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Département des sciences économiques
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Chapter 1

Volatility Forecast Evaluation and Compar-

ison: A Survey

1.1 Introduction

In this chapter we review recent developments on volatility forecasts evaluation and com-

parison based on inference of moments of functions of predictions and predictions errors.

Since this chapter defines the theoretical background of this thesis, in the closing section

we summarize and discuss the main contributions and results of this thesis.

In this chapter we consider both univariate and multivariate volatility models. The eval-

uation of forecasts performances as considered here is based on a sufficiently long sequence

of point forecasts or forecast errors using a retrospective approach. Hence, it may be useful

to stress that the techniques discussed here are not suited when the evaluation of a model

forecast accuracy is based on a single or a small number of out of sample observations.

Depending on the purpose of the analysis, the forecaster may be interested in evaluating

a single model, two or several models. When the object of the analysis is the forecasting

accuracy of a single model, the quality of the model can be measured by the correlation

between predictions and realizations. A common method that falls in this category is the

Mincer-Zarnowitz regression (Mincer and Zarnowitz, 1969), which involves regressing the

realization of a variable on a constant and its forecast. Alternatively, the forecaster may

aim to compare two or more models. Tests for pairwise comparison have been proposed by

Diebold and Mariano (1995), West (1996) and later generalized by Giacomini and White

(2006). The multiple comparison problem can be tackled in different ways. We distinguish

between two different approaches, the multiple comparison with control (e.g., the reality

check for data snooping of White, 2000 and the superior predictive ability test of Hansen
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and Lunde, 2005) where a benchmark forecast is chosen ex-ante and compared to all others

to assess whether any of the competing forecasts outperforms the benchmark, and the

multiple comparison without control (e.g., the model confidence set test of Hansen, Lunde,

and Nason, 2010a) where all forecasts are compared against each other and poor performing

models excluded.

A common problem in the evaluation of point forecasts is the comparison of nested

models. In fact, depending on the forecasting scheme used to produce the sequence of out

of sample observations, most of the tests for predictive ability discussed here may not apply,

in the sense that the distribution under the null turns out to be degenerate in some cases or

the test may suffer from serious size distortions. In this chapter we review the three most

commonly used forecasting schemes.

Another problem, which characterizes the comparison of volatility forecasts, is the fact

that the target variable is latent. Thus, the evaluation of forecasts or forecast errors has to

be done with respect to some ex-post estimator based on observed outcomes as they become

available. Typically, this problem is solved by using a conditionally unbiased (and possibly

consistent) estimator as, for example, the squared innovations, the realized volatility or ker-

nels, see Andersen and Bollerslev (1998) and the further developments by Barndorff-Nielsen

and Shephard (2002), Zhang, Mykland, and Ait-Sahalia (2004), Zhou (1996), Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008a) among the others, and their multivariate

extension, see Andersen, Bollerslev, Diebold, and Labys (2003), Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008b) and Hansen and Lunde (2006b), or yet range based variance

estimators, see Parkinson (1980), Garman and Klass (1980) and Brandt and Diebold (2006).

In the reminder of the chapter we refer to the ex-post volatility estimator as the volatility

proxy.

However, it is not always true that using a conditionally unbiased proxy will lead,

asymptotically, to the same outcome that would be obtained if the true volatility was

observed. Hansen and Lunde (2006a) show that when the evaluation is based on a target

observed with error, the choice of the evaluation criteria becomes critical in order to avoid

a perverse outcome. The problem of consistency, sometimes referred to as robustness, of

the ordering between two or more volatility forecasts has been further developed in Patton

(2009) and Patton and Sheppard (2009). In Chapter 2 we provide a generalization to the

comparison of multivariate volatility forecasts.

Finally, since in most of the methods discussed here, the evaluation of volatility forecasts

relies, more or less explicitly, on the use of a statistical loss function and on the choice of

a volatility proxy, we discuss the properties of a number of admissible loss functions and

elaborate on the value of high precision proxies.
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The rest of the chapter is organized as follows. In Section 1.2, we discuss three fore-

casting schemes widely used in the forecasting literature. In Section 1.3, we introduce the

basic notation used throughout the chapter. In Section 1.4, we discuss the evaluation of

the predictive accuracy of single forecasts. In Section 1.5, we introduce the problem of

forecast evaluation under imperfect volatility proxies and provide a number of admissible

loss functions. In Sections 1.6 and 1.7, we discuss methods for pairwise and multiple fore-

cast comparison respectively. In Section 1.8 we illustrate the problem of consistency of the

ordering in a Monte Carlo simulation. In Section 1.9, we conclude and provide an overview

of the thesis.

1.2 Forecasting schemes

In this section we review three forecasting schemes, namely recursive, rolling and fixed, that

are most often encountered in the forecasting literature. The choice of the forecasting scheme

has direct and important implications for the inference on the forecast performances. In

fact, in most applications the forecasts under comparison depend on estimated parameters

whose properties, in turn, depend on the forecasting scheme adopted.

Let us denote the total sample size as T +T , where T represents the estimation sample

and T the out of sample evaluation sample. In the reminder of the chapter we will consider

one-step ahead forecasts, although the results can be easily extended to the multi-step ahead

case.

In the recursive scheme the sample used to estimate the parameters of the model grows

as the forecaster makes predictions for successive observations, i.e. at each step the forecast

is based on all available information. For example, at T + 1 one evaluates the first forecast

using parameter estimates which include information up to T . Then, the second forecast,

at T + 2, is obtained using parameter estimates which include data up to T + 1 and so

forth, with the last forecast generated using parameter estimates computed using all but

the last observations (T + T − 1).

In the rolling scheme the sequence of T parameters is generated using a rolling sample

of fixed size T , i.e., the most recent information. For example, the first estimate is obtained

using data from 1 to T and forecast at T + 1 computed. Then, the second estimate is

obtained using data from 2 to T + 1 to obtain the forecast at T + 2, etc.

In the fixed scheme the parameters of the model are estimated only once using data

from 1 to T . Then, the estimates are used to generate all one-step ahead forecasts, i.e., at

each step, T +1, T +2, ..., T + T − 1, only the data are updated with the new information.

In this chapter we will mainly focus on the rolling and fixed forecasting schemes. In
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fact, as will be discussed in the following sections, the recursive scheme can be problematic

when evaluating forecasts generated by nested models. Furthermore, the rolling and fixed

scheme, other than allowing for the comparison of nested models, also present some other

advantages. The rolling scheme is, in fact, rather appealing in case of heterogeneneity of the

data or parameter drifts that cannot be easily modeled explicitly, whereas the fixed scheme

can be useful when it is difficult to carry out parameter estimation. This is often the case,

for instance, when comparing multivariate volatility models, where the large number of

parameters makes the rolling scheme computationally challenging and time consuming, see

Chapter 3 for an example where a combination of rolling and fixed schemes is used. A

number of examples of applications using each of the three schemes can be found in West

(2006).

1.3 Notation

We now introduce the basic notation and definitions used throughout the chapter. Let

us define t = 1, ..., T the time index of the forecast sample of size T . Let rt be the a

random variable whose conditional variance, E[r2t |ℑt−1] = Et−1[r
2
t ] = σt, is of interest (to

simplify the exposition, we assume that E[rt|ℑt−1] = Et−1[rt] = 0). The set ℑt−1 denotes the

information set at time t−1 and contains past realizations of rt, but also other variables and

variables measured at a higher frequency. In financial applications, rt typically represents

a sequence of returns, i.e. first difference of logarithmic prices, of some financial asset. We

also assume that rt|ℑt−1 ∼ F (0, σt), where F is some distribution with zero mean, finite

variance and possibly constant higher order moments.

The (set of) variance forecast(s) (sometimes referred to as models) is denoted by ht

(hk,t ∈ H, k = 1, ...,m when there is more than one model).

When the forecast accuracy is evaluated by means of a loss function, we denote it as

L : R++×H → R+ where R+ and R++ denote the non-negative and positive portions of the

real line respectively and H is a compact subset of R++ and identifies the set of volatility

forecasts.

In the multivariate case the variable of interest is the variance matrix, denoted Σt =

Et−1[rtr
′
t] where rt is a (N×1) random vector with rt|ℑt−1 ∼ F (0,Σt) and Σt, whose typical

element indexed by i, j = 1, ..., N is denoted σij,t, is symmetric and positive definite. The

volatility forecasts are denoted Hk,t ∈ HN×N , with typical element hij,k,t, i, j = 1, ..., N ,

whereHN×N is a compact subset of the space of the symmetric and positive definite matrices

RN×N
++ .

The loss function L is a scalar valued function defined as L : RN×N
++ ×HN×N → R+. Note
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that, both in the univariate and multivariate case, the first argument of the loss function is

the true variance or some proxy of it, whereas the second is a volatility forecast.

As underlined in the previous sections, due to the latent nature of the variable of in-

terest, the evaluation of the model forecasts has to rely on a volatility proxy, denoted σ̂t

and Σ̂t respectively. The only property that we require for the volatility proxy is condi-

tional unbiasedness, i.e., Et−1[σ̂t] = σt and Et−1[Σ̂t] = Σt ∀t, respectively. Throughout the
chapter, we consider the forecasts as observable. However, the forecasts may be biased or

inaccurate in any way (e.g., due to parameter uncertainty, misspecification, etc.). About

the volatility proxy, if not otherwise stated, we only assume that at least one conditionally

unbiased proxy is available. In some specific cases we also require the stronger assumption

of consistency or the availability of a sequence of proxies that can be ordered in terms of

their accuracy.

A simple variance proxy commonly used in the financial literature is the squared return,

outer product of the return vector in the multivariate case. However, we discourage the

use of such estimator for two reasons. First, although such proxy is conditionally unbiased

for the latent variance, it is extremely noisy, which makes it unsuited in many situations,

because the scarce informative content of the volatility proxy makes difficult to assess the

statistical relevance of the forecast performances, see Section 1.8 for an example. Sec-

ond, even for the smallest multivariate dimension, N = 2, this proxy violates the positive

definiteness requirement for the volatility proxy which suggests the use of other variance

proxies, see Section 1.1 for some examples.

1.4 Single forecast evaluation

A simple method for evaluating the accuracy of a volatility forecast is the well knownMincer-

Zarnowitz (MZ) regression, see Mincer and Zarnowitz (1969). In its simplest specification,

this approach requires the estimation of the coefficients of a regression of the target on a

constant and the forecast under evaluation, i.e.,

σt = α+ βht + ϵt. (1.1)

The null hypothesis of optimality of the forecast can be written as H0 : ht = σt a.s. ∀t
against the alternative hypothesis H1 : ht ̸= σt for some t. As underlined in the previous

sections, the regression in (1.1) is unfeasible due to the latent nature of the target variable.

If we substitute the true variance by some conditionally unbiased proxy, σ̂t = σt + ηt with
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Et−1[ηt] = 0, then we can rewrite (1.1) as

σ̂t = α+ βht + et, (1.2)

where the innovations are et = ηt + ϵt. Since σ̂t is a conditionally unbiased estimator of the

true variance then (1.2) yields unbiased estimates of α and β. The MZ regression allows to

evaluate two different aspects of the volatility forecast. First, an obvious property of a good

sequence of forecasts is that there are no systematic over- or under-predictions, that is the

forecast is unbiased. The MZ regression allows to test such property by testing the joint

hypothesis H0 : α = 0 ∪ β = 1. Second, since the R2 of (1.2) represents an indicator of the

correlation between the realization and the forecast, it can be used as evaluation criterion

of the accuracy of the forecast.

Clearly the variance of the innovation term et in (1.2) depends on the accuracy of

the volatility proxy. Therefore, when a high quality proxy is available, the regression pa-

rameters are estimated more accurately. Furthermore, the R2 of the regression in (1.2),

Cov(σ̂t, ht)
2/(Var(σ̂t)Var(ht)), is penalized as the quality of the proxy deteriorates, see An-

dersen and Bollerslev (1998) for an analytical example. This results validates the use of

high precision proxies in order to offset the latent variable problem. However, it is worth

noting that while the use of a less accurate proxy affects the precision of the regression

parameters it does not affect the validity of the test.

Another suitable property for a good forecast is that the forecasts or forecast errors are

uncorrelated with other series or more generally with other information available at the time

the forecast is made. If this is not the case, then it would be possible to use such information

to produce superior forecasts, see Mincer and Zarnowitz (1969), Figlewsky and Wachtel

(1981), Zarnowitz (1985) and Keane and Runkle (1990) among the others. Furthermore,

including additional variables, such as lagged values of the volatility or of the standardized

volatility, sign indicators or yet transformations and combinations of these variables, allows

to detect wether nonlinearities, asymmetries and persistence have been neglected. This

approach is called augmented MZ regression, where the augmentation consists in adding

to the right hand side of (1.2) the term ztγ, where zt represents the set of measurable

additional regressors. The relevant null hypothesis becomes H0 : α = 0 ∪ β = 1 ∪ γ = 0.

Other than a test for unbiasedness and forecast accuracy, the MZ regression can also be

viewed as a test of efficiency, i.e. E[ht(σ̂t − ht)] = 0. In fact, if forecasts and forecast errors

were correlated, then it would be possible to produce superior forecasts by exploiting this

relationship. From (1.2) we have

σ̂t − ht = α+ (β − 1)ht + et (1.3)
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and therefore

E[ht(σ̂t − ht)] = αE[ht] + (β − 1)E[h2t ] + E[htet] = 0, (1.4)

when α = 0 and β = 1.

To respond to the concern that few extreme observations can drive the forecast eval-

uation, many authors have argued in favor of MZ regressions on transformations of σt

(and consequently of σ̂t and ht), for instance log(σ̂t) on log(ht) or |rt| on
√
ht, see Pagan

and Schwert (1990), Jorion (1995), Bollerslev and Wright (2001) among others for some

examples.

Although appealing, this approach suffers from an important weakness. In fact, as

pointed out by Andersen, Bollerslev, and Meddahi (2005), transformed unbiased forecasts

for the latent variance are not generally unbiased for the transformed proxy, σ̂t. However,

allowing for α ̸= 0 and/or β ̸= 1 in the MZ regression of the volatility proxy on the

transformed forecasts explicitly corrects what would appear as signal of bias in the forecasts.

Analytical examples under different distributional assumption for the volatility proxy can

be found in Patton and Sheppard (2009). It is important to point out that these drawbacks

are only due to the substitution of the true volatility by the proxy. For the unfeasible

transformed regression, i.e., if the true volatility was observable, the null H0 : α = 0∪β = 1

would still apply for the transformed regression.

The R2 of the MZ regression has been often used as a criterion for ordering over a set of

volatility forecasts, see Andersen and Bollerslev (1998) and Andersen, Bollerslev, Diebold,

and Labys (2003) for several examples. Hansen and Lunde (2006a) show that, due to the

latent variable problem, this criterion is not always adequate to the scope and may lead to

a perverse outcome. They derive sufficient conditions under which the ordering of volatility

forecast is unaffected when the true variance is substituted by a proxy. They establish

that the R2 is a valid criterion if Et−1[σt − σ̂t](∂
iϕ(σt)/∂σ

i
t) = ci for some constant ci, ∀t

and i ∈ IN and where ϕ(.) represents the transformation of the dependent variable and the

regressor, e.g., log, square, square root, etc. This condition validates the use of the MZ

regression in level but also, for example, of the quadratic transformation, i.e., ϕ(x) = x2,1

but rejects, for example, the log-regression.

The results outlined above can be directly extended, with few exceptions to the mul-

tivariate case. A simple approach is to consider the unique elements of the true variance

1Note that, although according to Hansen and Lunde (2006a) the R2 of the quadratic MZ regression is
a robust criterion in the sense that it leaves the ranking between volatility forecasts unaffected when the
latent variance is substituted by a proxy, the quadratic transformation of an unbiased forecasts does not
generally result to be unbiased for the quadratic transformation of the volatility proxy, σ̂t, see Andersen,
Bollerslev, and Meddahi (2005). As an example assume rt|ℑt−1 ∼ N(0, σt) and consider the volatility proxy
σ̂t = r2t . The quadratic MZ regression (ϕ(x) = x2) can be written as (σ̂t)

2 = α + βh2
t + et. Under the null

H0 : ht = σt a.s. ∀t the population values of the parameters are α = 0 and β = 3.
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matrix (or the proxy) and of the covariance forecast. The feasible MZ regression can be

written as

vech(Σ̂t) = α+ diag(β)vech(Ht) + et, (1.5)

where α and β are (N(N + 1)/2 × 1) vectors of parameters, vech(.) is the half-vector

operator and diag(.) is the operator that transforms a vector into a square diagonal matrix

with the vector along the diagonal. Equation (1.5) can be estimated as seemingly unrelated

regression. Then a joint test that α = 0 and β = 1 can be performed. As pointed out by

Patton and Sheppard (2009) the large dimension of the system may adversely affect the finite

sample properties of the joint test. The solution proposed to reduce the parameter space is

to impose in (1.5) the parameter constraints αi = α and βi = β ∀i = 1, ..., N(N + 1)/2.

1.5 Loss functions and the latent variable problem

A common approach to the evaluation of forecast performances is the comparison of ex-

pected loss evaluated with respect to the true variance. However, as noted in Section 1.4,

the latent nature of the conditional variance makes it difficult to evaluate the performances

of volatility forecasts. The latent variable problem can be solved, at least partly, by sub-

stituting the true conditional variance by some ex post estimator. Examples of volatility

proxies have been provided in Section 1.1.

Obviously a good volatility proxy must be conditionally unbiased. However, as first

noted by Andersen and Bollerslev (1998) and Andersen, Bollerslev, and Meddahi (2005),

the availability of a conditionally unbiased proxy does not always ensure an outcome that

is equivalent to what would be obtained if the true volatility was used. Hansen and Lunde

(2006a), focussing on a qualitative assessment (ordering) of volatility forecasts, show that

when the evaluation is based on a target observed with error, the choice of the evaluation

criteria becomes critical in order to avoid a perverse outcome. They define the theoretical

framework for the analysis of the ordering of stochastic sequences and provide conditions

on the functional form of the loss function which ensure consistency between the ordering

based on a volatility proxy and the one based on the true, latent, variance.

Let us define the precision, measured in terms of expected loss, of some generic volatility

forecast, hk,t, with respect to the true variance as E[L(σt, hk,t)], where L(.) is some known

loss function as defined in Section 1.3. The aim is to seek conditions that ensure consistency

of the ranking (equivalence of the ordering) between any two forecasts k and j when a

conditionally unbiased proxy is substituted to the true variance, that is

E[L(σt, hk,t)] ≤ E[L(σt, hj,t)] ⇔ E[L(σ̂t, hk,t)] ≤ E[L(σ̂t, hj,t)], (1.6)
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where k and j refer to two competing volatility forecasts. The violation of (1.6) is defined

as objective bias. A sufficient condition to ensure (1.6) is the following

∂2L(σt, ht)

(∂σt)2
exists and does not depend on ht (1.7)

A loss function satisfying (1.7) is referred to as robust. It follows immediately that (1.7)

rejects evaluation criteria commonly used in applied work such as absolute deviation, root of

squared error, proportional error loss functions, or mean squared error of the log-transform,

whereas it validates the use of mean squared error. Numerous examples of loss functions

violating (1.7) are discussed by Hansen and Lunde (2006a) and Patton (2009). Section

1.8, provides an illustration based on artificial data where mean squared error (robust) and

mean squared error of the log-transform (non-robust) are compared.

Focussing on the univariate dimension, Patton (2009) provides analytical results for the

undesirable outcome that arises when using a number of loss function that violates (1.7),

under different distributional assumption for the returns and considering different volatility

proxies and a number of commonly used loss functions. Furthermore, building upon Hansen

and Lunde (2006a), he provides necessary and sufficient conditions on the functional form

for the loss function (defined within the class of homogeneous statistical loss functions that

can be expressed as means of each period loss) ensuring consistency of the ordering when

using a proxy. The following family of functions

L(σ̂t, ht) =


1

(ξ−1)ξ (σ̂
ξ
t − hξt )− 1

ξ−1h
ξ−1
t (σ̂t − ht) for ξ ̸∈ (0, 1)

ht − σ̂t + σ̂t log
σ̂t
ht

for ξ = 1
σ̂t
ht

− log σ̂t
ht

− 1 for ξ = 0

(1.8)

represents the entire subset of robust homogeneous loss functions, with degree of homo-

geneity given by ξ. The loss function in (1.8) can take a variety of shapes: symmetric,

(ξ = 2 corresponds to the mean squared prediction error loss function) and asymmetric

with penalty on overpredictions (ξ > 2) or underpredictions (ξ < 2). The set of robust loss

functions in (1.8) relates to the class of linear exponential densities of Gourieroux, Monfort,

and Trognon (1984) and, as underlined in Chapter 2 it partially coincides with the subset

of homogeneous loss functions associated with the most important linear exponential den-

sities. In fact, for ξ = 0, 1, 2, the function can be alternatively derived from the objective

functions of the Gaussian, Poisson and Gamma densities respectively, see Gourieroux and

Monfort (1995) for details.

A first attempt of extension to the multivariate case has been proposed by Patton and

Sheppard (2009). In Chapter 2 we generalize this setting and provide a general framework
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for the evaluation of variance matrices. We identify a number of robust vector and ma-

trix loss functions and provide insight on their properties, interpretation and geometrical

representation. In the multivariate case, the sufficient condition in (1.7) becomes

∂2L(Σt,Ht)

∂σl,t∂σm,t
finite and independent of Ht ∀l,m = 1, ..., N(N + 1)/2, (1.9)

where σl,t is the lth element of the vector σt = vech(Σt). Given (1.9), a general expression

for the necessary and sufficient functional form for the loss functions is

L(Σ̂t,Ht) = C̃(Ht)− C̃(Σ̂t) + C(Ht)
′vech(Σ̂t −Ht), (1.10)

where C̃(.) : RN×N
++ → R+ with

C(Ht) =


∂C̃(Ht)
∂h1,t

...
∂C̃(Ht)
∂hK,t

 , C ′(Ht) =


∂C̃(Ht)

∂h1,t∂h1,t
· · · ∂C̃(Ht)

∂h1,t∂hK,t

...
. . .

∂C̃(Ht)
∂hK,t∂h1,t

∂C̃(Ht)
∂hK,t∂hK,t

 , (1.11)

where C(.) and C ′(.) are the gradient and the hessian of C̃(.) with respect to the K =

N(N +1)/2 unique elements of Ht, denoted ht = vech(Ht) and C
′(Ht) is negative definite.

Unlike the univariate case where an analytical expression is available for the entire class

of robust loss functions, in the multivariate case such generalization is unfeasible because

there are many functions C̃(.) that can be used to weight forecasts and forecasts errors.

However, given (1.10) application-specific loss functions can be easily derived. A number

of examples can be found in Chapter 2.

Despite this limitation, from (1.10), we identify the entire subset of homogeneous (ξ = 2)

loss functions based on forecast errors, i.e., Σt −Ht, which can be expressed as

L(Σ̂t,Ht) = vech(Σ̂t −Ht)
′Λ̂vech(Σ̂t −Ht), (1.12)

where Λ̂ is a positive definite matrix of constants which define the weights assigned to

the elements of the forecast error matrix. The loss function in (1.12) nests a number of

MSE-type loss functions, defined on both vector and matrix spaces, e.g. the (weighted)

Euclidean distance on the half-vectorization of the forecast error matrix or the Frobenius

distance between the variance matrices Σ̂t and Ht.

Finally, we also show that, under the higher level assumption of consistency of the

volatility proxy, the potential distortion introduced in the ordering when using a non-

robust loss function tends to disappear as the quality of the proxy improves. Since often
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non robust loss functions have other desirable properties which are useful in applications,

e.g. down-weight extreme forecast errors, they may still be safely used provided that the

volatility proxy can be assumed to be nearly perfect.

In the following sections, we review a number of tests for forecast evaluation where

performances are evaluated by means of a statistical loss function. Although most of the

methodologies discussed are valid under a general loss function, we remind that, in empirical

applications, when the true variance is substituted by a proxy, the loss function should be

chosen, depending on the setting, according to (1.8) and (1.10) respectively.

1.6 Pairwise comparison

The first approach to pairwise comparison that we consider is the test of equal predictive

ability proposed by Ashley, Granger, and Schmelensee (1980) as a generalization of the

approach introduced by Granger and Newbold (1977). The test is based on the comparison

of the mean square forecast errors (MSE) of a pair of forecasts with respect to the target.

Let us define ek,t = σt − hk,t the forecast error and LMSE
k = T−1

∑
t e

2
k,t the mean square

forecast error of some model k with respect to σt. Then, when comparing the performance

of model k to some other model j, simple algebra yields

LMSE
k − LMSE

j = (V̂ar(ek,t)− V̂ar(ej,t)) + (ēk
2 − ēj

2), (1.13)

where ēi = T−1
∑

t ei,t. Let us now define Dt = ek,t − ej,t, St = ek,t + ej,t and D̄, S̄ their

empirical means. Then, (1.13) can be rewritten as

LMSE
k − LMSE

j = Ĉov(Dt, St) + D̄S̄. (1.14)

A test of equal predictive ability, or more precisely equal MSE, corresponds to testing the

null hypothesis

H0 : Cov(Dt, St) = 0 ∪ EDt = 0. (1.15)

where Cov(Dt, St) and EDt denote the population covariance between Dt and St and the

population mean of Dt. Note that (1.15) implies that the forecasts can be biased. In fact,

D̄ = 0 does not require ēk = ēj = 0 but only that the biases are equal in size and sign. The

null hypothesis in (1.15) is equivalent to testing the null hypothesis H0 : α = 0 ∪ β = 0 in

the following regression

Dt = α+ β(St − S̄) + ϵt (1.16)
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the error term ϵt has mean zero and it can be treated as independent of St. In the case

independence is violated Ashley, Granger, and Schmelensee (1980) show that α is estimated

without bias, while the bias in β becomes negligible for moderate samples.2 If the forecast

errors have zero-mean, i.e., they are both unbiased, and under the additional assumption

that they are normally distributed and uncorrelated, the test of equal MSE is equivalent to

the test proposed by Granger and Newbold (1977), henceforth GN, that is

GN − T =
ρ√

(T − 1)−1(1− ρ)2
∼ tT−1, (1.17)

where ρ = Cov(Dt, St)/
√

Var(Dt)Var(St) and tT−1 is the student-t distribution with T − 1

degrees of freedom.

The extension to the multivariate case is straightforward. In fact, the MSE can be

computed using the Euclidean distance, LE
k,t = T−1

∑
t

[∑
i≤j e

2
ij,k,t

]
, i, j = 1, ..., N or

the Frobenius distance, LF
k,t = T−1

∑
t

[∑
i,j e

2
ij,k,t

]
, i, j = 1, ..., N , although it is worth

noting that in the latter case the covariance forecast errors are double weighted. Given that

these loss functions can be expressed as a linear combination of MSE on the unique or all

elements of the forecast error matrix respectively, a joint test on the coefficient of the pooled

regression of Dij,t on (Sij,t − S̄) can be performed using standard panel data techniques.

A more general approach is the well known test of equal predictive ability proposed

by Diebold and Mariano (1995), henceforth DM, and further refined by West (1996), Mc-

Cracken (2000), Clark and McCracken (2001), Corradi, Swanson, and Olivetti (2001), Clark

and West (2006), Clark and West (2007) among others. The DM test is a very general pro-

cedure3 designed to compare two rival forecasts in terms of their forecasting accuracy using

a general loss function. The measure of predictive accuracy, i.e. the loss function, can be

specified according to the definition of optimality adopted by the forecaster.

Consider a loss function as defined in Section 1.3 and define the loss differential between

model k and j as

dt = L(σt, hk,t)− L(σt, hj,t), (1.18)

for the univariate case, whereas

dt = L(Σt,Hk,t)− L(Σt,Hj,t), (1.19)

2Although (1.15) is sufficient to test the null hypothesis of equal predictive ability, a null of the type
H0 : Cov(Dt, St) = 0∪ESt = 0 would achieve the same result, the difference between the two being that in
the latter case the forecasts if biased have biases equal in size but of opposite sign. Testing for this null is
equivalent to testing the null hypothesis H0 : α = 0 ∪ β = 0 in the regression St = α+ β(Dt − D̄) + ϵt.

3It does not require zero-mean forecast errors (hence the forecasts can be biased), specific distributional
assumptions nor zero-serial correlation for the forecast errors.
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for the multivariate case. Since in either case the loss function is scalar valued, we can more

generally refer to the notation dt = Li,t − Lj,t. Under the assumption that dt is stationary,

E[dt] is well defined and allows for the formulation of the null hypothesis of equal predictive

ability H0 : E[dt] = 0. The test takes the form of a t-statistic, i.e.,

DM − T =

√
T d̄√
ω

a∼ N(0, 1), (1.20)

where d̄ = T−1
∑

t dt and ω = lim
t→∞

Var(
√
T d̄) is its asymptotic variance. A natural esti-

mator of ω is the sample variance of dt, though this estimator is consistent only if the loss

differentials are serially uncorrelated. Since this is not generally the case, a suitable HAC

estimator, such as the Newey-West variance estimator, is preferable.

As underlined in Section 1.2, when comparing parametric forecast models, an adequate

choice of the forecast scheme is crucial to the validity of the procedure. In fact, suppose the

forecaster aims to compare two volatility forecasts, hk,t(θk), which we assume to be the true

model, and a competing forecast hj,t(θj) from an unrestricted model j which nests model

k, i.e., θj = (θk, β).

The original formulation the DM approach relies on asymptotics based on an estimation

and forecast samples which increase at the same rate, i.e. it tests the hypothesis H0 :

E[L(σt, hk,t(θ
∗
k)) − L(σt, hj,t(θ

∗
j ))] = 0, where θ∗k and θ∗j are population values, and it is

therefore designed for a recursive forecast scheme.4 However, the two models being nested,

the population value β∗ = 0, L(σt, hk,t(θ
∗
k))−L(σt, hj,t(θ∗j )) is a degenerate random variable

identically zero, which invalidates the test. Consider now that the forecasts are based on the

recursive scheme. Then, as t→ ∞, β̂
p→ 0 which implies that L(σt, hk,t(θ̂k))−L(σt, hj,t(θ̂j))

is degenerate for large t. A solution to this problem has been suggested by Giacomini and

White (2006) which hold the size of estimation sample fixed as the sample size grows. Thus,

the random variable of interest, L(σt, hk,t(θ̂k)) − L(σt, hj,t(θ̂j)) is non-degenerate for all t

since β̂ ̸= 0 a.s. for fixed estimation sample size, i.e., rolling and fixed schemes.

To allow for a unified treatment of nested and non-nested models, Giacomini and White

(2006) (henceforth GW) construct a conditional rather than unconditional test. They sug-

gest to view the problem of forecast evaluation as a problem of inference about conditional

expectations of forecasts and forecast errors rather than unconditional expectations. Their

approach is applicable in many situations where the standard tests of Diebold and Mar-

iano (1995) and West (2006) are not valid, e.g., when the data are heterogeneous. The

assumption of heterogeneity motivates a different approach to estimation. Their asymp-

4To avoid size distortions, West (1996) introduces a correction which accommodates for the fact that the
actual forecasts that appear in the statistic depend on estimated parameters.
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totics are based on an estimation sample of fixed size, while the forecast sample tends to

infinity. Hence, coefficients always include parameter estimation error. In this context, in-

stead of considering a recursive forecasting scheme, where the estimation window expands

over time, it seems to be more reasonable to use a rolling window forecast procedure where

the forecasts are based on a moving window of the data where old observations are dis-

carded. Furthermore, the size of the estimation window can itself be time-varying, as in

the procedure suggested by Pesaran and Timmerman (2007). The proposed methodology

is also compatible with a fixed estimation sample forecasting scheme, where the parameters

are estimated only once and in general any forecasts procedure based on limited memory

estimators. For instance, it is also compatible with the recursive scheme, i.e., expanding

window, when coupled with a weighted estimator with weights heavily discounting obser-

vations far in the past. Rather than the comparison of ‘forecast models’ stricto sensu, as in

Diebold and Mariano (1995) and West (2006), Giacomini and White (2006) emphasize the

role of what they refer to as the ‘forecasting method’, which includes not only the forecast

model but also any other choice that the forecaster has to make at the time of the prediction,

such as the estimation procedure, which data to use for estimation, which forecast scheme

to adopt, etc. Their technique also allows to compare forecasts generated using different

combinations of these choices.

The GW approach tests the null hypothesis of equal predictive ability

E[L(σt, h
τk
k,t(θ̂

τk
k,t))− L(σt, h

τj
j,t(θ̂

τj
j,t))|ℑt−1] ≡ E[dT ,t|ℑt−1] = 0, (1.21)

where, for i = k, j, hτii,t(θ̂
τi
i,t) are ℑt−1-measurable forecasts, θ̂τii,t are parameters estimates

based on a (fixed or rolling) estimation sample of size τi, possibly different for each model

and T = max(τk, τj). Since under the null hypothesis, {dT ,t,ℑt} is a martingale difference

sequence, (1.21) is equivalent to E[δt−1dT ,t] = 0 ∀δt−1, where δt−1, referred to as the test

function, is a ℑt−1-measurable vector of dimension q. By invoking standard asymptotic

normality arguments, the GW test takes the form of a Wald-type statistic

GW − T δ
T = T

(
T−1

T∑
t=1

δt−1dT ,t

)′

Ω̂−1

(
T−1

T∑
t=1

δt−1dT ,t

)
, (1.22)

where Ω̂ is a consistent estimator of the variance of δt−1dT ,t. The statistic is asymptotically

χ2
q under the null hypothesis.

An example of test function suggested by Giacomini and White (2006) is δt = (1, dT ,t)
′

which allows to test jointly for equal predictive ability and lack of serial correlation in the

loss differentials. Note that, in the case τk = τj and δt = 1 for all t, then the GW test
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is equivalent to a ‘conditional’ DW test with forecasts evaluated using the rolling window

forecast scheme. Apart from this simple case we are not aware of any other application

of the GW approach (for instance allowing for more sophisticated test functions, τk ̸= τj ,

time dependent estimation windows, different forecasting rules/methods or yet different

estimation procedures for each model).

1.7 Multiple comparison

When multiple alternative forecasts are available, it is of interest to test whether a specific

forecast (hereafter the benchmark), selected independently from the data, produces system-

atically superior (or at least equivalent) performances with respect to the rival models. In

this case, we aim to a test the null hypothesis that the benchmark is not inferior to any of

the alternatives. This approach, called multiple comparison with control, differs from the

techniques discussed in Section 1.6 for two reasons. First, the multiple comparison allows

to recognize the multiplicity effect, i.e., statistical relevance of all comparisons between the

benchmark and each of the alternative models, which calls for a test of multiple hypotheses

to control for the size of the overall testing procedure. Second, while Section 1.6 involves

tests of equal predictive ability, the choice of a control requires a test of superior predictive

ability. The distinction is crucial because, while the former lead to simple null hypothe-

ses, i.e., testing equalities, the latter leads to composite hypotheses, i.e. testing (weak)

inequalities. The main complications in composite hypotheses testing is that (asymptotic)

distributions typically depend on nuisance parameters, hence the distribution under the

null is not unique.

To simplify the exposition, the notation used in this section only refers the univariate

dimension. Since all the techniques discussed hereafter are based on comparisons of forecast

performances measured by some statistical loss function, the extension to the multivariate

case, as noted in Section 1.6, is straightforward and only involves an appropriate redefinition

of the loss function, namely L : RN×N
++ ×HN×N → R+. Issues related to the choice of the

loss function, the latent variable problem have been discussed in Section 1.5.

The first approach that we consider is the reality check for data snooping of White

(2000) (hereafter RC). Let us define the loss differential between the benchmark, h0,t, and

some rival forecast, hk,t k = 1, ...,m as

dk,t = L(σt, h0,t)− L(σt, hk,t) (1.23)

and dt = (d1,t, ..., dm,t). Provided that dt is (strictly) stationary, E[dt] is well defined and
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the null hypothesis of interest takes the form

H0 : E[dt] ≤ 0, (or equivalently H0 : max
k

E[dk,t] ≤ 0) (1.24)

that is, the benchmark is superior to the best alternative. Clearly, the null hypothesis in

(1.24) is a multiple hypothesis, i.e., the intersection of the one-sided individual hypotheses

E[dk,t] ≤ 0. The test statistic takes the form

RC − T = max
k

(
√
T d̄k), (1.25)

where d̄k = T−1
∑T

t=1 dk,t. Note that, as in Diebold and Mariano (1995), White’s (2000)

original version of the RC test sets the parameters of the model based forecasts to their

population values, thus not allowing for the comparison of nested models. Using the same

arguments of Giacomini and White (2006), Hansen (2005), and in a related setting Hansen,

Lunde, and Nason (2010a), extends the procedure to the comparison of nested models.

Hansen’s (2005) and Hansen, Lunde, and Nason’s (2010a) framework is well suited when

parameters are estimated once, i.e., fixed scheme, or using a moving window (of fixed or

time dependent size or yet of different size for each model), i.e., rolling schemes, whereas the

comparison of models with parameters that are estimated recursively is not accommodated

by their framework.

Given strict stationary of dt, White (2000) invokes conditions provided in West (1996)

that lead to √
T (d̄− E[dt])

d→ N(0,Ω). (1.26)

The challenge when implementing the RC test is that (1.25) has an asymptotic distribution

under the null hypothesis which depends on the nuisance parameters E[dt] and Ω. One

way to proceed is to substitute a consistent estimator for Ω and employ the least favorable

configuration (LFC) over the values of E[dt] that satisfy the null hypothesis. From (1.24),

it is clear the value least favorable to the alternative is E[dt] = 0, which presumes that all

alternatives are as good as the benchmark. Despite the solution of the nuisance parameter

problem, the distribution of (1.25), i.e., the extreme value of a vector of correlated normal

variables, is unknown. White (2000) suggests two ways to obtain the distribution under the

LFC for the alternative, namely the ’Monte Carlo Reality Check’ (simulated inference) and

the ’Bootstrap Reality Check’ (bootstrap inference). We refer to White (2000) for further

details on the two methods.

Using a similar approach, Hansen (2005) proposes a new test for superior predictive

ability (henceforth SPA). His framework differs from White (2000) in two ways. First, he
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proposes a different statistic based on studentized quantities to alleviate the substancial

loss of power that the RC can suffer due to the inclusion of poor and irrelevant forecasts.

Second, he employs a sample dependent distribution under the null. The latter is based

on a procedure that incorporates additional sample information in order to identify the

relevant alternatives. In fact, while the procedure based on the LFC suggested in White

(2000) implicitly relies on an asymptotic distribution under the null hypothesis that assumes

E[dk,t] = 0 for all k, Hansen (2005) points out that all negative values of E[dk,t] have also

to be considered since they conform with the null hypothesis.

The new statistic takes the form

SPA− T = max

[
max
k

√
T d̄k√
ω̂k

, 0

]
, (1.27)

where ω̂k is some consistent estimator of ωk = lim
t→∞

Var(
√
T d̄k). The null distribution of the

SPA statistic is based on
√
T d̄

d→ N(µ̂c, Ω̂), where µ̂c is a consistent estimator of µ = E[dt]

that conforms with the null hypothesis. The suggested estimator is

µ̂ck = d̄k 1{
√
T d̄k/ω̂k≤−(2 log log T )1/2}, (1.28)

where 1{.} denotes the indicator function and ω̂k is a consistent estimator on the kth diagonal

element of Ω. The threshold (2 log log T )1/2 in (1.28) represents the slowest rate that

captures all alternatives with µk = 0. More generally, any threshold rates in the interval[
(2 log log T )1/2, T 1/2−ϵ

]
for any ϵ > 0, also produce a valid test and guarantee that

all poor models are discarded asymptotically. For instance, the value 0.25T 0.25 is used

in an empirical exercise. Furthermore, since different threshold rates lead to different p-

values in finite samples, Hansen (2005) also provides a lower and upper bound for the

SPA p-values. These p-values can be obtained by using the estimates µ̂lk = min(d̄k, 0) and

µ̂uk = 0 respectively, where the latter yields a distribution under the null based on the LFC

principle.5 Hansen (2005) also provide a detailed description of the bootstrap scheme used

to obtain the distribution under the null hypothesis.

