12 research outputs found

    Resolving Architectural Mismatches of COTS Through Architectural Reconciliation

    Get PDF
    The integration of COTS components into a system under development entails architectural mismatches. These have been tackled, so far, at the component level, through component adaptation techniques, but they also must be tackled at an architectural level of abstraction. In this paper we propose an approach for resolving architectural mismatches, with the aid of architectural reconciliation. The approach consists of designing and subsequently reconciling two architectural models, one that is forward-engineered from the requirements and another that is reverse-engineered from the COTS-based implementation. The final reconciled model is optimally adapted both to the requirements and to the actual COTS-based implementation. The contribution of this paper lies in the application of architectural reconciliation in the context of COTS-based software development. Architectural modeling is based upon the UML 2.0 standard, while the reconciliation is performed by transforming the two models, with the help of architectural design decisions.

    Architectural Approaches for Self-Healing Systems Based on Multi Agent Technologies

    Get PDF
    Self-healing systems are able to adapt themselves at runtime time in response to changing environmental or operational circumstances, shifting user requirements, and unanticipated faults without human intervention. Conceptually, a self-managing system is composed of four key capabilities; Monitoring, performing Analysis, Planning and Executing the plan. The preferred way to enable repair in a self-healing system is to use externalized repair/adaptation architecture. Adaptability, dynamicity, awareness, observability, autonomy, robustness, distributability, mobility and traceability are requirements that an architecture style for self-healing system should satisfy. In this paper we discuss Multi agent based self-healing system has a characteristics that can satisfy mentioned requirement. We define associations between architecture style requirements for self-healing system and MAS characteristics. As a case study in a real project we have designed Automated Teller Machine (ATM) combination with biometric sensors based on multi-agent architecture.DOI:http://dx.doi.org/10.11591/ijece.v3i6.395

    Towards a Self-Healing approach to sustain Web Services Reliability.

    Get PDF
    International audienceWeb service technology expands the role of the Web from a simple data carrier to a service provider. To sustain this role, some issues such as reliability continue to hurdle Web services widespread use, and thus need to be addressed. Autonomic computing seems offering solutions to the specific issue of reliability. These solutions let Web services self-heal in response to the errors that are detected and then fixed. Self-healing is simply defined as the capacity of a system to restore itself to a normal state without human intervention. In this paper, we design and implement a selfhealing approach to achieve Web services reliability. Two steps are identified in this approach: (1) model a Web service using two behaviors known as operational and control; and (2) monitor the execution of a Web service using a control interface that sits between these two behaviors. This control interface is implemented in compliance with the principles of aspect-oriented programming and case-based reasoning

    A self-healing distributed pervasive health system

    Full text link

    Biologically Inspired Self-Healing Software System Architecture

    Get PDF
    Self-healing capabilities have begun to emerge as an interesting and potentially valuable property of software systems. Self-healing characteristic enables software systems to continuously and dynamically monitor, diagnose, and adapt itself after a failures has occur in their components. Adding such characteristic into existing software systems is immensely useful and valuable for allowing them to recover from failures. However, developing such self-healing software systems is a significant challenge. The nature introduces to us unforeseen concepts in terms of presenting biological systems that have the ability to handle its abnormal conditions. Based on this observation, this thesis presents self-healing architecture for software system based on one of the biological processes that have the ability to heal by itself (the wound-healing process). The self-healing architecture provides software systems the ability to handle anomalous conditions that appear among its components. The presented architecture is divided into to layers, functional and healing layer. In the functional layer, the components of the system provide its services without any disruptions. The component is considered as faulty component if it fails to provide its services. The healing layer aims to heal the faulty component and return it to the running system without the awareness of the user. The presented self-healing software system is formally described to prove its functionality. Set-theoretic and Finite State Machine (FSM) is introduced. A prototype for the presented architecture has been implemented using Java language. Java objects are considered as the system components. The modules of the healing layer in the selfhealing architecture have been implemented into Java classes. An object from the module class will be created to perform its task for the healing process. The thesis concludes with recommendations for future works in this area and enhancement of the presented architecture.

