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ABSTRACT

This Thesis deals with the relevant problems of detecting changes, anomalous changes

and anomalies in remote sensing images for Earth observation (EO). The Thesis’ main

objective is to develop, characterize, improve, implement and apply novel and robust

detectors under two statistical approaches to estimate patterns from data; kernel methods

and multivariate Gaussianization.

On the one hand, kernel machines constitute a proper framework to develop detection

algorithms, to accommodate multi-source data, model complex distributions, to cope

with high-dimensional data, and can be engineered to the particular EO signal charac-

teristics, such as unevenly sampled time series and missing data, non-Gaussianity, and

non-stationary processes. Current anomaly detection algorithms are typically challenged

by either accuracy or efficiency. More accurate nonlinear detectors are typically slow

and do not scale well to millions of pixels. Kernel methods provide a consistent and

well-founded theoretical framework for developing nonlinear techniques and have useful

properties when dealing with low-to-moderate amount of (potentially high dimensional)

training samples. One of the specific objectives of this Thesis is to improve kernel detectors,

both by developing automatic procedures and fast kernel models. The proposed methods

achieve relevant results in terms of detection accuracy, reducing the false alarm rates, and

minimizing the computational cost. However, the kernel methods present a problem with

parameter settings. A new framework to deal with kernel parameter adjustment is also

implemented. This setting is based in explicit density estimation. The rotation-based

iterative Gaussianization (RBIG) approach is a non-parametric method that can be used

for density and information theoretic measure estimation, long-standing problems in statis-

tics and machine learning. The RBIG method is unsupervised and it is proposed for for

detecting anomalies and changes in remote sensing images. The methodology transforms

arbitrarily complex multivariate data into a multivariate Gaussian distribution. Therefore,

one can estimate the probability at any point of the original domain and take pixels with

low estimated probability as anomalies.

In this Thesis, several very challenging problems are addressed. The anomalous

changes detection at very high spatial resolutions implicitly includes the change detection
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and the anomaly detection settings as particular cases. The performance of all algorithms

was studied in a representative number of multispectral and very high resolution satellite

images such as AVIRIS, Sentinel-2, WorldView-2, MODIS, Quickbird and Landsat8, as

well as in a wide range of situations involving droughts, wildfires, floods, and urbanization.

The methods are based mainly in estimating either distances or probabilities. The distance

setting is represented by the well-known Reed-Xiaoli (RX) detector as well as the Cook’s

distance detector, which are extended to cope with non-linearities for anomaly change

detection. The RX method is improved by proposing kernelization of the elliptically-

contoured distribution. On the other hand, the Cook’s distance is extended by a novel

kernelized version to address anomalous change problems whereas the random Fourier

features and Nyström implementations help us to approximate the kernel solution and

improve the computationally efficiency. The probabilistic setting is represented by means

of the RBIG methodology, which is able to describe any multivariate distribution, making

an efficient use of memory and computational resources, while being a parameter-free

method for density estimation. It has been anticipated that detection of rare, unexpected

changes and events under the developed statistical framework will constitute the stepping

stone for the monitoring and protection of areas that are difficult to access. Our proposed

techniques demonstrated good performance over the state-of-the-art approaches and will

contribute to address the challenges around anomaly and change detection in remote

sensing in the future.



RESUMEN

Esta Tesis va enfocada principalmente a tratar los problemas de detección de anomalías y

cambios en el ámbito de Observación de la Tierra usando imágenes satelitales. El objetivo

principal es implementar detectores para hacer frente a las diferentes adversidades que están

presentes en la naturaleza. Básicamente nos referimos a aquellos eventos o situaciones que

se consideran atípicos o fuera de lo normal como es el caso de las sequías, inundaciones,

incendios forestales, urbanizaciones y otros ejemplos que a menudo suelen aparecer durante

la monitorización de la Tierra. En la actualidad la mayoría de los algoritmos que tratan

la detección de anomalías y cambios anómalos suelen ser cuestionados por la precisión o

la eficiencia a la hora de detectar estos eventos. Para hacer frente a estos problemas, esta

Tesis se basa en dos marcos principales para desarrollar, mejorar e implementar detectores

robustos. El eje central de la Tesis se basa en los métodos Kernel que proporcionan

un marco teórico consistente y bien fundamentado para el desarrollo de técnicas no

lineales y presentan propiedades útiles cuando se trata de un número bajo de muestras

de entrenamiento en datos de alta dimensionalidad. Uno de los problemas a los que nos

enfrentamos con estos métodos es el alto coste computacional debido a la gran cantidad de

datos que presentan las imágenes satelitales. De aquí se deriva otro de los objetivos de esta

Tesis: desarrollar modelos automáticos, rápidos y eficientes basados en aproximaciones

del Kernel y que además superen tanto en predicción como en precisión a los métodos

lineales. Por otra parte, se ha utilizado también otro marco teórico basado en la estimación

explícita de la densidad. Esta parte se enfoca en la necesidad de desarrollar algoritmos de

detección entrenados de manera no supervisada, ya que los métodos basados en Kernel y

sus aproximaciones necesitan ajustar de forma manual o mediante la validación cruzada

sus parámetros principales. Se utilizará la Gaussianización iterativa basada en la rotación,

el cual es un modelo no paramétrico. Este método se utiliza de manera no supervisada

para la detección de cambios y anomalías en las imágenes de teledetección. La técnica de

Gaussianización multivariante permite estimar con precisión las densidades multivariantes,

un problema clásico en estadística y el aprendizaje automático sobre todo cuando los

datos tienen una gran dimensionalidad. En síntesis, esta metodología transforma datos

multivariados arbitrariamente complejos en una distribución gaussiana multivariada.
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En esta Tesis, abordaremos un problema muy ambicioso: la detección de cambios

anómalos a muy altas resoluciones espaciales que implícitamente incluye la detección de

cambios y la de detección de anomalías como casos particulares. Se estudió el rendimiento

de todos los algoritmos en un número representativo de imágenes satelitales multiespec-

trales y de muy alta resolución como AVIRIS, Sentinel-2, WorldView-2, MODIS, Quick-

bird y Landsat-8, así como en una amplia gama de situaciones relacionadas con sequías,

incendios forestales, inundaciones y urbanización. Estos métodos se basan principalmente

en la estimación de distancias y probabilidades. Los modelos basados en distancia están

representados por el conocido Reed-Xiaoli (RX) y su familia de detectores, así como por

la distancia de Cook y sus aproximaciones. Ambos enfoques hacen referencia a versiones

lineales y no lineales para la detección de anomalías y cambios anómalos en imágenes

de teledetección. La familia de los métodos RX es extendida a su versión no lineal me-

diante el uso de kernels de forma que es capaz de mejorar la precisión de la detección

con respecto a los métodos lineales originales. Por otra parte, la distancia de Cook se

extiende mediante el uso de kernels para abordar los problemas de cambios anómalos.

Además, se utilizan aproximaciones del Kernel basadas en el método de características

aleatorias de Fourier y el método de Nyström que nos ayudan a mejorar la eficiencia, el

coste computacional y la precisión del modelo. En el caso del método basado en estimación

de probabilidades se utilizó la metodología de Gaussianización ya que permite estimar

con precisión las densidades multivariantes. El método se fundamenta en la idea de la

Gaussianización multivariada, que consiste en buscar una transformación que convierta

un conjunto de datos multivariados a un dominio en el que los datos mapeados sigan

una distribución normal multivariada. Por lo tanto, aplicando la fórmula del cambio de

distribucion bajo transformaciones, el modelo permite estimar la probabilidad en cualquier

punto del dominio original haciendo un uso eficiente de los recursos de memoria y de

computación. Se implementó esta estimación para determinar que los píxeles de baja

probabilidad estimada se consideran anomalías. Además, este método no necesita ajus-

tar ningún parámetro lo que lo convierte en una modelo no supervisado. Se demuestra

la eficiencia del método en experimentos que implican tanto la detección de anomalías

como la detección de cambios en diferentes conjuntos de imágenes de satélites. Para la

detección de anomalías proponemos dos enfoques. El primero utilizando directamente la

Gaussianización iterativa basada en rotación (RBIG) y el segundo utilizando un modelo

híbrido que combina la Gaussianización y el método Reed-Xiaoli (RX) que habitualmente

es utilizado en la detección de anomalías.

En resumen, esta Tesis se ha enfocado en la detección de cambios naturales, inesperados
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y poco frecuentes (anómalos) entre pares de imágenes tomadas por sensores satelitales, así

como la detección de anomalías en una sola imagen (satelital) bajo técnicas estadísticas. Se

implementan nuevos y avanzados métodos de aprendizaje automático basados en métodos

Kernel, desarrollamos aproximaciones eficientes y se utilizan métodos de estimación de

densidad tanto supervisados como no supervisados. Todos estos métodos constituirán un

paso importante para la monitorización y protección de las zonas de difícil acceso sin

la necesidad de la presencia del ser humano, reduciendo así en gran proporción el coste

económico que este pudiese causar.





RESUM

Aquesta tesi tracta dels problemes de detecció de canvis, canvis anòmals i anomalies en

imatges de teledetecció per a l’observació de la Terra. L’objectiu principal de la tesi és

desenvolupar, caracteritzar, millorar, implementar i aplicar detectors estadístics seguint

dos marcs fonamentals: mètodes nucli i modelització probabilística. D’una banda, les

màquines nucli constitueixen un marc adequat per desenvolupar algoritmes de detecció,

perquè poden tractar dades de múltiples fonts, modelar distribucions complexes, processar

dades d’alta dimensió i poden adaptar-se a les característiques particulars dels senyals

d’observació de la Terra, com ara un mostreig no-uniforme, no gaussianitat i processos

no estacionaris. Els algoritmes de detecció d’anomalies actuals solen ser qüestionats per

la seua manca de precisió o eficiència davant estos problemes. Mentre que els detectors

no lineals solen ser més precisos, també son més lents i no escalen bé a problemes

amb milions de píxels. Els mètodes nucli proporcionen un marc teòric consistent i ben

fonamentat per al desenvolupament de tècniques no lineals i tenen propietats bastant útils

quan es tracta d’un nombre baix de mostres d’entrenament (potencialment d’alta dimensió).

Un dels objectius específics d’aquest treball és desenvolupar models automàtics i ràpids

amb un bon rendiment en termes de precisió en la detecció i eficàcia computacional.

L’objectiu és obtenir resultats rellevants, reduint les taxes d’alarma falsa i minimitzant el

cost computacional dels algorismes no lineals. Tanmateix els mètodes nucli presenten un

problema amb la configuració dels paràmetres. Un marc estadístic alternatiu considera

la estimació explícita de la densitat i prendre el concepte d’anomalia o de canvi com

aquell més sorprenent, el de menor probabilitat. En esta tesi presentem un algoritme

basat en Gaussianització anomenat RBIG: és un mètode no paramètric que es pot utilitzar

per a estimar densitats multi-variades i també per tal d’estimar mesures de la teoria de la

informació, ambdós problemes encara no resolts als camps de la estadística i l’aprenentatge

automàtic. El mètode RBIG és no-supervisat i el proposem per detectar anomalies i

canvis en les imatges de teledetecció. La metodologia transforma dades multi-variants

arbitràriament complexes en una distribució gaussiana multi-variant. A més, es pot estimar

la probabilitat en qualsevol punt del domini original, cosa que significa que els píxels amb

baixa probabilitat estimada es consideren anomalies.
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En aquesta tesi abordarem diversos problemes molt difícils: la detecció de canvis anò-

mals a resolucions espacials molt altes, i què inclouen implícitament la detecció de canvis

i la detecció d’anomalies com a casos particulars. Estudiem el rendiment de tots els algo-

ritmes en un nombre representatiu d’imatges de satèl·lit multi-espectrals i hiperespectrals,

de molt alta resolució espacial com AVIRIS, Sentinel-2, WorldView-2, MODIS, Quickbird

i Landsat8, així com en una àmplia gamma de situacions relacionades amb sequeres,

incendis forestals, inundacions i urbanització. Els mètodes es basen principalment en

l’estimació de distàncies i probabilitats. La configuració de la distància està representada

pel conegut detector Reed-Xiaoli (RX), així com la distancia de Cook: ambdós mètodes

son generalitzats al cas no lineal amb kernels i aplicats a la detecció de canvis anòmals.

El mètode RX s’estén amb una família de detectors anòmals on la distribució contornada

el·lípticament no lineal és capacc de millorar la precisió de detecció respecte a la lineal.

D’altra banda, la distància del Cook s’estén amb una nova versió kernelitzada per abordar

problemes de canvis anòmals, mentre que les característiques aleatòries de Fourier i les

implementacions de Nyström ens ajuden a aproximar la solució del nucli i així millorar

l’eficiència computacional. L’aproximació probabilística està representada pel RBIG,

que és capacc de descriure qualsevol distribució multi-variant i aquest mètode fa un ús

eficient de la memòria i els recursos computacionals, convertint-se en un mètode lliure

de paràmetres. Les tècniques proposades en aquesta Tesi Doctoral han demostrat un bon

rendiment respecte als enfocaments d’última generació i contribuiran a abordar els reptes

relacionats amb la detecció d’anomalies i la detecció de canvis en la teledetecció futura.
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2 Chapter 1. INTRODUCTION

This Chapter highlights the importance of Earth Observation (EO) to cope with the

natural and anthropogenic events (changes, anomalies) using remote sensing satellite

images. The main concepts concerned in the thesis will be reviewed, as well as the main

goal: developing and improving algorithms for change detection (CD), anomalous change

detection (ACD) and anomaly detection (AD) in RS images for Earth Observation.

1.1 Introduction to Earth Observation

The Earth is a highly complex and evolving system. Natural events and human activities

have precipitated an environmental crisis on Earth. Quantification and understanding of

both the natural and anthropogenic impact on the Earth’s system is matter of current and

intense research, and one of the biggest challenges in nowadays science. By using remote

sensing sensors it will be possible to identify materials on the land cover. The problem

of global warming has also deep implications of relevant societal, environmental, and

economical values, given the rapidly growing demand of biofuels and food (IPCC, 2012).

Undoubtedly, there is an urgent need to provide quantitative monitoring tools of the Earth

system processes. Advances in data exploitation using remote sensing satellite images

and products have allowed us to improve predictions and understanding of extreme events

occurring across the Earth’s surface.

Earth observation (EO) data analysis is nowadays a mature field of science, where

many real-life applications of societal value are developed. Perhaps one of the most

important problems in EO data processing is the detection of anomalous changes in

land-cover classes or spatial-temporal extreme events in satellite images and products.

Actually, anomaly detection and anomalous changes such as precipitation events, heat

waves, latent fires, droughts, floods and urbanization are increasingly perceived as key

players in the Earth system, and are expected to increase in the wake of climate change

(IPCC, 2012). These problems involve complex, heterogeneous, multi-modal, multi-source

and structured data: problems arise at very high resolution (VHR) or larger (kilometric)

spatial resolutions, and also at different spectral and temporal resolutions. Measurement,

analysis and interpretation of the spectrum is a very vast field in spectroscopy (Danson &

Plummer, 1995; Liang, 2004; Lillesand et al., 2014; Richards & Jia, 1999; Ustin, 2004) . In

the field of EO, remote sensing is performed by sensors typically onboard either satellite or

airborne platforms thus recording reflected or emitted electromagnetic energy from Earth’s

surface. On the other hand, EO remote sensing can be also achieved with “near-surface”

approaches using RGB (red, green, blue) cameras placed on selected sites for monitoring
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floods, wildfires and many kind of the anomalous events.

Remote sensing sensors can be classified either as passive or active. Passive sensors

record reflected Earth’s surface energy that was emitted from the sun. The solar radiation

received by a sensor is detected at different wavelengths and the resulting spectral sig-

nature is used to identify a specific material. There are a variety of passive sensors such

as: infrared, coupled devices, radiometers, and multispectral and hyperspectral sensors

(Shaw & Manolakis, 2002). Whereas, active sensors record reflected Earth’s surface

electromagnetic energy which was previously emitted by themselves (Mott, 2007; Wang,

2008). In particular, it will be focused on multi and hyper spectral passive sensors. Even

is valid to highlight that the methodologies are generic to any sensor or even any data set

not necessarily remote sensing, e.g. time series, data science, big Data, etc. However the

proposed methodologies could be applied straightforwardly to active sensors data.

The information conveyed by remotely sensed platforms is tied to the sensor char-

acteristics and satellite capabilities (Lillesand et al., 2014). Spatial resolution gives the

image pixel size (ranging from centimeters to kilometers), spectral resolution provides

data at different spectral wavelengths (ranging from solar to thermal spectrums) and also

information about spectral width, temporal resolution relates both the acquisition date

and the frequency of acquisitions (ranging from a day to decades), and eventually spatial

extent covers the ground area detected by the sensor’s field of view (up to the entire Earth).

Consequently, the most suitable sensor/platform must be selected depending on the needs

of the application (Benz et al., 2004).

1.1.1 Remote Sensing at global scale

One of the main goals in remote sensing (RS) is to study the detection of anomalies in

global scale processes to improve our knowledge about how Earth functions. This has

been partly achieved employing different methods to determine and evaluate the behavior

using pairs or time series images. RS has been used to monitoring of the areas with

difficult access. Different kind of satellites are used, such as with medium resolution (i.e.

kilometric spatial resolution) sensors like: Moderate Resolution Imaging Spectroradiometer

(MODIS, 1999 up to date) (Justice et al., 1998), the Système Pour l’Observation de la

Terre (SPOT-V, 1999 to May 2014) (Pasquier & Verheyden, 1998) and the Project for

On-Board Autonomy (PROBA-V, June 2014 up to date) (Sterckx et al., 2014). Similarly,

the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)

provides information for vegetation monitoring from the Spinning Enhanced Visible and

Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG). Also, there are
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many sensor with very high resolution to detect with better precision the anomalies. The

National Oceanographic and Atmospheric Administration/ Advanced Very High Resolution

Radiometer (NOAA/AVHRR) sensor is used to monitor vegetation (Townshend, 1994).

Among the most recent developments in remote sensing are high spatial resolution sensors,

those of high spectral resolution and finally the use of Synthetic Aperture Radar (SAR).

Could be highlight the Sentinel-2 satellites, managed by ESA (European Space Agency),

and Landsat 8, managed by NASA/USGS (National Aeronautics and Space Administration

/ United States Geological Survey). KOMPSAT 3 and KOMPSAT 3A were launched

to continue KOMPSAT 1 and KOMPSAT 2 missions accordingly dedicated to natural

disasters activities. Both satellites are fitted with a pushbroom imager, AEISS (Advanced

Earth Imaging Sensor System) with a spatial resolution of 0,5 m/pxl for KOMPSAT 3 and

0,4 m/pxl – for KOMPSAT 3A which was enhanced with IIS (Infrared Imaging System)

to operate within the Mid-Wavelength Infrared region of 3 – 5 µm with high thermal

resolution.

1.1.2 Remote Sensing at local scale

Recent advances in remote sensing platforms, sensors, statistical models and as well as

the enormous amount of data available have provided new challenges and possibilities

in remote sensing image processing (Campos-Taberner et al., 2016). Especially, in the

context for events detection they have entailed in many studies of anomaly and change

detection. Accurate and timely information at high spatial resolution of crop condition

and status is critical for crop management. For example, the Landsat Data Continuity

Mission (LDCM) (Roy et al., 2014) and the recently European Sentinel-2 Mission (Drusch

et al., 2012.) provide free EO high-resolution (HR) information for a wide variety of land

applications (Malenovský et al., 2012) including crop monitoring. Several HR data are

also available from different initiatives and platforms such as Worldview or RapidEYE.

However, they are not free of charge which limits its usability in continuous and long term

applications.

1.1.3 The detection problem in remote sensing

Many remote sensing applications do not need the definition of many classes of interest.

Actually, very often, they only need to discriminate a single class from the rest, i.e. the

background (Ahlberg & Renhorn., 2004). Sometimes, there is no knowledge about the

spectral signature of the class of interest, but it is known that this signature is different from

the rest. In this case, a model is built by looking for signatures that deviate from a model of
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the background. Large deviations from the mean (background) are called leverage, and the

models based on this principle are referred to as anomalous change detectors. Anomalous

change detectors can be very difficult to calibrate, especially when there is a strong spectral

variability in the image. Detecting anomalous changes in different pairs of images or

time series is of paramount relevance for Earth monitoring. The field of change detection

is vast and many approaches are available in the literature (Lu et al., 2004; Mas, 1999).

Change detection boils down to identify the abnormality buried in the background. This

Thesis is focused on the anomalous change detection (ACD) problem too (Theiler et al.,

2010). Anomalous samples are essentially deviations from what is typical or expected, but

a formal specification of anomalousness is complex and elusive. Unlike pervasive changes,

anomalous changes and events are rare and concentrate in the tails of the distributions,

which are not easy to analyse and characterize. The ACD problem is ill-defined, e.g.

quoting James Theiler: “If individual anomalies resist definition, how can we expect to

write down a probability distribution for all anomalies?” (Theiler, 2014). In fact, under

probability density function (PDF) transformations, one should be able to focus only on the

Jacobian to assess asymmetries, and hence characterize the anomalousness of the change.

This is technically difficult as the transformation is seldom accessible. Consequently, a

mathematical framework that avoids explicit distribution modelling is needed.

Current EO statistical data analysis faces an important problem. The world is witnessing

an ever increasing amount of data gathered with current and upcoming EO satellite

missions, such as the ESA Sentinels and the NASA A-Train satellite constellations. With

the super-spectral Copernicus’ Sentinel-2 (Drusch et al., 2012.) and Sentinel-3 (Donlon

et al., 2012.) missions, as well as the planned EnMAP (Stuffler et al., 2007), HyspIRI

(Roberts et al., 2012) PRISMA (Labate et al., 2009.) and ESA’s FLEX (Kraft et al.,

2012.) imaging spectrometer missions, an unprecedented data stream for land monitoring

becomes available. At the same time, very high resolution (VHR) sensors allow us to

monitor the planet at local and regional scales, but with an unprecedented high spatial

detail: Wordlview-2 and the recent Worldview-3 (Longbotham et al., 2014), for instance,

permit detecting very fine (sub-meter) spatial details in the images, and allow for realistic

applications, such as the popularized Google Maps. Currently, the new sensors increase

the resolution either spatial or spectral, as well as the revisit time. This leads to a big data

processing problem, where algorithms should not only be accurate but scalable to the big

data deluge. The company Planet has three satellite constellations (SkySat, Dove, and

RapidEye) with more than 150 satellites supplying imagery and derived products over the

entire Earth at medium and high resolution with high repeat frequencies. Besides, with
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unrivaled accuracy, agility and collection capability, MAXAR offers customers around

the world affordable access to the highest quality vision of their world through its high-

resolution sensors. It should be highlighted that the use of drones have been popularized

too in military, industrial, civil or security fields. Some of the main companies are ADTS

Group and Aerial Insights from Spain. All this data influx requires advanced anomaly

detection techniques, which should be accurate, robust, reliable and fast.

1.2 Detection of anomalies, changes and anomalous changes

Here it is aimed to formally distinguish the main concepts of anomaly detection, change

detection and the detection of anomalous changes in the context of remote sensing. The

main characteristics, the literature and the methods used in each field are point out and

reviewed.

1.2.1 Change detection

The field of change detection (CD) methods is extensive and many approaches are avail-

able in the literature (Lu et al., 2004; Manolakis et al., 2003; Manolakis & Shaw, 2002;

Radke et al., 2005). This approach can be organized in three types of products (Coppin

et al., 2004; Singh, 1989): 1) binary maps, 2) different types of change detection, and

3) full multiclass change maps. Each of them can be obtained using different sources of

information extracted from the initial images at time instants t1 and t2. Unsupervised CD

has been widely studied due to the high relationship with most applications: i) the speed

for obtain the change map and ii) the lack of labelled information in the applications. The

problem of change detection deals with identifying transitions between a pair (or a series)

of co-registered images (Radke et al., 2005; Singh, 1989). Change detection in remote

sensing images is of paramount relevance because it automatizes traditional manual tasks in

disaster management (floods, droughts and wildfires) and it helps in designing development

and settlement plans as well as in urban and crop monitoring. Multitemporal classification

and change detection are very active fields nowadays because of the increasingly available

complete time series of images and the interest in monitoring changes occurring on the

Earth’s cover due to either natural or anthropogenic activities. Complete constellations of

civil and military satellites sensors currently provide high spatial resolution and high revis-

iting frequency. The Copernicus’ Sentinels1 or NASA’s A-train2 programs are producing

near real-time coverage of the globe. NASA is currently producing a Harmonized Landsat
1http://www.esa.int/esaLP/SEMZHM0DU8E_LPgmes_0.html
2http://www.nasa.gov/mission_pages/a-train/a-train.html

http://www.esa.int/esaLP/SEMZHM0DU8E_LPgmes_0.html
http://www.nasa.gov/mission_pages/a-train/a-train.html
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Sentinel-2 (HLS) data set, which can be used for monitoring agricultural resources with an

unprecedented combination of 30 m spatial resolution and 2-3 days revisit. In parallel, new

commercial satellite missions are being deployed to provide multispectral data at both high

spatial and high temporal resolution. For example, the PlanetScope constellation by Planet

Labs, Inc. can provide 5 m data daily for sites requested by the client, and the recently

announced UrtheDaily constellation, specifically designed for operational agricultural

applications, will acquire S2-like data also at 5-m spatial resolution and with full global

coverage every day. It goes without saying that closed-range applications using drones

and all kind of unmanned automated vehicles (UAVs) also challenge the field of automatic

change detection. All in all, automatic image analysis in general and change detection in

particular are becoming necessary in the current era of data deluge.

However, the lack of labeled information makes the problem of detection more difficult

and thus unsupervised methods typically consider binary change detection problems only.

In the last decade, change vector analysis (CVA) techniques have been widely applied:

CVA converts the difference image to polar coordinates and operate in such representation

space (Bovolo & Bruzzone, 2007; Malila, 1980). In (Dalla Mura et al., 2008), morpholog-

ical operators were successfully applied to increase the discriminative power of the CVA

method. In (Bovolo, 2009), a contextual parcel-based multiscale approach to unsupervised

CD was presented. Traditional CVA relies on the experience of the researcher for the

threshold definition, and is still on-going research (Chen et al., 2010; Im et al., 2008).

The method has been also studied in terms of sensitivity to differences in registration

and other radiometric factors (Bovolo et al., 2009). Another interesting approach based

on spectral transforms is the multivariate alteration detection (MAD) (Nielsen, 2006;

Nielsen et al., 1998), where canonical correlation is computed for the points at each time

instant and then subtracted. The method consequently reveals changes invariant to linear

transformations between the time instants. Radiometric normalization issues for MAD

has been recently considered in (Canty & Nielsen, 2008), and nonlinear extensions have

been also realized via kernel machines (KM) (Gómez-Chova et al., 2011; Nielsen, 2011).

Other approaches based on KM have proposed to use dimensionality reduction via princi-

pal components (Ding et al., 2010) or slow features (Wu et al., 2017) of the difference

image. Clustering has been used in recent binary CD. In (Celik, 2009), local PCAs

are used in sub-blocks of the image, followed by a binary k-means clustering to detect

changed/unchanged areas locally. Also, kernel-based clustering has been investigated

in (Volpi et al., 2012, 2010), where kernel k-means with optimized parameters use an

unsupervised cost function to separate two groups. Finally, unsupervised neural networks
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(a) (b) (c) (d)

Figure 1.1: The image showcase an aerial view of the rice-field in the Albufera Natural Park
(Valencia). a) image corresponding to rice crop at planting time, b) image corresponding to rice
crop at harvest time, c) image contains a anomalous change (black square) and d) image correspond
to the anomalous location, the interest region is highlighted with a green square around it.

have been introduced for the binary CD (Pacifici et al., 2010, 2009). In (Ghosh et al.,

2007), a Hopfield neural network, where each neuron is connected to a single pixel and

used to improve neighborhood relationships. Recently, it has been studied to include deep

convolutional neural networks (Liu et al., 2018; Ouyang et al., 2017; Zhang & Zhang,

2014).

1.2.2 Anomalous Change Detection

A related field of investigation in this direction is the so-called anomalous change de-
tection (ACD) (Theiler, 2008): in this field, one looks for changes that are interestingly

anomalous in multitemporal series of images, and tries to highlight them in contrast to ac-

quisition condition changes, registration noise, or seasonal variation. Figure 1.1 illustrates

the difference between CD and ACD scenarios using remote sensing images. Changes

between two images can be differentiated in regular and anomalous. Regular changes

are usually defined by cyclical time patterns, for instance, the change in the vegetation’s

greenness with the passage of the year’s season, exemplified between (a) and (b) images.

On the contrary, an anomalous change is any alteration of the scene that is outside of what

is normally expected: for example, the emergence of the black square between images

(a) and (c). While applying CD and ACD algorithms on images (b) and (c) would get

similar results. This could not be the case when applied on images (a) and (c). On the one

hand, the CD algorithm would detect as a change almost all the regions in the image. This

would be a good result if one is interested on detecting vegetation changes. However, one

could be interested in ignoring the regular changes and detecting only the black square.

In such case, an ACD algorithm would be better fitted since it ignores the brownish to
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greenish changes and aims to detect as anomaly only the black square. The ACD settings

are perfectly suited to the statistical theoretical framework. The concept of anomalousness

is difficult to define concretely. Nevertheless, identifying influential points in multivariate

data distributions is an active field of research in statistics, information theory, and ma-

chine learning. Main applications involve characterization of distributions, detection of

anomalies, extremes and changes, and robustness assessment, just to name a few (Theiler,

2013; Theiler & Wohlberg, 2012). Detection of such influential points has also relevant

applied implications for climate, health and social sciences, and in a wide diversity of

engineering, communications and computer science problems. Since the seminal work

of Cook (Cook, 1977), many diagnostic measures have been introduced, most of them

relying on the adoption of parametric or non-parametric models, from which residuals

and then leverages are estimated. Diagnostics have been introduced for both parametric

models, such as linear regression (Cook & Weisberg, 1980; Snee, 1983), penalized (ridge)

regression (Hoerl & Kennard, 1970), sparse regression models like LASSO (Tibshirani,

1996), and non-parametric models such as spline smoothing (Choongrak & Barry, 1996;

Eubank, 1985; Silverman, 1986) and polynomial regression (Kim et al., 2001). Extensions

have considered semi-parametric models (Fung et al., 2002), longitudinal regression (Bae

et al., 2008), as well as generalized linear and Cox proportional hazard models (Zhu et al.,

2015, 2009, 2001).

An adequate model assumption and specification is crucial and has many theoretical

and applied implications. The main problem is to select a flexible model that can capture

nonlinear relations, but also provides high detection power and computational efficiency.

All these are relevant aspects to consider for the diagnostic measure, for which many

methods have been proposed. In recent years, kernel methods have been widely adopted as

an appropriate framework for model development in machine learning for classification,

regression, hypothesis testing and dimensionality reduction (Rojo-Álvarez et al., 2017;

Schölkopf & Smola, 2002). Kernel methods allow to derive flexible nonlinear and non-

parametric models, are intrinsically regularized and are endorsed with solid mathematical

properties. This has allowed to define diagnostics based on leveraging for the kernel

ridge regression (KRR) method (Shawe-Taylor & Cristianini., 2004). However, despite

the excellent modeling performance of KRR, the direct definition of leverage scores

based on KRR implies a huge computational cost and the lack of a practical out-of-

sample estimate (Alaoui & Mahoney, 2015; McCurdy, 2018; Rudi et al., 2018). This

hampers its adoption and usefulness in real practice. The interest to find anomalous

changes in scenes is very broad, and many methods have been proposed in the literature,
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ranging from equalization-based approaches that rely on whitening principles (Mayer

et al., 2003), to multivariate methods that extract distinct features out of the change

(difference) image (Arenas-Garcia et al., 2013) and that reinforce directions in feature

spaces associated with noisy or rare events (Green et al., 1998; Nielsen et al., 1998), as

well as regression-based approaches like in the chronochrome (Schaum & Stocker, 1997),

where a regression model approximates the next incoming image and big residuals are

associated with anomalies.

This Thesis starts with the Cook’s distance approach for ACD (second chapter). This

method was develop by Dennis Cook in 1977. Our main goal for this setting is recovering

this traditional vision and developing a nonlinear kernel-based extension by using kernel

regression in a reproducing kernel Hilbert space (RKHS). Noting the high computational

cost that a naive formulation has, the random Fourier features (Rahimi & Recht, 2007)

and the Nyström method (Williams & Seeger, 2001; Zhao et al., 2017) were introduced

for improving the efficiency. Both approaches allow us to compute residuals (Touati et al.,

2020) and leverages of the KRR explicitly in RKHS while Nyström method also provides

implicit regularization capabilities. Essentially, Nyström method approximates the large

kernel matrix by a much smaller low-rank matrix. Although, best low-rank approxima-

tion is obtained by Singular value decomposition (SVD), it is computationally expensive.

Per contra, Nyström method achieves low-rank approximation with considerably higher

computationally efficiency (Kumar & Schneider, 2017; Yang et al., 2012). Thus, low-rank

methods are already used in various geoscience applications (Cao et al., 2019; Sun et al.,

2020). In this context, empirically was validated the accuracy-speed trade-off of our

methods in challenging problems of ACD using big satellite image datasets. A fast kernel-

ized Cook’s distance estimates to evaluate change were proposed on the chronochrome

approach (Longbotham & Camps-Valls, 2014; Theiler et al., 2010). Essentially, the Cook’s

distance is defined as the sum of all changes in the regression model when a particular

observation is removed. To our knowledge, the Cook’s distance has not been used in image

ACD in a chronochrome setting, most probably because the linearity assumption is too

rigid in general CD problems where nonlinear processes, such as illumination changes,

occlusion, backscattering and sensor distortions, occur in the wild. It is important to

remark that in this anomalous change detection approach the aim is detecting important

(extreme) changes, i.e. not pervasive changes related to, for example, illumination condi-

tions. Therefore, this refers to anomalies among two images, leverage points or changes

interchangeably.

Additionally, the Cook’s distance for out-of-sample points requires the evaluation of
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as many models as test samples, which makes the technique very costly and definitely

impractical. A remedy is provided to both problems by (1) defining Cook’s distance for

the nonlinear KRR model and by (2) introducing two computationally efficient kernel

approximations. The proposed methods are simple, computationally very efficient in both

memory and processing costs, and achieves improved detection compared to standard

approaches. The results are showed in a set of real anomalous change detection problems

with pairs of multispectral satellite images acquired by different sensors (Quickbird,

Sentinel-2) and involving different changes of interest (floods, wildfires, urbanization and

droughts). The datasets are large scale and thus a good testbed for our approach.

On the other hand, the study based on the detection of anomalous changes (in chapter

3) is continued following the work in (Theiler & Perkins, 2006). This formalized the field

by introducing a framework for ACD, which assumes Gaussianity, yet the derived detector

delineates hyperbolic decision functions. Even though the Gaussian assumption reports

some advantages (e.g. tractability and generally good performance) it is still an ad hoc

assumption that it is not necessarily fulfilled in practice. This is the motivation in (Theiler

et al., 2010), where the authors introduced elliptically-contoured (EC) distributions that

generalize the Gaussian distribution and proved more appropriate to modeling fatter tail

distributions and thus detect anomalies more effectively. The EC decision functions are

point-wise nonlinear and still rely on second-order feature relations. Recent advances

in ACD have considered methods robust to pixel misregistration (Theiler & Wohlberg,

2012) and sequences of several images (Theiler & Adler-Golden, 2008). The theory of

reproducing kernels is used to implement the nonlinear version of the Gaussian assumption

and the elliptically contoured distribution. Making an extension of the family of ACD

methods presented in (Theiler et al., 2010).

