

X. Franch and D. Port (Eds.): ICCBSS 2005, LNCS 3412, pp. 248 – 257, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Resolving Architectural Mismatches of COTS Through
Architectural Reconciliation

Paris Avgeriou and Nicolas Guelfi

Software Engineering Competence Center (SE2C), University of Luxembourg,
6, rue Richard Coudenhove-Kalergi L-1359 Luxembourg-Kirchberg, Luxembourg

{paris.avgeriou, nicolas.guelfi}@uni.lu

Abstract. The integration of COTS components into a system under develop-
ment entails architectural mismatches. These have been tackled, so far, at the
component level, through component adaptation techniques, but they also must
be tackled at an architectural level of abstraction. In this paper we propose an
approach for resolving architectural mismatches, with the aid of architectural
reconciliation. The approach consists of designing and subsequently reconciling
two architectural models, one that is forward-engineered from the requirements
and another that is reverse-engineered from the COTS-based implementation.
The final reconciled model is optimally adapted both to the requirements and to
the actual COTS-based implementation. The contribution of this paper lies in
the application of architectural reconciliation in the context of COTS-based
software development. Architectural modeling is based upon the UML 2.0
standard, while the reconciliation is performed by transforming the two models,
with the help of architectural design decisions.

1 Introduction

The inevitable problem with reusing COTS components is that they simply don’t cor-
respond perfectly to the requirements specification and consequently to the envi-
sioned architecture of the system [1]. Even when COTS-based systems are designed
by taking into consideration pre-existing components from the market that roughly
correspond to the requirements, eventually there will still be disparities when the
COTS are integrated. One of the major causes of this problem is architectural mis-
matches: differences between a COTS component and the software system, where it
will be integrated, which occur when the former makes the wrong assumptions about
the latter [1, 8]. For example, a commercial component can falsely assume that it is in
charge of controlling the sequence of interactions between itself and other compo-
nents, or that other components should comply with specific protocols of interactions.
To make matters worse, such assumptions are implicit and are usually in conflict with
each other. The consequences are that system-wide properties are diverged from the
requirements, both functional and quality ones. Especially quality requirements such
as performance, reliability, and flexibility that depend profoundly on the architecture
[4, 5, 24] may be to a large extent distressed by the use of COTS components.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen Digital Archive

https://core.ac.uk/display/12924686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Resolving Architectural Mismatches of COTS Through Architectural Reconciliation 249

The research community has attempted to tackle the problem of architectural mis-
matches, focusing on the component level, by means of component adaptation tech-
niques, which attempt to incorporate unintended changes in a component for use in a
particular application [3]. These techniques are distinguished into white-box (e.g. in-
heritance) and black-box (e.g. wrapping), depending on whether the component itself
is adapted or whether its interface is adapted [4]. In the case of COTS components,
black-box techniques are usually applied since the component’s source code is usually
prohibited from being inspected or modified [1]. There are several techniques pro-
posed so far [3, 12, 15, 16, 29], and they can be applied according to the context of
use and the possible benefits and liabilities they entail [12].

However architectural mismatches cannot only be resolved at the component level
since they do not concern an isolated component but they affect a greater part of the
system, which collectively includes a number of components and connectors [8, 25].
Architectural mismatches caused by a single component may influence not only the
components that communicate with it but may also be propagated further on to other
components. Therefore such mismatches may require not only the adaptation of the
COTS component but also the modification, addition or removal of other architectural
elements. In order to perform these changes we need to examine a greater part of the
system’s architecture, identify those elements that are affected and subsequently de-
cide on how exactly the architecture should be modified. We thus need to tackle the
problem of architectural mismatches from an architectural perspective [8].

