14 research outputs found

    Optimal association of mobile users to multi-access edge computing resources

    Get PDF
    Multi-access edge computing (MEC) plays a key role in fifth-generation (5G) networks in bringing cloud functionalities at the edge of the radio access network, in close proximity to mobile users. In this paper we focus on mobile-edge computation offloading, a way to transfer heavy demanding, and latency-critical applications from mobile handsets to close-located MEC servers, in order to reduce latency and/or energy consumption. Our goal is to provide an optimal strategy to associate mobile users to access points (AP) and MEC hosts, while contextually optimizing the allocation of radio and computational resources to each user, with the objective of minimizing the overall user transmit power under latency constraints incorporating both communication and computation times. The overall problem is a mixed-binary problem. To overcome its inherent computational complexity, we propose two alternative strategies: i) a method based on successive convex approximation (SCA) techniques, proven to converge to local optimal solutions; ii) an approach hinging on matching theory, based on formulating the assignment problem as a matching game

    The edge cloud: A holistic view of communication, computation and caching

    Get PDF
    The evolution of communication networks shows a clear shift of focus from just improving the communications aspects to enabling new important services, from Industry 4.0 to automated driving, virtual/augmented reality, Internet of Things (IoT), and so on. This trend is evident in the roadmap planned for the deployment of the fifth generation (5G) communication networks. This ambitious goal requires a paradigm shift towards a vision that looks at communication, computation and caching (3C) resources as three components of a single holistic system. The further step is to bring these 3C resources closer to the mobile user, at the edge of the network, to enable very low latency and high reliability services. The scope of this chapter is to show that signal processing techniques can play a key role in this new vision. In particular, we motivate the joint optimization of 3C resources. Then we show how graph-based representations can play a key role in building effective learning methods and devising innovative resource allocation techniques.Comment: to appear in the book "Cooperative and Graph Signal Pocessing: Principles and Applications", P. Djuric and C. Richard Eds., Academic Press, Elsevier, 201

    The edge cloud. A holistic view of communication, computation, and caching

    Get PDF
    The evolution of communication networks shows a clear shift of focus from just improving the communications aspects to enabling new important services, from Industry 4.0 to automated driving, virtual/augmented reality, the Internet of Things (IoT), and so on. This trend is evident in the roadmap planned for the deployment of the fifth-generation (5G) communication networks. This ambitious goal requires a paradigm shift toward a vision that looks at communication, computation, and caching (3. C) resources as three components of a single holistic system. The further step is to bring these 3. C resources closer to the mobile user, at the edge of the network, to enable very low latency and high reliability services. The scope of this chapter is to show that signal processing techniques can play a key role in this new vision. In particular, we motivate the joint optimization of 3. C resources. Then we show how graph-based representations can play a key role in building effective learning methods and devising innovative resource allocation techniques

    Δίκτυα Υποδομής και Τεχνολογίες Δικτύωσης για Συστήματα 5ης Γενιάς.

