45 research outputs found

    ARCHETYPAL ANALYSIS FOR SPARSE REPRESENTATION-BASED HYPERSPECTRAL SUB-PIXEL QUANTIFICATION

    Get PDF

    Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package

    Full text link
    Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in Image processing and machine learning substantially affected unmixing. This paper provides an overview of advanced and conventional unmixing approaches. Additionally, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and two real datasets. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results

    Nonlinear unmixing of hyperspectral images: Models and algorithms

    Get PDF
    When considering the problem of unmixing hyperspectral images, most of the literature in the geoscience and image processing areas relies on the widely used linear mixing model (LMM). However, the LMM may be not valid, and other nonlinear models need to be considered, for instance, when there are multiscattering effects or intimate interactions. Consequently, over the last few years, several significant contributions have been proposed to overcome the limitations inherent in the LMM. In this article, we present an overview of recent advances in nonlinear unmixing modeling

    Bayesian fusion of multi-band images : A powerful tool for super-resolution

    Get PDF
    Hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral bands (a three dimensional data cube), has opened a new range of relevant applications, such as target detection [MS02], classification [C.-03] and spectral unmixing [BDPD+12]. However, while HS sensors provide abundant spectral information, their spatial resolution is generally more limited. Thus, fusing the HS image with other highly resolved images of the same scene, such as multispectral (MS) or panchromatic (PAN) images is an interesting problem. The problem of fusing a high spectral and low spatial resolution image with an auxiliary image of higher spatial but lower spectral resolution, also known as multi-resolution image fusion, has been explored for many years [AMV+11]. From an application point of view, this problem is also important as motivated by recent national programs, e.g., the Japanese next-generation space-borne hyperspectral image suite (HISUI), which fuses co-registered MS and HS images acquired over the same scene under the same conditions [YI13]. Bayesian fusion allows for an intuitive interpretation of the fusion process via the posterior distribution. Since the fusion problem is usually ill-posed, the Bayesian methodology offers a convenient way to regularize the problem by defining appropriate prior distribution for the scene of interest. The aim of this thesis is to study new multi-band image fusion algorithms to enhance the resolution of hyperspectral image. In the first chapter, a hierarchical Bayesian framework is proposed for multi-band image fusion by incorporating forward model, statistical assumptions and Gaussian prior for the target image to be restored. To derive Bayesian estimators associated with the resulting posterior distribution, two algorithms based on Monte Carlo sampling and optimization strategy have been developed. In the second chapter, a sparse regularization using dictionaries learned from the observed images is introduced as an alternative of the naive Gaussian prior proposed in Chapter 1. instead of Gaussian prior is introduced to regularize the ill-posed problem. Identifying the supports jointly with the dictionaries circumvented the difficulty inherent to sparse coding. To minimize the target function, an alternate optimization algorithm has been designed, which accelerates the fusion process magnificently comparing with the simulation-based method. In the third chapter, by exploiting intrinsic properties of the blurring and downsampling matrices, a much more efficient fusion method is proposed thanks to a closed-form solution for the Sylvester matrix equation associated with maximizing the likelihood. The proposed solution can be embedded into an alternating direction method of multipliers or a block coordinate descent method to incorporate different priors or hyper-priors for the fusion problem, allowing for Bayesian estimators. In the last chapter, a joint multi-band image fusion and unmixing scheme is proposed by combining the well admitted linear spectral mixture model and the forward model. The joint fusion and unmixing problem is solved in an alternating optimization framework, mainly consisting of solving a Sylvester equation and projecting onto a simplex resulting from the non-negativity and sum-to-one constraints. The simulation results conducted on synthetic and semi-synthetic images illustrate the advantages of the developed Bayesian estimators, both qualitatively and quantitatively

    Hyperspectral Image Analysis of Food Quality

    Get PDF

    Quantitative electron microscopy for microstructural characterisation

    Get PDF
    Development of materials for high-performance applications requires accurate and useful analysis tools. In parallel with advances in electron microscopy hardware, we require analysis approaches to better understand microstructural behaviour. Such improvements in characterisation capability permit informed alloy design. New approaches to the characterisation of metallic materials are presented, primarily using signals collected from electron microscopy experiments. Electron backscatter diffraction is regularly used to investigate crystallography in the scanning electron microscope, and combined with energy-dispersive X-ray spectroscopy to simultaneusly investigate chemistry. New algorithms and analysis pipelines are developed to permit accurate and routine microstructural evaluation, leveraging a variety of machine learning approaches. This thesis investigates the structure and behaviour of Co/Ni-base superalloys, derived from V208C. Use of the presently developed techniques permits informed development of a new generation of advanced gas turbine engine materials.Open Acces

    Anomaly and Change Detection in Remote Sensing Images

    Get PDF
    Earth observation through satellite sensors, models and in situ measurements provides a way to monitor our planet with unprecedented spatial and temporal resolution. The amount and diversity of the data which is recorded and made available is ever-increasing. This data allows us to perform crop yield prediction, track land-use change such as deforestation, monitor and respond to natural disasters and predict and mitigate climate change. The last two decades have seen a large increase in the application of machine learning algorithms in Earth observation in order to make efficient use of the growing data-stream. Machine learning algorithms, however, are typically model agnostic and too flexible and so end up not respecting fundamental laws of physics. On the other hand there has, in recent years, been an increase in research attempting to embed physics knowledge in machine learning algorithms in order to obtain interpretable and physically meaningful solutions. The main objective of this thesis is to explore different ways of encoding physical knowledge to provide machine learning methods tailored for specific problems in remote sensing.Ways of expressing expert knowledge about the relevant physical systems in remote sensing abound, ranging from simple relations between reflectance indices and biophysical parameters to complex models that compute the radiative transfer of electromagnetic radiation through our atmosphere, and differential equations that explain the dynamics of key parameters. This thesis focuses on inversion problems, emulation of radiative transfer models, and incorporation of the above-mentioned domain knowledge in machine learning algorithms for remote sensing applications. We explore new methods that can optimally model simulated and in-situ data jointly, incorporate differential equations in machine learning algorithms, handle more complex inversion problems and large-scale data, obtain accurate and computationally efficient emulators that are consistent with physical models, and that efficiently perform approximate Bayesian inversion over radiative transfer models
    corecore