth ACM/IEEE symposium on Architectures

for networking and communications systems, IEEE Press, 2013, pp. 71–82.

[198] P. Kermani and L. Kleinrock, “Virtual cut-through: a new computer com-

munication switching technique,” Computer Networks (1976), vol. 3, no. 4,

pp. 267–286, 1979.

[199] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell system technical jour-

nal, vol. 39, no. 5, pp. 1253–1265, 1960.

[200] K. Ouchi, K. Kubo, T. Mizuochi, Y. Miyata, H. Yoshida, H. Tagami, K. Shimizu,

T. Kobayashi, K. Shimomura, K. Onohara, et al., “A fully integrated block

turbo code fec for 10 gb/s optical communication systems,” in Optical Fiber

Communication Conference, Optical Society of America, 2006, OTuK4.

[201] Air interface for fixed and mobile broadband wireless access systems, IEEE P802.

16e D, IEEE LAN/MAN Standard Committee, p. 2005.

BIBLIOGRAPHY 235

[202] “Ieee standard for information technology - local and metropolitan area net-

works - part 3: csma/cd access method and physical layer specifications -

media access control (mac) parameters, physical layer, and management pa-

rameters for 10 gb/s operation,” IEEE Std 802.3ae-2002 (Amendment to IEEE

Std 802.3-2002), pp. 1–544, 2002.

[203] F. Demangel, N. Fau, N. Drabik, F. Charot, and C. Wolinski, “A generic ar-

chitecture of ccsds low density parity check decoder for near-earth applica-

tions,” in 2009 Design, Automation & Test in Europe Conference & Exhibition,

IEEE, 2009, pp. 1242–1245.

[204] T. Brecht, “On the importance of parallel application placement in numa

multiprocessors,” in Symposium on Experiences with Distributed and Multipro-

cessor Systems (SEDMS IV), 1993, pp. 1–18.

[205] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always wanted

to know about synchronization but were afraid to ask,” in Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, ACM, 2013,

pp. 33–48.

[206] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. J.

Dongarra, “Performance analysis of mpi collective operations,” Cluster Com-

puting, vol. 10, no. 2, pp. 127–143, 2007.

[207] J. Williams, C. Massie, A. D. George, J. Richardson, K. Gosrani, and H. Lam,

“Characterization of fixed and reconfigurable multi-core devices for applica-

tion acceleration,” ACM Transactions on Reconfigurable Technology and Systems

(TRETS), vol. 3, no. 4, p. 19, 2010.

[208] 10g/25g high speed ethernet subsystem, PG210, v2.1, Xilinx Inc., Apr. 2017.

[209] K. Townsend and J. Zambreno, “Reduce, reuse, recycle (r 3): a design method-

ology for sparse matrix vector multiplication on reconfigurable platforms,”

in 2013 IEEE 24th International Conference on Application-Specific Systems, Ar-

chitectures and Processors, IEEE, 2013, pp. 185–191.

[210] D. Strenski, “Fpga floating point performance–a pencil and paper evalua-

tion,” HPC Wire, Jan. 2007.

236 BIBLIOGRAPHY

[211] M. Marazakis, J. Goodacre, D. Fuin, P. Carpenter, J. Thomson, E. Matus, A.

Bruno, P. Stenstrom, J. Martin, Y. Durand, et al., “Euroserver: share-anything

scale-out micro-server design,” in Proceedings of the 2016 Conference on De-

sign, Automation & Test in Europe, EDA Consortium, 2016, pp. 678–683.

[212] N. Kallimanis, M. Marazakis, and E. Skordalakis, “Use-cases for remote mem-

ory in the unimem architecture,” in ExascaleHPC: the ExaNoDe, ExaNeSt, EcoScale,

and EuroEXA projects workshop at HiPEAC, Manchester, 2018.

[213] J. A. Pascual, J. Lant, C. Concatto, A. Attwood, J. Navaridas, M. Luján, and J.

Goodacre, “On the effects of allocation strategies for exascale computing sys-

tems with distributed storage and unified interconnects,” Concurrency and

Computation: Practice and Experience, e4784,

[214] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive fault

tolerance for hpc with xen virtualization,” in Proceedings of the 21st annual

international conference on Supercomputing, ACM, 2007, pp. 23–32.