    Get PDF
    Η σημερινή εποχή με τις τεράστιες απαιτήσεις σε ευρος ζώνης, κινητικότητα και ταχύτητες σχεδόν σε πραγματικό χρόνο, πλέον αρχίζει να μη μπορέι να εξυπηρετηθεί από τις υφιστάμενες τεχνολογίες. Ο κατακλυσμός της αγοράς από έξυπνες συσκευές, ταμπλέτες και διάφορες άλλες δικτυωμένες συσκευές δημιουργεί μεγαλύτερες απαιτήσεις από το δίκτυο. Το μεγαλύτερο φορτίο στο δίκτυο καταγράφεται, όπως είναι φυσικό από τη μεταφορά δεδομένων, όπως υψηλής ανάλυσης βίντεο, online gaming και μια πληθώρα ακόμα από υπηρεσίες οι οποίες ακόμα και εν κινήσει θα πρέπει να εξυπηρετούνται. Επίσης, και η ποιότητα και η εμπειρία της υπηρεσίας για τον χρήστη θα πρέπει να είναι άριστη ακόμα και σε πολυσύχναστα σημεία και σε ώρες αιχμής. Όπως αντιλαμβανόμαστε η μετάβαση από τα σημερινά δίκτυα στα δίκτυα πέμπτης γενιάς καθιστάται επιβεβλιμένη και γι’ αυτό το λόγο, ερευνητικές ομάδες από διάφορα πανεπιστήμια και εταιρίες τηλεπικοινωνιών έχουν αναλάβει αυτό το δύσκολο έργο, ώστε να επιτευχθούν οι απαιτήσεις και οι στόχοι των 5G δικτύων. Στην παρούσα διπλωματική, στο πρώτο κεφάλαιο, γίνεται αναφορά στα κίνητρα ανάπτυξης καθώς και στις απαιτήσεις των συστημάτων 5ης γενιάς δικτύων. Επίσης γίνεται αναφορά στην προτυποποίηση των συστημάτων όπως και στις παραμέτρους που πρέπει να ικανοποιηθούν και να ρυθμιστούν από τους αρμόδιους φορείς. Στη συνέχεια παρουσιάζονται διάφορα χρηματοδοτούμενα ερευνητικά προγράμματα τα οποία στοχεύουν στην υλοποίηση των δικτύων 5ης γενιάς. Στο δεύτερο κεφάλαιο αναλύονται εκτενώς οι αρχιτεκτονικές και οι τεχνολογίες που αναμένεται να χρησιμοποιηθούν για την υλοποίηση των 5G δικτύων. Στο τρίτο κεφάλαιο παρουσιάζονται και αναλύονται εκείνα τα κομμάτια του δικτύου που αρχιτεκτονικά θα υλοποιούνται στα 5G δίκτυα. Επίσης δίνεται έμφαση στις ασύρματες τεχνολογίες όπου στο τέλος του κεφαλαίου, γίνεται μια σύγκριση αυτών.In this diploma, in the first chapter, reference is made to the development motivations as well as to the requirements of the 5th generation networks. Reference is also made to the standardization of the systems as well as to the parameters to be met and regulated by the competent bodies. Next, various funded research projects are presented which aim at the implementation of 5th generation networks. The second chapter analyzes extensively the architectures and technologies that are expected to be used to implement the 5G networks. The third chapter presents and analyzes those parts of the network that will be architecturally implemented in 5G networks. Also, emphasis is placed on wireless technologies where at the end of the chapter a comparison is made

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Study on Air Interface Variants and their Harmonization for Beyond 5G Systems

