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Abstract
We study the classical NP-hard problems of finding maximum-size subsets from given sets of k
terminal pairs that can be routed via edge-disjoint paths (MaxEDP) or node-disjoint paths
(MaxNDP) in a given graph. The approximability of MaxEDP/NDP is currently not well
understood; the best known lower bound is Ω(log1/2−ε n), assuming NP 6⊆ ZPTIME(npoly logn).
This constitutes a significant gap to the best known approximation upper bound of O(

√
n) due

to Chekuri et al. (2006) and closing this gap is currently one of the big open problems in
approximation algorithms. In their seminal paper, Raghavan and Thompson (Combinatorica,
1987) introduce the technique of randomized rounding for LPs; their technique gives an O(1)-
approximation when edges (or nodes) may be used by O

(
logn

log logn

)
paths.

In this paper, we strengthen the above fundamental results. We provide new bounds formu-
lated in terms of the feedback vertex set number r of a graph, which measures its vertex deletion
distance to a forest. In particular, we obtain the following.

For MaxEDP, we give an O(
√
r · log1.5 kr)-approximation algorithm. As r ≤ n, up to

logarithmic factors, our result strengthens the best known ratio O(
√
n) due to Chekuri et al.

Further, we show how to route Ω(OPT) pairs with congestion O
(

log kr
log log kr

)
, strengthening

the bound obtained by the classic approach of Raghavan and Thompson.
For MaxNDP, we give an algorithm that gives the optimal answer in time (k + r)O(r) · n.
This is a substantial improvement on the run time of 2krO(r) · n, which can be obtained via
an algorithm by Scheffler.

We complement these positive results by proving that MaxEDP is NP-hard even for r = 1,
and MaxNDP is W[1]-hard for parameter r. This shows that neither problem is fixed-parameter
tractable in r unless FPT = W[1] and that our approximability results are relevant even for very
small constant values of r.
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1 Introduction

In this paper, we study disjoint paths routing problems. In this setting, we are given an
undirected graph G and a collection of source-destination pairsM = {(s1, t1), . . . , (sk, tk)}.
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42:2 New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

The goal is to select a maximum-sized subsetM′ ⊆M of the pairs that can be routed, where
a routing ofM′ is a collection P of paths such that, for each pair (si, ti) ∈M′, there is a path
in P connecting si to ti. In the Maximum Edge Disjoint Paths (MaxEDP) problem,
a routing P is feasible if its paths are pairwise edge-disjoint, and in the Maximum Node
Disjoint Paths (MaxNDP) problem the paths in P must be pairwise vertex-disjoint.

Disjoint paths problems are fundamental problems with a long history and significant
connections to optimization and structural graph theory. The decision versions EDP of
MaxEDP and NDP of MaxNDP ask whether all of the pairs can be routed. Karp [27]
showed that, when the number of pairs is part of the input, the decision problem is NP-
complete. In undirected graphs, MaxEDP and MaxNDP are solvable in polynomial time
when the number of pairs is a fixed constant; this is a very deep result of Robertson and
Seymour [40] that builds on several fundamental results in structural graph theory from their
graph minors project.

In this paper, we consider the optimization problems MaxEDP and MaxNDP when
the number of pairs are part of the input. In this setting, the best approximation ratio for
MaxEDP is achieved by an O(

√
n)-approximation algorithm [12, 33], where n is the number

of nodes, whereas the best hardness for undirected graphs is only Ω(log1/2−ε n) [3]. Bridging
this gap is a fundamental open problem that seems quite challenging at the moment.

Most of the results for routing on disjoint paths use a natural multi-commodity flow
relaxation as a starting point. A well-known integrality gap instance due to Garg et al. [24]
shows that this relaxation has an integrality gap of Ω(

√
n), and this is the main obstacle

for improving the O(
√
n)-approximation ratio in general graphs. The integrality instance

on an n× n grid (of treewidth Θ(
√
n)) exploits a topological obstruction in the plane that

prevents a large integral routing; see Fig. 1. This led Chekuri et al. [15] to studying the
approximability of MaxEDP with respect to the tree-width of the underlying graph. In
particular, they pose the following conjecture:

I Conjecture 1 ([13]). The integrality gap of the standard multi-commodity flow relaxation
for MaxEDP is Θ(w), where w is the treewidth of the graph.

Recently, Ene et al. [21] showed that MaxEDP admits an O(w3)-approximation algorithm
on graphs of treewidth at most w. Theirs is the best known approximation ratio in terms
of w, improving on an earlier O(w · 3w)-approximation algorithm due to Chekuri et al. This
shows that the problem seems more amenable on “tree-like” graphs.

However, for w = ω(n1/6), the bound is weaker than the bound of O(
√
n). In fact, EDP

remains NP-hard even for graphs of constant treewidth, namely treewidth w = 2 [37]. This
further rules out the existence of a fixed-parameter algorithm for MaxEDP parameterized
by w, assuming P 6= NP. Therefore, to obtain fixed-parameter tractability results as well as
better approximation guarantees, one needs to resort to parameters stronger than treewidth.