[215] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo, “Bluegene/l

failure analysis and prediction models,” in International Conference on De-

pendable Systems and Networks (DSN’06), IEEE, 2006, pp. 425–434.

Appendix A

Project Context

The work described in this thesis is situated within the context of a set of pan-

European projects tasked with the design and build of a system employing cutting

edge computer architectures to target future generations of exascale class systems.

These projects aim to push forward an “everything close” and “share anything”

philosophy [174] by various means, doing this as a key way of reducing data move-

ment costs and maximising energy efficiency. Together these projects pay service to

the whole stack, viewing the system holistically, from the cooling technology and

applications down to the development of custom compute elements. This path to

European exascale computing began with several Horizon 2020 projects1 in 2015

targeting numerous different areas; such as storage, networking, acceleration, node

density, cooling etc. Current projects are at the stage of building larger prototypes

to demonstrate the scalability of these systems. These projects are:

ExaNoDe [164]- Tasked with the design of compute elements and runtime sys-

tems to support low power, heterogeneous HPC systems. The key elements of this

project for reducing power consumption are the use of 3D package integration and

the use of low power ARM cores to increase component density. As well as this

the project further develops the use of the UNIMEM memory model [211], which

provides a PGAS-like global address space and overcomes the scalability issues as-

sociated with global cache coherence strategies.

ExaNeSt [163]- This project is involved in the networking and storage aspects of

1What is Horizon 2020?- https://ec.europa.eu/programmes/horizon2020/

what-horizon-2020, Accessed November 2019.

237

https://ec.europa.eu/programmes/horizon2020/what-horizon-2020
https://ec.europa.eu/programmes/horizon2020/what-horizon-2020

238 APPENDIX A. PROJECT CONTEXT

these future heterogeneous HPC systems. The central aim being to create a unified

interconnect to carry all networking, storage and management traffic. The project’s

use of hyperconverged storage and the UNIMEM model aim to reduce the power

consumption of the system interconnect, and bring compute and data closer to-

gether.

ECOSCALE [92]- The ECOSCALE project aims to create a scalable program-

ming environment for reconfigurable accelerators in HPC systems. They have cre-

ated a runtime system which enables the use of distributed FPGAs by use of multi-

ple Workers in a partitioned global address space (PGAS), supporting MPI+OpenCL.

These workers are able to use the runtime system to take ownership of remote and

local logic resources, using partial reconfiguration in a fashion which allows multi-

ple applications to utilise FPGA resources by dynamically scaling and reallocating

acceleration tasks.

EuroEXA [165]- The EuroEXA project aims to create a larger scale system pro-

totype based upon the technology and findings of the other listed projects. This

project will create a multicore ARM+FPGA based compute board, integrating cus-

tomized networking capability supporting a global address space and the UNIMEM

memory model, developed in the ExaNeSt project. As well as this a custom ARM-

based SoC ASIC is being designed and taped out, to be coupled with Xilinx acceler-

ators for a future system testbed. The overarching goal of this project is to demon-

strate a system capable of scaling to a peak performance of 400 PFLOPS with a peak

system power envelope of around 30MW (roughly 4x the efficiency of today’s top

systems).

Node and Memory Model

It can be seen here that our use of the Xilinx Zynq Ultrascale+ FPGA, and our

desire to provide a means for FPGAs to communicate with one another efficiently

in a distributed manner comes from this push to create a custom compute element

for HPC. This compute element will utilize low-power ARM cores tightly coupled

to a reconfigurable fabric. By using acceleration elements so closely coupled to the

unified interconnect enables extreme data processing as well as extreme compute

239

Figure A.1: Compute node developed in the ExaNoDe project. Taken from [164].

capabilities [165].

The compute node will be based upon the work performed in the ExaNoDe

project, shown in Figure A.1, which uses a densely packaged 3D silicon interposer

solution forming a multi-chip modules, which consists of tightly coupled ARM

cores and FPGA used for compute and IO capabilities.

The node will communicate using the novel UNIMEM memory model, first de-

veloped in the EUROSERVER project [211]. In the UNIMEM model remote com-

munication can be performed via load/store instructions or via RDMA for large

data copying across the network. The model is scalable by allowing cacheability of

physical pages only at a single node, which eliminates the need for complex hard-

ware coherence protocols spanning the network. The Unimem API resembles that

of a shared-memory system, and can be used by applications for synchronization

and utilizing the remote memory [212].

