10 research outputs found

    Maximum Weight Disjoint Paths in Outerplanar Graphs via Single-Tree Cut Approximators

    Full text link
    Since 1997 there has been a steady stream of advances for the maximum disjoint paths problem. Achieving tractable results has usually required focusing on relaxations such as: (i) to allow some bounded edge congestion in solutions, (ii) to only consider the unit weight (cardinality) setting, (iii) to only require fractional routability of the selected demands (the all-or-nothing flow setting). For the general form (no congestion, general weights, integral routing) of edge-disjoint paths ({\sc edp}) even the case of unit capacity trees which are stars generalizes the maximum matching problem for which Edmonds provided an exact algorithm. For general capacitated trees, Garg, Vazirani, Yannakakis showed the problem is APX-Hard and Chekuri, Mydlarz, Shepherd provided a 44-approximation. This is essentially the only setting where a constant approximation is known for the general form of \textsc{edp}. We extend their result by giving a constant-factor approximation algorithm for general-form \textsc{edp} in outerplanar graphs. A key component for the algorithm is to find a {\em single-tree} O(1)O(1) cut approximator for outerplanar graphs. Previously O(1)O(1) cut approximators were only known via distributions on trees and these were based implicitly on the results of Gupta, Newman, Rabinovich and Sinclair for distance tree embeddings combined with results of Anderson and Feige.Comment: 19 pages, 6 figure

    Improved Approximation for Node-Disjoint Paths in Grids with Sources on the Boundary

    Get PDF
    We study the classical Node-Disjoint Paths (NDP) problem: given an undirected n-vertex graph G, together with a set {(s_1,t_1),...,(s_k,t_k)} of pairs of its vertices, called source-destination, or demand pairs, find a maximum-cardinality set {P} of mutually node-disjoint paths that connect the demand pairs. The best current approximation for the problem is achieved by a simple greedy O(sqrt{n})-approximation algorithm. Until recently, the best negative result was an Omega(log^{1/2-epsilon}n)-hardness of approximation, for any fixed epsilon, under standard complexity assumptions. A special case of the problem, where the underlying graph is a grid, has been studied extensively. The best current approximation algorithm for this special case achieves an O~(n^{1/4})-approximation factor. On the negative side, a recent result by the authors shows that NDP is hard to approximate to within factor 2^{Omega(sqrt{log n})}, even if the underlying graph is a subgraph of a grid, and all source vertices lie on the grid boundary. In a very recent follow-up work, the authors further show that NDP in grid graphs is hard to approximate to within factor Omega(2^{log^{1-epsilon}n}) for any constant epsilon under standard complexity assumptions, and to within factor n^{Omega(1/(log log n)^2)} under randomized ETH. In this paper we study the NDP problem in grid graphs, where all source vertices {s_1,...,s_k} appear on the grid boundary. Our main result is an efficient randomized 2^{O(sqrt{log n}* log log n)}-approximation algorithm for this problem. Our result in a sense complements the 2^{Omega(sqrt{log n})}-hardness of approximation for sub-graphs of grids with sources lying on the grid boundary, and should be contrasted with the above-mentioned almost polynomial hardness of approximation of NDP in grid graphs (where the sources and the destinations may lie anywhere in the grid). Much of the work on approximation algorithms for NDP relies on the multicommodity flow relaxation of the problem, which is known to have an Omega(sqrt n) integrality gap, even in grid graphs, with all source and destination vertices lying on the grid boundary. Our work departs from this paradigm, and uses a (completely different) linear program only to select the pairs to be routed, while the routing itself is computed by other methods

    Pre-Reduction Graph Products: Hardnesses of Properly Learning DFAs and Approximating EDP on DAGs

    Full text link
    The study of graph products is a major research topic and typically concerns the term f(GH)f(G*H), e.g., to show that f(GH)=f(G)f(H)f(G*H)=f(G)f(H). In this paper, we study graph products in a non-standard form f(R[GH]f(R[G*H] where RR is a "reduction", a transformation of any graph into an instance of an intended optimization problem. We resolve some open problems as applications. (1) A tight n1ϵn^{1-\epsilon}-approximation hardness for the minimum consistent deterministic finite automaton (DFA) problem, where nn is the sample size. Due to Board and Pitt [Theoretical Computer Science 1992], this implies the hardness of properly learning DFAs assuming NPRPNP\neq RP (the weakest possible assumption). (2) A tight n1/2ϵn^{1/2-\epsilon} hardness for the edge-disjoint paths (EDP) problem on directed acyclic graphs (DAGs), where nn denotes the number of vertices. (3) A tight hardness of packing vertex-disjoint kk-cycles for large kk. (4) An alternative (and perhaps simpler) proof for the hardness of properly learning DNF, CNF and intersection of halfspaces [Alekhnovich et al., FOCS 2004 and J. Comput.Syst.Sci. 2008]