1.2.3 Anomaly detection

The use of hyperspectral imagery to perform target detection and recognition has been

widely investigated and has proven valuable in many applications including search-and-

rescue operations, border surveillance, and mine detection. This kind of approach can

be split into two main applications: classification and target detection (TD). TD can be

considered as a binary classification problem: the aim is to classify the image into the

target class and the background class. However, regardless of the application, the general

goal of TD is to detect small rare objects that constitute a very small fraction of the area of

the background in which they are embedded.

In this Thesis, one of the main topics is anomaly detection (chapter 4 and 5), which can
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be viewed as a particular case of TD in which no a priori information about the spectrum

of the targets of interest is provided. Anomaly detection (AD), as a remote sensing (RS)

research topic, is gaining importance because of the need for processing large number of

images that are acquired from satellite and airborne platforms (Stein et al., 2002). The goal

of anomaly detection is to find objects in the image that are anomalous with respect to the

background. There is not a particular way to define an anomaly, which can be generally

identified as an observation that deviates in some way from the rest of the distribution. Even

the background itself can be identified in different ways, such as a local neighborhood

surrounding the observed pixel or as a larger portion of the image. In addition, it is

important to mention different kind of background characteristic or scenarios such as:

crop stress location in agriculture applications, infected trees in forestry, rare minerals

in geology applications, or man-made objects and vehicles in defense and surveillance

applications.

Anomaly detectors (ADs) assume no a priori knowledge about the target spectral

signature and simply explore the data cube to find those pixels whose spectrum significantly

differs from the background. As previously stated, the anomalies of interest can change,

depending on the particular application. Furthermore, a complex scenario may contain

a number of anomalies which do not necessarily represent a target of interest, and also,

small regions of background pixels can be detected as anomalies. As a matter of fact,

since ADs do not use any a priori knowledge, they cannot distinguish between legitimate

anomalies and detections that are not of interest. Therefore, the detected anomalies may

include man-made targets, natural objects, image artifacts, and other interferers. In fact,

anomaly detection is often a first step in the analysis of the scene, providing the regions

of interest (ROIs) that may contain potential targets; ROIs can then be explored with

spectral matching algorithms or spectroscopy techniques or can be used to cue higher

spatial resolution sensors for target classification and matching.

Among the many dectector algorithms found in the literature, the Reed-Xiaoli (RX)

detector (Reed & Yu, 1990a) is widely used due to its good performance and simplicity.

The RX detector determines target pixels that are spectrally different from the image

background based on the Mahalanobis metric. For RX to be effective, anomalous targets

must be sufficiently small compared to background and is assumed to follow a Gaussian

distribution. However, it has been shown that the Gaussian distribution assumption fails,

for example, in hyperspectral images or with complex feature relations, especially at the

tails of the distribution (Matteoli et al., 2010). As a result, nonlinear versions of RX

have been introduced to mitigate this problem, and the kernel RX (KRX) detector was
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proposed in (Kwon & Nasrabadi, 2005) to cope with complex and nonlinear backgrounds.

However, the KRX algorithm has not been widely adopted in practice because, being a

kernel method, the memory and computational cost increase, at least quadratically, with

the number of pixels. This poses the perennial problem of accuracy versus usability in

nonlinear detectors in general and kernel anomaly detectors in particular. In the literature,

local and global RX-based detectors have been proposed.

One objective is focused on improving the space (memory) and time efficiency of

the KRX anomaly detector. Kernel-based anomaly detectors provide excellent detection

performance since they are able to characterize non-linear backgrounds (Camps-Valls &

Bruzzone, 2009.). In order to undertake this challenge, the use of efficient techniques based

on random Fourier features and low-rank approximations to obtain improved performance

of the KRX algorithm were proposed. Initial efforts were focused using the random Fourier

features approach in (Nar et al., 2018). In local AD (Reed & Yu, 1990a), pixels in a

sliding window are used as input data. Despite their adaptation to local relations, the

detection power has been shown to be low recently (Guo et al., 2016; Matteoli et al., 2010).

Conversely, in global AD all image pixels are used to estimate statistics. Thereby, targets

with various sizes and shapes can be detected while detection of small targets can be

difficult. Finally, all the methods are used in a global setting for the sake of simplicity.

1.3 Advancing Machine Learning Detectors

Over the last few decades, a wide diversity of algorithms for anomaly, change and anoma-

lous change detection have been introduced in remote sensing data analysis, but only a

few of them made it into operational processing chains, and many of them are only in

its infancy. There is an additional, more scientifically challenging, problem: the lack of

adoption of a unified mathematical framework for anomaly detection. Both issues call for

advances in EO data processing methods. In this context, statistical inference also known

as machine learning play a fundamental role nowadays.

Anomaly and Change detection approaches

Anomalies are considered as data samples that are different to the rest of the data distri-

bution. There are different ways to define ‘different’ or ‘anomaly’ but in the context and

literature of anomaly detection it is typically agreed that anomalies are observations that

deviate in some way from the background clutter. Several anomaly detection techniques

have been presented in the literature. The techniques based on the Nearest Neighbor algo-

rithm describe how data with similar behavior is found in the most dense neighborhoods,
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while atypical samples should be far away from their nearest neighbors. Other methods,

such as K-means, where data points in a distribution with large distance values from the

center of their clusters are considered anomalies, are widely used in the clustering scenario.

Nowadays, neural networks can do a good job in detection too. They are trained to learn

the normal class and detect the anomaly class with respect to the background. One of the

great applications of neural networks are based on generative models like GANs and VAEs,

which just started to be applied in these problems by the remote sensing community.

On the other hand, the change detection goal is to compare two images and define

if there is a variation between them. There are many approaches for change detection.

The image difference methods are simple and direct, since the difference value of both

images will be close to 0 and it will be considered a no change value. However, these

techniques highly depend on the co-registration procedure. Techniques such as image

regression will be presented throughout of this Thesis. These are based on a regression

model that establishes relationships between bi-temporal images. The model can predict

pixel values by using a regression function and classify as anomalous the one with higher

residuals. In addition, the classification category includes post-classification comparison,

spectral-temporal combined analysis, expectation–maximization algorithm (EM) change

detection, unsupervised change detection, hybrid change detection, and artificial neuronal

network (ANN).

Despite the vast and interesting amount of theory behind anomaly and change detection,

the Thesis will be focused on two main learning paradigms that enable event detection: (1)

a purely discriminative approach under the learning framework of kernel methods, and (2)

a fully non-parametric approach for the harder problem of density estimation.

1.3.1 Kernel methods for anomaly and change detection

These approaches will be based on the framework of kernel learning (Shawe-Taylor &

Cristianini., 2004), which has emerged as the most appropriate setting for remote sensing

data analysis in the last decade (Camps-Valls & Bruzzone, 2009.). Kernel methods allow us

to generalize algorithms expressed in terms of dot products to account for higher-order (non-

linear) feature relations, yet still relying on linear algebra (Schölkopf et al., 1999; Shawe-

Taylor & Cristianini., 2004). Kernel machines excel in low-to-moderate sized datasets, can

accommodate multi-source data, model complex distributions with flexible kernel functions,

cope with high-dimensional data, and can be engineered to the particular EO signal

characteristics, such as unevenly sampled time series and missing data, non-Gaussianity,

non-stationary processes, and non-i.i.d. (spatial and temporal) relations. Kernel methods
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have been traditionally designed for classification and regression problems. However, the

family of kernel methods currently expands to multi-temporal change detection (Muñoz-

Marí et al., 2010), non-linear dependence estimation (Camps-Valls et al., 2010), hypothesis

testing (Gretton et al., 2012), and anomaly detection (Longbotham & Camps-Valls, 2014),

which constitute the playground of this thesis.

In this Thesis, kernel methods are introduced for a nonlinear extension of a full

family of anomalous change detectors. In particular, it is focused on algorithms that

utilize Gaussian and elliptically-contoured distribution modeling and extend them to their

nonlinear counterparts based on the theory of reproducing kernels Hilbert space. In this

particular case, it is illustrated the performance of the kernel family methods introduced

for anomalous change detection problems. On the other hand, the kernel theory is used

for developing a family of anomaly detectors. The family is based on approximations

of the kernel matrices involved to improve the computational cost and the efficiency of

all the detectors. The Random Fourier Feature (RFF) technique (Rahimi & Recht, 2007)

defines a known mapping which takes the data held in the input space and transfers them

to a new finite dimensional Euclidean space, where the problem is linearly separable

and the inner product of the mapped data approximates the kernel function. Once the

"linear" task is solved, a vector of fixed size is obtained, which defines a hyperplane

in the new space, separating the data. Thus, the algorithm provided is computationally

more efficient and, as will be shown throughout this Thesis, converges at similar speeds

and to similar error scale. Orthogonal Random Features (ORF) impose orthogonality on

the matrix on the linear transformation matrix G ∈ Rd×d which is a random Gaussian

matrix. Note that one cannot achieve unbiased kernel estimation by simply replacing

G by an orthogonal matrix, since the norms of the rows of G follow the X -distribution,

while rows of an orthogonal matrix have the unit norm. In addition, low-rank (Fine

& Scheinberg, 2001) approximations of the kernel matrix are often considered as they

allow the reduction of running time complexities to O(r2n), where r is the rank of the

approximation. The practicality of such methods thus depends on the required rank r.

All these approximations are implemented throughout this Thesis. On the other hand,

the kernel Cook’s distance is studied for anomalous change detection in a chronochrome

scheme, where the anomalousness indicator comes from evaluating the statistical leverage

of the residuals of regressors between time acquisitions images. In addition, this version of

the kernelized Cook’s distance present a high computational cost due to remote sensing

images. To fix this problem, it is proposed to approximate the kernel by means of the low

rank approximation. One of the most popular techniques is the Nyström method, which
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constructs K̃ using a subset of “landmark” data points (Williams & Seeger, 2001).

1.3.2 Density Estimation with Gaussianization transforms

The rotation-based iterative Gaussianization is a nonparametric method for density estima-

tion of multivariate distributions (Laparra et al., 2011). In this Thesis, it will be used as an

unsupervised method for detecting anomalies and changes in remote sensing images by

means of a multivariate Gaussianization methodology that allows to estimate multivariate

densities accurately, a long-standing problem in statistics and machine learning. RBIG is

based on the idea of Gaussianization, which consists of seeking for a transformation Gx that

converts a multivariate dataset to a domain where the mapped data follows a multivariate

normal distribution. Therefore, the model can estimate the probability at any point of

the original domain and assume that pixels with low estimated probability are considered

anomalies. An important aspect to take into account is the intrinsic characteristics of the

data used to estimate the density, which has implications in the quality of the estimation.

When the distribution contains even a moderate number of anomalies, an accurate density

estimate will cast anomalies as regular points, i.e. non-anomalous. This vastly depends on

the flexibility of the class of models used. When the model is rigid like in the RX case, this

is not a problem since it cannot be adapted to the anomalies. For the KRX one can control

this effect by tuning the kernel lengthscale and the regularization term, but as explained

before this actually requires labeled data. This is an important aspect to take into account

mostly in the anomaly detection scenario, where all data (included the anomalous samples)

are used to estimate the density. Therefore, a hybrid model that combines the (too rigid)

RX model with the (too flexible) RBIG model is proposed. The hybrid model first selects

the data more likely not to be anomalous using RX and then uses this data to learn the

Gaussianization transform with the RBIG model. This tries to avoid using anomalous

data to train RBIG, which after all is intended to learn the background or pervasive data

distribution. The number of data points selected as non-anomalous in the first step will

define the trade-off between flexibility and rigidity. On the other hand, the same theory is

applied to address change detection problems in remote sensing. It is important to note

that, in this case, the data used to estimate the probability density (first image) does not

contain anomalies, so the hybrid model is not needed in this approach.
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1.4 Research objectives, structure and contributions

Why this Thesis?

One of the most important challenge for today’s Science is to detect and attribute the causes

of changes and extremes in arbitrary distributions. In the context of Earth observation

data analysis, this general problem translates into the problem of automatically detecting

anomalies on the land-cover at both spatial and time domains. This is now possible

by exploiting high resolution satellite images and long time series of images and Earth

observation products, along with powerful statistical techniques to process them. However,

in recent years, the big and heterogeneous data streams acquired by satellite constellations

hamper the adoption of advanced machine learning statistical techniques for anomaly

detection and anomalous change detection events. The Thesis’ main objective is to

develop and apply novel and robust detectors, under different framework such as distance,

kernel, approximation kernel and probability estimators approaches for the monitoring and

protection of areas that are difficult to access using remote sensing images. On the other

hand, characterize and implement new detectors of anomalies in several real scenarios such

as droughts, wildfires, floods and urbanization from AVIRIS, Sentinel-2, WorldView-2,

MODIS, Quickbird and Landsat8 sensors.

Structure and content

The work elaborated in this Thesis is structured in six chapters. First, an introduction to

remote sensing for Earth observation and a review of detection methods in ACD-AD-CD

settings. In addition, the main methods proposed in this Thesis were proposed based on

the kernel’s theory and the efficient alternatives to approximate kernel matrices. Also, it is

presented a novel method for probability density estimation. The proposed methods based

on distance and probability estimation are elaborated in different chapters. These chapters

showcase the results that include visual and numerical comparison between methods taking

into account performance and robustness. Finally, the thesis is completed with concluding

remarks. The Thesis is completed by an annex which includes a compendium of peer-

reviewed publications in remote sensing international journals. A prototype of all methods

in this thesis is implemented in Matlab software and the code and demos are provided. The

outline of each chapter is summarized as follows:

Chapter 2: presents a novel kernelized version of the Cook’s distance to address anoma-

lous change detection in remote sensing images. Due to the large computational

burden involved in the direct kernelization, and the lack of out-of-sample formulas,

this approach introduces and compares both random Fourier features and Nyström
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implementations.

Chapter 3: describes the algorithms based on the implicit probability density function

(PDF) estimation when the background assumption is Gaussian and Elliptically

contoured for ACD. The kernel theory is summarized, including the necessary

concepts and properties on reproducing kernel Hilbert spaces (RKHS), present the

nonlinear versions based on the kernel theory, and experimentally validate it.

Chapter 4 efficient methods are developed in this chapter to improve the computational

cost of nonlinear kernel-based RX anomaly detectors. The wide variety of kernel

methods and its theoretical basis were reviewed, and the randomized RX approaches

were suggested to develop effective and fast methods.

Chapter 5 proposes an unsupervised method for detecting anomalies and changes in

remote sensing images by means of a Gaussianization methodology that allows to

estimate multivariate densities accurately. The chapter shows the efficiency of the

method in experiments involving both anomaly detection and change detection in

different remote sensing image sets.

Chapter 6 summarizes the goals and achievements of this Thesis.

Summary of contributions

This Thesis is a compendium of works based on detecting anomalous changes between

pairs of images in remote sensing as well as anomalies when the people are monitoring

the Earth cover by means of remote sensing satellite images. Focusing mainly on the

development of novel methods based on the kernel theory and theirs approximation when

the proposal is represented by distance background. The Thesis includes methods that use

directly the Gaussianization transformation of the data to cope with change and anomaly

detection approaches under a probabilistic framework. The contributions of the thesis are

summarized in Table 1.1.

The Thesis is completed by an annex which includes a compendium of peer-reviewed

publications in remote sensing international journals, summarized as follows:

1. Kernel Anomalous Change Detection for Remote Sensing Imagery. Padrón-Hidalgo,

J. A. and Laparra, V. and Longbotham, N and Camps-Valls, G. IEEE Transactions on

Geoscience and Remote Sensing 10, vol 57, pages: 7743-7755, 2019. Journal Impact

Factor (5.85). Q1: Electrical and Electronic Engineering. Q1: Remote Sensing.

2. Efficient Nonlinear RX Anomaly Detectors. José A. Padrón Hidalgo and Adrián

Pérez-Suay and Fatih Nar and Gustau Camps-Valls IEEE Geoscience and Remote

Sensing Letters, pages: 1-5, 2020. Journal Impact Factor (3.83). Q1: Electrical and
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Table 1.1: Proposed methods in this Thesis: Methods corresponds to the implemented detectors,
App. represents the involved approach of each detector, Linear is the assumption of the model
description, Proposed identifies our proposed methods in this thesis, Learning can be either a
supervised or unsupervised setting, Mem. is the efficiency in computational cost and Acc. is the
expected accuracy level in remote sensing applications.

Methods App. Linear Proposed Learning Mem. Acc.
Cook ACD X × supervised X
Kernel Cook ACD × X supervised × +
Randomized Cook ACD × X supervised X ++
Nyström Cook +++

RX ACD X × supervised X
Elliptical-RX +
Kernel-RX ACD × X supervised × +
Elliptical Kernel-RX ++

RX AD X × supervised X
Kernel-RX AD × X supervised × +
Subsampling-RX AD × X supervised X ++
Orthogonal-RX ++
Randomized-RX ++
Nyström-RX +++

RX AD-CD X × unsupervised X ++
Kernel-RX AD-CD × X unsupervised × +
RBIG AD-CD × X unsupervised X +++

Electronic Engineering. Q1: Geochemistry and Geophysical.

3. Efficient Kernel Cook’s Distance for Remote Sensing Anomalous Change Detection.

Padrón-Hidalgo, J.A. and Pérez-Suay, A. and Nar, F. and Laparra, V. and Camps-

Valls, G. IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, vol 13, pages: 5480 - 5488, 2020. Journal Impact Factor (3.83). Q1:

Electrical and Electronic Engineering. Q1: Geographic Physical.

4. Unsupervised Anomaly and Change Detection with Multivariate Gaussianization.

Padrón-Hidalgo, J. A. and Laparra, V. and Camps-Valls, G. Submitted to IEEE

Transactions on Geoscience and Remote Sensing, 2020. Journal Impact Factor (5.85).

Q1: Electrical and Electronic Engineering. Q1: Remote Sensing.

Other related publications in conferences and workshops are listed here too for complete-

ness:

1. Kernel Anomalous Change Detection. Jose A. Padrón Hidalgo and Valero Laparra

and Gustau Camps-Valls IEEE Young Professionals Conference on Remote Sensing,

Aachen, Germany 2018.

2. Nonlinear Cook Distance for Anomalous Change Detection. Jose A. Padrón Hi-
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dalgo and Adrián Pérez-Suay and Fatih Nar and Gustau Camps-Valls 2018 IEEE

International Geoscience and Remote Sensing Symposium, València, Spain 2018

3. Randomized RX for Target Detection. Fatih Nar and Adrian Perez-Suay and Jose

Antonio Padron and Gustau Camps-Valls 2018 IEEE International Geoscience and

Remote Sensing Symposium, València, Spain 2018

All papers are accompanied by supporting material and MATLABTM source code, datasets,

and demos for the sake of reproducibility of the results through the links: (1) Kernel

Anomalous Change Detection: http://isp.uv.es/kacd.html, (2) Efficient Non-

linear RX Anomaly Detectors: http://isp.uv.es/code/fastrx.html; (3) The

Kernel Cook’s Distance: http://isp.uv.es/code/kcook; and (4) Multivariate

Gaussianization: https://isp.uv.es/RBIG4AD.html.

http://isp.uv.es/kacd.html
http://isp.uv.es/code/fastrx.html
http://isp.uv.es/code/kcook
https://isp.uv.es/RBIG4AD.html
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2.1 Summary

Detecting anomalous changes in remote sensing images is a challenging problem where

many approaches and techniques have been presented so far. The standard field is based on

multivariate statistics of diagnostic measures which are concerned about the characteriza-

tion of distributions, detection of anomalies, extreme events and changes. One useful tool

to detect multivariate anomalies is the celebrated Cook’s distance. Instead of assuming a

linear relationship, a novel kernelized version of the Cook’s distance is presented to address

anomalous change detection in remote sensing images. Due to the large computational

burden involved in the direct kernelization, and the lack of out-of-sample formulas, it is

introduced and compared both random Fourier features and Nyström implementations

of the approximate the solution. The kernel Cook’s distance was studied for anomalous

change detection in a chronochrome scheme, where the anomalousness indicator comes

from evaluating the statistical leverage of the residuals of regressors between time acquisi-

tions. The performance of all algorithms were illustrated in a representative number of

multispectral and very high resolution satellite images involving changes due to droughts,

urbanization, wildfires and floods. Very good results and computational efficiency confirm

the validity of the approach.

2.2 Kernelized Cook’s distance

2.2.1 Notation and the chronochrome approach

Let us define two consecutive d-bands multispectral images in matrix form X,Y ∈ Rn×d

composed of n pixels xi,yi ∈ Rd , i = 1, . . . ,n. Assume that a set of changes have occurred

in between, and that such changes do not alter the image distribution significantly. The

‘chronochrome’ approach (Schaum & Stocker, 1997) builds on this idea and fits a model

to predict the second image Y from the first one X, and decides that a point is anomalous

(i.e. it has changed) if, for instance, the corresponding residual is significantly large. The

prediction function f : x→ y is learned from the observations. The task is now to assess

the significance of the obtained residuals, e = y− ŷ, that is to derive a sensible diagnostic

measure.

2.2.2 Cook’s distance

Cook’s distance comes from the definition of leverage, which measures how distant are

the independent variable values (of a particular observation) from those of the other obser-

vations. The highest leveraged points are those observations which could be considered
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as extreme or outlying values of the independent variables. Cook’s distance measures the

effect of removing a given observation. Therefore, the aim is to find out which elements

from the sample set are more relevant to the model.

The standard Cook’s distance assumes a linear model for prediction of the second image

from the first one, i.e. Ŷ = X̃W, where W ∈ R(d+1)×d , and X̃ is the augmented design

matrix with a column of ones to account for the bias term, X̃ = [X|1n]. The solution to this

least squares problem is given by the Wiener-Hopf normal equations, W = (X̃>X̃)−1X̃>Y.

The predictions can be expressed as Ŷ= X̃W= X̃(X̃>X̃)−1X̃>Y=HY, where H is known

as the projection matrix, and it is defined the leverage score of the i-th observation as

hi = x>i (X̃
>X̃)−1xi. (2.1)

Similarly, the i-th element of the residual vector e = y− ŷ = (I−H)y is denoted as ei. The

Cook’s distance Di for observation xi, i = 1, . . . ,n, is defined as the sum of all the changes

in the regression model when the i-th observation is deleted:

Di =
∑

n
j=1
(
ŷ j− ŷ j\i

)2

d MSE2 , (2.2)

where ŷ j means to predict the j-th sample through the model trained with all the samples

and ŷ j\i is the fitted response value obtained when i is excluded, and MSE is the mean-

square error of the regression model with all samples, i.e. MSE = 1
N ∑

n
j=1
(
ŷ j−y j

)2.

Cook’s distance can be equivalently expressed using the leverage

Di =
e2

i hi

d MSE2(1−hi)2
. (2.3)

Cook showed that this estimation can be obtained using incremental rank-one updates

of covariances, without even needing to re-compute each model when the i-th sample is

removed (Cook, 1977).

2.2.3 Kernel Theory

This section includes a brief introduction to kernel methods. After setting the scenario

and fixing the most common notation, the main properties of kernel methods are provided.

Also, pay attention to kernel methods development by means of particular properties drawn

from linear algebra and functional analysis.

Kernel methods measure similarities between samples mapped into a Hilbert spaceH
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of higher dimensionality. The dot products therein are not estimated explicitly, but through

a reproducing kernel function that approximates it. Actually, kernel methods do not require

to have access to the feature map to H, neither to compute the data coordinates in H
to estimate similarities, which can be done implicitly via reproducing kernel functions.

Given a dataset with input feature vector x ∈ X , the feature mapping can be defined by

φ : X →H, hence x 7→ φ(x). Therefore, the similarity between the elements in H can

now be measured using its associated dot product 〈·, ·〉H. A kernel function computes the

similarity between inputs such that (x,x′)→ K(x,x′) and the function satisfies:

K(x,x′) = 〈φ(x)φ(x′)〉H. (2.4)

The mapping φ is called feature map and the spaceH is its corresponding feature space. In

addition, 2.4 is also known in the machine learning literature as the kernel trick which states

that all dot products inH can be implicitly computed by simply using a kernel function

defined on the input data. If one have access to a dataset of n examples, xi, i = 1, . . . ,n, then

a function will denoted the similarity as the set of similarities f (·) = [K(x1, ·), . . . ,K(xn, ·)],
and will denote K the kernel matrix that contains all similarities among the n data points,

which has entries [K]i j = [K(xi,x j)].

Kernel Ridge Regression

Now that the basic theory that underlies kernel spaces is covered, more practical issues can

be addressed. Let us derive the first kernel method that will become a core in the thesis: the

kernel ridge regression (KRR), which will be used in our proposed Kernel Cook’s distance

later. KRR is a nonlinear version for fit a linear model in Hilbert spaces, so the prediction

model is given by Ŷ =ΦWH. The weights WH (including a bias term for simplicity) are

calculated using the regularized loss function:

L = ‖Y−ΦWH‖2 +λ ‖WH‖2 .

The representer’s theorem states that one can express the solution matrix WH defined in

H as a linear combination of mapped samples in the RKHS, hence WH =Φ>α. Now,

following the standard least squares solution, the primal solution can be described as

WH = (Φ>Φ+λ I)−1Φ>Y

where Φ ∈ Rn×DH . The next step is replacing the inner product by a kernel function using
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the dual solution:

α= (ΦΦ>+λ I)−1Y = (K+λ I)−1Y.

Then, once obtained the dual solution, it is easy to calculate the prediction for new m data

X∗ ∈ Rm×d , and their mappings Φ∗, as follows:

Ŷ =Φ∗WH =Φ∗Φ>α=Φ∗Φ>(Φ∗Φ>+λ I)−1Y

Finally, by applying the kernel trick, one can replace the inner product by the kernel

evaluations (similarities) between the corresponding training or test samples:

Ŷ = K∗:(K+λ I)−1Y,

where Kmn ∈ Rm×n and Knn ∈ Rn×n. This formulation help us to understand in an easy

manner the kernel Cook’s distance approximation in the next section.

2.2.4 Kernel Cook’s distance

The kernel Cook’s distance (KC) can be easily derived by departing from Eq. (2.3). For

that, both the errors and the leverage scores must be calculated as a function of the input

data only. Let us first recall the KRR prediction formula, ŷ = K(K+λ I)−1y, where λ is a

regularization parameter, and K is the kernel matrix. The residuals are thus e = (I−HH)y,

where the (kernel) projection matrix HH = K(K+ λ I)−1, and the (kernel) leveraging

scores become

hHi = diag(HH), i = 1, . . . ,n (2.5)

From here, one can readily compute eHi and the kernel Cook’s distance as:

DH
i =

(eHi )2

d MSE2
hHi

(1−hHi )2
. (2.6)

Note that the the inversion of a large K matrix in HH has a cost of cubic time complexity

and quadratic space (memory) complexity. One could think of computing the leverage

scores using a singular value decomposition (SVD), but the exact computation is as costly

as solving the original problem since the cost is also cubic. Unlike the linear case, the

recursive solution of (2.6) is cumbersome and one has to recompute each model after
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sample deletion, thus involving a cascade of costly inverse operations.

2.3 Efficiency in Kernel Cook

In this section, both random Fourier features and Nyström approximation of the leverage

scores and the errors for Cook’s distance approximation will exploited.

2.3.1 Randomized Cook’s distance

Let us first approximate the kernel matrix with random Fourier features (Rahimi & Recht,

2007). Formally, a linear regression model expressed on data explicitly projected onto q

random Fourier features is used. Let us define a feature map z(x) : Rd → Cq, explicitly

constructed as z(x) := [exp(iw>1 x), . . ., exp(iw>q x)]>, where i =
√
−1, and wq ∈ Rd is

randomly sampled from a data-independent distribution (Rahimi & Recht, 2007). The

prediction model is now defined as Ŷ = ℜ{ZW}, where Z = [z1 · · ·zn]
> ∈ Rn×q, with

the weight matrix W ∈ Rq×d . The randomized leverage of a particular sample is now

expressed

hR
i = ℜ{z(xi)

>(Z>Z+λ I)−1z(xi)}, (2.7)

which is then plugged into (2.3) owing to the linearity of the model where eR = (I−HR)y
and then leads to

DR
i =

(eR
i )

2

d MSE2
hR

i
(1−hR

i )
2 . (2.8)

This allows to control the memory and computational complexity explicitly through q, as

one has to store matrices of n×q and invert matrices of size q×q only. It is worth noting

that, in practice, a low number of random Fourier features are needed, q� n. This is

not only beneficial in computation time and memory savings but also has a regularization

effect in the solution.

2.3.2 Nyström Cook’s Distance

The Nyström method selects a small set of r� n samples to make a low-rank approximation

of an n×n kernel matrix K≈K>rnK−1
rr Krn (Williams & Seeger, 2001), where Krn ∈ Rr×n

contains the kernel similarities between X̂ ∈ Rr×d and X ∈ Rn×d , and Krr ∈ Rr×r is a

kernel matrix containing data similarities between the points in X̂. By exploiting the



2.3 Efficiency in Kernel Cook 27

Table 2.1: Space and time complexity for all methods: T is transformation of image into a nonlinear
space, C is for covariance/kernel matrix, W is for regression weight, L is for leverage, ACD is the
Cook’s distance, and O(.) is the overall complexity.

Method T C C−1 W L ACD O(.)
Space
L-Cook − d2 d2 d2 n n O(nd)
R-Cook nq q2 q2 q2 n n O(nq)
N-Cook n2 r2 r2 − n n O(n2)

K-Cook n2 n2 n2 − n n O(n2)

Time
L-Cook − nd2 d3 nd2 nd2 nd2 O(nd2)

R-Cook nqd nq2 q3 nq2 nq2 nq2 O(nq2)

N-Cook n2d nr2 r3 − n2r n2d O(n2r)
K-Cook n2d n3 n3 − n3 n2d O(n3)

Nyström method in the Woodbury-Morrison the fallowing formula is obtained:

(K+λ I)−1 = λ
−1(I−Knr(λKrr +K>nrKnr)

−1K>nr), (2.9)

and now defining Q = λKrr +K>nrKnr, the projection matrix approximation is defined as:

HN = λ
−1K(I−KnrQ−1K>nr), (2.10)

with Nyström leverage scores

hN
i = diag(Hn), (2.11)

and eN = (I−HN)y, thus the Nyström Cook’s distance becomes:

DN
i =

(eN
i )

2

d MSE2
hN

i

(1−hN
i )

2 . (2.12)

2.3.3 Memory and computational cost

Space (memory) and time (computational) efficiency of the linear and nonlinear versions

are presented in Table 2.1. In this approach, the linear version is named as L-Cook while

the nonlinear versions are named Randomized Cook (R-Cook), Nyström Cook (N-Cook),

and Kernel Cook (K-Cook). Note that, d is the spectral dimension and it is around 10 for

multispectral images and around 100 for hyperspectral images. Although q and r can have
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similar values, generally q < r. Since large images are used, n is much larger than r, q, and

d. Therefore, in general d < q < r� n.

As it can be seen in Table 2.1, the L-Cook method provides superior space and time

efficiency. However, the L-Cook method is only limited to rare linear scenarios where the

real-world nonlinear transformation between multi-temporal images are formed due to

various reasons. However, space and time complexity of the K-Cook method is proportional

to the number of pixels in the image, respectively quadratic in space and cubic in time.

Thus, the use of the K-Cook method is not feasible for large images, which is the common

scenario nowadays. Note that, for the N-Cook method, kernel matrix K is still used in (2.10)

but there is no inversion operation on it. Therefore, N-Cook has same space complexity

with K-Cook method since it needs to store kernel matrix K. But time complexity of

N-Cook is still superior to the K-Cook method since only an r× r matrix is inverted.

2.4 Experimental Results

This section analyzes the performance of the proposed linear and nonlinear Cook’s distance

methods for anomalous change detection. In order to test the robustness of the proposed

methods, tests were performed in both simulated and real scenes with changes. The

detection performance of the methods were evaluated quantitatively through the Area

Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) and qualitatively

by inspection of the detection maps. Two experiments have been performed with different

complexities of difficulty while controlling the analyzed changes. The first experiment

is designed over a real scenario and synthetic changes. The second set of experiments

deals with both real scenes and natural changes related to floods, fires and urbanization. In

order to ease the reproducibility, the MATLAB implementations of the methods have been

provided. Moreover were made available a database with the labeled images used in the

second experiment in http://isp.uv.es/code/kcook.

2.4.1 Experiment 1: Real Scene with Simulated Changes

The aim of this experiment is to show and analyze the performance of the proposed

methods when the change between images is nonlinearly distributed. In this example,

one can analyze how nonlinear methods fit the regression model to the data well and

how they detect the influential points in the Cook’s distance approach. The experiment

involves representing a nonlinear relation between two images in order to demonstrate the

limitations of the linear algorithms in this situation.

http://isp.uv.es/code/kcook
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: (a) Image (R band) at time t1 and the region of interest (red box). (b) Image (R band)
at time t2 and the region of interest (red box). The background color distortion was applied and
square patches of 4 × 4 were added over t2 simulating the anomalies, (c) region of interest (red box
in t2) and the corresponding label is surrounded and highlighted in black, (d) scatter plots between
t1 and t2 pixels in R band, blue dots represent the non-change class and the yellow dots correspond
to change class. Panel (e) shows how mis-specification of the linear regression model cannot detect
anomalies, while a nonlinear Cook’s distance can do in (f). In both (e) and (f) the dots color specify
how much anomalous the point is for the model (blue less, yellow more).

Figure 2.1 (a)-(b) show an aerial scene taken over the Image Processing Laboratory

(IPL) from Google Earth in the R band. Figure 2.1 (a) represent the image at time t1 (no

change class), while Figure 2.1 (b) represent the image at time t2 (change class). All the

values of the second image (t2) were modified by applying a soft nonlinear function (an

inverted parabola) to simulate non anomalous changes. In order to introduce the anomalous

changes, square patches of 4 × 4 pixels randomly selected were interchanged.

Since kernel Cook’s distance is computationally very demanding, a portion of the full

image have been selected in order to have a comparison of all proposed methods together.

In particular, the region of interest is shown in Fig. 2.1 (c) and marked in a red box in

Fig. 2.1 (b), the anomalies are highlighted in a black rectangle and the anomalous class

represent the 0.016%. Figure 2.1 (d) represents the scatter of original image x-axis against

transformed image y-axis, the points in yellow color are the change pixels but the points in

blue color ideally would not be detected as an anomalous change pixels. Figure 2.1 (e)

illustrates how a linear model does not fit the distribution well and the inferred values lead

to False Positives errors (in the tails) and True Negatives errors (green color). Figure 2.1 (f)

shows how a nonlinear model over distribution fits well and both avoid the False Positives
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and detects the changed pixels in the images. These results are confirmed visually through

the prediction maps in Fig. 2.2, where the kernel Cook’s distance excels in detection.

(a) (b) (c)

Figure 2.2: (a) represent the prediction map (labels), (b) display the change prediction map detected
by the linear method and (c) the change prediction map detected by the nonlinear Cook’s distance.

On the other hand, Table 2.2 showcase how efficient the proposed efficient methods

can be, achieving better values of AUC compared to the kernel one in less time. Therefore,

because of the huge computational cost involved in its calculation, one cannot use it in

standard images (even as small as the one in Fig. 2.1), so efficient algorithms for computing

Cook’s distances in nonlinear kernel settings are strictly necessary.

Table 2.2: Area under the curve (AUC) and their respective Time values (in seconds) per method.

Methods L-Cook R-Cook N-Cook K-Cook
AUC 0.55 0.93 0.93 0.92
Time 0.01 0.03 2.64 6.32

2.4.2 Experiment 2: Real and Natural Changes

In this section experiments in several real satellite images are reported. The aim is to detect

changes that can be found naturally in a real environment. The dataset is composed of

five different scenes with natural changes including urbanization, wildfires, droughts and

flooding.