System Architecture and Unified Interconnect

As we discussed in section 3.1, the targeted system architecture for these set

of projects is designed to increase the energy efficiency. Properties of the system

which promote this includes a hierarchical network topology with hyper-converged

storage and a unified interconnect. The storage is kept close to the compute to

reduce data movement and thus reduce power consumption and increase perfor-

mance [213]. By unifying the typically separate network and storage interconnects

240 APPENDIX A. PROJECT CONTEXT

40GbE

I/O NODES

40GbE

COMPUTING NODES

10GbE (Storage Network)

Custom Interconnection Network

Storage Server

NVM Device

Computing Element

Figure A.2: The ExaNeSt storage architecture. The local NVMs are attached to the
computing nodes sharing the main IN (solid).An Ethernet network is provided for
central data storage. Taken from [213].

the amount of overall physical cabling is drastically reduced and thus the static

power consumption of the network is reduced, even when idle.

Figure A.2 shows the storage architecture for the network. Fast NVMe (Non-

Volatile Memory express) SSD disks are connected to each compute node, to be

used by applications for distributed storage, accessible by local or remote nodes.

This uses the BeeGFS distributed file system, originally developed at Fraunhoefer2.

An additional storage server will need to be provided for long term storage of data,

which would connected using less performant standard Ethernet technology.

The main consequence of the use of this unified interconnect on the work within

this thesis is the desire to support a fully adaptive routing strategy for the custom

network, as a means of increasing the performance of the system. Many prior works

have characterised scientific workloads and shown that point-to-point messages

form the majority of bulky transfers, with collective operations typically requiring

only very small payloads [53]. Given the fact that the majority of connection based

transports and standard table based routing will only allow for a single path to be

used per flow, this suggests that any very heavy traffic flows (such as those which

would be seen when writing data to disk) will not utilise bandwidth efficiently un-

less multiple paths are available for individual packets within a given flow. It is

for this reason that we support a fully adaptive routing scheme and out-of-order

packet delivery, to enable better load balancing and make more bandwidth avail-

able to large RDMA transfers.

2An introduction to BeeGFS, by Jan Heichler, November 2014- Available at http://www.beegfs.
de/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf, Accessed November 2019.

http://www.beegfs.de/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
http://www.beegfs.de/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf

Appendix B

Addressing on the Zynq Ultrascale+

Mapping

In order to cope with the fact that that we do not have virtual-physical mapp-

ping capability set up for peripheral devices within the system we provision for the

use of a distributed, shared-memory system by use of a small region of physical

memory, mapped into a user-space application’s virtual memory.

This is done by use of the mmap() system call, and a userspace virtual-to-physical

mapping function to retrieve the physical address. This physical address is then

passed to the DMA engine or accelerator block, in order to provide access to a dedi-

cated region of DRAM. We first must allocate a region of virtual memory, and using

the process id we can then check the pagemap for the physical frame number us-

ing the virtual page in /proc/<process ID>/pagemap1. It should be noted that each

page (4KB in our instance) of memory has its own mapping, and that this is not

necessarily contiguous. In order to have contiguous physical memory over 4KB

boundaries we must have the kernel allocate the memory using kmalloc(), and

then have a driver expose an mmap() interface to the memory, similar to how we

map the hardware on the FPGA into userspace.

The hardware for the NI and other FPGA resources is exposed through two

physical mmap()’d regions. In doing this we gain read/write access to the configura-

tion and data registers of the custom IP blocks on the FPGA fabric through a simple

1Kernel docuentation on pagemap- https://www.kernel.org/doc/Documentation/vm/

pagemap.txt, accessed April 2019.

241

https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt

242 APPENDIX B. ADDRESSING ON THE ZYNQ ULTRASCALE+

pointer with a virtual address in the application. Two separate 1MB physical re-

gions are mapped; A0000000 and B0000000, and are routed to the AXI master ports

of the PS-PL interfaces on the device M_AXI_HPM0_FPD and M_AXI_HPM1_FPD

respectively (see the HPM interfaces in Figure. B.1). These can be accessed us-

ing two generic user-space io device files, which are created by extending the De-

vice Tree (Listing B.1) to expose the regions as character devices /dev/uio0 and

/dev/uio12.

