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ABSTRACT This paper provides an overview of the most recent advancements and outcomes of the
European 6G flagship project Hexa-X, on the topic of in-network Artificial Intelligence (AI) and Machine
Learning (ML). We first present a general introduction to the project and its ambitions in terms of use
cases (UCs), key performance indicators (KPIs), and key value indicators (KVIs). Then, we identify the
key challenges to realize, implement, and enable the native integration of AI and ML in 6G, both as a
means for designing flexible, low-complexity, and reconfigurable networks (learning to communicate),
and as an intrinsic in-network intelligence feature (communicating to learn or, 6G as an efficient AI/ML
platform). We present a high level description of down selected technical enablers and their implications
on the Hexa-X identified UCs, KPIs and KVIs. Our solutions cover lower layer aspects, including channel
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estimation, transceiver design, power amplifier and distributed MIMO related challenges, and higher layer aspects,
including AI/ML workload management and orchestration, as well as distributed AI. The latter entails Federated
Learning and explainability as means for privacy preserving and trustworthy AI. To bridge the gap between the
technical enablers and the 6G targets, some representative numerical results accompany the high level description.
Overall, the methodology of the paper starts from the UCs and KPIs/KVIs, to then focus on the proposed technical
solutions able to realize them. Finally, a brief discussion of the ongoing regulation activities related toAI is presented,
to close our vision towards an AI and ML-driven communication and computation co-design for 6G.

INDEX TERMS Connecting intelligence, 6G networks, sustainability, trustworthiness, energy efficiency, AI and
ML for air interface design, edge AI, explainable AI.

I. INTRODUCTION
Today, we are at the early stage of the research on the
sixth generation of mobile networks (6G), whose standard-
ization activities (which however have not yet kicked off) are
expected to deliver first specifications in 2030 [1]. Despite
the long-term timeline, several players and stakeholders from
academia [2], [3], [4] to industry [5], [6], [7], [8], [9], [10],
including collaborative projects through public initiatives and
funding,1 have already started cogitating on new enabled
services and Use Cases (UCs), along with the respective
key Performance Indicators (KPIs) and Key Value Indicators
(KVIs), with the latter being novel measures of how future
wireless networks can help addressing various societal needs
(values) such as sustainability, trustworthiness, flexibility,
and inclusion [11].

In this context, the European 6G Flagship project Hexa-
X [11] investigates several features of future communication
systems, and its general goal is to harmonize the global
6G vision to define an intelligent fabric of technology
enablers connecting human, physical, and digital worlds,2

with values comprising sustainability, trustworthiness, and
inclusion. Hexa-X covers, across seven work packages: i)
UCs (organized in Use Case Families - UCFs), KPIs, KVIs
and general architectures ii) radio access technologies, iii)
localization and sensing, iv) in-networkArtificial Intelligence
(AI) and Machine Learning (ML) v) architectural aspects,
vi) orchestration and management, and vii) special purpose
functionalities.

Beyond the project ecosystem, in the overall research
landscape, while all contributions and technical proposals
obviously differ in several aspects, none of them disagrees
(despite slightly different terminologies) on the fact that ML
and AI will be indispensable and native components of 6G,
towards a new paradigm shift, from the legacy concept of
connecting humans and things, to the new challenge of con-
necting intelligence [12]. As already mentioned, to recognize
the fundamental role of ML and AI in 6G, Hexa-X dedicates
an entire work package (i.e., Work Package 4, entitled AI-
driven communication and computation co-design), to AI and
ML in 6G, especially from an algorithmic perspective [13],
[14]. Part of its outcomes and harmonized view are the focus
of this paper.

1https://5g-ppp.eu/5g-ppp-phase-3-6-projects/
2https://hexa-x.eu/

Besides the technical challenges, the integration of AI and
ML into wireless networks needs a concrete definition of
novel KPIs, KVIs and, in general, metrics able to properly
assess the performance (and values) of AI and ML-based
methods in 6G. Also, learning, can play a twofold role in
6G [5], [12], [15], [16], [17]: i) Learning to Communicate
(L2C), which is about applying AI and ML-based methods
to enhance network performance with extreme flexibility
and low complexity, and ii) Communicating to Learn (C2L),
which is about conceiving 6G networks as enablers of AI
and ML-based services. For both paradigms, a rethinking of
the network is needed at all levels: from the physical layer,
with new channel estimation techniques, Power Amplifier
(PA) non-linearity compensation, advanced beamforming in
(massive) Multiple-Input-Multiple-Output (MIMO) settings,
etc., up to the highest layers, including the ever tighter
integration of computing and storage capabilities into com-
munication networks. The latter will be (jointly) optimized
and orchestrated with wireless resources, to achieve new
challenging targets of performance (also in terms of commu-
nication task effectiveness), energy efficiency, sustainability,
trustworthiness, privacy, and security.

A. STATE OF THE ART
The integration of AI and ML in wireless networks is not a
new research topic, and has raised considerable interest in the
last few years from several perspectives, including architec-
tural and algorithmic ones, UCs, and standardization [12]. [4]
provides an overview of the main technological pillars of
6G, among which AI and ML are considered as enablers of
semantic communications [18] and self-organizing networks.
In [19], an overview of the main research trends related to
6G is provided, also covering AI and ML as technological
enablers, while the focus of [20] is strictly related to AI. Ten
challenges related to the integration of ML in 6G are also pre-
sented in [17]. While several works cover the L2C concept,
the C2L paradigm and the challenges associated with edge
AI are also widely discussed [12], [15], [16]. In [16], edge
computing is presented as a key enabler of edge intelligence
with different possible tiers, answering questions on where to
place and run learning and inference tasks (e.g., fully in the
cloud, fully at the edge, or hybrid solutions). Task-oriented
communication, orchestration aspects, and data governance,
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are discussed in [21], which also introduces the concept of
6G as anXaaS (i.e., Everything-as-a-Service) platform. Other
open challenges in deploying ML in wireless networks, and
especially standardization activities, are discussed in [22].
Also, the concept of explainable AI, which is also focus of
the present paper, is discussed in [23]. One of the most recent
and comprehensive vision papers on 6G can be found in [12],
which provides a comprehensive and high level overview
of the enablers of both paradigms (i.e., L2C and C2L),
with architectures, algorithms, requirements, standardization,
platforms, and applications.

While all these works provide general overviews of the
envisioned 6G ecosystem and enablers, they lack specific
focus on the development of technical solutions to enable
identified classes of use cases, along with the associated
results showing feasibility and performance.

The goal of this paper is to fill the gap between overview
efforts and purely technical contributions, presenting a uni-
fied view of the levers at different network layers, along with
their integration into an architecture (i.e., the Hexa-X’s one)
and its view of UCs, KPIs, and KVIs.

B. CONTRIBUTION: THE HEXA-X VISION
Differently from the state of the art, this work represents the
common vision of the Hexa-X consortium, specifically that
of the work package committed to the AI and ML-related
research from an algorithmic perspective, with a top-down
approach that starts with the UCs, and covers the technical
solutions with representative numerical results, to show the
relevance to the discussed KPIs and KVIs. Our common
vision orbits around the following KPIs and KVIs: through-
put, reliability, complexity reduction, accuracy, energy effi-
ciency, privacy, and trustworthiness. In summary, it includes
aspects related to the L2C paradigmwith i) physical layer, and
in particular channel estimation in various scenarios, ii) radio
transceivers, with air interface design and PA non-linearity
compensation, and iii) Distributed-MIMO (D-MIMO) set-
tings with resource allocation and beam selection. Then, the
C2L vision covers iv) workload management, including the
AI-as-a-Service (AIaaS) concept, the resilient deployment
of distributed AI, the workload placement with energy effi-
ciency targets, load balancing issues in FL settings, and the
joint orchestration of radio and computing resources for edge
inference; also, it covers v) trustworthy and distributed AI,
including resilience to adversarial attacks, and (federated)
explainable AI. Finally, relevant regulation and standardiza-
tion aspects are also discussed.

The contribution of this paper is summarized as follows:

• We present a harmonized view of UCs, KPIs, and KVIs
related to AI andML related activities in Hexa-X, which
has been developed during the project lifetime.

• We discuss how the developed technical solutions can
enable the down selected UCs with the target require-
ments. This is done by mapping the technical enablers
to the Hexa-X architecture, UCs, KPIs, and KVIs, but

also the metrics exploited in this paper to assess these
indicators, with the latter being quantified performance
that act as proxies of the proposed KPIs and KVIs.

• Thanks to these metrics, and going beyond our pre-
cursor conference paper [24], we show representative
evaluation of performance, addressing aspects related to
throughput, reliability (e.g., block error rate - BLER),
complexity, accuracy, trustworthiness, and energy effi-
ciency.

• We present part of the regulation actions related to AI,
focusing on activities of the European Commission (EC)
with the so called AI Act [25], and discussing their
potential impact to future communication networks.

C. ORGANIZATION OF THE PAPER
The remainder of this paper is organized as follows: Section II
presents a high level overview of the UCs, KPIs, and KVIs,
with specific yet general references to the AI and ML-related
work. It also maps the technical enablers presented in the
next sections of this paper to the architecture, UCFs and
their UCs, KPIs, and KVIs. Section III is the first techni-
cal section and its focus is the L2C paradigm. It provides,
after a more detailed overview on the UCs, KPIs and KVIs
related to the L2C paradigm, a technical description of the
proposed solutions, with the latter spanning across different
layers of the protocol stack. Several new, beyond 5G metrics
are introduced and associated performance evaluations are
presented. Following the approach of Section III, Section IV
provides the same kind of analysis of the technical enablers
related to the C2L paradigm. From a technical point of view,
both sections provide a high level description of the proposed
solutions, entailing a brief state of the art, the description
of the technical enabler, and numerical results assessing
the performance in terms of the identified KPIs and KVIs.
To complement the technical sections, Section V presents
an overview of the currently ongoing regulation activities
related to AI and ML, to discuss their implications on com-
munications related research. Finally, Section VI draws the
conclusions and proposes some future directions. Acronyms
will be defined the first time they appear in the text, and are
also reported in alphabetical order in Table 1.