    Full text link
    [ES] La estandarización de la Quinta Generación de redes móviles o 5G, ha concluido este año 2020. No obstante, en el año 2014 cuando la ITU empezó el proceso de estandarización IMT-2020, una de las principales interrogantes era cuál sería la forma de onda sobre la cual se construiría la capa física de esta nueva generación de tecnologías. El 3GPP se comprometió a entregar una tecnología candidata al proceso IMT-2020, y es así como dentro de este proceso de deliberación se presentaron varias formas de onda candidatas, las cuales fueron evaluadas en varios aspectos hasta que en el año 2016 el 3GPP tomó una decisión, continuar con CP-OFDM (utilizada en 4G) con numerología flexible. Una vez decidida la forma de onda, el proceso de estandarización continuó afinando la estructura de la trama, y todos los aspectos intrínsecos de la misma. Esta tesis acompañó y participó de todo este proceso. Para empezar, en esta disertación se evaluaron las principales formas de onda candidatas al 5G. Es así que se realizó un análisis teórico de cada forma de onda, destacando sus fortalezas y debilidades, tanto a nivel de implementación como de rendimiento. Posteriormente, se llevó a cabo una implementación real en una plataforma Software Defined Radio de tres de las formas de onda más prometedoras (CP-OFDM, UFMC y OQAM-FBMC), lo que permitió evaluar su rendimiento en términos de la tasa de error por bit, así como la complejidad de su implementación. Esta tesis ha propuesto también el uso de una solución armonizada como forma de onda para el 5G y sostiene que sigue siendo una opción viable para sistemas beyond 5G. Dado que ninguna de las forma de onda candidatas era capaz de cumplir por sí misma con todos los requisitos del 5G, en lugar de elegir una única forma de onda se propuso construir un transceptor que fuese capaz de construir todas las principales formas de onda candidatas (CP-OFDM, P-OFDM, UFMC, QAM-FBMC, OQAM-FBMC). Esto se consiguió identificando los bloques comunes entre las formas de onda, para luego integrarlos junto con el resto de bloques indispensables para cada forma de onda. La motivación para esta solución era tener una capa física que fuese capaz de cumplir con todos los aspectos del 5G, seleccionando siempre la mejor forma de onda según el escenario. Esta propuesta fue evaluada en términos de complejidad, y los resultados se compararon con la complejidad de cada forma de onda. La decisión de continuar con CP-OFDM con numerología flexible como forma de onda para el 5G se puede considerar también como una solución armonizada, ya que al cambiar el prefijo cíclico y el número de subportadoras, cambian también las prestaciones del sistema. En esta tesis se evaluaron todas las numerologías propuestas por el 3GPP sobre cada uno de los modelos de canal descritos para el 5G (y considerados válidos para sistemas beyond 5G), teniendo en cuenta factores como la movilidad de los equipos de usuario y la frecuencia de operación; para esto se utilizó un simulador de capa física del 3GPP, al que se hicieron las debidas adaptaciones con el fin de evaluar el rendimiento de las numerologías en términos de la tasa de error por bloque. Finalmente, se presenta un bosquejo de lo que podría llegar a ser la Sexta Generación de redes móviles o 6G, con el objetivo de entender las nuevas aplicaciones que podrían ser utilizadas en un futuro, así como sus necesidades. Completado el estudio llevado a cabo en esta tesis, se puede afirmar que como se propuso desde un principio la solución, tanto para el 5G como para beyond 5G, la solución es la armonización de las formas de onda. De los resultados obtenidos se puede corroborar que una solución armonizada permite alcanzar un ahorro computacional entre el 25-40% para el transmisor y del 15-25% para el receptor. Además, fue posible identificar qué numerología CP-OFDM es la más adecuada para cada escenario, lo que permitiría optimizar el diseño y despliegue de las redes 5G. Esto abriría la puerta a hacer lo mismo con el 6G, ya que en esta tesis se considera que será necesario abrir nuevamente el debate sobre cuál es la forma de onda adecuada para esta nueva generación de tecnologías, y se plantea que el camino a seguir es optar por una solución armonizada con distintas formas de onda, en lugar de solo una como sucede con el 5G.[CA] L'estandardització de la Quinta Generació de xarxes mòbils o 5G, ha conclòs enguany 2020. No obstant això, l'any 2014 quan la ITU va començar el procés d'estandardització IMT-2020, uns dels principals interrogants era quina seria la forma d'onda sobre la qual es construiria la capa física d'esta nova generació de tecnologies. El 3GPP es va comprometre a entregar una tecnologia candidata al procés IMT-2020, i és així com dins d'este procés de deliberació es van presentar diverses formes d'onda candidates, les quals van ser avaluades en diversos aspectes fins que l'any 2016 el 3GPP va prendre una decisió, continuar amb CP-OFDM (utilitzada en 4G) amb numerología flexible. Una vegada decidida la forma d'onda, el procés d'estandardització va continuar afinant la frame structure (no se m'ocorre nom en espanyol), i tots els aspectes intrínsecs de la mateixa. Esta tesi va acompanyar i va participar de tot este procés. Per a començar, en esta dissertació es van avaluar les principals formes d'onda candidates al 5G. És així que es va realitzar una anàlisi teòrica de cada forma d'onda, destacant les seues fortaleses i debilitats, tant a nivell d'implementació com de rendiment. Posteriorment, es va dur a terme una implementació real en una plataforma Software Defined Radio de tres de les formes d'onda més prometedores (CP-OFDM, UFMC i OQAM-FBMC), la qual cosa va permetre avaluar el seu rendiment en termes de la taxa d'error per bit, així com la complexitat de la seua implementació. Esta tesi ha proposat també l'ús d'una solució harmonitzada com a forma d'onda per al 5G i sosté que continua sent una opció viable per a sistemes beyond 5G. Atés que cap de les forma d'onda candidates era capaç de complir per si mateixa amb tots els requeriments del 5G, en compte de triar una única forma d'onda es va proposar construir un transceptor que fóra capaç de construir totes les principals formes d'onda candidates (CP-OFDM, P-OFDM, UFMC, QAM-FBMC, OQAM-FBMC). Açò es va aconseguir identificant els blocs comuns entre les formes d'onda, per a després integrar-los junt amb la resta de blocs