This paper proposes an approach to resolve architectural mismatches, caused by in-
tegrating COTS, using the technique of architectural reconciliation. In specific, it
suggests the design and subsequently the reconciliation of two architectural models:
one that is forward engineered from the requirements specification and a second that
is reverse-engineered from the COTS-based system implementation. The former ex-
presses the architectural decisions in an ideal system, which conforms to the require-
ments. The latter not only grasps the implementation constraints, but also explicitly
specifies the architectural impact of COTS that were incorporated in the implementa-
tion, making their design assumptions explicit, with respect to the rest of the applica-
tion. These two models are reconciled into a third model that will combine the two
perspectives in the best possible tradeoff, by taking under consideration the design as-
sumptions of the COTS components, but also addressing the requirements, to the best
possible extent. The reconciliation is performed by transforming the two models,
based on architectural design decisions, depending on which side, requirements or
implementation should be more supported. The reconciled model can eventually be
used to re-engineer the COTS-based system and also update the requirements.
Architectural modeling is based upon the UML 2.0 standard.

The rest of the paper is organized as follows: section 2 provides the details of the
proposed approach for resolving architectural mismatches through architectural rec-
onciliation. Section 3 illustrates the implementation of the approach through a case
study while Section 4 presents some related research work with respect to architec-
tural reconciliation. Finally Section 5 wraps up with conclusions and future work.

250 P. Avgeriou and N. Guelfi

2 Architectural Reconciliation

2.1 The Reconciliation Process

The process of reconciliation is graphically illustrated in Fig. 1., and is comprised of
six consecutive phases.

R

COTS

JAMFAM

fin
d

integrate with adaptation techniques

RAM I

develop second version

1

2

5 4

3

6

5

update requirements
6

Fig. 1. Process of Architectural Reconciliation

The first three phases follow a simplistic forward engineering style. The process
commences by using the requirements specification (R) to design the ideal architec-
ture of the system, which we name the Forward Architectural Model or FAM. This
model should, if possible, take into account pre-existing COTS from the market that
correspond more or less to the requirements. This forward-engineering design of the
architecture can be performed by following any architecture-driven software devel-
opment process. We thus do not impose or even suggest a specific process to be fol-
lowed, since we consider that our approach is independent of specific processes. In
sequence, commercial components are located in the market, that is, if they haven’t
already been found. Eventually the implementation (I) is developed according to the
FAM, by building new components from scratch and by including the COTS found.
At the best-case scenario, the COTS components will be adapted at a component level
according to one of the aforementioned component adaptation techniques.

The fourth phase is to reverse-architect the COTS-based implementation in order
to recover its architecture, which we name the Reverse Architectural Model or
RAM. It is obvious that reverse-architecting is a special case of reverse-engineering,
which concerns only architectural design. Here, similarly as before, we do not pre-
scribe a specific reverse-architecting approach, though there are a few such tech-
niques and tools proposed, such as those in [11, 20, 22, 23, 25, 27, 28].

The fifth and most crucial phase is to bridge the RAM and the FAM into the Joint
Architectural Model or JAM, which must compromise between the COTS-based
implementation and the set of ideal requirements. This is achieved by performing a
transformation, which accepts the RAM and the FAM as inputs and produces the
JAM as the output. A necessary tradeoff must of course be made since it is highly im-

 Resolving Architectural Mismatches of COTS Through Architectural Reconciliation 251

possible to perfectly satisfy the requirements, especially the non-functional or quality
requirements. The transformation enforces a set of design decisions that resolve the
incompatibilities between the RAM and the FAM. In specific, the architect must go
through the following steps:

• Identify the architectural mismatches between the RAM and the FAM. The
architect must start by looking for the four different kinds of false assumptions that
integration of COTS components may entail, as explained in [8]. These assump-
tions may lead to architectural mismatches, or more simply differences between the
FAM and the RAM, that must be explicitly specified. The architectural mismatches
can be detected by comparing the RAM and the FAM, either informally (e.g. UML
diagrams) or more formally (e.g. formal models with precise semantics).

• Resolve the architectural mismatches. By resolving the architectural mis-
matches, the architect needs to decide between one of the following:

− Keep the part of the FAM and delete the part of the RAM that causes the mis-
match, if enforcing the requirements is more significant.

− Keep the part of the RAM and delete the part of the FAM that causes the mis-
match, if requirements can be compromised in favor of the COTS components.