Another route to bridge the large gap between approximation lower and upper bounds
for MaxEDP is to allow the paths to have low congestion c: that is, instead of requiring the
routed paths to be pairwise disjoint, at most c paths can use an edge. In their groundbreaking
work, Raghavan and Thompson [38] introduced the technique of randomized rounding of
LPs to obtain polynomial-time approximation algorithms for combinatorial problems. Their
approach allows to route Ω(OPT) pairs of paths with congestion O

(
logn

log logn

)
. This extensive

line of research [2, 18, 28] has culminated in a logO(1) k-approximation algorithm with
congestion 2 for MaxEDP [20]. A slightly weaker result also holds for MaxNDP [11].
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1.1 Motivation and Contribution
The goal of this work is to study disjoint paths problems under another natural measure for
how “far” a graph is from being a tree. In particular, we propose to examine MaxEDP and
MaxNDP under the feedback vertex set number, which for a graph G denotes the smallest
size r of a set R of G for which G−R is a forest. Note that the treewidth of G is at most r+1.
Therefore, given the NP-hardness of EDP for w = 2 and the current gap between the best
known upper bound O(w3) and the linear upper bound suggested by Conjecture 1, it is
interesting to study the stronger restriction of bounding the feedback vertex set number r of
the input graph. Our approach is further motivated by the fact that MaxEDP is efficiently
solvable on trees by means of the algorithm of Garg, Vazirani and Yannakakis [24]. Similarly,
MaxNDP is easy on trees (see Theorem 4).

Our main insight is that one can in fact obtain bounds in terms of r that either strengthen
the best known bounds or are almost tight (see Table 1). It therefore seems that parameter r
correlates quite well with the “difficulty” of disjoint paths problems.

Our first result allows the paths to have small congestion: in this setting, we strengthen
the result, obtained by the classic randomized LP-rounding approach of Raghavan and
Thompson [38], that one can always route Ω(OPT) pairs with congestion O

(
logn

log logn

)
with

constant probability.

I Theorem 2. For any instance (G,M) of MaxEDP, one can efficiently find a routing
of Ω(OPT) pairs with congestion O

(
log kr

log log kr

)
with constant probability; in other words, there

is an efficient O(1)-approximation algorithm for MaxEDP with congestion O
(

log kr
log log kr

)
.

Our second main result builds upon Theorem 2 and uses it as a subroutine. We show how
to use a routing for MaxEDP with low congestion to obtain a polynomial-time approximation
algorithm for MaxEDP without congestion that performs well in terms of r.

I Theorem 3. The integrality gap of the multi-commodity flow relaxation for MaxEDP
with k terminal pairs is O(

√
r · log1.5 rk) for graphs with feedback vertex set number r.

Moreover, there is a polynomial time algorithm that, given a fractional solution to the
relaxation of value opt, it constructs an integral routing of size opt/O(

√
r · log1.5 rk).

In particular, our algorithm strengthens the best known approximation algorithm for
MaxEDP on general graphs [12] as always r ≤ n, and indeed it matches that algorithm’s
performance up to polylogarithmic factors. Substantially improving upon our bounds would
also improve the current state of the art of MaxEDP. Conversely, the result implies that it
suffices to study graphs with close to linear feedback vertex set number in order to improve
the currently best upper bound of O(

√
n) on the approximation ratio [12].

Our algorithmic approaches harness the forest structure of G−R for any feedback vertex
set R. However, the technical challenge comes from the fact that the edge set running
between G−R and R is unrestricted. Therefore, the “interaction” between R and G−R
is non-trivial, and flow paths may run between the two parts in an arbitrary manner and
multiple times. In fact, we show that MaxEDP is already NP-hard if R consists of a single
node (Theorem 6); this contrasts the efficient solvability on forests [24].

In order to overcome the technical hurdles we propose several new concepts, which we
believe could be of interest in future studies of disjoint paths or routing problems.

In the randomized rounding approach of Raghavan and Thompson [38], it is shown
that the probability that the congestion on any fixed edge is larger than c logn

log logn for some
constant c is at most 1/nO(1). Combining this with the fact that there are at most n2 edges,

ESA 2016
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yields that every edge has bounded congestion w.h.p. The number of edges in the graph
may, however, be unbounded in terms of r and k. Hence, in order to to prove Theorem 2,
we propose a non-trivial pre-processing step of the optimum LP solution that is applied
prior to the randomized rounding. In this step, we aggregate the flow paths by a careful
rerouting so that the flow “concentrates” in O(kr2) nodes (so-called hot spots) in the sense
that if all edges incident on hot spots have low congestion then so have all edges in the graph.
Unfortunately, for any such hot spot the number of incident edges carrying flow may still be
unbounded in terms of k and r. We are, however, able to give a refined probabilistic analysis
that suitably relates the probability that the congestion bound is exceeded to the amount
of flow on that edge. Since the total amount of flow on each hot spot is bounded in terms
of k, the probability that all edges incident on the same hot spot have bounded congestion
is inverse polynomial in r and k.