Data collection

Pairs of multispectral images acquired at different times over the same location were

collected. The images were selected in such a way that a noticeable change happened

between the two acquisition times. Was photo-interpreted and manually labeled all the

image pixels affected by a change of interest. This step is critical and delicate since one

could fall into many false alarms due to, for instance, shadows, illumination changes or

natural changes in the vegetation. All images contain changes of a different nature, which

allows us to study how the different Cook’s distance algorithms perform in a diversity of
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realistic scenarios.

A brief summary of the images and change events follows. Argentina dataset represent

an area burned between the months of July and August 2016. Denver Region Urbanized

Project Area describes the stereo-compiled building roofprints feature of Denver Regional

Council of Government (DRCOG). Texas wildfire dataset is composed by a set of four

images acquired by different sensors over Bastrop County, Texas (USA), and is composed

by a Landsat 5 TM as the pre-event image and a Landsat 5 TM plus an EO-1 ALI and

a Landsat 8 as post-event images. This phenomenon is considered the most destructive

wildland-urban interface wildfire in Texas history. The Arizona dataset corresponds to the

decline of Lake Powell in USA. The first image was taken by Landsat-5 and shows its

highest water level. The second was taken by Landsat-8 following a period of drought that

began in 2000. When the water volume was measured five months later, it was less than

half of the maximum lake capacity. The Australia dataset shows the natural floods caused

by Cyclone Debbie in Australia 2017. Storm damage resulted from both the high winds

associated with the cyclone, and the very heavy rain that produced major riverine floods.

Table 2.3 gives some descriptors of the images in the database, while Fig. 2.3 shows the

RGB composites of the pairs of images and the corresponding reference map.

Numerical comparison

The hyperparameters using 1000 randomly selected pixels were selected for cross-validation.

Each method implies a different set of parameters. For both the randomized and Nyström

methods have been cross-validated the r and q parameters by exploring values between

1 and 400, particularly r,q ∈ {1,5,10,25,50,100,200,300,400}.In this approach, the

standard Radial Basis Function (RBF) kernel function was used, K(x,x′) = exp(−‖x−
x′‖2/(2σ2)). The RBF kernel shows good theoretical properties (universal kernel, smooth-

ness and robustness), convenience (only the lengthscale parameter σ needs to be tuned)

and good performance in practice. The RBF kernel is used to perform kernel regression,

which incorporates a regularization parameter λ . The σ and λ parameters were searched

Table 2.3: Images attributes used in the experimentation dataset.

Images Sensor Size Bands Resolution (m)
Argentina Sentinel-2 381 x 500 12 10-60
Denver Quickbird 101 x 101 4 0.6-2.4
Arizona Cross-Sensor 201 x 201 7 30
Texas Cross-Sensor 301 x 201 7 30
Australia Sentinel-2 201 x 501 12 10-60
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using a logarithmic grid between 10−4 and 1020.

The hyper-parameters of the different methods were optimized to maximize the cross-

validation AUC. The ROCs and Precision-Recall curves were compared in terms of AUCs

for all methods and images in Fig. 2.4. In general, all methods can cope with the large

dimension of the images, and can provide reasonable results, AUC> 0.70, see Table 2.4.

Table 2.4: Area under the curve (AUC) per method and scene. The best results are bold faced.

Methods Argentina Denver Arizona Texas Australia
L-Cook 0.91 0.83 0.75 0.91 0.69
R-Cook 0.93 0.87 0.77 0.92 0.79
N-Cook 0.93 0.96 0.99 0.97 0.94

The nonlinear versions (randomized and Nyström approximations) improve the results

of the linear Cook’s distance, revealing nonlinear changes in all scenes, yet differences are

minor for the Texas scene. The Nyström Cook’s distance achieves consistently the best

results in all the scenarios, and false or positive rates regimes. A average gain of +15.6%

over the linear approach, and of +11.8% over the randomized approach, along with the

computational efficiency justify the adoption of this approach. The double logarithmic

plot aims to better appreciate the differences in very low false positive rates regimes. Also,

precision and recall are an understanding and measure of relevance. Here it becomes clear

that the Nyström approach excels in all images.

For each experiments 1000 runs were made for testing the significance of the methods

based on the ROC profiles. The mean value of the experimental runs is plotted with the

standard deviation of each detection algorithm represented by the shaded region in Fig. 2.5.

Also, a boxplot is showed in the same figure to illustrate the standard deviation of each

methods with a better precision. As seen in Fig. 2.5, N-Cook has always superior or

equivalent performance compared to L-Cook and R-Cook, i.e. higher detection rate and

lower false alarm rate, and higher AUC value and lower standard deviation.

Visual comparison

A visual comparison of the results is given in Fig. 2.3. Differences between the L-Cook and

the R-Cook are not visually significant either. In general, N-Cook yields clear and sharper

detection maps (last column), especially in large spatial structures (see e.g. roofs in Denver,

lake in Arizona) but also exhibits a much lower false alarm rate (see e.g. a less amount of

spurious detections in Texas wildfires). This is sometimes compensated with sensitivity to

subtle reflectance changes and misclassified pixels in Australia due to imperfect labeling

of pixels. This is why this problem is so difficult to solve in an automatic way.
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Argentina (t1) Argentina (t2) L-cook (0.91) R-cook (0.93) N-cook (0.93)

Denver (t1) Denver (t2) L-cook (0.83) R-cook (0.87) N-cook (0.96)

Arizona (t1) Arizona (t2) L-cook (0.75) R-cook (0.77) N-cook (0.99)

Texas (t1) Texas (t2) L-cook (0.91) R-cook (0.92) N-cook (0.97)

Australia (t1) Australia (t2) L-cook (0.69) R-cook (0.79) N-cook (0.94)

Figure 2.3: RGB composite images and predictions maps. First row: represent an area burned
between the months of July and August 2016 (Argentina), anomalous samples represent 2.7%.
Second row: urbanization area over Denver city correspond to roofprints (extension of anomalous
pixels represents the 11.5% of the image). Third row: decline of the Lake Powell in Arizona, USA
(16.35%). Fourth row: the most destructive wildland-urban interface wildfire in Texas history
(19.5%). Last row: natural floods caused by Cyclone Debbie in Australia (34%). First column:
images without changes, first time of acquisition (t1). Second column: images with the anomalous
changes and their corresponding labels are surrounded and highlighted with green color, second
time of acquisition (t2). Third column: prediction map of linear method. Fourth column: prediction
map of random Fourier features method. Last column: prediction map of Nyström approximation
method. AUC value in parentheses.
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Figure 2.4: ROC curves and Precision-Recall for all images by columns. First row showcase the
ROC curves in logarithmic scale. Numbers in legend display the AUC values for each method.
Second row showcase the precision-recall following the ROC curves legend.
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Figure 2.5: Bootstrap experiment. Top row correspond to the ROC curves taken account the mean
value of the 1000 iterations. The standard deviation of each approach is illustrated by the shaded
region. In the bottom row, AUC values and standard deviation for each method are shown as
boxplot.
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2.5 Specific contributions

This chapter focuses on introducing a family of efficient nonlinear ACD algorithms based

on the Cook’s distance setting. The theory of reproducing kernels was used, and proposed

several efficient approximation methods following the standard linear approach. The kernel

Cook detector was developed and improved using efficient and fast techniques based on

feature maps and low-rank approximations wich allows to find influential points (anomalies)

in the chronochrome setting. In this chapter, an exhaustive statistical experimentation over

simulated and real data scenes based on the study of the ROC and Precision Recall curves

have been developed to achieve maximum performance in the AUC measure. Among all

methods, the Nyström approximation achieves the best results and yields a more efficient

and accurate non-linear method to be applied in practice.
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3.1 Summary

Anomalous change detection is an important problem in remote sensing image processing.

Detecting not only pervasive but anomalous or extreme changes has many applications

for which methodologies are available. This chapter introduces a nonlinear extension of a

full family of anomalous change detectors. In particular, it is focused on algorithms that

utilize Gaussian and elliptically contoured distribution and extend them to their nonlinear

counterparts based on the theory of reproducing kernels Hilbert space. The performance

of the introduced kernel methods are illustrated in both pervasive and anomalous change

detection problems with real and simulated changes in multi and hyperspectral imagery

with different resolutions (AVIRIS, Sentinel-2, WorldView-2, Quickbird). A wide range

of situations are studied in real examples, including droughts, wildfires, and urbanization.

Excellent performance in terms of detection accuracy compared to linear formulations is

achieved, resulting in improved detection accuracy and reduced false alarm rates. Results

also reveal that the elliptically-contoured assumption may be still valid in Hilbert spaces.

3.2 Statistical view of anomalous change detection problem

Anomalies can be loosely defined as rare items, i.e. with low probability to occur (Yuan

et al., 2016a,b). Also, it’s sometimes referred to as outlier, novelty or extreme detection.

An anomalous change is thus a rare, unexpected, change between two consecutive obser-

vations. This chapter is focused on finding samples that can be interpreted as anomalous

changes between two multidimensional images. This calls for studying and characterizing

differences between multivariate distributions, and in particular those features that account

for the anomalous changes. In (Theiler et al., 2010) a framework to define different

anomalous change detectors based on probability distributions was formalized.

Given two images (X and Y ) one can treat their pixel values (xi,yi, with i = 1, . . . ,N,

where N is the number of pixels) as random variables, with probability distributions x∼ PX

and y∼ PY , respectively. These distributions can be used to assess how anomalous is each

pixel inside each particular image. On the other hand, let us indicate the joint distribution

as [x,y] ∼ PX ,Y , which accounts for how probable particular joint pixel values are, or

equivalently to characterize how anomalous a particular change is. For example, if a pixel

value changes from xi to yi and this change has a high probability of occur, it will be

classified as a regular change and will not be detected as an anomaly, even if the magnitude

change between xi and yi is highly striking.

The idea is to combine both informations to spot only the changes that are not regular.
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Given two pixels xi,yi ∈ Rd from the same spatial location i but each one from one image,

the general formula to compute the amount of anomalousness of a change is

Â[X ,Y ](xi,yi) =
PX(xi)PY (yi)

P[X ,Y ](xi,yi)
. (3.1)

A sample is detected as anomalous change when it is anomalous with respect to the joint

distribution but not anomalous with respect to the distributions of each isolated image.

Here, all the three distributions are used, however different combinations can be used, as

shown below.

Instead of using directly Eq. 3.1, it is usual to apply it taking logarithms (Theiler

et al., 2010), A[X ,Y ](xi,yi) = log(Â[X ,Y ](xi,yi)). This can be interpreted in information

theoretic terms by noting the relation between probability and information. Elaborating on

Shannon’s information (Shannon, 2001) may be described as:

A[X ,Y ](xi,yi) = I[X ,Y ]([xi,yi])− IX(xi)− IY (yi),

where IA(b) is the amount of information in Shannon’s terms the sample b provides

assuming it follows the distribution PA. In this terms a sample will be interpreted as an

anomalous change if the information obtained by observing the sample in both images

simultaneously is big with respect to the information obtained by observing it in each

isolated image.

3.3 Linear ACD algorithms

Assuming that all three distributions follow a multivariate Gaussian one can express the

formula only in terms of covariance matrices. The amount of anomalousness is given by:

AG(xi,yi) = ξ (zi)−βxξ (xi)−βyξ (yi), (3.2)

where ξ (a) = a>C−1
a a, Ca is the estimated covariance matrix with the available data, and

being z = [x,y] ∈ R2d . The value of βx,βy ∈ {0,1} parameters defines which distributions

are taken into account to define our anomaly. The different combinations give rise to

different anomaly detectors (see Table 3.1). These methods and some variants have been

widely used in many hyperspectral image analysis settings because of its simplicity and

generally good performance (Chang & Chiang, 2002; Kwon et al., 2003; Reed & Yu,

1990a).
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Table 3.1: A family of ACD algorithms.

ACD algorithm βx βy

RX 0 0
Chronocrome y|x 0 1
Chronocrome x|y 1 0
Hyperbolic ACD 1 1

However, these methods are hampered by a fundamental problem: the (typically

strong) assumption of Gaussianity that is implicit in the formulation. Accommodating

other data distributions may not be easy in general. Theiler et al. (Theiler et al., 2010)

introduced alternative ACD to cope with elliptically-contoured distributions (Cambanis

et al., 1981): roughly speaking, the idea is to model the data using an elliptically-contoured

(EC) distribution. EC distributions are particularly convenient in the case of images (Lyu

& Simoncelli, 2009). In particular the formulation introduced in (Theiler et al., 2010) uses

the multivariate Student’s t-distribution, giving rise to the following formula for computing

the amount of EC anomalousness:

AEC(xi,yi) = (2d +ν) log
(

1+
ξ (zi)

ν

)

− βx(d +ν) log
(

1+
ξ (xi)

ν

)

− βy(d +ν) log
(

1+
ξ (yi)

ν

)
,

(3.3)

where ν controls the shape of the Student’s t-distribution: for ν → ∞ the solution approxi-

mates the Gaussian and for ν → 0 it diverges.

An interesting particular case is the RX algorithm which brings to the same result for

the Gaussian and the elliptical case (independently of the ν value). All extra operations

applied by the EC formulation with regard to the Gaussian version are increasing monotonic

functions which do not change the ordering of the values. Therefore, although the values

of anomalousness are different (i.e. AG(xi,yi) 6=AEC(xi,yi)), the values are sorted in the

same way which makes the detection curves equal too. The same effect happen between

the RX methods based on kernels proposed in the next section.

Figure 3.1 shows an example of the distributions involved in the anomalous change

detection setting. In order to be able to visualize the distributions, a simple situation

is shown in which each image contains just one band. In particular, the distribution

provided correspond to the band 9 of a Sentinel-2 image over Australia, see table 4.2. The

results are shown for the distribution of the data estimated using histograms, and when
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Pxy
Px
Py
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anomaly
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Px
Px (Gauss)
Py
Py (Gauss)

X

Y

no anomaly
anomaly
Pxy
Pxy (EC)
Px
Px (EC)
Py
Py (EC)

Figure 3.1: Description of probabilistic framework for ACD. From left to right: the original data,
Gaussian model, and Elliptically Contoured model. See text for details.

assuming Gaussian or EC distributions. Note that the estimation of the distribution based

on histograms is only feasible in the low dimensional (i.e. 2D) case: when the number

of bands increases the computation of the histogram becomes unfeasible due to the curse

of dimensionality. However, the Gaussian and the EC model can be estimated easily for

multiple dimensions. The difference between the Gaussian and the EC model relies in

the kurtosis of the distribution, while in the Gaussian case is fixed in the EC case can be

controlled with the ν parameter. By comparing the marginal distributions in the central

and the right panels one can easily spot the differences between the Gaussian and the EC

model. For the horizontal axes the data follows quite well the Gaussian model, i.e. the

red solid line and the dashed red line are very similar in the central panel. However the

Gaussian model fails when reproducing the probability for the vertical axes (central panel

blue lines). Although it is not a perfect model, the EC distribution is better suited than the

Gaussian distribution for describing the real distribution of the data. For instance in the

case of the Py (equivalent to PY ) distribution (blue lines, vertical axes) the EC description

(solid blue line in third panel) is more similar to the original one (dashed blue lines) than

the description given by the Gaussian distribution (solid blue line in second panel).

3.4 Kernel ACD algorithms

Previous methods are linear and depend on estimating covariance matrices with the avail-

able data, and use them as a metric for testing anomalousness. These methods are fast to

apply, delineate point-wise nonlinear decision boundaries, but still rely on second-order

statistics. This restricts the class of functions that can be implemented and thus the general-

ization capabilities of the algorithm. For instance in Fig. 3.1 the assumed joint distributions

(dark green) for both Gaussian and EC models clearly differ from the real distribution

(light green). Here, this issue is addressed through the theory of reproducing kernel func-
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tions (Shawe-Taylor & Cristianini., 2004), which allows us to capture higher-order feature

relations while still relying on linear algebra. Kernel methods are particularly robust to

reduced sample sizes and high-dimensional feature spaces, situations often encountered in

hyperspectral image detection problems.

Kernel methods constitute a well-known approach in machine learning. They have

been mainly used for classification and regression, and not that much in anomaly and target

detection. The problem has been approached mainly with discriminative and subspace

methods: the support vector domain description (SVDD) –also known as one-class SVM–,

the kernel OSP, and the kernel RX methods (Rojo-Álvarez et al., 2017). In this approach,

previous anomaly change detection methods will be kernelized fallowing the same way

as for deriving the kernel RX in (Kwon & Nasrabadi, 2005), yet the context is extended

by assuming elliptically contoured distributions and parameterizations (see Table 3.1 and

Eq. 3.3). Let us first start by introducing the kernelization of the RX algorithm. This

method will be based on the theory of reproducing kernels following the same notation

in the previous chapter. Note that in order to estimate the anomaly ξ (φ(xi)), the same

procedure will be followed as in the linear case but first mapping the points to the Hilbert

space

ξ
H(xi) = φ(xi)(Φ

>Φ)−1φ(xi)
>. (3.4)

Note that one do not have access to either the samples or the covariance in the Hilbert.

However note that (Φ>Φ)−1 =Φ> (ΦΦ>ΦΦ>)−1Φ. This can be easily shown by right

multiplying by the term Φ>ΦΦ> and applying some linear algebra. By substituting in

eq. (3.4) one get

ξ
H(xi) = φ(xi)Φ

> (ΦΦ>ΦΦ>)−1Φφ(xi)
>.

In this equation one can replace all dot products by reproducing kernel functions using the

represent theorem (Shawe-Taylor & Cristianini., 2004), and hence

ξ
H(xi) = ξ (φ(xi)) = ki(KK)−1k>i , (3.5)

where ki = [K(xi,x1), . . . ,K(xi,xn)] ∈ R1×n contains the similarities between xi and all

training data, X, and K ∈ Rn×n stands for the kernel matrix containing all training data

similarities. Note that, as in the linear RX method, the KRX also requires centering the
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data (now inH), which can be easily done1. Hereafter is assumed that all kernel matrices

are centered. The solution may need extra regularization ξH(xi) = ki(KK+λ In)
−1k>i ,

λ ∈ R+. Therefore the kernel version of Eq. (3.2) is:

AH
G (xi,yi) = ξ

H(zi)−βxξ
H(xi)−βyξ

H(yi).

By following a similar procedure for Eq. (3.3), one obtains kernel versions of the elliptically-

contoured linear solution:

AH
EC(xi,yi) = (2d +ν) log

(
1+

ξH(zi)

ν

)

− βx(d +ν) log
(

1+
ξH(xi)

ν

)

− βy(d +ν) log
(

1+
ξH(yi)

ν

)
,

Note that in the case of βx = βy = 0, the algorithm reduces to kernel RX which was

previously introduced in (Kwon & Nasrabadi, 2005).

Figure 3.2 shows the results of different ACD methods for the illustrative example

presented in Fig. 3.1. Different thresholds over the anomaloussnes function, A, are

represented as contour lines. Each method obtains different decision boundaries. The ideal

situation would be to have a surface where the green points are surrounded by a contour line

and the yellow points are outside of the contour line. Note that this is a complex problem

where no perfect solution can be achieved since the anomalous (yellow points) and non

anomalous (green points) pixels are overlapped. Here, and through this context, the results

will be summarized using the value of the area under the curve (AUC) of the detection

receiver operating characteristic (ROC) curves. Bigger AUC means better detection of

the anomalous change. As an illustration, a close look can be taken to the results for the

method that achieves higher AUC, the K-EC-YX. The shape of the surface tries to keep

inside the green points (although some orange points are also included). In general one

can see that the kernel methods obtain better results than their linear counterpart. Note

that the flexibility of the solutions is different for the Gaussian, EC, and the kernel based

methods. The surfaces are direct consequence of the probabilistic model assumed, for

instance in the case of RX for Gaussian and EC assumptions the surfaces are equivalent to

the probabilistic distributions of PX ,Y in Fig. 3.1. It is clear that the kernel versions have

much more capacity to non-linearly adapt the decision surface to the problem.
1Centering in feature space can be easily done implicitly via the simple kernel matrix operation K̃←HKH, where

Hi j = δi j− 1
n , δ represents the Kronecker delta δi, j = 1 if i = j and zero otherwise.
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RX (0.92) XY (0.54) YX (0.81) HACD (0.33)

EC-RX (0.92) EC-XY (0.68) EC-YX (0.88) EC-HACD (0.43)

K-RX (0.95) K-XY (0.89) K-YX (0.92) EC-HACD (0.95)

K-EC-RX (0.95) K-EC-XY (0.90) K-EC-YX (0.97) K-EC-HACD (0.96)

Figure 3.2: Illustration of the anomalous detection surfaces for each method. The toy example
represent exclusively the band 9 of Sentinel-2 sensor. The amount of anomalies (i.e. bigger A) is
indicate by level curves. Green dots represent the non-anomalous data, while the yellow points are
the anomalous data. Overall area under curve (AUC) of the receiver operating characteristic (ROC)
values are given in parenthesis.

3.5 Experimental Results

This section analyzes the proposed methods. In order to test the robustness of the results,

tests were performed in several simulated and real examples of pervasive and anomalous

changes. The performance of the methods were evaluated by using the AUC of ROC

curves.

Three experiments were performed in different datasets with complexity and control on

the analyzed changes. First, an experiment was performed where the kind the anomalous
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Figure 3.3: Color composite of the hyperspectral image from AVIRIS sensor (left panel), and
the simulated changes (right grid panel). The original (leftmost) image is used to simulate an
anomalous change image (rightmost) by adding Gaussian noise and randomly scrambling 1% of
the pixels.

change was controlled in a synthetic scenario. The second experiment deals with data

where the changes were real but controlled, since they were manually introduced in the

scene using black tarps. Finally, the third battery of experiments deal with natural changes

related to floods, droughts and man-made changes.

The Matlab implementations of the all methods have been performed. Moreover, a

available database has been made with the labeled images employed in the third experiment

publicly available here: http://isp.uv.es/kacd.html.

3.5.1 Experiment 1: Simulated Changes

This experiment is devoted to analyzing the capacity of the methods to detect pervasive

and anomalous changes in simulated data by reproducing the simulation framework used

in (Theiler, 2008). The data set (see Fig. 3.3) is an AVIRIS 224-channel image acquired

over the Kennedy Space Center (KSC), Florida, on March 23rd, 1996. The data was

acquired from an altitude of 20 km and has a spatial resolution of 18 m. After removing

low SNR and water absorption bands, a total of 176 bands remain for analysis. More

information can be found at http://www.csr.utexas.edu/.

Here no further dimensionality reduction was performed with PCA and, instead, work

directly with the SNR filtered hyperspectral data. Pervasive changes are simulated by

adding Gaussian noise with 0 mean and 0.1 standard deviation to all the bands and all

the pixels. The image with the added noise is taken as the second image. Anomalous

changes are produced by scrambling some pixels in the second image. Note that since only

switching the position of pixels the global distribution of the image does not change. Since

the methods are applied pixel-wise, this yields anomalous changes that can not be detected

http://isp.uv.es/kacd.html
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as anomalies in the individual images.

In this experiment, it is limited to the use of hyperbolic detectors (HACD), i.e. βx =

βy = 1, that have shown improved performance for this particular experiment (Theiler

et al., 2010). All the involved parameters (estimated covariance Cz and kernel Kz, ν for the

EC methods, lengthscale σ parameter for the kernel versions) were tuned through standard

cross-validation in the training set and show results on the independent test set.

This experiment uses the spectral angle mapper (SAM) kernel, K(xi,x j) = exp(−acos

(x>i x j /(‖xi‖‖x j‖))2/(2σ2)), since it has been proven a good choice for hyperspectral

images (Camps-Valls, 2016). Two parameters need to be tuned in our kernel versions: the

regularization parameter λ and the kernel parameter. In this case was used λ = 10−5/n

where n is the number of training samples, and used a isotropic kernel function, whose

lengthscale σ parameter is tuned in the range of 0.05-0.95 percentiles of the distances

between all training samples. One should note that, when a linear kernel is used, K(xi,x j)=

x>i x j, the proposed algorithms reduce to the linear counterparts proposed in (Theiler et al.,

2010). The SAM kernel approximates the linear kernel for high σ values, therefore results

should be improved with regard the linear versions. Working in the dual (or Q-mode) with

the linear kernel instead of the original linear versions can be advantageous only in the

case of higher dimensionality than available samples, d ≥ n.

Figure 3.4 shows the obtained ROC curves and AUC values for the linear and kernel

HACD methods. The dataset was split into small training sets of only 100 and 500 pixels,

and results are given for 3000 test samples. The main conclusions are that 1) the kernel

versions improve upon their linear counterparts (between 13-26% in Gaussian and 1-5% in

EC detectors); 2) the EC variants outperform their Gaussian counterparts, especially in the

low-sized training sets (+30% over HACD and +18% over EC-HACD in AUC terms); and

3) results improve for all methods when using 500 training samples. The EC-HACD is

very competitive compared to the kernel versions in terms of AUC, but still the proposed

K-EC-HACD leads to longer tails of false positive detection rates (right figure, inset plot

in log-scale).

3.5.2 Experiment 2: Real and enforced Changes

This experiment is designed to analyze the performance of the proposed methods on

distortions that are present in real world imagery. While the distortions that are present

in any given pair of image sets are location and sensor dependant, some of the more

prevalent distortions are due to seasonality, look-angle, and spatial resolution. These

experiments employ a very-high spatial resolution sensor that was used to image the same



3.5 Experimental Results 47

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

 

 

HACD (0.48)
EC−HACD (0.68)
K−HACD (0.75)
K−EC−HACD (0.81)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

 

 

HACD (0.90)
EC−HACD (0.97)
K−HACD (0.95)
K−EC−HACD (0.98)

10
−4

10
−2

10
0

0

0.5

1

 

 

Figure 3.4: ROC curves compare the accuracy of the linear and nonlinear HACD detector based in
AUC for simulated changes. On the left: the figure represent the results for 100 training samples.
On the right: the figure represent the results for 500 training samples, a version in logarithmic scale
is shown in the detailed plot.

target with highly varying view angles (thus, varying distortion and layover) as well as

large differences in seasonality. The ability to detect anomalous changes in these highly

distorted image sets illustrates the unique advantage of these types of algorithms and, in

particular, the performance advantages of the proposed methods.

The experiments utilize three WorldView-2 images collected in May, August, and

November of 2013. All three images (Fig. 3.5) were collected over a mixed suburban and

rural area with urban residential features, roadways, rivers, and agricultural fields. The first

image (May) was acquired at a relatively small off-nadir (14.0o) angle early in the summer

season. The second (Aug) and third (Nov) images were collected at much higher off nadir

angles, 43.6o and 29.3o, respectively. In each of the final two images, one dark and one

white tarp (20×20 m each) were introduced as anomalous changes.

This creates two anomalous change image sets on which to test the proposed methods

with varying degree of both angular and seasonality distortions: (1) May/Aug: High

off-nadir difference, moderate seasonality change; and (2) May/Nov: Moderate off-nadir

difference, large seasonality change. While the white and black tarps that are introduced

into the change images are highly anomalous, the spectral change is not unrepresentative

of real-world problems. Additionally, the ability to more accurately model changes in

highly distorted images provides a unique test case for these proposed methods.

For each experiment, 50 non-anomalous pixels were randomly selected from the stacked

image sets to model the data space using the proposed algorithms. 500 randomly se-

lected (training samples held out) non-anomalous and all anomalous pixels (May/Aug:153,

May/Nov:144) were select for testing. These random selections were collected for 50

independent runs. The mean ROC curves are reported in Fig. 3.6 and the statistics for
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(a) May. 2013, 14.0o

off-nadir
(b) Aug. 2013, 43.6o

off-nadir
(c) Nov. 2013, 29.3o off-
nadir

Figure 3.5: The three WorldView-2 images present a wide variety of distortions due to both
seasonality and view angle. In addition to the more obvious changes in agricultural and natural
vegetation, the varying view-angles result in variations in ground sample distances (GSD) of 2.0 m
(May), 3.6 m (Aug), and 2.4 m (Nov).

AUC are reported in Table 3.2. As was reported earlier, the parameters ν and σ were tuned

through standard cross-validation. The results are shown for independent test sets. In both

of the experiments, the HACD and EC-HACD methods had almost identical average ROC

curves.

Table 3.2: Area Under the Curve Statistics for the WorldView-2 View-Angle and Seasonality
Experiments.

METHODS May-Aug Large Off-Nadir May-Nov Large Seasonality
Longmont, Colorado

HACD 0.90 ±0.06 0.77 ±0.08
EC-HACD 0.91 ±0.06 0.78 ±0.08
K-HACD 0.97 ±0.04 0.83 ±0.11
K-EC-HACD 0.99 ±0.02 0.95 ±0.04

The parameter search for ν used in the EC-HACD method favored very large values,

indicating that the data space is Gaussian and does not particularly benefit from elliptical

modeling. This is most likely due to the anomalousness of the tested anomalous targets.

Each of the tarp spectral signatures are highly anomalous (very dark and very bright)

presenting a relatively simplified modeling space. However, the kernel methods did outper-

form the non-kernel methods by a statistically significant +8% and +17% as measured by

mean AUC.
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(a) May/Aug High Off-Nadir Experiment (b) May/Nov Large Seasonality Experiment

Figure 3.6: ROC curves for the two experiments of Section 3.5.2. The mean value of the experi-
mental runs is plotted with the standard deviation of each detection algorithm represented by the
shaded region.

3.5.3 Experiment 3: Real and Natural Changes

This experiment deals with the detection of anomalous changes that can be found naturally

in a real environment.

Data collection

Pairs of multispectral images were collected, each pair consists of images taken at the same

location but at different times. The images were selected in such a way that an anomalous

change happened between the two acquisition times. All the images were manually labeled

finding the pixels where there is an anomalous change. This step is critical and delicate

since one could fall into many false alarms due to, for instance, shadows, illumination

changes or natural changes in the vegetation. This is why this problem is so difficult to

solve in an automatic way: for instance, one can see some areas with misclassified pixels

in the prediction maps in Fig. 3.7. All images contain changes of different nature, which

allows us to study how the different algorithms perform in a diversity of realistic scenarios.

Table 5.1 exposes different descriptors of the images in the database. Fig. 3.7 shows the

RGB composites of the pairs of images and the corresponding reference map.

Numerical comparison

Different considerations have to be taken when using the different algorithms. On the one

hand the family of methods based on EC distribution involve the optimization of the ν

parameter. On the other hand kernel methods involve fitting the kernel function parameters.

The experiment used the classical RBF kernel which is well suited for multispectral images

1Only bands in the visible part of the spectrum were used.
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Table 3.3: Images attributes in the experimentation dataset.

Images Sensor Size Bands SR
Experiment 1
KSC AVIRIS 512 x 614 224 18m
Experiment 2
Longmont (May) Worldview-2 1156 x 1563 8 2.0m
Longmont (Aug) Worldview-2 710 x 1021 8 3.6m
Longmont (Nov) Worldview-2 1074 x 1149 8 2.4m
Experiment 3
Argentina Sentinel-2 1257 x 964 12 10m-60m
Australia Sentinel-2 1175 x 2031 12 10m-60m
California Sentinel-2 332 x 964 12 10m-60m
Poopo Lake MODIS2 326 x 201 7 250m-1km
Denver QuickBird 500 x 684 4 1m-4m

and has only one parameter, σ . Also, the experiment have been performed using also

the SAM and the polynomical kernels, however results (not shown) were worse than

for the RBF kernel. In addition an extra parameter λ has to be fitted to regularize the

matrix inversion. Selecting properly all these three parameters is an issue. An ideal

situation would be having a rule of thumb to choose them. Preliminary experiments have

been performed to explore the applicability of several existing rules to estimate the σ

parameter. For the different images and problems faced in this section the heuristics

was applied and tried to find an heuristic for the ν and λ parameters. In particular ten

different heuristics were investigated: average distance between all samples, median of

the distance between all samples, squared root of the dimensionality times variance per

dimension averaged, median of the Silverman’s rule (Silverman, 1986), median of the

Scott’s rule per feature (Scott, 2010), maximum likelihood density estimation, maximum

Bayes estimate, maximum entropy estimate, average estimate of marginal kernel density

estimate, and kernel density estimation using Gaussian kernel. While some of them have

good performance for particular problems none of the rules was useful in general (results

not shown). This is a usual problem in ACD where, for instance, instead of setting a

particular anomaly threshold, it is usual to compute the ROC curve where all the thresholds

are evaluated (Theiler et al., 2010). Instead of using a different ROC curve for each

parameter the problem was simplified by adopting a cross-validation scheme to fit all the

involved parameters: σ , λ , and ν . Note that not only the kernel methods but also the linear

EC methods have hyper parameters to fit. A realistic scenario was adopted where one only

need to have labels for a small region. One advantage to use this idea is that once the best
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Figure 3.7: Images with natural anomalous changes, predictions maps and ROC curves. First
row: area burned in Argentina between the months of July and August 2016, anomalous samples
represent 7.5%. Second row: natural floods caused by Cyclone Debbie in Australia 2017, anomalous
samples represent 17.35%. Third row: consequences of the fire in a mountainous area of California
(USA), anomalous samples represent 11.33%. Fourth row: Quickbird multispectral images acquired
over Denver city (USA) where appears an urbanized area, anomalous samples represent 1.6%. Last
row: drying of Poopo Lake in Bolivia at the end of 2015, anomalous samples represent 11.7%. First
column: images without anomalous changes. Second column: images with anomalous changes and
their corresponding labels surrounded with green. Third column: prediction map using the best
linear method. Fourth column: prediction map using the best kernel method. Last column: ROC
curves and AUC values for the best detectors.

parameters are known in a specific region, you can apply this parameter directly without

need to use cross-validation in similar scenarios. In particular, one half of the image was



52 Chapter 3. KERNEL ANOMALOUS CHANGE DETECTION

used for training and obtaining the best parameters, and the other half of the image as test

set. The same procedure was used for all the algorithms.

For each pair of images, they were split into two parts, and one was used for training

and one for testing. The best parameters were selected by grid search in a cross-validation

scheme, using 1000 training samples and 4000 validation samples randomly selected form

the training set. Each method implies different set of parameters. For the ν parameter,

100 points were explored logarithmically spaced between [10−5,1010]. For σ parameter

was explored around the heuristic of the mean of the Euclidean distance between pairs of

points (which was the most successful in the preliminary experiments), a grid was made by

taking 60 logarithmically spaced points respectively between [10−3,103] multiplied by the

heuristic value. For the λ parameter, 30 values were used logarithmically spaced between

[10−10,102.5]. Note that these methods do not give a classification but anomalousness

value for each pixel. In order to provide a classification map, a particular discrimination

threshold (value from which it is decided whether each pixel is an anomalous change or

not) should be chosen. It is customary to provide the ROC curves. These curves represent

the results of applying a binary classifier to the output of the methods for different threshold

values (from more to less restrictive). Each point on the curve is the relationship between

true positive and false positive corresponding to the solution provided when applying a

particular threshold to the whole dataset. ROC analysis is usually employed to compare

models. Here, the parameters of the different methods were optimized to maximize the

AUC, in the training set (upper part of the image) and use the best parameters for the

validation set (bottom part of the image).