− Come up with a tradeoff solution that mixes both parts. In this case some of the
elements from both models may be deleted, others may be retained and possibly
modified, while more elements may be added. Component adaptation tech-
niques can be again enforced here, if it is necessary to adapt the behavior of
COTS components.

• Complete the JAM. The resolution of the architectural mismatches will probably
have consequences to other architectural elements that were not themselves part of
the problem. Therefore, the architect needs to take some last decisions with respect
to keeping, deleting or modifying architectural elements that were affected by the
reconciliation actions.

The final phase in this process is to re-engineer the system according to the JAM,
and update the requirements document to reflect the changes that occurred during the
reconciliation. How exactly the JAM is implemented into code is again out of the
scope of this paper. We emphasize that our goal in this process was not to invent yet
another forward or reverse-architecting process, but to focus on the reconciliation of
architectural models.

2.2 The Architectural Description

An architectural description is comprised of multiple views [6, 13, 14, 17], for exam-
ple the component-connector view, the logical view, the implementation view, the
data view and the deployment view. In order to reduce the complexity of bridging two
complex multiple-view architectural models, we have focused on the component-and-
connector view [6] for two reasons: it is considered to contain the most significant ar-
chitectural information, and it is the most appropriate view to describe COTS compo-
nents. This view deals with the system run-time by showing the components, which

252 P. Avgeriou and N. Guelfi

are units of run-time computation or data-storage, and the connectors, which are the
interaction mechanisms between components.

As far as the language for describing the architecture, we have selected the widely
accepted Unified Modeling Language. We have been working on the emergent UML
2.0 standard, to describe the component and connector view, and especially chose
modeling elements from the Composite Structures and Components packages,
namely: components, connectors, interfaces, ports, and classes that belong to the in-
ternal structures of components. In UML 2.0 components are associated with pro-
vided and required interfaces and may own ports that formalize their interactions
points. A special case of connectors, that are called assembly connectors connect the
required interface of one component to the provided interface of a second. For more
information, in [2] we have elaborated on the UML 2.0 elements for describing the
component and connector view.

3 A Case Study

The system that was used as a case study for the approach, is a popular open-source
Learning Management System, named Ganesha [7], which supports e-learning in
higher education and training institutes. This system was chosen for two reasons: a)
being an open-source project, its code can be inspected and thus re-engineered with-
out the copyright issues of commercial systems; b) its simple PHP-based and me-
dium-sized code makes it manageable and suitable for this kind of experiment. We
have experimented with integrating various COTS components in this system, in or-
der to check the validity of the method. For illustrative purposes, this section focuses
on the integration of a particular commercial chat component. Ganesha already had a
simple chat component, which allowed for basic chat functionality, but we attempted
to replace it with a COTS component, which offered more advanced functionality.

chat

teacher

storage
student

Ichat

DB management

DB query

RDBMS

component port
provided
interface

required
interface

LEGEND

Fig. 2. Part of the Forward Architectural Model concerning the Chat Component

Fig. 2 depicts the chat component as well as the rest of the components, which it
interacts with, in the Forward Architectural Model, designed to conform to the re-

 Resolving Architectural Mismatches of COTS Through Architectural Reconciliation 253

quirements. The chat component provides its functionalities through the Ichat inter-
face, which is used by the student and teacher components that implement the appli-
cation logic for students and teachers. The Ichat interface mandates that the student
and teacher components call the chat component, by passing a unique identifier as a
parameter, that proves they are authorized to use it. The chat component needs to
query and update the database in order to store the currently-connected users, and
maintain a log file of conversations. It accesses the database by using the interface da-
tabase management, offered by the storage component, which in sequence handles di-
rect database queries to the RDBMS.