II. USE CASES, KEY PERFORMANCE INDICATORS, AND
KEY VALUE INDICATORS
One of the key goals and roles of Hexa-X as a flagship project
is to identify new UCFs, KPIs, and KVIs, envisioned to pave
the way to 6G. The main achievements in this regard are
presented in [11] and [26], with more recent updates in [27],
where more specific KPIs/KVIs targets are proposed for
down selected UCs of each UCF. More specifically, six UCFs
have been identified, each of them including several UCs.
These UCFs (also appearing at the top left of Fig. 1) are
briefly described in the following. i) Enabling sustainabil-
ity: it covers various sustainability aspects, spanning from
digital inclusion to environment protection and responsible
use of physical/ virtualized network resources, under the
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TABLE 1. List of acronyms.

umbrella of the United Nations Sustainable Development
Goals3 (UN SDGs). This includes KPIs and KVIs involving,
among the others, energy efficiency, trustworthiness, cover-
age extensions, reliability, and privacy. ii) Massive twinning:
the scope of this UCF is to enable, in real-time, full digital
representations of the physical world. Identified KPIs and
KVIs include high link reliability and service availability,
low latency, high average and peak data rates, but also,
beyond communication, stringent requirements in terms of
AI and computing, including agent availability and reliability.
iii) Telepresence: this UCF aims at enabling the cyber, phys-
ical, and digital worlds, to interact with each other in a
seamless way from anywhere and at anytime. Among several
KPIs, service availability and link reliability, but especially
high data rate can be identified, both at communication
(transmission) and computation (processing) tiers. iv) From
robots to cobots: the UCs of this family aim to strengthen
the interaction between different types of intelligence (natu-
ral, artificial), to enable complex cooperative tasks. Relevant
KPIs/KVIs include extremely high communication reliability
and low service latency, both at communication and compu-
tation tiers. This UCF is of extreme interest for AI and ML
related activities. v) Hyperconnected resilient network infras-
tructures: it includes all those services involving (possibly
heterogeneous) sub-networks requiring high resilience, e.g.,
AI-assistedVehicle-to-Everything (V2X) andAIaaS, with the
latter being one of the pillars of the C2L paradigm. Relevant
KPIs include very high reliability and low service latency,
at both communication and computation tiers. vi) Trusted

3United Nations, ‘‘Transforming our world: the 2030 Agenda for
Sustainable Development,’’ Resolution adopted by the General Assembly,
September, 2015, https://upload.wikimedia.org/wikipedia/commons/d/d5/
N1529189.pdf

embedded networks: this last UCF refers to all (sub-)network
deployments requiring high level of trustworthiness, i.e., with
similar KPIs as UCF v).
Although the solutions proposed in this work can be

applied to several UCs/UCFs and target KPIs/KVIs, a promi-
nent role will be played by AI and ML in some of these
aspects, with a slight difference between the two paradigms.
In particular, as clarified in the sequel, the solutions proposed
by the L2C paradigm are more general and applicable to a
wide range of UCs, to enhance communication capabilities at
different layers of the protocol stack, including throughput,
bi error rate (BER)/BLER, channel estimation error (CEE),
complexity, spectral efficiency (SE), flexibility, mobility sup-
port, energy efficiency, and inference accuracy. On the other
hand, the C2L paradigm mostly addresses UCs in which,
besides communication, computation plays a key role in
the overall performance, aiming to also support the L2C
paradigm in network environments characterized by high link
volatility. Obviously, the overall vision is to integrate both
paradigms into a unified framework in which 6G networks
are flexibly and efficiently optimized and automated through
learning and adaptation, while providing learning capabilities
as a service with challenging performance targets.

Fig. 1 shows an overview of the Hexa-X UCFs (top left
side) [26], the architecture (top right side), and the technical
enablers described in the technical sections of the paper
(Section III and IV). The technical enablers are presented
in the bottom part of the figure, following their appearance
in this work. As shown in the figure, the work is split into
the two paradigms: L2C (bottom left part) and C2L (bottom
right part). For each paradigm, different clusters of technical
enablers are identified, also corresponding to their specific
sections of the paper (indicated in the figure). For each cluster
of technical enablers, the addressed UCFs are highlighted by
the circles that also appear in the UCFs part of the figure to
map them to UCs. Also, the KPIs, KVIs and the (quantified)
metrics used to evaluate the performance of the proposed
solutions are depicted in the figure through the yellow and
green boxes, respectively. As it can be noted, the main key
values addressed by our technical solutions are sustainabil-
ity (e.g., through energy efficiency), flexibility (thanks to
ML-based solutions and their generalization capabilities),
and trustworthiness (e.g., through explainability and privacy-
preserving mechanisms). Finally, the interrelation between
the clustered technical enablers and the Hexa-X architecture
is highlighted in the figure.

The reader who is interested in a specific topic can easily
find it from the figure and refer to the corresponding section.
Each section (i.e., the one containing a cluster of technical
enablers) is built to be self-contained. However, a compact
content overview of the sections as a whole can be found
at the beginning of Section III and IV. Also, the reader
who is interested in knowing more details about the Hexa-
X UCFs, UCs, KPIs, and KVIs is referred to [26] and [27].
Finally, more details on the proposed methodologies and
technical enablers, as well as specific comparison with state
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FIGURE 1. Hexa-X use case families, technical enablers and their integration in the architecture, KPIs, KVIs and evaluated metrics.

of the art solutions can be also found in previously published
contributions, which are referenced throughout the upcoming
technical sections. In this paper, we keep a high level descrip-
tion to ease readability while providing a complete overview
of the work carried out.

III. LEARNING TO COMMUNICATE IN 6G
In this section, we present a detailed overview of the pro-
posedML-based technical solutions under the L2C paradigm,
with particular focus on ML-based solutions. As summarized
in Fig. 1, the technical enablers under the L2C paradigm
are clustered into three main groups focusing on channel
estimation, RF hardware impairment compensation, and dis-
tributed MIMO systems, respectively. They mainly cover the
physical layer aspects of channel estimation, air interface
design and radio transceivers, PA non-linearity compen-
sation, and beamforming in massive MIMO. While the
solutions proposed in this section are largely applicable to
any UCs/UCFs mentioned in Section II due to the general-
izability of the fundamental physical layer processing tasks

addressed, here we downselect several UCs/UCFs which
would specifically benefit from the L2C paradigm. The UCFs
such as massive twinning, telepresence, and robots to cobots
have stringent requirements in terms of low latency, low
BER/BLER, and high data rate, which result in targeted
KPIs/KVIs that are hard to accomplish via the existing com-
munications systems and signal processing methods. The
proposed AI/ML-based algorithms overcome the algorith-
mic and modeling deficiencies associated with conventional
signal processing algorithms and provide means to achieve
these stringent KPI values/KVI levels as discussed in detail
in the following sub-sections. The radio transceiver designs
for RF hardware compensation proposed in Section III-B also
improve the energy efficiency, enabling the UCs related to the
enabling sustainability UCF.

Furthermore, the ML-based beam selection and resource
allocation solutions presented in Section III-C, and the chan-
nel estimation solution for Reconfigurable Intelligent Surface
(RIS)-aided communication system in Section III-A3 enable
novel network architectures that are relevant for UCFs such
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as robots to cobots and hyperconnected resilient network
infrastructures. They could cater to the interacting and coop-
erative mobile robots UCwhere a distributedMIMO network
could be exploited to manage a cluster of automated (ground
and aerial) vehicles over a 6G network. Distributed MIMO
architectures powered by AI/ML algorithms would be also
beneficial for high-speed vehicular communication in V2X
UCs in which extremely high-reliable connections are to be
maintained in the mmWave range. Also, such distributed
MIMO architectures would be essential to enable the extreme
reliability KPIs required by UCs in the telepresence and
massive twinning UCFs.

The next three sub-sections discuss the proposed learn-
ing based solutions under the L2C paradigm, presenting
technical details and representative results showing how the
proposed solutions have achieved the targeted KPIs/KVIs via
problem-specific different evaluation metrics, as also shown
in Fig. 1.

A. ML-BASED CHANNEL ESTIMATION
Channel estimation is of paramount importance in any com-
munication system. The use of MIMO systems and the
Orthogonal Frequency Division Multiplexing (OFDM) tech-
nique in 5G and beyond systems makes it a particularly
challenging task as a consequence of the induced complex-
ity. Indeed, traditional techniques often lack behind in this
context. For example, least squares (LS) estimation is a low
complexity and straightforward one, but it can yield poor
performance. An additional example is the minimum mean
squared error (MMSE) estimation, which has been shown to
give the Neyman-Pearson optimal solution. However, in prac-
tice, it requires a lot of computational resources. Furthermore,
the sample covariance matrix, which is required for the
computation of the MMSE estimator, adds non-negligible
overhead to real-time physical layer applications, since a
large number of samples are required to reconstruct an accu-
rate sample covariance matrix.

Then, channel estimation is one of the first operations
in a radio receiver for which ML-based solutions showed
promising results [28], [29], [30]. In fact, Neural Net-
works (NNs) have been shown to be particularly suited
for the task, typically achieving the best trade-off in terms
of estimation accuracy, computational complexity and sam-
ple complexity compared to traditional signal processing
methods.

1) LOW SAMPLE AND COMPUTATIONAL COMPLEXITY
CHANNEL ESTIMATION USING NEURAL NETWORKS
In this section, we focus on NN based solutions for channel
estimation that are very computationally efficient. Inspired
by the mathematical formulation of the MMSE channel esti-
mator, the authors in [28] propose a shallow NN that obtains
close to optimal performance. The resulting NN offers similar
performance to the MMSE, with a fraction of computational
complexity. However, scaling this NN structure to a larger
input pilot size, for instance, to a Massive MIMO system

FIGURE 2. Our NN solution tested on different channel data produced
from 3GPP CDL-A,B,C,D, and E channel models.

with sounding reference signal (SRS) (a wideband sounding
signal) has been proven to be computationally intractable.
Inspired by the Kronecker approximation of covariance
matrices [31], we propose to consider the dimensions of
the channel pilots separately. Our numerical investigations
indicate that time, frequency, and antenna space (which can
be further divided into horizontal antenna panel and vertical
antenna panel) are suitable to split the channel covariance
space into subspaces. The choice of the subspaces has been
influenced by the following factors. At first, we intend
to simplify the pre-processing computational complexity to
obtain each subspace. Additionally, for the solution to work
properly, we require low statistical correlation among the
subspaces. The choice of time, frequency and antenna space
meets those two conditions quite well. The resulting NN con-
sists of multiple core NN proposed in [28] and [29] repeated
and designed for different inputs of spatial, frequency and
time domains. Considering two spatial domains (horizontal
and vertical domains), we require four NNs. All NNs are
similar in architecture, however, trained separately on each
of the data subspaces to capture the second order statistics of
the data. In the inference time, all four core NNs are cascaded
one after another. One of the main hurdles to actually use a
learning-based solution in real world systems is the amount
by which the NN solution performance deviates when the
channel statistics change over time. Similar issues can arise
while training an NN on simulated data for inference on
the real data, which is likely to statistically deviate from
the synthetic data. In other words, how well it generalizes
to channel models which are not in the training data set.
We simplified this problem by training the NN on the 3GPP
channel models CDL-A and CDL-D while testing it on CDL-
A,B,C,D, and E channel models. The numerical results in
terms of Normalized Mean Squared Error (NMSE) are com-
pared with theMMSE for each given channel model in Fig. 2.
The performance of our proposed method on the models
that were not in the training dataset, i.e., CDL-B,C and E
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seems to worsen especially for higher Signal-to-Noise ratios
(SNRs). However, the performance loss in higher SNR seems
to persist even for CDL-A, in spite of being in the training set.
The model complexity seems to be adequate for the purpose
of channel estimation, as the performance loss in higher SNRs
is still acceptable.

2) DEEP UNFOLDING FOR ONLINE UNSUPERVISED
CHANNEL ESTIMATION
As already discussed in the previous section, the complex task
of channel estimation is even more challenging in massive
MIMO systems, which are at the core of the 5G and beyond
systems. In such scenarios, statistical methods that rely on
MMSE estimation are at a disadvantage. Fortunately, going
beyond the results of Section III-A1, the sparsity of the
channels can be exploited along with a physical model to
approximate the dominant paths. Indeed, assuming that the
channel is a linear combination of a few steering vectors,
sparse recovery methods can be exploited to estimate it,
provided that a precise knowledge of the physical parameters
of the model, such as antennas’ positions and gains, is readily
available. This is usually not the case in real-world scenar-
ios where the system has access to nominal approximate
values instead. Moreover, hardware impairments, such as
those related to frequency generation and acquisition, further
complicate the issue. Importantly, [32] shows that a small
uncertainty on these parameters leads to high performance
loss. Adding flexibility to the estimation model in order
to allow it to correct itself and improve its knowledge of
the system configuration is thus key. On the other hand,
machine learning approaches have gained popularity in the
recent years, and have been successfully applied to many
domains, with signal processing being not an exception.
These approaches are model-agnostic, meaning that they
do not require hand-designed models derived from domain
knowledge, and rather depend on the quality of the data they
are presented with. This however comes at the cost of their
computational complexity, as a model’s performance is usu-
ally correlated with its capacity (i.e., ability to learn complex
relationships). In addition, such models usually require huge
amounts of data to achieve satisfying results while avoiding
overfitting. Recently, model-based deep learning [33] has
emerged as a new paradigm aiming at combining the best of
both worlds. It consists of exploiting domain knowledge to
guide the design of neural networks in order to reduce their
complexity and allow them to learn from limited amounts of
data.