Listing B.1: Device tree entries for access to devices in the programmable logic.

aptCores@a0000000 {

compatible = "generic-uio";

reg = <0x0 0xa0000000 0x0 0x100000>;

interrupts = <0x0 0x39 0x0>;

interrupt-parent = <0x2>;

};

aptCores@b0000000 {

compatible = "generic-uio";

reg = <0x0 0xb0000000 0x0 0x100000>;

interrupts = <0x0 0x39 0x0>;

interrupt-parent = <0x2>;

};

These character devices are then accessed in the user-space application by use

of the open() system call, returning a file descriptor which is used by the mmap()

function to provide a virtual address at which the user can write to the hardware

within the reconfigurable fabric of the FPGA.

The downside of the lack of a configured IOMMU within our prototype system,

and this static mapping in user-space for both hardware and RDMA buffering is

that the solution requires memory pinning for the application’s RDMA buffers. The

virtual to physical mapping must remain static because the hardware within the

FPGA (DMA engine or accelerator logic) must access the memory subsystem of

the CPU using physical addresses. Pinning the memory is initially expensive to

allocate and deallocate, but as the buffers are intended for reuse over the lifetime of
2Userspace I/O- https://wiki.krtkl.com/index.php?title=Userspace_I/O, accessed

November 2018.

https://wiki.krtkl.com/index.php?title=Userspace_I/O

243

Figure B.1: Block Diagram of the Zynq Ultrascale+, taken from [177] (pp. 18).

244 APPENDIX B. ADDRESSING ON THE ZYNQ ULTRASCALE+

the application, this should be amortized following Amdhal’s law. The main issue

with this technique when in the context of a large, distributed system is the fact

that it prevents important fault tolerance techniques being employed such as page

migration [191], [214]. This means that in the event of a failing node (identified

using preemptive failure detection techniques [215]) any process using the failing

node could not move to a new one.

Addressing Limitations

The device is unable to route virtual addresses to the PL from the PS. There is

also a finite physical window of memory which can be used to access the PL from

any given interface port3. Figure B.2 shows the address map for the device. As

such the complete map of addresses for a fully global, shared virtual address space

cannot be adequately covered using the IOMMU within the PS only (named the

System MMU/SMMU in the Zynq reference manual [177]). While these physical

window limitations are not an issue for the limited prototype described within this

thesis, a complete system would require a larger addressable window of global

memory, or the ability to route virtual addresses out into the logic fabric.

RDMA operations can be performed unchanged within the system, as the DMA

engine can operate using virtual source and destination addresses. If the SMMU

inside the PS is configured correctly, then virtual addresses can be used by the DMA

engine. This is because the slave interfaces between the PL and PS pass through

the TBU (Translation Buffer Unit), which store page table lookups (see Figure 3.3).

The DMA engine is able to use virtual addresses with no modification because the

physical mapping of the DMA ring buffer is locally static. Work for the DMA engine

is provided as data in AXI write requests, which can obviously contain pointers to

virtual memory locations.

However, utilizing a global address space for remote shared-memory operations

is not as simple. The shared memory port for the NI must be accessed using a

physical address. So a static, large region must be mapped to access the NI. In

the complete system a page table will be required to maintain mappings in the
3224GB for M_AXI_HPM0_FPD and M_AXI_HPM1_FPD interfaces at 0x0010_0000_0000 and

0x0048_0000_0000 respectively.

245

Figure B.2: Gloabl address map for the Xilinx Zynq Ultrascale+, taken from [177]
pp. 222.

246 APPENDIX B. ADDRESSING ON THE ZYNQ ULTRASCALE+

programmable logic that enable a translation from a physical address back to a

global virtual address.

Appendix C

AXI 4 Interface Standard

The AXI protocol consists of 5 completely independent channels of communi-

cation between a master-slave pair (Figure C.1). Three of the channels form master

to slave requests; Read Address (AR), Write Address (AW) and Write Data (W).

The two remaining channels provide slave to master responses; Write Response (B)

and Read Data (R). Transfer of address/data/response accross the interface is per-

formed using simple ready/valid handshaking. Multiple slaves and masters can be

interconnected, and route using either memory mapping (AxADDR) in the master

to slave request side, or using ID signals (AxID/RID/BID) to route the correspond-

ing responses back to the correct master. As there is no ID signal on the write data

(W) channel (discontinued in AXI4), this means that write transactions cannot be

interleaved. The same is not true for reads, although the virtual cut-through nature

of the proposed network switch (described in Section 3.1.3) means this is the case

regardless.