    Grundlagen des Autonomen Rechnens

    Get PDF
    Das vegetative Nervensystem (engl. autonomous nervous system) des Menschen kann das, wovon in der IT-Industrie noch geträumt wird. Abhängig von der aktuellen Umgebung und Tätigkeit reguliert das vegetative Nervensystem mandatorische Körperfunktionen wie Herzfrequenz und Atmung. Reflexe, die dem Selbstschutz dienen, werden automatisch ausgelöst. Verletzungen heilen von selbst, ohne dass man seine normalen Tätigkeiten dafür unterbrechen müsste. Im Rahmen des Seminars „Autonomic Computing“ im Sommersemester 2003 am Institut für Programmstrukturen und Datenorganisation der Universität Karlsruhe wurden Grundlagen dieses Autonomen Rechnens besprochen. Als Basis für Selbstkonfiguration und Selbstoptimierung werden in „Kontextbewusstsein: Ein Überblick“ Techniken zur Erfassung des physischen und sozialen Kontexts einer Anwendung erläutert. Die dienstorientierte Architektur und konkrete Implementierungen wie z.B. UPnP, Jini oder Bluetooth werden in „Aktuelle Technologien zur Realisierung dienstorientierter Architekturen“ behandelt. Die Arbeit „Service- Orientierung und das Semantic Web“ beschreibt, wie Semantic Web Technologien zur Beschreibung von Web Services verwendet werden können mit dem Ziel der automatischen Dienstfindung. Danach wird der Begriff „Selbstbewusstsein“ in bezug auf Software anhand zweier komplementärer Forschungsprojekte definiert. Technologien zur Überwachung des Laufzeitverhaltens von Rechnersystemen mit dem Ziel der selbstständigen Optimierung sind Gegenstand der Arbeit „Selbst-Überwachung und Selbst-Optimierung“. Der Artikel „Selbst-Schutz“ fasst die Sicherheitsanforderungen zusammen, die an ein autonomes Computersystem gestellt werden müssen und die Techniken, um solche Anforderungen zu erfüllen. Ansätze aus dem Bereich wiederherstellungsorientiertes- und fehlertolerantes Rechnen werden in „Selbst-Heilung“, „ROC – Recovery Oriented Computing“ und „Recovery Oriented Computing: Modularisierung und Redundanz“ vorgestellt. Alle Ausarbeitungen und Präsentationen sind auch elektronisch auf der diesem Band beiliegenden CD oder unter www.autonomic-computing.org verfügbar

    A framework for configuration and management of resources and components in open distributed multimedia systems

    Get PDF
    Orientador: Mauricio Ferreira MagalhãesTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Em sistemas multimídia distribuídos existe uma diversidade de dispositivos de hardware, sistemas operacionais e tecnologias de comunicação. Para tratar os requisitos destas aplicações, os componentes do sistema precisam interagir entre eles considerando os aspectos de QoS de cada um dos elementos envolvidos. Neste contexto, esta tese apresenta o Cosmos ? um framework baseado em componentes proposto para dar suporte à configuração e gerenciamento de recursos em sistemas multimídia. Como prova de conceito do Cosmos, o framework definido foi usado no projeto do middleware AdapTV ? um middleware para sistemas de televisão digital interativa. O projeto do AdapTV explora os principais componentes dos modelos que foram definidos no Cosmos: o modelo de descrição de aplicações de forma independente de linguagens; o modelo de interconexão, que trata as questões de comunicação entre componentes heterogêneos usando diferentes tecnologias de comunicação; e o modelo de gerenciamento de QoS, que permite o monitoramento e a adaptação do sistema. Estes modelos foram explorados na implementação de um protótipo do middleware AdapTV e de uma aplicação distribuída que realiza a captura, transmissão e apresentação de um fluxo de vídeo. Para dar suporte à reusabilidade, o modelo explora o conceito de propriedades para estabelecer acordos de configuração (estáticos e dinâmicos) envolvendo negociações entre os requisitos dos componentes e as características da plataformaAbstract: Distributed multimedia applications involve a diversity of hardware devices, operating systems and communication technologies. In order to fulfill the requirements of such applications, their constituting components need to interact with each other, as well as to consider QoS issues related to devices and transmission media. In such a context, this thesis presents the Cosmos component-based framework for configuration and management of resources of open, distributed multimedia systems. As a proof of concept, the framework was used in the design of the AdapTV middleware ? a middleware for interactive television which explores the major components of the Cosmos, including: the model to describe and represent applications independently of language aspects; the interconnection model that allows communication between components in heterogeneous and distributed multimedia environments; and the QoS management model that provides support for adaptation in the middleware player, triggered by QoS and user requirements changes. These models have been explored in the implementation of a prototype, which includes the AdapTV middleware and a distributed application example that captures, transmits and presents a video flow. In order to provide a generic and reusable approach, and to establish configuration agreements among component requirements and platform features, the framework explores the concept of propertiesDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétric
    corecore