With this in mind, and going beyond Section III-A1,
we propose to use a model-based NN for the task of chan-
nel estimation. The NN, called mpNet, is obtained through
deep unfolding, which is a technique consisting of effectively
unrolling an iterative algorithm so that each layer corre-
sponds to one iteration. The model’s parameters (i.e., the NN
weights) can be optimized subsequently by learning from
data. In particular, we propose to unfold matching pursuit
(MP) [34], which is a sparse recovery iterative algorithm.

Two variants of the model are presented for two dif-
ferent scenarios. The first scenario, presented previously
in [13] and [32] considers a single subcarrier Multi-User
MIMO (MU)-MIMO system where a Base Station (BS)
equipped with an antenna array communicates with single-
antenna users. The NN is initialized with a set of steering
vectors constructed based on the current approximate knowl-
edge of the system’s parameters modeled by uncertainties
on the antennas’ positions and gains. It takes as input the
noisy channels resulting fromLS estimation. TheNN training
is performed online in an unsupervised fashion, with the
objective ofminimizing theMSE to the input. This effectively
allows a continuous improvement of the a prior imperfect
knowledge of the model’s parameters. One notable feature
is that, since it is observed that the number of iterations of
the original MP algorithm depends on the SNR level of the
channel, the NN is allowed to have a variable depth, meaning
that its number of layers varies for each input according to a
stopping criterion.

The second scenario, presented in [35], differs from the
first one in that it considers an OFDM Single-Input-Single-
Ouput (SISO) system instead. This time, the corresponding
model is initializedwith a set of imperfectly known frequency
response vectors constructed by introducing uncertainties on
the subcarriers’ frequencies and antenna gains. This is to
model hardware impairments such as carrier frequency offset
(CFO), sampling clock offset (SCO) and non-flat frequency
response of the used antennas. Building on the previous
variant, this one exploits two novel ideas, namely constrained
dictionaries and hierarchical search. In a nutshell, a con-
strained dictionary is a dictionary of frequency response
vectors where only its parameters (i.e., complex antenna gains
and SCO) are allowed to be learned when training the NN,
as opposed to learning every entry of the dictionary. On the
other hand, hierarchical search is a way of finding the most
correlated atom in the dictionary in a hierarchical way instead
of the classical exhaustive way, reducing the number of oper-
ations to be carried out.

The main metric used to evaluate the performance of this
technology enabler is the channel estimation error. Accord-
ingly, both variants are evaluated on synthetic channels in
terms of NMSE, as in the previous section. Additionally, they
are compared to baselines as shown on Fig. 3 and Fig. 4.
We observe that mpNet is able to learn and reduce its error
throughout the training and achieves performance similar to
what is obtained with a perfect knowledge of the system’s
parameters.

To summarize, mpNet is a model-based neural network
offering the flexibility that classical model-based methods
are lacking, while still maintaining a reasonable complexity,
unlike classical ML models. Training it without supervision
improves its prior knowledge and consequently its perfor-
mance. It has been applied to MIMO systems and OFDM
systems and could be effortlessly extended to systems com-
bining both. Note that a very similar approach has been
proposed for integrated sensing and communications [36].
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FIGURE 3. mpNet performance in the MU-MIMO scenario.

FIGURE 4. mpNet performance in the OFDM scenario.

3) SUPERVISED LEARNING BASED SPARSE CHANNEL
ESTIMATION FOR RECONFIGURABLE INTELLIGENT
SURFACES AIDED COMMUNICATIONS
The massive deployment of antenna elements does not only
pertains to the transmitter and receiver side, but also other
nodes in the network than can act as opportunistic reflec-
tors. In this regard, RISs enable the smart control of the
wireless propagation environment with software-controlled
reflections, but they also introduce new challenges in channel
estimation procedures. The scattering of incoming waves can
be controlled by configuring the reflection pattern at the
RIS, where each element induces a phase shift that can be
individually controlled. More and more applications of RISs
are proposed in literature [37], [38], [39], [40] due to the
passive nature and lower costs of these devices.

Most of these applications rely on the availability of accu-
rate channel information. However, RISs consist of a large
number of passive reflecting elements, which makes channel
estimation challenging due to the large dimensionality and

the lack of active sensing. In order to reduce the channel
estimation overhead, we propose a supervised learning based
scheme for the uplink channel estimation of a RIS aided
mmWave network [41].

An angular domain sparse channel model is considered by
discretizing the angle of arrivals (AoAs). First, the case where
AoAs lie perfectly on the discrete grid is considered, and an
orthogonal matching pursuit (OMP) [42] based algorithm is
proposed to estimate the AoAs. Next, the case where AoAs
deviate from grid points is considered, and anNN architecture
is proposed to recover the AoAs [41]. It consists of several
NNs, where each of them has the signal received at each
antenna for all the pilot signals, as input. Further, the complex
vector is converted in to a real vector by stacking real and
imaginary parts.

Our architecture consists of two parts, where the first
network predicts on-grid AoA points using the sigmoid acti-
vation at the output, which corresponds to the probability of
a certain AoA grid point being present. The second network
consists of K (i.e., number of AoA grid points) NNs, where
each one is in charge of predicting the residual error of
the corresponding grid point. It has a tanh activation at the
output since the residual error can be either negative or pos-
itive. Finally, the AoAs are predicted using the output from
both networks, and the channel is reconstructed after further
estimating the channel gains using the proposed on-grid esti-
mation algorithm.

The performance of the proposed methods are compared
against the LS estimator. Fig. 5 shows the performance of
channel estimation as a function of the transmit power for
the direct channel. As for section III-A2 the CEE (in temrs
of NMSE) is used to evaluate performance. We can see that
proposed algorithm outperforms the LS estimation, while
the NN based approach outperforms both these methods.
However, a saturation of performance is seen as the transmit

FIGURE 5. Variation of transmit power vs. NMSE for the direct channel.
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FIGURE 6. Variation of transmit power vs. NMSE for the RIS channel.

power is increased due to power leakage of the imperfect grid.
Fig. 6 shows the CEE performance for the RIS channel, with
both proposedmethods outperforming the LS estimation with
similar performance.

B. ML-BASED TRANSCEIVERS FOR COMPENSATING THE
IMPACT OF RF HARDWARE IMPAIRMENTS
In this section, we focus on the ML-based design of radio
transceivers. Designing certain aspects of the air interface
to provide native support for AI and ML-based processing
is an intriguing prospect for future 6G networks. However,
as pointed out but not addressed in Section III-A2, hard-
ware radio frequency (RF) impairments can dramatically
degrade the performance of wireless communication. This
aspect is not sufficiently addressed in Section III-A. To fill
this gap, in this section we discuss how it is envisioned that
AI and ML-based techniques are able to effectively com-
pensate the impact of these impairments [43], [44], [45],
[46]. In particular, PA non-linearity distorts transmitted sig-
nal, causes in-band and out-of-band distortions and degrades
throughput of wireless communication systems. Classical
methods compensate PA non-linearity at the transmitter-side,
e.g., by applying power back-off or performing digital-pre-
distortion (DPD). However, applying PA power back-off
leads to lower energy efficiency, and lower output power, and
hence reduced coverage whereas performing DPD results in
high complexity and energy consumption at the transmitter
side. AI and ML-based techniques enable compensating the
impact of RF hardware impairments by optimizing function-
alities at transmitter and or receiver. In the following sections,
two techniques are presented for compensating the impact
of PA non-linearity: i) a method for learning waveforms
jointly with the receiver in Section III-B1, and ii) a method
for learning demapper at the receiver side in Section III-B2,
to compensate the impact of PA non-linearities.

As these solutions address the fundamental physical layer
processing, they are largely applicable to any selected use
case. As for the KPIs/KVIs, the main benefits are in terms

of spectral and energy efficiency, thus contributing to sus-
tainability but also flexibility values thanks to the data-driven
approach. SE is achieved via reduced BLER and overhead,
while sustainability stems from the higher resilience against
PA induced nonlinearities, allowing for more energy efficient
PA operation. For this reason, as already pointed out, the
robots to cobots, massive twinning, and the enabling sus-
tainaility UCFs are identified as the most relevant ones.

1) AI-NATIVE AIR INTERFACE DESIGN FOR REDUCED
OVERHEAD AND LOWER OUT-OF-BAND EMISSIONS
An AI-native design might be anything from complete
black-box type learning to optimizing the parameters of
the air interface, and it has a high potential in improving
SE, flexibility, and resilience against hardware impairments,
as shown by various earlier works [45], [46]. The black-box
type approach entails various challenges when it comes to
the practical implementation of such learning-based algo-
rithms, e.g., with regard to the overhead required for training
the models during deployment. This means that complete
black-box optimization might not be the most favorable
approach in terms of performance gain versus system com-
plexity and reliability.

One potential solution for learning-based air interface
design without excessive training overhead is to learn the
waveform jointly with the receiver algorithm. What is more,
only selected properties of the waveform are learned, such
as the constellation shape, which means that the system can
otherwise rely on, e.g., OFDM waveforms. This also reduces
the signaling required for communicating the exploited wave-
form properties and/or learning them. The primary benefit of
such constellation learning is the reduced overhead, as the
ML-based receiver can learn to detect the information bits
without any pilots when both the constellation shape and the
receiver are trained jointly. In addition, the waveform can be
made more resilient against nonlinear distortion by learning a
Convolutional Neural Network (CNN)-based transformation
layer in the transmitter. This can mitigate the impact of the
nonlinear distortion produced by the PA, and consequently
reduce out-of-band emissions.

To demonstrate the performance gain of such a learned air
interface, Fig. 7 shows the achieved BLER for a sub-THz
channel, using a 156 MHz useful signal bandwidth. Three
different approaches are considered: an ML-based pilotless
air interface with learned constellation shape, a conventional
pilot-based air interface with a regular 64-Quadrature Ampli-
tudeModulation (QAM) constellation, and the corresponding
performance achievable with perfect genie-aided channel
estimates. The learned constellation shape is shown in Fig. 8,
where it is evident that a highly asymmetrical shape is learned
in order to facilitate pilotless detection at the receiver side.

Firstly, it can be observed that the proposed ML-based
approach achieves essentially the same BLER as the
genie-aided baseline relying on perfect channel knowledge.
With a BLER of 10%, the gain over the practical baseline is
over 2 dB. In addition to the BLER gain, the learned solution
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FIGURE 7. BLER of a learned air interface, compared against baseline
solutions.

FIGURE 8. The learned constellation shape, showing also the bit mapping.

is also able to achieve higher throughput by not having to
reserve any resources for pilot transmission. The achieved
adjacent channel leakage ratios (ACLRs) are also shown
in the figure, demonstrating that the ML-based approach
achieves around 10 dB reduction in out-of-band emissions.

2) ML-EMPOWERED RECEIVER FOR POWER AMPLIFIER
NON-LINEARITY COMPENSATION
Overhead and out-of-band emissions are not the only issues
related to hardware impairments. In particular, in high data
rate transmission scenarios, the in-band distortions due to
PA non-linearity is a limiting factor. In this section, a novel
approach is proposed to also compensate the impact of
in-band distortions due to PA non-linearity at the receiver
side [44]. The developed method can be used towards a
wide range of use cases for which improved SE, extended
coverage, or enhance energy efficiency are required. This

includes high throughput use cases, e.g., Virtual Reality (VR),
and Augmented Reality (AR), and the use cases relying on
low cost and low energy user equipment (UE).