In Fig. 3.7 the ROC curves for the best method in AUC terms and Table 3.4 summarizes

all AUC values for all images and methods. Fig. 3.7 compares the ability of the best linear

method against the best kernel method when using the optimal threshold. Again kernel

methods produce maps with less both false positives and negative alarms. As a summary,

the kernel version achieves the best results in all the images when compared with its linear

counterpart. Although the XY family seems to work better for the K-EC-ACD method,

of the 16 detectors under study there is not an overall winner for all the families since

each detector has its own characteristics (that can relatively fit data particularities), and

the parameters are adjusted according to the type of image. The K-ACD version achieved

better performance in both over the linear ACD, and over the linear EC-ACD. And the

K-EC-ACD versions have better performance than the rest. For each type of detector (i.e.

RX, XY, YX, or HACD) the AUC values can be ranked as: K-EC-ACD > K-ACD >
EC-ACD > ACD.
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Table 3.4: AUC results for all five images. First and second best values for each image and each
member of the family are in bold. We provide the mean and the standard deviation for ten different
trials, values marked with (†) had an outlier so we give the median instead of the mean. Values
marked with (•) represent the best overall result for all methods.

METHODS RX YX XY HACD
ARGENTINA

ACD 0.88 ±0.008 0.86 ±0.010 0.95 ±0.004 0.93 ±0.007
K-ACD 0.93 ±0.009 0.94 ±0.007 0.95 ±0.011 0.93 ±0.005
EC-ACD 0.88 ±0.008 0.86 ±0.010 0.95 ±0.004 0.93 ±0.006
K-EC-ACD 0.93 ±0.009 0.94 ±0.008 • 0.96±0.008 0.95 ±0.007

AUSTRALIA
ACD 0.79 ±0.019 0.79 ±0.018 0.83 ±0.015 0.79 ±0.012
K-ACD 0.92 ±0.010 0.82 ±0.019 0.83 ±0.049 0.89 ±0.010
EC-ACD 0.79 ±0.019 0.80 ±0.018 0.83 ±0.015 0.80 ±0.012
K-EC-ACD 0.92 ±0.010 0.86 ±0.016 • 0.95 ±0.008 0.87 ±0.038

CALIFORNIA (USA)
ACD 0.50 ±0.015 0.59 ±0.017 0.65 ±0.018 0.81 ±0.014
K-ACD 0.61 ±0.024 0.71 ±0.048 • 0.85 ±0.022 0.84 ±0.013
EC-ACD 0.50 ±0.015 0.59 ±0.016 0.66 ±0.024 0.82 ±0.016
K-EC-ACD 0.61 ±0.024 0.71 ±0.047 • 0.85 ±0.022 0.84 ±0.013

DENVER (USA)
ACD 0.95 ±0.013 0.94 ±0.014 0.82 ±0.059 0.75 ±0.058
K-ACD 0.96 ±0.023 †0.94 ±0.050 0.87 ±0.017 0.96 ±0.017
EC-ACD 0.95 ±0.013 0.95 ±0.011 0.88 ±0.027 0.89 ±0.023
K-EC-ACD 0.96 ±0.019 †0.95 ±0.037 • 0.97 ±0.018 • 0.97 ±0.018

POOPO LAKE (BOLIVIA)
ACD • 0.99 ±0.002 0.98 ±0.003 0.96 ±0.007 0.63 ±0.032
K-ACD • 0.99 ±0.002 †0.97±0.044 0.96 ±0.007 0.96 ±0.005
EC-ACD • 0.99 ±0.002 0.98 ±0.004 0.97 ±0.006 0.79 ±0.034
K-EC-ACD • 0.99 ±0.002 0.98 ±0.013 • 0.99 ±0.002 0.98 ±0.004

3.6 Specific contributions

This chapter presented an extension of the family of ACD methods provided in (Theiler

et al., 2010) to their nonlinear counterparts based on kernel methods. The introduced

methods generalize the previous ones and provide more flexible mappings to account for

higher-order feature dependencies. The robustness of the proposed methods have been

tested in different scenarios, including simulated, forced and realistic changes (e.g. floods,

droughts and burned areas). The results of the proposed methods are better than the linear

ones in all cases, demonstrating that they can be used in multiple situations. This opens up

the option to use the proposed methods not only for the tested situations but also in other

problems. A working implementation of all 16 methods as well as a set of labeled images

have been provided, which can be used by other researchers to test ACD methods.
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4.1 Summary

Current anomaly detection algorithms are typically challenged by either accuracy or

efficiency. More accurate nonlinear detectors are typically slow and not scalable. In

this approach, two families of techniques are proposed to improve the efficiency of the

standard kernel Reed-Xiaoli (RX) method for anomaly detection by approximating the

kernel function with either data-independent random Fourier features or data-dependent

basis with the Nyström approach. All methods are compared for both real multi- and

hyperspectral images. It is showed that the proposed efficient methods have a lower

computational cost and they perform similar (or outperform) the standard kernel RX

algorithm thanks to their implicit regularization effect. Last but not least, the Nyström

approach has an improved power of detection.

4.2 RX Based Anomaly Detection

Among the various AD methods proposed in the literature, one of the most frequently used

anomaly detectors is the Reed-Xiaoli (RX) (Reed & Yu, 1990a). In this section, the RX

method is explained and its kernelized version, the KRX anomaly detector.

4.2.1 RX Anomaly Detector

It is considered an acquired image reshaped in matrix form as X ∈ Rn×d , where n is

the number of pixels and d is the total number of channels acquired by the sensor. For

simplicity, let us assume that X is a centered data matrix. The RX detector characterizes

the background in terms of the covariance matrix Σ= 1
d X>X. The detector calculates the

squared Mahalanobis distance between a test pixel x∗ and the background as follows:

DRX(x∗) = x>∗ Σ
−1x∗. (4.1)

In a global AD setting, as discussed here, Σ−1 can be efficiently computed using all the

image pixels since the dimensionality of the image is much lower than the number of pixels

(d� n). Whereas, in a local AD setting, Σ−1
p needs to be computed for each image pixel p

using the centered pixels in a window having an origin at that pixel (Matteoli et al., 2010).

4.3 Efficient techniques for Kernel RX

Kernel methods are able to fit nonlinear problems. As it have seen in the previous chapter,

kernel methods are a possible solution because they can capture higher-order (nonlinear)
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feature relations, while still using linear algebra operations (Camps-Valls et al., 2009). It

is proposed using feature map and low-rank approximation approaches to improve the

efficiency of the KRX detector develop in 3.4 but this time focused on anomaly detection.

It is studied the following approximations to the KRX method: Random Fourier features

(RRX) previously studied by the authors in (Nar et al., 2018), orthogonal random features

(ORX), naive low-rank approximation (LRX), and Nyström low-rank approximation

(NRX).

4.3.1 Randomized Feature Map Approaches

Random Fourier Features (RFF)

An outstanding result in the recent kernel methods literature makes use of a classi-

cal definition in harmonic analysis to the approximation and scalability (Rahimi &

Recht, 2007). The Bochner’s theorem states that a continuous shift-invariant kernel

K(x,x′) = K(x− x′) on Rd is positive definite (p.d.) if and only if K is the Fourier

transform of a non-negative measure. If a shift-invariant kernel K is properly scaled,

its Fourier transform p(w) is a proper probability distribution. This property is used to

approximate kernel functions with linear projections on a number of D random features as

K(x,x′) ≈ 1
D ∑

D
i=1 exp(−iw>i x)exp(iw>i x′), where wi ∈ Rd are randomly sampled from

a data-independent distribution p(w) (Rahimi & Recht, 2007). Note that it is possible

to define a 2D-dimensional randomized feature map z : Rd → R2D, which can be ex-

plicitly constructed as z(x) = 1√
2D

[cos(w>1 x),sin(w>1 x), . . . ,cos(sinw>Dx),sin(w>Dx)]> to

approximate the Radial Basis Function (RBF) kernel.

Therefore, given n data points (pixels), the kernel matrix K ∈ Rn×n can be approxi-

mated with the explicitly mapped data, Z = [z1 · · ·zn]
> ∈ Rn×2D, and will be denoted as

K̂≈ ZZ>. However, this approach is not used in Equation (3.5), which would lead to a

mere approximation with extra computational cost. Instead, linear RX was executed on

Equation (4.1) with explicitly mapped points onto random Fourier features, which reduces

to

DRRX = z>∗ (Z
>Z)−1z∗, (4.2)

and leads to a nonlinear randomized RX (RRX) (Nar et al., 2018) that approximates the

KRX. Essentially, the original data xi was mapped into a nonlinear space through the

explicit mapping z(xi) to a 2D-dimensional space (instead of the potentially infinite feature

space with φ(xi)), and then use the linear RX formula. This allows us to control the space
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and time complexity explicitly through D, as one has to store matrices of n×2D and invert

matrices of size 2D×2D only (see Table 4.1). Typically, parameter D satisfies D� n in

practical applications.

Orthogonal Random Features (ORF)

RFF has become a very practical solution for the bottleneck in kernel methods when n

grows. In RFF, frequencies wi are sampled from a particular pdf and they act as a basis.

This, however, may lead to features that are linearly dependent thus geometrically covering

less space. Imposing orthogonality in the basis can be a remedy to this issue, which has

led to the Orthogonal Random Features (ORF) (Yu et al., 2016). The linear transformation

matrix of ORF is WORF = 1
σ

SQ, where Q is a uniformly distributed random orthogonal

matrix. The set of rows of Q forms a basis in Rd . S is a diagonal matrix, with diagonal

entries sampled i.i.d. from the χ-distribution with d degrees of freedom. S makes the

norms of the rows of SQ and W (with all the frequencies of RFF) identically distributed.

Theoretical results show that ORF achieves lower error than RFF for the RBF kernel (Yu

et al., 2016). This approach follows the above RFF philosophy, and the final anomaly score

is now:

DORX = z>∗ (Z
>Z)−1z∗, (4.3)

where each frequency wi is a row of WORF and Z is the matrix formed by the mappings

z(xi) of each element in the dataset, and z∗ is the mapping of a pixel to be tested.

Nyström Approximation

The Nyström method selects a subset of samples to construct a low-rank approximation

of the kernel matrix (Williams & Seeger, 2001). This method approximates the kernel

function as K(x∗,x)≈ k>∗:rK̂−1kx:r, where kx:r contains the similarities between x and all

r points, and K̂ ∈ Rr×r stands for the kernel matrix between the points in X̂. Therefore, k∗
can be expressed as:

k∗ ≈ R>K̂−1k∗:r, (4.4)

where R ∈ Rr×n is a matrix which contains similarities between the points in X̂ and the

points in X. The similarities were computed using the standard RBF kernel function

K(x,y) = exp(−‖x−y‖2/(2σ2)).

Using the above definition given in (4.4), the Nyström method approximates the kernel



4.3 Efficient techniques for Kernel RX 59

matrix K:

K≈ R>K̂−1R. (4.5)

by plugging (4.4) and (4.5) into (3.5), one can define the low-rank approximation of KRX:

DNRX(x∗) = k>∗:rK̂
−1R(R>MR)−1R>K̂−1k∗:r, (4.6)

where M = K̂−1RR>K̂−1 while M ∈ Rr×r. Since R is not a squared matrix (r < n), it is

rank deficient, and it is proposed to use the pseudoinverse instead of the inverse of R>MR.

By doing this, most of the terms cancel, leading to a more compact equation for the NRX:

DNRX(x∗) = k>∗:r(RR>)†k∗:r. (4.7)

Note that NRX involves the inversion of an r× r matrix which is much more efficient

compared to KRX. In addition, the Nyström approach is more generic than using random

Fourier feature approaches, as it allows one to approximate all positive semidefinite kernels,

not just shift-invariant kernels. Furthermore, this approximation is data-dependent (i.e.

the basis functions are a subset of estimation data itself) which could translate into better

results (Yang et al., 2012).

Connection to reduced-set methods

Reduced-set techniques were successfully used to obtain sparse kernel methods and low

rank approximations of multivariate kernel methods (Arenas-Garcia et al., 2013). This

methodology can be applied to approximate KRX which leads to equation (4.7). In this

approach, the data matrix X ∈Rn×d is subsampled into X̂ ∈Rr×d , r� n, and mapped into

Φ̂ ∈ Rr×dH , which, by using (3.4), it is obtained the LRX formula:

DLRX(x∗) = φ(x∗)>Φ̂>(Φ̂Φ>ΦΦ̂>)−1Φ̂φ(x∗). (4.8)

Identifying k∗:r = Φ̂φ(x∗) and R = Φ̂Φ>, (4.8) leads to:

DLRX(x∗) = k>∗:r(RR>)−1k∗:r, (4.9)

which just differs from (4.7) in the inverse of RR>, and when R is full rank they are the

same. In the following and in the experiments, will be used only DNRX instead of DLRX as

both are mathematically equivalent.
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4.3.2 Space and Time Complexity

Table 4.1 gives the theoretical computational complexity of the benchmark methods (RX,

KRX, SRX) and proposed methods (RRX, ORX, NRX) presented in this Thesis. In

this approach, d < D < r� n is assumed since it is aimed to deal with big data settings.

Besides, KRX becomes sufficiently efficient when n is small, e.g. n < 4000 for a 200×200

image. As seen in Table 4.1, RX provides the best efficiency; thus, it should be employed

for scenes where the data is Gaussian distributed. However, KRX and the proposed KRX

approximations should be used for nonlinear distributions. Clearly, KRX is the least

efficient compared to the proposed approximations, and it is also not applicable to big

data. Feature map methods, e.g. RRX and ORX, provide the best computational efficiency

for nonlinear (i.e non-Gaussian) distributions, while low-rank approximation methods,

e.g. LRX and NRX, are also efficient yet relatively slower compared to the feature map

methods. Thus, one should choose the proper method based on the image distribution

characteristics (D. Manolakis & Rossacci, 2007; Keshava, 2004), detection performance

requirements, and computational resource limitations. These conclusions are assessed

experimentally in the following section.

Table 4.1: Memory and time complexity for all methods. T is transformation of image into a
nonlinear space. C is matrix (covariance, kernel etc.) and C−1 is its inverse.

Space Time
Method T C−1 T C C−1 AD

RX − d2 − nd2 d3 nd2

RRX & ORX nD D2 ndD nD2 D3 nD2

NRX nr r2 ndr nr2 r3 nr2

KRX n2 n2 n2d n3 n3 n3

4.4 Experimental Results

This section analyzes the performance of the proposed nonlinear RX anomaly detection

methods. Tests have been performed in four real examples, and tested robustness using the

area under curve (AUC) of receiver operating characteristic (ROC) curves. It is provided

illustrative source code for all methods in http://isp.uv.es/code/fastrx.html

4.4.1 Data collection and experimental setup

Multispectral and hyperspectral images were acquired by the Quickbird and AVIRIS

sensors. Fig. 4.1 showcases the scenes used in the experiments. The AD scenarios consider

http://isp.uv.es/code/fastrx.html
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(a) (b) (c) (d)

Figure 4.1: Images with anomalies (outlined in yellow) in four scenarios: (a) consequences of the
hot spots corresponding to latent fires at the World Trade Center (WTC) in NYC (extension of
anomalous pixels represents the 0.23% of the image), (b) urban area where anomalies are vehicles
in Gainesville city (0.52%), (c) Quickbird multispectral images acquired over Denver, the anomalies
are roofs in an urbanized area (1.6%), and (d) a beach scene where the anomalies are ships captured
by AVIRIS sensor (2.02%) over San Diego, USA.

Table 4.2: Images attributes used in the experimentation dataset.

Images Sensor Size Bands Resolution
WTC AVIRIS 200 x 200 224 1.7 m
Gainesville AVIRIS 100 x 100 190 3.5 m
Denver Quickbird 500 x 684 4 1m-4m
San Diego AVIRIS 100 x 100 193 7.5 m

anomalies related to: latent fires, vehicles, urbanization (roofs) and ships (Guo et al., 2016;

Kang et al., 2017; Padrón-Hidalgo et al., 2019). Table 5.1 summaries relevant attributes

of the datasets such as sensors, spatial and spectral resolution. Parameter estimation is

required for the RX, KRX, RRX, ORX and NRX. First of all, the KRX method and its

proposed variants involve the optimization of the σ parameter of the RBF kernel. For

the feature map approaches (RRX and ORX), the number of basis, D, parameter should

be optimized. Whereas, for low-rank approximations (NRX), the number of random

sub-samples, r, parameter should be optimized. A cross-validation scheme was adopted to

select all the involved parameters: number of Fourier basis D, rank r, and RBF parameter

σ . It is selected the parameters using different data sizes ranging between 103 and 3×104

samples.

4.4.2 Numerical comparison

The averaged AUC results were reported for all cases with 1000 runs (standard deviations

were always lower than 3× 10−3 and hence are not reported). Figure 4.2 shows that

nonlinear methods improve detection over the linear RX and NRX outperforms the other

approximations in three out of the four images. The AUC values of KRX are related to

the inversion of a relatively big matrix. This raises the issues of poorly estimated matrices
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(with a huge condition number) which are also computationally expensive to invert (O(n3)).

However, all the proposed fast kernel RX methods have the advantage of solving both

issues. Firstly, thanks to the cross-validation procedure, an estimate of the optimal number

of features (RRX, ORX) or samples (NRX) can be obtained, allowing to better capture

the intrinsic dimensionality of the mapped data. In a previous work (Morales-Álvarez

et al., 2018), authors showed that optimizing the number of frequencies in random Fourier

features approaches acts as an efficient regularizer leading to better estimates with a

reduced number of frequencies needed. And secondly, fast versions are able to obtain

better performance in AUC metric at a fraction of the cost (see Fig. 4.2).
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Figure 4.2: ROC curves in linear scale for all scenes. Numbers in legend display the AUC values
for each method.

4.4.3 On the computational efficiency

Figure 4.3 illustrates the trade-off between the computational execution time and the AUC.

The crosses indicate different values of rank (D or r parameters) in the set {50,100,200,400,500}
and the number of pixels was fixed to n = 3000. The optimal parameters estimated for

KRX are used for the fast approaches. KRX has the best AUC values in all the images.

NRX and SRX are more sensitive to rank values. RRX and ORX are almost insensitive

to the rank but results do not improve when the rank increases, thus limiting their perfor-

mance. The combination of lower spectral information and the ambiguity of the class (note
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Figure 4.3: CPU execution time versus the AUC values for n = 3000 pixels, crosses corresponds to
different rank values for Denver image.
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Figure 4.4: Anomaly detection maps for best thresholds (top: the best linear RX (AUC) results,
bottom: best nonlinear RX (AUC) method).

that the anomaly class ‘urbanized’ can be confused with a pervasive class ‘urban’) makes

the Quickbird scene a very difficult problem (lower AUCs). In this situation, as the rank

parameter r for the NRX method grows, it approximates the KRX algorithm. In Figure 4.4,

the RX detector (top row) is shown against the best detector obtained (bottom row). The

best result in AUC was achieved by the NRX in all the images. It is worth mentioning the

good results in detection achieved by the NRX in all the scenes, which can be visually

compared the linear version.
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4.5 Specific contributions

In this chapter, the goal was on improving the space (memory) and time (cost) of the

KRX anomaly detector. Kernel-based anomaly detectors provide excellent detection

performance since they are able to characterize non-linear backgrounds. In order to

undertake this challenge, has been proposed to use efficient techniques based on random

Fourier features and low-rank approximations to obtain improved performance of the

KRX algorithm. Among all methods, the Nyström and the equivalent low-rank (LRX)

approximation achieves the best results and yields a more efficient and accurate non-linear

RX method to be applied in practice.
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5.1 Summary

Anomaly detection is a field of intense research in remote sensing image processing.

Identifying low probability events in remote sensing images is a challenging problem given

the high-dimensionality of the data, especially when no (or little) information about the

anomaly is available a priori. While plenty of methods are available, the vast majority of

them do not scale well to large datasets and require the critical choice of some (very often

critical) hyperparameters. Therefore, unsupervised detection methods with an efficient

use of memory become necessary, especially now with the data deluge problem. In this

approach, an unsupervised method is proposed for detecting anomalies and changes in

remote sensing images by means of a multivariate Gaussianization methodology that

allows to estimate multivariate densities accurately, a long-standing problem in statistics

and machine learning. The methodology transforms arbitrarily complex multivariate data

into a multivariate Gaussian distribution. Since the transformation is differentiable, by

applying the change of variables formula one can estimate the probability at any point of the

original domain. The assumption is straightforward: pixels with low estimated probability

are considered anomalies. Our method is flexible enough to describe any multivariate

distribution, makes an efficient use of memory, and is parameter-free. The efficiency of the

method is shown in experiments involving both anomaly detection and change detection in

different remote sensing image sets. For anomaly detection two approaches were proposed.

The first using directly the Gaussianization transform and the second using an hybrid

model that combines Gaussianization and the Reed-Xiaoli (RX) method typically used in

anomaly detection. Results show that our approach outperforms other linear and nonlinear

methods in terms of detection power in both anomaly and change detection scenarios,

showing robustness and scalability to dimensionality and sample sizes.

5.2 Multivariate Gaussianization

The rotation-based iterative Gaussianization (RBIG) is a nonparametric method for density

estimation of multivariate distributions (Laparra et al., 2011). RBIG is rooted in the

idea of Gaussianization, introduced in the seminal work by (Friedman, 1987) and further

developed in (Chen & Gopinath, 2000; Laparra et al., 2011), which consists of seeking

for a transformation Gx that converts a multivariate dataset X ∈ R`×d in domain X to a

domain where the mapped data Y ∈ R`×d follows a multivariate normal distribution in
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domain Y , i.e. pY (y)∼N (0,I):

Gx : x ∈ Rd 7→ y ∈ Rd

∼ pX(x) pY (y)∼N (0,Id),
(5.1)

where inputs and mapped data points have the same dimensionality x,y ∈ Rd , 0 is a vector

of zeros (for the means) and Id is the identity matrix for the covariance of dimension d.

Using the change of variable formula one can estimate the probability of a point x in the

original domain:

pX(x) = pY (y)|JGx(y)|, (5.2)

where pX(x) is the probability distribution of the original data point x, and |J f (y)| is the

determinant of the Jacobian of the transformation Gx in the point y. For this formula to

work, Gx has to be differentiable, i.e. the |JGx(y)|> 0,∀y. The proposed Gaussianization

method in this Thesis, RBIG, obtains a transformation Gx that fulfills this property, cf.

(Laparra et al., 2011). The other part of the product is easy to compute since pY (y) can

be estimated since pY is a multivariate Gaussian by construction. Therefore RBIG can be

easily applied to estimate the probability of data points in the original domain, pX(x).

RBIG is an iterative algorithm, where in each iteration, n, two steps are applied: 1)

a set of d marginal Gaussianizations to each of the variables, Ψ= [Φ1, . . . ,Φd], and 2) a

linear rotation, R ∈ Rd×d:

x[n+1] = R[n] ·Ψ[n](x[n]), n = 1, . . . ,N (5.3)

where N is the number of steps (iterations) in the sequence, n = 1, . . . ,N. The final

transformation Gx is the composition of all performed transformations through iterations.

In (Laparra et al., 2011) is demonstrated that with enough iterations the method converges

and the transformed data follows finally a standardized Gaussian, i.e. pY (y)∼N (0,Id),

taking y = x[N].

An illustration of how RBIG can be adapted to describe the distribution of remote

sensing data is shown in Fig. 5.1. In this example, the dataset is taken from the Sentinel-2

image Australia (see Table 5.1 for details), which has d = 12 bands, and use RBIG to

Gaussianize its pixel’s distribution. Therefore, it can be observed that the Gaussianized

data follows a Gaussian distribution. Besides, the inverse of the learned Gaussianization

transformation is applied to randomly generated Gaussian points obtaining synthetic new
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Real Image Original Data Gaussianized data Synthesized data

Figure 5.1: Illustration of synthesized data using RBIG approach in real images. From left to
right: images in rgb composition, representation of the values for the first two bands of the image,
Gaussianized data, and synthesized data.

data that follows a deemed similar distribution as the original one. This illustrates the

invertibility property of RBIG, which allows us to estimate densities in the original domain

and use the well-known relation between probability and anomaly to derive unsupervised

density-based anomaly and change detectors.

5.2.1 RBIG for Detection of Anomalies

One of the most successful methods applied to the problem of anomaly detection is the

Reed-Xiaoli (RX) method (Reed & Yu, 1990a), a successful type of matched filter. The

idea behind the RX method can be interpreted in probabilistic terms (Padron-Hidalgo et al.,

2021); intuitively, a data point is more anomalous when it has less probability to appear:

A(x) ∝
1

pX(x)
. (5.4)

Actually, when the distribution is assumed to be Gaussian, pX ∼ pG, this relation defines

the RX method anomaly detector, i.e. A(x) ∼ ARX(x). Actually ARX(x) is equivalent

to the Mahalanobis distance between the data point and the mean, i.e. ARX(x) = (x−
µ)>Σ−1(x−µ), where p(x)∼N (0,Σ).

While RX has been widely used, it has the limitations inherent to the Gaussian dis-

tribution assumption. The use of kernel methods has been proposed to generalize the

RX method to the nonlinear and non-Gaussian case (Heesung Kwon & Nasrabadi, 2004;

Padron-Hidalgo et al., 2021). Kernel methods define the covariance in a higher dimensional

Hilbert feature space, which in the RX method translates into replacing the covariance

matrix by a kernel matrix that estimates the similarity between samples (Camps-Valls et al.,

2009; Rojo-Álvarez et al., 2017). In practice this implies that correlation is substituted
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by a non-linear similarity measure. Therefore the anomaly detected using the kernel RX

(KRX) method can be formulated as:

AKRX(x) ∝
1

pK(x)
, (5.5)

where pK(x) is the distribution induced by using the kernel function instead of the covari-

ance. The kernel RX (KRX) is an elegant extension of the RX, yet it has the problem of

fitting kernel parameters and the high computational cost (as one has to invert a kernel

matrix, which has cubic cost with the number of points `). Whereas some heuristics exist

in the literature to fit the kernel parameters, in practice one only achieves the full potential

of the KRX approach by fitting the parameters after cross-validation (Padron-Hidalgo et al.,

2021). This requires having access to labeled data as anomalous versus non-anomalous

classes, which is not a very realistic and not even practical setting. In addition, the more

useful and practical of unsupervised anomaly detection (i.e. no labeled data available)

problems will be addressed. Therefore, in these comparisons, the kernel method parameter

will be fitted using the most successful (and sensible) heuristic to set the Gaussian kernel

lengthscale σ as the average of all distances among X.

As an alternative to linear measures of anomalousness like in RX, or nonlinear yet

implicit feature transformations with parameters to tune like in KRX, here is proposed

a straightforward approach to estimate the probability density function with RBIG (sec.

5.2). This will give us a nonparametric parameter-free and efficient estimation of the data

distribution. RBIG has optimal way of fitting the parameters of the distribution that do not

require labeled data, and scales linearly with the data. By using RBIG to compute pX , the

method proposed is described:

ARBIG(x) ∝
1

pRBIG(x)
. (5.6)

An important aspect to take into account is the intrinsic characteristics of the data used

to estimate the density, which has implications in the quality of the estimation. When the

distribution contains even a moderate number of anomalies, an accurate density estimate

will cast anomalies as regular points, i.e. non-anomalous. This vastly depends on the

flexibility of the class of models used. When the model is rigid like in the RX case, this is

not a problem since it cannot be adapted to the anomalies. For the KRX one can control

this effect by tuning the kernel lengthscale and the regularization term, but as explained

before requires labeled data. This is an important aspect to take into account mostly in
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the anomaly detection scenario, where all data (included the anomalous samples) are used

to estimate the density. Therefore, an hybrid model that combines the (too rigid) RX

model with the (too flexible) RBIG model is proposed. The hybrid model first selects

the data more likely not to be anomalous using RX and then uses this data to learn the

Gaussianization transform with the RBIG model. This tries to avoid using anomalous

data to train RBIG, which after all is intended to learn the background or pervasive data

distribution. The number of data points selected as non-anomalous in the first step will

define the trade-off between flexibility and rigidity.

5.2.2 RBIG for Change Detection

Change detection can be approached by setting thresholds on the change image (i.e. the

difference between the two subsequent images for optical imagery or ratios in radar

imagery) or from a purely density estimation standpoint. It will be approached it from the

latter angle using RBIG. This is certainly a more challenging approach, but has several

associated advantages: 1) only the first image (or all previous images before the changed

one) is considered to estimate the regular/background density; 2) there is no need to

corregister images since the method operates in the geometric space defined by the image,

not in the spatial domain; and 3) unlike a discriminative approach, a generative model like

RBIG will allow us to derive useful descriptors of the image statistics, as well as to be

refined as more images are acquired.

The idea to exploit RBIG for change detection is using data coming from the first

image X1 only to estimate the probability model and then evaluating the probability (or

change score, C) for each point in the second image X2, as follows:

C(x2) ∝
1

pX1(x2)
. (5.7)

As for the anomaly detection case, one can use different models to estimate pX1 . The most

widely used is the Gaussian model. As in the previous section, when assuming a Gaussian

distribution for the input data, the RX method can be used here too, i.e. CRX(y).

Likewise, kernel methods have been proposed to alleviate the strict assumption of

Gaussian distribution (Padron-Hidalgo et al., 2021) . While different configurations were

proposed in order to take into account only the anomalous changes, here one use the

configuration designed for change detection. Following the idea in equation (5.7), the data

of the first image (X1) is used to estimate the kernel and then the method is evaluated in
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the second image:

CKRX(x2) ∝
1

pK(X1)(x2)
. (5.8)

Equivalently, one can use RBIG to estimate the probability of the first image and evaluate

the probability in the second one:

CRBIG(x2) ∝
1

pRBIG(X1)(x2)
. (5.9)

It is important to note that, in this case, the data used to estimate the probability density

does not contain anomalies (changes in this setting) so the hybrid model is not needed

here.

5.3 Experimental Results

This section analyzes the performance of the proposed RBIG method for anomaly and

change detection. In order to assess the robustness, tests were performed in both simulated

and real scenes of varying dimensionality and sample size. The detection power of the

methods were evaluated quantitatively through the Receiver Operating Characteristic

(ROC) and Precision-Recall (PR) curves, along with the Area Under the Curve (AUC)

scores. Besides, examples of detection maps of each method were provided to evaluate

their quality by visual inspection.

Three experiments have been performed in this setting. The first experiment is designed

to illustrate the effect of the evaluated in an anomaly detection (AD) toy example. The

second experiment deals with AD problem in different real scenarios: detection of air

planes, latent fires, vehicles, and urbanization (roofs). The third experiment is related

to evaluate the methods in change detection (CD) problems involvin floods, fires and

droughts. Table 5.1 summarizes the different data sets used in the experiments. In order to

ease the reproducibility, MATLAB code implementations of the all methods are provided.

Moreover, a database with the labeled images used in the second and third experiments is

available in https://isp.uv.es/RBIG4AD.html.

5.3.1 Experiment 1: Simulated Anomalies

The aim of this experiment is to illustrate the behavior of the proposed methods in challeng-

ing distributions exhibiting highly nonlinear feature relations. A two-dimensional dataset

https://isp.uv.es/RBIG4AD.html
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Table 5.1: Images attributes in the experimentation dataset. AD : Anomaly Detection dataset. CD :
Change Detection dataset.

Images Sensor Size Bands SR
AD
Cat-Island AVIRIS 150 x 150 188 17.2m
WTC AVIRIS 200 x 200 224 1.7m
Texas-Coast AVIRIS 100 x 100 204 17.2
PAVIA ROSIS-03 150 x 150 102 1.3
CD
Texas Cross-Sensor 301 x 201 7 30m
Argentina Sentinel-2 1257 x 964 12 10-60m
Chile Landsat-8 201 x 251 12 10-60m
Australia Sentinel-2 1175 x 2031 12 10-60m

(a) RX (b) KRX (c) RBIG (d) HYBRID

Figure 5.2: Synthetic experiment to illustrate the methods performance when detecting anomalies.
The color bar shows the intensity in terms of anomaly score from dark blue (less) to yellow (more).
The image (a) correspond to RX detector, image (b) is the kernel version of RX, (c) represent the
RBIG method and (d) showcase the hybrid model.

was designed, where the non-anomalous data is in a circumference and the anomalous

data in the middle. Figure 5.2 shows the performance of the different methods. The RX

method assumption does not hold (the data is clearly non-Gaussian), hence it shows poor

performance. The performance of KRX is better than RX but some false detections emerge

in the outer circle, mainly related to the difficulty to select a reasonable kernel parameter.

The direct application of RBIG easily identifies the anomalous points since they are far

from the more dense (most probable) region. The proposed hybrid model further refines

the detection since the density is estimated from pervasive data yielded by RX only.

5.3.2 Experiment 2: Anomaly Detection in Real Scenarios

Tests were performed in four real examples. Table 5.1 summarizes relevant attributes of

the datasets such as sensors, spatial and spectral resolution.
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WTC RX(0.95) K-RX(0.82) RBIG(0.95) RBIG-HYBRID (0.95)

Texas-Coast RX (0.99) K-RX (0.86) RBIG (0.94) RBIG-HYBRID(0.99)
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Figure 5.3: Anomaly detection predictions in four images (one per row). First column: Cat-Island,
World Trade Center (WTC), Texas Coast and Pavia original datasets with anomalies outlined in
green. From second column to the last column: activation maps and the AUC values (in parenthesis)
for the RX, KRX, RBIG and the HYBRID models, respectively.

Data collection

Multispectral and hyperspectral images acquired by the AVIRIS and ROSIS-03 sensors

were collected. Figure 5.3 showcases the scenes used in the experiments. The AD scenarios

consider anomalies related to a diversity of problems: airplane, latent fires, urbanization

and vehicle detection (Guo et al., 2016; Kang et al., 2017; Padrón-Hidalgo et al., 2019).

The Cat-Island dataset corresponds to the airplane captured flying over the beach and

it is considered a strange object when compared to the rest of the image (a white spot in

the middle of a beach) and the percentage of anomalies represent the 0.09% of the scene.
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(a) Cat-Island (b) WTC (c) Texas Coast (d) GulfPort

Figure 5.4: Anomaly detection ROC curves in linear scale for all scenes. Numbers in legend display
the AUC values for each method.
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Figure 5.5: Anomaly detection results of the bootstrap experiment for 1000 experiments. AUC
values and standard deviation for each method are shown as boxplot, red line represent the median
value, the blue box contains 95% of the values, black lines represent the maximum and minimum
values.

The World Trade Center (WTC) image was collected by the Airborne Visible Infra-Red

Imaging Spectrometer (AVIRIS) over the WTC area in New York on 16 September 2001

(after the collapse of the towers in NY). The data set covered the hot spots corresponding

to latent fires at the WTC, which can be considered as anomalies and it represent the 0.23%

of the scene. In the Texas Coast dataset, the anomalies represent the 0.67% of the scene

and the image contains roofs built on a wooded site and bright spots that reflect light which

can be considered an anomaly. The GulfPort dataset correspond to a battery of airplanes

taxied on the runway and the pecentage of anomalies represent the 0.60% of the scene.

Numerical and Visual Comparison

It is important to take into consideration that KRX requires the selection of some hyper-

parameters, being the kernel parameter the most critical one. In order to perform a fair

comparison while staying in an unsupervised learning setting, The standard RBF kernel

function was used, k(a,b) = exp(−‖a−b‖2/(2σ2)) and set the lengthscale parameter σ

to the median distance between all examples.

A visual comparison of the results in terms of activation maps for all methods is given

in Fig. 5.3. They display the predictions given to each sample. The prediction maps show
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Table 5.2: AUC results for Anomaly Detection images. The value for the best method for each
image is in bold.