Clearly, in many applications the choice of a benchmark may not be obvious or an

objective benchmark may not exist. Other applications will not generally yield a single

model that is significantly superior to all the competitors because, especially when the

set of competing models is large, the data may not be sufficiently informative to give a

5In the latter case the distribution under the null is obtained using the same arguments as White (2000).
The difference here stands in the fact that the variable of interest is the maximum of studentized quantities,
whereas in White (2000) it is the maximum of non-studentized quantities.
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univocal answer. In these cases, the forecaster may aim to reduce the set of competing

models to a smaller set that is guaranteed to contain the best forecasting model at a given

confidence level by comparing all models with each other. This approach is known as

multiple comparison without control and differs from the techniques discussed above for

two reasons. First, the procedure does not require a benchmark to be specified. Second,

the testing procedures generally rely on simple hypotheses, i.e., equalities.

Hansen, Lunde, and Nason (2010a) construct a sequential test of equal predictive ability,

dubbed model confidence set (MCS), which given an initial set of forecasts allows to: i) test

the null that no forecast is distinguishable from any other, ii) discard any inferior forecasts

if they exist, iii) characterize the set of models that are (equivalent to each other and)

superior to all the discarded models. The set of surviving model is called model confidence

set and can be interpreted as a confidence interval for the forecasts in that it is the set

containing the best forecast at some confidence level.

Designed around the testing principle of Pantula (1989) to ensure that sequential testing

does not affect the overall size of the test, the MCS test involves a sequence of tests for

equal predictive ability. Given an initial set of forecasts, M0, the starting hypothesis is that

all models in M0 have equal forecasting performances. The relative performance of each

pair of forecasts is measured by dk,j,t = L(σt, hk,t) − L(σt, hj,t), for all k, j ∈ M0, k ̸= j.

Under the assumption that dk,j,t is stationary, the null hypothesis of equal predictive ability

takes the form

H0 : E[dk,j,t] = 0 ∀k, j ∈M0. (1.29)

If the null of equal predictive ability is rejected at a given confidence α, then an elimination

rule is called to remove the worst performing model. The equal predictive ability test is then

repeated until the non-rejection of the null, while keeping the confidence level α fixed at each

iteration, thus allowing to construct a (1−α)-confidence set, M∗ ≡ {k ∈M0 : E(dk,j,t) ≤ 0

∀ j ∈M0}, for the best model in M0.

Let Lt be the (m × 1) vector of sample performances L(σt, hk,t), k ∈ M and ι⊥ the

(m × (m − 1)) orthogonal complement of a m-dimensional vector of ones, where m is the

dimension of M . Then, the vector ι′⊥Lt can be viewed as m− 1 relevant contrasts as each

element can be obtained as a linear combination of dk,j,t, k, j ∈M, k ̸= j which has mean

zero under the null (1.29). Hence, (1.29) is equivalent to E[ι′⊥Lt] = 0 and, under strict

stationarity of dk,j,t, it holds that T−1/2
∑T

t=1 ι
′
⊥Lt is asymptotically Normal with mean

0 and covariance matrix Ω = limt→∞Var
(
T−1/2

∑T
t=1 ι

′
⊥Lt

)
. Thus, it seems natural to
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employ traditional quadratic-form type tests as

MCS − TQ = T

(
T−1

T∑
t=1

ι′⊥Lt

)′

Ω̂+

(
T−1

T∑
t=1

ι′⊥Lt

)
(1.30)

and

MCS − TF =
T − q

q(T − 1)
MCS − TQ, (1.31)

where Ω̂ is some consistent estimator of Ω, q = rank(Ω̂) denotes the number of linearly

independent contrasts and Ω̂+ denotes the More-Penrose pseudo-inverse of Ω̂. The statis-

tic in (1.30) is asymptotically χ2
q , whereas (1.31) is asymptotically Fq,T−q under the null

hypothesis, as the subscripts Q (quadratic) and F (F-distributed) suggest.

In empirical applications, when m is large, it might be challenging to obtain a sensible

estimate of Ω. As an alternative, Hansen, Lunde, and Nason (2010a) also propose three

simpler statistics which only require the estimation of the diagonal elements of Ω. The

cost is that, depending on nuisance parameters, the distribution under the null becomes

non-standard. However, Hansen, Lunde, and Nason (2010a) provide a detailed description

of the bootstrap scheme employed to solve the nuisance parameter problem and to obtain

the distribution under the null hypothesis. The three statistics are expressed as functions

of studentized quantities.

The first statistic is expressed as a sum of deviations from the common average (hence

the subscript D). Under the null hypothesis H0 = E[d̄k] = 0 ∀k ∈M the statistic takes the

form6

MCS − TD =
1

m

∑
k∈M

t2k, (1.32)

where tk =
√
T d̄k/

√
ω̂D
k , k = 1, ...,m, and d̄k = m−1Σj∈M d̄k,j is the contrast of model

k’s sample loss with respect to the average across all models and d̄k,j = T−1ΣT
t=1dk,j,t

is the sample loss differential between models k and j. The variances ω̂D
k are consistent

estimators of ωD
k = limt→∞Var(

√
T d̄k). The remaining two statistics, dubbed range (R)

and semi-quadratic (SQ), take the form

MCS − TR = max
k,j∈M

|tk,j | and MCS − TSQ =
1

m

∑
k,j∈M

t2k,j (1.33)

respectively, where tk,j =
√
T d̄k,j/

√
ω̂R
s , k, j = 1, ...,m k ̸= j and s = 1, ...,m(m − 1) and

6Note that the null hypothesis is equivalent to (1.29).
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the variances ω̂R
s are consistent estimators of ωR

s = limt→∞Var(
√
T d̄k,j).

If the null hypothesis is rejected, then Hansen, Lunde, and Nason (2010a) suggest the

use of the following elimination rule EM = arg max
k∈M

tk which excludes the model with the

largest standardized excess loss relative to the average across models. The iterative testing

procedure ends as soon as there is the first non rejection, or obviously if all forecast but one

have been recursively eliminated. Finally, the MCS p-value is equal to pi = max(pi−1, p(i)),

i = 1, ...,m, where pi is the p-value of the test under the null hypothesis H0
M i , i.e., at the

ith step of the iteration process. By convention the p-value equals one when there is only

one surviving model.

1.8 Consistency of the ordering and inference on forecast performances

In this section we illustrate, using a Monte Carlo simulation, to what extent the latent

variable problem induces distortions in the ranking and affects the inference on forecast

accuracy. We focus on univariate volatility models, whereas a similar exercise based on the

comparison of multivariate models is presented in Chapter 2.

The forecast performances are measured by the following two loss functions

1. LMSE : L(σ̂t, hk,t) = (σ̂t − hk,t)
2 (mean squared error)

2. LLMSE : L(σ̂t, hk,t) = (log(σ̂t)− log(hk,t))
2 (mean squared error of the log transform).

Note that, while LMSE belongs to the family defined in (1.8) with ξ = 2 (henceforth

referred to as ‘robust’), it is straightforward to show that LLMSE violates (1.7) (henceforth

‘non-robust’), that is

L′
LMSE =

∂L(σt, ht)

∂σt
= 2

log(σt/hk,t)

σt

L′′
LMSE =

∂2L(σt, ht)

(∂σt)2
= 2

1− σt log(σt/hk,t)

σ2t
,

with the second derivative depending on hk,t. The choice of LLMSE is not coincidental.

Patton (2009) quantifies, under different assumption on the distribution of the returns, the

bias with respect to the optimal forecast when using this loss function. To illustrate the

centrality of the role of the quality of the volatility proxy when the evaluation of fore-

cast performances is based on a loss function that violates (1.7), consider the conditional
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expectation of the second order Taylor expansion of LLMSE around the true value σt

E[LLMSE(σ̂t, hk,t) | ℑt−1] ≈ LLMSE(σt, hk,t) + L
′
LMSEE[ηt | ℑt−1]

+0.5L
′′
LMSE(σt, ht)E[η2t | ℑt−1],

where ηt = (σ̂t − σt), σt and hk,t are ℑt−1 measurable and, since we have required the

volatility proxy to be conditionally unbiased, E[ηt | ℑt−1] = 0 and E[η2t | ℑt−1] is the

conditional variance of the proxy. Let us now define

∆(hk,t) = E[LLMS(σ̂t, hk,t) | ℑt−1]− LLMSE(σt, hk,t)

= 0.5L
′′
LMSE(σt, hk,t)E[η

2
t | ℑt−1]

∆(hj,t) = E[L(σ̂t, hj,t) | ℑt−1]− LLMSE(σt, hj,t)]

= 0.5L
′′
LMSE(σt, hj,t)E[η2t | ℑt−1]

for a pair of forecast k and j. Then we have

∆(hk,t)−∆(hj,t) = 0.5
(
L

′′
LMSE(σt, hk,t)− L

′′
LMSE(σt, hj,t)

)
E[η2t | ℑt−1] ̸= 0.

Since, apart from coincidental cancelation, L
′′
LMSE(σt, hk,t) ̸= L

′′
LMSE(σt, hj,t), then the

order implied by the proxy is likely to differ from the one implied by the true variance and

the bias in the ranking is more likely to appear as the quality of the proxy deteriorates.

On the other hand, the true ordering is likely to be preserved as the proxy becomes nearly

perfect, i.e., E[η2t | ℑt−1] → 0.

We generate artificial data from an Exponential GARCH(0,1) diffusion, see Nelson

(1990) for details, that is[
dp(t)

d log(σ(t))

]
=

[
0

−0.1− 0.05 log(σ(t))

]
dt

+

[
σ(t) −0.1

√
σ(t)

−0.1
√
σ(t) 0.01 + 0.04(1− 2/π)

]1/2 [
dW1(t)

dW2(t)

]
,(1.34)

where dWi(t), i = 1, 2 are two independent Brownian motions. The simulation is based

on 500 replications. Using an Euler discretization scheme of (1.34), we approximate the

continuous time process by generating 7200 observation per day. All the competing models

are estimated by QMLE using data aggregated at daily frequency and one step ahead

forecast computed. The estimation sample size amounts to 1500 daily observation while

1000 daily observation are used for the one-step ahead forecasts evaluation. The set of
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competing models includes, Exponential (Egarch) (Nelson, 1991), Garch (Bollerslev, 1986),

Gjr (Glosten, Jagannathan, and Runkle, 1992), Integrated (Igarch) (Engle and Bollerslev,

1986), RM (J.P.Morgan, 1996) and 2-Components Threshold Garch (2CThGarch) (?, ?)

models. The latent variance is computed as σt =
∫ t
t−1 σ(u)du, t ∈ IN. The proxy is

the realized variance of Andersen and Bollerslev (1998), i.e., the sum of intraday squared

returns, and is computed using returns sampled at 14 different frequencies ranging from

1-minute to daily. The proxy is denoted σ̂t,δ, where δ =1m,5m,...,1h,...,1d represents the

sampling frequency. In this setting the realized variance estimator is conditionally unbiased,

allows to control for the accuracy of the proxy (through the level of aggregation of the data

δ) and it is also consistent, i.e., σ̂t,δ →
p
σt as δ → 0. The underlying ordering implied by a

given loss function, wether it is robust or not, is identified by ranking forecasts with respect

to the true variance, σt (denoted as δ = 0 in Figure 1.1).

Figure 1.1(a) represents the ranking based on the average sample performances (over the

500 replications) implied by the robust loss function, LMSE , for the true variance (δ = 0)

and various levels of precision for the proxy (δ =1m to δ =1d). The ranking appears stable
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Figure 1.1: Ranking implied by LMSE and LLMSE . Ranking based on avg. performances
(left) and avg. loss differentials from Egarch (right).

and loss differentials between models remain constant independently of the level of accuracy
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of the proxy. Thus, the ranking obtained under σ̂t,δ is consistent for the one under the true,

latent, conditional variance σt, for all values of δ.

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 1m 5m 10m 15m 20m 30m 1h 2h 3h 4h 6h 8h 12h 1d δ

LMSE LLMSE 
2.6

2.8

3.0

3.2

3.4

3.6

3.8

0 1m 5m 10m 15m 20m 30m 1h 2h 3h 4h 6h 8h 12h 1d
δ

LMSE LLMSE 

a) α = 0.25

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 1m 5m 10m 15m 20m 30m 1h 2h 3h 4h 6h 8h 12h 1d
δ

LMSE LLMSE 3.25

3.50

3.75

4.00

4.25

4.50

4.75

0 1m 5m 10m 15m 20m 30m 1h 2h 3h 4h 6h 8h 12h 1d
δ

LMSE LLMSE 

b) α = 0.10

Figure 1.2: Size (left) and power (right) indicators for the MCS test under LMSE (solid)
and LLMSE (dashed).

When considering the non-robust loss function, LLMSE , the appearance of the objective

bias becomes striking. In fact, although the consistency of the proxy ensures convergence

of the proxy-based ordering to the true one as δ → 0, which is the case when the ranking

is based on σ̂t,δ computed using returns sampled at frequency higher than 1-hour (Figure

1.1(b)), as the quality of the proxy deteriorates inferior models emerge. The relative per-

formances of inferior models begin to improve rapidly and we observe major distortions at

all levels of the ranking. For instance, the RM model, which ranks last when using the true

variance, raises to the top of the classification when the proxy used in the evaluation is the

squared return (δ = 1d).

We now compare the forecast performances of our set of models using the MCS test.

Ideally the MCS, i.e., the set of superior models, should be a singleton containing the true

process, i.e., the Egarch. However, as the quality of the proxy deteriorates, losses and thus

loss differentials, become less informative, which in turn make more difficult to effectively

discriminate between models. Consequently we expect the set of superior models to grow
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in size as δ increases. Figure 1.2 reports two statistics, the frequency at which the Egarch

is in the MCS, which shows the size properties of the test (left) and the average number

of models in the MCS, which is informative about the power properties of the test (right).

As before, the results are reported as a function of the precision of the proxy, δ. The levels

of confidence considered are α = [0.25, 0.10]. The statistic considered is the MCS − TD in

(1.32). The number of bootstrap samples used to obtain the distribution under the null is

set to 1000.

Under the robust LMSE , when the evaluation is based on an accurate proxy the MCS

approach is able to correctly separate between superior and poor performing models, while

a deterioration of the precision of the proxy only translates into a loss of power, i.e., a

larger MCS. In fact, the MCS includes the true process with probability that converges

to one. These results clearly demonstrate the value of high precision proxies. Estimators

based on relatively high frequency returns provide sensible gains in power. Under the non-

robust LLMSE results are reliable only when a highly accurate proxy is available. In this

case, as the quality of the proxy deteriorates we identify on average a smaller MCS but the

probability that the set of superior models contains the true model reduces dramatically.

As expected, the threshold, in terms of accuracy of the proxy, after which the MCS under

LLMSE breaks down coincides with δ =1h, i.e., when the objective bias starts affecting the

ranking, see Figure 1.1 (b).

Concluding, although the MCS testing procedure is formally valid, an unfortunate choice

of the loss function can lead to undesired outcomes and result in an incorrect identification

of the set of superior models.

1.9 Thesis overview and motivation

In this introductory chapter we reviewed a variety of methods for volatility forecast evalua-

tion and comparison which provide the theoretical background of this thesis. As mentioned

in Section 1.5, our main interest is in the multivariate dimension. In Chapter 2 we focus on

the problems arising due to the latent nature of the conditional variance in a multivariate

framework. We address these issues by investigating the properties of the ranking between

multivariate volatility forecasts with respect to alternative statistical loss functions used

to evaluate forecast performances. We provide conditions on the functional form of the

loss function that ensure consistency between the proxy-based ranking and the true, but

unobservable one. We identify a large set of loss functions that yield a consistent ranking.

We illustrate our findings using artificial data sampled from a continuous time multivariate

diffusion process and compare the ordering delivered by both robust and non-robust loss
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functions over different forecast horizons. We further discuss the sensitivity of the ranking

to the quality of the proxy and the degree of similarity between models. An application to

three foreign exchange rates, where we compare the forecasting performance of 24 multi-

variate GARCH specifications over two forecast horizons, concludes the chapter.

In Chapter 3 we address the question of the selection of multivariate GARCH models

in terms of forecast accuracy with a particular focus on relatively large scale problems. We

consider 10 assets from NYSE and NASDAQ and compare 125 model based one-step-ahead

conditional variance forecasts over a period of 10 years using the MCS and the SPA tests.

Model performances are evaluated using four statistical loss functions which account for

different types and degrees of asymmetry with respect to over/under predictions. When

considering the full sample, MCS results are strongly driven by short periods of high market

instability during which multivariate GARCH models appear to be rather inaccurate. Over

relatively unstable periods, i.e. dot-com bubble, the set of superior models is composed of

more sophisticated specifications such as orthogonal and dynamic conditional correlation

(DCC), both with leverage effect in the conditional variances. However, unlike the DCC

models, our results show that the orthogonal specifications tend to systematically under-

estimate the conditional variance. Over calm periods, simple assumptions like constant

conditional correlation and symmetry in the conditional variances cannot be rejected. Fi-

nally, during the 2007-2008 financial crisis, accounting for non-stationarity in the conditional

variance process generates superior forecasts. The SPA test suggests that, independently

from the period, the best models do not provide significantly better forecasts than the DCC

model of Engle (2002) with leverage effect in the conditional variances of the returns.

In Chapter 4 we derive a class of diffusion approximations based on conditional cor-

relation models. To our knowledge, this chapter represents a first attempt to address the

relationship between multivariate discrete and continuous time models, and in particular to

conditional correlation models. We consider a modified version of the standard DCC model,

the consistent DCC (cDCC) model of Aielli (2006). This model is particularly appealing

because it is based on a more natural representation of the process driving the correlation

which, unlike the standard DCC model, preserves the martingale difference property. For

this specification, we point out the existence of a degenerate diffusion limit. The degener-

acy of the cDCC-GARCH diffusion limit is due to the particular structure of the discrete

time model in which the noise propagation system of the variances and that of the process

driving the correlation are perfectly correlated. This structure is preserved in the diffusion

limit which is characterized by a singular diffusion matrix. More precisely, the diffusion

of the variances and that of the diagonal elements of the process driving the correlation

are pairwise governed by the same Brownian motion. We also consider, as a special case,
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the Constant Conditional Correlation (CCC) model, which can be obtained by imposing

suitable parameter restrictions to the cDCC model. In this case, we are able to recover

a non-degenerate diffusion. Finally, we propose different sets of conditions regarding the

speed of convergence of the parameters of the cDCC-GARCH model which allow to recover

other types of degenerated diffusion limits, characterized by a stochastic price process while

variances and/or correlations remain time varying but deterministic. We also elaborate on

the type of models can be obtained as Euler approximation of the different diffusions. Our

convergence results are validated through a comprehensive Monte Carlo simulation exercise.



Chapter 2

On Loss Functions and Ranking Multivari-

ate Volatility Forecasts1

2.1 Introduction

A special feature of economic forecasting compared to general economic modeling is that

we can measure a model’s performance by comparing its forecasts to the outcomes when

they become available. Generally, several forecasting models are available for the same

variable and forecasting performances are evaluated by means of a loss function. Elliott

and Timmermann (2008) provide an excellent survey on the state of the art of forecasting

in economics. Details on volatility and correlation forecasting can be found in Andersen,

Bollerslev, Christoffersen, and Diebold (2006).

The evaluation of the forecasting performance of volatility models raises a problem.

Since the variable of interest (i.e., volatility) is unobservable, the evaluation of the loss

function has to rely on a proxy. However, this substitution may not always lead to the same

ordering between models’ performances as if the true volatility was observable. The impact

on the ordering of the substitution of the true volatility by a proxy has been investigated

for univariate models by Hansen and Lunde (2006a). They provide conditions, for both

the loss function and the volatility proxy, under which the ranking based on the proxy is

consistent for the true ranking. Starting from this result, Patton (2009) and Patton and

Sheppard (2009) derive necessary and sufficient conditions on the functional form of the

loss function for the ranking to be robust to the presence of noise in the proxy. These

results have important implications on testing procedures for superior predictive ability,

1This chapter has been adapted from Laurent S., Rombouts J.V.K. and Violante F. (2009), On Loss
Functions and Ranking forecasting Performances of Multivariate Volatility Models. CIRANO dp 2009-45
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see Diebold and Mariano (1995), West (1996), Clark and McCracken (2001), the reality

check by White (2000) and the recent contributions of Hansen and Lunde (2005) with

the superior predictive ability (SPA) test and Hansen, Lunde, and Nason (2010a) with the

Model Confidence Set test, among others, because when the target variable is unobservable,

an unfortunate choice of the loss function may deliver unintended results even when the

testing procedure is formally valid. With respect to the evaluation of multivariate volatility

forecast performances little is known about the properties of the loss functions. This is the

first work that addresses this issue.

In this chapter, we unify and extend the results in the univariate framework to the eval-

uation of multivariate volatility models, that is the comparison and ordering of sequences

of variance matrices. From a methodological viewpoint, we first extend to the multivariate

dimension the sufficient conditions that a loss function has to satisfy to deliver the same

ordering whether the evaluation is based on the true conditional variance matrix or an

unbiased proxy of it. We denote such loss functions as robust. Contrary, non-robust loss

functions denote those loss functions which ensures consistency of the ordering under an

imperfect volatility proxy. Second, we derive necessary and sufficient conditions on the func-

tional form of the robust loss function. We focus on homogeneous statistical loss functions

that can be expressed as sample means of each period loss. Although conditions established

in Hansen and Lunde (2006a) guarantee that the true conditional variance will be chosen

(subject to sampling variation) over any other alternative regardless of the choice units,

it does not guarantee that the ranking of two imperfect forecasts will be invariant to the

choice of units. Patton (2009) shows that by using a homogeneous robust loss function,

the ranking of two imperfect forecasts is invariant to a re-scaling of the data. Third, we

identify a number of vector and matrix loss functions, some of which often used in practice,

and provide insights on their properties, interpretation and geometrical representation. Al-

though we focus on homogeneous loss functions, unlike in the univariate case, a complete

identification of the set of robust loss functions is not available. This is because in the

multivariate case there is an infinite number of possible combinations of the elements of the

forecasting error matrix which yield a loss function that satisfies the necessary and sufficient

conditions. However, given the necessary and sufficient functional form, application specific

loss functions can be easily derived.

Note that different loss functions may deliver different rankings depending on the char-

acteristics of the data that each loss function is able to capture. We show that many

commonly used loss functions do not satisfy the sufficient conditions for consistent ranking

and therefore may suffer from the objective bias problem. However, these loss functions

often have desirable properties (e.g., down weighting extreme forecast errors) which can be
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useful in applications. We show that non-robust loss functions are not per se inferior. In

fact, provided that the proxy is sufficiently accurate with respect to the degree of similarity

between models’ performances, these loss functions can still deliver a ranking that is insen-

sitive to the noise of a proxy. With respect to terminology, consistency of the ranking does

not mean invariance of the ordering with respect to the choice of the loss function, see for

instance Jensen (1984), but is intended with respect to the accuracy of the proxy for a given

loss function. To make our theoretical results concrete, we focus on multivariate GARCH

models to forecast the conditional variance matrix of a portfolio of financial assets.

We illustrate using artificial data, through a comprehensive Monte Carlo simulation,

the impact of the deterioration of the quality of the proxy on the ranking of multivariate

GARCH models with respect to different choices for the loss function and forecast horizons.

In line with our theoretical results, when ranking over a discrete set of volatility forecasts,

robust loss functions ensure consistency of the ranking to noise in the volatility proxy.

On the other hand, non-robust loss functions allow to identify the underlying ordering only

when the quality of the proxy is sufficiently good relative to the degree of similarity between

models’ performances. Furthermore, the ordering becomes less sensitive to the noise in the

proxy as the forecast horizon increases.

We illustrate our findings using three exchange rates (Euro, UK pound and Japanese

yen against US dollar). We consider 24 multivariate GARCH specifications which are

widely used in practice and two forecast horizons. The advantage of choosing a robust loss

function to evaluate model performances is striking. The ranking based on a non-robust

loss function, together with an uninformative proxy, is found to be severely biased. As

the quality of the proxy deteriorates inferior models emerge and outperform models which

are otherwise preferred when the comparison is based on a more accurate proxy. To test

statistically which set of models forecasts better multivariate exchange rate volatility, we

apply the model confidence test approach of Hansen, Lunde, and Nason (2010a). This

approach depends on the orderings implied by the loss function. We show that even if

the testing procedure is formally valid, anon-robust loss function can result in an incorrect

identification of the set of superior models. The results also clearly demonstrate the value of

high precision proxies. In fact, while robustness of the loss function ensures consistency of

the ordering, only a high precision proxy allows to efficiently discriminate between models.

The rest of the chapter is organized as follows. In Section 2.2 we provide conditions for

consistency of the ranking and derive the admissible functional form of the loss function. We

derive a number of specific parameterizations and discuss their properties, interpretation

and geometrical representation. In Section 2.3 we provide a brief overview of the multivari-

ate GARCH specifications considered in this chapter. In Section 2.4, we illustrate, using
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artificial data, the practical implications of our theoretical results in a simulation based

comparison of multivariate GARCH models in a realistic setting. In Section 2.5 we present

an empirical application using three exchange rates. In Section 2.6 we conclude and discuss

directions for further research. All proofs are provided in the Appendix A. A number of

examples are discussed in Appendix B.

2.2 Consistent ranking and distance metrics

As explained in Andersen, Bollerslev, Christoffersen, and Diebold (2006), the problem when

comparing and ranking forecasting performance of volatility models is that the true condi-

tional variance is unobservable. Although the problem can be solved by replacing the latter

by a proxy, the substitution may not always lead to the same ranking as if the true condi-

tional variance was observed. Hansen and Lunde (2006a) provide a theoretical framework

for the analysis of the ordering of stochastic sequences and identify conditions that a loss

function has to satisfy to deliver an ordering consistent with the true one when a proxy for

the conditional variance is used. Their results can be cast in the more general framework of

invariant decision rules, see Ferguson (1967) for example. Patton (2009) derives necessary

and sufficient conditions on the functional form of the loss function for the latter to order

consistently in presence of noise in the proxy.

In this section, we extend and unify these results to the case of multivariate volatility

models, which requires the comparison and ordering of sequences of variance matrices.

We first set the notation, working assumptions and basic definitions and, as an example,

we present a set of loss functions commonly used to measure models’ performances in

a multivariate volatility context. Second, we discuss sufficient conditions for consistent

ranking. Third, we characterize the functional form of a robust loss function. Fourth, we

illustrate how robust loss functions can be constructed in practice and we discuss some

special cases.

2.2.1 Notation and definitions

We first fix the notation and make explicit what we mean by a well defined loss function

and by consistent ranking. For N time series at time t we denote IRN×N
++ the space of N×N

positive definite matrices and Ḣ ⊂ IRN×N
++ a compact subset of IRN×N

++ . Ḣ represents the set

of variance matrix forecasts with typical element indexed by m, Hm,t, such that Hm,t ∈ Ḣ.

The matrix Σt ∈ IRN×N
++ denotes the true but unobservable conditional variance matrix and

Σ̂t a proxy. Note that Hm,t and Σ̂t are variance matrices and therefore are symmetric. We

define L(·, ·) an integrable loss function L : IRN×N
++ × Ḣ → IR+, such that L(Σt,Hm,t) is the
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loss of model m with respect to Σt. IR+ denotes the positive part of the real line. We refer

to the ordering based on the expected loss, E[L(Σt,Hm,t)] as the true ordering. Similarly,

L(Σ̂t,Hm,t) is the loss with respect to the proxy Σ̂t, and E[L(Σ̂t,Hm,t)] determines the

approximated ranking over Ḣ. When needed, we also refer to the empirical ranking as

the one based on the sample evaluation of L(Σ̂t, Hm,t), i.e., T
−1
∑
t
L(Σ̂t,Hm,t), where T

is the length of the forecast sample. The set, ℑt−1 denotes the information at time t − 1

and Et−1(·) ≡ E(·|ℑt−1) the conditional expectation. The elements, σi,j,t, σ̂i,j,t and hi,j,t

indexed by i, j = 1, ..., N , refer to the elements of the matrices Σt, Σ̂t, Ht respectively.

Furthermore, σk,t, σ̂k,t and hk,t are the elements, indexed by k = 1, ..., N(N + 1)/2, of

the vectors σt = vech(Σt), σ̂t = vech(Σ̂t) and ht = vech(Ht) respectively, where vech(·) is

the operator that stacks the lower triangular portion of a matrix into a vector. Finally,

the vectorized difference between the true variance matrix and its proxy is denoted by

ξt = (σ̂t − σt).

The following assumptions ensure that the loss function L(·, ·) is able to correctly order

with respect to the true variance matrix.

A1.1 L(·, ·) is continuous on Ḣ and it is uniquely minimized at H∗
t . If H

∗
t ∈ int(Ḣ), L(·, ·)

is convex in Ḣ. H∗
t represents the optimal forecast

A1.2 L(·, ·) is such that the optimal forecast equals the true conditional variance Σt,

H∗
t = argmin

Ht∈Ḣ
L(Σt,Ht) ⇔ H∗

t = Σt. (2.1)

Definition 1. Under Assumptions A1.1 to A1.2, the loss function is well defined.

Without loss of generality, throughout the chapter we normalize the loss function so that it

implies zero loss when the forecast error is zero, i.e. L(Σt,Ht) = 0 ⇔ Ht = Σt. This allows

to interpret the loss function as a distance.

The notion of consistency of ranking is defined as follows:

Definition 2. Consistency between the true ranking and the ordering based on a proxy is

achieved if

E(L(Σt,Hl,t)) ≥ E(L(Σt, Hm,t)) ⇔ E(L(Σ̂t,Hl,t)) ≥ E(L(Σ̂t,Hm,t)) (2.2)

is true for all l ̸= m, where L(·, ·) is a well defined loss function in the sense of Definition

1 and Σ̂t is some conditionally unbiased proxy of Σt. A loss function that satisfies (2.2) is

denoted as ”robust”.
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By Definition 2, the ranking between any two models indexed by l and m, is consistent if

it is the same whether it is based on the true conditional variance matrix or a conditionally

unbiased proxy. Note that conditional unbiasedness is the only assumption we will make

about the covariance proxy.

As underlined in Patton (2009) it is common practice to use several alternative measures

of forecast accuracy to respond to the concern that some particular characteristics of the

data may affect the result. We discuss next a selection of loss functions commonly used to

evaluate multivariate models’ forecast accuracy, or, in a more general context, to measure

the distance between matrices and vectors and provide their classification. Examples can

be found in Ledoit and Wolf (2003), James and Stein (1961), Bauwens, Lubrano, and

Richard (1999), Koch (2007) and Herdin, Czink, Ozcelik, and Bonek (2005). Although the

loss function listed in Table 2.1 are in principle well suited to measure variance forecast

performances, it turns out that several are inappropriate in this setting.

Table 2.1: Loss functions and their classification

Matrix loss functions

LF Frobenius distance
∑

1≤i,j≤N (σi,j,t − hi,j,t)
2 robust

LS Stein distance Tr[H−1
t Σt]− log

∣∣H−1
t Σt

∣∣−N robust

L1M Entrywise 1 - (matrix) norm
∑

1≤i,j≤N |σi,j,t − hi,j,t| non-robust

LPF Proportional Frobenius dist. Tr[(ΣtH
−1
t − I)2] non-robust

LLF,1 Log Frobenius distance (1)
(
log
∣∣ΣtH

−1
t

∣∣)2 non-robust

LLF,2 Log Frobenius distance (2)
(
log Tr[ΣtΣt]

Tr[HtHt]

)2
non-robust

LCor Correlation distance 1− Tr(ΣtHt)√
Tr(ΣtΣt)Tr(HtHt)

∈ [0, 1] non-robust

Vector loss functions

LE Euclidean distance
∑

1≤k≤N(N+1)/2(σk,t − hk,t)
2 robust

LWE Weighted Euclidean distance (σt − ht)
′W (σt − ht) robust

(with matrix of weights W )

L1V Entrywise 1 - (vector) norm
∑

1≤k≤N(N+1)/2 |σk,t − hk,t| non-robust

The first loss function, LF , is the natural extension to matrix spaces of the mean squared

error (MSE). The second, LS , is the scale invariant loss function introduced by James and

Stein (1961). L1M represents the extension to matrix spaces of the mean absolute deviation

(MAD) and is known as the entrywise 1 - (matrix) norm. LPF is the extension of the



2.2. Consistent ranking and distance metrics 33

heteroskedasticity adjusted MSE and is a quadratic loss function with the same parametric

form of the Frobenius distance but measuring deviations in relative terms. We refer to this

loss function as proportional Frobenius distance. LLF,1 and LLF,2 are adaptations of the

MSE logarithmic scale. In particular, the loss function in LLF,2, alternatively defined as(
log
[(∑

i λ
2
i (Σt)

) (∑
i λ

2
i (Ht)

)−1
])2

, considers the singular values as a summary measure

of a matrix. The sum of squared singular values (i.e.,
∑

i λ
2(A)i = Tr(AA′)) represents the

Frobenius distance of Σt and Ht from 0. The ratio measures the discrepancy in relative

terms while the logarithm ensures that deviations are measured as factors and the squaring

ensures that factors are equally weighted (Moskowitz, 2003). We refer to this loss function

as log Frobenius distance. LCor is also based on the Frobenius distance but it exploits the

Cauchy-Schwarz inequality. In fact, by the inequality, the ratio is equal to one whenHt = Σt

and tends to 0 if Ht and Σt differ to a maximum extent. The ratio resembles a correlation

coefficient between the matrices Ht and Σt. LE is the Euclidean distance computed on all

unique elements of the forecast error matrix, while LWE is a weighted version of LE . The

last function, L1V , represents an extension of the MAD, but defined on a vector space. It

differs from L1M for equally weighting the unique elements of the forecast error matrix.

2.2.2 Conditions for consistent ranking of multivariate volatility models

We provide sufficient conditions that a loss function has to satisfy to deliver asymptotically

the same ordering whether the evaluation is based on the true conditional variance matrix

or a proxy. Since Σt and Ht are variance matrices and hence symmetric, without loss of

generality we can redefine the function L(·, ·) from the space IRN×N
++ ×Ḣ to IR+ as a function

of all unique elements of Σt and Ht, i.e., IR
N(N+1)/2 × Ḣ → IR+, with vech(Hm,t) ∈ Ḣ,

vech(Σt) ∈ IRN(N+1)/2 and Ḣ ⊂ IRN(N+1)/2. This simplification allows to ignore N(N−1)/2

redundant first order conditions in the minimization problem defined in (2.1). We make use

of the following assumptions:

A2.1 L(Σt, Ht) and L(Σ̂t,Ht) have the same parametric form ∀Ht ∈ Ḣ so that uncertainty

depends only on Σ̂t.

A2.2 Σt and Ht are ℑt−1 measurable.

A2.3 L(·, ·) is twice continuously differentiable with respect to σ̂t and ht.

A2.4 ξt = (σ̂t − σt) is a vector martingale difference sequence with respect to ℑt−1 with

finite conditional variance matrix Vt = Et−1[ξtξ
′
t].

Assumption A2.1 and A2.2 imply that Σt and Ht are considered as observable, though

model forecasts can be biased or inaccurate in any way (e.g., due to parameter uncertainty,
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misspecification, etc.). Assumption A2.4 requires conditional unbiasedness of the covariance

proxy. Proposition 2.1 states a sufficient condition on the loss function to ensure consistency

of the ranking in presence of noise.

Proposition 2.1. Under Assumptions A2.1 to A2.4, a well defined loss function in the

sense of Definition 1 with ∂2L(Σt,Ht)
∂σl,t∂σm,t

finite and independent of Ht ∀l,m = 1, ..., N(N +1)/2

is robust in the sense of Definition 2.

Proposition 2.1 applies for any conditionally unbiased proxy independently of its level of

accuracy. The difference between the true and the approximated ordering which is likely to

occur whenever Proposition 2.1 is violated, is denoted as the objective bias. The bias must

not be confused with sampling variability, that is the distortion between the approximated

and the empirical ranking. In fact, while the latter tend to disappear asymptotically (i.e.,

T−1
∑
t
L(Σ̂t,Ht)

p→ E
[
L(Σ̂t,Ht)

]
under ergodic stationarity of L(Σ̂t,Ht)), the presence

of the objective bias may induce the sample evaluation to be inconsistent for the true one

irrespectively of the sample size. Note that, from the set of loss functions given in Table

2.1, it is straightforward to show that only LF , LS , LE and LWE satisfy Proposition 2.1.

It is also clear that even simple transformations of a robust loss function may cause the

violation of Proposition 2.1. An example is the well known Frobenius norm which is the

square root of LF .

We can further discuss the implications of Proposition 2.1 and elaborate on the case when

Proposition 2.1 is violated. We show that the bias between the true and the approximated

ranking depends on the accuracy of the proxy for the variance matrix: the presence of noise

in the volatility proxy introduces a distortion in the approximated ordering, which tends to

disappear when the accuracy of the proxy increases. More formally, consider a sequence of

volatility proxies Σ̂
(s)
t indexed by s and denote H

∗(s)
t such that

H
∗(s)
t = argmin

Ht∈int(Ḣ)

Et−1[L(Σ̂
(s)
t ,Ht)]. (2.3)

In a setting like for example Andersen, Bollerslev, Diebold, and Labys (2003), the index s

can be thought of as the sampling frequency used to compute the covariance proxy.

Lemma 2.1. Under Assumptions A2.1 to A2.3 and for Σ̂
(s)
t satisfying Et−1[ξ

(s)
t ] = 0 ∀s

(unbiasedness) and V
(s)
t = Et−1[ξ

(s)
t ξ

(s)′
t ] finite for all s, with V

(s)
t

p→ 0 as s → ∞ (consis-

tency), then for a well defined loss function in the sense of Definition 1 it holds:

i) If ∂3L(Σt,Ht)
∂σt∂σ′

t∂hk,t
= 0 ∀k, then H∗(s)

t = Σt ∀s,

ii) If ∂3L(Σt,Ht)
∂σt∂σ′

t∂hk,t
̸= 0 for some k, then H

∗(s)
t

p→ Σt as s→ ∞.
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The first point states that, under Proposition 2.1, the optimal forecast is the conditional

variance, and consistency is achieved regardless of the quality of the proxy. The second

point in Lemma 2.1 shows that the distortion introduced in the ordering when using an

non-robust loss function tends to disappear as the quality of the proxy, controlled through

s, improves. Therefore, when ordering over a discrete set of models, for a loss function that

violates Proposition 2.1, the more precise the proxy the less likely is the objective bias to

appear. In other words, when the variance of the proxy is small with respect to discrepancy

between any two models, the distortion that is likely to be induced by the proxy becomes

negligible, leaving the ordering unaffected. In the simulation study in Section 2.4, we further

investigate this issue and in particular investigate the relationship between the accuracy of

the proxy (i.e., the variability of the proxy) and the degree of similarity between model

performances (i.e., how close performances are). However, in practice, it may be difficult

to determine ex-ante the degree of accuracy of a proxy. Since the trade off accuracy vs.

similarity is difficult to quantify ex-ante, model comparison and selection based on non-

robust loss function becomes unreliable and may lead to undesired results. The empirical

application in Section 2.5 reveals that a sufficiently accurate proxy may not be available.