The known O(
√
n)-approximation algorithm for MaxEDP by Chekuri et al. [12] employs

a clever LP-rounding approach. If there are many long paths then there must be a single
node carrying a significant fraction of the total flow and a good fraction of this flow can
be realized by integral paths by solving a single-source flow problem. If the LP solution
contains many short flow paths then greedily routing these short paths yields the bound
since each such path blocks a bounded amount of flow. In order to prove Theorem 3, it is
natural to consider the case where there are many paths visiting a large number of nodes
in R. In this case, we reduce to a single-source flow problem, similarly to the approach of
Chekuri et al. The case where a majority of the flow paths visit only a few nodes in R turns
out more challenging, since any such path may still visit an unbounded number of edges in
terms of k and r. We use two main ingredients to overcome these difficulties. First, we apply
our Theorem 2 as a building block to obtain a solution with logarithmic congestion while
losing only a constant factor in the approximation ratio. Second, we introduce the concept
of irreducible routings with low congestion which allows us exploit the structural properties
of the graph and the congestion property to identify a sufficiently large number of flow paths
blocking only a small amount of flow.

Note that the natural greedy approach of always routing the shortest conflict-free path
gives only O(

√
m) for MaxEDP. We believe that it is non-trivial to obtain our bounds via

a more direct or purely combinatorial approach.
Our third result is a fixed-parameter algorithm for MaxNDP in k + r.

I Theorem 4. MaxNDP can be solved in time (8k+ 8r)2r+2 · O(n) on graphs with feedback
vertex set number r and k terminal pairs.

This run time is polynomial for constant r. We also note that for small r, our algo-
rithm is asymptotically significantly faster than the fastest known algorithm for NDP, by
Kawarabayashi and Wollan [29], which requires time at least quadruple-exponential in k [1].
Namely, if r is at most triple-exponential in k, our algorithm is asymptotically faster than
theirs. We achieve this result by the idea of so-called essential pairs and realizations, which
characterizes the “interaction” between the feedback vertex set R and the paths in an
optimum solution. Note that in our algorithm of Theorem 4, parameter k does not appear
in the exponent of the run time at all. Hence, for small values of r, our algorithm is also
faster than reducing MaxNDP to NDP by guessing the subset of pairs to be routed (at
an expense of 2k in the run time) and using Scheffler’s [41] algorithm for NDP with run
time 2O(r log r) · O(n).

Once a fixed-parameter algorithm for a problem has been obtained, the existence of a
polynomial-size kernel comes up. Here we note that MaxNDP does not admit a polynomial
kernel for parameter k + r, unless NP ⊆ coNP/poly [8].
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Table 1 Summary of results obtained in this paper.

const. param. EDP MaxEDP NDP MaxNDP

r = 0 poly [24] poly [24] poly [41] poly (Thm. 4)
r = 1 open NP-hard (Thm. 6) poly [41] poly (Thm. 4)
r ≥ 2 NP-hard (Thm. 6) NP-hard (Thm. 6) poly [41] poly (Thm. 4)

r para-NP-hard (Thm. 6) FPT [41] W[1]-hard (Thm. 5)
O(
√

r · log1.5 kr)-approx (Thm. 3) exact (k + r)O(r) (Thm. 4)
O(1)-approx. w.cg. O

( log kr
log log kr

)
(Thm. 2)

Another natural question is whether the run time f(k, r) · n in Theorem 4 can be
improved to f(r) · nO(1). We answer this question in the negative, ruling out the existence of
a fixed-parameter algorithm for MaxNDP parameterized by r (assuming FPT 6= W[1]):

I Theorem 5. MaxNDP in unit-capacity graphs is W[1]-hard parameterized by r.

This contrasts the known result that NDP is fixed-parameter tractable in r [41]—which
further stresses the relevance of understanding this parameter. We prove Theorem 5 in the
full version of the paper [22].

For MaxEDP, we prove that the situation is, in a sense, even worse:

I Theorem 6. MaxEDP is NP-hard for unit-capacity graphs with r = 1 and EDP is
NP-hard for unit-capacity graphs with r = 2.

This theorem also shows that our algorithms are relevant for small values of r, and they
nicely complement the NP-hardness for MaxEDP in capacitated trees [24].

Our results are summarized in Table 1.