METHODS RX K-RX RBIG HYBRID
Cat-Island 0.96 0.70 0.99 0.99
WTC 0.95 0.82 0.95 0.95
Texas-Coast 0.99 0.86 0.94 0.99
GulfPort 0.90 0.95 0.95 0.95

a binary representation between change and non-change samples obtained from the model

subject to a threshold. Results in all scenes demonstrate that (1) RX is a competitive

method for detection, (2) KRX struggles to obtain reasonable results mainly due to the

problem of hyperparameter tuning, (3) RBIG alone excels in all cases, while the hybrid

approach (i.e. RX followed by RBIG) refines the results and yields clearer activation maps

with sharper spatial detections.

Additionally, for a quantitative assessment of the results, it is customary to provide

the ROC curves and to derive scores like the AUC from it. Figure 5.4 shows the ROC

curves and Table 5.2 summarizes all AUC values for all images and methods. For each

experiment, 1000 runs were performed for testing the significance of the methods based on

the ROC profiles. The results are shown in Figure 5.5. Although the RBIG model achieves

good results, RX model is able to compete and achieve results as good as RBIG for some

images. The HYBRID model is able to keep the properties of the above mentioned models

obtaining results equal or better than any other method. While KRX obtains a reasonable

performance in some images, it clearly fails in some situations like the Cat-Island image.

The low standard deviations show that all methods but the KRX are clearly robust with a

little bit bigger standard deviation for the RX method in most cases.

5.3.3 Experiment 3: Real and Natural Changes

This section reports an experiment to analyze the performance of the proposed methods

in change detection problems. The database is composed of different scenes with natural

changes, whose characteristics are summarized in Table 5.1.

Data collection

Pairs of multispectral images were collected in such a way that they coincide at the

same spatial resolution but at different acquisition time, the images are co-registered.

The images are selected in such a way that an anomalous change happened between

the two acquisition times. All the images were manually labeled finding the changed

pixels. Labeling considered avoiding shadows, changes in lighting and natural changes
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in vegetation which could compromise results evaluation. All images contain changes

of different nature, which allows us to analyze and study how the algorithms perform in

heterogeneous realistic scenarios. The Texas wildfire dataset is composed by a set of four

images acquired by different sensors over Bastrop County, Texas (USA), and is composed

by a Landsat 5 TM as the pre-event image and a Landsat 5 TM plus an EO-1 ALI and

a Landsat 8 as post-event images. This phenomenon is considered the most destructive

wildland-urban interface wildfire in Texas history and the interest region represent the

19.54%. The Argentina image represents an area burned between the months of July

and August 2016 due to the high temperatures in these crop areas, the change region

representing the 7.5% of the whole scene. The Chile dataset represents the Aculeo lake in

central part of this country, which has now dried up completely. These images contrast the

lake in 2014, when it still contained substantial water, and 2019, when it consisted of dried

mud and green vegetation. Scientists attribute the lake’s decline to an unusual decade-long

drought, coupled with increased water consumption from a growing population, and the

changed region represents a relevant 10.81% of the whole scene. The last dataset labeled

as Australia shows the natural floods caused by Cyclone Debbie in Australia 2017. Storm

damage resulted from both the high winds associated with the cyclone, and the very heavy

rain that produced major riverline floods. The change samples represent an important

portion of the scene, the 17.35% of pixels affected. Since our RBIG approach only takes

the time t1 image, these big changes do not have a critical impact on method’s performance.

Numerical and Visual Comparison

Figure 5.6 shows the RGB composites of the pairs of images, the corresponding reference

map and activation maps obtained. RBIG obtains clearly better results than the other

methods in all cases; very good performance in three out of the four scenarios and

a clear advantage in the most difficult one (Chile image). When dealing with highly

skewed datasets, PR curves give a more informative picture of an algorithm’s performance

compared to ROC. Figure 5.7 shows both the ROC and the PR curves results for all

methods and all the images. In all cases RBIG outperforms the other methods largely,

thus suggesting the suitability of adopting a more direct approach of density estimation

in the change detection problems too. A summary of the AUC values of all methods and

scenarios is shown in Table 5.3. The RBIG approach is to able to estimate the change

samples with a high accuracy overtaking in 7%, 3%, 6% and 5% respectively with respect

the second best method.
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Chile (t1) Chile (t2) RX (0.64) KRX(0.66) RBIG (0.72)

Australia (t1) Australia (t2) RX (0.86) KRX(0.88) RBIG (0.93)

Figure 5.6: Change detection results for different images. First two columns show the images
before and after the change, with the changed region highlighted in green. Columns three to five
show the prediction maps for the different methods, the amount of change detected in each pixel is
colored from white (less) to red (more). AUC values are given in parenthesis. The changed region
is outlined in black to facilitate the visual inspection.

Table 5.3: AUC results for Change Detection images.
The best value for each image are in bold

METHODS RX K-RX RBIG
Texas 0.91 0.80 0.98
Argentina 0.94 0.93 0.97
Chile 0.64 0.66 0.72
Australia 0.86 0.88 0.93
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a) Texas b) Argentina c) Chile d) Australia

Figure 5.7: ROC (top row) and Precision-Recall (bottom row) curves for change detection problems.

5.4 Specific contributions

In this chapter, a novel detector was introduced to cope with anomaly and change detection

problems in remote sensing image processing. The method is based in a unsupervised

setting with no parameters to fit. The model assumption is based on detecting anomalies

by estimating probabilities of pixels. The proposed methods are based on visual inspection

(activation maps) and accuracy values (AUC). The algorithms testing is implemented in

a wide range of remote sensing images, in a diversity of problems, dimensionality and

number of examples. In addition, a hybrid approach is applied after a regular anomaly

detector: this facilitates the density estimation and improves the results notably.
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This Thesis proposed novel machine learning algorithms for the detection of anomalies in

Remote Sensing imagery. Several methods were developed and tested under the kernel

methods for improve accuracy, versatility and computational efficiency. On the other hand,

a novel proposal was presented based on explicit PDF estimation under the rotation-based

iterative Gaussianization framework. In summary, several methods were developed for

detection of anomalies and changes in satellite images.

On the efficiency of the kernel Cook’s distance for ACD

The kernel Cook’s distance for anomalous change detection settings was focused on remote

sensing image change detection problems. The key in the proposed methodology was to

redefine the anomalous change detection problem in a reproducing kernel Hilbert space

where the data are mapped to. This endorses the methods with improved capacity and

flexibility since nonlinear feature relations (and hence outliers) can be better identified.

However, the obtained kernelized method encounters huge computational problems in

practice, which hampers its applicability and wider adoption. To resolve this problem,

computationally efficient techniques were proposed based on random Fourier features and

low-rank Nyström approximations, and compared their capabilities in a wide range of

both simulated and real changes. The Nyström approximation excelled over the rest of

the implementations, in both simulated and real scenarios, and in terms of accuracy and

efficiency. Future work will study other related kernel diagnostic measures. Extension to

online and multi-change problems are also topics of further research.
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On the Kernel RX distance for ACD

The family of kernel-based anomaly change detection algorithms was extended to the

standard methods like the RX detector (Lu et al., 1997; Reed & Yu, 1990b), and many

others in the literature (Theiler & Perkins, 2006; Theiler et al., 2010). The key in the

proposed methodology was to redefine the anomaly detection in a reproducing kernel

Hilbert space where the data are mapped to. This endorses the methods with improved

capacity and flexibility since nonlinear feature relations (and hence anomalies) can be

identified. The introduced methods generalize the previous ones since they account for

higher-order dependencies between features. The proposed methods obtain better results

than their linear counterpart for all the performed experiments. Implementations of the

methods were provided and a database of pairs of images with anomalous changes that can

be found in real scenarios.

In practical terms, kernel ACD methods presented here yielded improved results

over their linear counterparts in multiple situations. The robustness of this conclusion

performing experiments was tested in a wide range of problems. Experiments with different

complexity levels were designed : synthetic anomaly, real but manually introduced anomaly

and real data where the anomaly has been manually labeled. The performance in data

coming from different sensor (multi and hyperspectral) was analyzed, showing that the

kernel methods are robust to different number of input data dimensions as expected

(Gómez-Chova et al., 2011). Standard metrics (AUC and detection) were adopted and the

results over several runs were averaged to avoid skewed conclusions.

Interestingly, the EC assumption may be still valid in Hilbert spaces, especially when

high pervasive distortions mask anomalous targets. This observation opens the door to the

study of the anomalies distribution in Hilbert spaces in the future. A second important

conclusion of this approach to be highlighted is that, although the XY family seams to

work better for the K-EC-ACD method, among all 16 methods implemented, there was no

a clear winner between all methods. After all, each problem has its own characteristics

and the different methods adapt to different particularities. In the future, the plan is to

extend the study with low-rank, sparse and scalable kernel versions to cope with high

computational requirements.

On the efficiency of the nonlinear RX anomaly detectors

The family of efficient nonlinear anomaly detection algorithms based on the RX method

was developed to cope with anomaly detection approach. The theory of reproducing kernels

was proposed as well as several efficient methods to approximate the kernel one. The
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kernel Reed-Xiaoli (KRX) detector was improved using efficient and fast techniques based

on feature maps and low-rank approximations. Among all methods, both the Nyström and

the equivalent low-rank (LRX) approximation achieves the best results and yields a more

efficient and accurate non-linear RX method to be applied in practice. For future research,

we plan to study the behaviour of fast approximations for alternative KRX variants (Theiler

& Grosklos, 2016; Theiler & Grosklos, 2016). Note that the presented methodologies for

fast KRX can be applicable to other kernel anomaly detectors, in local settings, and for

real-time detection.

On the rotation-based iterative Gaussanization

A novel detector based on multivariate Gaussianization was proposed. The methodology

copes with anomaly and change detection problems in remote sensing image processing,

and meets all requirements of the problems: is an unsupervised method with no parameters

to fit, it can deal with large amount of data, and it is more accurate to competing approaches.

The model assumption is based on detecting anomalies by estimating probabilities of pixels.

The proposed method excelled quantitatively (AUC, ROC and PR curves) and qualitative

based on visual inspection over the rest of the implementations, in both anomaly and change

detection. The evaluation considered a wide range of remote sensing images, in a diversity

of problems, dimensionality and number of examples. Also, a hybrid approach was

suggested where the Gaussianization method is applied after a regular anomaly detector:

this facilitates the density estimation and improves the results notably.

Related works that support this thesis.

The Thesis is completed by an annex which includes a compendium of peer-reviewed

publications in remote sensing international journals, summarized as follows:

1. Kernel Anomalous Change Detection for Remote Sensing Imagery. Padrón-Hidalgo,

J. A. and Laparra, V. and Longbotham, N and Camps-Valls, G. IEEE Transactions on

Geoscience and Remote Sensing 10, vol 57, pages: 7743-7755, 2019. Journal Impact

Factor (5.85). Q1: Electrical and Electronic Engineering. Q1: Remote Sensing.

2. Efficient Nonlinear RX Anomaly Detectors. José A. Padrón Hidalgo and Adrián

Pérez-Suay and Fatih Nar and Gustau Camps-Valls IEEE Geoscience and Remote

Sensing Letters, pages: 1-5, 2020. Journal Impact Factor (3.83). Q1: Electrical and

Electronic Engineering. Q1: Geochemistry and Geophysical.

3. Efficient Kernel Cook’s Distance for Remote Sensing Anomalous Change Detection.

Padrón-Hidalgo, J.A. and Pérez-Suay, A. and Nar, F. and Laparra, V. and Camps-
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Valls, G. IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, vol 13, pages: 5480 - 5488, 2020. Journal Impact Factor (3.83). Q1:

Electrical and Electronic Engineering. Q1: Geographic Physical.

4. Unsupervised Anomaly and Change Detection with Multivariate Gaussianization.

Padron, J. and Laparra, V. and Camps-Valls, G. Submitted to IEEE Transactions on

Geoscience and Remote Sensing, 2020. Journal Impact Factor (5.85). Q1: Electrical

and Electronic Engineering. Q1: Remote Sensing.

Other related publications in conferences and workshops are listed here too for complete-

ness:

1. Kernel Anomalous Change Detection. Jose A. Padrón Hidalgo and Valero Laparra

and Gustau Camps-Valls Young Professionals Conference on Remote Sensing ,

Aachen, Germany 2018

2. Nonlinear Cook Distance for Anomalous Change Detection. Jose A. Padrón Hi-

dalgo and Adrián Pérez-Suay and Fatih Nar and Gustau Camps-Valls 2018 IEEE

International Geoscience and Remote Sensing Symposium, València, Spain 2018

3. Randomized RX for Target Detection. Fatih Nar and Adrian Perez-Suay and Jose

Antonio Padron and Gustau Camps-Valls 2018 IEEE International Geoscience and

Remote Sensing Symposium, València, Spain 2018
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SUMMARY IN SPANISH

La Tesis se basa en un compendio de publicaciones de nivel científico publicadas en revistas

de reconocimiento internacional. Todas estas publicaciones se centran en el desarrollo de

modelos de aprendizaje automáticos para la detección de cambios anómalos entre pares

de imágenes, así como la detección de anomalías en imágenes de teledetección. Las

publiaciones en formato original de cada revista se localizan en el apartado de anexos.

A continuación se expone un resumen de esta Tesis en castellano con el objetivo que

pueda llegar a los usuarios de la Universitat de València, especialmente como inspiración

aquellos estudiantes que se inician en este interesante campo del aprendizaje automático

en la Teledetección.

Motivación y objetivos

La Tierra es un sistema complejo de redes dinámicas y en los últimos cientos de años la

actividad humana ha precipitado enormes cambios en el Planeta. No hace falta decir que en

la actualidad el desafío más importante para la ciencia es detectar y determinar las causas de

tales cambios. En este escenario, los datos de observación de la Tierra nos permiten detectar

automáticamente anomalías en la cubierta terrestre tanto en el dominio espacial como en

el temporal. Esto es posible actualmente mediante el uso de imágenes satelitales de alta

resolución y de series temporales de imágenes, junto con poderosas técnicas estadísticas

para procesarlas. Sin embargo, en los últimos años, los grandes y heterogéneos flujos de

datos adquiridos por las constelaciones de satélites, obstaculizan la adopción de técnicas

estadísticas avanzadas de aprendizaje automático para la detección tanto de anomalías

como de cambios anómalos entre imágenes de satélites. El objetivo principal de esta Tesis

es desarrollar y aplicar detectores novedosos y robustos para detectar aquellos eventos o

situaciones que se consideran atípicos o fuera de lo normal como es el caso de las sequías,

inundaciones, incendios forestales, urbanizaciones y otros ejemplos que a menudo suelen

aparecer en la monitorización de la Tierra. En la actualidad la mayoría de los algoritmos

que tratan la detección de anomalías y cambios anómalos suelen ser cuestionados por la

precisión o la eficiencia a la hora de detectar dichos eventos. Esta Tesis se basa en dos

marcos principales para desarrollar, mejorar e implementar detectores robustos. Por un
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lado los métodos basados en el Kernel proporcionan un marco teórico consistente y bien

fundamentado para el desarrollo de técnicas que permiten lidiar con la no linealidad de

los datos y presentan propiedades útiles cuando se trata de un número bajo de muestras

de entrenamiento en datos de alta dimensionalidad. Uno de los problemas a los que nos

enfrentamos con estos métodos es el alto coste computacional debido al gran tamaño que

presentan las imágenes satelitales. De aquí se deriva otro de los objetivos de esta Tesis que

es desarrollar modelos automáticos, rápidos y eficientes basados en aproximaciones del

Kernel. El objetivo es que estos métodos superen en precisión de detección a los métodos

lineales. Por otra parte, otro de los marcos utilizados se basa en la estimación explícita de

la densidad. Este objetivo se centra en la necesidad de desarrollar algoritmos de detección

que se entrenen de manera no supervisada, ya que los métodos basados en Kernel y sus

aproximaciones necesitan ajustar de forma manual o mediante la validación cruzada sus

parámetros. Esta técnica que se basa en la Gaussianización multivariante, permite estimar

con precisión densidades multivariantes, un problema clásico en estadística y el aprendizaje

automático sobre todo cuando los datos tienen una gran dimensionalidad. A su vez, este

método es empleado de manera no supervisado para la detección de cambios y anomalías

en las imágenes de teledetección.

Metodología

La Tesis aborda problemas relacionados con la detección de cambios anómalos que

implícitamente involucra la detección de cambios y la detección de anomalías como

casos particulares, diseñando algoritmos de aprendizaje automático que resuelvan estos

problemas. Estudiamos el rendimiento de todos los algoritmos propuestos en un número

representativo de imágenes satelitales multiespectrales y de alta resolución espacial como

AVIRIS, Sentinel-2, WorldView-2, MODIS, Quickbird y Landsat8, así como en una

amplia gama de situaciones relacionadas con sequías, incendios forestales, inundaciones

y urbanización. Los métodos propuestos se basan principalmente en la estimación de

distancias y probabilidades. En el caso de los modelos basados en distancia se centraron

en el conocido detector Reed-Xiaoli (RX) y su familia de detectores, así como en la

distancia de Cook y sus aproximaciones. Ambos enfoques hacen referencia a versiones

lineales y no lineales para la detección de anomalías y cambios anómalos en imágenes de

teledetección. La familia de los métodos RX es extendida a su versión no lineal mediante

el uso de kernels de forma que es capaz de mejorar la precisión de la detección con

respecto a los métodos lineales originales. Por otra parte, la distancia de Cook se extiende

mediante el uso de kernels para abordar los problemas de cambios anómalos. Además, se
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utilizan aproximaciones del Kernel basadas en el método de características aleatorias de

Fourier y el método de Nyström que ayudan a mejorar la eficiencia, el coste computacional

y la precisión de los modelos. En el caso de los modelos basados en estimación de

probabilidades se ha utilizado la metodología de Gaussianization multivariante iterativa

que permite describir cualquier distribución multivariante y hace un uso eficiente de los

recursos de memoria y computación. Es un método no supervisado que no necesita ajustar

ningún parámetro. Se demostró la eficiencia del método en experimentos que implican

tanto la detección de anomalías como la detección de cambios en diferentes conjuntos

de imágenes de satélites. Para la detección de anomalías proponemos dos enfoques. El

primero utilizando directamente la Gaussianización iterativa basada en rotación (RBIG)

y el segundo utilizando un modelo híbrido que combina la Gaussianización y el método

Reed-Xiaoli (RX) que habitualmente es utilizado en la detección de anomalías.

Métodos Kernel para la detección de anomalías y cambios anómalos.

El marco teórico de aprendizaje mediante los métodos del kernels, han surgido como

uno de los escenarios más apropiados para el análisis de datos de teledetección en la

última década. Los métodos kernels permiten generalizar los algoritmos expresandos

en términos de su matriz de Gram, de manera que se tengan en cuenta las relaciones de

características de orden superior (no lineales), pero aun así trabajando mediante álgebra

lineal. Los métodos Kernel destacan en el tratamiento de datos con tamaños que van de

bajos a moderados, pueden acomodar datos de múltiples fuentes, modelar distribuciones

complejas con funciones kernel flexibles, y hacer frente a datos de alta dimensionalidad.

Además se ajustan adecuadamente a las características particulares de las señales de

Observación de la Tierra, tales como series temporales muestreadas de manera desigual,

datos faltantes, distribuciones no gaussianas y procesos no estacionarios. Los métodos

Kernel han sido tradicionalmente diseñados para problemas de clasificación y regresión.

Sin embargo, la familia de métodos Kernel se expande actualmente a la detección de

cambios multitemporales, la estimación de dependencia no lineal, la prueba de hipótesis, y

la detección de anomalías, que constituyen el eje central de esta Tesis.

A partir de la ventaja que ofrece la formulación basada en métodos kernels se han

extendido dos métodos lineales altamente utilizados para la detección de anomalias y

cambios anómalos. Por un lado, se ha desarrollado la kernelización de la distancia Cook.

Esta distancia es usada para la detección de cambios anómalos en un esquema donde el

indicador de anomalías proviene de la evaluación estadística de los residuos de un regresor

entre imágenes en adquisiciones de tiempos diferentes. En particular se desarrolló la
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formulación matemática para sustituir las regresión lineal por el método Kernel Ridge

Regression. Por otro lado se introducen métodos Kernel para implementar una extensión

no lineal (KRX) de la familia de detectores de cambios anómalos basados en RX. En

particular, se centró en los algoritmos que utilizan la distribución de contorno gaussiano

y elíptico y los se extiendes a sus equivalentes no lineales basados en la teoría de la

reproducción del Kernel en el espacio de Hilbert. Se ilustra el rendimiento de los métodos

introducidos en una amplia serie de imágenes de distintos satélites.

Cabe destacar que ambas propuestas presentan un alto coste computacional debido al

trabajo con imágenes de satélites. Para solucionar este problema se han utilizado distintas

técnicas para obtener aproximaciones eficientes de la función kernel. Una de las técnicas

se basa en el uso de bases aleatorias de Fourier (Rahimi & Recht, 2007). Estas bases

definen un mapeo que toma los datos en el espacio de entrada y los transfiere a un nuevo

espacio euclideo de dimensiones finitas, donde el problema es linealmente separable y el

producto interno de los datos mapeados se aproxima a la función Kernel. Así, el algoritmo

proporcionado es computacionalmente más eficiente y como se mostrará a lo largo de esta

Tesis, converge a velocidades similares y a escalas de error similares. Otra técnica se basa

en el uso de las características aleatorias ortogonales (ORF), las cuales son similares a la

técnica anterior pero imponiendo ortogonalidad sobre la matriz de transformación lineal.

Además, se han considerado aproximaciones de bajo rango (Fine & Scheinberg, 2001)

de la matriz Kernel como por el ejemplo el método de Nyström, que permiten reducir las

complejidades del tiempo de ejecución a la hora de invertir la matriz kernel. Todas estas

aproximaciones se implementan y testean a lo largo de esta Tesis tanto para la detección

de anomalías como para la detección de cambios anómalos.

Estimación de densidad con transformación gaussiana

La Gaussianización iterativa basada en rotación (RBIG) es un método no paramétrico

para la estimación de la densidad de distribuciones multivariadas. Se utilizó el método

RBIG como no aprendizaje supervisado para detectar anomalías y cambios en las imágenes

de teledetección. La metodología de Gaussianización permite estimar con precisión las

densidades multivariantes, un problema clásico en estadística y el aprendizaje automático.

El método RBIG se fundamenta en la idea de la Gaussianización multivariada, que consiste

en buscar una transformación que convierta un conjunto de datos multivariados a un

dominio en el que los datos mapeados sigan una distribución normal multivariada. Por lo

tanto, aplicando la fórmula del cambio de distribucion bajo transformaciones, el modelo

permite estimar la probabilidad en cualquier punto del dominio original. En nuestro caso
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se utilizó esta estimación para determinar que los píxeles de baja probabilidad estimada se

consideran anomalías. Esta es la misma definición de anomalia que la usada por el método

RX (mencionado arriba) el cual asume distribución Gaussiana en el dominio original.

Un aspecto importante a tener en cuenta son las características intrínsecas de los

datos utilizados para estimar la densidad, lo que tiene implicaciones en la calidad de la

estimación. Cuando la distribución contiene incluso un número moderado de anomalías,

una estimación precisa de la densidad arrojará las anomalías como puntos regulares, es

decir, no anómalos. Esto depende en gran medida de la flexibilidad de el tipo de modelo

utilizado. Cuando el modelo es rígido como en el caso del RX, esto no es un problema,

ya que no puede adaptarse a las anomalías. En el caso del KRX se puede controlar este

efecto ajustando sus parámetros principales incluyendo el término de regularización pero

requiere datos etiquetados. Este es un aspecto importante a tener en cuenta sobre todo

en el escenario de detección de anomalías, donde todos los datos (incluidas las muestras

anómalas) se utilizan para estimar la densidad. Por lo tanto, proponemos utilizar un modelo

híbrido que combina el modelo RX (demasiado rígido) con el modelo RBIG (demasiado

flexible). El modelo híbrido primero selecciona los datos con mayor probabilidad de

no ser anómalos utilizando el método RX y luego utiliza estos datos para aprender la

transformación de Gaussianización con el modelo RBIG. Esto trata de evitar el uso de

datos anómalos para entrenar a RBIG, que después de todo está destinado a aprender el

fondo o la distribución de datos no anómalos. El número de puntos seleccionados como no

anómalos en el primer paso definirá el equilibrio entre flexibilidad y rigidez. Por otra parte,

se aplicó la misma teoría para hacer frente a los problemas de detección de cambios en

teledetección. Es importante señalar que, en este caso, los datos utilizados para estimar

la densidad de probabilidad (primera imagen) no contienen anomalías, por lo que no es

necesario el modelo híbrido en el problema de detección de cambios.

Conclusiones

Basados en el aprendizaje automatizado se ha desarrollado una variedad de modelos tanto

para la detección de anomalías como para la detección de cambios anómalos. Se imple-

mentaron detectores novedosos y robustos capaces de detectar las anomalías con precisión

y eficiencia a partir de diferentes marcos teóricos. Por una parte, los métodos basados

en distancias se fundamentaron bajo la teoría del Kernel, así como sus aproximaciones

eficientes para reducir el costo computacional. Por otro lado, se desarrollaron métodos

que son estimadores de probabilidad basados en la Gaussianización multivariante iterativa

para la detección de anomalías y cambios en imágenes de teledetección. Todos estos
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detectores se implementaron y caracterizaron en distintos escenarios tanto simulados como

en situaciones reales, detectando anomalías tales como: sequías, incendios forestales,

inundaciones y urbanización, a partir de los sensores AVIRIS, Sentinel-2, WorldView-2,

MODIS, Quickbird y Landsat8. Todas estas imágenes fueron etiquetadas manualmente

debido al limitado acceso a las bases de datos para la validación de los mismos. Cabe

resaltar que estas bases de datos quedaran a la disposición de la comunidad científica así

como los códigos de todos los métodos empleados en esta Tesis. Los capítulos fueron

el resultado de diferentes inestigaciones científicas, los cuales muestran la teoría de los

métodos implementados así como las distintas aplicaciones en la observación de la Tierra.

En el capítulo 1 se hizo un breve recorrido del importante uso de la teledetección en la

observación de la Tierra. Se abordaron los principales conceptos de detección de anomalías,

detección de cambios y detección de cambios anómalos en el contexto de la teledetección.

Además, se hizo una breve reseña de los modelos de aprendizaje automáticos que más se

utilizan en la bibliografía haciendo énfasis en los que se han implementado.

En el capítulo 2 se presentó una versión kernelizada de la distancia de Cook (Cook,

1977). Este método que anteriormente había sido usado para la detección de anomalías en

datos estadísticos fue desarrollado para detección de cambios anómalos en imágenes de

teledetección. La clave de la metodología propuesta radicó en desarrollar la versión Kernel

de la distancia de Cook debido a la carencia de la versión linear de detectar anomalías

en datos con distribuciones no lineales. Por lo tanto, mapear los datos hacia el espacio

de Hilbert respaldó con una mayor capacidad y flexibilidad estos métodos, ya que las

relaciones de características no lineales (y por lo tanto los valores atípicos) pudieron

identificarse con mayor efectividad. Sin embargo, el método propuesto enfrentó problemas

de implementación debido al coste computacional, lo que dificultó su aplicabilidad y su

adopción en la práctica. Para resolver este problema, se propusieron técnicas computa-

cionales eficientes basadas en características aleatorias de Fourier y las aproximaciones

de Nyström de bajo rango. Se compararon las capacidades de los métodos en una amplia

gama de cambios anómalos tanto simulados como reales. La aproximación de Nyström

sobresalió sobre el resto de las implementaciones, tanto en los escenarios simulados como

en los reales, y en términos de precisión y eficiencia. En el futuro se propone el estudio de

otras medidas de diagnóstico relacionadas con el Kernel. Por otra lado, enfocarlos a los

problemas en línea y además, a los cambios múltiples.

En el capítulo 3 se implementaron modelos enfocados a la detección de cambios

anómalos. Esta vez, se desarrolló y se amplió la familia de algorítmos de detección

basados en los detectores RX (Reed & Yu, 1990b), y sus versiones elípticas (Theiler et al.,
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2010) haciendo uso de la teoría del Kernel. La clave de la metodología propuesta fue

redefinir la detección de cambios en un espacio infinito (Hilbert) donde los datos son

mapeados e implementar la versión Kernel de su contraparte lineal (KRX). Esto ayuda a

los métodos a identificar las anomalías con mayor facilidad. Los métodos introducidos

generalizan las versiones lineales anteriores, ya que tienen en cuenta las dependencias

de orden superior entre las características. Los métodos propuestos obtuvieron mejores

resultados que su contraparte lineal en todos los experimentos realizados. Se comprobó

mediante experimentos en una amplia gama de problemas la solidez de esta conclusión.

Se diseñaron experimentos con diferentes niveles de complejidad: anomalías sintéticas,

anomalías reales pero introducidas manualmente y datos reales donde la anomalía ha

sido etiquetada manualmente. Se analizó el rendimiento en los datos procedentes de

diferentes sensores (multi e hiper espectrales) mostrando que los métodos Kernel son

robustos para diferentes dimensiones de datos de entrada como se esperaba. Curiosamente,

la asunción del contorneado elíptico puede seguir siendo válida en los espacios de Hilbert,

especialmente cuando las distorsiones de alta penetración enmascaran objetivos anómalos.

Esta observación abre la puerta al estudio de la distribución de las anomalías en los

espacios Hilbert en el futuro. Una segunda conclusión importante de este estudio que

hay que destacar es que, aunque la familia XY parece funcionar mejor para el método

K-EC-ACD, entre los 16 métodos aplicados, no se observó un claro ganador en todos los

métodos. Después de todo, cada problema tiene sus propias características y los diferentes

métodos se adaptan a las diferentes particularidades. En el futuro se pretende ampliar el

estudio con versiones del Kernel de bajo rango, dispersas y escalables para hacer frente a

los altos requisitos de coste computacional.

Hasta el momento, el trabajo ha estado dirigido a la detección de cambios anómalos

entre pares de imágenes. En el capítulo anterior se propuso la implementación del KRX, y

en el capítulo 4 se propusieron varios métodos que aproximaran al KRX enfocados a la

detección de anomalías en una sola imagen. La versión kernelizada del método RX fue

mejorada utilizando técnicas eficientes y rápidas basadas en las caracterísicas aleatorias

de Fourier, las características aleatorias ortogonales, las aproximaciones de bajo rango

incluyendo en esta categoría el método de Nyström. Entre todos los métodos, tanto la

aproximación de Nyström como la equivalente de bajo rango (LRX) lograron los mejores

resultados y crearon un método no lineal más eficiente y preciso para ser aplicado en

la práctica. Para futuras investigaciones, se pretende estudiar el comportamiento de las

aproximaciones eficientes para otras variantes alternativas del KRX.

Una vez finalizado un estudio profundo basado en la teoría del Kernel, se ha llegado a
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la conclusión que dichos modelos son costosos computacionalmente comparados con su

contraparte lineal. Estos modelos también presentan parámetros que deben ser ajustados

para poder obtener la mayor eficiencia. En nuestro caso, estos parámetros fueron ajustados

usando la validación cruzada, lo que significa que se desarrolla de una manera supervisada

maximizando el área bajo las curvas ROC. Esto permitió desarrollar en el capítulo 5 un

novedoso detector basado en la Gaussianización multivariante iterativa. La metodología

hace frente tanto a los problemas de detección de anomalías como a la detección de cambios

en el procesamiento de imágenes de teledetección. Por lo que cumple todos los requisitos

de los problemas antes mencionados: es un método no supervisado sin parámetros a

ajustar, puede tratar con una gran cantidad de datos, y es más preciso para los enfoques que

compiten entre sí. El modelo se basa en la detección de anomalías mediante la estimación

de las probabilidades de los píxeles. El método propuesto sobresalió cuantitativamente

teniendo en cuenta valores de AUC proporcionadas por las curvas ROC y las curvas

de precisión. Además, cualitativamente fue superior teniendo en cuenta la inspección

visual sobre el resto de las implementaciones, tanto en la detección de anomalías como de

cambios entre imágenes. En la evaluación se consideró una amplia gama de imágenes de

teledetección, en una diversidad de problemas, dimensionalidad y número de ejemplos.

También se sugirió un enfoque híbrido en el que se aplicó el método de Gaussianización

después de un detector de anomalías regular, lo que facilitó la estimación de la densidad y

mejoró notablemente los resultados.

En general se puede concluir que los algoritmos desarrollados basados en el Kernel, sus

aproximaciones y además los modelos basados en estimar densidades de probabilidades

pueden ser implementados y puestos en práctica, ya que son capaces de detectar con muy

buena precisión las anomalías en diferentes situaciones reales. Se demostró a través de los

diferentes experimentos tantos sintéticos como reales que los métodos son robustos, en

las diversas situaciones de la vida real y en relación a las características de las imágenes

teniendo en cuenta diferentes resoluciones tanto espaciales como espectral. Estos modelos

ayudarán al monitoreo de las zonas de difícil acceso reduciendo así en gran proporción el

coste económico que estos pueden causar.
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Efficient Kernel Cook’s Distance for Remote Sensing
Anomalous Change Detection

José Antonio Padŕon-Hidalgo , Adrián Pérez-Suay, Fatih Nar, Valero Laparra, and Gustau Camps-Valls

Abstract—Detecting anomalous changes in remote sensing im-
ages is a challenging problem, where many approaches and tech-
niques have been presented so far. We rely on the standard field of
multivariate statistics of diagnostic measures, which are concerned
about the characterization of distributions, detection of anomalies,
extreme events, and changes. One useful tool to detect multivariate
anomalies is the celebrated Cook’s distance. Instead of assuming
a linear relationship, we present a novel kernelized version of the
Cook’s distance to address anomalous change detection in remote
sensing images. Due to the large computational burden involved in
the direct kernelization, and the lack of out-of-sample formulas, we
introduce and compare both random Fourier features and Nyström
implementations to approximate the solution. We study the kernel
Cook’s distance for anomalous change detection in achronochrome
scheme, where the anomalousness indicator comes from evaluating
the statistical leverage of the residuals of regressors between time
acquisitions. We illustrate the performance of all algorithms in a
representative number of multispectral and very high resolution
satellite images involving changes due to droughts, urbanization,
wildfires, and floods. Very good results and computational effi-
ciency confirm the validity of the approach.

Index Terms—Anomalous change detection (ACD), Cook’s
distance, efficiency, influential points, kernel methods, Nyström
method, random Fourier features, statistical leverage.

I. INTRODUCTION

T HE Earth’s surface is constantly changing due to natural
events and various anthropogenic interventions. Natural

events can be repetitive ones such as seasonal changes as well
as extreme or rare events such as disasters. Newly constructed
man-made structures, urbanization, and agriculture activities
can be given as examples of anthropogenic interventions [1].
However, observing such changes in a timely and accurate

Manuscript received May 14, 2020; revised August 10, 2020; accepted August
23, 2020. Date of publication September 1, 2020; date of current version
September 25, 2020. This work was supported in part by the European Research
Council (ERC) through the ERC-CoG-2014 SEDAL Project under Grant 647423
and in part by the Spanish Ministry of Economy, Industry and Competitiveness
through the “Network of Excellence” Program under Grant TEC2016-81900-
REDT. The work of José Antonio Padrón-Hidalgo was supported by Generalitat
Valenciana under Grisolia Grant GRISOLIA/2016/100. (Corresponding author:
José Antonio Padŕon-Hidalgo.)
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manner is challenging since the Earths’ surface is very large and
complex, and changes are constantly happening, which may be
pervasive or anomalous. Change detection (CD) using remote
sensing (RS) images is an active field of research with many
systematic methods and procedures to capture the changes on
the earth surface. CD methods that are applied to RS images can
be acquired from satellite or airborne platforms [2].