2.2.3 Functional form of the consistent loss function

In the univariate framework, Patton (2009) identifies necessary and sufficient conditions on

the functional form of the loss function to ensure consistency in the sense of Definition 2. The

set of robust loss functions relates to the class of linear exponential densities of Gourieroux,

Monfort, and Trognon (1984) and partially coincides with the subset of homogeneous loss

functions associated with the most important linear exponential densities. In fact, the

family of loss functions with degree of homogeneity equal to zero, one and two defined in

Patton (2009), can be alternatively derived from the objective functions of the Gaussian,

Poisson and Gamma densities respectively (see Gourieroux and Monfort, 1995 page 244 for

details).

We propose necessary and sufficient conditions on the functional form of the loss func-

tion defined such that it is well suited to measure distances in matrix and vector spaces.

Although, unlike in the univariate case, a complete identification of the set of robust loss

functions is not feasible, we are able to identify a large set of parameterizations which yield

robust loss functions. We show that several well known vector and matrix distance functions

also belong to this set. In order to proceed, we need the following assumptions:

A3.1 Σ̂t|ℑt−1 ∼ Ft ∈ F the set of absolutely continuous distribution functions of RN×N
++ .

A3.2 ∃H∗
t ∈ int(Ḣ) such that H∗

t = Et−1(Σ̂t).
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A3.3 Et−1

[
L(Σ̂t,Ht)

]
<∞ for some Ht ∈ Ḣ,

∣∣∣∣Et−1

[
∂2L(Σ̂t,Ht)

∂ht

∣∣∣
Ht=Σt

]∣∣∣∣ <∞ and∣∣∣∣Et−1

[
∂L(Σ̂t,Ht)
∂ht∂h′

t

∣∣∣
Ht=Σt

]∣∣∣∣ < ∞ for all t where the last two inequalities hold element-

wise.

Note that A3.2 follows directly from A1.2 and A2.4 because H∗
t ∈ int(Ḣ) implies H∗

t = Σt

by A1.2 while Et−1(Σ̂t) = Σt results from A2.4. Assumption A3.3 allows to interchange

differentiation and expectation, see L’Ecuyer (1990) and L’Ecuyer (1995) for details.

Proposition 2.2. Under Assumptions A2.1 to A2.4 and A3.1 to A3.3 a well defined loss

function, in the sense of Definition 1, is robust in the sense of Definition 2 if and only if it

takes the form

L(Σ̂t, Ht) = C̃(Ht)− C̃(Σ̂t) + C(Ht)
′vech(Σ̂t −Ht), (2.4)

where C̃(·) is a scalar valued function from the space of N ×N positive definite matrices to

IR, three times continuously differentiable with

C(Ht) = ∇C̃(Ht) =


∂C̃(Ht)
∂h1,t

...
∂C̃(Ht)
∂hK,t



C ′(Ht) = ∇2C̃(Ht) =


∂2C̃(Ht)
∂h1,t∂h1,t

· · · ∂2C̃(Ht)
∂h1,t∂hK,t

...
. . .

∂2C̃(Ht)
∂hK,t∂h1,t

∂2C̃(Ht)
∂hK,t∂hK,t

 ,

where C(·) and C ′(·) are the gradient and the hessian of C̃(·) with respect to the K =

N(N + 1)/2 unique elements of Ht and C
′(Ht) is negative definite.

An alternative expression for the loss function defined in Proposition 2.2 is provided in

the following corollary.

Corollary 2.1. Given Σ̂t and Ht symmetric and positive definite, then the loss function

specified in (2.4) is isometric to

L(Σ̂t,Ht) = C̃(Ht)− C̃(Σ̂t) + Tr[C̄(Ht)(Σ̂t −Ht)], (2.5)
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with C̃(·) defined as in Proposition 2.2 and

C̄(Ht) =


∂C̃(H)
∂h1,1,t

1
2
∂C̃(H)
∂h1,2,t

... 1
2
∂C̃(H)
∂h1,N,t

1
2
∂C̃(H)
∂h1,2,t

∂C̃(H)
∂h2,2,t

...
. . .

1
2
∂C̃(H)
∂h1,N,t

∂C̃(H)
∂hN,N,t

 ,

where the derivatives are taken with respect to all N2 elements of Ht.

Unlike in the univariate framework, the multivariate dimension offers a large flexibility in

the formulation of the loss function, see Table 2.1 for several parameterizations. In applied

work, a careful analysis of the functional form of the loss function is a crucial preliminary

step to the selection based on the specific properties of a given loss function. In this

respect, it is clear that Assumption A1.2 has a central role in this setting. It is interesting

to elaborate on the case when A1.2 is dropped while keeping all other assumptions in place.

We can show that a badly formulated loss function, still yields an ordering that is insensitive

to the accuracy of the proxy, i.e. apparently robust but inherently invalid. In fact, the loss

function would point to an optimal forecast that differs from the true conditional variance.

To illustrate this, starting from the functional form defined in Proposition 2.2, we consider

the following generalization of (2.5)

L(Σt,Ht) = C̃(Ht)− C̃(Σt) + f [C̄(Ht)(Σt −Ht)], (2.6)

assuming that there exists a linear map f [·] : IRN×N → IR such that L(Σt,Ht) satisfies

second order conditions. We summarize the implications of relaxing Assumption A1.2 from

Proposition 2.1, 2.2 and Lemma 2.1 in the following remark. The following statements are

proved in the Appendix.

Remark 2.1. Define ≻ the true ordering between variance matrix forecasts, i.e., based on

the true conditional variance matrix, and ≻a the approximated ordering, i.e., based on the

volatility proxy. Given the functional form in (2.6), if

i) f [·] ≡ Tr[·] (A1.2 is satisfied): ≻ and ≻a are equivalent in the sense of Definition

2 and L(Σt,Ht) is such that H∗
t = E(Σ̂t|ℑt−1) = Σt, i.e., the loss function is well

defined in the sense of Definition 1;

ii) f [·] ̸≡ Tr[·] (A1.2 is violated): ≻ and ≻a are equivalent in the sense that the sub-

stitution of the true covariance by a proxy does not affect the ordering. However,

the ordering implied by L(Σt,Ht) is ill-defined because H∗
t ̸= E(Σ̂t|ℑt−1) = Σt, i.e.,
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the loss function points to an optimal forecast that differs from the true conditional

variance irrespectively of the quality of the proxy.

The first part of Remark 1 reaffirms sufficiency and necessity of the functional form

defined in Proposition 2.2. With respect to the second part, note that, under (2.6), the

general idea of consistency of the ranking, is still valid. In fact, if f [·] is a linear map, then

f [C̄(Ht)(Σt −Ht)] is linear in σi,j,t ∀i, j = 1, ..., N , and therefore, similarly to what stated

in Proposition 2.1, it holds that ∂3L(Σt,Ht)/∂σt∂σ
′
t∂hk,t = 0 ∀k = 1, ..., N(N +1)/2. This

result ensures the ranking based on the volatility proxy to be apparently robust for the

one based on the true conditional variance and insensitive to the level of accuracy of the

proxy, i.e., the objective bias does not represent an issue in this case. However, in absence of

Assumption A1.2 the underlying ordering is invalid even when based on the true conditional

variance, since an ill-defined loss function would point to an optimal forecast different from

the true conditional variance.

2.2.4 Building a class of robust loss functions

Endowed with the functional form defined in Proposition 2.2, we illustrate how to recover

several robust loss functions. These loss functions can be categorized with respect to differ-

ent characteristics, for instance the degree of homogeneity, the shape, the underlying family

of distributions or the functional form for C̃(·).
We start by investigating the case of loss functions that are based only on the forecast

error, that is L(Σ̂t, Ht) = L(Σ̂t − Ht). Patton (2009) shows that in the univariate case

the MSE loss function is the only robust loss function that depends solely on the forecast

error. The multivariate setting offers more flexibility in the functional form for a robust

loss function based on the forecast error. The following proposition defines the family of

such loss functions.

Proposition 2.3. Under Assumptions A2.1 to A2.4 and A3.1 to A3.3, a loss function

based only on the forecast error Σ̂t −Ht, robust in the sense of Definition 2, is defined by

the quadratic form

L(Σ̂t,Ht) = L(Σ̂t −Ht) = vech(Σ̂t −Ht)
′Λ̂vech(Σ̂t −Ht) (2.7)

where Λ̂ is a positive definite matrix of constants.

The loss function in (2.7) is homogeneous of degree 2 and is symmetric under a 180◦

rotation about the origin, i.e. L(Σ̂t −Ht) = L(Ht − Σ̂t). The matrix Λ̂ defines the weights

assigned to the elements of the forecast error matrix Σ̂t −Ht.
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Proposition 2.3 defines the entire family of quadratic loss functions, i.e. MSE type, which

depends on the choice of the matrix of weights Λ̂. Formally, the quadratic polynomial in

(2.7) defines a family of quadric surfaces, i.e., elliptic paraboloids, and Λ̂ defines the shape

of the surface. In the univariate case, this loss function is symmetric, i.e., equally penalizes

positive and negative forecast errors. The advantage of the multivariate case is that the

notion of symmetry can be analyzed from different aspects, e.g. symmetry with respect to

the origin, axes and planes. In this sense, the quadratic form in (2.7) is always symmetric

under 180◦ rotation about the origin, but particular choices of Λ̂ can generate some other

types of asymmetries. In the following, we derive and discuss the properties of some well

known loss functions belonging to the family defined by Proposition 2.3.

We provide next six examples of well known vector and matrix loss functions which

satisfy Proposition 2.1 and 2.2. The first four examples below belong to the family defined

by (2.7) and are introduced in increasing order of generality. The simplest parameterizations

of Λ̂ yield loss functions based on the vech() transformation of the forecast error matrix, i.e.,

based on the notion of distance on a vector space rather than a matrix space. These loss

functions are typically the squares of norms, and therefore are homogeneous of degree 2.

The last two examples belong to the more general form in (2.4) and are loss functions based

on the notion of distance on a matrix space. In the Appendix B, we give interpretation,

geometrical representation and numerical examples for each of these loss functions.

Example 1: Euclidean distance

From (2.7), by setting Λ̂ = IK we obtain a loss function of the form

LE = (σ̂t − ht)
′IK(σ̂t − ht) =

∑
1≤k≤K

(σ̂k,t − hk,t)
2. (2.8)

The loss function defined in (2.8) is the square of the Euclidean norm on the vech() trans-

formation of the forecast error matrix (Σ̂t −Ht). The matrix Λ̂ is such that variances and

covariances forecast errors are equally weighted.

Example 2: Weighted Euclidean distance

A more flexible version of (2.8) is the weighted Euclidean distance, where Λ̂ is defined as

λ̂i,i > 0 and λ̂i,j = 0, i, j = 1, ...,K, that is

LWE = (σ̂t − ht)
′Λ̂(σ̂t − ht) =

∑
1≤k≤K

λ̂k,k(σ̂k,t − hk,t)
2. (2.9)

This loss function allows to differently weight each variance and covariance forecast error.

Example 3: Pseudo Mahalanobis distance
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This loss function represents a generalization of (2.9). It is obtained by setting λ̂i,j ∈ IR,

i, j = 1, ...,K and such that Λ̂ is positive definite, that is

LM = (σ̂t − ht)
′Λ̂(σ̂t − ht) =

∑
1≤k,l≤K

λ̂k,l(σ̂k,t − hk,t)(σ̂l,t − hl,t), (2.10)

with Λ̂ chosen according to Proposition 2.3. Though sharing the same parametric form as

the Mahalanobis distance, in this loss function the matrix of weights Λ̂ is deterministic and

does not depend on (σ̂t − ht). Since Λ̂ is non diagonal, LM also includes the cross product

of variances and covariances forecast errors. The matrix Λ̂ here plays a similar role to the

correlation in a multivariate symmetric distribution: positive (negative) weights λ̂k,l, k ̸= l

imply that systematic over/under predictions are penalized less (more).

Example 4: Frobenius distance

From (2.10), if we set Λ̂ diagonal with diag(Λ̂) = vech(V ) where V is symmetric with typical

element, indexed by i, j = 1, ...,K, vij = 1 if i = j, vij = 2 if i ̸= j, then the resulting loss

function is

LF = Tr[(Σ̂t −Ht)
′(Σ̂t −Ht)]. (2.11)

The loss function in (2.11) is the square of the Frobenius norm and represents the matrix

equivalent of MSE loss function. Although it can be cast into Proposition 2.3, this loss

function is based on the notion of distance on a matrix space. Alternatively, (2.11) can

be written as LF =
∑

1≤i,j≤N (σ̂i,j,t − hi,j,t)
2 =

∑
1≤i≤N ςi(Σ̂t −Ht), where ςi(Σ̂t −Ht), i =

1, . . . , N are the singular values of the forecast error matrix (Σ̂t − Ht). The loss function

can be cast into Corollary 2.1 with the following parameterization: C̃(Ht) = −Tr(HtHt)

and C̄(Ht) = −2Ht. The particular structure of the weights Λ̂ implies that the covariance

forecast error are double weighted. The Frobenius distance can also be obtained as the

objective function associated to the matrix normal density, see Gourieroux and Monfort

(1995) for details.

Alternatively, if we consider the Wishart distribution we identify a loss function that is

characterized by a degree of homogeneity equal to zero and depending only on the stan-

dardized (in matrix sense) forecast error.

Example 5: Stein loss function

The objective function associated with the Wishart distribution is

LS = Tr[H−1
t Σ̂t]− log

∣∣∣H−1
t Σ̂t

∣∣∣−N. (2.12)

LS belongs to the family defined by (2.5) with C̃(Ht) = log |Ht| and C̄(Ht) = H−1
t . It
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corresponds to the scale invariant loss function introduced by James and Stein (1961). LS

is asymmetric with respect to over/under predictions (in matrix sense), where underpredic-

tions are heavily penalized.

Example 6: Patton and Sheppard (2009)

Consider C̃(·) = Tr(Ad) for some d > 2 and where A is symmetric and positive definite.

Since the trace is a linear operator, the resulting loss function takes the form

L(Σ̂t,Ht) = Tr(Σ̂d
t )− Tr(Hd

t )− dTr[Hd−1
t (Σ̂t −Ht)].

This loss function, introduced by Patton and Sheppard (2009), is homogeneous of degree d

and asymmetric with respect to over/under predictions (in matrix sense), where overpre-

dictions are heavily penalized.

We have seen that the multivariate dimensional case allows to construct a large variety

of robust loss functions. However, unlike the univariate case where an analytical expression

is available for the entire class of robust loss functions, in the multivariate case such gen-

eralization is unfeasible because there are many functions C̃(.) that can be used to weight

forecasts and forecast errors. However, given (2.4) or (2.5), application specific loss function

can be easily derived by choosing ex-ante some functional form for C̃(·) and verifying on a

case by case basis whether the resulting loss function satisfies Proposition 2.2. Note that,

although robust, the resulting loss function can be rather difficult to interpret.

2.3 Competing multivariate GARCH models

The multivariate volatility models that we consider in this chapter belong to the multivariate

GARCH (MGARCH) class. Consider an N -dimensional discrete time vector stochastic

process rt. Let µt = E(rt|ℑt−1) be the conditional mean vector and Hm,t = E(rtr
′
t|ℑt−1)

the conditional variance matrix for model m so that we can write the model of interest as:

rt = µt +H
1/2
m,tzt,

where H
1/2
m,t is a (N ×N) positive definite matrix and zt is an independent and identically

distributed random innovation vector with E(zt) = 0 and Var(zt) = IN .

The MGARCH specifications considered in this chapter are: diagonal BEKK (D-Bekk)

model (Engle and Kroner, 1995), multivariate RiskMetrics model (J.P.Morgan, 1996), Con-

stant Correlation (CCC) model (Bollerslev, 1990), Dynamic Conditional Correlation (DCC)

model (Engle, 2002a), the Orthogonal model (O) of Alexander (2000) and its generalized

version (GO) (van der Weide, 2002). The univariate models used for the conditional vari-
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ances of the marginal processes in the DCC, CCC, O and GO are: Garch (Bollerslev, 1986),

Gjr (Glosten, Jagannathan, and Runkle, 1992), Exponential (Egarch) (Nelson, 1991), Asym-

metric Power (Aparch) (Ding, Granger, and Engle, 1993), Integrated (Igarch) (Engle and

Bollerslev, 1986), RiskMetrics (Rm) (J.P.Morgan, 1996) and Hyperbolic (Hgarch) (David-

son, 2004). The functional forms for Ht are briefly defined in Table 2.2. See Bauwens,

Laurent, and Rombouts (2006) for further details.

Table 2.2: Multivariate GARCH specifications

Model Multivariate GARCH models for Ht # par.

D-Bekk Ht = C
′
C +A

′
ϵt−1ϵ

′
t−1A+G

′
Ht−1G

(N+5)N
2

RiskMetrics Ht = 0.04ϵt−1ϵ
′
t−1 + 0.96Ht−1 0

(G)O

V −1/2ϵt = Lft

Ht = V 1/2LZtLV
1/2

0 (O)
Zt = diag(σ2

f1,t
, . . . , σ2

fm,t
) N(N−1)

2 (GO)
L = PΛ1/2U

U = IN (O); U =
∏

i<j Ri,j(δi,j), −π ≤ δi,j ≤ π (GO)

CCC
Ht = DtRDt N(N−1)

2
Dt = diag(h

1/2
1,1,t . . . h

1/2
N,N,t)

DCC

Ht = DtRtDt

N(N−1)
2 + 2

Rt = diag(q
−1/2
1,1,t . . . q

−1/2
N,N,t)Qtdiag(q

−1/2
1,1,t . . . q

−1/2
N,N,t)

ut = D−1
t ϵt

Qt = (1− α− β)Q̄+ αut−1u
′
t−1 + βQt−1

Univariate GARCH models in Zt and Dt

Garch hl,t = ωl + αlϵ
2
l,t−1 + βlhl,t−1 3

Egarch
log(hl,t) = ωl + g(zl,t−1) + βl log(hl,t−1) 4
g(zl,t−1) = θl,1zl,t−1 + θl,2(|zl,t| − E(|zl,t|))

Gjr
hl,t = ωl + αlϵ

2
l,t−1 + γlS

−
l,t−1ϵ

2
l,t−1 + βlhl,t−1 4

S−
l,t = 1 if ϵl,t < 0; S−

l,t = 0 if ϵl,t ≥ 0

Aparch hδll,t = ωl + αl[|ϵl,t−1| − γlϵl,t−1]
δl + βlh

δl
l,t−1 5

Hgarch
hl,t = ωl[1− βl]

−1 + λ(L)ϵ2l,t 5
λ(L) =

{
1− [1− βl]

−1αl[1 + γl(1− L)d]
}

All the specifications are characterized by a constant conditional mean and the models

are estimated by quasi maximum likelihood. The sample log-likelihood is given (up to a
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constant) by

− 1

2

T∑
t=1

log | Hm,t | −
1

2

T∑
t=1

(rt − µ)
′
H−1

m,t(rt − µ), (2.13)

where T is the size of the estimation sample. We maximize numerically for µ and the

parameters in Hm,t. All calculations and results reported in this chapter are based on

programs written by the authors using Ox version 6.0 (Doornik, 2009) and G@RCH version

6.0 (Laurent, 2009).

2.4 Simulation study

Using artificial data generated from a continuous time model we investigate the ranking of

the MGARCH models with respect to three dimensions: the quality of the volatility proxy,

the choice of the loss function and the forecast horizon. Continuous time models are a con-

venient framework to illustrate our theoretical results in a realistic setting. The Brownian

semi-martingale assumption for the infinitesimal returns ensures that simple proxies based

on intra-day data are unbiased and consistent estimators of true variance matrix. Since

the proxy for the underlying volatility requires discretization and aggregation over different

sampling frequencies, a discrete time counterpart of the continuous time process must exist

to ensure identification of the optimal forecast.

2.4.1 MGARCH diffusion approximation and realized covariance

Let us assume the observed return vector to be generated by an N -dimensional log-price

diffusion dp(t), t ∈ IR+, and an N(N + 1)/2-dimensional covariance diffusion, dσ(t), with

σ(t) = vech(Σ(t)) = [σij(t)] for i, j = 1, ..., N , i ≥ j. The diffusion process of the system

admits the following Brownian semi-martingale representation[
dp(t)

dσ(t)

]
= b(t)dt+ s(t)dW (t), (2.14)

with drift b(t) locally bounded and measurable, diffusion matrix a(t) = s(t)s(t)
′
which can

be partitioned as [
Σp,p(t) Σp,σ(t)

Σp,σ(t) Σσ,σ(t)

]
, (2.15)

and driven by a N(N + 3)/2 vector of independent standard Brownian motions W (t).
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We consider the diffusion limit of the bivariate CCC-Egarch(0,1) model (see Table 2.2),

which is derived following Nelson (1990), Strook and Varadhan (1979), Ethier and Kurtz

(1986a) and Kushner (1984), see Chapter 4 for details. The model for variance of the

marginal processes is expressed as a function of the log of σ(t), while the constant cor-

relation allows to compute the infinitesimal conditional covariance, at each point in time,

as ρ
√
σ1(t)σ2(t). The CCC-Egarch model admits a limit diffusion for the continuous time

vector stochastic process Xt = [p1(t) p2(t) log σ1(t) log σ2(t)]
′ of the form introduced

by (2.14) with drift and scale given respectively by

b(t) =
[
µ1 µ2 (ω1 − θ1 log σ1(t)) (ω2 − θ2 log σ2(t))

]′
(2.16)

and

a(t) =


σ1(t) ρ

√
σ1(t)σ2(t) α1

√
σ1(t) ρα2

√
σ1(t)

ρ
√
σ1(t)σ2(t) σ2(t) ρα1

√
σ2(t) α2

√
σ2(t)

α1

√
σ1(t) ρα1

√
σ2(t) α2

1 + γ21(1− 2/π) ρα1α2 + γ1γ2C

ρα2

√
σ1(t) α2

√
σ2(t) ρα1α2 + γ1γ2C α2

2 + γ22(1− 2/π)

 , (2.17)

where C = 2
π

[√
1− ρ2 + ρ arcsin(ρ)− 1

]
.

The process defined by (2.14), (2.16) and (2.17) ensures realistic dynamics for the return

and the variance process and can be calibrated to real data parameters, see Nelson (1990)

and Drost and Nijman (1993) for theoretical details, and Barndorff-Nielsen and Shephard

(2004a) and Andersen and Bollerslev (1998) for examples. Furthermore, it allows to control

for the nature and the size of the leverage effect and to preserve the correlation structure of

the vector stochastic process Xt ensuring internal consistency of the model. Alternatively,

(2.14) can be specified as any other continuous time stochastic volatility, e.g. models with

a factor representation, as long as its discrete version is in the forecasting model set. See

Dovonon, Meddahi, and Goncalves (2009), Barndorff-Nielsen and Shephard (2004a) and

Voev and Lunde (2006) for related simulation designs.

In this simulation setup, the true variance is defined as the daily integrated covariance,

Σt =
∫ t
t−1Σp,p(u)du, t ∈ IN, where Σp,p(u) is the infinitesimal volatility, see Barndorff-

Nielsen and Shephard (2004c). A conditionally unbiased and consistent proxy is the realized

covariance estimator proposed by Andersen, Bollerslev, Diebold, and Labys (2003) defined

as Σ̂t,δ =
∑1/δ

i=1 rt+iδ−1r
′
t+iδ−1, where rt+iδ−1 = pt+iδ−1 − pt+(i−1)δ−1 and δ defines the

intraday sampling frequency (i.e., the time span between two consecutive observations).

The quality of the proxy is controlled through the level of aggregation of the data (i.e., the

accuracy deteriorates as δ increases). Note that Σ̂t,δ satisfies the requirements in Lemma
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2.1 with s = 1/δ. See also Barndorff-Nielsen and Shephard (2004a), Hansen and Lunde

(2006b) and Andersen, Bollerslev, Frederiksen, and Nielsen (2010) for details.

For the simulation study, we set, for i = 1, 2, µi = 0 ωi = −0.02, θi = 1 − βi = 0.03,

αi = −0.09, γi = 0.4 and ρ = 0.9 which ensures realistic dynamics for the return pro-

cess. Our simulation results are based on 500 replications with an estimation sample of

2000 daily observations and a forecasting sample of 500 daily observations. We use an

Euler discretization of (2.14) with ∆ = 1/7200, corresponding to 12-second returns. The

integrated covariance is then computed as ∆
∑1/∆

i=1 Σi, while the proxy Σ̂t,δ is computed

using equally spaced intraday returns sampled at 14 different frequencies, ranging from 1

minute (1/δ = 1440 intervals per day) to 24 hours (1/δ = 1). The set of MGARCH models

is estimated on daily returns and then recursive 1, 5, 10 and 20-step ahead forecasts are

computed. Apart from the CCC-Egarch, the set of models includes the diagonal Bekk, Risk-

Metrics, CCC-Garch, CCC-Igarch, CCC-RiskMetrics, GO-Garch, GO-Egarch, GO-Igarch

and GO-Hgarch (see Table 2.2). The models that we consider span a large variety of degrees

of similarity between models.

2.4.2 Sample performance ranking and objective bias

Since we are ranking over a set of estimated volatility models, the true ranking implied by a

given loss function, except for the optimal forecast, is not known ex-ante. The ranking of two

imperfect volatility forecasts may differ between loss functions and it depends on how each

specific loss function penalizes deviations from the target. The underlying ordering implied

by a given loss function, either robust or non-robust, is identified by ranking forecasts with

respect to the true covariance, Σt (denoted as δ = 0 in Figures 2.1 and 2.2).

Without loss of generality, we consider only one robust (Frobenius distance, LF ) and

one non-robust (entrywise 1 - matrix norm, L1M ) loss function. It is worth noting that,

being non-differentiable L1M does not directly fit our setting. However, in the univariate

framework, Patton (2009) quantifies analytically the discrepancy between the optimal fore-

cast obtained by minimizing the conditional expectation of mean absolute error (MAE) loss

function, under different distributional assumption for the returns and considering different

volatility proxies, and the perfect forecast (i.e., the one that is exactly equal to the true

conditional variance). Since the loss function L1M is a linear combination of MAE, this

result extends directly. The choice of L1M is not coincidental. In fact, as LF it is a function

of the forecast errors and it is somewhat comparable to LF in terms of symmetry (i.e.,

over/under-prediction are equally weighted). Other loss functions in Table 2.1 have been

investigated and give qualitatively the same results.

The vertical line in Figure 2.1 and 2.2 denotes the lowest sampling frequency that
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ensures positive definiteness of Σ̂t,δ. For reference, we also report the evaluation based on

Σ̂t,1d, which is singular by construction for N = 2. Figure 2.1(a-left) shows the ranking

based on the average sample performances (over the 500 replications) implied by the robust

loss function, LF , for various levels of precision for the proxy (controlled through δ), when

considering 1-step ahead forecasts. In line with Proposition 2.1, Figure 2.1(a-right) shows

that loss differentials between models remain constant independently of the level of accuracy

of the proxy. The CCC-Egarch model is correctly ranked first and minor shifts in position

occur when the average sample performances are extremely close, with differences in the

order of 10−2.

A different picture emerges when considering the non-robust loss function, L1M . As

shown in Lemma 2.1, under the non-robust loss function, consistency of the proxy ensures

convergence of the approximated ordering to the true one. This is the case when the

ranking is based on Σ̂t,δ computed using returns sampled at frequency higher than 30-

minutes (Figure 2.2(a-left)). As the quality of the proxy deteriorates inferior models seem

to emerge. The relative performances of inferior models begin to improve rapidly starting

from the 30-minute frequency. When the proxy is computed using lower frequency data,

the objective bias starts to appear and we observe major distortions at most levels of the

classification. The impact of the objective bias is amplified by the fact that except for

the first two positions, i.e., CCC-Egarch and GO-Egarch respectively, all the other models

exhibit extremely close average sample performances (Figure 2.2(a-right)). Although the

objective bias does not become an issue when ordering between these two models, Figure

2.2(b-right) shows that, as the sampling frequency used to compute Σ̂t,δ lowers, the loss

differential between these two models reduces. Since the variability of the loss increases

with the variability of the proxy, the probability of ranking the GO-Egarch first in each

replication increases at low frequencies. On the other hand, poorly performing models like

CCC-Rm and RiskMetrics, 9th and 10th according to Σt, improve up to the 4th and 5th

position respectively.

With respect to longer forecast horizons (5, 10 and 20-step ahead), we find that the

ranking becomes more stable as the horizon increases. The lower variability of sample

performances is due to the fact that longer horizon volatility forecasts are smoother. For

the robust loss function, Figure 2.1(b), (c) and (d) show that as the forecasting horizon

increases models’ loss differentials become larger. The broad difference between integrated

models, which exhibit diverging paths for long horizon forecasts (except the RiskMetrics

and CCC-Rm for which the multistep ahead forecast coincides with the 1-step ahead for

every horizon), and stationary models, which in turn converge towards the long run variance

matrix, is particularly noticeable. For the non-robust loss function, Figure 2.2(d), (e) and
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Figure 2.1: Ranking implied by LF (robust) for different forecast horizons (1-step to 20-
step). Ranking based on avg. performances (left) and avg. loss differentials from CCC-
Egarch (right).
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Figure 2.2: Ranking implied by L1M (non-robust) for different forecast horizons (1-step
to 20-step). Ranking based on avg. performances (left) and avg. loss differentials from
CCC-Egarch (right).
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(f), we find that the impact of the bias is less striking and tends to become marginal as

the forecasting horizon increases. The break even point after which the loss differentials

cease to be reasonably stable and identified for the 1-step ahead case in the 30-minute

frequency, seems to remain the same regardless the forecast horizon. However, since the

loss differentials get larger with the forecast horizon as expected, the objective bias is less

likely to appear, and it induces only marginal distortions in the ranking. Finally, for both

robust and non-robust loss functions, we find that generalized orthogonal models perform

better when the comparison is based on longer forecast horizons.

In conclusion, for a robust loss function, even when the relative performances are ex-

tremely close, the ordering remains unaffected by the proxy quality and we are always able

to correctly discriminate between models. For an non-robust loss function, we find that

if the volatility proxy is sufficiently accurate relative to the degree of similarity between

model performances is it still possible to recover the underlying ranking. As the quality of

the proxy deteriorates the relative performances of some models appear to improve with

respect to others. We identify a threshold such that orderings based on lower precision

proxies appear strongly biased. The results are qualitatively similar for multistep-ahead

forecasting where the problem of the bias seems to affect the ordering to a lower extent as

the horizon increases. Finally, we also investigate the impact of the estimation sample size

on the rankings. Increasing the sample size to 3000 observations gives qualitatively similar

results.

2.5 Empirical application

2.5.1 Data description

The empirical application is based on the Euro, British Pound and the Japanese Yen ex-

change rates expressed in US dollars (EUR, GBP and JPY). The data has been provided

by Olsen Financial Technologies. The estimation sample ranges from January 6, 1987 to

December 28, 2001 (3666 trading days). The out-of-sample forecast evaluation sample runs

until August 26, 2004 (660 trading days).

The proxy for the conditional variance matrix is the realized covariance estimator Σ̂t,δ

of Andersen, Bollerslev, Diebold, and Labys (2003), as defined in Section 2.4.1, computed

using intra-day returns sampled at 17 different frequencies ranging from δ = 5 minutes (288

intervals/day) to δ = 1 day (1 interval/day). Note that the realized variance matrix is

positive definite until the 8-hour sampling frequency (3 intervals/day).

The forecasting models set includes 24 specifications: D-Bekk, RiskMetrics, CCC-Garch,

CCC-Igarch, CCC-Egarch, CCC-Aparch, CCC-Gjr, CCC-Rm, DCC-Garch, DCC-Igarch,
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DCC-Egarch, DCC-Aparch, DCC-Gjr, DCC-Rm, O-Garch, O-Igarch, O-Egarch, O-Aparch,

O-Gjr, GO-Garch, GO-Igarch, GO-Egarch, GO-Aparch and GO-Gjr. One and ten-step

ahead forecasts are compared to the proxy Σ̂t,δ using one robust (LF ) and one non-robust

(L1M ) loss function. Note that other volatility proxies can be used instead, examples are

multivariate realized kernels, see Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a),

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b), Hansen and Lunde (2006b) and

Zhou (1996), or the range based covariance estimators of Brandt and Diebold (2006).

2.5.2 Model comparison

The empirical ranking of the 24 MGARCH models, as a function of the level of aggregation

of the data used to compute Σ̂t,δ, is reported in Figures 2.3 and 2.4. The vertical line

at δ =8 hours denotes the lowest sampling frequency that ensures positive definiteness of

Σ̂t,δ. With respect to the one step ahead forecast evaluation, the robust loss function, see

Figure 2.3(a-left), points to the CCC-Garch as the best forecasting model at almost all

frequencies. More generally, the subset given by the CCC and the DCC, both with Garch

and Gjr variances, performs clearly better than all the other models. These models exhibit

particularly stable and relatively close sample performances (Figure 2.3(a-right)). The fact

that, CCC models show smaller losses than the equivalent DCC (the same holds also for

O and GO models) is not surprising. In fact, when the process is characterized by simple

dynamics, as in the case of exchange rates, simple, even misspecified models can outperform

more flexible specifications especially in presence of high estimation uncertainty, as pointed

out by Giacomini and White (2006). The worst performing models are the ones allowing

for non-stationarity, with the exception of the three specifications based on the RiskMetrics

approach which rank in the middle of the classification. Although the overall ranking is well

preserved across all frequencies, it appears particularly stable when Σ̂t,δ is computed using

5-minute to 1-hour returns. As the quality of the proxy deteriorates, the ranking becomes

sensibly more volatile. As pointed out by Hansen and Lunde (2006a), we can observe

discrepancies between the empirical and the approximated ranking in finite samples (i.e.,

sampling variability). These differences must not be confused with the objective bias. As

the accuracy of the proxy deteriorates, the loss function becomes less informative, and as

a result it is more difficult to effectively order models’ performances. The effect becomes

more severe when there is a high degree of similarity between models under evaluation.

Results for the 10-step ahead forecast horizon, see Figure 2.3(b), are in line with our

simulation results. Model performances tend to cluster and loss differentials between clusters

broaden. The CCC-Garch and CCC-Gjr perform largely better than all the other models

and, in particular, they leave behind the corresponding DCC specifications. Although the
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Figure 2.3: Ranking implied by LF (robust). Ranking based on sample performances (left)
and loss differentials from common average (right).

models’ performances are more stable than in the 1-step ahead forecast horizon (Figure

2.3(b-right)), the convergence of the sample performances of a number of models induces

an extremely large variability of the ranking in the middle of the classification (Figure

2.3(b-left)).

Figure 2.4(a-left) illustrates to what extent the presence of the objective bias can affect

the ranking when using a non-robust loss function. In this case, the distortion in the ordering

is striking. The CCC and the DCC models with Rm conditional variances rank 7th and 8th

respectively at δ = 5 minutes, but they rapidly climb towards the top of the classification

as the frequency for Σ̂t,δ lowers. Starting from δ = 15 minutes they reach the top of the

classification, ranking first and third. Similarly, the RiskMetrics model, ranking 11th when

δ = 5 minutes, joins the top of the ranking at a relatively high frequency. When Σ̂t,δ is

computed using data sampled at a frequency equal or lower than 20 minutes, the RiskMetrics

model ranks 3rd, behind the CCC-Rm and DCC-Rm models. Given that these models are

characterized by a dynamic in the variance structure imposed ex-ante and independent from

the data (with the only exception the DCC-Rm for which the parameters of the dynamic

correlation are estimated), it is unlikely that such models are the best forecasting models.

Similarly to what we observe in the simulation study, a distorted ordering is not the only
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Figure 2.4: Ranking implied by L1M (non-robust). Ranking based on sample performances
(left) and loss differentials from common average (right).

evidence of a distorted outcome. In fact, from Figure 2.4(a-right) we remark also that, as

the sampling frequency used to compute Σ̂t,δ lowers, the performance of RiskMetrics-type

models steadily improve with respect to the other models. This result is fallacious because

it is only due to the deterioration of the quality of the proxy. Similar conclusions hold when

we consider the 10-step ahead forecast horizon (Figure 2.3(b)).

2.5.3 Model confidence set

To illustrate how critical an adequate choice of the loss function is for model selection based

on forecasting ability, we apply the Model Confidence Set (MCS) test of Hansen, Lunde,

and Nason (2010a) to the set of 24 MGARCH models considered in the previous section.

As explained in Chapter 1, the MCS test is a procedure that allows to identify a subset of

superior models (in terms of predictive ability) containing the best one at a given level of

confidence. The selection of the superior models by the MCS approach obviously depends on

the orderings implied by a loss function (e.g., the ranking given in Figures 2.3(a) and 2.4(a)

- left panels). Thus, an unfortunate choice of the loss function can result in an incorrect

identification of the set of superior models even if the testing procedure is formally valid.
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Table 2.3 reports the MCS obtained under LF and L1M , with respect to five volatility

proxies Σ̂t,δ (δ=5m, 20m, 1h20m, 2h40m, 8h), and for a 1-step and 10-step forecast horizon.

Table 2.3: Model Confidence Set

1-step ahead forecast horizon

Frobenius distance (robust)

δ=5m δ=20m δ=1h20m δ=2h40m δ=8h

CCC-Garch CCC-Garch CCC-Garch CCC-Garch CCC-Garch

CCC-Gjr CCC-Gjr CCC-Gjr CCC-Gjr CCC-Gjr

DCC-Garch DCC-Garch DCC-Garch DCC-Garch

DCC-Gjr DCC-Gjr DCC-Gjr DCC-Gjr

DCC-Aparch DCC-Aparch DCC-Aparch

D-Bekk D-Bekk D-Bekk

CCC-Egarch CCC-Egarch

CCC-Rm CCC-Rm

DCC-Rm DCC-Rm

RiskMetrics RiskMetrics

O-Garch O-Egarch

CCC-Aparch

Entrywise-1 norm (non-robust)

δ=5m δ=20m δ=1h20m δ=2h40m δ=8h

RiskMetrics RiskMetrics RiskMetrics RiskMetrics

DCC-Rm DCC-Rm DCC-Rm DCC-Rm

CCC-Rm CCC-Rm CCC-Rm CCC-Rm

CCC-Garch CCC-Garch CCC-Garch

CCC-Gjr CCC-Gjr CCC-Gjr

DCC-Aparch DCC-Aparch

DCC-Garch DCC-Garch

DCC-Gjr DCC-Gjr

D-Bekk

10-step ahead forecast horizon

Frobenius distance (robust)

δ=5m δ=20m δ=1h20m δ=2h40m δ=8h

CCC-Garch CCC-Garch CCC-Garch CCC-Garch CCC-Garch

CCC-Gjr CCC-Gjr CCC-Gjr

O-Egarch O-Egarch O-Egarch

O-Garch O-Garch

O-Aparch O-Aparch

DCC-Garch DCC-Garch

DCC-Gjr DCC-Gjr

D-Bekk D-Bekk

CCC-Rm CCC-Rm

DCC-Rm DCC-Rm

RiskMetrics RiskMetrics

CCC-Egarch

CCC-Aparch

DCC-Aparch

GO-Garch

GO-Egarch

O-Gjr

Entrywise-1 norm (non-robust)

δ=5m δ=20m δ=1h20m δ=2h40m δ=8h

DCC-Rm DCC-Rm DCC-Rm DCC-Rm

CCC-Rm CCC-Rm

CCC-Garch CCC-Garch CCC-Garch

CCC-Gjr

O-Garch

RiskMetrics

Notes. The initial set contains 24 models. Test statistics TD (deviation from common average). Significance level
α = 0.1. Sample size=650 obs. Standard errors based on 10,000 bootstrap resamples.