We then integrated the new commercial chat component into Ganesha, which we
had located in the component market. This specific component was provided as a
fully functional evaluation version, implemented as a Java servlet, which can be pa-
rameterized through a text configuration file. The integration of the COTS component
into the system, yielded the reverse architectural model, as shown on Fig. 3. The new
chat2 component provides a slightly different interface, called Ichat2, since there is a
new way of calling the servlet and passing parameters. For the same reason the stu-
dent and teacher components are also slightly modified (student2 and teacher2) in or-
der for them to require this new interface. Also the new chat component offers an in-
terface for WML access, so that mobile clients can connect and access the chat
functionality. Other than that, the COTS component makes two false assumptions that
lead to architectural mismatches:

• The component assumes that it can have direct access to the database and thus re-
quires an interface from the RDBMS to connect and perform queries. In this sense,
it overrides Ganesha‘s database access mechanism through the storage component.

• The component assumes that it should not take care of access control, but can al-
low any potential web client to call the servlet and participate to the chat. This as-
sumption is again wrong in the context of a Learning Management System, which
mandates a strict access control to students and teachers registered for a particular
course.

chat2

teacher2

student2

Ichat2

DB query

RDBMS

WML

Fig. 3. Part of the Reverse Architectural Model concerning the Chat Component

In the first step of the reconciliation process, the architectural mismatches, which
are caused by the above false assumptions, are identified:

• database access should be performed indirectly, as the chat component does
through the database management interface in the FAM; however it is performed
directly by the chat2 component through the database query interface in the RAM.

254 P. Avgeriou and N. Guelfi

• access control is managed by the Ichat interface of the chat component, but it is not
managed by the Ichat2 interface of the chat2 component.

In the second step, that is the resolution of the mismatches, it is obvious that the
chat component in the FAM and the chat2 component in the RAM cause both mis-
matches. We cannot keep either component as it is, so the design decision is to use the
wrapping adaptation technique [3], in order to adapt the chat2 component to the
functionality of the chat component. In specific, the wrapping technique involved a
new component, the wrapped chat, which encapsulates the chat2 component and
delegates requests from other components to it and vice versa. The two assumptions
were resolved as follows:

• The assumption about the direct database access is resolved by having the wrapped
chat forwarding SQL queries that were previously meant to go directly to the
RDBMS, to the storage component through its DB management interface.

wrapped chat

ganesha-main

storage

student2

Ichat2

RDBMS

DB Query

access control

DB management
teacher2

Fig. 4. Part of the Joint Architectural Model concerning the Chat Component

Table 1. Correspondence of architectural elements in the three models

FAM RAM JAM
student student2 student2
teacher teacher2 teacher2
Chat chat2 wrapped chat
Ichat Ichat2 Ichat2
Storage - storage
DB management - DB management
RDBMS RDBMS RDBMS
DB query DB query DB Query
- WML -
- - ganesha-main
- - access control

• The assumption concerning the lack of access control is resolved by having the
wrapped chat check if each client that requests to connect to the chat2 component

 Resolving Architectural Mismatches of COTS Through Architectural Reconciliation 255

is authorized through the access control interface that the ganesha-main compo-
nent provides. If the client indeed has access rights, the chat invocation is for-
warded to the chat2 component.

Completing the JAM in the third step involved the following decisions:

• The storage component of the FAM is required by the wrapped chat so it is re-
tained in the JAM.

• The ganesha-main component comes neither from the FAM or the RAM, but it is a
central component of Ganesha that provides an access control interface, and thus it
is added to the JAM.

• Since the Ichat2 interface is provided by the wrapped chat component, the stu-
dent2 and teacher2 components were retained from the RAM.

• The WML access interface of the COTS component is not needed in the FAM,
which expresses the requirements, and was thus removed in the joint architectural
model.

The reconciliation process resulted in the JAM, which is illustrated in Fig. 4, while
the correspondence between the elements of all three models is shown in Table 1.