    New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

    Get PDF
    We study the classical NP-hard problems of finding maximum-size subsets from given sets of k terminal pairs that can be routed via edge-disjoint paths (MaxEDP) or node-disjoint paths (MaxNDP) in a given graph. The approximability of MaxEDP/NDP is currently not well understood; the best known lower bound is Omega(log^{1/2 - varepsilon} n), assuming NP not subseteq ZPTIME(n^{poly log n}). This constitutes a significant gap to the best known approximation upper bound of O(n^1/2) due to Chekuri et al. (2006) and closing this gap is currently one of the big open problems in approximation algorithms. In their seminal paper, Raghavan and Thompson (Combinatorica, 1987) introduce the technique of randomized rounding for LPs; their technique gives an O(1)-approximation when edges (or nodes) may be used by O(log n/log log n) paths. In this paper, we strengthen the above fundamental results. We provide new bounds formulated in terms of the feedback vertex set number r of a graph, which measures its vertex deletion distance to a forest. In particular, we obtain the following. - For MaxEDP, we give an O(r^0.5 log^1.5 kr)-approximation algorithm. As r<=n, up to logarithmic factors, our result strengthens the best known ratio O(n^0.5) due to Chekuri et al. - Further, we show how to route Omega(opt) pairs with congestion O(log(kr)/log log(kr)), strengthening the bound obtained by the classic approach of Raghavan and Thompson. - For MaxNDP, we give an algorithm that gives the optimal answer in time (k+r)^O(r)n. This is a substantial improvement on the run time of 2^kr^O(r)n, which can be obtained via an algorithm by Scheffler. We complement these positive results by proving that MaxEDP is NP-hard even for r=1, and MaxNDP is W[1]-hard for parameter r. This shows that neither problem is fixed-parameter tractable in r unless FPT = W[1] and that our approximability results are relevant even for very small constant values of r

    On Approximating Node-Disjoint Paths in Grids

    Get PDF
    In the Node-Disjoint Paths (NDP) problem, the input is an undirected n-vertex graph G, and a collection {(s_1,t_1),...,(s_k,t_k)} of pairs of vertices called demand pairs. The goal is to route the largest possible number of the demand pairs (s_i,t_i), by selecting a path connecting each such pair, so that the resulting paths are node-disjoint. NDP is one of the most basic and extensively studied routing problems. Unfortunately, its approximability is far from being well-understood: the best current upper bound of O(sqrt(n)) is achieved via a simple greedy algorithm, while the best current lower bound on its approximability is Omega(log^{1/2-delta}(n)) for any constant delta. Even for seemingly simpler special cases, such as planar graphs, and even grid graphs, no better approximation algorithms are currently known. A major reason for this impasse is that the standard technique for designing approximation algorithms for routing problems is LP-rounding of the standard multicommodity flow relaxation of the problem, whose integrality gap for NDP is Omega(sqrt(n)) even on grid graphs. Our main result is an O(n^{1/4} * log(n))-approximation algorithm for NDP on grids. We distinguish between demand pairs with both vertices close to the grid boundary, and pairs where at least one of the two vertices is far from the grid boundary. Our algorithm shows that when all demand pairs are of the latter type, the integrality gap of the multicommodity flow LP-relaxation is at most O(n^{1/4} * log(n)), and we deal with demand pairs of the former type by other methods. We complement our upper bounds by proving that NDP is APX-hard on grid graphs

    Approximations for the Disjoint Paths Problem in High-Diameter Planar Networks

    No full text
    We consider the problem of connecting distinguished terminal pairs in a graph via edgedisjoint paths. This is a classical NP-complete problem for which no general approximation techniques are known; it has recently been brought into focus in papers discussing applications to admission control in high-speed networks and to routing in all-optical networks. In this paper we provide O(log n)-approximation algorithms for two natural optimization versions of this problem for the class of nearly-Eulerian, uniformly high-diameter planar graphs, which includes two-dimensional meshes and other common planar interconnection networks

    A Polylogarithimic Approximation Algorithm for Edge-Disjoint Paths with Congestion 2

    Full text link
    In the Edge-Disjoint Paths with Congestion problem (EDPwC), we are given an undirected n-vertex graph G, a collection M={(s_1,t_1),...,(s_k,t_k)} of demand pairs and an integer c. The goal is to connect the maximum possible number of the demand pairs by paths, so that the maximum edge congestion - the number of paths sharing any edge - is bounded by c. When the maximum allowed congestion is c=1, this is the classical Edge-Disjoint Paths problem (EDP). The best current approximation algorithm for EDP achieves an O(n)O(\sqrt n)-approximation, by rounding the standard multi-commodity flow relaxation of the problem. This matches the Ω(n)\Omega(\sqrt n) lower bound on the integrality gap of this relaxation. We show an O(polylogk)O(poly log k)-approximation algorithm for EDPwC with congestion c=2, by rounding the same multi-commodity flow relaxation. This gives the best possible congestion for a sub-polynomial approximation of EDPwC via this relaxation. Our results are also close to optimal in terms of the number of pairs routed, since EDPwC is known to be hard to approximate to within a factor of Ω~((logn)1/(c+1))\tilde{\Omega}((\log n)^{1/(c+1)}) for any constant congestion c. Prior to our work, the best approximation factor for EDPwC with congestion 2 was O~(n3/7)\tilde O(n^{3/7}), and the best algorithm achieving a polylogarithmic approximation required congestion 14

    Networks, Communication, and Computing Vol. 2

    Get PDF
    Networks, communications, and computing have become ubiquitous and inseparable parts of everyday life. This book is based on a Special Issue of the Algorithms journal, and it is devoted to the exploration of the many-faceted relationship of networks, communications, and computing. The included papers explore the current state-of-the-art research in these areas, with a particular interest in the interactions among the fields
    corecore