The proposedmethodmakes use of a neural network-based
demapper to compute soft bits to an Low Density Parity
Check (LDPC) decoder based on the equalized received sig-
nals. Also, it is based on a fully-connected NN operating
independently on each resource element. The method can
possibly compensate the impact of other hardware impair-
ments, e.g., phase noise as well at the receiver side, as it has
been shown for sub-THz transmission in [43]. The developed
solution can be deployed either at the base station or at the
UE to improve performance in uplink (UL) or downlink (DL)
scenarios, respectively. The performance of the proposed
method is evaluated and is compared against that of the legacy
receiver using link level simulations. Among performance
indicators, uncoded BER, BLER, power added efficiency
(PAE), and throughput have been quantified for this enabling
technology.

FIGURE 9. Achievable throughput with adaptive modulation order and
coding rate at the transmitter for NN-based receiver and legacy receiver
for modulation orders up to 64-QAM.

Fig. 9 shows the achievable throughput with the proposed
method and with the benchmark method in the presence of
link adaptation at the transmitter side with modulation orders
up to 64-QAM. The PA back-off is set such that the require-
ments on out-of-band emissions are full-filled. The legacy
receiver in the presence of linear PA provides an upper bound
on the achievable throughput. The proposed ML-empowered
receiver achieves 17% higher throughput compared with the
legacy receiver at high SNR regime. The performance gain
would be even higher for higher order modulations where
the performance is more constrained with in-band distortions.
The proposed method can also enable operation with lower
back-off values while achieving similar performance as the
legacy receiver, hence, the energy efficiency of the power
amplifier can be improved. The simulation results confirm
a 70% improvement of PAE for 64-QAM signals. The BER
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and BLER evaluations confirm that this method can achieve
lower BER and BLER and hence improve the reliability
of communication links. It has been shown that in certain
cases, e.g., higher order modulations or higher code rates, this
method can provide a reliable link. For instance, it can reach
certain levels of BLER (10%) where the legacy method fails
to provide a reliable link.

The proposed method can be deployed in different scenar-
ios such as the uplink communication of a cellular network,
which is usually coverage limited. In this case, performing
linearization techniques at the UE is challenging due to the
limited processing capability and energy budget of the UE,
and it is desired to enhance the UE energy efficiency to
increase its battery lifetime. Alternatively, this method can
be used in downlink scenario to increase throughput and/or
extend the coverage area of the base station, and to relax the
requirements on DPD for in-band distortions, especially for
high throughput transmissions, and to improve the energy
efficiency of the base stations. The improved energy effi-
ciency of the base stations can lead to smaller size and weight
due to the reduced requirements on cooling equipment.

C. ML AND AI IN DISTRIBUTED MIMO NETWORKS
Massive MIMO is a key technology component for future
wireless networks, since it provides high beamforming
gain and leads to increased spectral and energy efficiency.
Recently, distributed massive MIMO (D-MIMO, or, cell-free
MIMO) systems are extensively investigated as a potential
MIMO architecture, where a large number of distributed
accesss points (APs) are connected to a central process-
ing unit (CPU) via fronthaul links to serve a much smaller
number of users distributed over a wide area, and using
the same time-frequency resources, without classical cells or
cell-boundaries. These architectures provide more uniform
service performance for the users in terms of SE, but also
connection robustness due to the additional spatial diversity.
For this reason, they are extremely relevant for the interacting
and cooperative mobile robots UC (as part of the robots to
cobots UCF), where new cell-free massive MIMO architec-
tures could be used to manage a cluster of drones over a 6G
network along with the novel ML-based resource manage-
ment algorithms described in the following. The complexity
gain and flexibility are the main KPIs evaluated for these
enabling technologies, thus contributing to sustainability and
flexibility values.

However, the increased number of antennas in the system
heavily increases the complexity and overhead of the opti-
mization problems to solve, highlighting the need to have
efficient and scalable solutions for emerging tasks. Resource
allocation performed in a system with coordinated operation
of many APs makes traditional optimization-based solutions
infeasible. The problem is addressed in Section III-C1 by
proposing a data-driven scheme to perform joint power and
fronthaul capacity allocations with decreased complexity.
Another overhead appears in analog beamforming systems
due to beam selection, which becomes severe in D-MIMO

networks with a large number of beamforming APs.
Compressed sensing is a promising technique to reduce
the beam selection, which is further optimized by a
learned dictionary and neural sparse decoders, as described
in Section III-C2.

1) LOW COMPLEXITY RADIO RESOURCE ALLOCATION IN
CELL-FREE MASSIVE MIMO
In cell-free massive MIMO networks, proper radio resource
allocation such as power control and efficient utilization of
the limited fronthaul links is essential in achieving improved
performance. However, apart from the computational com-
plexity issue mentioned above, conventional optimization or
heuristic-based algorithms face several challenges such as
sub-optimal solutions in complex and non-convex problems,
lack of flexibility and parameter sensitivity, and inaccuracy of
the model-based resource allocation methods [47]. In recent
literature, the capability of ML-based algorithms has been
exploited to overcome those challenges associated with con-
ventional approaches. The works in [48], [49], and [50]
proposed ML-based power control algorithms for massive
MIMO networks via supervised learning where a deep neural
network (DNN) is trained to learn the mapping between the
inputs (user locations or channel statistics) and the optimal
power allocations obtained by an optimization algorithm.
On the other hand, our previous work in [51] proposes to learn
the power allocation in an unsupervised manner by training
the DNN over the optimization objective.

In this section, the unsupervised learning approach in [51]
is extended to learn joint resource allocation tasks in a
cell-free massive MIMO network. Specifically, joint opti-
mization of user power allocations and fronthaul capacity
allocations, between Channel State Information (CSI) and
data, to maximize the network sum throughput in the uplink
of a limited-fronthaul cell-free massive MIMO network is
considered. The system model and problem formulation are
similar to [52] and an ML-based algorithm is proposed to
solve the sum rate optimization problem instead of the geo-
metric programming-based solution or weighted minimum
mean squared error (WMMSE) approach. In order to solve
the joint optimization task, a DNN which we denote as Pow-
erNet_Ext is directly trained using a custom loss function
to optimize the sum throughput objective. The large-scale
channel coefficients between the users and the access points
are used as the DNN input and the DNN is trained to output
the user power allocations and fronthaul capacity allocations
between the APs and the CPU to maximize the system sum
rate. The performance of the proposed algorithm is evaluated
for a cell-free MIMO system with 50 APs and 10 users
distributed in a simulation area of 1 × 1 km2. The estimate-
compress-forward (ECF) strategy is considered for the CSI
and data transmission between the APs and the CPU. With
the ECF strategy, once each AP receives the pilot and data
signals, it performs the MMSE channel estimation and then
separately quantizes the estimated channel coefficients and
data signals to forward them via the fronthaul link. Other
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FIGURE 10. Sum rate comparison between PowerNet_Ext and the
baseline [52] with joint power control and fronthaul capacity allocation
for 50 APs and 10 users for ECF strategy. Total fronthaul capacity Cm =
1 bits/s/Hz. Solid lines: with transceiver hardware impairments
(κt = κr = 0.9) and dashed lines: perfect transceivers (κt = κr = 1).

simulation parameters, data set preparation, and the model
training procedure are similar to [51].

Fig. 10 compares the sum SE performance of Power-
Net_Ext and the geometric programming-based algorithm
proposed in [52] for the ECF strategy, for the cases of perfect
transceivers and with transceiver hardware impairments. The
PowerNet_Ext achieves close performance to the baseline
performance in both perfect and imperfect hardware scenar-
ios. An online training stage is also introduced exploiting the
unsupervised learning capability of the DNN. In this case,
during the inference stage, the originally trained model is
retrained for several iterations for each channel realization.
Performing online training allows further customization and
fine-tuning of model parameters based on large-scale channel
inputs in each channel realization to further optimize the sum
rate performance, as it can be seen from Fig. 10. Furthermore,
Fig. 11 depicts the obtained optimal CSI fronthaul capacity
allocations between each AP and the CPU as obtained from
the three methods when the total fronthaul capacity of each
AP is Cm = 1 bits/s/Hz. According to the one-dimensional
search algorithm proposed by [52], all the APs are allocated
the same fronthaul capacity Cp for CSI transmission, how-
ever, PowerNet_Ext is capable of learning different Cp values
for each AP depending on its channel conditions which help
to improve the sum rate performance as seen from Fig. 10.
The geometric programming algorithm in [52] for uplink

power control has an O(K 7/2) algorithmic complexity that
scales with the number of users K [53]. In contrast, the
PowerNet_Ext only does a one-shot calculation performing
a series of matrix multiplications and additions and func-
tion mappings in each layer to produce the outputs and
hence has a fixed algorithmic complexity. Thus, the above
numerical simulations show the potential of the proposed
ML-based approach in learning resource allocation vectors
resulting in similar sum throughput performance compared

FIGURE 11. Variation of optimal CSI fronthaul capacity (Cp) allocation
over channel realizations, obtained from PowerNet_Ext and as proposed
by [52].

to an optimization-based baseline, while having lower com-
putational complexity.

2) AI-BASED IMPROVEMENTS ON BEAM SELECTION WITH
COMPRESSED SENSING
Keeping the focus on massive and D-MIMO settings, beam-
forming is a very efficient technique to provide reliable
coverage at higher frequencies, but it also poses a signif-
icant challenge to the beam selection process in the form
of increased scanning overhead. High delays in beam selec-
tion have especially large impact on connection reliability in
applications with high user mobility or in deployments with
many blockages. Independently from beamforming, Com-
pressed Sensing (CS) theory is a relatively newly explored
scheme, which has found its application in different areas
recently, e.g., imaging applications, radar signal processing,
but also in wireless systems. CS is a signal processing tech-
nique, which states that if a signal is sparse in some domain
then it can be reconstructed from fewer number of mea-
surement samples than what would be required by sampling
theory. Being sparse means that the signal contains only a few
non-zero elements if it is expressed on a certain linear basis.

In case of mmWave systems, the radio propagation onmul-
tipath channels is known to be sparse in the angular domain.
We consider a system with n transmit antennas forming n
equally spaced beams with a DFT-based codebook and one
receive antenna at the UE. The reference signal for beam
selection is transmitted overm time slots with a certain power
distribution over the beams according to the dictionary (or
sensing matrix) D(m×n). As the reference signals are linearly
combined at the receiver, we obtain a standard sparse decod-
ing problem of y = Dx, where y(m×1) is the received signal
and x(n×1) is a sparse vector of the channel in the angular
domain. This problem can be solved even if m ≪ n.
This dictionary training can be performed with the help of

an autoencoder architecture, where the input is a representa-
tive set of beam channel vectors x sampled from potential UE
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locations. The encoder is a dense layer (matrixmultiplication)
with the dictionary elements D set as weights, which results
in the measurements y. The decoder block must implement
a sparse decoder algorithm using the encoder dictionary D
and it must also be differentiable so that gradient descent
can be applied to optimize D. Several neural sparse decoder
architectures are investigated based on the Learned Itera-
tive Shrinkage and Thresholding Algorithm family of LISTA
([54], [55]), resulting in a recurrent NN decoder block.

The analysis is performed based on the open DeepMIMO
dataset [56], with 4 access points and 32 horizontal beams
on each of them, which means 128 beams altogether with
128 measurements if sequential scanning is used. Fig. 12
shows results for 3 solutions. The first solution uses random
dictionary and iterative sparse decoding using a conventional
least absolute shrinkage and selection operator (LASSO)
algorithm. The other two scenarios show the results with
a dictionary trained for the local environment and sparse
decoding performed with either the LASSO optimization or
the fully NN-based sparse decoder LISTA. The key KPI to
compare the different solutions is best beam matching ratio
within 1 dB (the decoded beam is accepted as best beam if
its gain with path loss is within 1 dB compared to the best).
Note that the neural sparse decoder has its own set of trainable
parameters which is dependent of D but further optimizes
the decoding process with better accuracy and less iteration
layers required. Although the learning was performed jointly,
D can be used with any other traditional sparse decoding
algorithm. However, the efficiency of the proposed solu-
tion can be further increased by applying the neural sparse
decoder. In the investigated scenario, the required number of
measurements due to standard CS with random dictionary
at 90% targeted KPI is reduced from 128 to 32, which is
improved further significantly by using optimized D and also
an optimized decoder.