The MCSs with a confidence level α = 0.1 are reported in Table 2.3. Under the robust

loss function, LF , the sets of superior models appear to be consistent across sampling

frequencies (δ). In terms of MCS, consistency of the ranking implies that the set of superior

models identified using a high precision proxy is always included in the set obtained using a

less accurate proxy. The fact that the set of superior models increases in size as the sampling

frequency lowers is expected. This result is due to the loss of accuracy of the proxy which
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translates into a higher variability of the sample evaluation of each model. Since the loss

function becomes less informative it is more difficult to discriminate between models and,

for a given confidence level, the set of superior models increases. For instance, the MCS

obtained using a proxy based on 8-hour returns contains one half for 1-day horizon and two

thirds for 10-day horizon of the 24 candidate models.

Relying on volatility signature plots and signal to noise ratios, Andersen, Bollerslev,

Diebold, and Labys (1999) and Russell and Bandi (2004) show that a volatility proxy based

on a sampling frequency between 5 and 20 minutes strikes a good compromise between the

loss of accuracy (lower frequencies) and the presence of noise due to microstructure frictions

(higher frequencies). Indeed, when δ = 5 and 20 minutes, we obtain the most accurate sets,

showing that the MCS is able to separate efficiently superior from inferior models under the

robust loss function.

Our results clearly demonstrate the value of high precision proxies. Although consistency

of the ordering is ensured by an appropriate choice of the loss function independently of

the quality of the proxy, a high precision proxy allows to efficiently discriminate between

models.

Results based on the non-robust Entrywise-1 norm loss function confirms the presence

of the objective bias. For both forecast horizons, the MCS changes in composition and

reduces in size as the quality of the proxy deteriorates. This is the opposite effect that

we find with the robust loss function. The sets obtained using a proxy based on 5-minute

and 8-hour returns do not share common elements. At δ=8 hours, the set includes only

RiskMetrics-type models, which corroborates the findings in the previous subsection.

2.6 Conclusion

Ranking the forecasting performances of multivariate volatility models raises two important

issues. First, there is the choice of the loss function (the criterion used to measure the

accuracy of the predicted covariance matrices) and second, the choice of a proxy of the

unobservable volatility measure used to evaluate models forecasts. However, the evaluation

of volatility models is inherently problematic because when the unobservable volatility is

substituted by a proxy, the ordering implied by a loss function may result to be biased with

respect to the intended one.

In this chapter, we first define sufficient conditions for a loss function to ensure con-

sistency between the true, unobservable, ranking - based on the true conditional variance

matrix - and the approximated one - based on a conditionally unbiased proxy. Second, we

identify a necessary and sufficient functional form for the loss function to ensure consistent
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ordering, under the use of a proxy, in matrix and vector spaces. Finally, we provide a

number of parameterizations, some of which are often used in practice and discuss their

properties.

In the simulation study, we illustrate using artificial data the practical implications of

our theoretical results in a simulation based comparison of multivariate GARCH models

in a realistic setting. We sample from a continuous time multivariate diffusion process

and estimate discrete time multivariate GARCH models to illustrate the sensitivity of the

ranking to different choices of the loss function and to the quality of the proxy for different

forecast horizons. We observe that, if the quality of the proxy is sufficiently good, both

robust and non-robust loss functions rank properly. However, when the quality of the

proxy is poor, only the robust loss functions rank properly while the ranking implied by the

non-robust loss functions appears heavily biased. Our findings also hold when the sample

size in the estimation period increases.

The application to three foreign exchange rates illustrates, in an out-of-sample forecast

comparison among 24 multivariate GARCH models, the robustness of the ordering under

a robust loss function and the importance of high precision proxy for model selection. We

also study to what extent the ranking and the MCS test are affected when we combine an

uninformative proxy with a robust and a non-robust loss function. Coupling a robust loss

function with a relatively uninformative proxy is likely result in an uninformative MCS,

i.e., in the impossibility to efficiently discriminate between forecast performances. When

the evaluation is based on an non-robust loss function and an uninformative proxy the MCS

obtained under more accurate proxies is likely to differ (in full or in part) from the MCS

obtained under less accurate proxies reflecting the inconsistency of the ordering. Hence,

an adequate choice of the combination loss function/quality of the proxy, is crucial to the

evaluation, because even if the testing procedure is formally valid (independently from

the choice of the loss function or the proxy), it may result in a perverse or at best an

uninformative outcome. This is an important message for the applied econometrician.

There are several extensions for future research. First, this thesis ranks multivariate

volatility models based on statistical loss functions and focuses on conditions for consistent

ranking from a more theoretical viewpoint. At some point an economic loss function has to

be introduced when the forecasted volatility matrices are actually used in financial appli-

cations such as portfolio management and option pricing. It is clear that the model with

the smallest statistical loss is always preferred but it may happen that other models with

small statistical losses become indistinguishable in terms of economic loss. This issue has

not been addressed in this thesis. Second, from an applied viewpoint, the behavior of the

ranking when using proxies other than realized covariance should be further investigated.
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2.7 Appendix A: Proofs

Proof of Proposition 2.1. To illustrate the validity of Proposition 2.1, consider the

second order Taylor expansion of L(Σ̂t,Ht) around the true value Σt:

L(Σ̂t,Ht) ∼= L(Σt,Ht) +

(
∂L(Σt, Ht)

∂σt

)′

(σ̂t − σt) +
1

2

[
(σ̂t − σt)

′∂
2L(Σt,Ht)

∂σt∂σ
′
t

(σ̂t − σt)

]
.

Taking conditional expectations with respect to ℑt−1 we get

Et−1[L(Σ̂t,Ht)] ∼= L(Σt,Ht) +
1

2

[
Et−1

(
ξ
′
t

∂2L(Σt,Ht)

∂σt∂σ
′
t

ξt

)]
, (2.18)

because, under A2.2 and A2.4 and when Proposition 2.1 is satisfied, we have:

(a) Et−1

[(
∂L(Σt,Ht)

∂σt

)′

ξt

]
=
(
∂L(Σt,Ht)

∂σt

)′

Et−1(ξt) = 0, i.e., σ̂t is conditionally unbiased

with respect to σt;

(b)
∂2L(Σt,Hm,t)

∂σt∂σ′
t

= Ψ(σt, .) ∀m, i.e., the last term in (2.18) does not depend on model m,

hence Et−1

[
L(Σ̂t,Ht)

]
and L(Σt,Ht) induce the same ordering over m.

To conclude, (2.18) implies that in order to achieve consistency in the sense of Definition

2, the equivalence between Et−1

[
L(Σ̂t,Ht)

]
and L(Σt,Ht) is not required, but it suffices

that the discrepancy between the two terms, 1
2Et−1

(
ξ
′
tΨ(σt, .)ξt

)
, is constant across models,

thus not affecting the ordering.

Proof of Lemma 2.1. Under Assumptions A2.1 to A2.4, the first order conditions of the

minimization problem in (2.3), considering the expansion in (2.18), are

∂Et−1

[
L(Σ̂

(s)
t ,Ht)

]
∂hk,t
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l,m,t

for all s, with l,m = 1, ..., N(N+1)/2, k = 1, ..., N(N+1)/2 and where V
(s)
l,m,t = Et−1[ξ

(s)
l,t ξ

(s)
m,t]
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and Ψ(σt, ht)l,m represent respectively the element [l,m] of the variance matrix of the proxy

V
(s)
t = Et−1[ξ

(s)
t ξ

(s)′
t ] and of Ψ(σt, ht), the matrix of second derivatives of L(., .) with respect

to σt.

The first order conditions imply that H
∗(s)
t is the solution of

∂Et−1

[
L(Σ̂

(s)
t ,H

∗(s)
t )

]
∂hk,t

= 0 ∀k

and, under A2.3, A1.1 ensures that second order conditions are satisfied. Then, we have

that

− ∂L(Σt,H
∗(s)
t )

∂hk,t
∼=

1

2

∑
l,m

∂Ψ(σt, .)lm
∂hk,t

V
(s)
l,m,t. (2.19)

Under i), i.e., ∂Ψ(σt,.)lm
∂hk,t

= 0 ∀k, the first order conditions of the loss function based on

the proxy lead to the same optimal forecast as if the true variance matrix was observable,

even in presence of a noisy volatility proxy. From A1.2 it follows that

∂L(Σt,H
∗(s)
t )

∂hk,t
= 0 ∀k ⇔ H

∗(s)
t = Σt ∀s,

that is the identification of the optimal forecast is not affected by the presence of noise in

the proxy. Since the optimal forecast equals the conditional variance, by Assumption A1.2,

A2.2 and A2.4, we also have that H
∗(s)
t = H∗

t = Σt = Et−1(Σ̂t).

Under ii), i.e.,
∂Ψ(σ2

t ,ht)lm
∂hk,t

̸= 0 for some k, then as s→ ∞, by A2.5 and (2.19) we have

∂L(Σt, H
∗(s)
t )

∂hk,t

p→ 0 ∀k ⇔ H
∗(s)
t

p→ Σt,

which concludes the proof.

Proof of Proposition 2.2. To prove the proposition, we proceed as in Patton (2009).

We show the equivalence of the following statements:

-S1: the loss function takes the form in the proposition;

-S2: the loss function is robust in the sense of Definition 2;

-S3: the optimal forecast under the loss function is the conditional variance matrix.

The proof exploits the results of Lemma 8.1 in Gourieroux and Monfort (1995) page 240

which can be formalized as follows. Let g1, ..., gk, h be some functions from IRG into IR,

satisfying
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i. for any k, there exist some probability law P1k and P2k such that∫
y
gk(y)dP1k(y) > 0,

∫
y
gk(y)dP2k(y) < 0,

∫
y
gj(y)dP1k(y) = 0,

∫
y
gj(y)dP2k(y) = 0, ∀j ̸= k,

ii. for any probability law P such that∫
y
gk(y)dP (y) = 0, ∀k = 1, ...,K, then

∫
y
h(y)dP(y) = 0,

then there exist some real numbers λk, k = 1, ...,K, such that

h(y) =

K∑
k=1

λkgk(y), ∀y ∈ IRG.

Step 1: S1⇒S2. The result follows directly form Proposition 2.1, in fact:

∂2L(Σt,Ht)

∂σt∂σ′t
= ∇2C̃(Σt) = Ψ(σt, .)

since ∂2(C(Ht)′σt)
∂σt∂σ′

t
= 0, and does not depend on Ht.

Step 2: S2⇒S3. By Assumption A3.2, there exists an H∗
t in the support of L(Σ̂t,Ht) such

that H∗
t = Et−1(Σ̂t). This implies that ∀Ht ∈ int(Ḣ) \ {H∗

t }:

Et−1

[
L(Σ̂t,H

∗
t )
]

≤ Et−1

[
L(Σ̂t,Ht)

]
and therefore by the law of iterated expectations:

E
[
L(Σ̂t,H

∗
t )
]

≤ E
[
L(Σ̂t,Ht)

]
.

Then by Definition 2, under S2, we can write

E(L(Σ̂t, H
∗
t )) ≤ E(L(Σ̂t,Ht)) ⇔ E(L(Σt,H

∗
t )) ≤ E(L(Σt,Ht))

if we set Ht = Σt, then by Assumptions A1.1 to A1.3, E(L(Σt,Σt)) = 0 ⇒ E(L(Σt,H
∗
t )) = 0

and therefore H∗
t = Σt.

Step 3: S1⇔S3. The last step uses the arguments of Gourieroux and Monfort (1995), which
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prove sufficiency and necessity of the linear exponential functional form for the pseudo true

density to prove consistency of the pseudo maximum likelihood estimator.

First, we prove sufficiency (S1⇒S3). Consider the first order conditions evaluated at

the optimum (Ht = H∗
t ), that is

∂Et−1

[
L(Σ̂t,Ht)

]
∂ht

= C(H∗
t ) +∇2C̃(Ht)vech(Et−1(Σ̂t)−H∗

t )− C(H∗
t ) = 0

= ∇2C̃(Ht)vech(Et−1(Σ̂t)−H∗
t ) = 0

⇔ Et−1(Σ̂t) = H∗
t .

Second, to prove necessity (S3⇒S1), consider that at the optimum we must have

Et−1(Σ̂t) = H∗
t , and consequently

Et−1

(
∂L(Σ̂t,H

∗
t )

∂ht

)
= 0,

for any conditional distribution Ft ∈ F .

Applying Lemma 8.1 in Gourieroux and Monfort (1995) page 240, and considering

y = vech(Σ̂t) and as functions gk(y) = (vech(Σ̂t − H∗
t )k and as function h(y) the partial

derivatives
∂L(Σ̂t,H∗

t )
∂hk,t

, k = 1, ...,K = N(N + 1)/2, then there exists a square matrix Λ of

size K which is only function of H∗
t such that

∂L(Σ̂t, H
∗
t )

∂ht
= Λ(H∗

t )vech(Σ̂t −H∗
t ). (2.20)

Since we want to ensure that H∗
t is the minimizer of L(Σ̂t,H

∗
t ) then we must have

∂Et−1[L(Σ̂t,Ht)]
∂ht∂h′

t
satisfying second order necessary or sufficient conditions. Using Assumption

A3.3 we can interchange differentiation and expectation (see L’Ecuyer (1990) and L’Ecuyer

(1995) for details) to obtain

Et−1

(
∂2L(Σ̂t,H

∗
t )

∂ht∂h′t

)
= Et−1

(
∂Λ(H∗

t )vech(Σ̂t −H∗
t )

∂ht

)

= Et−1




K∑
i=1

∂Λ(H∗
t )1i

∂h1
(σi − h∗i ) ...

K∑
i=1

∂Λ(H∗
t )1i

∂hk
(σi − h∗i )

...
. . .

...
K∑
i=1

∂Λ(H∗
t )ki

∂h1
(σi − h∗i ) ...

K∑
i=1

∂Λ(H∗
t )ki

∂hk
(σi − h∗i )



− Λ(H∗
t )

= −Λ(H∗
t ),
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withK = N(N+1)/2. Λ(H∗
t ) is positive definite which ensures that the necessary condition

for the minimum is satisfied.

Now, it suffices to integrate (2.20) (up to a constant and/or a term that solely depends

on Σ̂t) to recover the loss function of the form stated in the proposition. In fact, if we define

Λ(Ht) = ∇2C̃(Ht) = C ′(Ht),

and rewrite (2.20) as

C ′(Ht)vech(Σ̂t)− C ′(Ht)vech(Ht),

we have that

C ′(Ht)vech(Σ̂t) =
∂C(Ht)

′vech(Σ̂t)

∂ht

C ′(Ht)vech(Ht) =
∂C(Ht)

′vech(Ht)

∂ht
− C(Ht)

=
∂C(Ht)

′vech(Ht)

∂ht
− ∂C̃(Ht)

∂ht
.

Therefore (2.20) admits as primitive

C(Ht)
′vech(Σ̂t)− C(Ht)

′vech(Ht) + C̃(Ht).

Rearranging and allowing for a term that depends on Σ̂t, we obtain

L(Σ̂t,Ht) = C̃(Ht) + C̃(Σ̂t) + C ′(Ht)vech(Σ̂t −Ht),

where ∂C̃(Σ̂t)
∂ht

= 0, which concludes the proof.

Proof of Corollary 2.1. Since Σ̂t and Ht are symmetric, then

Tr[C̄(Ht)(Σ̂t −Ht)] =
∑
i

c̄i,i(Ht)(σ̂i,i,t − hi,i,t) + 2
∑
i<j

c̄i,j(Ht)(σ̂i,j,t − hi,j,t) i, j = 1, ..., N

=
∑
i

∂C̃(Ht)

∂hi,i,t
(σ̂i,i,t − hi,i,t) + 2

∑
i<j

1

2

∂C̃(Ht)

∂hi,j,t
(σ̂i,j,t − hi,j,t)

= C(Ht)
′vech(Σ̂t −Ht),

with C(Ht)
′ as defined in Proposition 2.2.

Proof of Remark 1. The proof of part i) of the Remark follows from Proposition 2.2.



2.7. Appendix A: Proofs 61

For the second part, notice that

∂2L(Σt,Ht)

∂σt∂σ′t
= −C̃ ′′

σt
(Σt),

since if f [·] is a linear map, then f [C̄(Ht)(Σt − Ht)] is linear in σi,j,t ∀i, j = 1, ..., N .

Hence, the general conclusion of Proposition 2.1 holds even under violation of A1.2: the

ordering implied by Et−1[L(Σ̂t,Ht)] is apparently robust for the one based on L(Σt,Ht)

in the sense that is insensitive to the substitution of the true variance matrix by a proxy

(by the same reasoning provided in the proof of Proposition 2.1), i.e., argmin
Ht∈Ḣ

L(Σt,Ht) =

argmin
Ht∈Ḣ

Et−1

[
L(Σ̂t, Ht)

]
.

We now show that, though apparently robust, the ordering obtained when f [·] ̸≡ Tr[·]
is not a valid one, that is it differs from any valid or acceptable ordering and in particular

it holds H∗
t ̸= Et−1(Σ̂t) = Σt.

Consider the first order conditions of (2.3) under the loss in (2.6) evaluated at the

optimum H∗
t

∂Et−1

[
L(Σ̂t,Ht)

]
∂ht

= C(H∗
t ) + f ′ht

[C̄(H∗
t )(Et−1(Σ̂t)−H∗

t )] = 0.

Recall that C(Ht) = ∇C̃(Ht) and f
′
ht

is the gradient of f with respect to ht. Using the fact

that f is a linear map, the typical element of the gradient of Et−1

[
L(Σ̂t,Ht)

]
, indexed by

i, j = 1, ..., N , i ≤ j is (we omit the time index to simplify notation)

∂Et−1

[
L(Σ̂t,Ht)

]
∂hi,j

= C̃ ′
hi,j

(H∗
t ) + f

[
∂C̄(H∗

t )

∂hi,j
(Et−1(Σ̂t)−H∗

t )

]
− f

[
C̄(H∗

t )
∂H∗

t

∂hi,j

]
= 0.

(2.21)

To deliver an appropriate ordering, the loss function must be such that it is uniquely

minimized at H∗
t = Et−1(Σ̂t) = Σt, that is optimal forecast is the true conditional variance,

which implies

f

[
∂C̄(H∗

t )

∂hi,j
(Et−1(Σ̂t −H∗

t )

]
= 0.

Therefore, in (2.21), it must hold

f

[
C̄(H∗

t )
∂H∗

t

∂hi,j

]
= C̃ ′

hi,j
(H∗

t ). (2.22)

Since
∂H∗

t
∂hi,j

, for each i, j = 1, ..., N i ≤ j, is a N×N symmetric matrix with elements indexed
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by [i, j] and [j, i] equal to 1 and zero elsewhere, (2.22) holds if and only if f(.) = Tr(.). In

fact, from (2.22)

i = j =⇒ Tr

[
C̄(H∗

t )
∂H∗

t

∂hi,i

]
= c̄i,i(H

∗
t ) = C̃ ′

hi,i
(H∗

t ) (2.23)

i ̸= j =⇒ Tr

[
C̄(H∗)

∂H∗

∂hi,j

]
= 2c̄i,j(H

∗
t ) = C̃ ′

hi,j
(H∗

t ).

Substituting (2.23) in (2.21), we obtain

∂Et−1

[
L(Σ̂∗

t , Ht)
]

∂hi,j
= C̃ ′

hi,j
(H∗

t ) + Tr

[
∂C(H∗

t )

∂hij
(Et−1(Σ̂t)−H∗

t )

]
− C̃ ′

hij
(H∗

t )

= Tr

[
∂C(H∗

t )

∂hi,j
(Σ̂t −H∗

t )

]
,

and finally

∂Et−1

[
L(Σ̂t,Ht)

]
∂ht

=


Tr
[
∂C̄(H∗

t )
∂h1,1

(Et−1(Σ̂t)−H∗
t )
]

...

Tr
[
∂C̄(H∗

t )
∂hi,j

(Et−1(Σ̂t)−H∗
t )
]

...

 = 0

⇔ H∗
t = Et−1(Σ̂t),

which concludes the proof.

Proof of Proposition 2.3. By Proposition 2.2, a robust loss functions based on the

forecast error must have the form

L(Σ̂t −Ht) = C̃(Ht)− C̃(Σ̂t) + C(Ht)
′vech(Σ̂t −Ht). (2.24)

Consider

∂L(Σ̂t −Ht)

∂ht
= ∇2C̃(Ht)vech(Σ̂t −Ht)

∂L(Σ̂t −Ht)

∂σt
= C(Ht)− C(Σ̂t).

Note that since the loss function is only based on the forecast error then L(Σ̂t −Ht) then

L(Σ̂t − Ht) = L(Ht − Σ̂t), i.e., L(., .) is symmetric under 180◦ rotation around the origin
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and, which implies

− ∂L(Σ̂t −Ht)

∂ht
=

∂L(Σ̂t −Ht)

∂σt
, (2.25)

and therefore

∇2C̃(Ht)vech(Σ̂t −Ht) = C(Ht)− C(Σ̂t),

for all Σ̂t and Ht. Differentiating both sides of (2.25) with respect to σt we obtain

∇2C̃(Ht) = ∇2C̃(Σ̂t),

which implies

∇2C̃(Ht) = Λ, (2.26)

where Λ is a matrix of constants.

Equation (2.26) implies that C(Ht) = ∇2C̃(Ht)vech(Ht) is homogeneous of degree 1,

and hence C̃(·) is homogeneous of degree 2 then so is L(Σ̂t −Ht). Applying Euler theorem

for homogeneous functions we have that 2C̃(Ht) = C(Ht)
′vech(Ht). The loss function in

(2.24) can be rewritten as

L(Σ̂t −Ht) = −C̃(Ht)− C̃(Σ̂t) + C(Ht)
′vech(Σ̂t). (2.27)

In order to satisfy second order conditions Λ must be negative definite, according to

Proposition 2.2. Since L(Σ̂t,Ht) is homogeneous of degree 2, starting from (2.26), we can

apply Euler theorem for homogeneous functions and obtain

C(Ht) = Λvech(Ht)

C̃(Ht) =
1

2
vech(Ht)

′Λvech(Ht).

Substituting the expression for C̃(.) in (2.27) and rearranging we obtain the quadratic loss

L(Σ̂t −Ht) = −1

2
vech(Σ̂t −Ht)

′Λvech(Σ̂t −Ht)

= vech(Σ̂t −Ht)
′Λ̂vech(Σ̂t −Ht),

with Λ̂ = −1
2Λ.
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2.8 Appendix B: Examples for Section 2.2.4

In the following examples, for ease of exposition, we consider a forecast error matrix of

dimension N = 2.

In the first three examples we investigate the properties of loss functions belonging to

the family of quadratic loss functions defined in Proposition 2.3. The vector of forecast

errors of interest is therefore

vech(Σt −Ht) =


σ1,1,t − h1,1,t

σ1,2,t − h1,2,t

σ2,2,t − h2,2,t

 ,

which allows to plot the contours of the loss function.

The first loss function that we consider is the Euclidean distance, which corresponds to

a choice of Λ̂ = IK and can be expressed as

LE = (σ1,1,t − h1,1,t)
2 + (σ1,2,t − h1,2,t)

2 + (σ2,2,t − h2,2,t)
2.

Figure 2.5 reports the contour of LE = 1.
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Figure 2.5: Euclidean distance - LE = 1

The contours of LE are spheres centered at the origin. The loss function has mirror sym-

metry about all coordinate planes, it is also symmetric under any rotation about the origin

and, being a symmetric polynomial, it is symmetric about the bisector planes.
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The second loss function is the weighted Euclidean distance with

Λ̂ =


1 0 0

0 4 0

0 0 2


which implies

LWE = (σ1,1,t − h1,1,t)
2 + 4(σ1,2,t − h1,2,t)

2 + 2(σ2,2,t − h2,2,t)
2,

which implies that (σ2,2,t−h2,2,t) is penalized double with respect to (σ1,1,t−h1,1,t), while the
covariance forecast error is penalized four times more. The reason behind such particular

choice of Λ̂ is to emphasize the role of each weight and to show how they affect the shape

of the loss function. The contour of LWE = 1 is an ellipsoid centered at the origin (Figure

2.6).
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Figure 2.6: Weighted Euclidean distance - LWE = 1

The contour is squeezed around the (σ1,1,t − h1,1,t) axis due to the unequal weighting. The

loss function in symmetric about all coordinate planes and it is also symmetric under a 180◦

rotation around the origin, i.e., considering the absolute forecast error vector |σt − ht| =
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(0.2, 0.4, 0.8), we have

LWE(0.2, 0.4, 0.8) = LWE(−0.2,−0.4,−0.8) = 1.96

LWE(0.2, 0.4,−0.8) = LWE(0.2, 0.4,−0.8) = 1.96

LWE(0.2,−0.4, 0.8) = LWE(0.2,−0.4, 0.8) = 1.96

...

However, LWE is not symmetric about the bisector planes, i.e.

LWE(0.2, 0.4, 0.8) = 1.96 ̸= 2.92 = LWE(0.2, 0.8, 0.4)

̸= 1.12 = LWE(0.8, 0.2, 0.4)

...

The last example is the pseudo Mahalanobis distance with

Λ̂ =


1 0 0.6

0 4 0

0.6 0 2

 ,
that is

LM = (σ1,1,t−h1,1,t)2+4(σ1,2,t−h1,2,t)2+2(σ2,2,t−h2,2,t)2+1.2(σ1,1,t−h1,1,t)(σ2,2,t−h2,2,t).

For illustrative purposes, we set only one off diagonal element of the matrix of weights

different from 0. As in the previous case, the contour of LM = 1 is an ellipsoid centered at

the origin (Figure 2.7). It is clear that LM is only symmetric under a 180◦ around the origin.

Furthermore, its axes of symmetry (dashed lines in Figure 2.7), whose directions depend on

the sign of the off diagonal elements of Λ̂, are rotated with respect to the coordinate axes

(e.g. in Figure 2.7, Λ̂ implies an horizontal rotation). In this regard, since the loss function

also includes the cross product of the elements of (σt − ht) weighted by the off diagonal

elements of Λ̂ (which can be positive and/or negative provided Λ̂ satisfies Proposition 2.3),

a positive weight means that, for given absolute forecast errors |σt − ht|, LM will penalize

more the outcomes where both variances are over/under predicted. In fact, consider LM

evaluated at |σt − ht| = (0.8, 0, 0.4), then

LM (0.8, 0,−0.4) = LM (−0.8, 0, 0.4) = 0.576

LM (0.8, 0, 0.4) = LM (−0.8, 0,−0.4) = 1.344.
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Figure 2.7: Pseudo Mahalanobis distance - LM = 1

In the last example we focus on the Stein loss function. Note that providing a com-

prehensive illustration of the geometric properties of LS is somehow more complex then

in the previous cases. We have shown that quadratic loss functions are defined on the

forecast error matrix Σt − Ht which implies that L(Σt − Ht) : RN×N → R+ even if Σt

and Ht ∈ RN×N
++ (the space of positive definite matrices). This allows for a graphical rep-

resentation of the forecast error vector, i.e., the vector of unique elements of Σt − Ht, in

the space RN(N+1)/2. On the other hand, LS is defined on the standardized (in matrix

sense) forecast error ΣtH
−1
t , that is positive definite. Since the domain of L(ΣtH

−1
t ) is

RN×N
++ ⊂ RN×N , the graphical representation of the contours in the Euclidean space is not

an easy task. Furthermore, unlike the loss functions based on the forecast error matrix, LS

cannot be expressed as a combination of functions of the elementwise forecast errors, i.e.,

L(Σt,Ht) = L(l(σ1,t, h1,t), ..., l(σK,t, hK,t)) , except in the trivial case when Σt and Ht are

diagonal. Therefore, to illustrate the properties of the Stein loss function we rely on some

numerical examples and the analysis of the conditional loss.

Consider a standardized forecast error matrix of dimension N = 2.

ΣtH
−1
t =

σ1,2,th1,2,t−σ1,1,th2,2,t

h2
1,2,t−h1,1,th2,2,t

σ1,1,th1,2,t−σ1,2,th1,1,t

h2
1,2,t−h1,1,th2,2,t

σ2,2,th1,2,t−σ1,2,th2,2,t

h2
1,2,t−h1,1,th2,2,t

σ1,2,th1,2,t−σ2,2,th1,1,t

h2
1,2,t−h1,1,th2,2,t

 .
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The Stein loss function is therefore

LS =
σ1,1,th2,2,t + σ2,2,th1,1,t − 2σ1,2,th1,2,t

h1,1,th2,2,t − h21,2,t
− ln(

σ1,1,tσ2,2,t − σ21,2,t
h1,1,th2,2,t − h21,2,t

)− 2

For ease of exposition, we set Σt to some arbitrary values, say

Σt =

[
2 1.5

1.5 3

]
.

Since the loss function is expressed in terms of standardized forecast errors, we first

assess the case of over/under prediction in measure of ±0.5Σt. The loss when each element

of Ht over/under predicts the corresponding element of Σt (setting the others at their

optimal values), is

(−) (+)

LS(h1,1,t = 2± 1) 2.390 0.143

LS(h2,2,t = 3± 1.5) 2.390 0.143

LS(h1,2,t = 1.5± 0.75) 2.213 0.164

LS(Ht = (1± 0.5)Σt) 0.613 0.144

The Stein loss function is therefore asymmetric with respect to over/under predictions,

and, in particular, under-predictions are heavily penalized. However, the conditional losses

with respect to the variances are symmetric up to a proportionality constant. Figure 2.8(a)

and 2.8(b) report LS as a function of h1,1,t for several values of h2,2,t (with h1,2,t = σ1,2,t).

Figure 2.8(c) reports LS as a function of both h1,1,t and h2,2,t, given h1,2,t = σ1,2,t, while

Figure 2.8(d) reports the contours of the representation in Figure 2.8(c).

Of particular interest is the representation of LS as a function of the covariance. Note

that, if for any given h1,1,t and h2,2,t, h1,2,t = ρ
√
h1,1,th2,2,t with ρ ∈ (−1.1). The domain

of the conditional loss of h1,2,t is therefore centered at 0 and, using the values suggested

above, its representation is given in Figure 2.9.

Finally, note that the conditional loss in Figure 2.9 is symmetric about the vertical axis

only in the trivial case where Σt is diagonal.
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Chapter 3

On the Forecasting Accuracy of Multivariate

GARCH Models1

3.1 Introduction

Most financial applications are multivariate problems with volatility forecasts as one of

the inputs. Forecasting sequences of variance matrices is relatively easily done using a

multivariate GARCH model, i.e. the conditional variance matrix is modelled as a function

of past returns. A large number of multivariate GARCH models have been proposed in the

literature, see Bauwens, Laurent, and Rombouts (2006) and Silvennoinen and Terasvirta

(2009b) for extensive surveys. The first generation of models, for example the VEC model

of Bollerslev, Engle, and Wooldridge (1988a) and the BEKK model of Engle and Kroner

(1995), are direct extensions of the univariate GARCH model of Bollerslev (1986). These

models are very general and allow for rich and flexible dynamics for the conditional variance

matrix. They have been extensively used to model volatility spillovers and in applications

such as conditional CAPM and futures hedging. Examples are respectively Karolyi (1995)

and Bali (2008). However, being heavily parameterized, they are tractable only for a small

number of series, typically lower than four.

More recently, the focus has turned to larger scale problems such as dynamics of corre-

lations between equity and bond returns, portfolio selection and Value at Risk, see Engle

(2009) for examples. In these applications, the numerical evaluation of first generation

models becomes unfeasible. Both, the number of parameters and the number of operations

required to evaluate the likelihood function tend to explode rapidly with the number of

1This chapter has been adapted from Laurent S., Rombouts J.V.K. and Violante F. (2009), On the
Forecasting Accuracy of Multivariate GARCH Models. CORE discussion paper 2010-25
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series. Alternative approaches for achieving more manageable and parsimonious specifi-

cations have been proposed. Feasible specifications can be obtained by imposing strong

parameter restrictions on the BEKK model, which includes the scalar BEKK model and

the exponentially weighted moving average model proposed by J.P.Morgan (1996). On the

one hand, factor structures like in Engle, Ng, and Rothschild (1990), the orthogonal models

of Alexander and Chibumba (1997), Alexander (2000), van der Weide (2002), Lanne and

Saikkonen (2007), and Fan, Wang, and Yao (2008) have been proposed. On the other hand,

increasing attention has been devoted to conditional correlation models because they can

be estimated using a multi-step procedure. The first models have been introduced by Engle

(2002a) and Tse and Tsui (2002). Extensions of Engle (2002a) are the asymmetric condi-

tional correlation model of Cappiello, Engle, and Sheppard (2006), the consistent DCC of

Aielli (2006) and the sequential DCC model of Palandri (2009).

A priori it is difficult, if not impossible, to identify which model has the best out-of-

sample forecasting performance. The evaluation of univariate volatility forecasts is well

understood, see Hansen and Lunde (2005), Hansen, Lunde, and Nason (2003), Becker and

Clements (2008) among others. In the multivariate setting, although many models are avail-

able, from an applied viewpoint, there are no clear guidelines available on model evaluation

and selection.

This chapter addresses the selection of multivariate GARCH models in terms of condi-

tional variance matrix out-of-sample forecasting accuracy by providing a large scale analysis.

We consider 10 assets from the NYSE, 125 multivariate GARCH specifications, 3 forecast

horizons (1, 5 and 20-day ahead), 6 ex-post estimators (proxies) of the conditional covariance

matrix, 4 statistical loss functions to measure model performances and 2 statistical tests

for identification of the models with superior predictive performances. We also condition

the analysis to the forecast sample period. We consider 3 different periods homogeneous

in their volatility dynamics (calm, volatile and extremely volatile markets). We proceed

as follows. First, we estimate a large variety of models and produce a set of out-of-sample

model based forecasts. This can be easily done using standard econometric software pack-

ages which are today readily available to the forecaster. Second, we identify the set of

models that show superior forecasting performance. These models can then be used either

to produce combined forecasts or to select a particular preferred model. Recent somewhat

related studies include Clements, Doolan, Hurn, and Becker (2009), Caporin and McAleer

(2010) and Chiriac and Voev (2010), though their analysis usually involves a small number

of alternative parameterizations and/or small cross sectional dimensions.

Several approaches have been proposed with respect to the inference on the set of su-

perior models. Testing procedure of equal predictive ability (EPA) based on pairwise com-
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parison of forecast performances have been introduced by Diebold and Mariano (1995) and

then generalized by West (1996), Clark and McCracken (2001), Clark and West (2006) and

Clark and West (2007). See West (2006) for a survey. Giacomini and White (2006) develop

a general framework that allows to construct tests based on conditional expectations of fore-

casts and forecasts errors and therefore for a unified treatment of nested and non-nested

models. Focussing on the forecast method rather than the model their approach allows to

take into account the estimation technique, parameter uncertainty, the choice of the sample

size, model misspecification and data heterogeneity. Since our aim is to compare a large

number of model based forecasts in order to obtain a joint confidence interval for all possible

pairwise comparisons, other alternatives based on multiple comparisons seem to be better

suited to our analysis. The reality check test for data snooping of White (2000) and the

improved version proposed by Hansen (2005) are based on superior predictive ability (SPA)

and allow for multiple comparison against a prespecified benchmark model. Apart from the

SPA test, we mainly follow the model confidence set (MCS) approach proposed by Hansen,

Lunde, and Nason (2010b). The MCS allows to identify, from a universe of model based

forecasts, a subset of models, equivalent in terms of superior ability, which outperform all

the other competing models.

To measure out-of-sample forecasting performance, model based forecasts are usually

compared to ex-post realizations as they become available. To do this, the forecaster needs

to select a loss function and a proxy for the true conditional variance matrix which is

unobservable even ex-post. The question arises on which proxy to use and to what extent

this substitution affects the forecast evaluation. Building on Hansen and Lunde (2006a)

and Patton (2009), in Chapter 2 we have addressed these questions in the case of the

comparison of multivariate volatility models using statistical loss functions. They show

that the substitution of the underlying volatility by a proxy may induce a distortion in

the ranking i.e., the evaluation based on the proxy differs from the ranking that would

be obtained if the true target was observable. However, such distortion can be avoided if

the loss function has a particular functional form. In this chapter, we use four robust loss

functions which allow for various types of asymmetry in the way variances and variance

matrix predictions are evaluated. With respect to the choice of the loss function, and

within the MCS framework, we find that the Euclidean and Frobenius loss functions (both

symmetric) appear to deliver a relatively large MCS, while the asymmetric loss functions,

and in particular the Stein loss function, allow to identify sets of superior models which are

systematically smaller. These results are consistent with the findings of Clements, Doolan,

Hurn, and Becker (2009) in the multivariate setting and Hansen, Lunde, and Nason (2003)

in the univariate settings.
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Model performances are evaluated using the realized covariance estimator based on in-

traday returns sampled at the 5 minute frequency which serves as a proxy for the latent

covariance matrix. Apart from the popular 5-minute frequency, which, given the charac-

teristics of the assets selected should strike a good compromise between accuracy and mi-

crostructure bias (Andersen, Bollerslev, Diebold, and Labys, 1999 and Russell and Bandi,

2004), a robustness check with respect to the choice and the accuracy of the proxy is per-

formed using the realized covariance estimator based on intraday returns sampled at 1 and

30 minutes and a realized kernel estimator based on intraday returns sampled at 1, 5 and

30 minutes, see de Pooter, Martens, and van Dijk (2008). Our results are robust to the

choice and the accuracy of the volatility proxy.

As pointed out by Hansen, Lunde, and Nason (2003), the MCS is specific to the set of

candidate models and the sample period. By considering not only the full sample (from

April 1, 1999 to December 27, 2008, totalling 2486 trading days) but also three sub-samples

which are homogenous in their volatility dynamics, we illustrate how highly sensitive the

MCS is with respect to the forecast evaluation sample. We find that over the dot-com

bubble, the set of superior models is composed of more sophisticated specifications such as

orthogonal and dynamic conditional correlations, both with leverage effect in the conditional

variances. Over calm periods, a simple assumption like constant conditional correlation and

symmetry in the conditional variances cannot be rejected. Over the 2007-2008 financial

crisis, accounting for non-stationarity in the conditional variance process generates superior

forecasts.

With respect to the longer forecast horizons (5 and 20 day ahead), we find that while

the composition of the MCS is in line with the one-step ahead case, the MCS reduces in

size. The performances of models with similar properties and structure tend to cluster

but differences between clusters increase. This, together with a substantial reduction of

the variability of sample performances, due to the smoothness of longer horizon forecasts,

makes it easier to separate between superior and inferior models.

In the last part of our study, we assess, using SPA tests, the predictive ability of six

popular and parsimonious specifications selected with respect to two dimensions, the mul-

tivariate structure and symmetry in the dynamics of the variance processes. We find that

the most valid alternative is represented by the Dynamic Conditional Correlation model of

Engle (2002a) when coupled with leverage effect in the conditional variances of the marginal

processes. This model seems to capture well the dynamics of the conditional variance ma-

trix consistently across the different sample periods. However, in line with the MCS results,

simple hypotheses like constant correlation and/or symmetric variance process cannot be

rejected over periods of calm markets.
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An alternative approach to evaluate variance matrix forecasts is to use an economic

loss function such as asset allocation in Engle and Colacito (2006). Other examples are

Value-at-Risk forecasting and derivative pricing. See also Voev (2009) for a related setting.

However, as pointed out by Patton and Sheppard (2009) the main drawback of an evaluation

of volatility forecasts based on economic criteria is that it generally relies on additional and

application-specific assumptions, the ordering may not depend exclusively on the accuracy

of the conditional variance matrix forecast and the criteria are generally non-robust in the

sense that imperfect forecasts can outperform the true conditional variance matrix.