CD is extremely important because it allows us to improve
predictions and our understanding of events occurring over the
entire surface of the earth, such as floods and droughts [3],
[4], using Landsat 7 images. In addition, the developed CD
methods can help us improve designing and implementing urban
monitoring [5]. However, factors such as seasonal differences,
atmospheric effects, sensor noise, and registration errors create
spurious changes that decrease the performance of the CD
methods [1]. In addition, the Earth’s surface is complex and het-
erogeneous, while obtained images can be multimodal or mul-
tisource with different spectral and temporal resolutions, which
further increase the complexity of the development of robust,
accurate, and fast CD methods. The recent advances in RS sen-
sors, statistical models, and computational power, as well as an
immense amount of data availability, have provided additional
possibilities and challenges in RS image processing [6]–[8].
Most importantly, the increasing spatial and temporal resolution
of globally available satellites such as Sentinel-2 gives a unique
opportunity to monitor regular and extreme events. In addition,
the use of very high-resolution satellite imagery (such as Digital
Globe QuickBird) is becoming increasingly important for RS
applications.

A related field to CD called anomalous change detection
(ACD) is concerned about a slightly different problem [9]: the
ACD setting differs from standard CD because the objective
is to identify only rare (or anomalous) events, ignoring the
regular (or pervasive) ones. These pervasive differences may
be due to calibration, illumination, look angle, and even the
choice of RS satellite. By contrast, the anomalous changes
are assumed to be relatively rare and can be highlighted in a
minor part of the image. Although there were related studies
before, first focused study of ACD was proposed by Theiler and
Perkins using a machine learning approach [9] with many other
subsequent studies of Theiler and his colleagues [10]–[17]. In the
literature, ACD was tackled using distribution-based [9], [12],
distance-based [13], classifier-based [11], and reconstruction-
based [18] approaches. Note that ACD is also closely related
to anomaly detection [16] and novelty detection [19], where
all employ similar approaches. However, most ACD methods

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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are linear, which limit their success and applicability to the
real-world problems [20]. Researchers introduced nonlinearity
to overcome this limitation, i.e., using neural networks [21] and
kernel methods [20], [22], [23]. Although kernel methods bring
excellent performance, they are computationally demanding,
so efficient approximations are needed [22]. Interested readers
can read more about ACD in [10], [17], [24], and [25] that
are, respectively, comparison, analysis, review, and tutorial style
studies.

The ACD settings can be properly framed in statistical terms.
However, the concept of anomalousness is elusive and diffi-
cult to define concretely. Nevertheless, identifying influential
points in multivariate data distributions is an active field of
research in statistics, information theory, and machine learning.
Main applications involve characterizing distributions, detecting
anomalies, extremes and changes, and assessing robustness [14],
[15]. Detection of such influential points also have relevant
applied implications for climate, health, and social sciences,
and in a wide diversity of engineering and computer science
problems. It is important to remark that we aim to detect anoma-
lous (extreme) changes, i.e., not pervasive changes related to,
for example, illumination conditions. Therefore, we will refer
to anomalies among two images, leverage points, or changes
interchangeably.

The interest to find anomalous changes is very broad, and
many methods have been proposed in the literature, ranging
from equalization-based approaches that rely on whitening prin-
ciples [26] to multivariate methods that extract distinct fea-
tures out of the change (difference) image [27] and that rein-
force directions in feature spaces associated with noisy or rare
events [28], [29], as well as regression-based approaches such
as in the chronochrome [30], [31], where a regression model
approximates the next incoming image and big residuals are
associated with anomalies. In this article, we build our nonlinear
ACD method on this latter chronochrome approach based on
Cook’s distance [32], where our initial efforts can be seen in [22].
Among other measures, we preferred Cook’s distance since it
allows robust fitting despite data are being contaminated by
outliers (or anomalies). Many diagnostic measures have been
introduced other than the seminal work of Cook such as linear
regression [33], [34], penalized (ridge) regression [35], sparse
regression models like LASSO [36] as parametric models, spline
smoothing [37]–[39] and polynomial regression [40] as non-
parametric models, and longitudinal regression [41], general-
ized linear, and Cox proportional hazard models [42]–[44] as
semiparametric models.

For ACD, an adequate model assumption and specification
is crucial and has many theoretical and applied implications.
The main problem is to select a flexible model that can capture
nonlinear relations while also providing high detection power
and computational efficiency. All these are relevant aspects to
consider for the diagnostic measure, for which many methods
have been proposed. However, Cook’s distance models only lin-
ear relations, which limit its applicability to complex real-world
data. In recent years, kernel methods have been widely adopted
as an appropriate framework for nonlinear model development
in machine learning for classification, regression, hypothesis

testing, and dimensionality reduction [45], [46]. Kernel meth-
ods allow one to derive flexible nonlinear and nonparametric
models, are intrinsically regularized, and are endorsed with
solid mathematical properties. This has allowed us to define
diagnostics based on leveraging the kernel ridge regression
(KRR) method [47]. However, despite the excellent modeling
performance of KRR, the direct definition of leverage scores
based on KRR implies a huge computational cost and the lack
of a practical out-of-sample estimates [48]–[50]. This hampers
its adoption and usefulness in real practice.

In this article, we introduce the Cook’s distance for the
KRR model in a reproducing kernel Hilbert space (RKHS)
for ACD. Noting the high computational cost, we introduce
random Fourier features [51] and the Nyström method [52], [53]
for improved efficiency. Both approaches allow us to compute
residuals [54] and leverage the KRR explicitly in RKHS, while
the Nyström method also provides implicit regularization capa-
bilities. Essentially, the Nyström method approximates the large
kernel matrix by a much smaller low-rank matrix. Although
the best low-rank approximation is obtained by singular value
decomposition (SVD), it is computationally expensive. On the
contrary, the Nyström method achieves low-rank approxima-
tion with considerably higher computationally efficiency [55],
[56]. The proposed methods are simple, computationally very
efficient in both memory and processing costs, and achieve
improved detection compared to standard approaches. We show
results in a set of real ACD problems with pairs of large-
scale multispectral satellite images acquired by different sen-
sors (Quickbird, Sentinel-2) and involving different changes of
interest (floods, wildfires, urbanization, and droughts).

The remainder of this article is organized as follows. Section II
sets the notation, introduces the Cook’s distance, briefly reviews
the concept of influential points and leveraging in statistics,
and introduces the direct kernel Cook’s distance. Section III
elaborates further on our proposed fast implementations and
provides a comparison of space and time complexity in all
methods. Section IV presents the performance of the proposed
fast Cook’s chronochrome method for ACD on synthetic and
real-world data. Finally, we conclude in Section V with some
remarks and prospective future work.

II. KERNELIZED COOK’S DISTANCE

A. Notation and the Chronochrome Approach

Let us define two consecutive d-band multispectral images in
matrix form X,Y ∈ Rn×d composed of n pixels xi,yi ∈ Rd,
i = 1, . . . , n. Assume that a set of changes have occurred in
between, and that such changes do not alter the image distri-
bution significantly. The “chronochrome” approach [30] builds
on this idea and fits a model to predict the second image Y
from the first one X and decides that a point is anomalous (i.e.,
it has changed) if, for instance, the corresponding residual is
significantly large. The prediction function f : x → y is learned
from the observations. The task is now to assess the significance
of the obtained residuals, e = y − ŷ, that is to derive a sensible
diagnostic measure.
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B. Cook’s Distance

Cook’s distance comes from the definition of leverage, which
measures how distant are the independent variable values (of
a particular observation) from those of the other observations.
The highest leveraged points are those observations that could
be considered as extreme or outlying values of the independent
variables. Cook’s distance measures the effect of removing
a given observation. Therefore, the aim is to find out which
elements from the sample set are more relevant to the model.

The standard Cook’s distance assumes a linear model for
prediction of the second image from the first one, i.e., Ŷ = X̃W,
where W ∈ R(d+1)×d, and X̃ is the augmented design matrix
with a column of ones to account for the bias term, X̃ = [X|1n].
The solution to this least squares problem is given by the Wiener–
Hopf normal equations, W = (X̃�X̃)−1X̃�Y. The predictions
can be expressed as Ŷ = X̃W = X̃(X̃�X̃)−1X̃�Y = HY,
where H is known as the projection matrix, and we define the
leverage score of the ith observation as

hi = x�
i (X̃

�X̃)−1xi. (1)

Similarly, the ith element of the residual vector e = y − ŷ =
(I−H)y is denoted as ei. The Cook’s distance Di for observa-
tion xi, i = 1, . . . , n, is defined as the sum of all the changes in
the regression model when the ith observation is deleted

Di =

∑n
j=1

(
ŷj − ŷj\i

)2

d MSE2 (2)

where ŷj means to predict the jth sample through the model
trained with all the samples and ŷj\i is the fitted response value
obtained when i is excluded, and MSE is the mean square
error of the regression model with all samples, i.e., MSE =
1
N

∑n
j=1(ŷj − yj)

2. Cook’s distance can be equivalently ex-
pressed using the leverage

Di =
e2ihi

d MSE2(1− hi)2
. (3)

Cook showed that this estimation can be obtained using incre-
mental rank-1 updates of covariances, without even needing to
recompute each model when the ith sample is removed [32].

C. Kernel Cook’s Distance

The kernel Cook’s distance can be easily derived by departing
from (3). For that, we need to compute both the errors and the
leverage scores as a function of the input data only. Let us first
recall the KRR prediction formula, y = K(K+ λI)−1y, where
λ is a regularization parameter, and K is the kernel matrix. The
residuals are thus e = (I−HH)y, where the (kernel) projection
matrix HH = K(K+ λI)−1, and the (kernel) leveraging scores
become

hH
i = diag(HH), i = 1, . . . , n. (4)

From here, one can readily compute eHi and the kernel Cook’s
distance as

DH
i =

(eHi )
2

d MSE2

hH
i

(1− hH
i )

2
. (5)

Note that the inversion of a large K matrix in HH has a cost
of cubic time complexity and quadratic space (memory) com-
plexity. One could think of computing the leverage scores using
an SVD, but the exact computation is as costly as solving the
original problem since the cost is also cubic. Unlike the linear
case, the recursive solution of (5) is cumbersome, and one has
to recompute each model after sample deletion, thus involving
a cascade of costly inverse operations.

III. EFFICIENCY IN KERNEL COOK

In this article, we will exploit both random Fourier features
and Nyström approximation of the leverage scores and the errors
for Cook’s distance approximation.

A. Randomized Cook’s Distance

Let us first approximate the kernel matrix with random Fourier
features [51]. Formally, we now use a linear regression model
expressed on data explicitly projected onto q random Fourier
features. Let us define a feature map z(x) : Rd → Cq , explicitly
constructed as z(x) := [exp(iw�

1 x), . . ., exp(iw
�
q x)]

�, where
i =

√
−1, and wq ∈ Rd is randomly sampled from a data-

independent distribution [51]. The prediction model is now de-
fined as Ŷ = �{ZW}, where Z = [z1 · · · zn]� ∈ Rn×q, with
the weight matrix W ∈ Rq×d. The randomized leverage of a
particular sample is now expressed

hR
i = �{z(xi)

�(Z�Z+ λI)−1z(xi)} (6)

which is then plugged into (3) owing to the linearity of the model
where eR = (I−HR)y and then leads to

DR
i =

(eRi )
2

d MSE2

hR
i

(1− hR
i )

2
. (7)

This allows us to control the memory and computational
complexity explicitly through q, as one has to store matrices of
n× q and invert matrices of size q × q only. It is worth noting
that, in practice, a low number of random Fourier features are
needed, q � n. This is not only beneficial in computation time
and memory savings but also has a regularization effect in the
solution.

B. Nyström Cook’s Distance

The Nyström method selects a small set of r � n sam-
ples to make a low-rank approximation of an n× n kernel
matrix K ≈ K�

rnK
−1
rr Krn [52], where Krn ∈ Rr×n contains

the kernel similarities between X̂ ∈ Rr×d and X ∈ Rn×d, and
Krr ∈ Rr×r is a kernel matrix containing data similarities be-
tween the points in X̂. By exploiting the Nyström method in the
Woodbury–Morrison formula, we obtain

(K+ λI)−1 = λ−1(I−Knr(λKrr +K�
nrKnr)

−1K�
nr) (8)

and now defining Q = λKrr +K�
nrKnr, the projection matrix

approximation is defined as

HN = λ−1K(I−KnrQ
−1K�

nr) (9)
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TABLE I
SPACE AND TIME COMPLEXITY FOR ALL METHODS

T is transformation of image into a nonlinear space, C is for covariance/kernel
matrix, W is for regression weight, L is for leverage, ACD is the Cook’s distance,
and O(.) is the overall complexity.

with Nyström leverage scores

hN
i = diag(Hn) (10)

and eN = (I−HN )y; thus, the Nyström Cook’s distance
becomes

DN
i =

(eNi )2

d MSE2

hN
i

(1− hN
i )2

. (11)

C. Memory and Computational Cost

Space (memory) and time (computational) efficiency of the
linear and nonlinear versions are presented in Table I. In this
study, the linear version is named as L-Cook, while the nonlinear
versions are named Randomized Cook (R-Cook), Nyström Cook
(N-Cook), and Kernel Cook (K-Cook). Note that d is the spectral
dimension, and it is around 10 for multispectral images and
around 100 for hyperspectral images. Although q and r can have
similar values, generally q < r. Since large images are used, n
is much larger than r, q, and d. Therefore, in general, d < q <
r � n.

As can be seen in Table I, the L-Cook method provides
superior space and time efficiency. However, the L-Cook method
is only limited to rare linear scenarios, where the real-world non-
linear transformation between multitemporal images are formed
due to various reasons. However, space and time complexity of
the K-Cook method is proportional to the number of pixels in
the image, respectively, quadratic in space and cubic in time.
Thus, the use of the K-Cook method is not feasible for large
images, which is the common scenario nowadays. Note that,
for the N-Cook method, kernel matrix K is still used in (9),
but there is no inversion operation on it. Therefore, N-Cook has
same space complexity with the K-Cook method as we need to
store kernel matrix K. However, time complexity of N-Cook is
still superior to the K-Cook method, since only an r × r matrix
is inverted.

IV. EXPERIMENTAL RESULTS

This section analyzes the performance of the proposed linear
and nonlinear Cook’s distance methods for ACD. In order to test
the robustness of the proposed methods, we performed tests in

both simulated and real scenes with changes. We evaluate the
detection performance of the methods quantitatively through the
area under the curve (AUC) of the receiver operating characteris-
tic (ROC) and qualitatively by inspection of the detection maps.
We have performed two experiments with different complexities
of difficulty while controlling the analyzed changes. The first ex-
periment is designed over a real scenario and synthetic changes.
The second set of experiments deals with both real scenes and
natural changes related to floods, fires, and urbanization. In order
to ease the reproducibility, we provide MATLAB implementa-
tions of the methods. Moreover, we made available a database
with the labeled images used in the second experiment.1

A. Experiment 1: Real Scene With Simulated Changes

The aim of this experiment is to show and analyze the
performance of the proposed methods when the change be-
tween images is nonlinearly distributed. In this example, we
can analyze how nonlinear methods fit the regression model to
the data well and how they detect the influential points in the
Cook’s distance approach. The experiment involves representing
a nonlinear relation between two images in order to demonstrate
the limitations of the linear algorithms in this situation.

Fig. 1(a) and (b) shows an aerial scene taken over the Im-
age Processing Laboratory from Google Earth in the R band.
Fig. 1(a) represents the image at time t1 (no change class), while
Fig. 1(b) represents the image at time t2 (change class). All the
values of the second image (t2) were modified by applying a soft
nonlinear function (an inverted parabola) to simulate nonanoma-
lous changes. In order to introduce the anomalous changes, we
interchanged square patches of 4 × 4 pixels randomly selected.

Since kernel Cook’s distance is computationally very de-
manding, we have selected a portion of the full image in order
to have a comparison of all proposed methods together. In
particular, we used the region of interest shown in Fig. 1(c) and
marked in a red box in Fig. 1(b); the anomalies are highlighted
in a black rectangle and the anomalous class represent 0.016%.
Fig. 1(d) represents the scatter of original image x-axis against
transformed image y-axis; the points in yellow color are the
change pixels, but the points in blue color ideally would not be
detected as an anomalous change pixels. Fig. 1(e) illustrates how
a linear model does not fit the distribution well and the inferred
values lead to false-positive errors (in the tails) and true negative
errors (green color). Fig. 1(f) shows how a nonlinear model over
distribution fits well and both avoid the false positives and detect
the changed pixels in the images. These results are confirmed
visually through the prediction maps in Fig. 2, where the kernel
Cook’s distance excels in detection.

In contrast, Table II showcases how efficient the proposed
efficient methods can be, achieving better values of AUC com-
pared to the kernel one in less time. Therefore, because of the
huge computational cost involved in its calculation, one cannot
use it in standard images (even as small as the one in Fig. 1), so
efficient algorithms for computing Cook’s distances in nonlinear
kernel settings are strictly necessary.

1[Online]. Available: http://isp.uv.es/code/kcook
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Fig. 1. (a) Image (R band) at time t1 and the region of interest (red box).
(b) Image (R band) at time t2 and the region of interest (red box). We apply
background color distortion and added square patches of 4× 4 over t2 simulating
the anomalies, (c) region of interest (red box in t2) and the corresponding label is
surrounded and highlighted in black, (d) scatter plots between t1 and t2 pixels in
R band, blue dots represent the non-change class and the yellow dots correspond
to change class. Panel (e) shows how mis-specification of the linear regression
model cannot detect anomalies, while a nonlinear Cook’s distance can in (f). In
both (e) and (f), the dots color specify how much anomalous the point is for the
model (blue less, yellow more).

Fig. 2. (a) Prediction map (labels). (b) Change prediction map detected by
the linear method. (c) Change prediction map detected by the nonlinear Cook’s
distance.

B. Experiment 2: Real and Natural Changes

In this section, we report experiments in several real satellite
images. We aim to detect changes that can be found naturally
in a real environment. The dataset is composed of five different
scenes with natural changes, including urbanization, wildfires,
droughts, and flooding.

1) Data Collection: We collected pairs of multispectral im-
ages acquired at different times over the same location. We
selected the images in such a way that a noticeable change hap-
pened between the two acquisition times. We photo-interpreted

TABLE II
AUC AND THEIR RESPECTIVE TIME VALUES (IN SECONDS) PER METHOD

TABLE III
IMAGE ATTRIBUTES USED IN THE EXPERIMENTATION DATASET

and manually labeled all the image pixels affected by a change of
interest. This step is critical and delicate since we could fall into
many false alarms due to, for instance, shadows, illumination
changes, or natural changes in the vegetation. All images contain
changes of a different nature, which allows us to study how the
different Cook’s distance algorithms perform in a diversity of
realistic scenarios.

A brief summary of the images and change events is as fol-
lows. The Argentina dataset represents an area burned between
the months of July and August 2016. Denver Region Urbanized
Project Area describes the stereo-compiled building roofprints
feature of Denver Regional Council of Government. The Texas
wildfire dataset is composed of a set of four images acquired
by different sensors over Bastrop County, Texas (USA) and
is composed of a Landsat 5 TM as the pre-event image and
a Landsat 5 TM plus an EO-1 ALI and a Landsat 8 as postevent
images. This phenomenon is considered the most destructive
wildland–urban interface wildfire in Texas history. The Arizona
dataset corresponds to the decline of Lake Powell in the USA.
The first image was taken by Landsat-5 and shows its highest
water level. The second was taken by Landsat-8 following a
period of drought that began in 2000. When the water volume
was measured five months later, it was less than half of the
maximum lake capacity. The Australia dataset shows the natural
floods caused by Cyclone Debbie in Australia 2017. Storm
damage resulted from both the high winds associated with the
cyclone, and the very heavy rain that produced major riverine
floods. Table III gives some descriptors of the images in the
database, while Fig. 3 shows the RGB composites of the pairs
of images and the corresponding reference map.

2) Numerical Comparison: We selected the hyperparame-
ters using 1000 randomly selected pixels for cross-validation.
Each method implies a different set of parameters. For both the
randomized and Nyström methods, we have cross-validated the
r and q parameters by exploring values between 1 and 400,
particularly r, q ∈ {1, 5, 10, 25, 50, 100, 200, 300, 400}. In this
work, we used the standard radial basis function (RBF) kernel
function, k(x,x′) = exp(−‖x− x′‖2/(2σ2)). The RBF kernel
shows good theoretical properties (universal kernel, smoothness,
and robustness), convenience (only the lengthscale parameter σ
needs to be tuned), and good performance in practice. The RBF
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Fig. 3. Images with natural changes and predictions maps. First row: area burned in Argentina between the months of July and August 2016, anomalous samples
represent 2.7%. Second row: urbanization area over Denver city correspond to roofprints (extension of anomalous pixels represents the 11.5% of the image). Third
row: decline of the Lake Powell in Arizona, USA (16.35%). Fourth row: the most destructive wildland-urban interface wildfire in Texas history (19.5%). Last row:
natural floods caused by Cyclone Debbie in Australia (34%). First column: images without changes, first time of acquisition (t1). Second column: images with
the anomalous changes and their corresponding labels are surrounded and highlighted with green color, second time of acquisition (t2). Third column: prediction
map of linear method. Fourth column: prediction map of random Fourier features method. Last column: prediction map of Nyström approximation method. AUC
value in parentheses.

kernel is used to perform kernel regression, which incorporates
a regularization parameter λ. We searched both σ and λ loga-
rithmic grids between 10−4 and 1020.

We optimized the hyperparameters of different methods to
maximize the cross-validation AUC. We compared the ROCs
and precision–recall curves in terms of AUCs for all methods
and images in Fig. 4 . In general, all methods can cope with

the large dimension of the images and can provide reasonable
results, AUC> 0.70 (see Table IV).

The nonlinear versions (randomized and Nyström approxima-
tions) improve the results of the linear Cook’s distance, revealing
nonlinear changes in all scenes, yet differences are minor for the
Texas scene. The Nyström Cook’s distance achieves consistently
the best results in all the scenarios, and false or positive rates
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Fig. 4. ROC curves and precision–recall for all images by columns. First row showcases the ROC curves in logarithmic scale. Numbers in legend display the
AUC values for each method. Second row showcases the precision–recall following the ROC curves legend.

Fig. 5. Bootstrap experiment. In the top row, mean value of the 1000 experiments is plotted as ROC curves with the standard deviation of each detection algorithm
represented by the shaded region. In the bottom row, AUC values and standard deviation for each method are shown as boxplot.

TABLE IV
AUC PER METHOD AND SCENE

The best results are bold faced.

regimes. A average gain of+15.6% over the linear approach and
of +11.8% over the randomized approach, along with the com-
putational efficiency, justify the adoption of this approach. The
double logarithmic plot aims to better appreciate the differences
in very low false positive rate regimes. In addition, precision and

recall are an understanding and measure of relevance. Here, it
becomes clear that the Nyström approach excels in all images.

For each experiment, 1000 runs were made for testing the
significance of the methods based on the ROC profiles. The
mean value of the experimental runs is plotted with the standard
deviation of each detection algorithm represented by the shaded
region in Fig. 5. In addition, a boxplot is shown in the same
figure to illustrate the standard deviation of each methods with a
better precision. As seen in Fig. 5, N-Cook has always superior
or equivalent performance compared to L-Cook and R-Cook,
i.e., higher detection rate and lower false alarm rate, and higher
AUC value and lower standard deviation.

3) Visual Comparison: A visual comparison of the results
is given in Fig. 3. Differences between the L-Cook and the
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R-Cook are not visually significant either. In general, N-Cook
yields clear and sharper detection maps (last column), especially
in large spatial structures (see, e.g., roofs in Denver, lake in
Arizona) but also exhibits a much lower false alarm rate (see,
e.g., a less amount of spurious detections in Texas wildfires).
This is, however, sometimes compensated with sensitivity to
subtle reflectance changes and misclassified pixels in Australia
due to imperfect labeling of pixels. This is why this problem is
so difficult to solve in an automatic way.

V. CONCLUSION

We introduced the kernel Cook’s distance for ACD settings,
with the particular focus on RS image CD problems. The key in
the proposed methodology is to redefine the ACD problem in an
RKHS where the data are mapped to. This endorses the methods
with improved capacity and flexibility, since nonlinear feature
relations (and hence outliers) can be better identified. However,
the obtained kernelized method encounters huge computational
problems in practice, which hampers its applicability and wider
adoption. To resolve this problem, we proposed computationally
efficient techniques based on random Fourier features and low-
rank Nyström approximations and compared their capabilities
in a wide range of both simulated and real changes. The Nyström
approximation excelled over the rest of the implementations in
both simulated and real scenarios and in terms of accuracy and
efficiency. Future work will study other related kernel diagnostic
measures. Extension to online and multichange problems are
also topics of further research.
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Abstract—Anomalous change detection (ACD) is an important
problem in remote sensing image processing. Detecting not only
pervasive but also anomalous or extreme changes has many
applications for which methodologies are available. This paper
introduces a nonlinear extension of a full family of anomalous
change detectors. In particular, we focus on algorithms that
utilize Gaussian and elliptically contoured (EC) distribution
and extend them to their nonlinear counterparts based on the
theory of reproducing kernels’ Hilbert space. We illustrate the
performance of the kernel methods introduced in both pervasive
and ACD problems with real and simulated changes in mul-
tispectral and hyperspectral imagery with different resolutions
(AVIRIS, Sentinel-2, WorldView-2, and Quickbird). A wide range
of situations is studied in real examples, including droughts,
wildfires, and urbanization. Excellent performance in terms of
detection accuracy compared to linear formulations is achieved,
resulting in improved detection accuracy and reduced false-alarm
rates. Results also reveal that the EC assumption may be still
valid in Hilbert spaces. We provide an implementation of the
algorithms as well as a database of natural anomalous changes
in real scenarios http://isp.uv.es/kacd.html.

Index Terms—Anomalous change detection (ACD), elliptical
distributions, Gaussianity, hyperbolic ACD, kernel methods.

I. I NTRODUCTION

T HE problem of change detection deals with identifying
transitions between a pair (or a series) of coregistered

images [1], [2]. Change detection in remote sensing images
is of paramount relevance because it automates traditional
manual tasks in disaster management (floods, droughts, and
wildfires) and it helps in designing development and settlement
plans as well as in urban and crop monitoring. Multitemporal
classification and change detection are very active fields nowa-
days because of the increasingly available complete time series
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of images and the interest in monitoring changes occurring
on the earth’s cover due to either natural or anthropogenic
activities. Complete constellations of civil and military satellite
sensors currently provide high spatial resolution and high
revisiting frequency. The Copernicus’ Sentinels1 or NASA’s
A-train2 programs are producing near real-time coverage
of the globe. NASA is currently producing a Harmonized
Landsat Sentinel-2 (HLS) data set, which can be used for
monitoring agricultural resources with an unprecedented com-
bination of 30-m spatial resolution and two to three days
revisit. In parallel, new commercial satellite missions are being
deployed to provide multispectral data at both high-spatial
and high-temporal resolutions. For example, the PlanetScope
constellation by Planet Labs, Inc., can provide 5-m data daily
for sites requested by the client, and the recently announced
UrtheDaily constellation, specifically designed for operational
agricultural applications, will acquire S2-like data also at 5-m
spatial resolution and with full global coverage every day.
It goes without saying that closed-range applications using
drones and all kind of unmanned automated vehicles (UAVs)
also challenge the field of automatic change detection. All in
all, automatic image analysis in general and change detection,
in particular, are becoming necessary in the current era of data
deluge.

An interesting and related problem is that of anomalous
change detection (ACD): this configuration differs from stan-
dard change detection in that the objective is to identify
only rare (or anomalous) events, ignoring the regular ones.
In this paper, we extend the family of ACD methods in [3] to
cope with higher order feature relations through the theory of
reproducing kernels. Kernel methods allow the generalization
of algorithms that are expressed in terms of dot products
to account for higher order (nonlinear) feature relations, yet
still relying on linear algebra [4]–[7]. We illustrate the per-
formance of the introduced kernel ACD methods in differ-
ent experiments involving synthetic, artificially enforced, and
natural anomalous changes in multispectral and hyperspectral
imagery with different spatial resolutions (AVIRIS, Sentinel-2,
WorldView-2, and Quickbird). A wide range of situations
is studied, involving droughts, wildfires, and urbanization
in real examples. Very good performance is achieved in
terms of detection accuracy compared to the linear formu-
lations. Results also reveal that the elliptically contoured (EC)

1http://www.esa.int/esaLP/SEMZHM0DU8E_LPgmes_0.html
2http://www.nasa.gov/mission_pages/a-train/a-train.html

0196-2892 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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assumption may be still valid in Hilbert spaces, even when
high pervasive distortions mask anomalous targets.

The specific contributions of this paper are as follows.
1) We present an extension of the family of ACD methods

presented in [3] to their nonlinear counterparts based on
kernel methods. The introduced methods generalize the
previous ones and provide more flexible mappings to
account for higher order feature dependences.

2) We have tested the robustness of the proposed methods
in different scenarios, including simulated, forced, and
realistic changes (e.g., floods, droughts, and burned
areas). The results of the proposed methods are better
than the linear ones in all cases, demonstrating that they
can be used in multiple situations. This opens up the
option to use the proposed methods not only for the
tested situations but also in other problems.

3) We provide a working implementation of all 16 methods
as well as a set of labeled images which can be used by
other researchers to test ACD methods.

The rest of this paper is outlined as follows. Section II
defines the problem and reviews the family of (Gaussian
and EC) ACD algorithms introduced in [3]. Section III intro-
duces the proposed kernel-based ACD algorithms. Section IV
presents experiments comparing the performance of the pro-
posed algorithms with their linear counterpart in different
scenarios. Finally, Section V concludes this paper.

II. A NOMALOUS CHANGE DETECTION METHODS

A. Problem Definition and Literature Review

The change detection (CD) goal is to identify differences
in the state of an object, region, or phenomenon by observing
it at different temporal times. The CD field is vast and many
approaches are available in the literature [2], [8]–[10]. A sim-
ple taxonomy could organize them according to three types
of products [1], [11]: 1) binary maps; 2) detection of types of
changes; and 3) full multiclass change maps, thus including
classes of changes and unchanged land-cover classes. Each
type of product can be achieved using different sources of
information retrieved from the initial spectral images at time
instantst1 and t2. Unsupervised CD has been widely studied,
mainly because it meets the requirements of most applica-
tions: 1) the speed in retrieving the change map and 2) the
absence of labeled information in applications [2], [12], [13].
However, the lack of labeled information makes the problem
of detection more difficult, and thus unsupervised methods
typically consider binary change detection problems.

In the last decade, change vector analysis (CVA) techniques
have been widely applied: CVA techniques convert the differ-
ence image to polar coordinates and operate in such represen-
tation space [14], [15]. In [16], morphological operators were
successfully applied to increase the discriminative power of
the CVA method. In [17], a contextual parcel-based multiscale
approach to unsupervised CD was presented. Traditional CVA
relies on the experience of the researcher for the threshold defi-
nition and is still on-going research [18], [19]. The method has
also been studied in terms of sensitivity to differences in regis-
tration and other radiometric factors [20]. Another interesting

approach based on spectral transforms is the multivariate alter-
ation detection (MAD) [21], [22], where canonical correlation
is computed for the points at each time instant and then sub-
tracted. The method consequently reveals changes invariant to
linear transformations between the time instants. Radiometric
normalization issues for MAD have been recently determined
in [23], and nonlinear extensions have also been realized via
kernel machines (KMs) [24], [25]. Other approaches based on
kernels proposed to use dimensionality reduction via principal
components [26] or slow features [27] of the difference image.

A different pathway considers clustering methods. In [28],
rather than representing the image difference in the polar
domain, local PCAs are used in subblocks of the image,
followed by a binaryk-means clustering to detect changed/
unchanged areas locally. Nonlinear versions of clustering via
kernel methods have also been studied. For example, in [29],
the kernelk-means parameters wereoptimized in a fully unsu-
pervised way defining an ANOVA-like cost function. As an
alternative to nonlinear kernels, neural networks have also
been considered for binary CD [30], [31]. In [32], a Hopfield
neural network, where each neuron is connected to a single
pixel, is used to enforce neighborhood relationships. Lately,
many efforts have been conducted in using deep convolutional
neural networks as well [33]–[35].

A related field of investigation in this direction is the
so-called ACD [36]. In this field, one looks for changes that
are interestingly anomalous in multitemporal series of images
and tries to highlight them in contrast to acquisition condition
changes, registration noise, or seasonal variation. The interest
in ACD is high, and many methods have been proposed in
the literature, ranging from regression-based approaches like
in the chronocrome [37], where big (“influential”) residuals
are associated with anomalies [38], [39], to equalization-based
approaches that rely on whitening principles [40], as well as
multivariate methods [41] that reinforce directions in feature
spaces associated with noisy or rare events [21], [42]. The
work [43] formalized the field by introducing a framework
for ACD, which assumes Gaussianity, yet the derived detector
delineates hyperbolic decision functions. Even though the
Gaussian assumption reports some advantages (e.g., tractabil-
ity and generally good performance), it is still anad hoc
assumption that it is not necessarily fulfilled in practice. This
is the motivation in [3], where the authors introduced EC dis-
tributions that generalize the Gaussian distribution and proved
more appropriate to modeling fatter tail distributions and thus
detect anomalies more effectively. The EC decision functions
are pointwise nonlinear and still rely on the second-order
feature relations. Recent advances in ACD have considered
methods robust to pixel misregistration [44] and sequences of
several images [45].

Fig. 1 shows the difference between CD and ACD
scenarios using remote sensing images. Changes between
two images can be differentiated in regular and anomalous.
Regular changes are usually defined by cyclical time pat-
terns, for instance, the change in the vegetation’s greenness
with the passage of the year’s season, exemplified between
Fig. 1(a) and (b). On the contrary, an anomalous change is
any alteration of the scene that is outside of what is normally
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Fig. 1. Image corresponds to rice farming in the Albufera, Valencia, Spain. (a) Image corresponding to rice crop at planting time. (b) Image corresponding
to rice crop at harvest time. (c) Image contains an anomalous change (blacksquare). (d) Image stresses the anomalous location with a green square around it.

expected: for example, the emergence of the black square
between Fig. 1(a) and (c). Applying CD and ACD algorithms
in Fig. 1(b) and (c) would get similar results. This could not
be the case when applied in Fig. 1(a) and (c). On the one
hand, the CD algorithm would detect as a change almost all
the regions in the image. This would be a good result if one is
interested in detecting vegetation changes. However, one could
be interested in ignoring the regular changes and detecting
only the black square. In such a case, an ACD algorithm
would be better fitted since it ignores the brownish to greenish
changes and aims to detect as anomaly only the black square.

B. Statistical View of Anomalous Change Detection Problem

Anomalies can be loosely defined as rare items, i.e., with
low probability to occur [46], [47]. Also, it is sometimes
referred to as outlier, novelty, or extreme detection. An anom-
alous change is thus a rare, unexpected, change between two
consecutive observations (see Fig. 1). In this paper, we want
to find samples that can be interpreted as anomalous changes
between two multidimensional images. This calls for studying
and characterizing differences between multivariate distribu-
tions, and in particular, those features that account for the
anomalous changes. In [3], a framework to define different
anomalous change detectors based on probability distributions
was formalized.

Given two images (X andY), we can treat their pixel values
(xi , yi , with i = 1, . . . , N, whereN is the number of pixels)
as random variables, with probability distributionsx ∼ PX

and y ∼ PY, respectively. These distributions can be used to
assess how anomalous is in each pixel inside each particular
image. On the other hand, let us indicate the joint distribution
as [x, y] ∼ PX,Y, which accounts for how probable particular
joint pixel values are, or equivalently to characterize how
anomalous a particular change is. For example, if a pixel value
changes fromxi to yi and this change has a high probability to
occur, it will be classified as a regular change and will not be
detected as an anomaly, even if the magnitude change between
xi andyi is highly striking.