FIGURE 12. Observable scanning time gains compared to the baseline
CS-based sparse detection.

Decreasing the beam scanning time is especially benefi-
cial in beam tracking situations when fast beam changes are

required to prevent losing connection for latency critical com-
munication. Significantly less scanning overhead can easily
be translated into more frequent beam updates, leading to
both lower ratio of connection drops as well as faster recovery
times.

IV. COMMUNICATING TO LEARN: 6G AS AN EFFICIENT
AND TRUSTWORTHY AI AND ML PLATFORM
Beyond the role of AI andML as enabler for flexible network
optimization, as described in Section III, there is an increas-
ing adoption of intelligent components among higher-layer
in-network functions and external applications. For instance,
recalling the interacting and cooperative mobile robots UC,
it can be noted that it requires real-time intelligent deci-
sions based on distributed and resource efficient data and
model sharing. Similarly, in applications of the UCF hyper-
connected resilient network infrastructures, a huge amount
of data should be distributed across thousands or millions
of devices. Instead of sharing high volumes of raw data,
which may not be feasible due to communication, capac-
ity, privacy, complexity, and other reasons, optimized neural
encoded/embedded data representations can be exchanged
to guide data-centric decisions. Finally, the specific require-
ments of distributed AI deployments should be taken into
account for the digital twins for manufacturing use case (as
part of the massive twinning UCF) during workload place-
ment, where data availability and trust levels are also taken
into account.

These requirements call for a joint communication and
computation co-design, leading to network services and
Application Programming Interfaces (APIs) with seamless
exploitation of network knowledge for both in-network and
external applications. The challenges of the wireless environ-
ment, energy efficiency, device capabilities and data handling
constraints require 6G networks to provide efficient platform
support for distributed AI learning and inference functions.

This section provides a detailed overview of two large
groups of technical enablers of the C2L paradigm. Edge
AI and ML workload management in Section IV-A targets
the KPIs of energy efficiency and end-to-end (E2E) appli-
cation delay, by accounting for both communication and
computing components in the processing chain. These perfor-
mancemetrics contribute to the KVIs leading to sustainability
values. AI agent availability and inferencing accuracy are
also shown to be supported in high-mobility environments
involving safety-critical communications. In AI workload
placement multiple KPIs are considered, including AI agent
availability, network energy efficiency (by targeting reduced
energy consumption), as well as trustworthiness (by priori-
tizing trustworthy physical nodes). The technical enablers of
trustworthy, distributed AI in Section IV-B are more focused
on the KPIs belonging to the trustworthiness value, whose
KVIs can be summarized into security, privacy and explain-
ability, with also a focus on maintaining the model accuracy
at a prescribed level.

65632 VOLUME 11, 2023



M. Merluzzi et al.: Hexa-X Project Vision on AI and ML-Driven Communication and Computation Co-Design for 6G

A. EDGE AI AND ML WORKLOAD MANAGEMENT
In-network and external AI and ML related workloads will
be more and more pervasive in 6G systems. Natural ques-
tions arise on several aspects. First, AI and ML models
should be provided to client devices as a service and upon
request, which needs a new paradigm known as Compute/AI-
as-a-Service. Then, once the network is able to offer these
capabilities, one of the first issues is where to place such
workloads, with metrics including energy, end-to-end delay
(including communication and computation), and learn-
ing/inference accuracy. This covers single client workloads,
with possible distribution across distributed heterogeneous
nodes, but also FL settings, in which load balancing also
plays a key role, depending on devices’ availability and data
distribution. Once the various workloads coexisting in the
network are placed, resource allocation of wireless and com-
puting resources is fundamental to strike the typical edge
learning trade-off between energy, delay, and accuracy. This
section covers all these aspects, from the foundations of the
AIaaS concept, to distributed inference and the joint allo-
cation of radio and computing resources for edge learning
and inference workloads. As already introduced, several UCs
of in different UCFs are covered by the proposed solutions,
especially those entailing computing resources in the network
as means for performing complex (cooperative) tasks.

1) ARTIFICIAL INTELLIGENCE-AS-A-SERVICE
The integration of AI for internal network operation (e.g.,
resource allocation optimization, etc.) as well as to external
entities is envisioned to take place through anAI-as-a-Service
approach. This is a relatively new field of research. [57]
provides an overview of existing works and explains that
concepts for moving AI processing into the cloud or net-
work Edge are still under intense investigation. A specific
example of a related application is examined by [58], which
introduces a configurable model deployment architecture for
Edge AIaaS, which enables a management entity to optimize
the energy and delay performance by jointly customizing
the task data quality, model complexity and resource allo-
cations with given Quality of Results (QoR) constraints.
The approach is applied to an optimization model that min-
imizes the hybrid energy-delay cost by jointly optimizing
task configurations and computation resource allocations.
Furthermore, the application of related concepts is studied
in specific fields such as autonomous driving [59], facial
recognition [60] and others. In the context of Hexa-X, the
overall concept is being broadened by introducing open inter-
faces to AI Services in the network being made available
to the network itself as well as external consumers of AI
Information Services (AIS). The objective is to make the
knowledge of the network available to the benefit of all, while
protecting the owner of the underlying data as well as the
privacy of the AIS consumers. This objective is achieved by
users requesting the derivation of a learning model optimized
for a specific and well defined purpose. The network is then
able to fully exploit its knowledge and to transfer the final

FIGURE 13. Signaling flow for requesting and delivering of a new training
model satisfying AI agent selection criteria posed by the AIS consumer
(e.g., UE). Subscription-based direct UE/ AI agent communication case -
e.g., for frequent/ periodic inferencing-based decisions.

trained learning model to the users. Hexa-X has published
its solutions, for example outlining an approach to an AI
Architecture in [61] and showcasing how Hexa-X can further
support the implementation of European Regulation in the
the European Telecommunications Standards Institute (ETSI)
white paper [62].

To be more specific, the AIaaS approach will enable an
AIS consumer (via a User Interface) or a client application
to request a parameterization of the device’s locally available
learning model from the network as illustrated by Fig.13.

The network will derive the requested learning model
given a number of performance requirements set by the user,
the client/server application or a UE profile. Whether direct
(involving a subscription to the selected AI agent(s)) or indi-
rect AIS consumer (e.g., UE) and AI agent communication
is better applicable depends on: i) the considered scenario
- whether it involves a single one or periodic/ frequent
inferencing-based decisions, and ii) whether the UE and the
selectedAI agent can communicate via a common application
layer protocol. For example, in case a single prediction is
needed, the indirect communication case may be better as
there is no need to subscribe to ML model updates. However,
in the case of e.g., Quality of Service (QoS) prediction for a
given vehicle trajectory in the context of autonomous driving,
subscription to AI agent model updates may be needed as
multiple predictions may need to be performed (e.g., for dif-
ferent parts of the route or even more fine-grained predictions
referring to the same waypoint).

Unsubscription from an AI agent or subscription updates
may be needed in case e.g., the UE moves away from the
network entity (e.g., Multi-access Edge Computing - MEC
host) hosting the AI agent. In this case, the AIS needs to
be contacted again with updated filtering criteria, in order
to target AI agents hosting models relevant to the problem/
task, and that can provide their updated ML models with low
latency.

Consequently, full knowledge of the network can be seam-
lessly exploited for resolving the specific problem stated by
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an AIS consumer without exposing the network data sets
directly. The solution is applicable to any type of com-
mercial or professional applications, including safety and
dependability-critical environments (automotive, industrial
automation and others).

The proposed AIaaS approach will be implemented
through an AIS and its corresponding AI Application Pro-
graming Interface (AI API), exploiting an open network
interface. The proposed service andAPI enable the following:

• A UE (AIS consumer) to communicate to the AIS infor-
mation relating to a user/ client application-specific task
(e.g., intention to drive a vehicle from location A to loca-
tion B, starting at time t) calling for an inferencing-based
recommendation (e.g., QoS prediction-based recom-
mendation on switching on/ off autonomous driving
features) and performance requirements relating to
e.g., inferencing accuracy, energy efficiency, end-to-end
delay, security and others. All these criteria are filtering
criteria for AI agent selection.

• The UE, based on AIS response on available AI agent(s)
fulfilling the communicated criteria, to i) in case of a
commonly supported application layer protocol, sub-
scribe to, unsubscribe from or update the subscription
to one or multiple available AI agents (e.g., FL aggrega-
tors), or ii) in case infrequent/one-time output is needed
to obtain the ML model configuration indirectly from
the AIS.

• Considering each selected AI agent, the UE to share its
local model updates to the AI agent(s) it is subscribed
to and obtain learning system parameter updates (e.g.,
aggregated FL model update, transfer of an already
trained and tested model) by the subscribed AI agent(s).

The AIaaS approach offloads the complex and computa-
tional resource intense process from the client device to the
network. Once the desired learning model is created by the
network and forwarded to the client device, limited in-device
capabilities are required, for example a neural network accel-
erator component, in order to apply the learning model and
take full advantage of the full knowledge of the network.

2) AI WORKLOAD PLACEMENT FOR ENERGY, KNOWLEDGE
SHARING AND TRUST OPTIMIZATION
AIaaS is a powerful and novel concept that allows users
to access network intelligence and knowledge on demand.
However, it also introduces several challenges, among which
the workload placement represents the first step towards a
trustworthy and sustainable decision-making process. Hence,
managing the AI operations in decentralized scenarios, i.e.,
where multiple nodes/devices may participate in the execu-
tion of diverse AI workloads, is crucial.

There are many recent studies in literature related to opti-
mal Virtual Network Function (VNF) and service placement
in beyond 5G (B5G)/6G networks, and a limited number
related to AI workloads placement. The work in [63] pro-
poses a reinforcement learning framework with an efficient

representation and modeling of the state space, action space
and the penalty function in the design of the underly-
ing Markov Decision Process. The aim is to minimize
the network delay and the number of edge servers and
provide a MEC design with minimum cost. The authors
of [64] propose an AI-driven online policy called SplitPlace
that places neural network split fragments on mobile edge
devices using decision-aware reinforcement learning. The
aim is to fine-tune the placement of computing tasks in
volatile environments. Moreover, [65] tackles the problem of
energy-efficient virtual security functions (VSF) placement
to minimize energy consumption while meeting flow-level
security requirements and resource constraints. The problem
is formulated and solved with an integer linear programming
(ILP) model which minimizes server energy consumption,
and it also proposes a heuristic algorithm for large scale
network instances. Finally, optimized sequential Service
Function Chains (SFCs) placement is performed in [66]
with the development of a delay and location aware Genetic
Algorithm-based approach for minimizing the end-to-end
delay of ultra-low delay industrial network operations and
also exploiting location aware information.