The rest of the chapter is organized as follows. Section 3.2 discusses the multivariate

GARCH specifications, the proxies for the conditional variance, the loss functions and the

MCS approach. Section 3.3 provides a description of the data and outlines some stylized

facts. Section 3.4 presents the results for the multiple comparison based on the MCS and

Section 3.5 for the comparison based on the SPA test. Section 3.6 concludes.

3.2 Methodology

In this section, we first introduce the multivariate GARCH models used for the forecasting

exercise. Second, we define estimators of the underlying variance matrix used to compare

the volatility forecasts. We conclude with a discussion on the properties of the loss functions

used to evaluate the forecast errors and with a brief summary of the MCS approach.

3.2.1 Forecasting models set

Consider a N -dimensional vector stochastic process rt = µt + εt and denote ℑt−1 as the

information set available at t − 1. We are interested in modeling its conditional variance

matrix Ht = E(εtε
′
t|ℑt−1). Since the conditional mean µt is typically of minor importance

for GARCH-type models, following Hansen and Lunde (2005) and Becker and Clements

(2008), we assume a constant conditional mean for all assets.

We consider parametric specifications for the conditional variance of the multivariate

GARCH (MGARCH) type, i.e., Ht is a parametric function of past returns. To control for

the number of parameters, we impose covariance or correlation targeting when possible, see

Engle and Mezrich (1995). This means that Ht can be expressed in terms of the uncondi-

tional variance/correlation and other parameters, provided that the process is covariance

stationary. Hence, it is possible to reparameterize the model and replace the unconditional

covariance and/or correlation by a consistent estimator before maximizing the likelihood.

The targeting ensures a reasonable value of the model-implied unconditional variance and,

although it is not a maximum likelihood estimator (therefore asymptotically inefficient),
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the long run variance will be consistent even if the MGARCH model is misspecified. This

solution also facilitates the numerical optimization of the remaining parameters by reduc-

ing the dimensionality of the parameter space. For the properties of the variance targeting

estimator and a comparison with the standard quasi-maximum likelihood estimator in the

univariate case, see Francq, Horvath, and Zakoian (2009).

We consider several families of MGARCH models which are revealed to be feasible in

terms of numerical evaluation when the dimension of rt is relatively large. According to the

classification in Bauwens, Laurent, and Rombouts (2006), among the generalizations of the

univariate standard GARCH model, we consider three specifications, namely the diagonal

and scalar BEKK of Engle and Kroner (1995) and the multivariate RiskMetrics (RM) model

of J.P.Morgan (1996). In the fully parameterized BEKK model with all orders set to 1, the

conditional variance is given by

Ht = C +Aϵt−1ϵ
′
t−1A

′ +BHt−1B
′, (3.1)

where C is a positive definite matrix and A and B are square parameter matrices. The full

BEKK specification is not considered as it is not feasible for large cross-sectional dimensions.

In the diagonal BEKK (DBEKK), the matrices of parameters A and B are diagonal, while

in the scalar BEKK (SBEKK), A = aIN , B = bIN , where a and b are scalars and IN is the

identity matrix. In these models, variance targeting is imposed by setting H = E(ϵtϵ
′
t) and

C = H − AHA′ − BHB′ which implies E(Ht) = H. Note that the scalar BEKK model

imposes the same dynamics to all the elements of Ht (and thus is equivalent to the scalar

VEC model of Bollerslev, Engle, and Wooldridge, 1988). The RM model has the same

parametric form as defined in (3.1) but assumes that the conditional variance matrix is an

integrated process, i.e., a + b = 1 and C = 0, governed by a fixed smoothing parameter,

b, equal to 0.96. This model, widely used by practitioners, does not require parameter

estimation.

Among the MGARCH models that can be represented as linear combinations of uni-

variate GARCH models, we consider the orthogonal GARCH model of Kariya (1988) and

Alexander and Chibumba (1997). In this model, the data are generated by an orthogonal

transformation of N (or a smaller number of) uncorrelated factors, ft, which can be sepa-

rately defined as any stationary univariate GARCH process. The model can be expressed
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as

Ht = V 1/2PL1/2StPL
1/2V 1/2, (3.2)

St = Et−1(ftf
′
t) = diag(σ2f1,t , . . . , σ

2
fN,t

) (3.3)

ft = L−1/2PV −1/2ϵt (3.4)

where V = diag(v1, ..., vN ), with vi = E(ϵ2i,t), i = 1, ..., N , L and P are m × m and

N ×m matrices of the m ≤ N largest eigenvalues of the unconditional correlation matrix

and associated orthogonal eigenvectors, respectively. Other specifications belonging to this

group are the generalized orthogonal GARCH model by van der Weide (2002) and Lanne

and Saikkonen (2007), the full factor GARCH model by Vrontos, Dellaportas, and Politis

(2003) and the conditionally uncorrelated components GARCH by Fan, Wang, and Yao

(2008). However, these models are computationally challenging when the dimension is

large and thus are not considered here.

The last category of models can be viewed as nonlinear combinations of univariate

GARCH models. They allow to specify separately N possibly different univariate models

for the conditional variances, σ2i,t, i = 1, ..., N , and a model for the conditional correlation

matrix, Rt. The dynamic conditional correlation (DCC) model, in the formulation of Engle

(2002a) (DCCE), is defined as

Ht = D
1/2
t Rt D

1/2
t (3.5)

Rt = (Qt ⊙ IN )−1/2 Qt (Qt ⊙ IN )−1/2 (3.6)

Qt = (1− α− β)Q̄+ αut−1u
′
t−1 + βQt−1, (3.7)

where Dt = diag(σ21,t, . . . , σ
2
N,t) and ui,t = ϵi,t/σi,t, i = 1, ..., N defines the devolatilized

innovations. The constant conditional correlation (CCC) model of Bollerslev (1990), the

asymmetric DCC (ADCC) model of Cappiello, Engle, and Sheppard (2006), the Dynamic

Conditional Equi-Correlation (DECO) model of Engle and Kelly (2008) also belong to this

family. To ensure positive definiteness, the correlation matrix is modeled as a transformation

of a latent matrix Qt which is a function of past devolatilized innovations.

While the CCC model of Bollerslev (1990) assumes time invariant, but pairwise spe-

cific, correlations, which can be estimated by a consistent estimator for the unconditional

correlation, the DECO model of Engle and Kelly (2008) assumes that correlations are time

varying but equal across the N assets (Rij,t = ρ ∀i ̸= j). Interestingly, under some suitable

conditions, the DECO model gives consistent estimators of the correlation dynamics (α,

β) in (3.7) even when the equicorrelation assumption is not supported by the data. Since
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the hypothesis of equicorrelation is likely to be rejected, in this chapter we use the DECO

approach as a technique to estimate the correlation parameters α and β. We then use the

DECO estimates to predict and forecast time varying and pairwise specific correlations.

The ADCC extends the DCCE by accounting for asymmetries in the correlation dynamics

through the additional term γ(ut−1u
′
t−1⊙ 1ut−1<01

′
ut−1<0) in (3.7) where 1ut−1<0 is a vector

of dimension N such that [1ut−1<0]i = 1 if ui,t−1 < 0 and 0 otherwise. The main drawback

of the DCCE, the DECO and the ADCC, is that, under variance/correlation targeting, the

choice of the estimator for the long run target Q̄ is not obvious as Qt is neither a conditional

variance nor a correlation. Although inconsistent for the target, since the recursion in Qt

does not have a martingale difference representation, Engle and Sheppard (2001) suggest

the use of the unconditional expectation of the outer product of devolatilized innovations,

arguing that the impact of this choice is very small in practice.

An alternative formulation of the DCC model has been suggested by Tse and Tsui

(2002) (DCCT). The conditional correlation Rt is defined as:

Rt = (1− θ1 − θ2)R̄+ θ1Ψt−1 + θ2Rt−1, (3.8)

with Ψt−1 the N ×N correlation matrix of ϵτ for τ = t−K, t−K+1, . . . , t−1 and K ≥ N .

Its i, j-th element is given by

ψij,t−1 =

∑K
m=1 ui,t−muj,t−m√

(
∑K

m=1 u
2
i,t−m)(

∑K
m=1 u

2
j,t−m)

, (3.9)

where uit is defined as above. In the DCCT the correlation matrix is modeled directly and

depends on past local correlations of devolatilized innovations. Also in this case, under

variance/correlation targeting, the choice of R̄ is not obvious. We set R̄ equal to the

unconditional correlation of the devolatilized innovations.

One of the advantages of the conditional correlation models relies on the fact that the

estimation problem can be carried out sequentially. This requires first the estimation of the

N conditional variances of the assets, second the estimation of the correlation target and

the conditional correlation process. Although inefficient, this procedure is consistent and it

dramatically reduces the computational burden of the likelihood. The univariate specifica-

tion for the conditional variance that we include in the conditional correlation models are

ARCH (Engle, 1982), GARCH (Bollerslev, 1986), GJR (Glosten, Jagannathan, and Runkle,

1992), Exponential GARCH (Nelson, 1991), Asymmetric Power ARCH (Ding, Granger, and

Engle, 1993), Integrated GARCH (Engle and Bollerslev, 1986), RiskMetrics (J.P.Morgan,

1996), Hyperbolic GARCH (Davidson, 2004) and fractionally integrated GARCH (Baillie,
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Bollerslev, and Mikkelsen, 1996). With respect to the number of lags in the models, we

fix both the ARCH (p) and the GARCH (q) orders to 1 for the scalar BEKK, multivariate

RiskMetrics and the correlation specification in the DCC models. The univariate GARCH

models for the conditional variances in the Orthogonal GARCH and DCC specifications

include various combinations of the orders p, q. Table 3.1 summarizes the 125 multivariate

GARCH configurations we consider in the forecasting exercise.

Table 3.1: Forecasting models set

Conditional correlation type Orthogonal GARCH BEKK type

Corr. Variance p q Variance p q p q

CCC,
DCCA,
DCCE,
DCCT,
DECO

Arch 1,2 -

Orth.

Arch 1,2 -
BEKK

scalar 1 1
Aparch 1 1 Aparch 1 1 diagonal 1 1
Egarch 0,1,2 1,2 Egarch 0,1,2 1,2 RM - 1 1
Garch 1,2 1,2 Garch 1,2 1,2
Gjr 1,2 1,2 Gjr 1,2 1,2
Hgarch 1 1
Igarch 1 1
Figarch 1 1
Rm 1 1

3.2.2 Proxies for the conditional variance matrix

In our application, the daily realized covariance serves as a proxy for the true conditional

variance matrix, Σt, when evaluating the forecasting performance of the different MGARCH

models. Recent literature suggests several estimators. Examples are the well known realized

variance, and its jump robust version bi-power covariation, see Barndorff-Nielsen and Shep-

hard (2004b) and Barndorff-Nielsen and Shephard (2004d), the realized kernel estimators

proposed by Zhou (1996), Hansen and Lunde (2006b), Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2008a) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b) which

account for serial correlation in the high frequency returns. Parametric models, like vector

moving average realized variance can be found in Hansen and Lunde (2008). Intraday re-

turns are defined as ri = pi − pi−∆ for i = ∆, 2∆, ..., T , with 1/∆ intervals per day. The

daily realized variance (Σ̂(∆)) matrix (Andersen, Bollerslev, Diebold, and Labys, 2003 and

Barndorff-Nielsen and Shephard, 2004b) is defined as

Σ̂(∆) =

⌊1/∆⌋∑
i=1

ri∆r
′
i∆. (3.10)
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where ⌊1/∆⌋ represents the integer part of 1/∆. As the sampling frequency of the intraday

returns increases (∆ → 0), Σ̂(∆) converges almost surely to Σt. See Barndorff-Nielsen and

Shephard (2004d), Mykland and Zhang (2006), Andersen, Bollerslev, and Diebold (2002)

and related references for details.

The definition of Σ̂(∆) requires the assumption that intraday returns are uncorrelated.

However, failing this assumption, Σ̂(∆) would result in a biased estimator of Σt. Hence, we

also consider a simple kernel estimator, defined as

Σ̂
(∆)
AC,q = λ0 +

q∑
i=1

(λ−i + λi) +

2q∑
i=q+1

(
1− i− q

q + 1

)
(λ−i + λi) (3.11)

λq =

{
1

(1−q∆)

∑⌊1/∆⌋
i=q+1 ri∆r

′
(i−q)∆ q ≥ 0

1
(1−|q|∆)

∑⌊1/∆⌋
i=|q|+1 r(i−|q|)∆r

′
i∆ q < 0

. (3.12)

This estimator (see Zhou, 1996, Zhang, Mykland, and Ait-Sahalia, 2005, Hansen and

Lunde, 2006b and Hansen and Lunde, 2008), based on the Newey and West (1987) vari-

ance estimator, is equal to the Σ̂(∆) plus a term that is a Bartlett-type weighted sum of

higher-order autocovariances (lags and leads). More refined realized kernel estimators have

been recently proposed by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) and

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b). Throughout the chapter, unless

explicitly mentioned, we will use the Σ̂(5min) estimator. Σ̂(1min), Σ̂(30min), Σ̂
(1min)
AC,q , Σ̂

(5min)
AC,q

and Σ̂
(30min)
AC,q will serve to check the robustness of the results to different proxies.

3.2.3 Loss functions

At the core of the forecasting comparison is the choice of the loss function. In this chapter,

we use the following loss functions

LE = (σt − ht)
′(σt − ht) (3.13)

LF = Tr[(Σt −Ht)
′(Σt −Ht)] (3.14)

LS = Tr[H−1
t Σt]− log

∣∣H−1
t Σt

∣∣−N (3.15)

Ld =
1

d(d− 1)
Tr(Σd

t −Hd
t )−

1

(d− 1)
Tr(Hd−1

t (Σt −Ht)) d ≥ 3. (3.16)

The first two loss functions belong to a family of quadratic loss functions based on the

forecast error. LE is the Euclidean distance in the vector space of σt − ht = vech(Σt −Ht),

where vech() is the operator that stacks the lower triangular portion of a matrix into a

vector. Hence, LE only considers the unique elements of the variance matrix and these
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elements are equally weighted. The Frobenius distance, LF , is defined as the sum of the

element-wise square differences of Σt −Ht and is the natural extension to matrix spaces of

the mean squared error. The relevant variable in the comparison is in this case the variance

matrix itself and it corresponds to the loss function implied by the matrix Normal likelihood.

Although closely related, it differs from LE for double counting the loss associated to the

conditional covariances. The Stein loss function LS of (James and Stein, 1961) is a scale

invariant loss function based on the standardized (in matrix sense) forecast error. It is the

loss function implied by the Wishart density.

Note that since LE only considers the unique elements of the forecast error matrix, it

is symmetric in the sense that variances and covariances over/under predictions are equally

penalized. On the other hand, LF equally weights all elements of the forecast error matrix,

thus over/under predictions for a given element of the variance matrix are equally penalized,

i.e. symmetric with respect to the sign of the forecast error. Though covariances forecast

errors are more penalized then variances ones, i.e. asymmetric with respect to the nature

of the forecast error. The loss function LS also considers the whole variance matrix as the

variable of interest. This loss function is homogeneous of degree 0 (errors are measured in

relative terms) and asymmetric with respect to over/under predictions (in matrix sense)

and, in particular, under predictions are heavily penalized. Finally, in the same spirit, Ld

also accounts for asymmetry with respect to over/under predictions, but in the opposite

direction, i.e. over predictions are penalized instead. Ld also allows to tune the degree

of asymmetry, i.e. the weights given to over/under prediction, through the choice of the

parameter d, which also represents its degree of homogeneity. In this chapter we set d = 3

which implies a mild degree of asymmetry comparable to LS . See Laurent, Rombouts, and

Violante (2009) for further details and examples.

3.2.4 The model confidence set

A review of the MCS procedure has been provided in Chapter 1. In this section we recall

the basic ideas and provide some more details on the implementation and the properties of

the test.

Let us denote the initial set of h-step ahead conditional variance forecastsM0 : {Hi,t+h ∈
M0 ∀i = 1, . . . ,M}, where t = 0, 1, ..., T − 1 and T is the forecast sample size. The MCS

procedure is based on a sequence of equivalence tests. The starting hypothesis is that all

forecasts in M0 have equal forecasting performance as measured by a loss function Li,t =

L(Σt,Hi,t). Let dij,t = Li,t −Lj,t ∀i, j = 1, ...,M define the relative performance of forecast

i and j. The null hypothesis takes the form H0,M0 : E(dij,t) = 0, ∀ i, j = 1, ...,M . We use

the ‘deviation’ statistic defined as TD = M−1
∑

i∈M0 t2i , where ti =
√
T d̄i/

√
V ar(

√
T d̄i)



82 Chapter 3. On the Forecasting Accuracy of Multivariate GARCH Models

represents the standardized relative performance of forecast i with respect to the average

across forecasts, d̄i = M−1Σj∈M0 d̄ij and d̄ij = T−1ΣT
t=1dij,t is the sample loss difference

between forecast i and j. A block bootstrap scheme is used to obtain the distribution under

the null. If the null of equal predictive ability is rejected, an elimination rule removes the

forecast with the largest ti. This process is repeated until non-rejection of the null occurs,

thus allowing to construct a (1− α)-confidence set for the best forecast in M0.

Being the statistic based on studentized quantities, the analysis of the variance of d̄i

plays a central role for evaluating the informativeness of the MCS. Hansen, Lunde, and

Nason (2010b) point out that an inferior forecast (i.e., with sample loss larger the average,

d̄i > 0) may be included in the MCS if the variance of d̄i is large enough, i.e. ti, is sufficiently

small to avoid being discarded. Consider the following decomposition of V ar(d̄i)

V ar(d̄i) = V ar(L̄) + V ar(L̄i)− 2Cov(L̄i, L̄)

= V ar(L̄) +

(
1 +

V ar(L̄i)

V ar(L̄)
− 2

√
V ar(L̄i)

V ar(L̄)
Corr(L̄i, L̄)

)
. (3.17)

where L̄i = T−1ΣT
t=1Li,t and L̄ = M−1Σi∈ML̄i. Thus, an inferior forecast may enter the

MCS if V ar(L̄i) is large enough and/or Corr(L̄i, L̄) is small. However, in some cases the

risk of inclusion of poor models does not arise or it only marginally affects the elimination

process. This is the case when the set under the null contains only two forecasts. Since

|d̄1| = |d̄2|, then V ar(d̄1) = V ar(d̄2) and thus the variance plays no role in the elimination:

if the null is rejected, given the elimination rule defined above the forecast with the best

sample performance is always preferred. In the case when the set contains more than two

forecasts, an inferior forecast can only be preferred to another inferior forecast with better

sample performance but never to a forecast for which d̄i < 0. By the same reasoning, if

there is only one forecast in the set with d̄i > 0, it will always be excluded no matter how

large its variance is.

3.3 Data and forecasting scheme

We consider stock returns from 10 assets traded in the NYSE as detailed in Table 3.2. The

sample period spans March 02, 1988 to December 27, 2008, which amounts to 5226 trading

days. The dataset has been cleaned from weekends, holidays and early closing days. Days

with missing values and/or constant prices have also been removed. The assets have been

selected among the most liquid over the period analyzed in order to minimize microstructure

noise components such as non-trading and non-synchronous trading which may induce bias
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in the volatility proxy. In particular, the phenomenon of asynchronous trading may lead

to the so called Epps effect, i.e., the empirical correlation between stock returns converges

to zero as the sampling frequency of the data increases (Epps, 1979). Preliminary analysis

show some evidence of this phenomenon when the covariance proxies are computed using

1-minute returns, while it is negligible when the sampling frequency used to compute the

covariance proxy is 5-minute frequency or lower.

Following the approach of Andersen, Bollerslev, Frederiksen, and Nielsen (2010), the

MGARCH models are estimated using daily open-to-close returns. As explained above,

to reduce the computational burden, unconditional means are subtracted from each series

of returns before proceeding to the estimation of the 125 multivariate GARCH models by

quasi maximum likelihood. The initial estimation sample consists of the first 2740 daily

observations, i.e. March 02, 1988 to March 31, 1999. The last 2486 trading days constitute

the sample for which we compute 1, 5 and 20-day ahead forecasts. For computational

convenience, we re-estimate the model parameters every month (22 days) using a rolling

window of the last 2740 observations, while within the 22-day window, the parameters are

kept fixed and only the data is updated. This mix of fixed and rolling forecast scheme

satisfies the assumptions required by the MCS test (Hansen, Lunde, and Nason, 2010b),

allows the comparison of nested models and to account for data heterogeneity (Giacomini

and White, 2006, West, 2006), as well as to compare results over sub-samples (since forecasts

over different period are conditioned on the most recent information). The proxies for the

conditional variance are based on intraday returns computed from 1-minute intervals last

trade prices. Since the daily trading period of the NYSE is 6.5 hours, this amounts to 390

1-minute intraday observations per day. The source of the data is the One-Minute Equity

Data (OMED) database provided by Tick Data. All programs have been written by the

authors using OxMetrics 6 (Doornik, 2009) and are available on request.

Table 3.2: Stock names and descriptive statistics

Name Sector Mean Std. Dev. Max Min Skewness Kurtosis

Abbott Labs Health Care 0.085 1.53 10.26 -9.47 -0.05 2.43
BP plc Energy 0.013 1.17 10.27 -13.96 -0.22 11.83
Colgate-Palmolive Consumer Stap. 0.073 1.40 16.51 -8.59 0.35 6.48
Eastman Kodak Consumer Disc. -0.043 1.74 12.76 -14.13 -0.14 6.42
FedEx Corp. Industrials 0.068 1.79 12.58 -9.67 0.39 2.93
Coca Cola Co. Consumer Stap. 0.067 1.38 8.92 -11.08 0.06 3.79
PepsiCo Inc. Consumer Stap. 0.127 1.44 12.14 -13.78 -0.11 5.97
Procter & Gamble Consumer Stap. 0.100 1.33 10.50 -9.05 0.00 5.01
Wal-Mart Consumer Stap. 0.008 1.64 14.75 -8.71 0.27 4.35
Wyeth Health Care 0.027 1.65 12.32 -15.42 -0.31 6.67

Note. Statistics based on the full sample (estimation plus forecast) of 5229 observations
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The sample period we consider is characterized by dramatic changes in the volatility

dynamics. To investigate the impact of this on the MCS results, the forecasting sample has

been divided into three sub-samples. The first sub-sample (1050 obs.) identifies a period of

widespread turbulence on the markets. Starting in April, 1999, and ending in March 2003,

it includes the peak of the Dot-com boom (until March 2000), the burst and the aftermath

of the bubble burst. Peaks in the volatility over this period correspond to the burst of

the speculative bubble (March, 2000) and the attack to the twin towers (September, 2001).

Towards the end of the period, the turmoil started with the bankruptcy of WorldCom

(July, 2002) and ended in October, 2002, with a record low of the Dow Jones Industrial and

Nasdaq (5- and 6-years low respectively). The second sub-sample (1080 obs.), from April

2003 to July, 2007, corresponds to a period of stable and upward trending markets. The

third sub-sample (356 obs.) corresponds to the recent financial crisis. The beginning of the

sample, August, 2007, coincides with the fall of Northern Rock when it became apparent

that the financial turmoil, started with the subprime crisis in the US, had spread beyond

US’s borders. It is also the period when the crisis hits its peak in September and October

2008. To visualize the difference among the three sub periods, Figure 3.1 shows the daily

realized variance computed using 5-minute returns of an equally weighted portfolio made of

the 10 assets used in the application. It is clear from this figure that the volatility dynamics

as well as its scale varies widely between periods.

3.4 Model confidence set results

In this section, we describe the MCS results based on one day ahead variance forecasts for

four different forecasting samples described in the previous section, i.e. the full sample, the

dot-com speculative bubble burst and aftermath, calm markets and the 2007-2008 financial

crisis. The section concludes with a discussion on the multi-step ahead (5 and 20 days)

forecast evaluation.

3.4.1 Full sample

The MCS results for the full forecast sample (2486 obs.) are reported in Table 3.3. To save

space, results for the Frobenius loss function (LF ) are not reported. Because if its similarity

with the Euclidean loss function (LE), results based on LF are very similar in terms of

ordering and, in general, we remark that the more conservative LE MCS always includes

the MCS obtained under the LF loss function. Following Hansen, Lunde, and Nason (2003),

we set the confidence level for the MCS to α = 0.25. The number of bootstrap samples

used to obtain the distribution under the null is set to 10, 000. The values reported for LE
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Figure 3.1: Daily realized volatility (computed from 5-min returns) of the 10 asset equally
weighted portfolio

and L3 are the average loss per element of vech(Σt −Ht), i.e. the total loss is divided by

N(N +1)/2 and N2 respectively. For LS , where the distance is measured in relative terms,

the total loss is reported.

The MCS includes 39 models for LE and is largely dominated by orthogonal and DECO

models. With respect to the composition of the MCS, we remark, first, that the family

of orthogonal models shows the best sample performances. The flexibility of the orthog-

onal GARCH model seems therefore able to adapt to a sample that alternates periods of

calm with periods of extremely high instability. The results also suggest the rejection of

the hypothesis of constant conditional correlation. Second, although the difference is not

statistically significant, models allowing for asymmetry/leverage in the conditional variance

systematically perform better than symmetric models with Gjr specifications showing the
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best sample performances. The same consideration holds for longer versus shorter lags, with

higher order models showing in general better sample performances. Third, the MCS in-

cludes some specifications that allow for long memory and integrated conditional variances.

This is the case for the DECO, DCCA and DCCE with hyperbolic GARCH conditional

variances, DECO, DCCA and DCCT with fractionally integrated GARCH conditional vari-

ances, DECO with Rm conditional variances and the RM model. Furthermore, if we focus

on the sample performances, the specifications allowing for fractional integration or hyper-

bolic decay of shocks in the conditional variances exhibit the best performances within each

family of models.

Table 3.3: MCS on full sample (1/04/99 - 27/12/08)

Euclidean distance (39 models)

MCS Rnk L̄i TD p-val VR Corr

DCCA
Egarch (1,2) 48 3.880 1.165 0.27 1.302 0.999

Figarch (1,1) 20 3.673 0.521 0.67 1.076 0.996

Hgarch (1,1) 25 3.720 0.803 0.45 1.052 0.996

DCCT Figarch (1,1) 38 3.823 1.089 0.30 1.159 0.994

DCCE
Egarch (1,2) 53 3.901 1.207 0.25 1.325 0.998

Figarch (1,1) 18 3.661 0.406 0.71 1.075 0.996

Hgarch (1,1) 24 3.719 0.766 0.47 1.057 0.996

DECO

Aparch (1,1) 27 3.735 0.848 0.42 1.111 0.998

Egarch (0,1) 29 3.742 0.825 0.43 1.172 0.999
(0,2) 30 3.747 0.877 0.40 1.163 0.999
(1,2) 33 3.762 0.936 0.37 1.176 0.999

Figarch (1,1) 2 3.478 0.004 0.94 0.906 0.997

Garch (1,1) 34 3.768 0.906 0.38 1.171 0.998
(1,2) 31 3.750 0.965 0.35 1.137 0.999
(2,1) 28 3.737 0.993 0.34 1.125 0.999
(2,2) 32 3.759 1.061 0.31 1.159 0.999

Gjr (1,1) 22 3.692 0.603 0.60 1.090 0.998
(1,2) 21 3.676 0.706 0.50 1.046 0.999
(2,1) 14 3.635 0.521 0.67 0.991 0.999
(2,2) 19 3.667 0.668 0.54 1.036 0.999

Hgarch (1,1) 5 3.535 0.103 0.89 0.886 0.997

Igarch (1,1) 35 3.783 1.018 0.33 1.061 0.993

Rm(1,1) 23 3.699 0.545 0.64 1.117 0.998

Orth.

Aparch (1,1) 7 3.575 0.197 0.89 0.921 0.996

Egarch (0,1) 17 3.660 0.628 0.58 1.019 0.998
(0,2) 13 3.623 0.567 0.64 0.945 0.999
(1,1) 15 3.647 0.735 0.50 0.933 0.998
(1,2) 12 3.593 0.517 0.67 0.872 0.997
(2,1) 26 3.726 1.037 0.32 1.066 0.999
(2,2) 6 3.539 0.175 0.89 0.793 0.996

Garch (1,1) 16 3.656 0.724 0.50 0.964 0.998
(1,2) 11 3.589 0.594 0.67 0.870 0.998
(2,1) 9 3.586 0.549 0.67 0.885 0.999
(2,2) 8 3.580 0.466 0.69 0.865 0.998

Gjr (1,1) 10 3.587 0.412 0.73 0.817 0.997
(1,2) 3 3.507 0.169 0.89 0.713 0.996
(2,1) 1 3.468 - 1.00 0.672 0.995
(2,2) 4 3.509 0.116 0.89 0.730 0.996

RM (1,1) 36 3.810 1.127 0.28 0.967 0.993

Stein distance (10 models)

MCS Rnk L̄i TD p-val VR Corr

CCC
Figarch (1,1) 7 3.528 0.346 0.57 0.730 0.932

Garch (2,1) 10 3.548 1.302 0.25 1.211 0.988

Igarch (1,1) 3 3.501 0.546 0.69 1.119 0.985

DCCA Igarch (1,1) 4 3.516 0.680 0.57 1.254 0.986

DCCT
Figarch (1,1) 5 3.518 0.232 0.69 0.743 0.931

Garch (2,1) 9 3.541 0.880 0.36 1.223 0.989

Igarch (1,1) 1 3.496 - 1.00 1.130 0.987

DCCE
Figarch (1,1) 6 3.525 0.381 0.57 0.789 0.929

Garch (2,1) 8 3.535 0.561 0.49 1.255 0.989

Igarch (1,1) 2 3.500 0.235 0.69 1.228 0.986

L3 loss function (20 models)

MCS Rnk L̄i TD p-val VR Corr

DECO

Figarch (1,1) 15 102.3 0.844 0.41 1.092 0.999

Gjr (1,1) 23 105.0 1.063 0.29 1.156 1.000

Hgarch (1,1) 17 102.5 0.883 0.39 1.082 0.999

Igarch (1,1) 24 105.1 0.969 0.33 1.142 0.999

Orth.

Aparch (1,1) 10 98.83 0.689 0.50 1.023 0.999

Egarch (0,1) 14 101.3 0.864 0.43 1.083 1.000
(0,2) 11 99.98 1.001 0.43 1.033 1.000
(1,1) 12 100.4 0.848 0.43 1.017 1.000
(1,2) 6 98.45 0.988 0.43 0.977 0.999
(2,1) 16 102.4 0.834 0.43 1.104 1.000
(2,2) 4 95.68 0.609 0.53 0.898 0.999

Arch(1) 18 103.8 0.923 0.43 0.914 0.990

Garch (1,1) 13 101.1 0.851 0.43 1.053 1.000
(1,2) 9 98.60 1.055 0.43 0.984 1.000
(2,1) 7 98.59 0.928 0.43 0.997 1.000
(2,2) 8 98.60 1.099 0.43 0.980 1.000

Gjr (1,1) 5 97.69 0.887 0.43 0.954 0.999
(1,2) 2 94.06 1.032 0.53 0.852 1.000
(2,1) 1 91.98 - 1.00 0.801 1.000
(2,2) 3 94.54 0.782 0.53 0.872 0.999

Note. Rnk: model i’s ranking position based on average sample performances (out of 125 models); L̄i: model i’s average
sample performance; TD : deviation statistic; p-val: MCS p-value; V R : V (L̄i)/V (L̄) ratio between the variance of model
i’s loss and the average loss (across models); Corr: Corr(L̄i, L̄) correlation between model i’s loss and the average loss
(across models).
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We next turn to the MCS under the two asymmetric loss functions. Under LS , the MCS

includes 10 models all belonging to the DCC family. Interestingly, the selected models focus

on the long memory properties of the conditional variances rather than leverage, asymmetry

or even time varying correlation. In fact, the MCS includes models from the CCC, DCCE,

DCCA and DCCT families all with fractionally integrated and integrated GARCH or high

order GARCH models for the conditional variances, with integrated models showing the

best sample performances. When the evaluation is based on the L3 loss function, the MCS

contains 20 models. The MCS is in fact dominated by the orthogonal family of MGARCH,

which scores the best sample performances. In line with the previous results, it includes

also other specifications, all of which in the DECO family, which allow for long memory

and integrated conditional variances.

It is worth noting that the results in terms of MCS are specific to the sample period

(and the set of candidate models). As described in Section 3.3, the sample considered

is characterized by dramatic changes in volatility dynamics, favoring long memory type

models. Furthermore, relatively large average sample performances though close across

models indicate that either all models under comparison fail in predicting accurately the

conditional variance or, most likely, that this failure refers only to particular periods of

time where the inadequacy of the the GARCH estimator is so striking to drive the result

even when very long evaluation samples are considered. In the next sections, MCS results

are presented for three sub-samples. The aim is to verify to what extent different levels of

market instability affect the forecasting performance of the models and the ability of the

MCS procedure to separate between superior and inferior models.

3.4.2 Dot-com speculative bubble burst and aftermath

The MCS results are reported in Table 3.4 for the Euclidean (LE), Stein (LS) and L3 loss

functions. The MCS under LE contains 38 models. As expected, there are differences with

the MCS obtained for the full sample. First, modelling directly the conditional correlation

and accounting for the leverage effect in the conditional variances becomes more important.

To be precise, DCC type models with Egarch conditional variances dominate the MCS

and show the smallest losses. This result is also confirmed by the fact that the MCS also

contains two CCC specifications, both with Egarch dynamics for the conditional variances,

which suggests that adequately modelling asymmetry in the conditional variances can in

some cases compensate the restrictive assumption of no dynamics in the conditional corre-

lation. Furthermore, the exclusion of other specifications that also specifically account for

asymmetry/leverage in the variance, i.e. DCC type models with Aparch and Gjr dynam-

ics for the conditional variances, suggests that the choice of the specific parametrization is
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important. Finally, as expected the relative importance of accounting for a (fractionally)

integrated variance process, although still present, becomes less noticeable. In this case, we

find only 4 specifications (out of the 38 models in the MCS) allowing for long memory and

integrated conditional variances (against 10 out of 39 for the full sample).

Table 3.4: MCS on first sub-sample. Dot-com bubble burst (1/04/99 - 31/03/03)

Euclidean distance (38 models)

MCS Rnk L̄i TD p-val VR Corr

CCC
Egarch (0,1) 27 2.821 0.985 0.37 1.031 0.999

(1,1) 41 2.844 1.170 0.29 1.150 0.996

DCCA

Egarch (0,1) 6 2.776 0.335 0.83 0.988 0.999
(0,2) 18 2.801 0.588 0.65 1.030 0.999
(1,1) 20 2.806 0.510 0.68 1.117 0.997
(1,2) 17 2.799 0.545 0.66 1.012 0.999

Figarch (1,1) 22 2.810 0.372 0.79 0.820 0.989

DCCT

Egarch (0,1) 23 2.811 0.658 0.57 1.026 0.999
(1,1) 31 2.834 0.779 0.49 1.146 0.996

Figarch (1,1) 44 2.849 0.839 0.45 0.855 0.989

DCCE

Egarch (0,1) 4 2.769 0.226 0.84 1.011 0.999
(0,2) 13 2.794 0.404 0.77 1.052 0.999
(1,1) 19 2.804 0.430 0.75 1.127 0.997
(1,2) 10 2.783 0.331 0.83 1.019 0.999
(2,2) 33 2.837 1.028 0.35 1.118 0.997

Figarch (1,1) 14 2.796 0.343 0.83 0.832 0.990

Gjr (2,1) 39 2.841 1.242 0.26 0.967 0.994

DECO

Egarch (0,1) 1 2.751 - 1.00 0.948 0.999
(0,2) 7 2.776 0.290 0.83 0.991 0.999
(1,1) 5 2.775 0.281 0.84 1.066 0.998
(1,2) 2 2.760 0.322 0.88 0.961 0.999
(2,1) 30 2.832 0.721 0.53 1.136 0.996
(2,2) 21 2.807 0.605 0.62 1.055 0.998

Figarch (1,1) 26 2.818 0.470 0.71 0.779 0.985

Gjr (1,1) 43 2.848 1.125 0.30 0.875 0.993
(2,1) 37 2.838 0.934 0.40 0.900 0.994

Orth.

Aparch (1,1) 3 2.764 0.089 0.88 0.976 0.992

Egarch (0,1) 12 2.789 0.303 0.83 1.047 0.994
(0,2) 16 2.797 0.364 0.79 1.083 0.996
(1,1) 29 2.831 0.847 0.45 1.133 0.997
(1,2) 25 2.817 0.604 0.62 1.099 0.996
(2,2) 34 2.837 0.983 0.37 1.135 0.996

Garch (2,1) 35 2.837 0.723 0.53 1.052 0.991
(2,2) 24 2.815 0.567 0.65 1.044 0.993

Gjr (1,1) 8 2.779 0.242 0.83 0.926 0.991
(1,2) 9 2.780 0.256 0.83 0.933 0.992
(2,1) 15 2.797 0.392 0.77 0.995 0.995
(2,2) 11 2.785 0.280 0.83 0.991 0.994

Stein distance (2 models)

MCS Rnk L̄i TD p-val VR Corr

DCCE Igarch (1,1) 1 3.268 - 1.00 0.999 0.999

DCCT Igarch (1,1) 2 3.274 1.212 0.27 1.003 1.000

CCC Igarch (1,1) 3 3.283 - - -
DCCA Igarch (1,1) 4 3.293 - - -
DCCE Figarch (1,1) 5 3.439 - - -
DCCT Figarch (1,1) 6 3.444 - - -
DCCE Hgarch (1,1) 7 3.446 - - -
DCCT Hgarch (1,1) 8 3.454 - - -
DCCE Rm (1,1) 9 3.455 - - -
DCCE Egarch (1,2) 10 3.456 - - -

L3 loss function (11 models)

MCS Rnk L̄i TD p-val VR Corr

Orth.

Aparch (1,1) 1 16.394 - 1.00 0.918 0.999

Egarch (0,1) 2 16.568 0.887 0.47 0.983 0.999
(0,2) 3 16.664 0.688 0.47 1.031 1.000
(1,1) 9 17.035 1.192 0.27 1.117 0.999
(1,2) 7 16.918 0.996 0.33 1.082 0.999
(2,2) 11 17.086 1.353 0.27 1.121 0.998

Garch (2,2) 13 17.235 1.235 0.27 1.007 0.991

Gjr (1,1) 4 16.733 1.255 0.33 0.876 0.998
(1,2) 5 16.737 2.285 0.33 0.891 0.999
(2,1) 8 17.012 1.394 0.27 0.998 0.998
(2,2) 6 16.797 1.288 0.33 0.985 0.998

Note. See Table 3.3.

The Stein loss function delivers a small MCS. The MCS consists of 2 models, namely

the DCCE and the DCCT with integrated GARCH conditional variances. Although the

MCS does not overlap with the one found under the symmetric loss function it is clear that

when overweighting underpredictions the focus centers on the long memory properties of

the conditional variance process. Table 3.4 also reports the best 10 models ordered in terms

of sample performances. Although statistically inferior, it is worth noting that the top of

the classification is dominated by models accounting for this feature. On the other hand,

the MCS under the L3 loss function includes 8 models, all from orthogonal GARCH family.
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Most models account for asymmetry in the variance processes of the components.

3.4.3 Calm markets

Results for the MCS for the second sub-sample are reported in Tables 3.5 and 3.6. With the

exception of the Stein loss function, the MCS obtained for this sample is the largest. This

is not surprising because this period is characterized by relatively small and slow moving

volatility. It is therefore reasonable to expect most of the MGARCH model based forecasts

under comparison to show an adequate fit. The average sample performances over this

period are close to zero showing a dramatic improvement over the full sample evaluation.

