29,613 research outputs found

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    On participatory service provision at the network edge with community home gateways

    Get PDF
    Edge computing is considered as a technology to enable new types of services which operate at the network edge. There are important use cases in ambient intelligence and the Internet of Things (IoT) for edge computing driven by huge business potentials. Most of today's edge computing platforms, however, consist of proprietary gateways, which are either closed or fairly restricted to deploy any third-party services. In this paper we discuss a participatory edge computing system running on home gateways to serve as an open environment to deploy local services. We present first motivating use cases and review existing approaches and design considerations for the proposed system. Then we show our platform which materializes the principles of an open and participatory edge environment, to lower the entry barriers for service deployment at the network edge. By using containers, our platform can flexibly enable third-party services, and may serve as an infrastructure to support several application domains of ambient intelligence.Peer ReviewedPostprint (author's final draft

    Developing a Resource-Constraint EdgeAI model for Surface Defect Detection

    Full text link
    Resource constraints have restricted several EdgeAI applications to machine learning inference approaches, where models are trained on the cloud and deployed to the edge device. This poses challenges such as bandwidth, latency, and privacy associated with storing data off-site for model building. Training on the edge device can overcome these challenges by eliminating the need to transfer data to another device for storage and model development. On-device training also provides robustness to data variations as models can be retrained on newly acquired data to improve performance. We, therefore, propose a lightweight EdgeAI architecture modified from Xception, for on-device training in a resource-constraint edge environment. We evaluate our model on a PCB defect detection task and compare its performance against existing lightweight models - MobileNetV2, EfficientNetV2B0, and MobileViT-XXS. The results of our experiment show that our model has a remarkable performance with a test accuracy of 73.45% without pre-training. This is comparable to the test accuracy of non-pre-trained MobileViT-XXS (75.40%) and much better than other non-pre-trained models (MobileNetV2 - 50.05%, EfficientNetV2B0 - 54.30%). The test accuracy of our model without pre-training is comparable to pre-trained MobileNetV2 model - 75.45% and better than pre-trained EfficientNetV2B0 model - 58.10%. In terms of memory efficiency, our model performs better than EfficientNetV2B0 and MobileViT-XXS. We find that the resource efficiency of machine learning models does not solely depend on the number of parameters but also depends on architectural considerations. Our method can be applied to other resource-constraint applications while maintaining significant performance.Comment: Keywords: Lightweight Edge AI, Resource-constraint ML, Surface Defect Detectio

    Security challenges of small cell as a service in virtualized mobile edge computing environments

    Get PDF
    Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users
    corecore