The AXI interface is flexible, enabling connections between master/slaves with

differing requirements. The address channels require one ready/valid exchange

per transfer, and provides information about data width (AxSIZE), burst length

(AxLEN), memory type (AxCACHE), quality of service (AxQOS), atomic access

AxLOCK and security/privilege levels (AxPROT), as well as user defined signals

for any other purpose (xUSER). The data is clocked out in the number of beat-

s/phits for the corresponding transaction, as defined by the burst length signal

AxLEN (an example write and read transaction are shown in Figure C.2). A full

breakdown of the signals and their function is shown in Table C.1.

247

248 APPENDIX C. AXI 4 INTERFACE STANDARD

Master
interface

Slave
interface

Address
and control

Read address channel

Read
data

Read
data

Read
data

Read
data

Read data channel

Master
interface

Slave
interface

Address
and control

Write address channel

Write
data

Write data channel

Write
data

Write
data

Write
data

Write
response

Write response channel

(AR)

(R)

(AW)

(W)

(B)

Figure C.1: Independent request and response channels in the AXI interface, taken
from [186].

CLK

AWVALID

AWREADY

WVALID

WREADY

BVALID

BREADY

AWLEN 0x03 XX

WLAST

(a) AXI write.

CLK

ARVALID

ARREADY

RVALID

RREADY

ARLEN 0x04 XX

RLAST

(b) AXI read.

Figure C.2: Example timing diagram of AXI transactions.

249

Table C.1: AXI signals and the corresponding channels with which they are associ-
ated.

Name Channels
(AW,AR,W,R,B) Description

xID ID signals to identify the originating master of
a transaction.

xADDR Base destination address for the transaction
xLEN Burst length/number of beats of data in

a transaction. Total Transaction Data =
xLEN*bitWidth(xData).

xSIZE Number of bytes in a single beat/transfer.
xBURST Burst type, FIXED = same address for all

transfers, INCR = standard transfer incre-
menting address of each beat, WRAP = same
as INCR, but wraps if an upper limit is
reached.

xCACHE Defines memory type of the transaction,
bufferable/non-bufferable, cacheable/non-
cacheable, write-through/write-back, read-
/write allocation.

xPROT Access permissions, privilieged/unprivi-
leged, secure/non-secure, and data/instruc-
tion access.

xLOCK Provides locked/exclusive accesses to slaves.
xQOS Supports Quality of Service levels in the inter-

connect or peripheral.
xREGION Used to create multiple logical interfaces from

a single physical interface, each having a
different location within the system address
map.

xDATA Data being transferred, width of signal is flex-
ible.

xLAST Indicates last transfer of data in a transaction.
xSTRB Byte-lane validity for write transactions.
xRESP Detail on whether transaction completed cor-

rectly, OKAY = correct, EXOKAY = correct ex-
clusive access, SLVERR = transaction failed at
slave, DECERR = transaction failed in inter-
connnect, slave unreachable/unidentifiable.

xREADY Indicates the slave is ready to accept new re-
quests/master can accept new responses.

xVALID Indicates the master has valid request/slave
has valid response.

xUSER User defined signals.

Appendix D

Controllers for AXI-Network Protocol

Bridging

As discussed in Section 3.3.2.1, four controllers are used to perform bridging

between the on-chip AXI protocol, and the custom, off-chip network packet. The

four controllers which perform the following translations are:

• Sender

– Memory-mapped AXI request to network packet.

– Memory-mapped AXI response to network packet.

• Receiver

– Network packet to memory-mapped AXI request.

– Network packet to memory-mapped AXI response.

Each of the four controllers has five main states, HEAD1, HEAD2, BODY, FOOT1,

FOOT2, and they handle both shared-memory operations as well as RDMA traffic.