Here, a novel AI workload management system is pro-
posed, applicable in B5G/6G architectures for close to
optimal mapping of AI workloads to the various network’s
physical nodes (e.g., user devices, edge/cloud servers). Phys-
ical nodes that undertake the execution of AI workloads can
face trust level problems, traffic load-related issues, or energy
consumption problems; to this end, an optimization algorithm
is designed and developed, which targets a three-fold strat-
egy, i.e., to minimize the power consumption of the overall
network towards sustainability, to minimize the processing
and transmission delay, and to maximize the overall trust
level of the system, by prioritizing nodes/AI agents with high
trustworthiness indexes. Hence, the objective function (OF)
that is being minimized consists of three terms as described
before, to which respective weights are applied (w1, w2, w3)
depending on the use case requirements: OF = w1 · P +

w2 · D − w3 · T . The power consumption term P is the
sum of the respective power consumption of each physi-
cal node/server and is mainly affected by CPU/GPU/NPU
utilization rate compared to disk storage, memory and band-
width [67]. Subsequently, the delay term D consists of the
sum of the respective transmission and processing delay of
each AI workload and the trust term T consists of the sum of
the trust level index of the physical nodes/servers used for the
placement.

The described problem is solved with the development of a
meta-heuristic algorithm building upon the genetic algorithm
paradigm [68]. The proposed algorithm includes several opti-
mization steps, including: i) a dynamic stopping criterion for
faster convergence and termination compared to the one used
in the classic version of the genetic algorithm, ii) an effi-
cient initialization of ‘‘chromosomes’’ (particular solutions)
so that a feasible solution is ensured when the system is
close to fully loaded, iii) a penalty function for computational
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requirements constraint-handling, and iv) an efficient muta-
tion form (suitable for the non-binary ‘‘chromosomes’’
utilized) for exploring the whole search space.

The performance of the developed algorithm was com-
pared with the output of a Mixed Integer Programming
(MIP) solver [69]. The proposed genetic algorithm obtains
close to optimal scores within significantly less time than
the MIP solver as the number of AI workloads increases.
Specifically, when the number of physical nodes is 43 and
the number of AI workloads exceeds 80, the MIP solver
performance is intractable, compared to the proposed solu-
tion, which demonstrates an execution time of approximately
38 sec. Moreover, the percentage of reduction of processing
and transmission delay was measured as the number of AI
workloads increases, for three different weight levels w2
(low, medium, high). In order to assess the effect of the
delay-specific OF term, we compare the optimization results
(Fig. 14) for w2 = 0 with three w2 ̸= 0. The larger
the weight of the delay term w2 is, the higher reduction of
delay we observe. Additionally, it is observed that for higher
number of AI workloads, i.e., more than 150, the reduction
of delay decreases. This is due to the fact that for such cases,
the number of feasible placement solutions decreases and
potential gains in the reduction of delay are limited.

FIGURE 14. Percentage reduction of processing and transmission delay
with increasing AI workloads for different weight levels (w2). Baseline
approach refers to the proposed genetic algorithm having w2 = 0.

Future work involves the quantification of the trust level
index as well as the elaboration on the architectural implica-
tions and respective requirements.

3) DYNAMIC LOAD BALANCING FOR FEDERATED ML
APPLICATIONS
Workload placement and sharing becomes even more chal-
lenging in several envisioned 6G use cases in which a large
number of heterogeneous sensors are connected to FL nodes
at the network edge. For example, massive twinning relies on

a fully synchronized and accurate digital representation of the
physical and human worlds based on a wide variety of sensor
information. To enable more efficient interaction of produc-
tion for digital twins in manufacturing, we have to encompass
a larger extent of the respective processes, and also to achieve
the transfer of massive volumes of data from a wider range of
sensors and actuators within the factory, including the coop-
eration among multiple digital twins in a flexible production
process. In an immersive smart city, effective management
of all factors of persons, vehicles, infrastructure, weather,
pollution, etc., on various time scales require a large number
of heterogeneous sensors to be connected.

Given a large number of edge connections, load balancing
is necessary to remedy potential hot spots and data diversity to
ensure quality balance for the federated learners. By dynamic
load rebalancing, we reconnect sensors to nodes in the radio
network if load is uneven or some nodes receive insufficient
variety of data for serving local models.

In the use case scenario of Fig. 15, a variety of sensors are
connected to AI compute nodes through radio BSs. For accu-
rate and low latency operation, each AI node needs access to
sensors of most types, and the connection load needs to be
balanced. Based on the Timing Advance (TA) information,
the connection of sensors to AI nodes can be reconfigured;
however, in addition to handover costs, the state of a sensor
may also need to be migrated to the new AI node.

FIGURE 15. Left: a FL hot spot with too much data (top) and an
insufficient data with one type (camera) missing (bottom). Right: a
reconnection decision causes state migration between the bottom AI
agents.

Our goal is to provide load balancing to remedy potential
hot spots and data type diversity to ensure quality balance
for the federated learners. Load and diversity balance is nec-
essary to make sure each node can equally contribute to the
FL task dynamic load rebalancing by reconnecting sensors to
nodes in the radio network if i) load is uneven, or ii) some
nodes receive insufficient variety of data for serving local
models, for example when a certain crucial type of sensor is
not connected to a FL node.

Our proposed dynamic reconnection solution is based on
the Key Isolator Partitioner (KIP) originally developed for
distributed data processing systems [70]. KIP is a heuristic
combination of explicit placement and weighted hash par-
titioning to improve balance in cases of heavy data skew.
KIP involves a distributed top-k histogram computation,
where locations with heaviest load are ordered by decreasing
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frequency in a histogram object. The ideal maximal load of
the partitions is calculated using a soft threshold to guarantee
a good balance. In KIP, first the highest load is arranged
greedily by considering radio accessibility. KIP attempts to
keep UEs in their current connection to minimize migration
costs, and non-heavy keys are handled by the weighted hash
partitioner. The average load of a node is computed, and
the UEs are rerouted as necessary by greedy bin packing.
KIP prepares for potential reconnection by making minimal
modifications to the existing network state.

4) RESILIENT DEPLOYMENT OF DISTRIBUTED AI
When AI workloads are integrated into wireless networks,
not only computing management is required, but rather a
holistic view of communication and computing is envisioned
to lead to significant gains in terms of resource efficiency
and resilience. This pertains to several UCFs with application
systems highly distributed on many different devices and net-
work components. These AI-enabled components will jointly
realize a heterogeneous AI and data sharing landscape where
stored data, real-time sensor input, processing and control
capabilities are distributed, AI components may be integrated
on multiple levels with full or partial AI processing forming
loosely or more tightly coupled systems, and the nature of
shared data is similarly heterogeneous covering raw sensor
inputs, model states, latent spaces with implicit or explicit
semantics.

Use cases realizing real-time critical functionalities in such
distributed environment would pose stringent requirements
on the communication network in terms of packet latency,
loss rates, bandwidth stability, device density, along with a
high signaling overhead to manage it over wireless. However,
low latency, high reliability and availability of AI-enabled
applications can also be realized by combining AI-level
resilience techniques with supporting communication func-
tions in 6G. In this concept we exploit two commonly
occurring properties: i) a certain level of redundancy in input
data among different sources and ii) achieving incrementally
increasing accuracy/reliability by extending on input collec-
tion time. These properties allow AI applications to cut the
long tails stemming from highly variable radio environments,
while at the same time relaxing on the individual communi-
cation link parameters.

We consider a scenario of distributed sensing and commu-
nications where the application performance benefits from
tight integration of sensors and communication. A large
number of devices are deployed in a wireless environment
and are equipped with sensors providing input for intelligent
fusion, realized by a joint inference engine running at the
edge. One example application is the cooperative percep-
tion, one of the advance use cases in the 5G Automotive
Association (5GAA). It involves sharing sensor information
about the current driving environment among the vehicles
and other roadside stations. Using sensor data from nearby
objects allows the participating vehicles to increase accu-
racy of the estimated parameters and form a more complete

state of environment, including, e.g., blocked objects. How-
ever, this shared sensor data can be highly redundant, with
a noisy input and variable link quality. Sharing all inputs
with the inference function will likely require unnecessarily
high bandwidth usage, thus limiting the main target KPIs:
inferencing accuracy, inferencing latency and device density.
The device scalability potential with traditional sensor fusion
is also limited due to potential communication and computing
bottlenecks in the network.

To solve the above problems, an AI application and com-
munication system architecture is proposed. The inferencing
application is based on an AI framework, which can perform
early inference from partial data for low latency applica-
tions, simultaneously fulfilling high accuracy requirements
with increased delay. The contribution of the individual
input sources to the joint inference task is also varying
due to the observation noise (input image quality, visual
blockage, etc.) and communication link quality. The solu-
tion can also prioritize among the inputs based on added
value, which can decrease the required data volume over the
shared wireless channel, allowing higher device density to be
served.

The above requirements can be supported by multiple AI
architectures. This study investigates the case with spatio-
temporally trained Spiking Neural Network (SNN) [71],
which has the properties suitable for these goals. Although
this family of neural networks was developed for SNN,
it can be implemented as a stateful Artificial Neural Network
(ANN) using discretized time slots. The resulting network
will be sparse in communication, with only spike-type
data transfer among the neurons (1 bit in the discretized
implementation) with very low activity level. The inference
decision in an object recognition task is performed by accu-
mulating the spikes in the final evaluation layer, which can
effectively be translated into an ordinary logit layer. The
advantage of this architecture is that both the noise from input
sensors and the information loss on the wireless link can
be offset by increasing the inference time. This mechanism
provides less accurate but low delay results as well as incre-
mentally increasing the accuracy to the required level with
increased latency. In this way, the application has the ability to
control the inferencing process in accordance with the actual
application level targets.

It is also assumed that the inference control function in
the application can prioritize between different input streams.
This partial evaluation is performed after each time step.
An input stream utility assessment is made, which may stop a
device sending a stream or adjust communication bandwidth
among the live streams according to data utility to increase
inference accuracy. Significant gains can be observed in the
wireless communication load, both in terms of traffic level
and number of active connections (Fig. 16). By gradually
eliminating redundant input streams, the average traffic load
decreases to less than 20% compared to the baseline case and
the average number of required connections is also in this
range.
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FIGURE 16. Incremental inference for an ANN-SNN converted image
recognition neural network. Load reduction due to the application control
is above 80%.

FIGURE 17. Adaptive data compression for energy-efficient edge
inference.

The proposed joint compute and communication system
has several advantages over the traditional approaches. With
the option of accuracy-latency trade-off, it is possible to do
both early phase ultra-low latency inference, as well as higher
accuracy at the cost of higher delay. In use cases like above,
where multiple inputs provide overlapping information for
the inference task, over-the-air communication can be signif-
icantly reduced with the help of application domain functions
(the assessment of input stream quality and utility) interfac-
ing with network layers on a fast and high data granularity
level, which may require per packet control on millisecond
timescale. The benefits, however, are in the order of 1/5th of
traffic and connection load, which can also be translated to
higher device density for distributed AI.

5) JOINT OPTIMIZATION OF CONNECT-COMPUTE
RESOURCES FOR EDGE LEARNING AND INFERENCE
Reducing the communication cost and overhead can be done
in several ways. Going beyond the previous section based on
SNN architectures, this section proposes an alternative and

complementary step that involves data compression before
transmission, with target inference performance. Indeed,
once the workload is placed across different nodes in the
network (e.g., as proposed in previous sections), a joint allo-
cation of wireless (e.g., precoding, decoding, transmit power,
bandwidth) and computing (e.g., CPU scheduling) resources
is fundamental to achieve the needed levels of energy effi-
ciency, latency, and reliability. In addition, data compression
and/or quantization determine learning and inference accu-
racy/confidence of ML models deployed at the edge of
wireless networks, thanks to the MEC paradigm as described
in Section IV-A1. The latter also calls for a paradigm shift
from data-oriented to semantic and goal-oriented commu-
nications [12], [18], whose main objective is not to reliably
transmit information, but to retrieve, at the receiver side, the
relevant information needed to accomplish a task with target
reliability (also known as goal-effectiveness [72]). Within
this vision, this section focuses on the joint allocation of
radio and computing resources to enable energy efficient,
reliable, and timely edge inference. Therefore, performance
indicators include energy consumption, delay, and inference
confidence, translated also into inference accuracy.