The MCS under LE contains 74 models, about 60% of the models considered, and

includes specifications from all the families of MGARCH models. As a general result, the

data does not show evidence of dynamics in the correlation process or asymmetry/leverage

or long memory in the conditional variance. Looking at the composition of the MCS, we

can draw the following three conclusions. First, DECO type models are excluded from

the set of superior models with the exception of DECO-Aparch and DECO-Rm. The

decomposition of the variance (columns 7 and 8) together with the ranking position, suggests

in both cases that the information content of these models is doubtful. Both models show

a relatively small correlation with the average across models, L̄. The same remark holds

for the DCC type specifications with Rm conditional variances. Second, although only

Orth.-Gjr(p, q) models are statistically inferior, the remaining orthogonal specifications show

the highest relative variance and smallest correlation with the average loss. Hence, it is

likely that the orthogonal models end up in the MCS because the data does not contain

sufficient information to infer that these models are inferior within the MCS. Third, similar

conclusions hold for CCC/DCC type models with Rm and Gjr(p, q) (p = 1 and q = 1, 2)

conditional variances. In particular, CCC/DCC-Gjr models show, together with by far the

poorest sample performances within the MCS, the largest relative variance (in average 25%

larger than V ar(L̄)) and the smallest correlation with L̄.

We consider now the two asymmetric loss functions. Under LS , the MCS contains 12

models. In line with previous results, the MCS shows no evidence of particular features

in the variance process as dynamics in the correlation process or asymmetry/leverage or

long memory in the conditional variance. The set of superior models is dominated by

CCC, DCCT and DCCE specifications, with Garch conditional variances, confirming that

the hypothesis of constant conditional correlation is difficult to reject. The MCS also

includes two asymmetric specifications, i.e. DCCE-Gjr(1,1) and DCCT-Gjr(1,1), although

both characterized by weaker sample performances within the MCS. Finally, under L3, we

obtain results similar to LE both for size and composition of the MCS. However, although
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Table 3.5: MCS on second sub-sample. Calm period (1/04/03 - 31/07/07)

Euclidean distance (74 models)

MCS Rnk L̄i TD p-val VR Corr

CCC

Aparch (1,1) 2 0.328 6.224 0.73 0.884 0.969

Egarch (0,1) 9 0.345 0.695 0.73 0.975 0.997
(0,2) 33 0.348 0.456 0.73 1.042 0.992
(1,1) 18 0.346 0.895 0.73 1.098 0.982
(1,2) 28 0.347 0.771 0.73 1.061 0.980
(2,1) 7 0.344 0.967 0.73 1.082 0.987

Figarch (1,1) 25 0.347 0.447 0.73 0.992 0.996

Garch(1,1) 50 0.350 0.467 0.67 1.009 0.997
(1,2) 46 0.350 0.446 0.68 1.021 0.997
(2,1) 26 0.347 0.439 0.73 1.014 0.997
(2,2) 11 0.345 0.612 0.73 0.982 0.998

Gjr (1,1) 91 0.374 0.923 0.37 1.237 0.957
(1,2) 85 0.372 0.619 0.54 1.260 0.961

Hgarch (1,1) 55 0.351 0.454 0.68 0.940 0.995

Rm(1,1) 65 0.356 0.507 0.63 0.990 0.967

DCCA

Aparch (1,1) 4 0.329 3.590 0.73 0.884 0.970

Egarch (0,1) 20 0.346 0.497 0.73 0.977 0.997
(0,2) 40 0.349 0.422 0.71 1.044 0.991
(1,1) 32 0.348 0.626 0.73 1.101 0.981
(1,2) 38 0.349 0.517 0.73 1.064 0.980
(2,1) 16 0.346 0.869 0.73 1.084 0.986

Figarch (1,1) 30 0.347 0.445 0.73 0.992 0.996

Garch(1,1) 56 0.351 0.497 0.64 1.010 0.997
(1,2) 53 0.351 0.488 0.65 1.021 0.997
(2,1) 35 0.348 0.437 0.68 1.015 0.997
(2,2) 19 0.346 0.504 0.73 0.983 0.998

Gjr (1,1) 93 0.374 1.134 0.27 1.238 0.957
(1,2) 89 0.373 0.830 0.41 1.262 0.960

Hgarch (1,1) 49 0.350 0.439 0.69 0.942 0.995

Rm(1,1) 64 0.356 0.482 0.65 0.989 0.967

DCCT

Aparch (1,1) 1 0.328 - 1.00 0.884 0.970

Egarch (0,1) 8 0.345 0.710 0.73 0.975 0.997
(0,2) 31 0.348 0.471 0.73 1.042 0.991
(1,1) 17 0.346 1.031 0.73 1.098 0.982
(1,2) 29 0.347 0.723 0.73 1.061 0.980
(2,1) 6 0.344 0.959 0.73 1.082 0.987

Figarch (1,1) 22 0.347 0.490 0.73 0.991 0.997

Garch(1,1) 48 0.350 0.442 0.67 1.009 0.997
(1,2) 39 0.349 0.439 0.67 1.021 0.997
(2,1) 23 0.347 0.452 0.73 1.013 0.997
(2,2) 10 0.345 0.678 0.73 0.982 0.998

Gjr (1,1) 88 0.373 0.749 0.46 1.237 0.957
(1,2) 82 0.372 0.570 0.57 1.261 0.960

Hgarch (1,1) 43 0.350 0.440 0.67 0.940 0.995

Rm(1,1) 5 0.340 1.288 0.73 0.957 0.971

DCCE

Aparch (1,1) 3 0.329 3.631 0.73 0.884 0.970

Egarch (0,1) 15 0.346 0.598 0.73 0.977 0.997
(0,2) 36 0.349 0.427 0.73 1.045 0.991
(1,1) 24 0.347 0.813 0.73 1.101 0.981
(1,2) 34 0.348 0.546 0.73 1.064 0.980
(2,1) 12 0.345 0.943 0.73 1.084 0.986

Figarch (1,1) 21 0.347 0.509 0.73 0.992 0.996

Garch(1,1) 51 0.350 0.472 0.67 1.010 0.997
(1,2) 47 0.350 0.450 0.68 1.022 0.997
(2,1) 27 0.347 0.423 0.73 1.013 0.997
(2,2) 13 0.345 0.587 0.73 0.984 0.998

Gjr (1,1) 92 0.374 1.023 0.32 1.239 0.957
(1,2) 86 0.373 0.678 0.50 1.262 0.960

Hgarch (1,1) 42 0.349 0.434 0.67 0.942 0.995

Rm(1,1) 63 0.355 0.461 0.67 0.989 0.967

DECO
Aparch (1,1) 14 0.346 0.956 0.73 0.902 0.970

Rm(1,1) 45 0.350 0.459 0.73 0.974 0.973

Orth.

Aparch (1,1) 37 0.349 0.839 0.73 1.088 0.960

Egarch (0,1) 44 0.350 0.611 0.73 1.095 0.960
(0,2) 54 0.351 0.499 0.73 1.091 0.960
(1,1) 57 0.351 0.450 0.73 1.097 0.960
(1,2) 41 0.349 0.712 0.73 1.096 0.960
(2,1) 60 0.352 0.432 0.71 1.087 0.961
(2,2) 59 0.352 0.430 0.69 1.092 0.963

Garch(1,1) 58 0.352 0.425 0.72 1.087 0.961
(1,2) 61 0.352 0.441 0.67 1.090 0.960
(2,1) 52 0.351 0.550 0.73 1.088 0.961
(2,2) 62 0.353 0.443 0.67 1.086 0.962

SBEKK (1,1) 67 0.363 0.534 0.60 0.955 0.952

L3 loss function (74 models)

MCS Rnk L̄i TD p-val VR Corr

CCC

Aparch (1,1) 2 0.631 1.090 0.49 0.792 0.910

Egarch (0,1) 22 0.718 3.320 0.49 1.005 0.997
(0,2) 52 0.756 1.586 0.49 1.391 0.961
(1,1) 63 0.784 0.882 0.49 1.777 0.918
(1,2) 61 0.783 1.015 0.49 1.745 0.917
(2,1) 57 0.772 1.327 0.49 1.615 0.936

Figarch (1,1) 31 0.731 0.731 0.49 1.025 0.998

Garch (1,1) 34 0.732 0.725 0.48 0.998 0.997
(1,2) 40 0.739 0.752 0.44 1.050 0.998
(2,1) 42 0.740 0.731 0.46 1.081 0.996
(2,2) 23 0.718 0.873 0.49 0.980 0.999

Gjr (1,2) 95 0.876 0.947 0.34 2.098 0.897

Hgarch (1,1) 49 0.747 0.825 0.39 1.043 0.996

Igarch (1,1) 93 0.874 0.852 0.38 1.352 0.791

Rm(1,1) 15 0.674 4.335 0.49 0.823 0.912

DCCA

Aparch (1,1) 4 0.638 6.954 0.49 0.790 0.910

Egarch (0,1) 29 0.727 0.840 0.49 1.009 0.997
(0,2) 55 0.767 0.723 0.49 1.407 0.958
(1,1) 71 0.794 0.748 0.49 1.801 0.915
(1,2) 70 0.794 0.730 0.49 1.770 0.913
(2,1) 60 0.781 0.787 0.49 1.635 0.934

Figarch (1,1) 37 0.737 0.741 0.45 1.031 0.998

Garch (1,1) 38 0.738 0.767 0.43 1.000 0.997
(1,2) 47 0.745 0.859 0.38 1.054 0.998
(2,1) 50 0.748 0.811 0.40 1.086 0.996
(2,2) 28 0.727 0.736 0.49 0.983 0.999

Hgarch (1,1) 51 0.749 0.840 0.38 1.051 0.995

Igarch (1,2) 97 0.882 1.097 0.26 1.345 0.792

Rm(1,1) 18 0.677 3.386 0.49 0.818 0.914

DCCT

Aparch (1,1) 1 0.631 - 1.00 0.791 0.910

Egarch (0,1) 24 0.718 4.498 0.49 1.007 0.997
(0,2) 53 0.757 1.150 0.49 1.398 0.960
(1,1) 64 0.784 0.934 0.49 1.785 0.916
(1,2) 62 0.784 0.880 0.49 1.754 0.915
(2,1) 58 0.773 2.041 0.49 1.622 0.935

Figarch (1,1) 30 0.731 0.749 0.49 1.027 0.998

Garch (1,1) 32 0.732 0.733 0.49 0.999 0.997
(1,2) 39 0.738 0.745 0.44 1.052 0.998
(2,1) 41 0.740 0.732 0.47 1.083 0.996
(2,2) 25 0.719 0.872 0.49 0.981 0.999

Gjr (1,2) 94 0.876 0.894 0.36 2.107 0.897

Hgarch (1,1) 45 0.744 0.775 0.42 1.047 0.996

Igarch (1,1) 92 0.873 0.844 0.38 1.349 0.791

Rm(1,1) 5 0.653 7.324 0.49 0.814 0.914

DCCE

Aparch (1,1) 3 0.636 6.797 0.49 0.790 0.910

Egarch (0,1) 27 0.724 0.877 0.49 1.010 0.997
(0,2) 54 0.765 0.769 0.49 1.408 0.958
(1,1) 68 0.792 0.814 0.49 1.801 0.915
(1,2) 67 0.791 0.810 0.49 1.771 0.913
(2,1) 59 0.779 0.843 0.49 1.635 0.934

Figarch (1,1) 35 0.733 0.728 0.47 1.029 0.998

Garch (1,1) 36 0.736 0.736 0.46 1.000 0.997
(1,2) 44 0.743 0.799 0.40 1.054 0.998
(2,1) 43 0.743 0.759 0.43 1.074 0.996
(2,2) 26 0.724 0.786 0.49 0.983 0.999

Gjr (1,2) 96 0.881 1.003 0.31 2.119 0.895

Hgarch (1,1) 48 0.746 0.786 0.42 1.051 0.996

Rm(1,1) 12 0.671 4.628 0.49 0.819 0.913

DECO
Aparch (1,1) 21 0.694 1.725 0.49 0.815 0.910

Rm(1,1) 20 0.686 2.173 0.49 0.827 0.918

Orth.

Aparch (1,1) 6 0.661 6.560 0.49 0.874 0.900

Egarch (0,1) 8 0.666 5.965 0.49 0.880 0.899
(0,2) 9 0.666 5.685 0.49 0.867 0.900
(1,1) 16 0.676 4.113 0.49 0.887 0.899
(1,2) 14 0.673 4.443 0.49 0.885 0.899
(2,1) 17 0.676 3.965 0.49 0.879 0.899
(2,2) 19 0.679 3.378 0.49 0.883 0.903

Garch (1,1) 7 0.665 5.720 0.49 0.877 0.900
(1,2) 11 0.670 4.466 0.49 0.880 0.898
(2,1) 10 0.668 5.554 0.49 0.881 0.899
(2,2) 13 0.672 4.258 0.49 0.882 0.900

DBEKK (1,1) 46 0.745 0.841 0.49 0.820 0.898
SBEKK (1,1) 33 0.732 0.93 0.486 0.837 0.891
RM (1,1) 56 0.772 0.73 0.466 0.879 0.913

Note. See Table 3.3.
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over this sample the type of asymmetry accounted for by L3 is not statistically relevant,

i.e., does not impact on the composition of the MCS, we observe changes in the ordering of

the models. For example, the Orthogonal type models included in both the MCSs, ranking

between 37th and 62nd under LE , figure between the 6th and the 19th position under L3.

Given the asymmetry of L3, we can conclude that Orthogonal models tend to underestimate

the conditional variance. The differences in terms of MCS with the outcome obtained under

LE are: i) the inclusion of DCC type specifications with integrated conditional variances,

which however show very poor sample performances within the MCS together with the

largest relative variances and the smallest correlations with L̄; ii) the inclusion of all BEKK

type models.

Table 3.6: MCS-second sub-sample. Calm period (1/04/03 - 31/07/07) (Cont.)

Stein distance (12 models)

MCS Rnk L̄i TD p-val VR Corr

CCC
Garch(1,1) 5 3.180 0.285 0.72 0.948 0.999

(1,2) 10 3.193 1.253 0.26 1.168 0.996
(2,1) 3 3.175 0.476 0.74 1.033 0.998

DCCT

Garch(1,1) 6 3.183 0.413 0.61 0.935 0.999
(1,2) 8 3.191 0.683 0.47 1.154 0.996
(2,1) 2 3.174 0.265 0.74 1.022 0.998
(2,2) 7 3.189 1.265 0.29 1.027 0.998

Gjr (1,1) 16 3.203 1.171 0.26 0.806 0.982

DCCE

Garch(1,1) 4 3.179 0.307 0.74 0.967 0.998
(1,2) 12 3.194 1.101 0.30 1.198 0.996
(2,1) 1 3.171 - 1.00 1.065 0.998

Gjr (1,1) 15 3.201 1.084 0.29 0.834 0.982

Note. See Table 3.3.

3.4.4 2007-08 financial crisis

Results for the MCS for the last sub-sample are reported in Table 3.7. The MCS under LE

contains 39 models. In line with the results obtained for full sample, the MCS is dominated

by specifications in the DECO and the Orthogonal families. Other DCC type specifications

are included only when they account for long memory and integrated conditional variances.

Indeed, in line with the results for the full sample (and in sharp contrast with the Dot-

com speculative bubble burst period) modeling long memory and integrated conditional

variances becomes more important. Furthermore, although we find models that account

for asymmetry/leverage, contrary to the Dot-com bubble burst period, models with Egarch

dynamics for the conditional variances are systematically rejected.

Under LS the results are also consistent with the ones obtained for the full sample,

though the MCS is larger (26 models). The models in the MCS belong to the DCC family

and account for long-memory in volatility or leverage effect. The non-rejection of some
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Table 3.7: MCS-third sub-sample: 2007-2008 financial crisis (1/08/07 - 27/12/08)

Euclidean distance (39 models)

MCS Rnk L̄i TD p-val VR Corr

CCC Hgarch (1,1) 40 17.172 1.034 0.32 1.171 0.995

DCCA Figarch (1,1) 28 16.345 0.880 0.39 1.099 0.997

Hgarch (1,1) 21 16.162 0.678 0.50 1.072 0.997

Rm(1,1) 35 16.954 0.892 0.38 1.264 0.998

DCCT Figarch (1,1) 43 17.283 1.207 0.25 1.184 0.995

Hgarch (1,1) 38 17.086 0.992 0.33 1.154 0.995

DCCE
Figarch (1,1) 25 16.305 0.826 0.42 1.097 0.997

Hgarch (1,1) 22 16.208 0.797 0.44 1.076 0.997

Rm(1,1) 44 17.376 1.157 0.27 1.307 0.999

DECO

Aparch (1,1) 27 16.317 0.886 0.39 1.122 0.997

Figarch (1,1) 5 14.919 0.063 0.90 0.922 0.998

Garch (1,1) 32 16.661 0.884 0.39 1.187 0.997
(1,2) 29 16.492 0.887 0.39 1.153 0.998
(2,1) 31 16.583 0.938 0.36 1.141 0.999
(2,2) 33 16.713 0.962 0.34 1.175 0.999

Gjr (1,1) 23 16.237 0.828 0.42 1.104 0.998
(1,2) 16 16.043 0.787 0.44 1.058 0.999
(2,1) 14 15.879 0.780 0.44 1.001 0.999
(2,2) 17 16.048 0.892 0.39 1.048 0.999

Hgarch (1,1) 2 14.816 0.061 0.90 0.899 0.997

Igarch (1,1) 24 16.275 0.808 0.44 1.071 0.992

Rm(1,1) 19 16.076 0.444 0.68 1.132 0.998

Orth.

Aparch (1,1) 13 15.791 0.596 0.58 0.918 0.996

Egarch (0,1) 26 16.308 0.914 0.38 1.020 0.998
(0,2) 15 16.026 0.890 0.39 0.942 0.999
(1,1) 20 16.088 0.881 0.39 0.928 0.998
(1,2) 12 15.757 0.891 0.44 0.868 0.998
(2,1) 30 16.562 1.068 0.30 1.067 0.999
(2,2) 6 15.316 0.282 0.79 0.784 0.996

Arch (2) 71 18.210 1.128 0.28 1.101 0.971

Garch (1,1) 18 16.052 0.869 0.39 0.963 0.997
(1,2) 9 15.618 0.827 0.44 0.867 0.998
(2,1) 10 15.644 0.814 0.44 0.884 0.999
(2,2) 11 15.666 0.874 0.44 0.861 0.998

Gjr (1,1) 7 15.391 0.405 0.71 0.812 0.996
(1,2) 3 14.853 0.120 0.90 0.705 0.997
(2,1) 1 14.577 - 1.00 0.660 0.996
(2,2) 4 14.895 0.070 0.90 0.720 0.997

RM (1,1) 8 15.464 0.153 0.86 0.973 0.992

Stein distance (26 models)

MCS Rnk L̄i TD p-val VR Corr

CCC

Aparch (1,1) 21 4.773 0.992 0.32 1.098 0.990

Egarch (0,1) 14 4.712 0.579 0.46 0.991 0.986
(0,2) 16 4.716 0.569 0.46 1.006 0.985
(1,2) 10 4.665 0.587 0.48 0.954 0.990

Figarch (1,1) 2 4.531 3.442 0.48 0.781 0.942

Hgarch (1,1) 9 4.663 0.623 0.47 0.784 0.931

DCCA

Aparch (1,1) 30 4.843 1.099 0.29 1.417 0.991

Egarch (0,1) 20 4.766 0.626 0.44 1.286 0.987
(0,2) 23 4.787 0.678 0.42 1.313 0.984
(1,2) 17 4.722 0.586 0.46 1.229 0.991

Figarch (1,1) 6 4.585 1.143 0.48 0.959 0.939

Hgarch (1,1) 8 4.631 0.684 0.48 0.861 0.930

DCCT

Aparch (1,1) 19 4.758 0.814 0.37 1.145 0.992

Egarch (0,1) 11 4.669 0.550 0.48 1.031 0.989
(0,2) 13 4.678 0.534 0.48 1.048 0.987
(1,2) 7 4.623 0.636 0.48 0.995 0.993

Figarch (1,1) 1 4.511 - 1.00 0.816 0.940

Gjr (1,2) 24 4.802 1.192 0.26 1.214 0.990

Hgarch (1,1) 4 4.566 4.693 0.48 0.737 0.931

DCCE

Aparch (1,1) 22 4.787 0.743 0.40 1.337 0.991

Egarch (0,1) 15 4.714 0.578 0.47 1.203 0.987
(0,2) 18 4.727 0.562 0.47 1.228 0.984
(1,2) 12 4.671 0.635 0.48 1.151 0.991

Figarch (1,1) 3 4.543 2.103 0.48 0.927 0.939

Garch (2,1) 28 4.834 0.903 0.34 1.306 0.981

Hgarch (1,1) 5 4.578 0.897 0.48 0.824 0.934

L3 loss function (26 models)

MCS Rnk L̄i TD p-val VR Corr

DECO

Aparch(1,1) 26 682.5 1.116 0.28 1.128 1.000

Figarch (1,1) 17 660.0 0.769 0.48 1.062 1.000

Garch (1,1) 29 687.4 1.189 0.26 1.147 1.000

Gjr (1,1) 24 680.2 1.076 0.30 1.121 1.000
(1,2) 22 677.6 1.152 0.27 1.105 1.000

Hgarch (1,1) 15 656.9 0.820 0.48 1.052 1.000

Igarch (1,1) 21 675.9 0.896 0.38 1.108 0.999

Rm(1,1) 25 681.9 1.025 0.32 1.136 1.000

Orth.

Aparch (1,1) 10 641.6 0.795 0.48 0.991 0.999

Egarch (0,1) 16 658.6 0.782 0.47 1.050 1.000
(0,2) 11 648.8 0.787 0.48 1.001 1.000
(1,1) 12 650.5 0.808 0.44 0.986 1.000
(1,2) 8 637.2 1.057 0.48 0.949 0.999
(2,1) 18 664.1 0.841 0.42 1.072 1.000
(2,2) 4 617.4 0.667 0.49 0.871 0.999

Arch(1) 19 665.5 0.962 0.48 0.890 0.989
(2) 27 684.5 0.952 0.35 1.013 0.994

Garch (1,1) 13 652.6 0.797 0.48 1.021 0.999
(1,2) 6 635.9 1.087 0.48 0.955 1.000
(2,1) 7 637.1 0.993 0.48 0.968 1.000
(2,2) 9 637.4 1.146 0.48 0.952 1.000

Gjr (1,1) 5 631.2 0.980 0.48 0.924 0.999
(1,2) 2 605.8 1.224 0.49 0.825 0.999
(2,1) 1 590.6 - 1.00 0.776 0.999
(2,2) 3 609.2 0.858 0.49 0.846 0.999

RM (1,1) 14 654.4 0.886 0.48 1.044 0.998

Note. See Table 3.3
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CCC specifications, which is surprising in this case, shows that adequately modeling the

conditional variances of the returns can compensate the loss in forecasting accuracy induced

by the restrictive assumption of constant conditional correlation.

For L3 the results are also in line with the full sample. The MCS contains 26 models

and is dominated by orthogonal and DECO specifications with the former showing the best

sample performances. Among the DECO specifications included in the MCS we find both

evidence of long memory/integrated conditional variances and leverage effect (Aparch and

Gjr).

Finally, the average loss over the last sub-sample is much larger than in the first two

periods (irrespectively of the choice of the loss function). We conclude first that in turbulent

periods GARCH models do not seem to be well suited to adequately estimate the conditional

variance. Second, the large losses accumulated over short periods of high instability tend to

drive the MCS results even when long forecasting periods are considered. Hence, a careful

evaluation of the trade off between forecast sample length (to reduce sampling variability)

and the informativeness and accuracy of the selection appears to be crucial in this setting.

3.4.5 Robustness check to the use of alternative proxies

To verify the robustness of our results to the choice of the volatility proxy, we repeat the

analysis using Σ̂(∆), see (3.10), computed using 1 and 30 minute returns and Σ̂
(∆)
AC,q=1, see

(3.12), computed using 1, 5 and 30 minutes returns. The MCS is robust in terms of size

and composition to the alternative volatility proxies. In particular, when the proxy is based

on higher frequency returns we generally find smaller MCS.

As an example (complete results are available upon request), if we consider the Euclidean

distance (LE), under Σ̂
(1min) (Σ̂

(1min)
AC,q=1) we find 25 (35) models for the full sample, 26 (33)

for the dot-com bubble burst period, 60 (71) for the calm period and 47 (38) for the 2007-

2008 financial crisis sub-sample. In accordance with the literature, the robustness of these

results is implied by the consistency of the loss function. The higher accuracy of the proxy

only translates into a lower variability of the sample evaluation of the models which makes

easier to effectively discriminate between models. Along the same line, and consistently with

the results obtained under Σ̂(5min), when the evaluation is based on Σ̂
(5min)
AC,q=1 and LE we

find 40 models for the full sample, and 30, 71 and 38 for the three sub-samples respectively.

Finally, when we use proxies based on 30 minutes returns we find 41 (40) models for the

full sample and 41 (59), 73 (66) and 37 (35) for the three sub-samples respectively.

Our results show that the use of a higher frequency proxy ensures the elimination of

uninformative models while the consistency with the results obtained using relatively low

frequency proxies shows that the potential microstructure bias is negligible. This result
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underlines the value of high precision proxies, in particular when the set of competing

models is characterized by a high degree of similarity, see Laurent, Rombouts, and Violante

(2009) and Patton and Sheppard (2009).

3.4.6 Multiple comparison based on longer forecast horizons

Results for the multi-step (5 and 20 days) forecast evaluation are reported in Table 3.8

for the LE loss function. The composition of the MCS is in line with the one-step ahead

case. As expected, when the forecast horizon increases the average loss increases, and this

irrespectively of the evaluation period or the choice of the loss function. Furthermore,

the MCS reduces in size, which seems to be a specific feature here. This result is due

to two reasons. First, the performances of models with similar properties and structure

tend to cluster (convergence to the same long run variance matrix) but differences between

clusters increase (different specifications can imply different levels for the long run variance).

Second, longer horizon forecasts are generally smoother, which substantially reduces the

variability of the relative performances, d̄i, making it easier to separate between models.

The interaction between the two effects is particularly strong for the calm period. The

results are in line with the conclusion drawn for the one-step ahead forecast comparison,

i.e., the constant correlation hypothesis cannot be rejected, but the size of the MCS reduces

to only the CCC-Egarch(2,1) model for 5-day ahead horizon and the CCC-Egarch(2,1), the

CCC-Garch(1,2) and the DCCT-Garch(1,2) models for the 20-day ahead horizon. This is

because over this period the variability of d̄i reduces so much that even small differences in

performances become highly significant.

In sharp contrast with the one-step ahead case, we find that non stationary models are

rejected most of the time for longer forecast horizons. In fact, longer horizon forecasts for

these types of models typically exhibit an explosive pattern. An exception is the RiskMetrics

type model and the conditional correlation models with Igarch conditional variances, when

the evaluation is based on the 2007-2008 financial crisis period. The non exclusion of these

specifications indicates the inadequacy of GARCH-type models in periods of extreme market

instability. In fact, the k-step ahead forecast for the RiskMetrics type models (except for

the correlation component in the DCC-type) is uninformative because it coincides with

the 1-step ahead forecast independently from the forecast horizon. This also holds for the

models allowing for integrated conditional variances, whose intercept over this period is

insignificant in most cases and numerically close to zero (0.003 on average).

Similar considerations and qualitatively the same results, not reported but available

upon request, are also found for the LS and L3 loss functions.
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Table 3.8: MCS on multistep ahead covariance forecasts - Euclidean distance

5-day ahead forecast horizon
Full sample (16 models)

MCS Rnk L̄i TD p-val VR Corr

DCCA Rm(1,1) 15 4.508 0.907 0.40 1.039 0.998

DECO
Gjr (1,1) 11 4.468 1.082 0.31 1.043 0.999

(2,1) 14 4.495 1.211 0.25 1.047 0.999

Rm(1,1) 4 4.366 0.224 0.85 0.962 0.998

Orth.

Aparch (1,1) 2 4.312 0.073 0.94 0.963 0.998

Egarch (0,1) 6 4.375 0.446 0.69 1.007 0.999
(0,2) 23 4.569 1.160 0.27 1.141 0.996
(1,1) 9 4.410 0.608 0.60 1.026 0.999
(2,1) 10 4.465 0.662 0.57 1.061 0.998
(2,2) 12 4.470 0.819 0.45 0.985 0.999

Garch(1,1) 5 4.369 0.677 0.60 0.967 0.998
(1,2) 13 4.472 1.001 0.35 1.035 0.999
(2,1) 8 4.399 0.737 0.57 0.974 0.999

Gjr (1,1) 1 4.300 - 1.00 0.912 0.996
(1,2) 7 4.390 0.616 0.60 0.990 0.999
(2,1) 3 4.316 0.052 0.94 0.915 0.997

Dot-Com bubble burst (5 models)

MCS Rnk L̄i TD p-val VR Corr

Orth.

Aparch (1,1) 1 2.959 - 1.00 0.982 1.000

Egarch (0,1) 3 2.969 0.402 0.65 1.038 1.000
(0,2) 5 2.996 0.991 0.32 1.095 0.999

Gjr (1,1) 2 2.967 0.152 0.69 0.909 0.999
(1,2) 4 2.984 1.126 0.30 0.986 1.000

Calm period (1 models)

MCS Rnk L̄i TD p-val VR Corr

CCC Egarch (2,1) 1 0.610 - 1.00 - -

2007-2008 financial crisis (30 models)

MCS Rnk L̄i TD p-val VR Corr

DCCA

Garch(2,1) 39 21.09 1.216 0.25 1.138 0.997

Gjr (1,2) 36 20.98 1.181 0.26 1.133 0.997
(2,1) 29 20.72 0.959 0.35 1.109 0.998

Igarch (1,1) 27 20.53 1.156 0.27 1.026 0.998

Rm(1,1) 7 19.56 0.303 0.76 1.020 0.999

DCCT Rm(1,1) 26 20.52 0.937 0.37 1.067 0.998

DCCE
Gjr (2,1) 32 20.82 0.985 0.34 1.115 0.997

Igarch (1,1) 25 20.51 1.074 0.30 1.025 0.998

Rm(1,1) 15 19.92 0.951 0.40 1.045 0.999

DECO

Garch(1,2) 24 20.51 1.029 0.32 1.073 0.999
(2,1) 20 20.16 0.918 0.38 1.053 0.999

Gjr (1,1) 13 19.88 0.915 0.39 1.022 1.000
(1,2) 19 20.13 0.923 0.38 1.052 0.999
(2,1) 12 19.83 0.875 0.40 1.030 0.999
(2,2) 18 20.04 0.918 0.38 0.981 0.998

Igarch (1,1) 10 19.67 0.814 0.44 0.934 0.996

Rm(1,1) 1 18.81 - 1.00 0.942 0.999

Orth.

Aparch (1,1) 5 19.48 0.725 0.48 0.938 0.997

Egarch (0,1) 14 19.89 0.918 0.38 0.980 0.999
(1,1) 17 20.02 0.901 0.39 1.002 0.999
(2,1) 22 20.34 0.947 0.36 1.037 0.999
(2,2) 16 19.94 0.873 0.40 0.961 0.999

Garch(1,1) 6 19.54 0.873 0.40 0.938 0.997
(1,2) 21 20.27 1.117 0.28 1.011 0.999
(2,1) 8 19.58 0.908 0.40 0.949 0.998

Gjr (1,1) 3 18.93 0.022 0.98 0.889 0.994
(1,2) 11 19.71 0.906 0.39 0.969 0.999
(2,1) 4 18.97 0.032 0.98 0.896 0.996
(2,2) 9 19.64 0.897 0.40 0.938 0.998

RM (1,1) 2 18.83 0.001 0.98 0.887 0.994

20-day ahead forecast horizon
Full sample (12 models)

MCS Rnk L̄i TD p-val VR Corr

DECO Rm(1,1) 9 5.117 1.821 0.25 0.960 0.999

Orth.

Aparch (1,1) 1 5.020 - 1.00 1.006 1.000

Egarch (0,1) 7 5.102 1.131 0.29 1.026 0.999
(0,2) 13 5.172 1.209 0.25 1.044 0.999
(1,1) 10 5.121 1.482 0.25 1.031 0.999
(2,1) 11 5.144 1.308 0.25 1.034 0.999

Garch(1,1) 3 5.039 0.351 0.69 0.989 1.000
(1,2) 5 5.092 1.495 0.25 1.002 1.000
(2,1) 8 5.105 1.630 0.25 0.990 1.000

Gjr (1,1) 2 5.024 0.019 0.89 0.967 0.999
(1,2) 4 5.068 0.963 0.38 0.991 1.000
(2,1) 6 5.096 1.432 0.25 0.978 0.999

Dot-Com bubble burst (8 models)

MCS Rnk L̄i TD p-val VR Corr

Orth.

Aparch (1,1) 8 3.274 0.618 0.552 1.028 1.000

Egarch (0,2) 5 3.262 0.293 0.818 1.021 1.000

(1,1) 2 3.251 0.021 0.978 1.020 1.000
(2,1) 4 3.257 0.072 0.953 1.028 1.000
(0,1) 1 3.250 - 1.000 1.011 1.000

Gjr (1,1) 3 3.254 0.015 0.978 0.965 0.999
(1,2) 6 3.265 0.256 0.808 0.971 1.000
(2,1) 7 3.273 0.318 0.751 0.963 0.999

Calm period (3 models)

MCS Rnk L̄i TD p-val VR Corr

CCC
Egarch (2,1) 3 0.635 0.598 0.440 1.010 1.000
Garch(1,2) 1 0.633 - 1.000 0.995 1.000

DCCT Garch(1,2) 2 0.633 1.614 0.440 0.995 1.000

2007-2008 financial crisis (18 models)

MCS Rnk L̄i TD p-val VR Corr

CCC Rm(1,1) 18 23.86 1.105 0.32 1.046 0.999

DCCA
Garch(2,1) 20 23.99 1.208 0.27 1.049 0.998

Igarch (1,1) 15 23.56 1.009 0.37 0.941 0.999

Rm(1,1) 3 22.87 0.394 0.73 1.009 1.000

DCCT Rm(1,1) 12 23.48 1.117 0.37 1.031 0.998

DCCE
Igarch (1,1) 13 23.54 1.098 0.37 0.939 0.999

Rm(1,1) 5 23.13 0.579 0.58 1.023 1.000

DECO
Garch(2,1) 9 23.43 1.149 0.37 1.020 0.999

Igarch (1,1) 6 23.17 0.390 0.73 0.906 0.997
Rm(1,1) 1 22.64 - 1.00 0.993 0.999

Orth.

Aparch (1,1) 8 23.32 1.194 0.37 1.041 1.000

Garch(1,1) 7 23.29 1.177 0.37 1.023 1.000
(2,1) 14 23.56 1.250 0.26 1.022 1.000

Gjr (1,1) 4 22.97 0.465 0.73 1.003 0.999
(1,2) 10 23.45 0.991 0.37 1.026 0.999
(2,1) 11 23.45 1.057 0.37 1.011 0.999
(2,2) 16 23.67 0.989 0.37 0.995 0.999

RM (1,1) 2 22.73 0.048 0.82 0.964 0.998

Note. See Table 3.3.
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3.5 Setting a benchmark: the predictive ability of the DCCE

In this section, we focus on the predictive ability of a predefined benchmark model with

respect to all other alternatives. As benchmarks we choose simple and parsimonious speci-

fications and take into account two dimensions: the assumption on the multivariate struc-

ture (CCC, DCCE and Orthogonal) and on the dynamics of variance of the marginal pro-

cesses/principal components (Garch(1,1) and Egarch(0,1)). The CCC-Garch(1,1) model

represents the simplest alternative and allows to test simple hypotheses such as constant

correlation and symmetric variances for the marginal processes. The choice of the DCCE

among the DCC specification introduced in Section 3.2.1 is not coincidental: this model

has been increasingly popular because of its flexibility and straightforward interpretation.

The DCCE-Garch(1,1) therefore serves as a benchmark to assess whether relaxing the as-

sumption of constant correlation is sufficient to improve predictive ability. Finally, the

Orthogonal-Garch(1,1) model represents a simple and parsimonious alternative to direct

modeling of the dynamics of the conditional covariance and correlation. In a univariate

setting, Hansen and Lunde (2005) suggest that the absence of leverage effect is likely to

be rejected on stock market returns. To validate this result in the multivariate framework,

we also couple the three multivariate models with the Egarch(0,1) specifications for the

conditional variance processes.

The predictive ability of our benchmarks is evaluated using the test for superior pre-

dictive ability (SPA) proposed by Hansen (2005). This test generates the probability dis-

tribution of the model which performs best relative to the benchmark. Using the notation

introduced in Section 3.2.4, let us define d0j,t = L0,t−Lj,t, j = 1, ...,M , the relative perfor-

mance of model j with respect to the benchmark model (indexed by 0). Under reasonable

assumptions λj = E[d0j,t] is well defined. The null hypothesis is expressed with respect

to the best alternative model, i.e. H0,M : max
j∈M

λj

ωj
≤ 0, where ω2

j denotes the asymptotic

variance of λj . The test statistic is
√
T

[
max
j∈M

d̄0j
ω̂j

]
where d̄0j = T−1

∑T
t=1 d0j,t is the sample

loss differential between the benchmark and model j. P-values for the test are obtained by

bootstrap.

The results for the six different benchmarks are reported in Tables 3.9 and 3.10. Consis-

tently with the MCS results in Section 3.4, the hypothesis of constant correlation (Bench-

mark 1 and 4), as well as of symmetric dynamics for the variance matrix (Benchmark 2 and

5) is always rejected except when forecasts are compared over calm periods. However, the

hypothesis of symmetric dynamics for the variances of the assets returns considered is rather

weak. Evidence of the leverage effect is much stronger (e.g., Benchmark 5) when the com-
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parison is taken over periods of market instability. Also, allowing for dynamic correlation

significantly improves models’ forecasting ability.

Table 3.9: SPA test (symmetric dynamics for the marginal variances)

Benchmark 1: CCC-Garch(1,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.003 0.003 0.003 0.000 0.000 0.000 0.026 0.027 0.027
Dot-com bubble 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Calm period 0.018 0.020 0.023 0.434 0.817 0.963 0.170 0.211 0.259
07-08 financial crisis 0.015 0.016 0.016 0.000 0.000 0.000 0.019 0.019 0.019

Benchmark 2: DCCE-Garch(1,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.061 0.064 0.067 0.000 0.000 0.000 0.095 0.098 0.101
Dot-com bubble 0.001 0.002 0.002 0.000 0.000 0.000 0.003 0.003 0.003
Calm period 0.108 0.115 0.170 0.384 0.825 0.982 0.092 0.102 0.141
07-08 financial crisis 0.023 0.024 0.024 0.008 0.009 0.009 0.037 0.038 0.038

Benchmark 3: Orth.-Garch(1,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.087 0.118 0.120 0.000 0.000 0.000 0.191 0.276 0.280
Dot-com bubble 0.070 0.081 0.090 0.000 0.000 0.000 0.031 0.034 0.037
Calm period 0.001 0.002 0.003 0.000 0.000 0.000 0.010 0.013 0.021
07-08 financial crisis 0.257 0.321 0.332 0.003 0.003 0.003 0.357 0.488 0.494

Note. pC consistent p-value, pL and pU lower and upper bound for the consistent p-value
respectively. See Hansen (2005) for further details. Consistent p-values in bold indicate
the non-rejection of the null at confidence level α = 0.10.