4 Related Work

The approach described in this paper has been based on research work with respect to
bridging the gap between the system implementation and its requirements. Perry and
Wolf in [21] first introduced the architectural problems of erosion and drift, which
express the phenomenon of having the implementation architecture driven away from
the ideal architecture, either on purpose or due to indifference. In [25, 26], Tran et al.
introduced an architecture ‘repair’ technique for fixing this gap, by discovering and
further eliminating the differences between the ideal architecture and the implementa-
tion architecture. They distinguish between forward repair where the implementation
architecture is altered to match the conceptual, and reverse repair for the opposite.
Architectural repair is then performed by combining both forward and reverse repair.
They have also defined a number of repair techniques for removing unexpected de-
pendencies from the architectural models [25]. They do not propose an approach for
performing the design of the conceptual architecture but they do suggest tools such as
those in [22, 23] for reverse-architecting.

Roughly, the same problem has been dealt with in [19], where Medvidovic et al.
propose the introduction of two intermediate steps: a) designing the ‘discovered’ ar-
chitecture from the requirements and b) designing the ‘recovered’ architecture from
the implementation. These two architectural models are then much easier bridged into
the actual Architecture of the system. The ‘discovery’ of the architecture is performed
using the CBSP method [9] that transforms the requirements into a handful of simple
architectural elements that represent something between requirements and architec-
ture. The ‘recovery’ of the architecture is performed using a blend of techniques that
reverse-engineer the code and package the derived classes into architectural elements.
The final bridging is performed manually by applying architectural styles to one of
the two models and then mapping the second model to the outcome, or by first inte-
grating the two models and then applying architectural styles.

256 P. Avgeriou and N. Guelfi

Our own approach has been influenced by both the aforementioned approaches.
However we propose specific actions on how to perform the reconciliation, by trans-
forming the two models based on design decisions. We also do not use repair tech-
niques for removing dependencies in the models, but decisions for modifying, remov-
ing or retaining the elements of both models. Finally we extend these approaches by
working on providing formalisms for the definition of the architectural models and
subsequently their transformations, as will be explained in the next section.

5 Conclusions and Future Work

In this paper we have argued that COTS-based software development entails architec-
tural mismatches that must be dealt with, not only at a component level through com-
ponent adaptation techniques, but also at the architectural level. By doing so, we can
examine a number of components and their connectors in a group, and thus make
modifications to a considerable part of the system’s architecture. We have thus pro-
posed to design two architectural models, the first based on the requirements and the
second based on the existing implementation, and then reconciling these two models
through a tradeoff decision process. The added value of our approach concerns the
adoption of architectural reconciliation in the context of COTS-based software devel-
opment in order to resolve architectural mismatches at an architectural level.

We are currently working on formalizing the specification of the architectural
models as well as their transformation, based on our previous work on model trans-
formation [2, 10]. Our approach is established on defining the reconciliation as a
mathematical relationship between a subset of our UML 2.0 architectural models
(FAM, RAM and JAM). We specify this relationship by employing a logical formula
that in turn uses a pre-defined formal metamodel defined for the architectural models.
This formalization of the architectural models and their transformations will provide
further added value to our work by allowing an explicit and simple specification of
the reconciliation and offering support for semi-automatic reconciliation.

References

1. Albert, C., Brownsword, L. "Evolutionary Process for Integrating COTS-Based Systems
(EPIC)". SEI Technical Report CMU/SEI-2002-TR-005. Software Engineering Institute,
Carnegie Mellon University, 2002.

2. Avgeriou, P., Guelfi, N. Perrouin, G., Evolution Through Architectural Reconciliation,
workshop on Software Evolution Through Transformations (SETra) 2004, Rome, Italy,
Electronic Notes in Theoretical Computer Science, Elsevier, 2004.

3. Bosch, J., Superimposition: A component adaptation technique, Information and Software
Technology, No. 41, pp. 257-73, April 1999.

4. Bosch, J., Design and Use of Software Architectures. Addison-Wesley, 2000.
5. Clements, P., Kazman, R., Clein, M., Evaluating Software Architecture, Addison-Wesley,

2002.
6. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.,

Documenting Software Architectures: Views and Beyond, Addison-Wesley, 2002.
7. Ganesha web site. http://www.anemalab.org/ganesha/.

 Resolving Architectural Mismatches of COTS Through Architectural Reconciliation 257

8. Garlan, D., Allen, R. and Ockerbloom, J., "Architectural Mismatch: or Why It's Hard to
Build Systems Out of Existing Parts," Proceedings of the International Conference on
Software Engineering, Seattle, 1995.