Related Work. Our study of the feedback vertex set number is in line with the general
attempt to obtain bounds for MaxEDP (or related problems) that are independent of
the input size. Besides the above-mentioned works that provide bounds in terms of the
tree-width of the input graph, Günlük [25] and Chekuri et al. [17] give bounds on the flow-
cut gap for the closely related integer multicommodity flow problem that are logarithmic
with respect to the vertex cover number of a graph. This improved upon earlier bounds
of O(logn) [34] and O(log k) [5, 35]. As every feedback vertex set is in particular a vertex
cover of a graph, our results generalize earlier work for disjoint path problems on graphs
with bounded vertex cover number. Bodlaender et al. [8] showed that NDP does not admit
a polynomial kernel parameterized by vertex cover number and the number k of terminal
pairs, unless NP ⊆ coNP/poly ; therefore, NDP is unlikely to admit a polynomial kernel in
r+ k either. Ene et al. [21] showed that MaxNDP is W[1]-hard parameterized by treedepth,
which is another restriction of treewidth that is incomparable to the feedback vertex set
number.

The basic gap in understanding the approximability of MaxEDP has led to several
improved results for special graph classes, and also our results can be seen in this light.
For example, polylogarithmic approximation algorithms are known for graphs whose global
minimum cut value is Ω(log5 n) [39], for bounded-degree expanders [10, 9, 30, 34, 23], and for
Eulerian planar or 4-connected planar graphs [28]. Constant factor approximation algorithms
are known for capacitated trees [24, 14], grids and grid-like graphs [4, 6, 31, 32]. For planar
graphs, there is a constant-factor approximation algorithm with congestion 2 [42]. Very
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(MaxEDP LP)

max
k∑
i=1

xi

s.t.
∑

P∈P(si,ti)

f(P ) = xi ≤ 1 i = 1, . . . , k,

∑
P : e∈P

f(P ) ≤ 1 e ∈ E(G)

f(P ) ≥ 0 P ∈ P

s1

s2

sk

t1 t2 tk

Figure 1 Multi-commodity flow relaxation for MaxEDP. Right: Ω(
√

n) integrality gap for
MaxEDP [24]: any integral routing routes at most one pair, whereas a multi-commodity flow can
send 1/2 unit of flow for each pair (si, ti) along the canonical path from si to ti in the grid.

recently, Chuzhoy et al. [19] gave a Õ(n9/19)-approximation algorithm for MaxNDP on planar
graphs. However, improving the O(

√
n)-approximation algorithm for MaxEDP remains

elusive even for planar graphs.

2 Preliminaries

We use standard graph theoretic notation. For a graph G, let V (G) denote its vertex set
and E(G) its edge set. Let G be a graph. A feedback vertex set of G is a set R ⊆ V (G)
such that G − R is a forest. A minor of G is a graph H that is obtained by successively
contracting edges from a subgraph of G (and deleting any occurring loops). A class G of
graphs is minor-closed if for any graph in G also all its minors belong to G.

For an instance (G,M) of MaxEDP/MaxNDP, we refer to the vertices participating
in the pairsM as terminals. It is convenient to assume thatM forms a matching on the
terminals; this can be ensured by making several copies of a terminal and attaching them as
leaves.

Multi-commodity flow relaxation. We use the following standard multi-commodity flow
relaxation for MaxEDP (there is an analogous relaxation for MaxNDP). We use P(u, v) to
denote the set of all paths in G from u to v, for each pair (u, v) of nodes. Since the pairsM
form a matching, the sets P(si, ti) are pairwise disjoint. Let P =

⋃k
i=1 P(si, ti). The LP

has a variable f(P ) for each path P ∈ P representing the amount of flow on P . For each
pair (si, ti) ∈ M, the LP has a variable xi denoting the total amount of flow routed for
the pair (in the corresponding IP, xi denotes whether the pair is routed or not). The LP
imposes the constraint that there is a flow from si to ti of value xi. Additionally, the LP
has constraints that ensure that the total amount of flow on paths using a given edge (resp.
node for MaxNDP) is at most 1.

It is well-known that the relaxation MaxEDP LP can be solved in polynomial time,
since there is an efficient separation oracle for the dual LP (alternatively, one can write a
compact relaxation). We use (f,x) to denote a feasible solution to MaxEDP LP for an
instance (G,M) of MaxEDP. For each terminal v, let x(v) denote the total amount of flow
routed for v and we refer to x(v) as the marginal value of v in the multi-commodity flow f .

We will use the following result by Chekuri et al. [12, Sect. 3.1]; see also Proposition 3.3
of Chekuri et al. [16].
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I Proposition 7. Let (f,x) be a fractional solution to the LP relaxation of a MaxEDP
instance (G,M). If some node v is contained in all flow paths of f , then we can find an
integral routing of size at least 1

12
∑
i xi in polynomial time.

3 Bi-Criteria Approximation for MaxEDP with Low Congestion

We present a randomized rounding algorithm that will lead to the proof of Theorem 2.

3.1 Algorithm
Consider an instance (G,M) of MaxEDP. Let R be a 2-approximate minimum feedback
vertex set of G and let r = |R|; note that such a set R can be obtained in polynomial time [7].

