184 research outputs found

    Improved physiological noise regression in fNIRS: a multimodal extension of the General Linear Model using temporally embedded Canonical Correlation Analysis

    Get PDF
    For the robust estimation of evoked brain activity from functional Near-Infrared Spectroscopy (fNIRS) signals, it is crucial to reduce nuisance signals from systemic physiology and motion. The current best practice incorporates short-separation (SS) fNIRS measurements as regressors in a General Linear Model (GLM). However, several challenging signal characteristics such as non-instantaneous and non-constant coupling are not yet addressed by this approach and additional auxiliary signals are not optimally exploited. We have recently introduced a new methodological framework for the unsupervised multivariate analysis of fNIRS signals using Blind Source Separation (BSS) methods. Building onto the framework, in this manuscript we show how to incorporate the advantages of regularized temporally embedded Canonical Correlation Analysis (tCCA) into the supervised GLM. This approach allows flexible integration of any number of auxiliary modalities and signals. We provide guidance for the selection of optimal parameters and auxiliary signals for the proposed GLM extension. Its performance in the recovery of evoked HRFs is then evaluated using both simulated ground truth data and real experimental data and compared with the GLM with short-separation regression. Our results show that the GLM with tCCA significantly improves upon the current best practice, yielding significantly better results across all applied metrics: Correlation (HbO max. +45%), Root Mean Squared Error (HbO max. -55%), F-Score (HbO up to 3.25-fold) and p-value as well as power spectral density of the noise floor. The proposed method can be incorporated into the GLM in an easily applicable way that flexibly combines any available auxiliary signals into optimal nuisance regressors. This work has potential significance both for conventional neuroscientific fNIRS experiments as well as for emerging applications of fNIRS in everyday environments, medicine and BCI, where high Contrast to Noise Ratio is of importance for single trial analysis.Published versio

    Asset prices and exchange rates: a time dependent approach

    Get PDF
    The paper studies the relationship between exchange rates and asset prices. It takes the approach of order ows to exchange rates. Specifically, it focuses on the effect of time-dependent risk aversion. The switch in the parameter causes the equilibrium of the system to alternate between two regimes: an optimistic and a pessimistic one. The paper is complete of a wide empirical section where the two equilibria are identified and specified for three of the main world markets. The regimes appear to be persistent and consistent with the existing literature on risk aversion. This also includes recent events of the financial crisis. The analysis uncovers a new development for exchange rate microstructure models. 3 of the 4 markets studied are consistent with both the order flow and the Markov switching models. The markets analyzed are the UK, Switzerland, Germany and Japan.Exchange rates, Microstructure, Markov chains

    Asset prices and exchange rates: a time dependent approach.

    Get PDF
    The paper studies the relationship between exchange rates and asset prices. It takes the approach of order ows to exchange rates. Specifically, it focuses on the effect of time-dependent risk aversion. The switch in the parameter causes the equilibrium of the system to alternate between two regimes: an optimistic and a pessimistic one. The paper is complete of a wide empirical section where the two equilibria are identified and specified for three of the main world markets. The regimes appear to be persistent and consistent with the existing literature on risk aversion. This also includes recent events of the financial crisis. The analysis uncovers a new development for exchange rate microstructure models. 3 of the 4 markets studied are consistent with both the order flow and the Markov switching models. The markets analyzed are the UK, Switzerland, Germany and Japan.

    Detecting confounding in multivariate linear models via spectral analysis

    Full text link
    We study a model where one target variable Y is correlated with a vector X:=(X_1,...,X_d) of predictor variables being potential causes of Y. We describe a method that infers to what extent the statistical dependences between X and Y are due to the influence of X on Y and to what extent due to a hidden common cause (confounder) of X and Y. The method relies on concentration of measure results for large dimensions d and an independence assumption stating that, in the absence of confounding, the vector of regression coefficients describing the influence of each X on Y typically has `generic orientation' relative to the eigenspaces of the covariance matrix of X. For the special case of a scalar confounder we show that confounding typically spoils this generic orientation in a characteristic way that can be used to quantitatively estimate the amount of confounding.Comment: 27 pages, 16 figure

    About the Malmquist bias in the determination of H0 and of distances of galaxies

    Get PDF
    We provide the mathematical framework which elucidates the way of using a Tully-Fisher (TF) like relation in the determination of the Hubble constant H0H_0, as well as for distances of galaxies. The methods related to the so-called Direct and Inverse TF Relations (herein DTF and ITF) are interpreted as maximum likelihood statistics. We show that, as long as the same model is used for the calibration of the TF relation and for the determination of H0H_0, we obtain a coherent Hubble's constant. The choice of the model is motivated by reasons of robustness of statistics, it depends on selection effects in observation which are present in the sample. The difference on the distance estimates when using either the ITF or the DTF model is only due to random fluctuations. It is interesting to point out that the DTF estimate does not depend on the luminosity distribution of sources. Both statistics show a correction for a bias, inadequately believed to be of Malmquist type. The repercussion of measurement errors, and additional selection effects are also analyzedComment: 37 pages,cpt-93/p.2808,latex A&A,4fig available on cpt.univ-mrs.fr directory ftp/pub/preprints/93/cosmology/93-P.280

    Rapid and low-cost insect detection for analysing species trapped on yellow sticky traps

    Get PDF
    While insect monitoring is a prerequisite for precise decision-making regarding integrated pest management (IPM), it is time- and cost-intensive. Low-cost, time-saving and easy-to-operate tools for automated monitoring will therefore play a key role in increased acceptance and application of IPM in practice. In this study, we tested the differentiation of two whitefly species and their natural enemies trapped on yellow sticky traps (YSTs) via image processing approaches under practical conditions. Using the bag of visual words (BoVW) algorithm, accurate differentiation between both natural enemies and the Trialeurodes vaporariorum and Bemisia tabaci species was possible, whereas the procedure for B. tabaci could not be used to differentiate this species from T. vaporariorum. The decay of species was considered using fresh and aged catches of all the species on the YSTs, and different pooling scenarios were applied to enhance model performance. The best performance was reached when fresh and aged individuals were used together and the whitefly species were pooled into one category for model training. With an independent dataset consisting of photos from the YSTs that were placed in greenhouses and consequently with a naturally occurring species mixture as the background, a differentiation rate of more than 85% was reached for natural enemies and whiteflies

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field
    corecore