9. Grunbacher, P., Egyed, A. and Medvidovic, N., Reconciling Software Requirements and
Architectures with Intermediate Models, Journal of Software and Systems Modeling (So-
SyM), to appear.

10. Guelfi, N., Ries, B., Sterges, P., MEDAL: A CASE Tool Extension for Model-driven Soft-
ware Engineering, SwSTE'03 IEEE International Conference on Software - Science, Tech-
nology & Engineering, Hertzeliyah, Israel, 2003

11. Guo, G. Y., Atlee, J. M. and Kazman, R., A Software Architecture Reconstruction
Method. WICSA-1, San Antonio, Feb. 1999.

12. Heineman, G., A model for designing adaptable software components, Twenty-second In-
ternational Conference on Computer Software and Applications Conference (COMPSAC),
pp. 121-127, Vienna, Austria, August, 1998.

13. Hofmeister, C., Nord, R. and Soni, D., Applied Software Architecture, Addison-Wesley,
1999.

14. IEEE, Recommended Practice for Architectural Description of Software-Intensive Sys-
tems, IEEE std. 1471-2000, 2000.

15. Keller, R. and Hölze, U., Binary component adaptation, Technical report TRCS97-20,
University of California, Santa Barbara, December 1997.

16. Kiczales, G., Lamping, J., Lopes, C., Maeda, C., Mendhekar, A., Murphy, G., Open im-
plementation design guidelines, Proceedings of the 19th international conference on Soft-
ware engineering, p.481-490, May 17-23, 1997, Boston, Massachusetts, United States

17. Kruchten, P., “The 4+1 view model of architecture”, IEEE Software, November 1995.
18. Medvidovic, N., Taylor, R.N., “A classification and comparison framework for software

architecture description languages”. IEEE Transactions on Software Engineering, vol.26,
(no.1), p.70-93, Jan. 2000.

19. Medvidovic, N., Egyed, A., Gruenbacher, P., Stemming Architectural Erosion by Coupling
Architectural Discovery and Recovery, Proceedings of the Second International Require-
ments to Architecture Workshop (STRAW 03), Portland, Oregon, May 3-11, 2003.

20. Mikic-Rakic, M., Mehta, N. R. and Medvidovic, N., Architectural Style Requirements for
Self-Healing Systems. 1st Workshop on Self-Healing Systems, Charleston, Nov. 2002.

21. Perry, D.E. and Wolf, A.L. Foundations for the Study of Software Architectures. Software
Engineering Notes, Oct. 1992.

22. Portable Bookshelf website, http://www.swag.uwaterloo.ca/pbs/
23. SHriMP web site, http://shrimp.cs.uvic.ca/
24. Szyperski, C., “Component Software – Beyond Object-Oriented Programming”, ACM

Press, 1999.
25. Tran, J. and Holt., R., Forward and Reverse Architecture Repair. Proc. of CASCON ’99,

Toronto, pages 15–24, November 1999.
26. Tran, J., Godfrey, M., Lee, E. and Holt, R., Architecture repair of open source software,

Proc. of 2000 Intl. Workshop on Program Comprehension (IWPC-00), Limerick, Ireland.
27. Tzerpos, V. and Holt, R. C., A Hybrid Process for Recovering Software Architecture. In

CASCON’96, Toronto, Nov. 1996.
28. Tu, Q. and Godfrey, M., An Integrated Approach for Studying Software Architectural

Evolution, Proc. of 2002 Intl. Workshop on Program Comprehension (IWPC-02), Paris,
June 2002.

29. Welch, I. and Stroud, R., Adaptation of connectors in software architectures, Third Interna-
tional Workshop on Component-Oriented Programming, Brussels, Belgium, July 1998.

	Introduction
	Architectural Reconciliation
	The Reconciliation Process
	The Architectural Description

	A Case Study
	Related Work
	Conclusions and Future Work
	References