The state transitions are described for each of the controllers in Figure D.1 and Ta-

bles D.1- D.4. For the receive side translation which handles incoming traffic from

the network, information is stored from the header and footer in order to rebuild

the associated AXI transaction that was posted at the sender. The body (payload)

is sent to a buffer within the NI as it enters. This is required as a store-and forward

mechanism is used for several reasons. (i) The tail contains a packet-level CRC hash

251

252APPENDIX D. CONTROLLERS FOR AXI-NETWORK PROTOCOL BRIDGING

to detect soft-errors which may be introduced to the packet as it traverses the net-

work, so the store and forward mechanism prevents erroneous data being written

to memory. (ii) There are several key pieces of information which are stored within

the tail of the packet which are needed to rebuild the initial transaction. (iii) In Sec-

tion 6.2, a mechanism for increasing the performance of operations at the recevier is

shown. A key part of this mechanism prevents duplicate packets from being writ-

ten to memory. Since information in the tail of the packet is required, again we must

store the whole packet to prevent memory inconsistencies.

At the send side the state machine is used to convert a single AXI transaction

into a network packet. The AXI address information required for the 128 bit header

and footer is presented to the interface in a single cycle, but they are built in four

cycles. This has no effect on the performance of the NI, because as the packet is

being built each flit is sent immediately to the output queue, which can only be fed

into the 10G MAC layer 64 bits per cycle. The data is sent directly to the output

buffer as well. However, due to the fact that the AXI write data (W) and write

address (AW) channels are completely independent of one another, the data can

arrive before addressing information. As such the data must only be sent to the

output buffer during the BODY state, after the header has been formed and pushed

to the MAC.

253

HEAD1

HEAD2

BODY

FOOT1

FOOT2

QUEUE

EMPTY

IS AR/B

AW/AR/R/B QUEUED

IS AW/R

WLAST/RLAST QUEUED

HEAD1

HEAD2

BODY

FOOT1

FOOT2

QUEUE

EMPTY

PKT

LENGTH == 0

FLIT QUEUED

PKT LENGTH != 0

BODYCOUNT

== PKT LENGTH

FLIT QUEUED

FLIT QUEUED

Figure D.1: State transition diagrams for the controllers which bridge between
memeory mapped AXI and the network packet (left), and from network packets
into memory mapped AXI transactions (right).

254APPENDIX D. CONTROLLERS FOR AXI-NETWORK PROTOCOL BRIDGING

Table D.1: Controller for processing AXI requests to send to the network.

State Action
HEAD1 Check the status of any requesting queue, take from;

shared memory retransmission, shared memory read,
shared memory write, RDMA retransmission or RDMA
transfer queue with descending priority respectively. If
shared memory operation add to table for retransmis-
sion and issue a new ID. If first packet of RDMA oper-
ation add relevant data to table to enable rebuild of op-
eration in event of failue (base address, number of pack-
ets expected). If subsequent RDMA packet increment the
number of transmitted packets in the operation.

HEAD2 Get the new transaction ID for the packet. Store to place
in the footer.

BODY start draining the data queue corresponding to the
packet (RDMA queue, retransmission queue, shared
memory queue).

FOOT1 Simply build flit from stored request information.
FOOT2 If retransmissing RDMA packet, dequeue the informa-

tion required to rebuild the operation.

Table D.2: Controller for processing AXI responses to send to the network.

State Action
HEAD1 Match the response ID against the response table entries.

Locate the original ID and source node ID. Build flit from
relevent information and push to network.

HEAD2 Simply build flit from relevant information.
BODY If read data, drain from the input queue, until count

equals expected number of data transfers.
FOOT1 Simply build flit from relevant information.
FOOT2 Simply build flit from relevant information.

255

Table D.3: Controller for processing incoming network request packets.

State Action
HEAD1 Check the packet type incoming, store expected payload

length.
HEAD2 If packet type is DMA_REGISTRATION, send relevant

information to registration module (base address, to-
tal packets in registered operation). If packet type is
RDMA_WRITE, send to the registration module to check
against other entries.

BODY Every flit increments the count of the data. Wait until the
expected number of flits arrives from the payload length.
Write the data into an output buffer.

FOOT1 If request is a shared memory operation, add relevant
information to table to build the response packet (source
node, original transaction ID).

FOOT2 If shared memory operation retrieve the new ID issued
for the AXI transaction.If DMA operation, add relevant
information to table to build response packet (source
node, original transaction ID, dma operation issue num-
ber).

Table D.4: Controller for processing incoming network response packets.

State Action
HEAD1 Check packet type. Store relevant information depend-

ing on type; Shared memory response, RDMA response,
Completion notification.

