10 research outputs found

    Pantograph Spark Fault Detection using YOLO

    Get PDF
    Pantograph-catenary is now the dominant form of current collection for modern electric trains because they can be used for higher voltages. Faults in pantograph-catenary systems threaten the operation and safety of railway transportation. They need to be continuously monitored and controlled to maintain safe transport. Pantograph may be damaged as a result of extreme weather conditions which can affect its normal operation, leading to failure of pantograph and overhead contact line systems. Poor contact between pantograph and overhead contact line causes thermal erosion to the wire. When the pantographs are exposed to air, they could deteriorate due to electrochemical reaction with the environment since they are made of metals. Movement of catenary lines and pantograph in high crosswinds has been found to cause the wire to be trapped in the pantograph. There is a serious issue regarding the quality of images generated by pantograph video monitoring system on high-speed railway trains which often shows inconsistencies of catenary faults. The application of traditional image processing and deep learning techniques have been unable to meet the requirements of spark detection. In this paper,  a modern deep learning algorithm is proposed to detect sparks in the pantograph. Specifically, the YOLOv3 model is used to counter this problem that traditional image processing algorithms have been unable to. The results on a very large sample of data show the efficiency and real-time performance of the proposed method, which meets the requirements of pantograph spark detection in high-speed railway. Keywords: High-speed railway pantograph; Spark detection; Deep learning; YOLOv3; DOI: 10.7176/ISDE/12-3-02 Publication date:September 30th 202

    Advances in fault diagnosis for high-speed railway: A review

    Get PDF
    The high speed railway (HSR) is a complex system with many subsystems and components. The reliability of its core subsystems is a key consideration in ensuring the safety and operation efficiency of the whole system. As the service time increases, the degradation of these subsystems and components may lead to a range of faults and deteriorate the whole system performance. To ensure the operation safety and to develop reasonable maintenance strategies, fault detection and isolation is an indispensable functionality in high speed railway systems. In this paper, the traction power supply system, bogie system, civil infrastructure system, and control and signaling system of HSR are briefly summarized, and then different fault diagnosis methods for these subsystems are comprehensively reviewed. Finally, some future research topics are discussed

    A Survey on Audio-Video based Defect Detection through Deep Learning in Railway Maintenance

    Get PDF
    Within Artificial Intelligence, Deep Learning (DL) represents a paradigm that has been showing unprecedented performance in image and audio processing by supporting or even replacing humans in defect and anomaly detection. The Railway sector is expected to benefit from DL applications, especially in predictive maintenance applications, where smart audio and video sensors can be leveraged yet kept distinct from safety-critical functions. Such separation is crucial, as it allows for improving system dependability with no impact on its safety certification. This is further supported by the development of DL in other transportation domains, such as automotive and avionics, opening for knowledge transfer opportunities and highlighting the potential of such a paradigm in railways. In order to summarize the recent state-of-the-art while inquiring about future opportunities, this paper reviews DL approaches for the analysis of data generated by acoustic and visual sensors in railway maintenance applications that have been published until August 31st, 2021. In this paper, the current state of the research is investigated and evaluated using a structured and systematic method, in order to highlight promising approaches and successful applications, as well as to identify available datasets, current limitations, open issues, challenges, and recommendations about future research directions

    A literature review of Artificial Intelligence applications in railway systems

    Get PDF
    Nowadays it is widely accepted that Artificial Intelligence (AI) is significantly influencing a large number of domains, including railways. In this paper, we present a systematic literature review of the current state-of-the-art of AI in railway transport. In particular, we analysed and discussed papers from a holistic railway perspective, covering sub-domains such as maintenance and inspection, planning and management, safety and security, autonomous driving and control, revenue management, transport policy, and passenger mobility. This review makes an initial step towards shaping the role of AI in future railways and provides a summary of the current focuses of AI research connected to rail transport. We reviewed about 139 scientific papers covering the period from 2010 to December 2020. We found that the major research efforts have been put in AI for rail maintenance and inspection, while very limited or no research has been found on AI for rail transport policy and revenue management. The remaining sub-domains received mild to moderate attention. AI applications are promising and tend to act as a game-changer in tackling multiple railway challenges. However, at the moment, AI research in railways is still mostly at its early stages. Future research can be expected towards developing advanced combined AI applications (e.g. with optimization), using AI in decision making, dealing with uncertainty and tackling newly rising cybersecurity challenges

    A coupling method for identifying arc faults based on short-observation-window SVDR

    Get PDF
    This article presents a new method for effective detection of ac series arc fault (AF) (SAF) and extraction of SAF characteristics in residential buildings, which addresses the challenges with conventional current detection methods in discriminating arcing and nonarcing current due to their similarity. Different from the traditional method, in the proposed method, the differential magnetic flux is coupled to obtain high-frequency signals by putting the live line and the neutral line through the current transformer, which can effectively solve the problem of SAF features disappearing in the trunk-line current. However, similar to the traditional method, the effectiveness of the proposed coupling method could also be compromised when being used in cases with dimmer load and load starting process. This is found to be caused by the presence of high-Amplitude pulse phenomenon in the nonarcing signals in these scenarios, which are incorrectly detected as arcing signals in other loads. To address this issue, a short-observation-window singular value decomposition and reconstruction algorithm (SOW-SVDR) is used to enhance the capability to identify SAFs by the coupling method. The proposed method has been implemented and validated according to the UL1699 standard with different types of loads connected to the system and also tested under their starting processes. The experimental results show that the proposed approach is more effective in detecting AFs compared with existing methods

    Deep-Learning and Vibration-Based System for Wear Size Estimation of Railway Switches and Crossings