For the sake of easier presentation, we will assume in this section that the feedback vertex
set R contains all terminal nodes fromM. This can be achieved by temporarily adding the
set of terminals to the feedback vertex set R. Also note that this assumption increases the
bound of Theorem 2 by at most a constant factor.

First, solve the corresponding MaxEDP LP. We obtain an optimal extreme point solu-
tion (f,x). For each (si, ti) ∈M, this gives us a set P ′(si, ti) = {P ∈ P(si, ti) | f(P ) > 0}
of positive weighted paths that satisfy the LP constraints.

Since we have an extreme point solution, the number of tight constraints is not smaller
then the number of variables. As the number of constraints that are not of type f(P ) ≥ 0
is polynomially bounded in the input size, the same holds for the cardinality of the
set P ′ =

⋃k
i=1 P ′(si, ti). In what follows, we will modify P ′ and then select an (unweighted)

subset S of P ′ that will form our integral solution.
Each P ∈ P ′ has the form (r1, . . . , r2, . . . , r`) where r1, . . . , r` are the nodes in R that

are traversed by P in this order. The paths (rj , . . . , rj+1) with j = 1, . . . , ` − 1 are called
subpaths of P . For every subpath P ′ of P , we set f(P ′) = f(P ). Let J be the multi-set of
all subpaths of all paths in P ′. Let F = G−R be the forest obtained by removing R.

We now modify some paths in P ′, one by one, and at the same time construct a subset H0
of nodes that we will call “hot spots”. At the end, every subpath in J will contain at least
one hot spot.

Initially, let H0 = ∅. Consider any tree T in F and fix any of its nodes as a root. Then
let JT be the multi-set of all subpaths in J that, excluding the endpoints, are contained
in T . For each subpath P ∈ JT , define its highest node h(P ) as the node on P closest to the
root. Note that P ∩T = P ∩F is a path. Now, pick a subpath P ∈ JT that does not contain
any node in H0 and whose highest node h(P ) is farthest away from the root. Consider the
multi-set J [P ] of all subpaths in JT that are identical to P (but may be subpaths of different
flow paths in P ′). Note that the weight f(J [P ]) :=

∑
P∈J [P ] f(P ) of J [P ] is at most 1 by

the constraints of the LP. Let u, v ∈ R be the endpoints of P . We define Juv as the set of
all subpaths in J \ J [P ] that have u and v as their endpoints and that do not contain any
node in H0.

Intuitively speaking, we now aggregate flow on P by rerouting as much flow as possi-
ble from Juv to P . To this end, we repeatedly perform the following operation as long
as f(J [P ]) < 1 and Juv 6= ∅. We pick a path P ′ in J that contains a subpath in Juv. We
reroute flow from P ′ by creating a new path P ′′ that arises from P ′ by replacing its subpath
between u and v with P , and assign it the weight f(P ′′) = min{f(P ′), 1− f(J [P ])}. Then
we set the weight of (the original path) P ′ to max{0, f(P ′) + f(J [P ])− 1}. We update the
sets P ′, P ′(si, ti), J , JT , J [P ] and Juv accordingly.

ESA 2016
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As soon as f(J [P ]) = 1 or Juv = ∅, we add h(P ) to H0. Then, we proceed with the
next P ∈ JT not containing a hot spot and whose highest node h(P ) is farthest away from
the root. If no such P is left, we consider the next tree T in F .

At the end, we create our solution S by randomized rounding: We route every termi-
nal pair (si, ti) with probability xi. In case (si, ti) is routed, we randomly select a path
from P ′(si, ti) and add it to S where the probability that path P is taken is f(P )/xi.

3.2 Analysis
First, observe that x did not change during our modifications of the paths, as the total flow
between any terminal pair did not change. Thus, the expected number of pairs routed in
our solution is

∑k
i=1 xi ≥ OPT. Using the Chernoff bound, the probability that we route

less than OPT /2 pairs is at most e−1/8 OPT < 1/2, assuming that OPT > 8. Secondly, we
bound the congestion of our solution—our second criterion.

I Lemma 8. The congestion of flow f is at most 2.

Proof. In our algorithm, we increase the flow only along flow subpaths that are pairwise
edge-disjoint. To see this, consider two distinct flow subpaths P and P ′ on which we increase
the flow. Assume, without loss of generality, that P was considered before P ′ by the algorithm.
If there was an edge e lying on P and P ′, then both subpaths traverse the same tree in
forest F . Hence, the path from e to h(P ′) would visit h(P ), and h(P ) would be an internal
node of P ′. This yields a contradiction, as h(P ) was already marked as a hot spot when P ′
was considered. This shows that we increased the flow along any edge by at most one unit,
and, hence, f has congestion at most 2. J

We now bound the congestion of the integral solution obtained by randomized rounding.
In the algorithm, we constructed a set H0 of hot spots. As a part of the analysis, we will
now extend this set to a set H as follows. Initially, H = H0. We build a sub-forest F ′ of F
consisting of all edges of F that lie on a path connecting two hot spots. Then we add to H
all nodes that have degree at least 3 in F ′. Since the number of nodes of degree 3 in any
forest is at most its number of leaves and since every leaf of F ′ is a hot spot, it follows that
this can at most double the size of H to 2|H0|. Finally, we add the set R of all feedback
vertex nodes to H. In the following, all nodes in H are called hot spots.