With respect to the type of multivariate model, the Orthogonal approach (in particular

with leverage) exhibits superior performance exclusively over turbulent periods while it is

systematically outperformed over calm periods. As underlined in Section 3.4 the fact that

this model is preferred under the L3 criterion suggests that it is likely to underestimate the

covariance matrix (Benchmark 3 and 6).

In this application, the most valid specification is the DCCE-Egarch(0,1). It captures

well the dynamics of the covariance matrix across the different samples. Its performances

are not statistically worse than any of the 124 competing models, both when considering

the full sample or any of the sub-samples. For the 2007-08 financial crisis period the null is

rejected under LE but not under LS , i.e. the DCCE-Egarch(0,1) possibly tends overestimate

the variance matrix during periods of extreme market instability.
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Table 3.10: SPA test (asymmetric dynamics for the marginal variances)

Benchmark 4: CCC-Egarch(0,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.014 0.016 0.016 0.000 0.000 0.000 0.043 0.043 0.044
Dot-com bubble 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Calm period 0.100 0.164 0.237 0.000 0.000 0.000 0.242 0.423 0.547
07-08 financial crisis 0.016 0.016 0.016 0.046 0.056 0.085 0.018 0.019 0.019

Benchmark 5: DCCE-Egarch(0,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.100 0.115 0.136 0.001 0.002 0.002 0.082 0.084 0.086
Dot-com bubble 0.403 0.746 0.909 0.000 0.000 0.000 0.080 0.091 0.131
Calm period 0.154 0.227 0.386 0.000 0.000 0.000 0.023 0.029 0.035
07-08 financial crisis 0.035 0.037 0.037 0.165 0.235 0.459 0.035 0.036 0.036

Benchmark 6: Orth.-Egarch(0,1)

LE LS L3

pL pC pU pL pC pU pL pC pU

Full sample 0.243 0.372 0.400 0.000 0.000 0.000 0.297 0.524 0.546
Dot-com bubble 0.341 0.522 0.597 0.000 0.000 0.000 0.217 0.723 0.838
Calm period 0.004 0.006 0.009 0.000 0.000 0.000 0.000 0.000 0.000
07-08 financial crisis 0.189 0.220 0.229 0.003 0.003 0.004 0.336 0.489 0.503

Note. See Table 3.9.

3.6 Conclusion

Several multivariate GARCH models exist in the literature. However, from an applied

viewpoint no guidelines are available on forecasting performances evaluation and model

selection. We apply the model confidence set approach (MCS), which allows to isolate

superior models in terms of predictice ability, to 125 multivariate GARCH model based

forecasts. We consider 10 assets from NYSE for which we forecast 1, 5 and 20-day ahead

conditional variance matrices from April 1, 1999 to December 27, 2008. The evaluation

is based on two symmetric and two asymmetric loss functions and the ex-post underlying

volatility is approximated by the realized covariance estimator based on intraday returns

sampled at 5 minute frequency.

In line with recent literature, we find the Euclidean and Frobenius loss functions (both

symmetric) to deliver relatively large MCS, from about one half to one fourth of the to-

tal number of models, while the two asymmetric loss functions identify sets of superior

models systematically smaller. The MCS is composed of sophisticated specifications such

as orthogonal and dynamic conditional correlation (DCC), both with long memory in the

conditional variances. With respect to the properties of the loss function, we conclude that

Orthogonal and DECO models tend to underestimate the conditional covariance, the DCC



3.6. Conclusion 99

of Engle (2002a) (as well as its asymmetric version) and the DCC of Tse and Tsui (2002)

tend to overestimate.

We illustrate how sensitive the MCS is with respect to the forecast sample under investi-

gation by considering not only the full forecast sample but also by investigating sub-samples

which are homogenous in their volatility dynamics. We find that over the dot-com bubble

burst and aftermath period, the set of superior models is composed by rather sophisticated

models such as DCC and Orthogonal, both with leverage effect in the conditional variances

of returns and principal components, respectively. Over calm periods, a simple assumption

like constant conditional correlation and symmetry in the conditional variances cannot be

rejected. Finally, over the 2007-2008 financial crisis, accounting for non-stationarity in the

conditional variance process significantly improves models’ forecasting performances.

With respect to the longer forecast horizons (5 and 20 day ahead), we find that while

the composition of the MCS is in line with the one-step ahead case, the MCS reduces in

size. The performances of models with similar properties and structure tend to cluster

but differences between clusters increase. This, together with a substantial reduction of

the variability of sample performances, due to the smoothness of longer horizon forecasts,

makes it easier to separate between superior and inferior models.

Focussing on the DCC class of models we can draw the following conclusions. First, the

DECO model, which is estimated under the assumption of cross sectional equicorrelation,

delivers superior forecasts over periods of market instability, but performs rather poorly

during calm periods. Second, modeling the asymmetric response of shocks in the condi-

tional correlation with a single parameter does not seem to significantly improve models’

forecasting performances with respect to the standard DCC of Engle (2002a). Third, when

comparing the DCC of Engle (2002a) with the DCC of Tse and Tsui (2002), we can con-

clude that, although statistically equivalent in terms of forecasting ability, while the first

shows better sample performances over turbulent periods, the second performs better over

calm periods. Fourth, we find that the most valid specification is represented by the DCC

model of Engle (2002a) when coupled with leverage effect in the conditional variances of

the marginal processes. This model captures well the dynamics of the variance matrix con-

sistently across the different sample periods. The latter result is confirmed by the Superior

Predictive Ability (SPA) test. The null hypothesis that the DCC of Engle (2002a) with

exponential GARCH dynamics is not outperformed by the other 124 specifications cannot

be rejected at standard levels irrespectively of the evaluation period.

This chapter considers only forecasts based on multivariate GARCH models. It would

be interesting to compare the performances of this class of volatility models with other ap-

proaches such as heterogeneous autoregression based on historical values of ex-post measures
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of the conditional variance as in the model proposed by Corsi (2009), models that combine

ARMA structures for both the conditional variance and realized measures of volatility as

in Hansen, Huang, and Shek (2010) or yet multivariate stochastic volatility (Gourieroux,

Jasiak, and Sufana, 2009) and regime switching models as in Silvennoinen and Terasvirta

(2009a). Other problems like the evaluation of forecast performances of correlation matrices

and high dimensional applications (hundreds of series) also merit more attention.



Chapter 4

The diffusion Limit of Dynamic Conditional

Correlation Models1

4.1 Introduction

Continuous and discrete time volatility models are often considered as two competitive

views to modeling financial time series. Thanks to the analytical tractability ensured by

Ito calculus, continuous time models have played a central role in theoretical finance. The

continuous time setting allows to have a deeper understanding of the properties of the

corresponding discrete time model and to assess probabilistic and statistic properties of

discrete time sequences such as stationary, moment finiteness or distributional results which

are otherwise intractable in discrete time, see Nelson (1990), Nelson and Foster (1994) and

Nelson (1994) for some examples.

From an applied viewpoint, inference on continuous time parameters of stochastic volatil-

ity models represents an important issue. The intractable likelihood functions and the

unobservable volatility process require sophisticated estimation procedures. Several estima-

tion methods have been proposed, such as the simulation based method of moments, Duffie

and Singleton (1993), the quasi-indirect inference of Broze, Scaillet, and Zakoian (1998) or

Bayesian Markov chain Monte Carlo methods, Jones (2003). Bollerslev, Engle, and Nelson

(1994) and Ghysels, Harvey, and Renault (1996) provide exhaustive surveys on stochastic

volatility models. For this reason, discrete time volatility models have been most often

preferred by the applied econometrician. Rather than estimating and forecasting with a

diffusion model observed at discrete points in time, it is in fact often easier to use a discrete

1This chapter has been adapted from Hafner, C.M., Laurent S. and Violante F. (2009), The diffusion
Limit of Dynamic Conditional Correlation Models.
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model directly.

The theory of convergence of discrete time Markov sequences towards continuous time

diffusion process, see Stroock and Varadhan (1979), Kushner (1984) and Ethier and Kurtz

(1986b), provides the theoretical foundations to establish mutual complementarities, possi-

ble inter-changeability and connections between the two approaches. Nelson (1990) provides

conditions ensuring the weak convergence of a discrete time Markov chain, defined by a sys-

tem of stochastic difference equations, towards a diffusion, defined by a system of stochastic

differential equations. The proposed approach, dubbed moment matching procedure, re-

quires the convergence, as the interval between observations shrinks to zero, of a number of

conditional moments of the increments of the system of interest, i.e., log-price and variance,

to well defined limits at an appropriate rate. In the context of GARCH-type models, Nelson

(1990), illustrates the convergence through various GARCH specifications. This approach

has been used by Duan (1997) to derive the diffusion limit of the Augmented GARCH

model, by Fornari and Mele (1997) to study the continuous time behavior of the class of

non linear ARCH models proposed by Ding, Granger, and Engle (1993), by Alexander and

Lazar (2005) to derive the diffusion limit of a weak GARCH process and in a related setting

by Trifi (2006) to illustrate the convergence results for the CEV-ARCH model of Fornari

and Mele (2006) and the CMSV model of Jeantheau (2004) and Hobson and Rogers (1998).

The advantage of this type of approximation lies essentially in estimating and forecast-

ing. Considering the discrete time model as a diffusion approximation allows to infer the

parameters of the diffusion model by the parameter estimates of a discrete time GARCH-

type model. In this chapter we propose a natural alternative to the direct estimation of the

diffusion parameters, consisting in inferring the diffusion parameters by means of a tractable

likelihood function of a discrete time multivariate GARCH process which can be considered

as an approximation of the diffusion process. Since the resulting likelihood function refers

to a process converging in distribution to the solution of a system of stochastic differential

equations that is not an Euler approximation of it, following Fornari and Mele (2006), we

call the resulting criterion quasi-approximated likelihood function (QAML). Requiring a

minimal computational effort, this approach has been advocated by many authors to avoid

more sophisticated estimation procedures, see Engle and Lee (1996), Lewis (2000), Barone-

Adesi, Rasmussen, and Ravanelli (2005) and Stentoft (2008) among others. This advantage

becomes even more striking in the multivariate case. Multivariate volatility models within

the conditional correlation class can be estimated easily and inference results to be accu-

rate even for large dimensions. Clearly this approach also has some drawbacks. First, the

QAML estimator is not necessarily consistent because the discrete time approximation is

typically not closed under temporal aggregation, see Drost and Nijman (1993) and Drost
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and Werker (1996). Second, except for some specific cases, a one-to-one correspondence

between weak convergence of the discrete time model and disaggregation from its diffusion

is not guaranteed, see Corradi (2000) and Wang (2002).

In this chapter we focus on conditional correlation models with GARCH dynamics for the

variances of the marginal processes. Apart from Nelson (1994) in the context of asymptotic

filtering theory, to our knowledge a comprehensive investigation of the the relationship

between multivariate discrete and continuous time models, and in particular to conditional

correlation models, has not been addressed yet.

We recover the diffusion limit of a modified version of the well known Dynamic Condi-

tional Correlation (DCC) model of Engle (2002b), dubbed consistent DCC (cDCC), pro-

posed by Aielli (2006). The cDCC is based on a more natural representation of correlation

driving process which, unlike the standard DCC model, preserves the martingale difference

property. For this specification, we point out the existence of a degenerate diffusion limit.

The degeneracy of the cDCC-GARCH diffusion limit is due to the particular structure of

the discrete time model in which the noise propagation system of the variances and the

one of the correlation driving process are perfectly correlated. This structure is preserved

in the diffusion limit which is characterized by a diffusion matrix singular by construction.

More precisely, the diffusion of the variances and of the diagonal elements of the correlation

driving process are pairwise governed by the same Brownian motion.

As a particular case, we also consider the Constant Conditional Correlation model

(CCC) of Bollerslev (1990), which can be obtained from the cDCC under suitable parameter

restrictions. The CCC-GARCH model is particularly interesting because, unlike the cDCC-

GARCH process, it admits a non-degenerate diffusion and, in the bivariate specification, a

closed form solution for the diffusion limit.

Finally, we propose and discuss different sets of conditions regarding the speed of con-

vergence of parameters of the cDCC-GARCH model. In this way, we are able to recover

other types of degenerated diffusions which are characterized by a stochastic price process

while variances and/or correlations remain time varying but deterministic. In the same

spirit of Corradi (2000), we then discuss what type of process can be obtained as Euler

approximation of the different diffusions recovered.

The chapter is completed by a comprehensive simulation study evaluating the accuracy

of our convergence results.

The chapter is organized as follows. In Section 4.2 we present the theorem of weak

convergence of discrete time Markov chains. In Section 4.3 we study the continuous time

behavior of the cDCC and CCC models. We also present the degenerate diffusions induced

by a reparameterization of the convergence conditions. In Section 4.4, we illustrate through
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a Monte Carlo simulation our convergence results. In Section 4.5 we conclude and discuss

directions for further research. All proofs are provided in the Appendix.

4.2 Weak convergence of stochastic systems

In this section we introduce a set of conditions for the convergence of a system of discrete

time stochastic difference equations towards system of stochastic differential equations based

on the work of Stroock and Varadhan (1979), Kushner (1984), Ethier and Kurtz (1986b)

and Nelson (1990).

Let us define D
(
[0,∞), IRN

)
the space of cadlag mappings from [0,∞) into IRN and

B
(
IRN

)
the Borel sets on IRN . Ph is the probability measure on D

(
[0,∞), IRN

)
for each

h > 0. LetMkh be the σ-field generated by (kh, hX0, hXh, hX2h, ..., hXkh), where hXkh is a

N -dimensional discrete time Markov chain indexed by h > 0, k ∈ IN, with νh a probability

measure on
(
IRN , B(IRN )

)
, such that Ph[hX0 ∈ Γ] = νh(Γ) for any Γ ∈ B

(
IRN

)
defines

the distribution of the starting point hX0, and with transition probabilities Ph[hX(k+1)h ∈
Γ|Mkh] = Πh,kh(hXkh,Γ), ∀k ∈ IN, Γ ∈ B

(
IRN

)
. Let us now define hXt a continuous time

process, formed from the discrete time process hXkh as a cadlag step function with jumps

at h, 2h, 3h, ..., such that Ph[hXt = hXkh, kh < t < (k + 1)h] = 1. Finally, let Xt be a

continuous time process obtained from hXt by shrinking the frequency h towards zero. Xt

represents the limiting diffusion process to which, under Assumption 4.1 to 4.4 given below,

the discrete time process hXt weakly converges as h→ 0.

For the convergence results we need the following assumptions

Assumption 4.1. There exist a continuous mapping a(x, t) from IRN × [0,∞) → N ×N

space of the symmetric positive semi-definite matrices and a continuous measurable mapping

b(x, t) from IRN × [0,∞) → IRN such that for all r > 0 and (k − 1)h < t < kh

a) lim
h→0

sup
∥x∥6r

∥∥h−1E
[
hX(k+1)h −hXkh

∣∣
hXkh = x

]
− b(x, t)

∥∥ = 0, (4.1)

b) lim
h→0

sup
∥x∥6r

∥∥h−1E
[
(hX(k+1)h −hXkh)(hX(k+1)h −hXkh)

′∣∣
hXkh = x

]
− a(x, t)

∥∥ = 0, (4.2)

c) ∃δ > 0 : lim
h→0

sup
∥x∥6r

∥∥∥h−1E
[∣∣(hX(k+1)h − hXkh)i

∣∣2+δ
∣∣∣hXkh = x

]∥∥∥ = 0, where (.)i is

the ith element of the vector (hX(k+1)h −h Xkh).

Assumption 4.2. There exists a continuous mapping σ(x, t) from IRN × [0,∞) → N ×N

space of matrices such that for all x ∈ IRN and t ≥ 0, a(x, t) = σ(x, t)σ(x, t)′.
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Assumption 4.3. hX0 converges in distribution, as h→ 0, to a random variable X0 with

probability measure ν0 on (IRN , B(IRN )).

Assumption 4.4. ν0, b(x, t), a(x, t) uniquely specify the distribution of a diffusion process

Xt with initial distribution ν0, drift vector b(x, t) and diffusion matrix a(x, t).

We can now state the following theorem for the weak convergence of discrete time stochastic

sequences.

Theorem of weak convergence (Nelson, 1990). Under Assumptions 1 to 4, the se-

quence of discrete time process hXkh indexed by h > 0 k ∈ IN, converges in distribution, as

h→ 0, to the diffusion process Xt solution of the system of stochastic differential equations

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, (4.3)

where dWt is a N-dimensional vector of mutually independent standard Brownian motion,

independent from X0 and with initial distribution ν0. The process Xt exists, it is finite in

finite time intervals almost surely, it is distributionally unique and its distribution does not

depend on the choice of σ(x, t).

For the proof we refer to Nelson (1990). Conditions under which ν0, b(x, t) and a(x, t) ensure

finiteness of the process in finite time intervals and uniqueness of the limiting diffusion

are extensively discussed in Stroock and Varadhan (1979), Ethier and Kurtz (1986b), and

Nelson (1990). To ensure weak existence, uniqueness and non-explosion of the diffusion

process Xt on compact sets we rely on ‘Condition A’ of Nelson (1990), i.e.,

Condition 1 (weak existence and uniqueness). Let a(x, t) and b(x, t) be continuous in both

x and t with two partial derivatives with respect to x.

Following Theorem 10.2.2 of Stroock and Varadhan (1979), we impose the following condi-

tions of non-explosiveness of Xt.

Condition 2 (non-explosiveness). For each T > 0, there is a CT <∞ such that

sup
0≤t≤T

∥a(x, t)∥ ≤ CT (1 + |x|2), x ∈ RN

and

sup
0≤t≤T

⟨x, b(x, t)⟩ ≤ CT (1 + |x|2), x ∈ RN .
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4.3 Main theoretical results

Let hYkh be an N -dimensional vector of logarithmic prices indexed by kh, k ∈ IN, h >

0. The pre-subscript h represents the sampling frequency or said differently, the time

interval between two consecutive observations, i.e. for given h, prices are observed at times

h, 2h, 3h, .... We let the parameters depend on the sampling frequency. Furthermore, the

variance of the innovations is made proportional to h. In this chapter we focus on the

covariance stationary case, hence usual suitable positivity and stationarity constraints on

the parameters of the variances and correlation driving process apply, see Bollerslev (1986),

Engle and Sheppard (2001), Engle (2002b), Aielli (2006) and Aielli (2009).

In the remainder of the chapter we use the following operators: vec() stacks the columns

of a matrix into a vector, vech() stacks the lower triangular portion of a square matrix

into a vector, vechl() stacks the strictly lower triangular portion of a square matrix into

a vector (i.e., excluding the diagonal elements), diag() stacks the diagonal of a square

matrix into a vector. Furthermore, 1N is a (N × 1) vector of ones and IN is the (N ×N)

identity matrix. We also make use of the following special matrices: DN denotes the

(N2 × N(N + 1)/2) duplication matrix, which for any symmetric matrix A transforms

vech(A) into vec(A), D+
N its generalized inverse, see e.g. Lütkepohl (1996) for details, I∗ is

defined such that diag(A) = I∗vech(A) with I∗ = I+′DN and I+ = (1N⊗IN )⊙[1′N⊗vec(IN )]

is the (k2 × k) matrix I+ transforms vec(A) into diag(A). Finally, I− is defined such that

vechl(A)vechl(A)′ = I−(vech(A)vech(A)′)I−′ = I−D+
N (A⊗A)D+′

N I
−′.2

4.3.1 The cDCC-GARCH process

The discrete time cDCC-GARCH process of Aielli (2006) for the log return of aN -dimensional

portfolio of assets Yt is specified as follows:

Yt = Yt−1 + St ηt, ηt ∼ N(0, Rt) (4.4)

Vt+1 = c+AS2
t (ηt ⊙ ηt) +B Vt, (4.5)

Q∗
t+1 = Q̄+ ϑ(Pt ηt ηt

′ Pt) + γ Q∗
t , (4.6)

Pt = (Q∗
t ⊙ IN )1/2, (4.7)

Rt = P−1
t Q∗

t P
−1
t , (4.8)

2Examples: I+N=3 =

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

′

and I−N=3 =

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 .
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where {R−1/2
t ηt, t = 1, 2, ...} is a sequence of N -dimensional vectors of i.i.d. gaussian inno-

vations. Let us now consider the properties of the system of stochastic difference equations

(4.4)-(4.8) as the time is partitioned more and more finely. We let the parameters of the

system to depend on sampling frequency h as well as the covariance matrix of the vector of

idiosyncratic innovations. We start partitioning time in (4.4)-(4.8), for h > 0 and k ∈ IN,

according to the following scheme

hYkh = hY(k−1)h + hSkh hηkh, (4.9)

hV(k+1)h = ch +Ahh
−1

hS
2
kh(hηkh ⊙ hηkh) +Bh hVkh, (4.10)

hQ(k+1)h = Q̄h + ϑhh
−1vech(hPkh hηkh hηkh

′
hPkh) + γh hQkh, (4.11)

hPkh = (hQ
∗
kh ⊙ IN )1/2, (4.12)

hRkh = hP
−1
kh hQ

∗
kh hP

−1
kh , (4.13)

and

Ph[(hY0,h V0,hQ0) ∈ Γ] = νh(Γ) for any Γ ∈ B
(
IRN(N+5)/2

)
(4.14)

where ch is an (N × 1) parameter vector, Ah, Bh are (N ×N) diagonal parameter matrices,

ϑh and γh are scalars and hηkh is an (N × 1) vector of devolatilized but correlated inno-

vations, such that hR
−1/2
kh hηkh ∼ i.i.d. N(0, h IN ). Further, hSkh is an (N × N) diagonal

matrix of rescaled conditional standard deviations with diag(hS
2
kh) = hVkh an (N × 1)

vector of rescaled conditional variances. The correlation driving process hQ
∗
kh represents

the conditional expectation of the outer product of the corrected devolatilized innovations,

see Aielli (2009) for details, and it is therefore symmetric and positive semi-definite. For

analytical tractability we express the model in terms of the vector of the unique elements

of hQ
∗
kh, i.e. hQ(k+1)h = vech(hQ

∗
kh). Finally, (4.14) defines the distribution of the starting

point. The system (4.9)-(4.14) describe a discrete time Markov process.

The advantage of the cDCC over the standard DCC model of Engle (2002b) stands

in the fact that the recursion in hQkh preserves the martingale difference property, i.e.,

h−1E[(hPkh hηkh hη
′
kh hPkh)|Mkh] = hPkh hRkh hPkh = hQ

∗
kh. Hence, for a given h, the

process (h−1
hPkh hηkh, hQ

∗
kh) is a multivariate semi-strong GARCH process in the sense

of Hafner (2008).

Without loss of generality, we reparameterize the drift in the recursion hQkh as a com-

bination of a frequency invariant component and frequency dependent parameters. The

drift Q̄h can be expressed as Q̄h = (1 − ϑh − γh)Q̄.3 This transformation will turn par-

3The same transformation can be carried out also for the intercept of the hV(k+1)h process, i.e., ch =
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ticularly useful when deriving the diffusion limit of the Constant Conditional Correlation

(CCC) model of Bollerslev (1990). In fact, under the parameter restriction ϑh = γh = 0,

hQkh = Q̄h = Q̄ and therefore hRkh = Q̄ ∀h.4

Before deriving the diffusion limit of cDCC-GARCH process we determine the conver-

gence rates of the discrete time parameters for the moment conditions to converge as the

sampling frequency increases, as required by Assumption 4.1.

Proposition 4.1. Under the following convergence rates for the parameters of the discrete

time cDCC-GARCH process (4.9)-(4.11),

ch = h c+ o(h) (4.15)

(Ah +Bh − IN ) = −hΛ + o(h) (4.16)

Ah =
√
hA+ o(

√
h) (4.17)

(1− ϑh − γh) = hϕ+ o(h) (4.18)

ϑh =
√
hϑ+ o(

√
h), (4.19)

for some (N × 1) vector c, (N ×N) diagonal matrices A and Λ and scalars ϕ and ϑ with

positive and finite elements, Assumption 4.1 holds.

The convergence rates in Proposition 4.1 ensure that the first and the second conditional

moments per unit of time converge, as h→ 0, to well-behaved limits and that the first differ-

ence of the process [hYkh, hVkh, hQkh] has an absolute moment higher than two converging

to zero at an appropriate rate as required by Assumption 4.1.

Note that c > 0 (elementwise) ensures positivity of the variance process, A > 0 and

ϑ > 0 ensure that the rescaled second conditional moment does not vanish as h→ 0,5 while

Λ > 0 and ϕ > 0 ensure covariance stationarity of the return process.6

Proposition 4.2. Under the convergence rates given in Proposition 4.1, the first and second

(IN −Ah −Bh)c̄. The vector c̄ is frequency invariant and holds the (rescaled) unconditional variances of the
return process (hY(k+1)h − hYkh), i.e., c̄ = E[(hY(k+1)h − hYkh)⊙ (hY(k+1)h − hYkh)]/h = E[hV(k+1)h], ∀h.

4Note that even though in general Q̄ does not need to be a correlation matrix, i.e. diag(Q̄) = 1N , under
the CCC parameter restrictions the diagonal elements of Q̄ are not identifiable together with the intercept
of the hV(k+1)h process. Fixing diag(Q̄) = 1N ensures that: (i) E[hV(k+1)h] = (IN − Ah − Bh)

−1ch is the
rescaled unconditional variance of the return process (E[(hY(k+1)h − hYkh)⊙ (hY(k+1)h − hYkh)]/h), (ii) Q̄
can be directly interpreted as the (un)conditional correlation of (hY(k+1)h − hYkh).

5These conditions imply that the diffusion limit of the cDCC-GARCH process converges to a continuous
time stochastic volatility process.

6In the univariate setting, two special cases, Λ = 0 (integrated variance) and Λ < 0 (strictly stationary
but not covariance stationary GARCH process) are also discussed in Nelson (1990). In this chapter we
restrict the analysis to the covariance stationary case.
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moment conditions of the cDCC-GARCH process (4.9)-(4.11) converge, as h→ 0, to

b(Xt, t) =


0

c− ΛVt

ϕ(Q̄−Qt)

 , (4.20)

and

vech(a(Xt, t)) =



StRtSt

0

0

0

2AS2
t (Rt ⊙Rt)S

2
tA

ϑ
[
I∗(D+

NKtD
+′
N )
(
D+

N (Pt ⊗ Pt)D
+′
N

)
− 1NQ

′
t

]′
S2
tA

ϑ2[(D+
N (Pt ⊗ Pt)D

+′
N )(D+

NKtD
+′
N )(D+

N (Pt ⊗ Pt)D
+′
N )−QtQ

′
t]


, (4.21)

where Xt = [Yt, Vt, Qt]
′. The matrix a(Xt, t) is singular and its rank is equal to N(N+3)/2 <

dim(a(Xt, t)) = N(N + 5)/2. The conditional correlation, Rt, is computed at each point in

time as in (4.13).

In the cDCC-GARCH model the matrix a(Xt, t) is singular by construction. The singularity

is due to the particular structure of the model in which the noise propagation system of the

variance processes and the one of the diagonal elements of the correlation driving processes

are pairwise perfectly correlated. This is because, although (possibly) different in terms of

level and dynamics, (4.10) and (4.11) are driven by the same source of noise. In this sense

the discrete time cDCC-GARCH model is somewhat redundant, as will be discussed at the

end of this section7.

It is also worth noting that, similarly to the univariate case, a(Xt, t) is block diagonal

given the gaussianity assumption for hηkh.

Endowed with the rates of convergence of the parameters and the limits of the moments

conditions we can now state in Theorem 4.1 the diffusion limit of the cDCC-GARCH process.

Theorem 4.1 (Diffusion limit of the cDCC-GARCH model). Under (4.15) to (4.19),

the discrete time cDCC-GARCH process (4.9)-(4.11) weakly converges to the diffusion pro-

cess Xt = [Yt, Vt, Qt]
′ which is the solution to the system of stochastic differential equations

dXt = b(Xt, t)dt+ σ(Xt, t)dWt. (4.22)

7For an example, consider the simple case where (IN −Ah−Bh)
−1ch = diag(Q̄), Ah = ϑhIN , Bh = γhIN ,

then the model reduces a standard scalar VEC with N redundant equations.
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The drift, b(Xt, t), is given in (4.20) while the scale, σ(Xt, t), is a continuous mapping such

that, for all Xt ∈ IRN(N+5)/2 and t ≥ 0, a(Xt, t) = σ(Xt, t)σ(Xt, t)
′ where a(Xt, t) is given

in (4.21). The rank of σ(Xt, t) is N(N + 3)/2 thus leading to a degenerate diffusion limit

driven by a vector, dWt, of N(N +3)/2 mutually independent standard Brownian motions,

independent from the initial value X0 = [Y0, V0, Q0]
′.

Thus, the cDCC-GARCH process converges to a degenerate diffusion, in the sense that it

is driven by as many Brownian motions as the number of stochastic differential equations

in the system but whose covariance matrix is singular.

It is interesting to elaborate on the implications of singularity of the diffusion matrix

a(Xt, t). To this end, let us rearrange the order of the elements of the diffusion process Xt

as [Yt, Vt, Q
(d)
t , Q

(l)
t ]′, where Q

(d)
t = [Qii,t]i=1,...,N = diag(Q∗

t ) and Q
(l)
t = [Qij,t]i<j=2,...,N =

vechl(Q∗
t ). The two partial diffusion processes [Yt, Vt, Q

(l)
t ]′ and [Yt, Q

(d)
t , Q

(l)
t ]′ share the

same correlation structure, while Corr(dVt,i,dQt,ii) = 1 ∀i implies that the two partial dif-

fusions are driven by the same vector of Brownian innovations. Thus, the relevant part

in terms of noise propagation system of the diffusion limit of the cDCC-GARCH process

consists of a system of N(N + 3)/2 stochastic differential equations, either [Yt, Vt, Q
(l)
t ] or

[Yt, Q
(d)
t , Q

(l)
t ], while the remaining N diffusion processes, Q

(d)
t or Vt respectively, are charac-

terized by a specific deterministic part (drift) but a common, though appropriately rescaled,

stochastic component. To illustrate this point, let us consider the following partition of the

diffusion matrix in (4.21), whose elements have been opportunely reordered (the time index

has been dropped to simplify the notation)

a(Xt, t) =


ΣY Y 0 0 0

0 ΣV V ΣV Q(d) ΣV Q(l)

0 Σ′
V Q(d) ΣQ(d)Q(d) ΣQ(d)Q(l)

0 Σ′
V Q(l) Σ′

Q(d)Q(l) ΣQ(l)Q(l)

 (4.23)

where

ΣY Y = StRtSt

ΣV V = 2AS2
t (Rt ⊙Rt)S

2
tA

ΣV Q(d) = 2ϑAS2
t (Rt ⊙Rr)(PtPt)

= ϑΣV V (S
2
tA)

−1(PtPt)

ΣQ(d)Q(d) = 2ϑ2(PtPt)(Rt ⊙Rr)(PtPt)

= ϑ2(PtPt)(AS
2
t )

−1ΣV V (S
2
tA)

−1(PtPt)
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ΣV Q(l) = ϑAS2
[
I∗(D+

NKtD
+′
N )
(
D+

N (Pt ⊗ Pt)D
+′
N

)
I−′ − 1NQ

′
tI

−′]
ΣQ(d)Q(l) = ϑ2(PtPt)[I

∗(D+
NKtD

+′
N )(D+

N (Pt ⊗ Pt)D
+′
N )I−′ − 1NQ

′
tI

−′]

= ϑ(PtPt)(AS
2
t )

−1ΣV Q(l)

ΣQ(l)Q(l) = ϑ2I−[(D+
N (Pt ⊗ Pt)D

+′
N )(D+

NKtD
+′
N )(D+

N (Pt ⊗ Pt)D
+′
N )−QtQ

′
t]I

−′.

Let us also define Ct = ϑ(PtPt)(AS
2
t )

−1. We can rewrite (4.23) as
ΣY Y 0 0 0

0 ΣV V ΣV V C
′
t ΣV Q(l)

0 CtΣV V CtΣV V C
′
t CtΣV Q(l)

0 Σ′
V Q(l) Σ′

V Q(l)C
′
t ΣQ(l)Q(l)

 .

Therefore,

a([Yt, Vt, Q
(l)
t ], t) =


ΣY Y 0 0

0 ΣV V ΣV Q(l)

0 Σ′
V Q(l) ΣQ(l)Q(l)

 (4.24)

a([Yt, Q
d
t , Q

(l)
t ], t) =


ΣY Y 0 0

0 CtΣV V C
′
t CtΣV Q(l)

0 Σ′
V Q(l)C

′
t ΣQ(l)Q(l)

 . (4.25)

The decomposition in (4.24) and (4.25) shows that the two partial processes [Vt, Q
(l)
t ]′ and

[Q
(d)
t , Q

(l)
t ]′, both uncorrelated with Yt, share the same correlation structure. Furthermore,

from Proposition 4.2, it immediately follows that [Vt, Q
(l)
t ]′ and [Q

(d)
t , Q

(l)
t ]′ are elementwise

perfectly correlated8, which implies that the two partial diffusion are driven by the same

vector of Brownian motions. However, although either partial diffusion process [Yt, Vt, Q
(l)
t ]

or [Yt, Q
(d)
t , Q

(l)
t ]′ is sufficient alone to fully characterize the noise propagation system of the

cDCC diffusion limit, they are both necessary to characterize the distributions of Yt and

Vt which depend on both Vt and Qt = [Q
(d)
t , Q

(l)
t ]′ through the correlation process Rt.

9 A

practical implementation of the diffusion (4.20)-(4.21) and (4.22) is discussed in Section 2.4.

8More generally, Corr(dVt,i,dVt,j) = Corr(dQ
(d)
t,i , dQ

(d)
t,j ) = Corr(dVt,i, dQ

(d)
t,j ) = (Rt ⊙ Rt)ij ∀i, j =

1, ..., N .
9Note that the partial system [Yt, Q

(d)
t , Q

(l)
t ]′ is however sufficient to characterize the distribution of the

correlation driving process Qt and hence of the correlation Rt.
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4.3.2 A special case: the CCC-GARCH process

As a particular case, we now consider the Constant Conditional Correlation (CCC) model of

Bollerslev (1990). The cDCC process nests the CCC process under the following parameter

restrictions

ϑh = γh = 0 ∀h.

Thus, the CCC-GARCH process can be written as

hYkh = hY(k−1)h + hSkh hηkh, (4.26)

hV(k+1)h = ch +Ahh
−1

hS
2
kh(hηkh ⊙ hηkh) +Bh hVkh, (4.27)

where ch, Ah, Bh are defined as before and hηkh is a (N×1) vector of devolatilized but corre-

lated innovations, such that hηkh ∼ N(0, h R), where R represents the (frequency invariant)

constant conditional correlation matrix, i.e., Var(hηkh) = hR ⇒ Corr(hηkh) = R ∀h. This

model, though rather restrictive in practice, is particularly interesting because, unlike the

cDCC-GARCH process, it allows for a non-degenerate diffusion and, in the bivariate spec-

ification, a closed form solution for the diffusion limit. The rates of convergence for the

parameters and the CCC-GARCH process are stated in Proposition 4.3 and Theorem 4.2.

Proposition 4.3. Under the following convergence rates for the parameters of the discrete

time CCC-GARCH process (4.26)-(4.27)

ch = h c+ o(h) (4.28)

(Ah +Bh − IN ) = −hΛ + o(h) (4.29)

Ah =
√
hA+ o(

√
h), (4.30)

for some (N × 1) vector c, (N × N) diagonal matrices A and Λ with positive and finite

elements, Assumption 4.1 holds.

The same considerations on the parameters as in Proposition 4.1 hold by symmetry with

the cDCC-GARCH process.

Theorem 4.2 (Diffusion limit of the CCC-GARCH model). Under the convergence

conditions in Proposition 4.3, the CCC-GARCH process (4.26)-(4.27) weakly converges

to the non-degenerate diffusion process Xt = [Yt Vt]
′ solution to a system of stochastic

differential equations of the form (4.22), with drift

b(Xt, t) =

[
0

c− ΛVt

]
(4.31)
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and diffusion matrix

a(Xt, t) =

[
StRSt 0

0 2AS2
t (R⊙R)S2

tA

]
(4.32)

and driven by a vector, dWt, of 2N mutually independent Brownian motions, independent

of the initial value X0 = [Y0 V0]
′.

The diffusion limit of the CCC model is clearly non-degenerate because it is driven by as

many Brownian motions as the number of variables in the system and whose covariance

matrix is non-singular.

It is clear that the diffusion limit of the cDCC-GARCH process (as well as of the CCC-

GARCH process) is a continuous time stochastic volatility model (i.e., stochastic variances

and correlations). We discuss next the case when rates of convergence other than the ones

introduced in Proposition 4.1, but still satisfying Assumption 4.1, are used.

4.3.3 cDCC-GARCH diffusion with deterministic variance/correlation

In this section we reconsider the continuous time approximation of the cDCC-GARCH

process (4.9)-(4.11). The convergence rate h1/2, suggested in Proposition 4.1, represents

the slowest rate of convergence for the parameters Ah and ϑh satisfying Assumption 4.1.

More generally, the rate h1/2 represents the only rate ensuring that the second condi-

tional moments Var(hV(k+1)h− hVkh|Mkh), Var(hQ(k+1)h− hQkh|Mkh) and Cov[(hV(k+1)h−

hVkh), (hQ(k+1)h − hQkh)|Mkh] scaled by h−1, do not vanish as h → 0. As shown in Theo-

rem 4.1, the resulting diffusion limit is characterized by stochastic variances of the marginal

processes and stochastic correlation driving process.

However, there are other admissible convergence rates for Ah and ϑh which also satisfy

Assumption 4.1. Thus, depending on the continuous time approximation we consider, we

can recover different types of diffusion for the process (4.9)-(4.11).10 This alternative set of

results is shown in Proposition 4.4 and Theorem 4.3.

Proposition 4.4. Under the following convergence rates for the parameters Ah and ϑh

lim
h→0

h−( 1
2
+δ)Ah = Ã <∞ (4.33)

and/or

lim
h→0

h−( 1
2
+δ)ϑh = ϑ̃ <∞, (4.34)

10The following arguments can be easily extended to the CCC-GARCH process, although this case is not
explicitly treated here.
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for some (N×N) diagonal matrix Ã > 0 (elementwise), ϑ̃ > 0 and some δ > 0, Assumption

4.1 holds.

Note that under (4.33) and (4.34), Ah and ϑh are of order h1/2+δ, δ > 0.

Proposition 4.4 suggests alternative sets of conditions regarding the speed of convergence

of the discrete time parameters under which Assumption 4.1 holds. The implications of

Proposition 4.4 are straightforward. In fact, it is immediate to see that if either Ah or ϑh

or both are of order h1/2+δ, δ > 0, then the terms depending on hηkh on the right hand

side of (4.10) and/or (4.11) are also of order h1/2+δ. Consequently, the conditional second

moments rescaled by h−1 are of order h2δ and therefore converge to zero as h → 0. The

resulting diffusion limits are clearly degenerate and are characterized by time varying but

deterministic variances of the marginal processes and/or a deterministic correlation driving

process. The conditions in (4.33) and (4.34) can also be seen as a special case of (4.17) and

(4.19), obtained by setting A = 0IN and ϑ = 0, respectively, when the rate of convergence

of Ah and ϑh is
√
h, i.e., Ah = o(

√
h) and ϑh = o(

√
h).

Theorem 4.3 (cDCC-GARCH diffusion with deterministic variance/correlation).