indispensables per a cada forma d'onda. La motivació per a esta solució era tindre una capa física que fóra capaç de complir amb tots els aspectes del 5G, seleccionant sempre la millor forma d'onda segons l'escenari. Esta proposta va ser avaluada en termes de complexitat, i els resultats es van comparar amb la complexitat de cada forma d'onda. La decisió de continuar amb CP-OFDM amb numerología flexible com a forma d'onda per al 5G es pot considerar també com una solució harmonitzada, ja que al canviar el prefix cíclic i el número de subportadores, canvien també les prestacions del sistema. En esta tesi es van avaluar totes les numerologías propostes pel 3GPP sobre cada un dels models de canal descrits per al 5G (i considerats vàlids per a sistemes beyond 5G), tenint en compte factors com la mobilitat dels equips d'usuari i la freqüència d'operació; per a açò es va utilitzar un simulador de capa física del 3GPP, a què es van fer les degudes adaptacions a fi d'avaluar el rendiment de les numerologías en termes de la taxa d'error per bloc. Finalment, es presenta un esbós del que podria arribar a ser la Sexta Generació de xarxes mòbils o 6G, amb l'objectiu d'entendre les noves aplicacions que podrien ser utilitzades en un futur, així com les seues necessitats. Completat l'estudi dut a terme en esta tesi, es pot afirmar que com es va proposar des d'un principi la solució, tant per al 5G com per a beyond 5G, la solució és l'harmonització de les formes d'onda. dels resultats obtinguts es pot corroborar que una solució harmonitzada permet aconseguir un estalvi computacional entre el 25-40% per al transmissor i del 15-25% per al receptor. A més, va ser possible identificar què numerología CP-OFDM és la més adequada per a cada escenari, la qual cosa permetria optimitzar el disseny i desplegament de les xarxes 5G. Açò obriria la porta a fer el mateix amb el 6G, ja que en esta tesi es considera que serà necessari obrir novament el debat sobre quina és la forma d’onda adequada per a esta nova generació de tecnologies, i es planteja que el camí que s’ha de seguir és optar per una solució harmonitzada amb distintes formes d’onda, en compte de només una com succeïx amb el 5G.[EN] The standardization of the Fifth Generation of mobile networks or 5G is still ongoing, although the first releases of the standard were completed two years ago and several 5G networks are up and running in several countries around the globe. However, in 2014 when the ITU began the IMT-2020 standardization process, one of the main questions was which would be the waveform to be used on the physical layer of this new generation of technologies. The 3GPP committed to submit a candidate technology to the IMT-2020 process, and that is how within this deliberation process several candidate waveforms were presented. After a thorough evaluation regarding several aspects, in 2016 the 3GPP decided to continue with CP-OFDM (used in 4G) but including, as a novelty, the use of a flexible numerology. Once the waveform was decided, the standardization process continued to fine-tune the frame structure and all the intrinsic aspects of it. This thesis accompanied and participated in this entire process. To begin with, this dissertation evaluates the main 5G candidate waveforms. Therefore, a theoretical analysis of each waveform is carried out, highlighting its strengths and weaknesses, both at the implementation and performance levels. Subsequently, a real implementation on a Software Defined Radio platform of three of the most promising waveforms (CP-OFDM, UFMC, and OQAM-FBMC) is presented, which allows evaluating their performance in terms of bit error rate, as well as the complexity of its implementation. This thesis also proposes the use of a harmonized solution as a waveform for 5G and argues that it remains a viable option for systems beyond 5G. Since none of the candidate waveforms was capable of meeting on its own with all the requirements for 5G, instead of choosing a single waveform, this thesis proposes to build a transceiver capable of building all the main waveforms candidates (CP-OFDM, P-OFDM, UFMC, QAM-FBMC, OQAM-FBMC). This is achieved by identifying the common blocks between the waveforms and then integrating them with the rest of the essential blocks for each waveform. The motivation for this solution is to have a physical layer that is capable of complying with all aspects of beyond 5G technologies, always selecting the best waveform according to the scenario. This proposal is evaluated in terms of complexity, and the results are compared with the complexity of each waveform. The decision to continue with CP-OFDM with flexible numerology as a waveform for 5G can also be considered as a harmonized solution, since changing the cyclic prefix and the number of subcarriers, changes also the performance of the system. In this thesis, all the numerologies proposed by the 3GPP are evaluated on each of the channel models described for 5G (and considered valid for beyond 5G systems), taking into account factors such as the mobility of the user equipment and the operating frequency. For this, a 3GPP physical layer simulator is used, and proper adaptations are made in order to evaluate the performance of the numerologies in terms of the block error rate. Finally, a sketch of what could become the Sixth Generation of mobile networks or 6G is presented, with the aim of understanding the new applications that could be used in the future, as well as their needs. After the completion of the study carried out in this thesis, it can be said that, as stated from the beginning, for both 5G and beyond 5G systems, the solution is the waveform harmonization. From the results obtained, it can be corroborated that a harmonized solution allows achieving computational savings between 25-40% for the transmitter and 15-25% for the receiver. In addition, it is possible to identify which CP-OFDM numerology is the most appropriate for each scenario, which would allow optimizing the design and deployment of 5G networks. This would open the door to doing the same with 6G, i.e., a harmonized solution with different waveforms, instead of just one as in 5G.Flores De Valgas Torres, FJ. (2020). Study on Air Interface Variants and their Harmonization for Beyond 5G Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/164442TESI

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network
    corecore