I Lemma 9. The number |H| of hot spots is O(kr2).

Proof. It suffices to show that |H0| ∈ O(kr2). To this end, fix two nodes u, v ∈ R and
consider the set of flow subpaths P with end nodes u and v for which we added h(P ) to H0.
Due to the aggregation of flows in our algorithm, all except possibly one of the subpaths are
saturated, that is, they carry precisely one unit of flow. Since no two of these subpaths are
contained in a same flow path of f and since the flow value of f is bounded from above by k,
we added only O(k) hot spots for the pair u, v. Since there are at most r2 pairs in R, the
claim follows. J

I Definition 10. A hot spot u ∈ H is good if the congestion on any edge incident on u is
bounded by c · log kr

log log kr , where c is a sufficiently large constant; otherwise, u is bad.

I Lemma 11. Let u ∈ H be a hot spot. Then the probability that u is bad is at most 1/(k2r3).

Proof. Let e1 = uv1, . . . , e` = uv` be the edges incident on u and let fi be the total flow on
edge uvi for i = 1, . . . , `. By Lemma 8, we have that fi ≤ 2. Since any flow path visits at
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most two of the edges incident on u, the total flow
∑`
i=1 fi on the edges incident on u is at

most 2k.
For any i = 1, . . . , `, we have that fi =

∑
P : P3ei

f(P ), where P runs over the set of all
paths connecting some terminal pair and containing ei. Let fij =

∑
P∈P(sj ,tj) : P3ei

f(P ) be
the total amount of flow sent across ei by terminal pair (sj , tj). Recall that xj is the total
flow sent for terminal pair (sj , tj). The probability that the randomized rounding procedure
picks path P with P ∈ P(sj , tj) is precisely xj · f(P )

xj
= f(P ). Given the disjointness of the

respective events, the probability that pair (sj , tj) routes a path across ei is precisely fij .
Let Xij be the binary random variable indicating whether pair (sj , tj) routes a path across ei.
Then P [Xij = 1] = fij . Let Xi =

∑
j Xij be the number of paths routed across ei by the

algorithm. By linearity of expectation, we have that E [Xi] =
∑
j E [Xij ] =

∑
j fij = fi.

Fix any edge ei. Set δ = c · log kr
log log kr and δ′ = 2 δ

fi
− 1. Note that for fixed i, the

variables Xij are independent. Hence, by the Chernoff bound, we have that

P
[
Xi ≥ c ·

log kr
log log kr

]
≤ P [Xi ≥ (1 + δ′)fi] <

(
eδ

′

(1 + δ′)1+δ′

)fi

≤
(
fi
2

)2δ
·
(
δ

e

)−2δ
≤ fie−c

′ log log kr· log kr
log log kr ≤ fi

2k3r3 .

Here, we use that fi ≤ 2 for the second last inequality and for the last inequality we pick c′
sufficiently large by making c and k sufficiently large. (Note that MaxEDP can be solved
efficiently for constant k.)

Now, using the union bound, we can infer that the probability that any of the edges incident
on u carries more than δ paths is at most

∑
i fi/(2k3r3) ≤ (2k)/(2k3r3) = 1/(k2r3). J

I Lemma 12. Assume that every hot spot is good. Then the congestion on any edge is
bounded by 2c log kr

log log kr .

Proof. Consider an arbitrary edge e = uv that is not incident on any hot spot. In particular,
this means that e lies in the forest F = G−R. A hot spot z in F is called direct to e if the
path in F from z to e excluding e does not contain any hot spot other than z.

We claim that there can be at most two distinct hot spots z, z′ direct to e. If there were
a third hot spot z′′ direct to e, then consider the unique node z0 ∈ V (F ) such that no two of
the hot spots z, z′, z′′ are connected in F − z0. Such a node z0 exists since z, z′, z′′ cannot
lie on a common path in F since they are all direct to e. The node z0, however, would be
added as a hot spot at the latest when H was built. Now, this is a contradiction, because
then one of the paths connecting z, z′ or z′′ to e would contain z0 and thus one of these hot
spots would not be direct to e.