The scenario, proposed in [13] and [73], comprises mul-
tiple (possible heterogeneous) end devices, collecting data,
compressing them, and uploading them to a Mobile Edge
Host (MEH), through the wireless connection with an AP,
as in Fig. 17. As shown in the figure, local communica-
tion and remote computation buffers model the E2E service
delay. At the MEH, computing resources are shared among
all users, which compete to access a sufficient pool guar-
anteeing their end-to-end delay requirement. In this type
of connect-compute applications, the end-to-end delay com-
prises communication (to transmit data, mainly affecting
uplink communications [74]) and computation delays (to
process data). More specifically, we present numerical results
obtained with the solution developed in [73]. The goal is
to adaptively allocate communication resources (data com-
pression and transmit power), and computation resources
(local computing to compress data and remote CPU schedul-
ing), to minimize the end devices sum energy consumption
under two long-term constraints: i) end-to-end delay con-
straint, including local buffering, uplink transmission, remote
buffering and processing; ii) average inference confidence,
measured by the entropy at the output of a neural network
classifying images [73]. The latter also translates into a cor-
rect classification rate. It is assumed that the MEH, based on
measured levels of inference confidence, feeds the required
compression scheme to the source encoder of the end devices.
An example is shown in the figure with one devices, but the
solution is applied to all devices.

In this specific example, we focus on an edge classification
task on JPEG compressed images. To deal with dynami-
cally evolving parameters (i.e., wireless channels and data
arrivals) the system is organized in slots of equal duration.
At the beginning of each slot, a decision is taken on: i) data
compression (i.e., which JPEG compression level to select
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FIGURE 18. Trade-off between device energy consumption, end-to-end
delay, and inference accuracy in computation offloading for edge
inference services.

for transmitting images), ii) local computing resources to
compress data, iii) uplink transmit power, and iv) MEH’s
CPU scheduling. Thanks to theoretical tools of Lyapunov
stochastic network optimization [75], an online algorithm
has been developed to jointly take these decisions in a per-
slot basis, by only observing current wireless and computing
resource conditions, as well as properly defined state vari-
ables that capture the behavior of the system in terms of
congestion (i.e., communication and computation buffers
state), and constraint violations (i.e., virtual queues that grow
each time the inference confidence constraint is not satisfied,
and are drained otherwise). More technical details can be
found in [73]. The algorithm is tested on a similar scenario
as the one presented in [73], with 6 devices, each one of them
requesting a different inference confidence level, comprising
the two extreme benchmarks: i) the minimum energy device,
i.e., the one transmitting the data with the maximum data
compression, and ii) the maximum accuracy device, i.e., the
one transmitting data with the maximum number of bits.
Edge inference is performed with a pre-trained state of the art
architecture, whose details are available in [73], assumed to
be pre-uploaded at the MEH, on the CIFAR-10 data set [76].
A wireless AP is placed at the center of a circle of radius
100 m, and is equipped with an MEH with maximum CPU
clock frequency 10 GHz, and the 6 devices uniformly ran-
domly located inside the circle, transmitting at maximum
power 20 dBm. Denoting by fc the carrier frequency in GHz,
and by dk the distance in meters between device k and the
AP, the channel gain is generated with path loss (in dB)
PLk = 33+25.50 log10(dk )+20 log10(fc), and with Rayleigh
fading with unit variance, changing across time slots, whose
duration is set to 25ms. In Fig. 18, numerical results assessing
the performance of the proposed method in terms of trade-off
between energy, delay, and inference accuracy, are presented.
Since each curve shows the average end-to-end delay as a
function of the average energy consumption for a specific

user, the trade-off with respect to inference accuracy can be
appreciated through the different curves. In particular, let
us focus on the first benchmark, i.e., the minimum energy
device (light blue curve). This user exhibits the best trade-off
between energy and latency, however experiencing highly
degraded inference accuracy (around 46%). At the same
time, the best accuracy case (blue curve - 88%) is paid by a
higher energy consumption, for the same end-to-end delay,
i.e., the worst trade-off between energy and delay. More
interestingly, there are intermediate cases, obtained through
the proposed adaptive compression strategy, which experi-
ence better energy-delay trade-off when compared to the best
accuracy case, however without dramatically degrading the
accuracy performance. As an example, the orange curve loses
around 2% of accuracy. The choice of the target accuracy
highly depends on the specific application, and it affects
the energy-delay balance. What is more important, is the
capability of the method to adapt to the application require-
ments to strike the best trade-off between energy and delay,
by attaining the desired inference accuracy performance.

In this section, we presented one more brick towards
the management of computing workloads (in this case
for edge inference), with a joint approach that encom-
passes communication delay and energy consumption,
to move data from their source to a remotely hosted ML
model to run the inference task. Future research directions
involve the full management of inference workloads, in a
unified framework involving placement (Section IV-A2),
balancing (Section IV-A3), and resource allocation, all under
the AIaaS umbrella (Section IV-A1). Also, goal-oriented and
semantic communications can be used as a tool to further
improve the performance of edge inference [77].

B. TOWARDS TRUSTWORTHY, DISTRIBUTED AI
In previous sections, we discussed how future 6G networks
are expected to pave the way to innovative services that
will make massive use of AI and ML techniques, with new
trade-offs involving energy, delay, accuracy, and complex-
ity. However, the design of AI systems must also comply
with additional requirements towards trustworthy AI, such as
transparency ofAImodels, security of AImodels, and privacy
of data owners.

In Hexa-X, trustworthiness of AI and ML, involving secu-
rity and privacy, has been identified as one of the pillars in
6G to ensure data protection and privacy, as well as model
robustness. Indeed, it represents one of the identified KVIs,
together with sustainability and inclusion. Since AI and ML
will play a significant role in the development and operation
of 6G networks, attacks on learning systems can impact any
application that relies on these technologies. The focus of
Section IV-B1 is on the vulnerabilities of AI-enabled systems
against adversarial attacks on the use case of AI-driven power
allocation in D-MIMO, as an additional challenge related to
these novel settings also discussed in Section III-C, and also
the privacy of FL.
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Sections IV-B2 and IV-B3 address trustworthiness and
transparency of AI models by deploying eXplainable Arti-
ficial Intelligence (XAI) methods. The goal of XAI is
to investigate tools and techniques aimed at opening the
so-called opaque (or black-box) models (e.g., DNNs) or
at devising intrinsically interpretable and accurate models
(e.g., rule based systems), thus producing details and reasons
regarding the functioning of the model itself. In our solutions,
we also combine FL and XAI: the acronym Fed -XAI [78]
stands for federated learning of XAI models and is con-
ceived to provide a leap forward toward trustworthy AI. The
objective of Fed-XAI consists in devisingmethodological and
technological solutions as follows: on one hand, to leverage
the FL approach for privacy preservation during collabora-
tively training of ML/AI models. On the other hand, to ensure
an adequate degree of explainability of the AI-based systems.
Notably, Fed-XAI can be regarded as an enabler for several
families of use cases envisioned for 6G. As an example,
it has recently been proposed as an enabling technology in 6G
systems for an automated vehicle networking use case [79].
Inferencing accuracy represents the most relevant KPI, which
must be pursued together with the KVI of explainability.
Model complexity can be considered as a proxy for the
interpretability level and may be associated with other XAI
metrics (e.g., based on surveys) to evaluate explainability.

1) CHALLENGES AND ENABLERS TO ACHIEVE
TRUSTWORTHY AI
In this first part, we demonstrate how susceptible AI systems
are to adversarial attacks through the obtained results of
applying evasion attacks against AI-driven power allocation
in a D-MIMO network. We also show how the privacy of FL
can be enhanced using blind signature scheme [80] andmulti-
hop communication [81].

In 6G networks, use cases related to usage of AI/ML in
wireless tasks such as beamforming and power allocation in
D-MIMO such as the one presented in Section III-C1, could
be more adversary-sensitive. One such adversarial attacks
can be evasion attacks where an attacker deliberately manip-
ulates the input to the system in a way that causes the
system to make incorrect or undesirable decisions. In [82],
we simulate a successful adversarial evasion attack against
AI-driven power allocation model in a distributed MIMO
network where potential attack sources are illustrated in
Fig. 19. The CDFs (cumulative distribution functions) of
per-user SE under different attack types are illustrated in
Fig.20. The results show that our proposed attack has higher
effects on degrading user spectral efficiencies in comparison
to other conventional attacks (i.e., attacks where the attacker
applies random perturbation such as gaussian noise). Also,
we observe that the surrogatemodel (amodel which is created
by attacker by training a model on a similar or a subset of
the input features of the target model) performance (marked
as black-box) is marginally less disruptive than the original
model performance (indicated as white-box). This finding
shows that creating effective adversarial samples does not

FIGURE 19. D-MIMO network with potential attacks.

FIGURE 20. Comparison of different attack types (ϵ = 8 dB).

require the adversary to have access to the original AI model.
As a result, it is necessary to adopt smart defense techniques
to protect against such attacks. In the literature, potential
countermeasures are proposed to create robust and resilient
AI systems. Moving Target Defense (MTD) [83], which
involves regularly updating the training data or model archi-
tecture, or introducing random perturbations to the model’s
parameters, is a technique used to increase the resiliency of
AI systems. Input validation and robust learning approaches
can be used to improve the robustness of ML models against
poisoning attacks [84]. Defensive distillation [85] can also
be used in combination with other techniques such as adver-
sarial training to improve the robustness of machine learning
models against evasion attacks. From privacy point of view,
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in 6G, large amount of user data will be used for training
ML models. There are some privacy attacks such as mem-
bership inference attacks, model inversion attacks, and model
extraction attacks that can be launched against machine learn-
ing models and systems to expose sensitive data. To protect
sensitive data against this kind of attacks, privacy enhancing
technologies (PETs) such as differential privacy [86], multi-
party computation [87], and homomorphic encryption [88],
also FL can be utilized. Federated learning, also introduced in
Section IV-A3, is a collaborativemachine learning techniques
that preserves user data privacy by enabling users to learn a
prediction ML model in a collaborative way, while keeping
the data on the individual devices. However, there are still
security and privacy concerns in FL [89], [90], and it is a
challenge to find solutions that provide both security and
privacy at the same time. The solution, proposed in [13] and
[91] is a privacy solution that allows the run of security mech-
anisms to prevent model degradation, and take advantage
of multi-hop communication and blind signature to preserve
user privacy and prevent malicious behavior of clients. The
example interactions between the server and clients are illus-
trated in Fig. 21. The proposed method can be regarded as an
enabler for several use cases envisioned for 6G [27].

There are different metrics to measure the efficiency and
effectiveness of the protective technical enablers for trustwor-
thy AI. In term of privacy, the accuracy of the model and the
overhead introduced by the privacy-preserving technique can
be considered as relevant KPIs. In term of security, the adver-
sarial attack success rate and adversarial defense success rate
can be considered as relevant KPIs. Thus, by implementing
right measures, organizations can help to reduce the risk of
security and privacy attacks on their ML systems and protect
the integrity and reliability of their ML models.

FIGURE 21. Example interactions between server and clients.

2) EXPLAINABLE AI FOR RADIO NETWORK CONTROL
Changing perspective towards XAI for automated radio net-
work control, in this section we devise methods to explain and
separate the effect of configuration and load to network per-
formance KPIs. The KPI prediction task has been extensively
studied in the literature [92], and is extremely relevant, e.g.,
whenever massive twinning and cobots applications as well
as the resilient network infrastructure require high QoS [3].
The relevant measures of throughput, reliability, complexity
reduction, accuracy, all important KPIs, can be predicted and

problems can be anticipated and mitigated by ML methods.
Another relevant measure is the accuracy of the XAI model
compared to black box solutions, to improve the explanability
while keeping the model accuracy unchanged or acceptably
reduced.