HEAD2 If the packet is a notification of completion, store relevant
information for building notification.

BODY Drain the input into a buffer for storage. Must check the
data is correct before writing to memory.

FOOT1 If the packet is a notification of completion, store relevant
information for building notification. If the response
is from a DMA operation or Shared memory operation
push relevant information into the request table to get
the old ID back.

FOOT2 If the response is from a DMA operation or Shared mem-
ory operation get the old ID back from the request ta-
ble. If the response is a negative acknowledgement start
the retransmission process. Add the entry back to the
request table and reissue a new ID, and then send to re-
transmission request queue.

	List of Tables
	List of Figures
	Abstract
	Declaration
	Copyright Statement
	Acknowledgements
	Introduction
	FPGAs for HPC
	Our Interconnect Solution

	Contributions
	Publications
	Architectural Overview and Thesis Structure
	Network Interface Design
	System Level Design
	Thesis Outline by Chapter

	Background and Related Work
	Trends in High Performance Computing
	Vector Machines
	Massively Parallel Machines
	Many-Core and Heterogeneous Computing
	Energy Efficiency and Data Movement
	FPGA

	HPC Workloads
	Current Suitability
	Advancing System Architectures
	Accelerator Optimization Techniques

	Programming Models and Interfaces
	MPI
	OpenMP
	Distributed Shared-Memory (NUMA/PGAS)
	FPGA Programming Techniques
	Extending Models to FPGA

	FPGA Clusters
	Early Examples
	Bus-Based Coprocessor
	System Bus Attached
	Disaggregated Network Peer
	Bump-in-the-wire
	Global System Addressing

	Interconnection Networks
	Ethernet
	TCP
	UDP
	Infiniband
	Others

	Our Interconnect Requirements
	A Custom Interconnect Design

	Concluding Remarks

	Network Interface for HPC Communications
	System Architecture
	Hierarchical Interconnect
	Network Topologies
	Network Switch and Addressing Scheme
	Unified Interconnect

	Hardware Platform
	Xilinx Zynq Ultrascale+
	ARM Cortex-A53
	Multi-Gigabit Transceivers

	Overview of Network Interface Design
	AXI Interfacing
	Network Protocol and Bridge
	Inbound Messages and Response Packets
	Shared Memory Communications and RDMA Transfers

	Segregation of Traffic Types
	Small Transfer Latency
	Shared Memory Throughput Limitations
	Testing Link Throughput

	Concluding Remarks

	Error Recovery and Memory Consistency
	Shared-Memory Operations
	Remote Read
	Remote Write
	Acceleration Resources Performing Shared-Memory Ops
	Exclusive Accesses and Consistency
	Summary

	RDMA Data Errors
	Header or Footer Errors
	Out-Of-Order Packet Delivery
	Duplicates in Retransmission
	Concluding Remarks

	Transport Layer for FPGA based HPC
	Reliability Requirements for Reconfigurable HPC
	Implementation of Transport Mechanism
	Overview
	Shared Memory Retransmission IP
	RDMA Retransmission IP

	Retransmission and Fault Tolerance Strategies
	Latency and Fault Injection Mechanism
	Measuring Latency and Jitter
	Results and Discussion

	Concluding Remarks

	Performance Enhancements
	Early Acknowledgement for AXI Writes
	Receiver Registration
	Implementation

	Segmentation
	Performance of Receive Block
	Receive Module Scalability
	Concluding Remarks

	Enabling Standalone FPGA Computing
	Reduced Complexity in Data/Control Path
	TCP Communications
	Software Based Transport Using our Networking Stack
	Fully Hardware-Offloaded Transport, CPU Bypass

	Experiments
	Simple TCP Test
	Using Distributed FPGA Resources
	Results

	Estimating Peak Computing Throughput
	Concluding Remarks

	Conclusions and Future Work
	Conclusions
	Future Work
	Global Virtual Addressing
	Virtualization of Transport Layer
	Atomic Operations at the System Level
	Extension of Transport Mechanism Scalability
	Hardware Offloading for Collective Operations
	Library/Framework Integration

	Final Thoughts

	Bibliography
	Project Context
	Addressing on the Zynq Ultrascale+
	AXI 4 Interface Standard
	Controllers for AXI-Network Protocol Bridging