Now let P be an arbitrary path that is routed by our algorithm and that traverses e, and
let P ′ ∈ J be the subpath of P in F visiting e. Moreover, let Pz, Pz′ be the paths in F
connecting z, z′ to e excluding e, and let ez, ez′ be the edges on these paths incident on z, z′,
respectively. By our construction, P ′ must visit a hot spot in F. If P ′ visited neither z
nor z′, then P ′ would contain a hot spot direct to u or to v that is distinct from z and z′—a
contradiction. Hence P ′ and thus also P visit ez or ez′ . The claim now follows from the
fact that this holds for any path traversing e, that z and z′ are good, and that therefore
altogether at most 2c log kr

log log kr paths visit ez or e′z. J

I Theorem 13. The algorithm from Sect. 3.1 produces—with constant probability—a routing
with Ω(OPT) paths, such that the congestion is O

(
log kr

log log kr

)
.
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Proof. As argued above, we route less than OPT /2 paths with probability at most 1/2. By
Lemma 9, there are O(kr2) hotspots. The probability that at least one of these hot spots
is bad is O(kr2/(k2r3)) = O(1/(kr)), by Lemma 11. Hence, with constant probability, we
route at least OPT /2 pairs with congestion at most 2c log kr

log log kr , by Lemma 12. J

4 Refined Approximation Bound for MaxEDP

In this section, we provide an improved approximation guarantee for MaxEDP without
congestion, thereby proving Theorem 3. (In contrast to the previous section, we do not
assume here that all terminals are contained in the feedback vertex set.)

4.1 Irreducible Routings with Low Congestion
We first develop the concept of irreducible routings with low congestion, which is (besides
Theorem 2) a key ingredient of our strengthened bound on the approximability of MaxEDP
based on the feedback vertex number.

Consider any multigraph G and any set P of (not necessarily simple) paths in G with
congestion c. We say that an edge e is redundant in P if there is an edge e′ 6= e such that
the set of paths in P covering (containing) e is a subset of the set of paths in P covering e′.
Thus, any edge that is not covered by any path in P is redundant in P if G contains at least
two edges.

I Definition 14. Set P is called an irreducible routing with congestion c if each edge belongs
to at most c paths of P and there is no edge redundant in P.

In contrast to a feasible routing of an MaxEDP instance, we do not require an irreducible
routing to connect a set of terminal pairs. If there is an edge e redundant in P , we can apply
the following reduction rule: We contract e in G and we contract e in every path of P that
covers e. By this, we obtain a minor G′ of G and a set P ′ of paths that consists of all the
contracted paths and of all paths in P that were not contracted. Thus, there is a one-to-one
correspondence between the paths in P and P ′ .

We make the following observation about P and P ′.

I Observation 15. A subset of paths in P ′ is edge-disjoint in G′ if and only if the corre-
sponding subset of paths in P is edge-disjoint in G.

As applying the reduction rule strictly decreases the number of redundant edges, an
iterative application of this rule yields an irreducible routing on a minor of the original graph.

I Theorem 16. Let G be a minor-closed class of multigraphs and let pG > 0. If for each
graph G ∈ G and every non-empty irreducible routing S of G with congestion c there exists a
path in S of length at most pG, then the average length of the paths in S is at most c · pG.

Proof. Take a path P0 of length at most pG . Contract all edges of P0 in G and obtain
a minor G′ ∈ G of G. For each path in S contract all edges shared with P0 to obtain a
set S ′ of paths. Remove P0 along with all degenerated paths from S ′, thus |S ′| < |S|. Note
that S ′ is an irreducible routing of G′ with congestion c. We repeat this reduction procedure
recursively on G′ and S′ until S′ is empty which happens after at most |S| steps. At each
step we decrease the total path length by at most c · pG . Hence, the total length of paths in
S is at most |S| · c · pG . J

As a consequence of Theorem 16, we get the following result for forests.
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I Lemma 17. Let F be a forest and let S be a non-empty irreducible routing of F with
congestion c. Then the average path length in S is at most 2c.

Proof. We show that S contains a path of length as most 2. The lemma follows immediately
by applying Theorem 16.

Take any tree in F , root it with any node and consider a leaf v of maximum depth. If v is
adjacent to the root, then the tree is a star and every path in the tree has length at most 2.
Otherwise, let e1 and e2 be the first two edges on the path from v to the root. By definition
of irreducible routing, the set of all paths covering e1 is not a subset of the paths covering e2;
hence, e1 is covered by a path which does not cover e2. Since all other edges incident to e1
end in a leaf, this path has length at most 2. J

Note that the bound provided in Lemma 17 is actually tight up to a constant. Let c ≥ 1
be an arbitrary integer. Consider a graph that is a path of length c− 1 with a star of c− 1
leafs attached to one of its end points. The c− 1 paths of length c together with the 2c− 2
paths of length 1 form an irreducible routing with congestion c. The average path length
is ((c− 1)c+ (2c− 2))/(3c− 3) = (c+ 2)/3.