The idea is to combine both information to spot only the
changes that are not regular. Given two pixelsxi , yi ∈ Rd

from the same spatial locationi but each one from one image,
the general formula to compute the amount of anomalousness

of a change is

Â[X,Y](xi , yi ) = PX(xi )PY(yi )

P[X,Y](xi , yi )
. (1)

A sample is detected as anomalous change when it is anom-
alous with respect to the joint distribution but not anomalous
with respect to the distributions of each isolated image.
We are using here all three distributions; however, different
combinations can be used as we will see in the following.

Instead of using directly (1), it is usual to apply it taking
logarithms [3],A[X,Y](xi , yi ) = log(Â[X,Y](xi , yi )). This can
be interpreted in information theoretic terms by noting the
relation between probability and information. Elaborating on
Shannon’s information [48], we have

A[X,Y](xi , yi ) = I[X,Y]([xi , yi ]) − I X(xi ) − IY(yi )

where I A(b) is the amount of information in Shannon’s
terms the sampleb provides, assuming that it follows the
distributionPA. In these terms, a sample will be interpreted as
an anomalous change if the information obtained by observing
the sample in both images simultaneously is big with respect
to the information obtained by observing it in each isolated
image.

C. Linear ACD Algorithms

Assuming that all three distributions follow amultivariate
Gaussian, we can express the formula only in terms of
covariance matrices. The amount ofanomalousnessis given
by

AG(xi , yi ) = ξ(zi ) − βxξ(xi ) − βyξ(yi ) (2)

whereξ(a) = a�C−1
a a, Ca is the estimated covariance matrix

with the available data, and beingz = [x, y] ∈ R2d. The value
of βx, βy ∈ {0, 1} parameters defines which distributions are
taken into account to define our anomaly. The different com-
binations give rise to different anomaly detectors (see Table I).
These methods and some variants have been widely used
in many hyperspectral image analysis settings because of its
simplicity and generally good performance [49]–[51].

However, these methods are hampered by a fundamental
problem: the (typically strong) assumption of Gaussianity that
is implicit in the formulation. Accommodating other data
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Fig. 2. Illustration of the ACD probabilistic framework. (From left to right) Joint and marginal probability distributions of the original data, theGaussian
model, and the EC model. See text for details.

TABLE I

FAMILY OF ACD ALGORITHMS

distributions may not be easy in general. Theileret al. [3]
introduced alternative ACD to cope with EC distributions [52].
Roughly speaking, the idea is to model the data using anEC
distribution. EC distributions are particularly convenient in the
case of images [53]. In particular, the formulation introduced
in [3] uses the multivariate Student’s t-distribution, giving rise
to the following formula for computing the amount ofEC
anomalousness:

AEC(xi , yi ) = (2d + ν) log

(
1 + ξ(zi )

ν

)

−βx(d + ν) log

(
1 + ξ(xi )

ν

)

−βy(d + ν) log

(
1 + ξ(yi )

ν

)
(3)

where ν controls the shape of the Student’s t-distribution:
for ν → ∞, the solution approximates the Gaussian and for
ν → 0, it diverges.

An interesting particular case is the RX algorithm which
brings to the same result for the Gaussian and the elliptical
case (independently of theν value). All extra operations
applied by the EC formulation with regard to the Gaussian ver-
sion are increasing monotonic functions, which do not change
the ordering of the values. Therefore, although the values of
anomalousness are different [i.e.AG(xi , yi ) �= AEC(xi , yi )],
the values are sorted in the same way which makes the
detection curves equal too. The same effect happens between
the RX methods based on kernels proposed in Section III.

Fig. 2 shows an example of the distributions involved in the
ACD framework. In order to be able to visualize the distribu-
tions, we restrict ourselves to the most simple situation, where
each image contains just one band. In particular, we show the

distributions for band 9 of a Sentinel-2 image over Australia
(see Table IV). We show results for the distribution of the
data estimated using histograms, when assuming Gaussian or
EC distributions. Note that the estimation of the distribution
based on histograms is only feasible in the low-dimensional
(i.e., 2-D) case: when the number of bands increases, the com-
putation of the histogram becomes unfeasible due to the
curse of dimensionality. However, the Gaussian and the EC
model can be estimated easily for multiple dimensions. The
difference between the Gaussian and the EC model relies
on the kurtosis of the distribution; while for the Gaussian
model the kurtosis is constant, for the EC model it can be
controlled with theν parameter. By comparing the marginal
distributions in the central and the right panels, we can easily
spot the differences between the Gaussian and the EC model.
For the horizontal axes, the data follow quite well the Gaussian
model, i.e., the red solid line and the red dashed line are very
similar in the central panel. However, the Gaussian model fails
when reproducing the probability for the vertical axes (central
panel, blue lines). Although it is not a perfect model, the EC
distribution is better suited than the Gaussian distribution for
describing the real distribution of the data. For instance, in the
case of thePy (equivalent toPY) distribution (blue lines,
vertical axes), the EC description (blue solid line in third
panel) is more similar to the original one (blue dashed lines)
than the description given by the Gaussian distribution (blue
solid line in second panel).

III. K ERNEL ACD ALGORITHMS

Previous methods are linear and depend on estimating
covariance matrices with the available data and use them as
a metric for testing anomalousness. These methods are fast to
apply and delineate pointwise nonlinear decision boundaries,
but still rely on the second-order statistics. This restricts
the class of functions that can be implemented and thus
the generalization capabilities of the algorithm. For instance,
in Fig. 2, the assumed joint distributions (dark green) for
both Gaussian and EC models clearly differ from thereal
distribution (light green). We here address this issue through
the theory of reproducing kernel functions [5], which allows
us to capture higher order feature relations while still relying
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on linear algebra. Kernel methods are particularly robust to
reduced sample sizes and high-dimensional feature spaces,
and situations are often encountered in hyperspectral image
detection problems.

Kernel methods constitute a well-known approach in
machine learning. They have been mainly used for classi-
fication and regression, and not that much in anomaly and
target detection. The problem has been approached mainly
with discriminative and subspace methods: the support vec-
tor domain description (SVDD)—also known as one-class
SVM—, the kernel OSP, and the kernel RX methods [7].
In our approach, we will proceedwith the kernelization of
the previous anomaly change detection methods in the same
way as for deriving the kernel RX in [54], yet we here extend
the framework by assuming EC distributions and parameteri-
zations [see Table I and (3)].

Kernel methods rely on the notion of similarity between
points in a higher (possibly infinite) dimensional space. They
assume the existence of a Hilbert spaceH equipped with an
inner product〈·, ·〉H. Samples inX are mapped intoH by
means of a feature mapφ : X → H, xi 
→ φ(xi ), 1 ≤ i ≤
n [55]. The mapping functionφ can be defined explicitly or
implicitly, which is usually the case in the kernel methods. The
similarity between the elements inH can be estimated using
its associated inner product〈·, ·〉H via reproducing kernels in
Hilbert spaces,k : X × X → R, such that the pairs of points
(xi , x j ) 
→ k(xi , x j ). So, we can estimate similarities inH
without the explicit definition of thefeature mapφ, and hence
without the need of having access to the points inH. The
function k is considered a validkernel functionif it satisfies
Mercer’s condition [56].

The mapped training data matrixX = [x1, . . . xn] ∈ Rn×d

is now denoted as� = [φ(x1), . . .φ(xn)] ∈ Rn×dH . In the
following, we show how to estimate theξ(xi ) function in the
Hilbert space, i.e.,ξH(xi ) = ξ(φ(xi )). The other terms are
derived equivalently. Note that one could think of different
mappings for each image,φ : x → φ(x) andψ : y → ψ(y),
� ∈ Rn×dF , respectively. However, in our case, we are
forced to consider mapping tothe same Hilbert space because
we have to stack the mapped vectors to estimateξ(φ(z)),
i.e., F = H. The mapped training data to Hilbert spaces are
denoted as�. In order to estimateξ(φ(xi )), we follow the
same procedure as in the linear case but first mapping the
points to the Hilbert space:

ξH(xi ) = φ(xi )(�
��)−1φ(xi )

�. (4)

Note that we do not have access to either the samples or the
covariance in the Hilbert. However, note that(���)−1 =
�� (������)−1�. This can be easily shown by right
multiplying by the term����� and applying some linear
algebra. By substituting in (4), we get

ξH(xi ) = φ(xi )�
� (������)−1�φ(xi )

�.

In this equation, we can replace all dot products by repro-
ducing kernel functions using the represent theorem [5], and
hence

ξH(xi ) = ξ(φ(xi )) = k i (KK )−1k�
i

wherek i ∈ R1×n contains the similarities betweenxi and all
training data,X, andK ∈ Rn×n stands for the kernel matrix
containing all training data similarities. The solution may need
extra regularizationξH(xi ) = k i (KK + λIn)−1k�

i , λ ∈ R+.
Therefore, the kernel version of ((2)) is

AH
G (xi , yi ) = ξH(zi ) − βxξ

H(xi ) − βyξ
H(yi ).

By following a similar procedure for (3), one obtains kernel
versions of the EC linear solution:

AH
EC(xi , yi ) = (2d + ν) log

(
1 + ξH(zi )

ν

)

− βx(d + ν) log

(
1 + ξH(xi )

ν

)

− βy(d + ν) log

(
1 + ξH(yi )

ν

)
.

Note that in the case ofβx = βy = 0, the algorithm reduces
to kernel RX which was previously introduced in [54].

Fig. 3 shows the results of different ACD methods for the
illustrative example presented in Fig. 2. Different thresholds
over the anomalousness function,A, are represented as con-
tour lines. Each method obtains different decision boundaries.
The ideal situation would be to have a surface where the
green points are surrounded by a contour line and the yellow
points are outside of the contour line. Note that this is a
complex problem where no perfect solution can be achieved
since the anomalous (yellow points) and nonanomalous (green
points) pixels are overlapped. Here, and throughout this paper,
we will summarize the results using the value of the area under
curve (AUC) of the detection receiver operating characteris-
tic (ROC) curves. Bigger AUC means better detection of the
anomalous change.

As an illustration, we will take a close look at the results
for the method that achieves higher AUC, the K-EC-YX. The
shape of the surface tries to keep inside the green points
(although some orange points are also included). In general,
we can see that the kernel methods obtain better results than
their linear counterpart.

Note that the flexibility of the solutions is different for the
Gaussian, EC, and the kernel-based methods. The surfaces are
direct consequence of the probabilistic model assumed; for
instance, in the case of RX for Gaussian and EC assumptions,
the surfaces are equivalent to the probabilistic distributions of
PX,Y in Fig. 2. It is clear that the kernel versions have much
more capacity to nonlinearly adapt the decision surface to the
problem.

IV. EXPERIMENTAL RESULTS

This section analyzes the proposed methods. In order to
test the robustness of the results, we perform tests in several
simulated and real examples of pervasive and anomalous
changes. We evaluate the performance of the methods by using
the AUC of ROC curves.

We perform three experiments with data sets with different
complexities and controls on the analyzed changes. First,
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Fig. 3. Toy example of anomalous detection surfaces for different methods, only band 9 of a Sentinel-2 image was employed. Level curves indicate the
amount of anomalous (i.e., biggerA). Green dots: nonanomalous data. Yellow points: anomalous data. Overall AUC of theROC values is given in parenthesis.

we perform an experiment, where we control the anom-
alous change in a synthetic-controlled scenario. The second
experiment deals with data where the changes were real but
controlled, since they were manually introduced in the scene
using black tarps. Finally, in the third battery of experiments,
we deal with natural changes related to floods, droughts, and
man-made changes.

We provide MATLAB implementations of the methods.
Moreover, we made available a database with the labeled
images employed in the third experiment publicly available
here: http://isp.uv.es/kacd.html.

A. Experiment 1: Simulated Changes
This experiment is devoted to analyzing the capacity of

the methods to detect pervasive and anomalous changes in
simulated data by reproducing the simulation framework used
in [36]. The data set (see Fig. 4) is an AVIRIS 224-channel
image acquired over the Kennedy Space Center (KSC), FL,

USA, on March 23, 1996. The data were acquired from an
altitude of 20 km and has a spatial resolution of 18 m.
After removing low SNR and water absorption bands, a total
of 176 bands remain for analysis. More information can be
found at http://www.csr.utexas.edu/.

Here, we did not further reduce the dimensionality with
PCA and, instead, work directly with the SNR-filtered hyper-
spectral data.Pervasive changesare simulated by adding
Gaussian noise with 0 mean and 0.1 standard deviation to
all the bands and all the pixels. The image with the added
noise is taken as the second image.Anomalous changesare
produced by scrambling some pixels in the second image.
Note that since we are only switching the position of pixels,
the global distribution of the image does not change. Since the
methods are applied pixelwise, this yields anomalous changes
that cannot be detected as anomalies in the individual images.

In this experiment, we restrict ourselves to the use of hyper-
bolic detectors (HACD), i.e.,βx = βy = 1, that have shown
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Fig. 4. (Left) AVIRIS hyperspectral image. (Right) Four illustrative chips of simulated changes. (Leftmost) Original image is used to simulate (Rightmost)
an anomalous change image by adding Gaussian noise and randomly scrambling 1% of the pixels.

Fig. 5. ROC curves and AUC obtained for simulated changes on hyperspectral image. Results using the HACD detector in this linear (Gaussian and EC)
and kernelized version are given. (Left) Results for 100 training examples. (Right) Results for 500 training examples, a version in logarithmic scale is shown
in the detailed plot.

improved performance for this particular experiment [3].
We tuned all the involved parameters (estimated covariance
Cz and kernelK z, ν for the EC methods, and length-scaleσ
parameter for the kernel versions) through standard cross val-
idation in the training set and show results on the independent
test set.

In this experiment, we use the spectral angle mapper (SAM)
kernel, k(xi , x j ) = exp(−acos(x�

i x j /(‖xi ‖‖x j ‖))2/(2σ 2)),
since it has been proven a good choice for hyperspectral
images [57]. Two parameters need to be tuned in our ker-
nel versions: the regularization parameterλ and the kernel
parameter. In this case, we usedλ = 10−5/n, where n is
the number of training samples, and used a isotropic kernel
function, whose length-scaleσ parameter is tuned in the
range of 0.05%–0.95% of the distances between all training
samples. We should note that, when a linear kernel is used,
k(xi , x j ) = x�

i x j , the proposed algorithms reduce to the linear
counterparts proposed in [3]. The SAM kernel approximates
the linear kernel for highσ values; therefore, results should
be improved with regard to the linear versions. Working in the
dual (orQ-mode) with the linear kernel instead of the original
linear versions can be advantageousonly in the case of higher
dimensionality than available samples,d ≥ n.

Fig. 5 shows the obtained ROC curves and AUC values for
the linear and kernel HACD methods. The data set was split

into small training sets of only 100 and 500 pixels, and results
are given for 3000 test samples. The main conclusions are that:
1) the kernel versions improve upon their linear counterparts
(between 13%–26% in Gaussian and 1%–5% in EC detectors);
2) the EC variants outperform their Gaussian counterparts,
especially in the low-sized training sets (+30% over HACD
and +18% over EC-HACD in AUC terms); and 3) results
improve for all methods when using 500 training samples. The
EC-HACD is very competitive compared to the kernel versions
in terms of AUC, but still the proposed K-EC-HACD leads to
longer tails of false positive detection rates (right figure, inset
plot in log-scale).

B. Experiment 2: Real and Enforced Changes

This experiment is designed to analyze the performance
of the proposed methods on distortions that are present in
real-world imagery. While the distortions that are present in
any given pair of image sets are location and sensor-dependent,
some of the more prevalent distortions are due to season-
ality, look angle, and spatial resolution. These experiments
employ a very high spatial resolution sensor that was used to
image the same target with highly varying view angles (thus,
varying distortion and layover) as well as large differences in
seasonality. The ability to detect anomalous changes in these
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Fig. 6. Three WorldView-2 images present a wide variety of distortions due
to both seasonality and view angle. In addition to the more obvious changes in
agricultural and natural vegetation, the varying view angles result in variations
in ground sample distances (GSD) of 2.0 m (May), 3.6 m (August), and 2.4 m
(November). (a) May 2013, 14.0◦ off nadir. (b) August 2013, 43.6◦ off nadir.
(c) November 2013, 29.3◦ off nadir.

highly distorted image sets illustrates the unique advantage of
these types of algorithms and, in particular, the performance
advantages of the proposed methods.

The experiments utilize three WorldView-2 images collected
in May, August, and November of 2013. All three images
(Fig. 6) were collected over a mixed suburban and rural
area with urban residential features, roadways, rivers, and
agricultural fields. The first image (May) was acquired at a
relatively small off-nadir (14.0◦) angle early in the summer
season. The second (August) and third (November) images
were collected at much higher off-nadir angles, 43.6◦ and
29.3◦, respectively. In each of the final two images, one dark
and one white tarp (20× 20 m each) were introduced as
anomalous changes.

This creates two sets on which to test the proposed methods
with varying degrees of both angular and seasonality dis-
tortions: 1) May/August: high off-nadir difference, moderate
seasonality change and 2) May/November: moderate off-nadir
difference, large seasonality change. When the white and
black tarps that are introduced into the change images are
highly anomalous, the spectral change is not unrepresentative
of real-world problems. Additionally, the ability to more
accurately model changes in highly distorted images provides
a unique test case for these proposed methods.

For each experiment, 50 nonanomalous pixels were ran-
domly selected from the stacked image sets to model the data
space using the proposed algorithms. 500 randomly selected
(training samples held out) nonanomalous and all anomalous
pixels (May/August: 153 and May/November: 144) were
selected for testing. These random selections were collected
for 50 independent runs. The mean ROC curves are reported
in Fig. 7 and the statistics for AUC are reported in Table II.
As was reported earlier, the parametersν and σ were tuned
through standard cross validation. The results are shown for
independent test sets. In both of the experiments, the HACD
and EC-HACD methods had almost identical average ROC
curves. The parameter search forν used in the EC-HACD
method favored very large values, indicating that the data
space is Gaussian and does not particularly benefit from
elliptical modeling. This is most likely due to the anomalous-
ness of the tested anomalous targets. Each of the tarp spectral

Fig. 7. ROC curves for the two experiments of Section IV-B. The mean
value of the experimental runs is plotted with the standard deviation of each
detection algorithm represented by the shaded region. (a) May/August: high
off-nadir experiment. (b) May/November: large seasonality experiment.

TABLE II

AUC STATISTICS FOR THEWORLDVIEW-2 VIEW-ANGLE

AND SEASONALITY EXPERIMENTS

signatures is highly anomalous (very dark and very bright),
presenting a relatively simplified modeling space. However,
the kernel methods did outperform the nonkernel methods by a
statistically significant+8% and+17% as measured by mean
AUC.

C. Experiment 3: Real and Natural Changes

This experiment deals with the detection of anomalous
changes that can be found naturally in a real environment.

1) Data Collection: We collected pairs of multispectral
images, and each pair consists of images taken at the same

3Only bands in the visible part of the spectrum were used.
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TABLE III

IMAGES ATTRIBUTES IN THE EXPERIMENTATION DATA SET

location but at different times. We selected the images in such
a way that an anomalous change happened between the two
acquisition times. We manually labeled all the images finding
the pixels where there is an anomalous change. This step is
critical and delicate since we could fall into many false alarms
due to, for instance, shadows, illumination changes, or natural
changes in the vegetation. This is why this problem is so
difficult to solve in an automatic way: for instance, we can see
some areas with misclassified pixels in the prediction maps
in Fig. 8. All images contain changes of different natures,
which allow us to study how the different algorithms perform
in a diversity of realistic scenarios. Table III exposes different
descriptors of the images in the database. Fig. 8 shows the
RGB composites of the pairs of images and the corresponding
reference map.

2) Numerical Comparison:Different considerations have to
be taken when using the different algorithms. On the one
hand, the family of methods based on EC distribution involves
the optimization of theν parameter. On the other hand,
kernel methods involve fitting the kernel function parameters.
In this experiment, we use the classical RBF kernel which
is well suited for multispectral images and has only one
parameter,σ . We have performed the experiments using also
the SAM and the polynomial kernels; however, results (not
shown) were worse than for the RBF kernel. In addition,
an extra parameterλ has to be fitted to regularize the matrix
inversion. Selecting properly all these three parameters is an
issue. An ideal situation would be having a rule of thumb
to choose them. We performed preliminary experiments to
explore the applicability of several existing rules to estimate
the σ parameter. For the different images and problems faced
in this section, we applied the heuristics and tried to find an
heuristic for theν andλ parameters. In particular, we inves-
tigated ten different heuristics: average distance between all
samples, median of the distance between all samples, squared
root of the dimensionality times variance per dimension
averaged, median of Silverman’s rule [58], median of Scott’s
rule per feature [59], maximum likelihood density estimation,
maximum Bayes estimate, maximum entropy estimate, aver-
age estimate of marginal kernel density estimate, and kernel
density estimation using Gaussian kernel. While some of them
have good performance for particular problems, none of the
rules was useful in general (results not shown). This is a

TABLE IV

AUC RESULTS FORALL FIVE IMAGES. FIRST AND SECONDBESTVALUES
FOR EACH IMAGE AND EACH MEMBER OF THEFAMILY ARE IN BOLD.

WE PROVIDE THE MEAN AND THE STANDARD DEVIATION FOR

TEN DIFFERENT TRIALS, VALUES MARKED WITH (†) HAD

AN OUTLIER SO WE GIVE THE MEDIAN INSTEAD OF THE
MEAN. VALUES MARKED WITH (•) REPRESENT THE

BEST OVERALL RESULT FORALL METHODS

usual problem in ACD where, for instance, instead of setting a
particular anomaly threshold, it is usual to compute the ROC
curve where all the thresholds are evaluated [3]. Instead of
using a different ROC curve for each parameter, we simplified
the problem by adopting a cross-validation scheme to fit all the
involved parameters:σ , λ, andν. Note that, not only the kernel
methods but also the linear EC methods have hyperparameters
to fit. We adopted a realistic scenario where we only need to
have labels for a small region. One advantage to use this idea
is that once the best parameters are known in a specific region,
we can apply this parameter directly without need to use cross
validation in similar scenarios. In particular, we use one half of
the image for training and obtaining the best parameters, and
the other half of the image as the test set. The same procedure
was used for all the algorithms.

For each pair of images, we split them into two parts, and
we use one for training and one for testing. We select the
best parameters by grid search in a cross-validation scheme,
using 1000 training samples and 4000 validation samples
randomly selected from the training set. Each method implies
a different set of parameters. For theν parameter, we explore
100 points logarithmically spaced between[10−5, 1010]. For
σ parameter, we explore around the heuristic of the mean
of the Euclidean distance between pairs of points (which
was the most successful in the preliminary experiments), and
we make a grid by taking 60 logarithmically spaced points,
respectively, between [10−3, 103] multiplied by the heuristic
value. For theλ parameter, we use 30 values logarithmically
spaced between [10−10, 102.5]. Note that these methods do

Authorized licensed use limited to: Universidad de Valencia. Downloaded on December 21,2020 at 20:32:34 UTC from IEEE Xplore.  Restrictions apply. 



7752 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 10, OCTOBER 2019

Fig. 8. Images withnatural anomalous changes, predictions maps, andROC curves. First row: area burned in Argentina between the months of July and
August 2016, and anomalous samples represent 7.5%. Second row: natural floods caused by Cyclone Debbie in Australia 2017, and anomalous samples
represent 17.35%. Third row: consequences ofthe fire in a mountainous area of California, USA, and anomalous samples represent 11.33%. Fourth row:
Quickbird multispectral images acquired over Denver, USA, where appears an urbanized area, and anomalous samples represent 1.6%. Last row: drying of
Poopo Lake in Bolivia at the end of 2015 and anomalous samples represent 11.7%. First column: images without anomalous changes. Second column: images
with anomalous changes and their corresponding labels surrounded with green. Third column: prediction map using the best linear method. Fourth column:
prediction map using the best kernel method. Last column: ROC curves and AUC values for the best detectors.

not give a classification but anomalousness value for each
pixel. In order to provide a classification map, a particular
discrimination threshold (value from which it is decided
whether each pixel is an anomalous change or not) should
be chosen. It is customary to provide the ROC curves. These
curves represent the results of applying a binary classifier
to the output of the methods for different threshold values
(from more to less restrictive). Each point on the curve
is the relationship between true positive and false positive

corresponding to the solution provided when applying a
particular threshold to the whole data set. ROC analysis is
usually employed to compare models. Here, we optimized
the parameters of the different methods to maximize the
AUC in the training set (top of the image) and used the best
parameters for the validation set (bottom of the image).

In Fig. 8, the ROC curves for the best method in AUC
terms and Table IV summarizes all AUC values for all images
and methods. Fig. 8 comparesthe ability of the best linear
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method against the best kernel method when using the optimal
threshold. Moreover, kernel methods produce maps with less
false positives and less false negative alarms. As a summary,
the kernel version achieves the best results in all the images
when compared with its linear counterpart. Although the XY
family seems to work better for the K-EC-ACD method of the
16 detectors under study, there is not an overall winner for all
the families since each detector has its own characteristics
(that can relatively fit data particularities), and the parameters
are adjusted according to the type of image. We can see that
the K-ACD version obtains a better performance both over the
linear ACD and over the linear EC-ACD. And the K-EC-ACD
versions have a better performance than the rest. For each type
of detector (i.e., RX, XY, YX, or HACD), the AUC values can
be ranked as: K-EC-ACD� K-ACD � EC-ACD � ACD.

V. CONCLUSION

We introduced a family of kernel-based anomaly change
detection algorithms. The family extends standard methods
such as the RX detector [49], [60] and many others in the
literature [3], [43]. The key in the proposed methodology is
to redefine the anomaly detection in a reproducing kernel
Hilbert space, where the data are mapped to. This endorses the
methods with improved capacityand flexibility since nonlinear
feature relations (and hence anomalies) can be identified.
The introduced methods generalize the previous ones since
they account for higher order dependences between features.
The proposed methods obtain better results than their linear
counterpart for all the performed experiments. We provided
implementations of the methods and a database of pairs of
images with anomalous changes that can be found in real
scenarios http://isp.uv.es/kacd.html.

In practical terms, kernel ACD methods presented here
yielded improved results over their linear counterparts in
multiple situations. We tested the robustness of this conclu-
sion performing experiments in a wide range of problems.
We designed experiments with different complexity levels:
synthetic anomaly, real but manually introduced anomaly,
and real data where the anomaly has been manually labeled.
We analyzed the performancein data coming from different
sensors (multispectral and hyperspectral), showing that kernel
methods are robust to different numbers of input data dimen-
sions as expected [61]. We adopted standard metrics (AUC
and detection) and averaged results over several runs to avoid
skewed conclusions.

Interestingly, the EC assumption may still be valid in Hilbert
spaces, especially when high pervasive distortions mask anom-
alous targets. This observation opens the door to the study
of the anomalies distribution in Hilbert spaces in the future.
A second important conclusion of this paper to be highlighted
is that, although the XY family seems to work better for
the K-EC-ACD method, among all 16 methods implemented,
we did not observe a clear winner in all methods. After all,
each problem has its own characteristics and the different
methods adapt to different particularities. In the future, we plan
to extend the study with low-rank, sparse, and scalable kernel
versions to cope with high computational requirements.
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Abstract—Current anomaly detection (AD) algorithms are
typically challenged by either accuracy or efficiency. More
accurate nonlinear detectors are typically slow and not scalable.
In this letter, we propose two families of techniques to improve
the efficiency of the standard kernel Reed–Xiaoli (KRX) method
for AD by approximating the kernel function with either the data-
independent random Fourier features or the data-dependent basis
with the Nyström approach. We compare all methods for both
real multi- and hyperspectral images. We show that the proposed
efficient methods have a lower computational cost, and they
perform similar to (or outperform) the standard KRX algorithm
thanks to their implicit regularization effect. Last but not least,
the Nyström approach has an improved power of detection.

Index Terms—Anomaly detection (AD), hyperspectral, kernel
methods, low-rank approximation, nonlinear methods, Nyström
method, randomization, randomized feature maps, Reed–Xiaoli
(RX) detector.

I. INTRODUCTION

A NOMALY detection (AD), as a remote sensing (RS)
research topic, is gaining importance because of the need

for processing large number of images that are acquired from
satellite and airborne platforms [1]. AD aims to detect small
portions of the image, which do not belong to the background
of the scene. Unlike target detection, AD does not use known
target spectra, and anomalies are assumed to be rare and at
the tail of the background distribution.

Among the many detector algorithms found in the literature,
the Reed–Xiaoli (RX) detector [2] is widely used due to its
good performance and simplicity. The RX detector determines
the target pixels that are spectrally different from the image
background based on the Mahalanobis metric. For the RX
to be effective, anomalous targets must be sufficiently small
compared with the background and is assumed to follow a
Gaussian distribution. However, it has been shown that the
Gaussian distribution assumption fails, for example, in the
hyperspectral images or with the complex feature relations,
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especially at the tails of the distribution [3]. As a result,
nonlinear versions of the RX have been introduced to mitigate
this problem, and the kernel RX (KRX) detector was proposed
in [4] to cope with the complex and nonlinear backgrounds.
However, the KRX algorithm has not been widely adopted
in practice, because, being a kernel method, the memory
and computational cost increase, at least quadratically, with
the number of pixels. This poses the perennial problem of
accuracy versus usability in nonlinear detectors in general and
kernel anomaly detectors in particular.

In this letter, we focus on improving the space (memory)
and time efficiency of the KRX anomaly detector.
Kernel-based anomaly detectors provide excellent detection
performance, since they are able to characterize the nonlinear
backgrounds [5]. In order to undertake this challenge,
we propose to use efficient techniques based on random
Fourier features (RFFs) and low-rank approximations (LRXs)
to obtain improved performance of the KRX algorithm. We
reported our initial efforts using the RFF approach in [6]

In the literature, the local and global RX-based detectors
have been proposed. In local AD [2], pixels in a sliding
window are used as input data. Despite their adaptation to
local relations, the detection power has been shown to be low
recently [3], [7]. Conversely, in global AD, all image pixels
are used to estimate the statistics. Thereby, targets with various
sizes and shapes can be detected, while the detection of small
targets can be difficult. In this letter, all the methods are used
in a global setting for the sake of simplicity.

II. RX-BASED ANOMALY DETECTION

Among the various AD methods proposed in the literature,
one of the most frequently used anomaly detectors is the
RX [2]. In this section, we explain the RX method and its
kernelized version, the KRX anomaly detector.

A. RX Anomaly Detector

We consider an acquired image reshaped in matrix form
as X ∈ �

n×d, where n is the number of pixels and d is
the total number of channels acquired by the sensor. For
simplicity, let us assume that X is a centered data matrix.
The RX detector characterizes the background in terms of the
covariance matrix � = 1/dX�X. The detector calculates the
squared Mahalanobis distance between a test pixel x∗ and the
background as follows:

DRX(x∗) = x�∗ �−1x∗. (1)

In a global AD setting, as discussed here, �−1 can be
efficiently computed using all the image pixels, since the
dimensionality of the image is much lower than the number of

1545-598X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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pixels (d� n), whereas, in a local AD setting, �−1
p needs to

be computed for each image pixel p using the centered pixels
in a window having an origin at that pixel [3].

B. KRX Anomaly Detector

It is known that a linear RX is computationally efficient
and leads to an optimal solution when pixels in X follow
a Gaussian distribution. However, real-life problems are not
always Gaussian-distributed, and this requires models that are
more flexible. Kernel methods are a possible solution, because
they can capture higher order (nonlinear) feature relations,
while still using linear algebra operations [5].

In order to develop the KRX, let us consider a mapping for
the pixels in the image to a higher dimensional Hilbert feature
space H by means of the feature map φ : x ∈ �d → φ(x) ∈
�

dH . The mapped data matrix X ∈ �n×d is now denoted as
� ∈ �n×dH . Let us define a kernel function K that, by virtue
of the Riesz theorem, can evaluate (reproduce) the dot product
between the samples in H, i.e., K (x, x�) = �φ(x),φ(x�)	 ∈ R.

To estimate how anomalous a pixel is using a pixel under
test for x∗ ∈ �d, we first map φ(x∗) and apply the RX formula
in (1) as

DKRX(x∗) = φ(x∗)�(���)−1φ(x∗) (2)

which, after some linear algebra, can be expressed in terms of
kernel matrices [5], [8]

DKRX(x∗) = k�∗ (KK )−1k∗ (3)

where k∗ = [K (x∗, x1), . . . , K (x∗, xn)]� ∈ �
n contains the

similarities between x∗ and all points in X using K and
K ∈ �

n×n stands for the kernel matrix containing all data
similarities [4]. Note that, as in the linear RX method, the KRX
also requires centering the data (now in H), which can be
easily done.1 Hereafter, we assume that all kernel matrices
are centered.

Note that constructing and inverting a kernel matrix of
large n pose a huge computational cost. A simple strategy to
alleviate this problem is to draw r samples randomly (r � n)
and use them in the standard KRX, which is here referred to
as simple subsampling RX (SRX) and defined as

DSRX(x∗) = k�∗:r (K̂ K̂ )−1k∗:r (4)

where X̂ ∈ �
r×d is a data matrix sampled from X, k∗:r =

[K (x∗, x1), . . . , K (x∗, xr )]� ∈ �
r contains the similarities

between x∗ and X̂, and K̂ ∈ �r×r is a kernel matrix containing
data similarities between the points in X̂.

III. EFFICIENT TECHNIQUES FOR KRX

Kernel methods are able to fit nonlinear problems, but they
do not scale well when the number of samples grows. We pro-
pose using a feature map and LRX approaches to improve
the efficiency of the KRX detector. We study the following
approximations to the KRX method: RFFs previously studied
by Nar et al. [6], orthogonal random features (ORF), naive
LRX, and Nyström low-rank approximation (NRX).

1Centering in feature space can be easily done implicitly by the simple
kernel matrix operation K̃ ← HKH , where Hi j = δi j − 1/n and δ represents
the Kronecker delta δi, j = 1 if i = j and zero otherwise.

A. Randomized Feature Map Approaches

1) RFFs: An outstanding result in the recent kernel method
literature makes use of a classical definition in harmonic analy-
sis to the approximation and scalability [9]. Bochner’s theorem
states that a continuous shift-invariant kernel K (x, x�) =
K (x − x�) on �

d is positive-definite (p.d.) if and only if
K is the Fourier transform of a nonnegative measure. If a
shift-invariant kernel K is properly scaled, its Fourier trans-
form p(w) is a proper probability distribution. This property
is used to approximate the kernel functions with linear pro-
jections on a number of D random features as

K (x, x�) ≈ 1

D

∑D

i=1
exp

(− �w�i x
)

exp
(
�w�i x�

)

where wi ∈ �
d are randomly sampled from a

data-independent distribution p(w) [9]. Note that
we can define a 2-D randomized feature map
z : �d → �

2D, which can be explicitly constructed as
z(x) = (1/

√
2D)[cos(w�1 x), sin(w�1 x), . . . , cos(sin w�Dx),

sin(w�Dx)]� to approximate the radial basis function (RBF)
kernel.

Therefore, given n data points (pixels), the kernel matrix
K ∈ �n×n can be approximated with the explicitly mapped
data, Z = [z1 · · · zn]� ∈ �

n×2D , and will be denoted
as K̂ ≈ ZZ�. However, we do not use such an approach in
(3), which would lead to a mere approximation with extra
computational cost. Instead, we run the linear RX in (1) with
explicitly mapped points onto the RFFs, which reduces to

DRRX = z�∗ (Z�Z)−1z∗ (5)

and leads to a nonlinear randomized RX (RRX) [6] that
approximates the KRX. Essentially, we map the original data
xi onto a nonlinear space through explicit mapping z(xi ) to
a 2D-dimensional space (instead of the potentially infinite
feature space with φ(xi )) and then use the linear RX formula.
This allows us to control the space and time complexity
explicitly through D, as one has to store the matrices of
n × 2D and the invert matrices of size 2D × 2D only (see
Table I). Typically, parameter D satisfies D � n in practical
applications.