Under (4.15), (4.16), (4.18) and (4.33)-(4.34), the discrete time cDCC-GARCH process

(4.9)-(4.11) admits a degenerate diffusion limit with time varying but deterministic vari-

ances (Vt) and stochastic correlations, stochastic variances and time varying but determin-

istic correlation driving process (Qt), or both deterministic variances and correlations. The

diffusion process Xt = [Yt Vt Qt]
′ is solution to a system of stochastic differential equations

of the form (4.22), with drift given by (4.20) and diffusion matrix given respectively by

i) (deterministic variances but stochastic correlation) under (4.15), (4.16), (4.18), (4.19)

and (4.33)

a(Xt, t) =


StRtSt 0 0

0 0 0

0 0 ϑ2[(D+
N (Pt ⊗ Pt)D

+′
N )(D+

NKtD
+′
N )

(D+
N (Pt ⊗ Pt)D

+′
N )−QtQ

′
t]

 . (4.35)

The diffusion process defined by (4.22), (4.20) and (4.35) is driven by N(N + 3)/2

independent standard Brownian motions;

ii) (stochastic variance but deterministic correlation) under (4.15), (4.16), (4.17), (4.18)

and (4.34)

a(Xt, t) =


StRtSt 0 0

0 2AS2
t (Rt ⊙Rr)S

2
tA 0

0 0 0

 . (4.36)
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The diffusion process defined by (4.22), (4.20) and (4.36) is driven by 2N independent

standard Brownian motions;

iii) (deterministic variances and correlation) under (4.15), (4.16), (4.18) and both (4.33)

and (4.34)

a(Xt, t) =


StRtSt 0 0

0 0 0

0 0 0

 . (4.37)

The diffusion process defined by (4.22), (4.20) and (4.37) is driven by N independent

standard Brownian motions.

We now discuss what type of process can be obtained as Euler approximation of the dif-

ferent diffusion processes recovered in Theorem 4.3. Following the arguments of Corradi

(2000), it is easy to show, using conventional algebra of stochastic calculus, see, e.g., Steele

(2001) p.123, that Euler approximations of the three diffusions defined in Theorem 4.3 are:

i) a process with stochastic correlation and GARCH variances, ii) a process with stochas-

tic variance and cDCC correlation and iii) a cDCC-GARCH process as in (4.9)-(4.11),

respectively.

Furthermore, when either the variances, the correlation driving process or both are M0

measurable, i.e., deterministic given V0, Q0 and (V0,Q0) respectively, it is possible to recover

some special cases.

In the first case, under Theorem 4.3(i) and constant variance (since Λ > 0, hVkh → V =

Λ−1c ∀h as kh → ∞), the process hPkh S
−1 (hY(k+1)h − hYkh) is a multivariate stochastic

volatility process with stochastic covariance driving process hQ
∗
kh.

In the second case, under Theorem 4.3(ii) and constant correlation driving process,

following the same argument, the process (hY(k+1)h − hYkh) is a constant correlation type

process with stochastic volatility for the marginal processes.

The third case is perhaps the more interesting one. In fact, under Theorem 4.3(iii),

constant variances and cDCC correlation driving process, the process hPkh S
−1 (hY(k+1)h −

hYkh) is a scalar VEC process (Bollerslev, Engle, and Wooldridge, 1988b), under Theorem

4.3(iii), GARCH variances and constant correlation driving process, the process (hY(k+1)h−

hYkh) is a CCC-GARCH process as in (4.26)-(4.27), while under Theorem 4.3(iii) and both

constant variances and correlation driving process, (hY(k+1)h − hYkh) ∼ N(0, h S RS).
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4.4 Simulation

An interesting aspect of the convergence of the system of stochastic difference equations

(4.9)-(4.11) to the system of stochastic differential equations of the type defined in Theorem

4.1 is that it allows to exploit the relationships established in Proposition 4.1 to infer the

parameters of the underlying continuous time process through the parameter estimates of

the corresponding discrete time model. In this section we validate by Monte Carlo simula-

tion the convergence theory detailed above and investigate the accuracy of the continuous

time parameter estimates inferred by the discrete parameter estimates. We estimate the

parameters of a sequence, indexed by h (level of aggregation of the data), of discrete time

GARCH models with i.i.d. innovations. Then, for each h, we use the relationships given

in Proposition 4.1 to obtain the diffusion parameters and we investigate the behavior of

the latter as h → 0. Since these relationships are not exact but depend on the sampling

frequency, we expect that the better the approximation (higher sampling frequency) the

more accurate the inference. We focus on the bivariate cDCC-GARCH process defined by

(4.9)-(4.11), that we have shown to weakly converge, when h → 0, to the continuous time

process (4.22), with drift defined in (4.20) and diffusion matrix defined in (4.21). For N = 2

and using the results of Section 4.3.1, the cDCC-GARCH diffusion can be written as[
dY1t

dY2t

]
=

[√
V1t 0

0
√
V2t

]
Υ(1)(ρt)

1
2dW

(1)
t (4.38)


dV1t

dV2t

dQ12t

 =


Λ11(c1 − V1t)

Λ22(c2 − V2t)

ϕ(Q̄22 −Q22t)

dt+
√
2


α1V1t 0 0

0 α2V2t 0

0 0 ϑQ12t

√
1+ρ2t
2ρ2t

Υ(2)(ρt)
1
2dW

(2)
t

(4.39)
dQ11t

dQ22t

dQ12t

 =


ϕ(Q̄11 −Q11t)

ϕ(Q̄22 −Q22t)

ϕ(Q̄12 −Q12t)

dt+
√
2ϑ


Q11t 0 0

0 Q22t 0

0 0 Q12t

√
1+ρ2t
2ρ2t

Υ(2)(ρt)
1
2dW

(2)
t , (4.40)

where

Υ(1)(ρt) =

[
1 ρt

ρt 1

]
, Υ(2)(ρt) =


1 ρ2t

√
2ρ2t
1+ρ2t

ρ2t 1

√
2ρ2t
1+ρ2t√

2ρ2t
1+ρ2t

√
2ρ2t
1+ρ2t

1


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and

ρt =
Q12t√
Q11tQ22t

.

Note that the drift in [dV1t,dV2t] has been reparameterized such that c represents the

rescaled unconditional variance of the return process. The two partial systems [dV1t,dV2t,

dQ12t] and [dQ11t,dQ22t,dQ12t] share the same correlation structure, Υ(ρt), and stochastic

component, dW
(2)
t . Note also thatQ12t is distributionally (and also path by path) equivalent

in both systems, see Section 4.3.1 for further details. We use an Euler discretization scheme

of (4.38)-(4.40), and we simulate 500 sample paths using a discretization interval ∆t = 1/640

which corresponds to one observation every 2 minutes 15 seconds (640 obs/day) and of

length (k) equal to 2000 days. All programs have been written by the authors and are

available upon request.

The data is generated using the following parameterization: c = [1, 1.5]′, A11 = 0.07,

A22 = 0.10, Λ11 = 0.13, Λ22 = 0.10, ϑ = 0.08 and ϕ = 0.04. The unconditional expectation

of the correlation driving process, Q̄, has been parameterized such that it represent the

unconditional correlation, i.e., diag(Q̄) = 1N . Under this parameterization, the target for

the unconditional correlation, Q̄12, is set to 0.5, while to reduce the number of parameters to

be estimated, Q̄ii, i = 1, 2, are fixed to their true value. The square root of the correlation

matrices of the diffusion, Υ(1)(ρt) and Υ(2)(ρt), are computed by spectral decomposition.

For each sample path we estimate (4.9)-(4.11) using returns sampled at daily (h = 1),

12-hour (h = 1/2), 6-hour (h = 1/4), 3-hour (h = 1/8), 90-minutes (h = 1/16), 45-

minutes (h = 1/32) and 22.5-minutes (h = 1/64) frequency. The sequences of discrete time

models are estimated by QAML. Although the QAML estimator is known to be biased

in this setting, in similar though unrelated frameworks Fornari and Mele (2006), Broze,

Scaillet, and Zakoian (1998), Hafner and Rombouts (2007) and Barone-Adesi, Rasmussen,

and Ravanelli (2005) among others, have shown that the bias tend to disappear as the

sample size and the precision of the discretization become sufficiently large.

Finally, our choice of k and h should reveal to be adequate to overcome finite sample

problems and regard the estimates as asymptotic at all frequencies.

Inference on the continuous time parameters based on the discrete time estimates is

obtained using the relationships provided in Proposition 4.1, i.e. up to o(1) (except for

(4.41) which is frequency invariant)

c = (IN −Ah −Bh)
−1ch, (4.41)

A = Ah/
√
h, (4.42)
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Λ = (IN −Ah −Bh)/h, (4.43)

ϑ = ϑh/
√
h, (4.44)

ϕ = (1− ϑh − γh)/h. (4.45)

Table 4.1 shows that the relationships between discrete and continuous time parameters

given in (4.41)-(4.45) hold.

Table 4.1: Inference on the diffusion parameters of the cDCC process

Diffusion parameter estimates
Sampling freq. c1 A11 Λ11 c2 A22 Λ22 Q̄12 ϑ ϕ

1-day (h=1) 1.0005 0.0217 0.1763 1.5022 0.0395 0.1281 0.5020 0.0445 0.0488
12-hour (h=1/2) 0.9991 0.0268 0.1527 1.5013 0.0489 0.1190 0.5008 0.0525 0.0459
6-hour (h=1/4) 1.0007 0.0330 0.1478 1.4985 0.0586 0.1103 0.5019 0.0588 0.0442
3-hour (h=1/8) 1.0009 0.0386 0.1417 1.4986 0.0681 0.1081 0.5024 0.0645 0.0439
90-min (h=1/16) 1.0015 0.0462 0.1384 1.4960 0.0754 0.1068 0.5029 0.0686 0.0436
45-min (h=1/32) 1.0014 0.0530 0.1356 1.4940 0.0814 0.1060 0.5029 0.0719 0.0434
22.5-min (h=1/64) 1.0008 0.0575 0.1349 1.4973 0.0870 0.1058 0.5023 0.0742 0.0433
true (h → 0) 1.0000 0.0700 0.1300 1.5000 0.1000 0.1000 0.5000 0.0800 0.0400

Notes: Inference on the continuous time parameters based on (4.42), (4.43), (4.44), (4.45). The true
values of the parameters are reported in the last line (denoted h → 0) for reference

Bias
Sampling freq. c1 A11 Λ11 c2 A22 Λ22 Q̄12 ϑ ϕ

1-day (h=1) 0.0005 -0.0483 0.0463 0.0022 -0.0605 0.0281 0.0020 -0.0354 0.0088
12-hour (h=1/2) -0.0009 -0.0432 0.0227 0.0013 -0.0511 0.0190 0.0008 -0.0275 0.0059
6-hour (h=1/4) 0.0007 -0.0370 0.0178 -0.0015 -0.0414 0.0103 0.0019 -0.0212 0.0042
3-hour (h=1/8) 0.0009 -0.0314 0.0117 -0.0014 -0.0319 0.0081 0.0024 -0.0155 0.0039
90-min (h=1/16) 0.0015 -0.0238 0.0084 -0.0040 -0.0246 0.0068 0.0029 -0.0114 0.0036
45-min (h=1/32) 0.0014 -0.0170 0.0056 -0.0060 -0.0186 0.0060 0.0029 -0.0081 0.0034
22.5-min (h=1/64) 0.0008 -0.0125 0.0049 -0.0027 -0.0130 0.0058 0.0023 -0.0058 0.0033

RMSE
Sampling freq. c1 A11 Λ11 c2 A22 Λ22 Q̄12 ϑ ϕ

1-day (h=1) 0.0389 0.0502 0.0878 0.0733 0.0623 0.0889 0.0344 0.0373 0.0277
12-hour (h=1/2) 0.0282 0.0446 0.0539 0.0611 0.0525 0.0589 0.0313 0.0288 0.0168
6-hour (h=1/4) 0.0233 0.0381 0.0271 0.0556 0.0423 0.0315 0.0292 0.0222 0.0129
3-hour (h=1/8) 0.0201 0.0321 0.0212 0.0514 0.0327 0.0247 0.0274 0.0164 0.0107
90-min (h=1/16) 0.0187 0.0243 0.0187 0.0491 0.0252 0.0182 0.0269 0.0122 0.0091
45-min (h=1/32) 0.0174 0.0173 0.0234 0.0486 0.0190 0.0156 0.0263 0.0089 0.0084
22.5-min (h=1/64) 0.0170 0.0129 0.0220 0.0482 0.0136 0.0148 0.0245 0.0064 0.0082

As the sampling frequency increases, the inference on all parameters of the diffusion

appear to be more and more accurate and the bias tends to disappear at an appropriate

rate. In conclusion, our simulation provides strong evidence that the convergence condi-

tions implemented here prove adequate and the simple and computationally feasible QAML

estimator implemented here provides a valid inference on the diffusion parameters.



4.5. Conclusions 119

4.5 Conclusions

In this chapter we investigate the convergence of discrete time conditional correlation

GARCH models towards continuous time diffusion processes and therefore possible sub-

stitutability and complementarity between the two processes. This approach allows us on

one hand to have a deeper understanding of the properties of the discrete time model and

on the other hand to simplify the inference on the continuous time model by using the

discrete time one as a diffusion approximation.

We consider two conditional correlation GARCH specifications, namely the cDCC of

Aielli (2006) and the CCC of Bollerslev (1990). For the cDCC-GARCH model, as the time

step shrinks to zero and under the conditions advocated by the theory of weak convergence

of Markov chains, the diffusion limit recovered is degenerate in the sense that the diffusion

of the variances and that of the diagonal elements of the correlation driving process are

pairwise governed by the same Brownian motion. We show that this result is due to the

particular structure of the noise propagation system of the variances and of the correlation

driving process which are perfectly correlated.

The CCC model, which can be obtained from the cDCC under suitable parameter

restrictions, admits a non-degenerate diffusion.

Under a different set of conditions regarding the speed of convergence of the parameters,

we identify other degenerate diffusion limits characterized by stochastic price process but

where either the variances, the correlations, or both, are time varying but deterministic.

In a Monte Carlo simulation we study how and to what extent considering the discrete

time model as a diffusion approximation allows to infer the parameters of the diffusion model

by the parameter estimates of a discrete time GARCH-type model. Our results show that

the convergence theory presented in this chapter proves adequate and that quasi approxi-

mated maximum likelihood estimator provides valid inference on the diffusion parameters.

There are several possible extension of this work. Apart from the diffusion limit of

several univariate GARCH specifications, Nelson (1990) also derives a closed form for the

stationary distribution of the continuous time limit of variances and innovations. One direc-

tion for future research is to extend these results to the conditional correlation specifications

and to elaborate on the distribution of variances and correlations. A second direction for re-

search is to generalize the results of Drost and Nijman (1993) and Drost and Werker (1996)

which allow to establish exact, rather than approximated, relationships between discrete

and continuous time parameters. Our results show that using approximated relationships

allows to accurately infer the diffusion parameters provided the data used to estimate the

discrete time model are sampled at a sufficiently high frequency. This may be problematic
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in empirical applications where parameter estimates may be biased in presence of market

microstructure noise, intra-period periodicity or simply when sufficiently high frequency

data are just not available. On the contrary, exact relationships allow to infer the diffusion

parameters free of approximation error even when using data sampled at a rather low fre-

quency. Finally, it would be useful to extend the results of this chapter to jump-diffusion

processes. Results on jump-diffusion approximations can be fount in Ethier and Kurtz

(1986b), though a generalization to multivariate systems has not been addressed yet.

4.6 Appendix: Proofs

Proof of Proposition 4.1. The first step is to compute the increments of the process

(4.9)-(4.11), that is

hYkh − hY(k−1)h = hSkh hηkh

hV(k+1)h − hVkh = ch +Ah hS
2
khh

−1(hηkh ⊙ hηkh) + (Bh − IN ) hVkh

hQ(k+1)h − hQkh = (1− ϑh − γh)Q̄+ ϑhh
−1vech(hPkhhηkh hη

′
khhPkh) + (γh − 1)hQkh

Second we compute the moment conditions (conditioned on Mkh = {kh, hY0, ...,hY(k−1)h,

hV0, ...,hVkh, hQ0, ...,hQkh}) to define suitable convergence conditions as required by As-

sumption 4.1. To simplify the notation, let us define the difference operator over an interval

of size h as ∆ : ∆ hXkh =h Xkh −h X(k−1)h. The first conditional moment per unit of time

of the increments of (4.9)-(4.11) is given by

h−1E[∆ hYkh|Mkh] = hSkh E[ hηkh] = 0 (4.46)

h−1E[∆ hV(k+1)h|Mkh] = h−1ch +Ah hh
−2S2

khE[ hηkh ⊙ hηkh] + h−1(Bh − IN ) hVkh

= h−1ch + h−1(Ah +Bh − IN ) hVkh (4.47)

h−1E[∆ hQ(k+1)h|Mkh] = h−1(1− ϑh − γh)Q̄+ h−2ϑhvech(E[ hPkh hηkh hη
′
kh hPkh])

+ h−1(γh − 1) hQkh

= h−1(1− ϑh − γh)Q̄+ h−1(ϑh + γh − 1) hQkh (4.48)

where E[ hηkh⊙ hηkh] = h 1N and vech( hPkhE[ hηkh hη
′
kh] hPkh) = h vech( hPkh hRkh hPkh) =

h hQkh.

The computation of the second moments per unit of time require some more algebra.
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Let us consider the following partition

vech
(
Var([∆Yh,∆ hV(k+1)h,∆ hQ(k+1)h]

′|Mkh)
)
=



Var(∆ hYkh|Mkh)

Cov(∆ hYkh,∆ hV(k+1)h|Mkh)
′

Cov(∆ hYkh,∆ hQ(k+1)h|Mkh)
′

Var(∆ hV(k+1)h|Mkh)

Cov(∆ hV(k+1)h,∆ hQ(k+1)h|Mkh)
′

Var(∆ hV(k+1)h|Mkh)


.

The conditional variance of ∆ hYkh standardized by h is given by

h−1Var[∆ hYkh|Mkh] = h−1
hSkhE( hηkh hη

′
kh) hS

′
kh = hSkh hRkh hSkh. (4.49)

Similarly the conditional variance of ∆ hV(k+1)h is given by

h−1Var[∆ hV(k+1)h|Mkh] = Ah hS
2
khh

−3E[(hηkh ⊙ hηkh)(hηkh ⊙ hηkh)
′] hS

2
khA

′
h

−Ah hS
2
khh

−3E[(hηkh ⊙ hηkh)]E[(hηkh ⊙ hηkh)]
′
hS

2
khA

′
h

= Ah hS
2
khh

−3
[
E[(hηkh ⊙ hηkh)(hηkh ⊙ hηkh)

′]

−E[(hηkh ⊙ hηkh)]E[(hηkh ⊙ hηkh)]
′]

hS
2
khA

′
h (4.50)

Since (time subscripts are omitted to simplify the notation) E[(η⊙η)(η⊙η)′] is the (N×N)

matrix of fourth moments of η with elements E[η2i η
2
j ], for all i, j = 1, ..., N equal to

E[η2i η
2
j ] = h23 if i = j

E[η2i η
2
j ] = h2(1 + 2ρ2i,j) if i ̸= j

and E[(η ⊙ η)]E[(η ⊙ η)]′ = h2(1N1′N ), then (4.50) simplifies to

h−1Var[∆ hV(k+1)h|Mkh] = 2h−1Ah hS
2
kh(hRkh ⊙ hRkh)hS

2
khA

′
h. (4.51)

The variance of ∆ hQ(k+1)h is given by

h−1Var[∆ hQ(k+1)h|Mkh] = ϑ2hh
−3E[vech( hPkh hηkh hη

′
kh hPkh)vech( hPkh hηkh hη

′
kh hPkh)

′]

− ϑ2hh
−3E[vech(hPkh hηkh hη

′
kh hPkh)]E[vech( hPkh hηkh hη

′
kh hPkh)]

′. (4.52)

By exploiting the diagonality of hPkh and since E[vech( hPkh hηkh hη
′
kh hPkh)] = h2 hQkh we
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can rewrite (4.52) as

h−1Var[∆ hQ(k+1)h|Mkh] = ϑ2hh
−3
[
(D+

N ( hPkh ⊗ hPkh)D
+′
N )

E[vech( hηkh hη
′
kh)vech( hηkh hη

′
kh)

′](D+
N ( hPkh ⊗ hPkh)D

+′
N )− h2 hQkh hQ

′
kh

]
.

Since for any vector a it holds vech(aa′)vech(aa′) = D+
N (vec(aa′)vec(aa′))D+′

N = D+
N (aa′ ⊗

aa′)D+′
N , then

h−1Var[∆ hQ(k+1)h|Mkh] = ϑ2hh
−3
[
(D+

N ( hPkh ⊗ hPkh)D
+′
N )

E[D+
N ( hηkh hη

′
kh ⊗ hηkh hη

′
kh)D

+′
N ](D+

N ( hPkh ⊗ hPkh)D
+′
N )− h2 hQkh hQ

′
kh

]
.

Let us define hKkh = h−2E[hηkh hη
′
kh⊗ hηkh hη

′
kh], the (N

2×N2) matrix of fourth moments

of hηkh such that (time indices are omitted for shortness)

E[ηη′ ⊗ ηη′] =



E(η1η1ηiηj)
...

E(η1ηNηiηj)

E(η2η1ηiηj)
...

E(η2ηNηiηj)
...

E(ηNη1ηiηj)
...

E(ηNηNηiηj)


for all i, j = 1, ..., N , i ≤ j. Given the gaussianity assumption for the innovations, the

elements of K are given by

E(η4j ) = h23 j = 1, ..., N

E(ηiη
3
j ) = h23ρij i, j = 1, ..., N ; i ̸= j

E(ηiηlη
2
j ) = h2(ρil + 2ρijρlj) i, j, l = 1, ..., N ; i ̸= j ̸= l

E(ηiηlηmηj) = h2(ρilρmj + ρimρlj + ρijρlm) i, j, l,m = 1, ..., N ; i ̸= j ̸= l ̸= m

The second conditional moment of the increments of the correlation driving process simpli-
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fies to

h−1Var[∆ hQ(k+1)h|Mkh] = h−1ϑ2h[(D
+
N (hPkh ⊗ hPkh)D

+′
N )(D+

N hKkhD
+′
N )

(D+
N (hPkh ⊗h Pkh)D

+′
N )− hQkhhQ

′
kh]. (4.53)

Finally, the conditional covariances are

h−1Cov[∆ hYkh,∆ hV(k+1)h)|Mkh] = h−1E[( hSkh hηkh)(Ah hS
2
khh

−1(hηkh ⊙ hηkh))
′]

= h−2
hSkhE[ hηkh( hηkh ⊙ hηkh)

′] hS
2
khAh = 0 (4.54)

where E[η(η ⊙ η)′] is a matrix that holds the third moments of η, E(ηiη
2
j ) ∀i ̸= j all equal

to zero given the gaussianity assumption for the innovations. Further, we have

h−1Cov[∆ hYkh,∆ hQ(k+1)h|Mkh] = h−2E[( hSkh hηkh)(ϑhvech( hPkh hηkh hη
′
kh hPkh))

′]

= h−2ϑh hSkhE[ hηkh vech( hηkh hη
′
kh)

′](D+
N ( hPkh ⊗ hPkh)D

+′
N ) = 0 (4.55)

and

h−1Cov[∆ hV(k+1)h,∆ hQ(k+1)h|Mkh] =

= h−3E
[(
Ah hS

2
kh( hηkh ⊙ hηkh)

) (
ϑhvech( hPkh hηkh hη

′
kh hPkh)

)′]
− h−3E

[
Ah hS

2
kh( hηkh ⊙ hηkh)

]
E
[
ϑhvech( hPkh hηkh hη

′
kh hPkh)

]′
.

Using hηkh ⊙ hηkh = diag( hηkh hη
′
kh) = I∗vech( hηkh hη

′
kh) and defined hKkh as before

h−1Cov[∆ hV(k+1)h,∆ hQ(k+1)h|Mkh] =

= h−3ϑhAh hS
2
kh

(
E[I∗vech( hηkh hη

′
kh)vech( hηkh hη

′
kh)

′])(D+
N ( hPkh ⊗ hPkh)D

+′
N )

−h21N hQ
′
kh

)
= h−1ϑhAh hS

2
kh

[
I∗(D+

N hKkhD
+′
N )(D+

N ( hPkh ⊗ hPkh)D
+′
N )− 1N hQ

′
kh

]
. (4.56)

For the moment conditions (4.46)-(4.48) (drift) and (4.49), (4.51), and (4.53)-(4.56) (second

moments) to converge to well behaved functions as h → 0, as required by Assumption 4.1
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a) and b), the following limits must exist and be finite

lim
h→0

h−1ch = c (4.57)

lim
h→0

h−1(Ah +Bh − IN ) = −Λ (4.58)

lim
h→0

h−1/2Ah = A (4.59)

lim
h→0

h−1(1− ϑh − γh) = ϕ (4.60)

lim
h→0

h−1/2ϑh = ϑ, (4.61)

where c is a (N × 1) vector, A and Λ are (N × N) diagonal matrices and ϕ and ϑ are

scalars with all elements positive and finite, such that c > 0 (elementwise) ensures positivity

of the variance process, A > 0 and ϑ > 0 ensure that the rescaled second conditional

moment of hVkh and hQkh does not vanish as h → 0, while Λ > 0 and ϕ > 0 ensure

covariance stationarity of the return process. Finally, it can be easily shown through tedious

computation that, under (4.57)-(4.61), Assumption 4.1 c) holds for δ = 2, i.e.,

h−1 lim
h→0

E
[
|(∆ hYkh)i|4 |Mkh

]
= 0,∀i, i = 1, ..., N

h−1 lim
h→0

E
[∣∣(∆ hV(k+1)h)i

∣∣4 |Mkh

]
= 0,∀i, i = 1, ..., N

h−1 lim
h→0

E
[∣∣(∆ hQ(k+1)h)i

∣∣4 |Mkh

]
= 0,∀i, i = 1, ..., N(N + 1)/2.

which completes the proof.

Proof of Proposition 4.2. Substituting (4.57)-(4.61) into (4.46)-(4.48) (first moments)

and (4.49), (4.51), and (4.53)-(4.56) (second moments), we obtain

h−1E[∆ hYkh|Mkh] = 0

h−1E[∆ hV(k+1)h|Mkh] = c− Λ hVkh + o(1)

h−1E[∆ hQ(k+1)h|Mkh] = ϕ(Q̄+ hQkh) + o(1)

for the drift, while for the second moment

h−1Var[∆ hYkh|Mkh] = hSkh hRkh hSkh

h−1Var[∆ hV(k+1)h|Mkh] = 2A hS
2
kh(hRkh ⊙h Rkh) hS

2
kh A+ o(1)

h−1Var[∆ hQ(k+1)h|Mkh] = ϑ2[(D+
N (hPkh ⊗ hPkh)D

+′
N )(D+

NhKkhD
+′
N )

(D+
N (hPkh ⊗h Pkh)D

+′
N )− hQkhhQ

′
kh] + o(1)
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h−1Cov[∆ hYkh,∆ hV(k+1)h]|Mkh) = 0

h−1Cov[∆ hYkh,∆ hQ(k+1)h]|Mkh) = 0

h−1Cov[∆ hV(k+1)h,∆ hQ(k+1)h]|Mkh) = ϑA hS
2
kh[I

∗(D+
NhKkhD

+′
N )(

D+
N (hPkh ⊗ hPkh)D

+′
N

)
− 1N hQ

′
kh] + o(1).

Hence, as h→ 0, the following mappings

b(Xt, t) =


0

c− ΛVt

ϕ(Q̄−Qt)

 (4.62)

and

vech(a(Xt, t)) =



StRtSt

0

0

0

2AS2
t (Rt ⊙Rt)S

2
tA

ϑ
[
I∗(D+

NKtD
+′
N )
(
D+

N (Pt ⊗ Pt)D
+′
N

)
− 1NQ

′
t

]′
S2
tA

ϑ2[(D+
N (Pt ⊗ Pt)D

+′
N )(D+

NKtD
+′
N )(D+

N (Pt ⊗ Pt)D
+′
N )−QtQ

′
t]


(4.63)

are solution of (4.1) and (4.2) and represent the drift and the diffusion matrix of the diffusion

process Xt = [Yt, Vt, Qt]
′.

We show next that the diffusion matrix (4.63) is singular and that rank(a(Xt, t)) =

N(N + 3)/2 < dim(a(Xt, t)) = N(N + 5)/2. Let us partition the diffusion matrix as

a([Yt, Vt, Qt]
′, t)) =


ΣY Y 0 0

0 ΣV V ΣV Q

0 ΣQV ΣQQ

 , (4.64)

where ΣY Y and ΣV V are symmetric (N ×N) matrices, ΣQQ is a symmetric (N(N +1)/2×
N(N + 1)/2) matrix and ΣV Q and ΣQV are a (N × N(N + 1)/2) and (N(N + 1)/2 × N)

matrices respectively. Since a([Yt, Vt, Qt]
′, t)) is symmetric it obviously holds ΣV Q = Σ′

QV .

Consider the bottom-right block of (4.64), we have

ΣV V = 2AS2
t (Rt ⊙Rt)S

2
tA

ΣV Q = ϑ
[
I∗(D+

NKtD
+′
N )
(
D+

N (Pt ⊗ Pt)D
+′
N

)
− 1NQ

′
t

]′
S2
tA

ΣQV = ϑAS2
t

[
I∗(D+

NKtD
+′
N )
(
D+

N (Pt ⊗ Pt)D
+′
N

)
− 1NQ

′
t

]
ΣQQ = ϑ2

[
(D+

N (Pt ⊗ Pt)D
+′
N )D+

NKtD
+′
N (D+

N (Pt ⊗ Pt)D
+′
N )−QtQ

′
t

]
.
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We can now rewrite the bottom-right block of (4.64) as[
ΣV V ΣV Q

ΣQV ΣQQ

]
=

[
AS2

t 0

0 ϑIN(N+1)/2

] [
C1 C2

] [S2
tA 0

0 ϑIN(N+1)/2

]
,

where

C1
(N(N+3)/2×N)

=

[
2(Rt ⊙Rt)[(

D+
N (Pt ⊗ Pt)D

+′
N

)
(D+

NKtD
+′
N )I∗′ −Qt1

′
N

]]

C2
(N(N+3)/2×N(N+1)/2)

=

[
I∗(D+

NKtD
+′
N )
(
D+

N (Pt ⊗ Pt)D
+′
N

)
− 1NQ

′
t

(D+
N (Pt ⊗ Pt)D

+′
N )D+

NKtD
+′
N (D+

N (Pt ⊗ Pt)D
+′
N )−QtQ

′
t

]
.

Let now select from C2 the columns corresponding to the diagonal elements of the Q∗
t

matrix. Since Qt = vech(Q∗
t ) this selection can be done by multiplying C2 by I∗′- i.e.,

selecting one column every N − i (i = 1, ..., N − 1) starting from the first. The resulting

(N2 + 3N)/2×N matrix

C2I
∗′ =

[ [
I∗(D+

NKtD
+′
N )
(
D+

N (Pt ⊗ Pt)D
+′
N

)
− 1NQ

′
t

]
I∗′[

(D+
N (Pt ⊗ Pt)D

+′
N )D+

NKtD
+′
N (D+

N (Pt ⊗ Pt)D
+′
N )−QtQ

′
t

]
I∗′

]

=

[
I∗(D+

NKtD
+′
N )
(
D+

N (Pt ⊗ Pt)D
+′
N

)
I∗′ − 1Nvech(IN )′

(
D+

N (Pt ⊗ Pt)D
+′
N

)
I∗′

(D+
N (Pt ⊗ Pt)D

+′
N )D+

NKtD
+′
N (D+

N (Pt ⊗ Pt)D
+′
N )I∗′ −Qtvech(IN )′

(
D+

N (Pt ⊗ Pt)D
+′
N

)
I∗′

]

=

[ (
I∗(D+

NKtD
+′
N )− 1Nvech(IN )′

) (
D+

N (Pt ⊗ Pt)D
+′
N

)
I∗′[

(D+
N (Pt ⊗ Pt)D

+′
N )(D+

NKtD
+′
N )−Qtvech(IN )′

] (
D+

N (Pt ⊗ Pt)D
+′
N

)
I∗′

]

=

[
2(Rt ⊙Rt)(PtPt)[(

D+
N (Pt ⊗ Pt)D

+′
N

)
(D+

NKtD
+′
N )I∗′ −Qt1

′
N

]
(PtPt)

]

satisfies C2I
∗′ = C1(PtPt) (where PtPt is a diagonal matrix of dimension N holding on

the diagonal p2i , i = 1, ..., N). Thus, the diffusion matrix is characterized by N columns

linearly dependent and therefore it is singular by construction with rank(a([Yt, Vt, Qt]
′)) =

N(N + 3)/2 < dim([a(Yt, Vt, Qt]
′)) = N(N + 5)/2.

Proof of Theorem 4.1. The process (4.9)-(4.14) is clearly Markovian with drift and

second moment per unit of time given by (4.46)-(4.48) (drift) and (4.49), (4.51), and (4.53)-

(4.56) (second moments), respectively. The Theorem of weak convergence applies if Assump-

tion 4.1 to 4.4 hold. Proposition 4.1 and 4.2 provide convergence conditions and suitable

solutions of the moment conditions in Assumption 4.1. Thus Assumption 4.1 holds and drift

and diffusion matrix for the system of stochastic differential equations dXt are defined. The
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scale matrix σ(Xt, t) can be obtained by Cholesky or Spectral decomposition of (4.21) so

that Assumption 4.2 holds. We assume that (4.14) satisfies Assumption 4.3 and that for

each h ≥ 0, νh
(
[Y0, V0, Q0]

′ : V0 > 0 (elementwise) and ϵ′Q∗
0ϵ > 0,∀ϵ ∈ IRN\{0}

)
= 1. Con-

dition 1 is satisfied given Assumption 4.1 c) which ensures continuity of the sample paths of

the limit process Xt with probability one. Condition 2 holds since the diffusion matrix and

the inner product of the drift and the state variable X are at most of order two in X. Thus

Assumption 4.4 holds and the Theorem of weak convergence applies. The rank condition of

the scale matrix s(Xt, t) follows directly from Proposition 4.2 and completes the proof.

Proof of Proposition 4.3. The proof follows directly from the proof of Proposition

4.1 under the parameter restriction ϑh = γh = 0 ∀h, i.e., hRkh = (Q̄∗ ⊙ IN )−1/2 Q̄∗ (Q̄∗ ⊙
IN )−1/2 = R ∀kh, k ∈ IN, h > 0.

Proof of Theorem 4.2. The theorem of weak convergence applies by symmetry with the

unrestricted model (see Theorem 4.1). In particular Assumption 4.1 holds by symmetry with

Proposition 4.2 under the given parameter constraint. Hence substituting (4.57)-(4.59) into

the two sets of equations (4.46)-(4.47) and (4.49), (4.51), and (4.54), as h → 0, we obtain

the following mappings

b(Xt, t) =

[
0

c− ΛVt

]
(4.65)

and

a(Xt, t) =

[
StRSt 0

0 2AS2
t (R⊙R)S2

tA

]
(4.66)

which are solution of (4.1) and (4.2) and represent the drift and the diffusion matrix of the

diffusion process Xt = [Yt, Vt, Qt]
′. Under the assumption that for each h ≥ 0, νh([Y0, V0]

′ :

V0 > 0 (elementwise)) = 1 and det(R) > 0, the diffusion matrix in (4.66) is full rank with

rank((a(Xt, t)) = N2.

Proof of Proposition 4.4. Consider the limit, as h → 0, of the moments of interests

(4.51), (4.53)and (4.56). Then as required by Assumption 4.1 b)

lim
h→0

h−1Var[∆ hV(k+1)h|Mkh] = lim
h→0

2h−1Ah hS
2
kh(hRkh ⊙ hRkh)hS

2
khA

′
h ≥ 0 finite

which hold with equality if

lim
h→0

h−1/2Ah = 0 (4.67)

that is Ah is of order h1/2+δ, δ > 0. Clearly, the rate of h1/2, which is the case discussed
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in Proposition 4.1, is the slowest possible convergence rate which avoids divergence of the

second conditional moment of hVkh as h → 0. Similarly,

lim
h→0

h−1Var[∆ hQ(k+1)h|Mkh] = lim
h→0

h−1ϑ2h[(D
+
N (hPkh ⊗ hPkh)D

+′
N )(D+

N hKkhD
+′
N )

(D+
N (hPkh ⊗h Pkh)D

+′
N )− hQkhhQ

′
kh] ≥ 0 finite

holds with equality if

lim
h→0

h−1/2ϑh = 0 (4.68)

that is, ϑh is of order h1/2+δ, δ > 0. The two conditions above can be written as

lim
h→0

h−(1/2+δ)Ah = Ã > 0 finite

lim
h→0

h−(1/2+δ)ϑh = ϑ̃ > 0 finite.

Finally, either condition (4.67) or (4.68) or both, also ensure that the cross conditional

moment of hVkh and hQkh, that is

lim
h→0

h−1Cov[∆ hV(k+1)h,∆ hQ(k+1)h|Mkh] =

= lim
h→0

h−1ϑhAh hS
2
kh

[
I∗(D+

N hKkhD
+′
N )(D+

N ( hPkh ⊗ hPkh)D
+′
N )− 1N hQ

′
kh

]
≥ 0 finite

holds with equality. Hence, under (4.67) and (4.68) Assumption 4.1 holds.

Proof of Theorem 4.3. Under Proposition 4.4, the theorem of weak convergence applies

by symmetry with Theorem 4.1. Furthermore, depending on the combination of condition

we impose, we obtain

i) Diffusion with deterministic variances and stochastic correlations

Under (4.57), (4.58), (4.60), (4.61) and (4.67), the second conditional moments scaled by

h−1 (4.51) and (4.56) vanish as h→ 0. The diffusion processXt = [Yt VtQt]
′ is characterized

by a drift given in (4.62) and diffusion matrix given by

a(Xt, t) =


StRtSt 0 0

0 0 0

0 0 ϑ2[(D+
N (Pt ⊗ Pt)D

+′
N )(D+

NKtD
+′
N )

(D+
N (Pt ⊗ Pt)D

+′
N )−QtQ

′
t]


that is, a process with time varying but deterministic variances of the marginal processes.

The diffusion is driven by N(N +3)/2 = rank(a(Xt, t)) < dim(a(Xt, t)) independent Brow-
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nian motions, independent from the initial value X0 = [Y0 V0Q0]
′.

ii) Diffusion with stochastic variances and deterministic correlations

Under (4.57), (4.58), (4.59), (4.60) and (4.68), the second conditional moments scaled by

h−1 (4.53) and (4.56) vanish as h→ 0. The diffusion process Xt is characterized by a drift

given in (4.62) and diffusion matrix given by

a(Xt, t) =


StRtSt 0 0

0 2AS2
t (Rt ⊙Rr)S

2
tA 0

0 0 0

 .
This process is characterized by a time varying but deterministic correlation driving process.

The diffusion is driven by 2N = rank(a(Xt, t)) < dim(a(Xt, t)) independent Brownian

motions, independent from the initial value X0.

iii) Diffusion with deterministic variances and correlations

Under (4.57), (4.58), (4.60) and (4.67)-(4.68), the second conditional moments scaled by

h−1 (4.51), (4.53) and (4.56) vanish as h→ 0. The diffusion process Xt is characterized by

a drift given in (4.62) and diffusion matrix given by

a(Xt, t) =


StRtSt 0 0

0 0 0

0 0 0

 .
This process is characterized by time varying but deterministic variances and correlation

driving processes. The diffusion is driven by N = rank(a(Xt, t)) < dim(a(Xt, t)) indepen-

dent Brownian motions, independent from the initial value X0.
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