The main technical difficulty in useable XAI for mobile
radio KPI prediction is the complex causal relationship
between configuration, load and performance. For example,
antenna tilt configuration affects network performance indi-
rectly via coverage, interference and cell load. These indirect
metrics have a more direct effect on network performance,
hence XAI will primarily find the importance of coverage,
interference, and load and explain the predicted performance
metric based on them,mostly ignoring the explanation of how
network configuration affects this performance metric.

XAI models achieve flexibility and generalizability, as the
explanation can be incorporated in arbitrary settings as expert
knowledge. Model explanations enhance data quality as a
pointwise explanation approach enables outlier and data
error filtering by understanding model prediction and error.
We also reach complexity gain, since the final model can
be very simple by focusing on the key concepts rather than
artifacts of the training data.

We proposed a first XAI model in [93] based on SHAP
(SHapleyAdditive exPlanations) [94] and aGradient Boosted
Tree (GBT) regression model for KPI prediction. GBT mod-
els also enable deployment flexibility: tree-based regression
models can be generated directly as program code without the
need for ML or DL frameworks.

The main technical difficulty in giving the appropriate
model explanation for network KPIs relies in the casual
relation between network control, load and channel quality.
SHAP explanation is calculated by considering subsets of all
these measurable attributes and subtracting their contribution
to the model. Since channel quality has the most direct effect
on the network KPIs, the explanation will primarily find the
importance of channel quality and explain the predicted KPI
by putting lower importance on load and mostly ignoring the
explanation of how control affects the KPI.

Reliably inferring causal relationships from observational
data is generally considered to be impossible [95]. Rather
than inferring the relationship, causal attributions [96], [97]
assume to know the nature of the causal relationship based
on domain knowledge and attempt to calculate attributions
that respect these relationships. Asymmetric SHAP [96] is a
method well suited for our task, since we are free to modify
the order of the weights while computing SHAP for subsets,
thus we can prioritize load over channel quality and control
over all attributes.

We demonstrate our method on performance management
data from radio access network cells with 15 minutes granu-
larity [93]. Model output is average downlink cell throughput
for automatically determining the root cause of throughput
degradations using explainers of the model. Input features of
the model are described in Table 2. In Table 3, we compare
the performance of the original TreeSHAP [98] method that
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TABLE 2. Feature groups used in a sample mobile radio control dataset.

TABLE 3. Normalized average absolute feature attributions made by
baseline and the best new method using two different causal ordering on
four feature classes TA distribution (TA), cell load (Load), interference (I),
and channel quality (CQ).

does not take causal relations into account to two variants
of our Asymmetric SHAP based method. In both methods,
we consider Channel Quality as consequence of Interference,
while Interference of TA distribution and Cell load. We have
the option to order TA distribution before or after Cell load
(or take the average of the two). Measurements indicate that
we are able to move the assessed importance of the variable
classes closer to the actual root cause.

3) FEDERATED LEARNING OF XAI MODELS
The combination of FL paradigm and XAI techniques has
recently gained increasing attention. Most existing solutions
revolve around the original proposal of Federated Averaging
(FedAvg) [99], as a method for executing Stochastic Gradient
Descent (SGD) in a federated manner, and exploit post-hoc
explainability techniques, such as feature relevance [100] or
counterfactual explanations [101]. The FL of interpretable-
by-design models, instead, may require the design of ad-hoc
federation strategies, possibly different from the traditional
FedAvg when the learning procedure is not based on the
optimization of a global differentiable objective function.
Among highly interpretable models, Takagi-Sugeno-Kang
Fuzzy Rule-Based Systems (TSK-FRBS) [102] have been
recently investigated and adapted for addressing regression
tasks in a federated setting [103], [104]. We recall that a
TSK-FRBS adopts linguistic if-then rules; an example of the
generic k th rule is reported in the following:

Rk : IF X1 is A1,jk,1 AND . . . AND XF is AF,jk,F

THEN yk = γk,0 +

F∑
i=1

γk,i · xi (1)

whereF is the total number of input variables,Ai,jk,i identifies
the jth fuzzy set of the fuzzy partition over the ith variable
considered in the k th rule, and γk,i are the coefficient of the
linear model, with i = 0, . . . ,F .
We propose an approach for FL of TSK-FRBSs [105] from

data, which is not iterative but rather generates the global
model in one-shot: in a nutshell, first a local TSK-FRBS
is generated by each participant and sent to the central
server. The server is in charge of aggregating the received
rule bases by juxtaposing them and resolving possible rule
conflicts (i.e., rules with same antecendents and different
consequents). Finally, the aggregated model is broadcast to
the clients. Notably, a high level of interpretability is ensured
thanks to the adoption of fuzzy uniform partitions with a lim-
ited number of fuzzy sets and an inference strategy based on
the maximum voting (i.e., the output value depends only on
a single rule, the one with the highest strength of activation)
rather than the classical weighted averaging method, (i.e., the
output value depends on all the rules activated by an input
instance).

The experimental evaluation of the proposed FL strat-
egy [105] is performed by comparing it with two alternative
learning settings, namely centralized and local. In the former,
local datasets are collected in a server for centralized pro-
cessing. This setting represents the ideal case in which the
entire dataset is available for model training, but evidently
violates the requirement of data privacy. In the latter, each
participant builds a model based on local data: the local
approach guarantees privacy preservation but entails no form
of collaboration among participants. The proposed FL of
TSK-FRBSs is tested on four benchmark regression datasets,
namely Weather Izmir (number of features F = 9, number
of samples N = 1461), Treasury (F = 15, N = 1049),
Mortgage (F = 15, N = 1049) and California (F = 8,
N = 20460), considering 5 participants and using 5-fold
cross-validation to assess model generalization capability.
The distributed setting is simulated by randomly splitting
each dataset in five chunks (one for each participant) with
the same number of instances. Further details on the exper-
imental setting are available in [105]. Fig. 22 summarizes
the results evaluated in terms of MSE on the test sets. The
height of the bars and the error bars represent the average
value over the participants and the standard deviation, respec-
tively. It can be observed that the FL scheme achieves better
results, on average, compared to models generated locally:
this outcome empirically demonstrates the benefit of partic-
ipating in the FL process. The FL scheme approaches the
centralized setting for Weather Izmir and California, while
it is outperformed on Treasury and Mortgage, possibly due
to the high dimensionality (15) and low overall number of
samples (1049) of the two datasets.

Fed-XAI, and specifically FL of inherently interpretable
models, helps improve the KPI of inferencing accuracy,
still preserving the privacy of data owners and the KVI of
explainability, which are regarded as pillars towards trust-
worthy distributed AI. The scope for further developments in
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FIGURE 22. Experimental results: average MSE on four regression
datasets. Comparison between local, federated and centralized learning
schemes. Error bars represent standard deviation.

the Fed-XAI area includes the design of ad-hoc federation
strategies for other highly interpretable models (e.g., deci-
sion trees) and for challenging scenarios, i.e., when data are
collected in streaming and possibly distributed in a non-i.i.d.
manner among various clients.

V. REGULATION ASPECTS
Several regulation and standardization bodies focus on AI
and ML in future networks. Among the others, focusing
on trustworthiness aspects, we focus on one specific action.
In particular, considering the potential and future relevance
of AI systems, the European Commission (EC) is currently in
the process of developing an Artificial Intelligence regulation
entitled AI Act [25]. We believe that the aspects described in
the following are extremely relevant for future communica-
tion networks, in which AI will be a native component. The
objectives of the AI Act are as follows:

• ensure that AI systems placed and used on the Union
market and used are safe and respect existing law on
fundamental rights and Union values;

• ensure legal certainty to facilitate investment and inno-
vation in AI;

• enhance governance and effective enforcement of exist-
ing law on fundamental rights and safety requirements
applicable to AI systems;

• facilitate the development of a single market for lawful,
safe and trustworthy AI applications and prevent market
fragmentation.

As AI components are expected to play a key role in
next generation communication systems, it is important to
understand the inherent AI Act requirements and to include
corresponding solutions in the system design in order to
maintain continued access to the European single market.

The AI Act differentiates various types of AI systems:

• Minimal or no risk AI applications: permitted without
restrictions;

• Transparency risk AI applications (e.g., impersonation,
bots): permitted but subject to information/transparency
obligations;

• High risk AI applications (e.g., recruitment, medical
devices, etc.): permitted subject to compliance with AI
requirements and ex-ante conformity assessment;

• Unacceptable risk AI applications (e.g., social scoring):
prohibited.

A list of systems considered to be High Risk is outlined in
Annex III of the AI Act [25]. It is currently under debate in the
EU Parliament and Council to which extent cellular systems
fall into theHighRisk category. AnyHighRisk systemwill be
required to demonstrate compliance to a number of essential
requirements in order to obtain access to the Singe European
Market. Otherwise, market access will not be granted. The
implementation of the regulation is - in simplified terms -
relying on the following three key steps:

• The European Commission is publishing the regulation
(the publication of the AI Act is expected for 2024).

• The European Commission is providing a Standardiza-
tion Request (SR) to European Standardization Organi-
zations (ESOs). An initial SR is expected for April 2023.

• ESOs finally build on the SR and develop Harmonised
European Norms and other deliverables in support of the
regulation.

All stakeholders, including industry, academia and others,
are able to contribute to and influence in particular the 3rd
step above through participation in the standardization pro-
cess. A number of organizations are currently engaged in
the development of standards of relevance to the AI Act: i)
ISO/IEC JTC1 SC42 is developing international standards in
the field of AI; ii) CEN/CENELEC are expected to adopt rel-
evant ISO/IEC JTC SC42 specifications as European Norms
such that they can be used for demonstrating compliance to
theAIAct; iii) the Institute of Electrical and Electronics Engi-
neers (IEEE) is developing global socio-technical standards
in AI Ethics and Governance and is currently in discussion
with ISO/IEC for international adoption of respective stan-
dards; iv) finally, ETSI has published a white paper [62]
summarizing available deliverables which can be used to sup-
port the implementation of the AI Act; furthermore, the white
paper outlines future plans of ETSI in the field of Human
Factor, testing of AI systems, etc. In the European Standards
Organizations, the specific detailed technical requirements
and related testing procedures will be defined and will even-
tually be applied to determine product compliance and thus
granting access to the European single market.

VI. CONCLUSION
We provided an overview of the Hexa-X activities around the
topic of in-network AI and ML for 6G. We first introduced
the UCs, KPIs and KVIs identified by the project, with spe-
cial focus on those that have mostly affected the activities
related toAI andML-driven communication-computation co-
design. Second, we presented a set of down selected technical
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enablers that we envision to enable the 6G ecosystemwith the
required performance. We focused on the two paradigm of
learning to communicate and communicating to learn. Start-
ing from the KPIs, the technical solutions are accompanied
by quantifiable metrics that are evaluated through numer-
ical simulations. These metrics include estimation errors,
throughput, block error rate, capacity, beam scanning time,
load reduction, E2E delay and energy consumption, spectral
efficiency, and attack success rate. All together, we believe
them to enable 6G with challenging target values cover-
ing sustainability, trustworthiness, flexibility, and inclusion.
Finally, we discussed part of the ongoing regulation activities
related to AI, along with their impact in future communica-
tion networks and research.

A lot of work still needs to be done around the topics
presented in this paper and beyond, towards the 6G standard-
ization efforts that should produce first outputs around 2030.
Overall, AI andMLwill be native components of future com-
munication networks, pushing researchers to identify new key
challenges and technical enablers to enhance performance
toward new unexplored limits, while not forgetting about fun-
damental values that include sustainability, trustworthiness,
and inclusion.
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