2) ORFs: An RFF has become a very practical solution for
the bottleneck in the kernel methods when n grows. In the RFF,
frequencies wi are sampled from a particular pdf, and they act
as a basis. This, however, may lead to features that are linearly
dependent, thus geometrically covering less space. Imposing
orthogonality in the basis can be a remedy to this issue, which
has led to the ORFs [10]. The linear transformation matrix
of the ORF is WORF = 1/σSQ, where Q is a uniformly
distributed random orthogonal matrix. The set of rows of Q
forms a basis in �

d. S is a diagonal matrix, with diagonal
entries sampled i.i.d. from the τ-distribution with d degrees
of freedom. S makes the norms of the rows of SQ and W (with
all the frequencies of RFF) identically distributed. Theoretical
results show that ORF achieves a lower error than the RFF for
the RBF kernel [10]. This approach follows the above RFF
philosophy, and the final anomaly score is now

DO RX = z�∗ (Z�Z)−1z∗ (6)
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TABLE I

MEMORY AND TIME COMPLEXITY FOR ALL METHODS

where each frequency wi is a row of WORF and Z is the matrix
formed by the mappings z(xi ) of each element in the data set,
and z∗ is the mapping of a pixel to be tested.

3) Nyström Approximation:The Nyström method selects
a subset of samples to construct an LRX of the kernel
matrix [11]. This method approximates the kernel function as
K (x∗, x) ≈ k�∗:r K̂−1kx:r , where kx:r contains the similarities
between x and all r points and K̂ ∈ �r×r stands for the kernel
matrix between the points in X̂. Therefore, k∗ can be expressed
as

k∗ ≈ R�K̂−1k∗:r (7)

where R ∈ �r×n is a matrix that contains similarities between
the points in X̂ and the points in X. The similarities were
computed using the standard RBF kernel function k(x, y) =
exp(−x − y2/(2σ 2)).

Using the above definition given in (7), the Nyström method
approximates the kernel matrix K

K ≈ R�K̂−1R. (8)

By plugging (7) and (8) into (3), one can define the LRX of
the KRX

DNRX(x∗) = k�∗:r K̂−1R(R�MR )−1R�K̂−1k∗:r (9)

where M = K̂−1RR�K̂−1, while M ∈ �r×r . Since R is not
a squared matrix (r < n), it is rank-deficient, and we propose
to use the pseudoinverse instead of the inverse of R�MR .
By doing this, most of the terms cancel, leading to a more
compact equation for the NRX

DNRX(x∗) = k�∗:r (RR�)†k∗:r . (10)

Note that the NRX involves the inversion of an r ×
r matrix, which is much more efficient than the KRX.
In addition, the Nyström approach is more generic than
using the RFF approaches, as it allows one to approxi-
mate all positive-semidefinite kernels, not just shift-invariant
kernels. Furthermore, this approximation is data-dependent
(i.e., the basis functions are a subset of estimation data itself),
which could translate into better results [12].
Reduced-set

4) Connection to Reduced-Set Methods:techniques were
successfully used to obtain the sparse kernel methods and
LRXs of multivariate kernel methods [13]. This methodology
can be applied to approximate the KRX, which leads to (10).
In this approach, the data matrix X ∈ �

n×d is subsampled

into X̂ ∈ �r×d, r � n, and mapped into �̂ ∈ �r×dH , which,
by using (2), leads to obtain the LRX formula

DLRX(x∗) = φ(x∗)��̂
�
(�̂����̂�)−1�̂φ(x∗). (11)

Identifying k∗:r = �̂φ(x∗) and R = �̂��, (11) leads to

DLRX(x∗) = k�∗:r (RR�)−1k∗:r (12)

which just differs from (10) in the inverse of RR�, and when
R is full rank, they are the same. In the following and in the
experiments, we will use only DNRX instead of DLRX, as both
are mathematically equivalent.

B. Space and Time Complexity

Table I gives the theoretical computational complexity of
the benchmark methods (RX, KRX, and SRX) and proposed
methods (RRX, orthogonal RX (ORX), and NRX) presented
in this letter. In this letter, we assume d < D < r � n,
since we aim to deal with big data settings. In addition, KRX
becomes sufficiently efficient when n is small, e.g., n < 4000
for a 200× 200 image. As seen in Table I, RX provides the
best efficiency; thus, it should be employed for scenes where
the data are Gaussian-distributed. However, KRX and the
proposed KRX approximations should be used for nonlinear
distributions. Clearly, KRX is the least efficient compared with
the proposed approximations, and it is also not applicable to
big data. Feature map methods, e.g., RRX and ORX, provide
the best computational efficiency for the nonlinear (i.e., non-
Gaussian) distributions, while the LRX methods, e.g., LRX
and NRX, are also efficient yet relatively slower than the
feature map methods. Thus, one should choose the proper
method based on the image distribution characteristics [14],
[15], detection performance requirements, and computational
resource limitations. These conclusions are assessed experi-
mentally in the following section.

IV. EXPERIMENTAL RESULTS

This section analyzes the performance of the proposed
nonlinear RX AD methods. We performed tests in four real
examples and tested the robustness using the area under
curve (AUC) of the receiver operating characteristic (ROC)
curves. We provide an illustrative source code for all methods
in http://isp.uv.es/code/fastrx.html.

A. Data Collection and Experimental Setup

We collected multispectral and hyperspectral images
acquired by the Quickbird and AVIRIS sensors. Fig. 1 show-
cases the scenes used in the experiments. The AD scenarios
consider anomalies related to latent fires, vehicles, urbaniza-
tion (roofs), and ships [7], [16], [17]. Table II summaries the
relevant attributes of the data sets such as sensors, and spatial
and spectral resolution.

Parameter estimation is required for the RX, KRX, RRX,
ORX, and NRX. First, the KRX method and its proposed
variants involve the optimization of the σ parameter of the
RBF kernel. For the feature map approaches (RRX and ORX),
the number of basis, D, parameter should be optimized.
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Fig. 1. Images with anomalies (outlined in yellow) in four scenarios. (a) Consequences of the hot spots corresponding to latent fires at the World Trade
Center (WTC) in NYC (extension of anomalous pixels represents the 0.23% of the image). (b) Urban area where anomalies are vehicles in Gainesville city
(0.52%). (c) Quickbird multispectral images acquired over Denver; the anomalies are roofs in an urbanized area (1.6%). (d) Beach scene where the anomalies
are ships captured by the AVIRIS sensor (2.02%) over San Diego, USA.

TABLE II

IMAGE ATTRIBUTES USED IN THE EXPERIMENTATION DATA SET

Whereas, for NRX, the number of random subsamples, r ,
parameter should be optimized.

We adopted a cross-validation scheme to select all the
involved parameters: number of Fourier basis D, rank r , and
RBF parameter σ . We selected the parameters using different
data sizes ranging between 103 and 3× 104 samples.

B. Numerical Comparison

We report the averaged AUC results for all cases with 1000
runs (standard deviations were always lower than 3 × 10−3

and, hence, are not reported). Fig. 2 shows that nonlinear
methods improve detection over the linear RX, and the NRX
outperforms the other approximations in three out of the four
images. The AUC values of the KRX are related to the
inversion of a relatively big matrix. This raises the issues of
poorly estimated matrices (with a huge condition number),
which are also computationally expensive to invert [O(n3)].
However, all the proposed fast KRX methods have the advan-
tage of solving both issues. First, thanks to the cross-validation
procedure, an estimate of the optimal number of features
(RRX, ORX) or samples (NRX) can be obtained, allowing
to better capture the intrinsic dimensionality of the mapped
data. In a previous work [18], we showed that optimizing
the number of frequencies in the RFF approaches acts as an
efficient regularizer, leading to better estimates with a reduced
number of frequencies needed. Second, fast versions are able
to obtain better performance in the AUC metric at a fraction
of cost (see Fig. 2).

C. On the Computational Efficiency

Fig. 3 illustrates the tradeoff between the computational exe-
cution time and the AUC. The crosses indicate different values
of rank (D or r parameters) in the set {50, 100, 200, 400, 500},
and the number of pixels was fixed to n = 3000. The optimal
parameters estimated for KRX are used for the fast approaches.

Fig. 2. ROC curves in linear scale for all scenes. Numbers in legend display
the AUC values for each method.

Fig. 3. CPU execution time versus the AUC values for n = 3000 pixels;
crosses corresponds to different rank values for the Denver image.

The KRX has the best AUC values in all the images. NRX
and SRX are more sensitive to the rank values. The RRX
and ORX are almost insensitive to the rank, but results do
not improve when the rank increases, thus limiting their
performance. The combination of lower spectral information
and the ambiguity of the class (note that the anomaly class
“urbanized” can be confused with a pervasive class “urban”)
makes the Quickbird scene a very difficult problem (lower
AUCs). In this situation, as the rank parameter r for the
NRX method grows, it approximates the KRX algorithm. In
Fig. 4, the RX detector (top row) is shown against the best
detector obtained (bottom row). The best result in the AUC
was achieved by the NRX in all the images. It is worth
mentioning the good results in detection achieved by the NRX
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Fig. 4. AD maps for best thresholds. (Top) Best linear RX (AUC) results. (Bottom) Best nonlinear RX (AUC) method).

in all the scenes, which can be visually compared with the
linear version.

V. CONCLUSION

In this letter, we introduced a family of efficient nonlin-
ear AD algorithms based on the RX method. We used the
theory of reproducing kernels and proposed several efficient
methods. The KRX detector was improved using efficient and
fast techniques based on feature maps and LRXs. Among
all methods, both the Nyström and the equivalent low-rank
(LRX) approximation achieve the best results and yield a more
efficient and accurate nonlinear RX method to be applied in
practice. For future research, we plan to study the behavior of
fast approximations for alternative KRX variants [19], [20].
Note that the presented methodologies for fast KRX can be
applicable to other kernel anomaly detectors, in local settings,
and for real-time detection.
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Unsupervised Anomaly and Change Detection with
Multivariate Gaussianization

José A. Padrón-Hidalgo, Valero Laparra, and Gustau Camps-Valls, Fellow, IEEE

Abstract—Anomaly detection is a field of intense research
in remote sensing image processing. Identifying low probability
events in remote sensing images is a challenging problem given
the high-dimensionality of the data, especially when no (or little)
information about the anomaly is available a priori. While plenty
of methods are available, the vast majority of them do not
scale well to large datasets and require the choice of some
(very often critical) hyperparameters. Therefore, unsupervised
and computationally efficient detection methods become strictly
necessary, especially now with the data deluge problem. In
this paper, we propose an unsupervised method for detecting
anomalies and changes in remote sensing images by means of a
multivariate Gaussianization methodology that allows to estimate
multivariate densities accurately, a long-standing problem in
statistics and machine learning. The methodology transforms
arbitrarily complex multivariate data into a multivariate Gaus-
sian distribution. Since the transformation is differentiable, by
applying the change of variables formula one can estimate the
probability at any point of the original domain. The assumption
is straightforward: pixels with low estimated probability are
considered anomalies. Our method is flexible enough to describe
any multivariate distribution, makes an efficient use of memory
and computational resources, and is parameter-free. We show the
efficiency of the method in experiments involving both anomaly
detection and change detection in different remote sensing image
sets. For anomaly detection we propose two approaches. The first
using directly the Gaussianization transform and the second using
an hybrid model that combines Gaussianization and the Reed-
Xiaoli (RX) method typically used in anomaly detection. Results
show that our approach outperforms other linear and nonlinear
methods in terms of detection power in both anomaly and
change detection scenarios, showing robustness and scalability
to dimensionality and sample sizes.

Index Terms—Change Detection (CD), Anomaly detection,
Extremes, Gaussianization, principal component analysis, infor-
mation, deep learning, probability density estimation.

I. INTRODUCTION

Remote Sensing (RS) has become a powerful tool to develop
applications for Earth monitoring [1]–[3]. Earth observation
(EO) satellite missions, such as Sentinels-2 and Landsat-
8 are able to replace the hard and costly work of the
man on the ground. Also, the use of very high resolution
(VHR) satellite imagery (e.g. QuickBird and the Worldview
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constellation) is becoming increasingly important for remote
sensing applications, and it makes possible the detection of
dangerous events such as extreme precipitations, heat waves,
latent fires, droughts, floods or urbanization. The vast amount
of data available from different sensors makes it urgent to
have automatic methods to detect these events. A good and
quite standard approach nowadays to tackle this problem
considers statistical models that allow us to detect anomalies
and changes on the Earth cover.

Statistical methods for Anomaly detection (AD) focus on
detecting small portions of the image which do not belong to
the background of the scene [4]. Anomalies are considered a
group of weird (low probability) pixels which significantly
differ from their neighbors. AD is a challenging task and
many variants have been proposed in the literature, such as
neighbor based, clustering, classification, etc [5]–[7]. However,
among all of them, the Reed-Xiaoli (RX) approach [8] is
still the most widely used method for AD since the Gaussian
distribution assumption is a reasonable approach in several
cases, it is unsupervised, fast and easy to implement. The RX
method allows us to detect the anomalous samples compared
to background using the well-known Mahalanobis distance.
Nevertheless, since the Gaussian assumption is not flexible
enough in most cases, variants of the RX has been developed
to cope with higher-order feature relations. One option which
obtains good results is based on the theory of reproducing
kernels in Hilbert spaces, which extend the RX approach to
the kernel RX (KRX) [9], [10]. However, the KRX algorithm
has not been widely adopted in practice because, being a kernel
method, the memory and computational cost increase with
the number of pixels cubically and quadratically respectively,
and more importantly the selection of the kernel parameters
is critical to achieve a good performance. While unsupervised
approaches to fit the kernel parameter exist, they achieve a sub-
optimal performance and hence supervised approaches have to
be used. In this manuscript we propose to use a different, more
straigthforward approach to the problem of anomaly detection
based on multivariate Gaussianization transformation. The
proposed method is able to handle multidimensional data and
at the same time does not require additional information to fit
any parameter [11]. In order to control the flexibility of the
method we propose the combination of the Gaussian assump-
tion (RX) and the Gaussianization transformation, which leads
to a powerful, automatic, unsupervised, algorithm for anomaly
detection.

Change detection (CD) can be consider a particular case
of the anomaly detection problem, where the change class is
the target class to be detected. Detecting changes in images
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automatically is extremely important because it allows us to
improve predictions and our understanding of events occurring
over the entire surface of the Earth. As for AD, a similar
problem occurs when using statistical methods for CD [12]:
one aims to learn the distribution of the original image and
analyze the statistical differences of the pixels in the new
incoming image. Likewise, the RX and KRX extensions have
been proposed to deal with CD problems. However, they show
the same drawbacks as in AD. Here we describe how the
multivariate Gaussianization can be used also in CD problems.
Note that in both cases, AD and CD, the proposed statistical
method is used to evaluate the pixel’s probability so that one
can classify them as anomalies or changes, respectively.

The remainder of the manuscript is organized as follow.
Section II summarizes the Gaussianization transformation in
general, and how to adapt it to anomaly and change detection.
In section III, we illustrate its performance in three exper-
iments, involving simulated anomalies, an real AD and CD
examples with a database of real multi- and hyperspectral
images. Results show that the proposed approach is robust
and flexible enough to be applied in different AD and CD
scenarios, and obtains better performance than other simple
and robust methods (like the RX) and more flexible and
adaptable ones, like the KRX. Section IV concludes the paper
with some remarks and further work.

II. MULTIVARIATE GAUSSIANIZATION FOR DETECTION

The rotation-based iterative Gaussianization (RBIG) is a
nonparametric method for density estimation of multivariate
distributions [11]. RBIG is rooted in the idea of Gaussian-
ization, introduced in the seminal work by [13] and further
developed in [11], [14], which consists of seeking for a trans-
formation Gx that converts a multivariate dataset X ∈ R`×d

in domain X to a domain where the mapped data Y ∈ R`×d

follows a multivariate normal distribution in domain Y , i.e.
pY (y) ∼ N (0, I):

Gx : x ∈ Rd 7→ y ∈ Rd

∼ pX(x) pY (y) ∼ N (0, Id),
(1)

where inputs and mapped data points have the same dimen-
sionality x,y ∈ Rd, 0 is a vector of zeros (for the means)
and Id is the identity matrix for the covariance of dimension
d. Using the change of variable formula one can estimate the
probability of a point x in the original domain:

pX(x) = pY (y)|JGx(y)|, (2)

where pX(x) is the probability distribution of the original
data point x, and |Jf (y)| is the determinant of the Jacobian
of the transformation Gx in the point y. For this formula to
work, Gx has to be differentiable, i.e. the |JGx

(y)| > 0,∀y.
The Gaussianization method we propose in this paper, RBIG,
obtains a transformation Gx that fulfills this property, cf.
[11]. The other part of the product is easy to compute since
pY (y) can be estimated since pY is a multivariate Gaussian by
construction. Therefore RBIG can be easily applied to estimate
the probability of data points in the original domain, pX(x).

RBIG is an iterative algorithm, where in each iteration, n,
two steps are applied: 1) a set of d marginal Gaussianizations

to each of the variables, Ψ = [Φ1, . . . ,Φd], and 2) a linear
rotation, R ∈ Rd×d:

x[n+ 1] = R[n] ·Ψ[n](x[n]), n = 1, . . . , N (3)

where N is the number of steps (iterations) in the sequence,
n = 1, . . . , N . The final transformation Gx is the composition
of all performed transformations through iterations. In [11] we
showed that with enough iterations the method converges and
the transformed data follows finally a standardized Gaussian,
i.e. pY (y) ∼ N (0, Id), taking y = x[N ].

An illustration of how RBIG can be adapted to describe the
distribution of remote sensing data is shown in Fig. 1. In this
example we take data from the Sentinel-2b image Australia
(see Table I for details), which has d = 12 bands, and use
RBIG to Gaussianize its pixel’s distribution. We can see that
the Gaussianized data follows a Gaussian distribution. Besides
we apply the inverse of the learned Gaussianization trans-
formation to randomly generated Gaussian points obtaining
synthetic new data that follows a deemed similar distribution
as the original one. This illustrates the invertibility property
of RBIG, which allows us to estimate densities in the original
domain and use the well-known relation between probability
and anomaly to derive unsupervised density-based anomaly
and change detectors.

A. RBIG for Detection of Anomalies

One of the most successful methods applied to the problem
of anomaly detection is the Reed-Xiaoli (RX) method [8],
a successful type of matched filter. The idea behind the
RX method can be interpreted in probabilistic terms [10];
intuitively, a data point is more anomalous when it has less
probability to appear:

A(x) ∝ 1

pX(x)
. (4)

Actually, when the distribution is assumed to be Gaussian,
pX ∼ pG, this relation defines the RX method anomaly detec-
tor, i.e. A(x) ∼ ARX(x). Actually ARX(x) is equivalent to the
Mahalanobis distance between the data point and the mean,
i.e. ARX(x) = (x−µ)>Σ−1(x−µ), where p(x) ∼ N (0,Σ).

While RX has been widely used, it has the limitations
inherent to the Gaussian distribution assumption. The use
of kernel methods has been proposed to generalize the RX
method to the nonlinear and non-Gaussian case [9], [10].
Kernel methods define the covariance in a higher dimensional
Hilbert feature space, which in the RX method translates
into replacing the covariance matrix by a kernel matrix that
estimates the similarity between samples [15], [16]. In practice
this implies that correlation is substituted by a non-linear
similarity measure. Therefore the anomaly detected using the
kernel RX (KRX) method can be formulated as:

AKRX(x) ∝ 1

pK(x)
, (5)

where pK(x) is the distribution induced by using the kernel
function instead of the covariance. The kernel RX (KRX) is an
elegant extension of the RX, yet it has the problem of fitting
kernel parameters and the high computational cost (as one has
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Real Image Original Data

Gaussianized data Synthesized data

Fig. 1: Illustration of synthesized data using the RBIG method-
ology in a real Sentinel-2 image. Top-left: RGB composite of
the original image. Top-right: representation of the first two
bands of the original image. Bottom-left: first two dimensions
of the Gaussianized data. Bottom-right: first two bands of
the original image data (blue) and randomly generated data
inverted using the learned Gaussianization transformation (or-
ange).

to invert a kernel matrix, which has cubic cost with the number
of points `). Whereas some heuristics exist in the literature to
fit the kernel parameters, in practice one only achieves the full
potential of the KRX approach by fitting the parameters after
cross-validation [10]. This requires having access to labeled
data as anomalous versus non-anomalous classes, which is not
a very realistic and not even practical setting. In this work, we
approach the more useful and practical, yet more challenging,
problem of unsupervised anomaly detection (i.e. no labeled
data available), and therefore in our comparisons we will fit
the kernel method parameter using the most successful (and
sensible) heuristic to set the Gaussian kernel lengthscale σ as
the average of all distances among X.

As an alternative to linear measures of anomalousness like
in RX, or nonlinear yet implicit feature transformations with
parameters to tune like in KRX, we here propose a more
straightforward approach to estimate the probability density
function with RBIG (sec. II). This will give us a nonparametric
parameter-free and efficient estimation of the data distribution.
RBIG has optimal way of fitting the parameters of the distri-
bution that do not require labeled data, and scales linearly

with the data. By using RBIG to compute pX , we obtain the
method proposed in this work:

ARBIG(x) ∝ 1

pRBIG(x)
. (6)

An important aspect to take into account is the intrinsic
characteristics of the data used to estimate the density, which
has implications in the quality of the estimation. When the
distribution contains even a moderate number of anomalies, an
accurate density estimate will cast anomalies as regular points,
i.e. non-anomalous. This vastly depends on the flexibility of
the class of models used. When the model is rigid like in the
RX case, this is not a problem since it cannot be adapted to
the anomalies. For the KRX one can control this effect by
tuning the kernel lengthscale and the regularization term, but
as explained before requires labeled data. This is an important
aspect to take into account mostly in the anomaly detection
scenario, where all data (included the anomalous samples) are
used to estimate the density. Therefore we propose to use an
hybrid model that combines the (too rigid) RX model with the
(too flexible) RBIG model. The hybrid model first selects the
data more likely not to be anomalous using RX and then uses
this data to learn the Gaussianization transform with the RBIG
model. This tries to avoid using anomalous data to train RBIG,
which after all is intended to learn the background or pervasive
data distribution. The number of data points selected as non-
anomalous in the first step will define the trade-off between
flexibility and rigidity.

B. RBIG for change detection

Change detection can be approached by setting thresholds
on the change image (i.e. the difference between the two
subsequent images for optical imagery or ratios in radar
imagery) or from a purely density estimation standpoint. We
will approach it from the latter angle using RBIG. This
is certainly a more challenging approach, but has several
associated advantages: 1) only the first image (or all previous
images before the changed one) is considered to estimate the
regular/background density; 2) there is no need to corregister
images since the method operates in the geometric space
defined by the image, not in the spatial domain; and 3) unlike
a discriminative approach, a generative model like RBIG will
allow us to derive useful descriptors of the image statistics, as
well as to be refined as more images are acquired.

The idea to exploit RBIG for change detection is using
data coming from the first image X1 only to estimate the
probability model and then evaluating the probability (or
change score, C) for each point in the second image X2, as
follows:

C(x2) ∝ 1

pX1(x2)
. (7)

As for the anomaly detection case, we can use different
models to estimate pX1 . The most widely used is the Gaussian
model. As in the previous section, when assuming a Gaussian
distribution for the input data, the RX method can be used
here too, i.e. CRX(y).

Likewise, kernel methods have been proposed to alleviate
the strict assumption of Gaussian distribution [10] . While
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different configurations were proposed in order to take into
account only the anomalous changes, here we use the con-
figuration designed for change detection. Following the idea
in equation (7), the data of the first image (X1) is used to
estimate the kernel and then the method is evaluated in the
second image:

CKRX(x2) ∝ 1

pK(X1)(x2)
. (8)

Equivalently, we can use RBIG to estimate the probability of
the first image and evaluate the probability in the second one:

CRBIG(x2) ∝ 1

pRBIG(X1)(x2)
. (9)

It is important to note that, in this case, the data used to
estimate the probability density does not contain anomalies
(changes in this setting) so the hybrid model is not needed
here.

III. EXPERIMENTAL RESULTS

This section analyzes the performance of the proposed
RBIG method for anomaly and change detection. In order to
assess the robustness we performed tests in both simulated
and real scenes of varying dimensionality and sample size.
We evaluate the detection power of the methods quantitatively
through the Receiver Operating Characteristic (ROC) and
Precision-Recall (PR) curves, along with the Area Under
the Curve (AUC) scores. Besides, we provide examples of
detection maps of each method to evaluate their quality by
visual inspection.

We have performed three experiments. The first experiment
is designed to illustrate the effect of the evaluated in an
anomaly detection (AD) toy example. The second experiment
deals with AD problem in different real scenarios: detection
of air planes, latent fires, vehicles, and urbanization (roofs).
The third experiment is related to evaluate the methods in
change detection (CD) problems involvin floods, fires and
droughts. Table I summarizes the different data sets used
in the experiments. In order to ease the reproducibility, we
provide MATLAB code implementations of the all methods.
Moreover we made available a database with the labeled
images used in the second and third experiments in https:
//isp.uv.es/RBIG4AD.html.

A. Experiment 1: Simulated Anomalies

The aim of this experiment is to illustrate the behavior
of the proposed methods in challenging distributions exhibit-
ing highly nonlinear feature relations. We designed a two-
dimensional dataset where the non-anomalous data is in a
circumference and the anomalous data in the middle. Figure 2
shows the performance of the different methods. The RX
method assumption does not hold (the data is clearly non-
Gaussian), hence it shows poor performance. The performance
of KRX is better than RX but some false detections emerge
in the outer circle, mainly related to the difficulty to select a
reasonable kernel parameter. The direct application of RBIG
easily identifies the anomalous points since they are far

TABLE I: Image attributes used for the experiments of
anomaly detection (AD) and change detection (CD).

Images Sensor Size Bands SR [m]
AD
Cat-Island AVIRIS 150×150 188 17.2
WTC AVIRIS 200×200 224 1.7
Texas-Coast AVIRIS 100×100 204 17.2
GulfPort AVIRIS 100×100 191 3.4

CD
Texas Cross-Sensor 301×201 7 30
Argentina Sentinel-2 1257×964 12 10-60
Chile Landsat-8 201×251 12 10-60
Australia Sentinel-2 1175×2031 12 10-60

from the more dense (most probable) region. The proposed
hybrid model further refines the detection since the density is
estimated from pervasive data yielded by RX only.

(a) RX (b) KRX

(c) RBIG (d) HYBRID

Fig. 2: Synthetic experiment to illustrate the methods perfor-
mance when detecting anomalies. The color bar shows the
intensity in terms of anomaly score from dark blue (less)
to yellow (more). The image (a) correspond to RX detector,
image (b) is the kernel version of RX, (c) represent the RBIG
method and (d) showcase the hybrid model.

B. Experiment 2: Anomaly Detection in Real Scenarios

We performed tests in four real examples. Table I summa-
rizes relevant attributes of the datasets such as sensors, spatial
and spectral resolution.

1) Data collection: We collected multispectral and hyper-
spectral images acquired by the AVIRIS and ROSIS-03 sen-
sors. Figure 3 showcases the scenes used in the experiments.
The AD scenarios consider anomalies related to a diversity
of problems: airplane, latent fires, urbanization and vehicle
detection [17]–[19].

The Cat-Island dataset corresponds to the airplane captured
flying over the beach and it is considered a strange object
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Fig. 3: Anomaly detection predictions in four images (one per row). First column: Cat-Island, World Trade Center (WTC), Texas Coast and
Pavia original datasets with anomalies outlined in green. Second column: represent the reference maps of each image. From third column
to the last column: activation maps and the AUC values (in parenthesis) for the RX, KRX, RBIG and the HYBRID models, respectively.

when compared to the rest of the image (a white spot in
the middle of a beach) and the percentage of anomalies
represent the 0.09% of the scene. The World Trade Center
(WTC) image was collected by the Airborne Visible Infra-Red
Imaging Spectrometer (AVIRIS) over the WTC area in New
York on 16 September 2001 (after the collapse of the towers
in NY). The data set covered the hot spots corresponding to
latent fires at the WTC, which can be considered as anomalies
and it represent the 0.23% of the scene. In the Texas Coast
dataset, the anomalies represent the 0.67% of the scene and the
image contains roofs built on a wooded site and bright spots
that reflect light which can be considered an anomaly. The
GulfPort dataset correspond to a battery of airplanes taxied
on the runway and the pecentage of anomalies represent the
0.60% of the scene.

2) Numerical and Visual Comparison: It is important to
take into consideration that KRX requires the selection of

some hyperparameters, being the kernel parameter the most
critical one. In order to perform a fair comparison while stay-
ing in an unsupervised learning setting, we use the standard
RBF kernel function, k(a,b) = exp(−‖a − b‖2/(2σ2)) and
set the lengthscale parameter σ to the median distance between
all examples. A visual comparison of the results in terms of
activation maps for all methods is given in Fig. 3. They display
the predictions given to each sample. The prediction maps
show a binary representation between change and non-change

TABLE II: AUC results for Anomaly Detection images. The
value for the best method for each image is in bold.

METHODS RX K-RX RBIG HYBRID
Cat-Island 0.96 0.70 0.99 0.99
WTC 0.95 0.82 0.95 0.95
Texas-Coast 0.99 0.86 0.94 0.99
GulfPort 0.90 0.95 0.95 0.95
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(a) Cat-Island (b) WTC (c) Texas Coast (d) GulfPort

Fig. 4: Anomaly detection ROC curves in linear scale for all scenes. Numbers in legend display the AUC values for each
method.
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Fig. 5: Anomaly detection results of the bootstrap experiment for 1000 experiments. AUC values and standard deviation for
each method are shown as boxplot, red line represent the median value, the blue box contains 95% of the values, black lines
represent the maximum and minimum values.

samples obtained from the model subject to a threshold.
Results in all scenes demonstrate that (1) RX is a competitive
method for detection, (2) KRX struggles to obtain reasonable
results mainly due to the problem of hyperparameter tuning,
(3) RBIG alone excels in all cases, while the hybrid approach
(i.e. RX followed by RBIG) refines the results and yields
clearer activation maps with sharper spatial detections.

Additionally, for a quantitative assessment of the results,
it is customary to provide the ROC curves and to derive
scores like the AUC from it. Figure 4 shows the ROC curves
and Table II summarizes all AUC values for all images and
methods. For each experiment, we performed 1000 runs for
testing the significance of the methods based on the ROC
profiles. The results are shown in Figure 5. Although the RBIG
model achieves good results, RX model is able to compete
and achieve results as good as RBIG for some images. The
HYBRID model is able to keep the properties of the above
mentioned models obtaining results equal or better than any
other method. While KRX obtains a reasonable performance
in some images, it clearly fails in some situations like the
Cat-Island image. The low standard deviations show that all
methods but the KRX are clearly robust with a little bit bigger
standard deviation for the RX method in most cases.

C. Experiment 3: Real and Natural Changes

This section reports an experiment to analyze the perfor-
mance of the proposed methods in change detection problems.
The database is composed of different scenes with natural
changes, whose characteristics are summarized in Table I.

1) Data collection: We collected pairs of multispectral
images in such a way that they coincide at the same spatial
resolution but at different acquisition time, the images are
co-registered. We selected the images in such a way that
an anomalous change happened between the two acquisition
times. We manually labeled all the images finding the changed
pixels. Labeling considered avoiding shadows, changes in
lighting and natural changes in vegetation which could com-
promise results evaluation. All images contain changes of
different nature, which allows us to analyze and study how the
algorithms perform in heterogeneous realistic scenarios. The
Texas wildfire dataset is composed by a set of four images
acquired by different sensors over Bastrop County, Texas
(USA), and is composed by a Landsat 5 TM as the pre-event
image and a Landsat 5 TM plus an EO-1 ALI and a Landsat
8 as post-event images. This phenomenon is considered the
most destructive wildland-urban interface wildfire in Texas
history and the interest region represent the 19.54%. The
Argentina image represents an area burned between the months
of July and August 2016 due to the high temperatures in
these crop areas, the change region representing the 7.5%
of the whole scene. The Chile dataset represents the Aculeo
lake in central part of this country, which has now dried up
completely. These images contrast the lake in 2014, when it
still contained substantial water, and 2019, when it consisted
of dried mud and green vegetation. Scientists attribute the
lake’s decline to an unusual decade-long drought, coupled with
increased water consumption from a growing population, and
the changed region represents a relevant 10.81% of the whole
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Fig. 6: Change detection results for different images. First two columns show the images before and after the change, with the
changed region highlighted in green. Columns three to five show the prediction maps for the different methods, the amount of
change detected in each pixel is colored from white (less) to red (more). AUC values are given in parenthesis. The changed
region is outlined in black to facilitate the visual inspection.

scene. The last dataset labeled as Australia shows the natural
floods caused by Cyclone Debbie in Australia 2017. Storm
damage resulted from both the high winds associated with the
cyclone, and the very heavy rain that produced major riverine
floods. The change samples represent an important portion
of the scene, the 17.35% of pixels affected. Since our RBIG
approach only takes the time t1 image, these big changes do
not have a critical impact on method’s performance.

2) Numerical and Visual Comparison: Figure 6 shows the
RGB composites of the pairs of images, the corresponding
reference map and activation maps obtained. RBIG obtains
clearly better results than the other methods in all cases; very
good performance in three out of the four scenarios and a
clear advantage in the most difficult one (Chile image). When
dealing with highly skewed datasets, PR curves give a more
informative picture of an algorithm’s performance compared
to ROC. Figure 7 shows both the ROC and the PR curves

results for all methods and all the images. In all cases RBIG
outperforms the other methods largely, thus suggesting the
suitability of adopting a more direct approach of density
estimation in the change detection problems too. A summary
of the AUC values of all methods and scenarios is shown in
Table III. The RBIG approach is to able to estimate the change
samples with a high accuracy overtaking in 7%, 3%, 6% and
5% respectively with respect the second best method.

TABLE III: AUC results for Change Detection images. The
best value for each image are in bold

METHODS RX K-RX RBIG
Texas 0.91 0.80 0.98
Argentina 0.94 0.93 0.97
Chile 0.64 0.66 0.72
Australia 0.86 0.88 0.93
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(a) Texas (b) Argentina (c) Chile (d) Australia

Fig. 7: ROC (top row) and Precision-Recall (bottom row) curves for change detection problems.

IV. CONCLUSIONS

We introduced a novel detector based on multivariate
Gaussianization. The methodology copes with anomaly and
change detection problems in remote sensing image pro-
cessing, and meets all requirements of the problems: is an
unsupervised method with no parameters to fit, it can deal with
large amount of data, and it is more accurate to competing
approaches. The model assumption is based on detecting
anomalies by estimating probabilities of pixels. The proposed
method excelled quantitatively (AUC, ROC and PR curves)
and qualitative based on visual inspection over the rest of
the implementations, in both anomaly and change detection.
The evaluation considered a wide range of remote sensing
images, in a diversity of problems, dimensionality and number
of examples. We also suggested a hybrid approach where the
Gaussianization method is applied after a regular anomaly
detector: this facilitates the density estimation and improves
the results notably. Future work will consider exploiting the
information-theoretic properties of RBIG [20] which opens
alternatives to identify changes in image time series.
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