    Get PDF
    The switch and crossing (S&C) is one of the most important parts of the railway infrastructure network due to its significant influence on traffic delays and maintenance costs. Two central questions were investigated in this paper: (I) the first question is related to the feasibility of exploring the vibration data for wear size estimation of railway S&C and (II) the second one is how to take advantage of the Artificial Intelligence (AI)-based framework to design an effective early-warning system at early stage of S&C wear development. The aim of the study was to predict the amount of wear in the entire S&C, using medium-range accelerometer sensors. Vibration data were collected, processed, and used for developing accurate data-driven models. Within this study, AI-based methods and signal-processing techniques were applied and tested in a full-scale S&C test rig at Lulea University of Technology to investigate the effectiveness of the proposed method. A real-scale railway wagon bogie was used to study different relevant types of wear on the switchblades, support rail, middle rail, and crossing part. All the sensors were housed inside the point machine as an optimal location for protection of the data acquisition system from harsh weather conditions such as ice and snow and from the ballast. The vibration data resulting from the measurements were used to feed two different deep-learning architectures, to make it possible to achieve an acceptable correlation between the measured vibration data and the actual amount of wear. The first model is based on the ResNet architecture where the input data are converted to spectrograms. The second model was based on a long short-term memory (LSTM) architecture. The proposed model was tested in terms of its accuracy in wear severity classification. The results show that this machine learning method accurately estimates the amount of wear in different locations in the S&C

    An internet of things enabled system for real-time monitoring and predictive maintenance of railway infrastructure

    Get PDF
    The railway industry plays a pivotal role in the socioeconomic landscape of many countries. However, its operation poses considerable challenges in terms of safety, environmental impact, and the intricacies of intertwined technical and social structures. Addressing these challenges necessitates the adoption of innovative approaches and advanced technologies. This doctoral research delves into the potential of the Internet of Things (IoT) as an enabler for railway infrastructure monitoring and predictive maintenance, aiming to enhance reliability, efficiency, and safety within the industry. Rooted in a pragmatic modelist philosophical stance, this thesis employs an exploratory sequential mixed-method approach incorporating qualitative and quantitative methodologies. The research process involves engaging with key stakeholders to gain insights into the challenges faced in railway maintenance and the opportunities presented by IoT implementation. Following this, an IoT system is developed, and a comprehensive value-creation framework is proposed for its effective implementation within the railway sector. The findings of this investigation underscore the transformative potential of IoT integration in railway infrastructure monitoring, yielding significant improvements in maintenance processes, safety, and operational efficiency. Furthermore, this doctoral research provides a foundation for future innovation and adaptation in the railway industry, contributing to its ongoing evolution and resilience in an ever-changing technological landscape

    Collected Papers (Neutrosophics and other topics), Volume XIV

    Get PDF
    This fourteenth volume of Collected Papers is an eclectic tome of 87 papers in Neutrosophics and other fields, such as mathematics, fuzzy sets, intuitionistic fuzzy sets, picture fuzzy sets, information fusion, robotics, statistics, or extenics, comprising 936 pages, published between 2008-2022 in different scientific journals or currently in press, by the author alone or in collaboration with the following 99 co-authors (alphabetically ordered) from 26 countries: Ahmed B. Al-Nafee, Adesina Abdul Akeem Agboola, Akbar Rezaei, Shariful Alam, Marina Alonso, Fran Andujar, Toshinori Asai, Assia Bakali, Azmat Hussain, Daniela Baran, Bijan Davvaz, Bilal Hadjadji, Carlos Díaz Bohorquez, Robert N. Boyd, M. Caldas, Cenap Özel, Pankaj Chauhan, Victor Christianto, Salvador Coll, Shyamal Dalapati, Irfan Deli, Balasubramanian Elavarasan, Fahad Alsharari, Yonfei Feng, Daniela Gîfu, Rafael Rojas Gualdrón, Haipeng Wang, Hemant Kumar Gianey, Noel Batista Hernández, Abdel-Nasser Hussein, Ibrahim M. Hezam, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Muthusamy Karthika, Nour Eldeen M. Khalifa, Madad Khan, Kifayat Ullah, Valeri Kroumov, Tapan Kumar Roy, Deepesh Kunwar, Le Thi Nhung, Pedro López, Mai Mohamed, Manh Van Vu, Miguel A. Quiroz-Martínez, Marcel Migdalovici, Kritika Mishra, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohammed Alshumrani, Mohamed Loey, Muhammad Akram, Muhammad Shabir, Mumtaz Ali, Nassim Abbas, Munazza Naz, Ngan Thi Roan, Nguyen Xuan Thao, Rishwanth Mani Parimala, Ion Pătrașcu, Surapati Pramanik, Quek Shio Gai, Qiang Guo, Rajab Ali Borzooei, Nimitha Rajesh, Jesús Estupiñan Ricardo, Juan Miguel Martínez Rubio, Saeed Mirvakili, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, Ahmed A. Salama, Nirmala Sawan, Gheorghe Săvoiu, Ganeshsree Selvachandran, Seok-Zun Song, Shahzaib Ashraf, Jayant Singh, Rajesh Singh, Son Hoang Le, Tahir Mahmood, Kenta Takaya, Mirela Teodorescu, Ramalingam Udhayakumar, Maikel Y. Leyva Vázquez, V. Venkateswara Rao, Luige Vlădăreanu, Victor Vlădăreanu, Gabriela Vlădeanu, Michael Voskoglou, Yaser Saber, Yong Deng, You He, Youcef Chibani, Young Bae Jun, Wadei F. Al-Omeri, Hongbo Wang, Zayen Azzouz Omar

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering
    corecore