4.2 Approximation Algorithm

Consider an instance (G,M) of MaxEDP, and let r be the size of a feedback vertex
set R in G. Using our result of Sect. 3, we can efficiently compute a routing P with
congestion c := O

(
log kr

log log kr

)
containing Ω(OPT) paths.

Below we argue how to use the routing P to obtain a feasible routing of cardinal-
ity Ω

(
|P|/(c1.5√r)

)
, which yields an overall approximation ratio of O

(√
r · log1.5 rk

)
; that

will prove Theorem 3.
Let r′ =

√
r/c. We distinguish the following cases.

Case 1: At least half of the paths in P visit at most r′ nodes of the feedback vertex set R.
Let P be the subset of these paths. Initialize P ′ with P. As long as there is an edge e not
adjacent to R that is redundant in P ′, we iteratively apply the reduction rule from Sect. 4.1
on e. Let G′ be the obtained minor of G with forest F ′ = G′ −R. The obtained set P ′ is a
set of (not necessarily simple) paths in G′ corresponding to P. By (iterated application of)
Observation 15 to path sets P and P ′, it suffices to show that there is a subset P ′0 ⊆ P ′ of
pairwise edge-disjoint paths of size |P ′0| = Ω (|P|/(cr′)) in order to obtain a feasible routing
for (G,M) of size Ω (|P|/(cr′)).

To obtain P ′0, we first bound the total path length in P ′. Removing R from G′ “de-
composes” the set P ′ into a set S := {S is a connected component of P ∩ F | P ∈ P ′ } of
subpaths lying in F ′. Observe that S is an irreducible set of F ′ with congestion c, as the
reduction rule is not applicable anymore. (Note that a single path in P ′ may lead to many
paths in the cover S which are considered distinct.) Thus, by Lemma 17, the average path
length in S is at most 2c.

Let P be an arbitrary path in P ′. Each edge on P that is not in a subpath in S is incident
on a node in R, and each node in R is incident on at most two edges in P . Together with
the fact that P visits at most r′ nodes in R and that the average length of the subpaths
in S is at most 2c, we can upper bound the total path length

∑
P∈P′ |P | by |P ′|r′(2c+ 2).

Let P ′′ be the set of the |P ′|/2 shortest paths in P ′. Hence, each path in P ′′ has length at
most 4r′(c+ 1).
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We greedily construct a feasible solution P ′0 by iteratively picking an arbitrary path P
from P ′′ adding it to P ′0 and removing all paths from P ′′ that share some edge with P (includ-
ing P itself). We stop when P ′′ is empty. As P ′′ has congestion c, we remove at most 4r′c(c+1)
paths from P ′′ per iteration. Thus, |P ′0| ≥ |P ′′|/(4r′c(c+ 1)) = Ω

(
|P|/(c1.5√r

)
.

Case 2: At least half of the paths in P visit at least r′ nodes of the feedback vertex set
R. Let P ′ be the subset of these paths. Consider each path in P ′ as a flow of value 1/c
and let f be the sum of all these flows. Note that f provides a feasible solution to the
MaxEDP LP relaxation for (G,M) of value at least |P|/(2c). Note that each such flow
path contributes 1/c unit of flow to each of the r′ nodes in R it visits. Since every flow path
in f has length at least r′, the total inflow of the nodes in R is at least |f |r′. By averaging,
there must be a node v ∈ R of inflow at least r′|f |/r = |f |/r′. Let f ′ be the subflow of f
consisting of all flow paths visiting v. This subflow corresponds to a feasible solution (f ′,x′)
of the LP relaxation of value at least |f |/r′ ≥ |P|/(2cr′). Using Proposition 7, we can recover
an integral feasible routing of size at least 1

12
∑
i x
′
i ≥ |P|/(24cr′) = Ω

(
|P|/(c1.5√r

)
.

This completes the proof of Theorem 3. J

5 Fixed-Parameter Algorithm for MaxNDP

We give a fixed-parameter algorithm for MaxNDP with run time (k + r)O(r) · n, where r is
the size of a minimum feedback vertex set in the given instance (G,M). A feedback vertex
set R of size r can be computed in time 2O(r) · O(n) [36]. By the matching assumption, each
terminal inM is a leaf. We can thus assume that none of the terminals is contained in R.

Consider an optimal routing P of the given MaxNDP instance. Let MR ⊆ M be
the set of terminal pairs that are connected via P by a path that visits at least one node
in R. Let P ∈ P be a path connecting a terminal pair (si, ti) ∈ MR. This path has the
form (si, . . . , r1, . . . , r2, . . . , r`, . . . , ti), where r1, . . . , r` are the nodes in R that are traversed
by P in this order. The pairs (si, r1), (r`, ti) and (rj , rj+1) with j = 1, . . . , `− 1 are called
essential pairs for P . A node pair is called essential if it is essential for some path in P.
LetMe be the set of essential pairs.

Let F be the forest that arises when deleting R from the input graph G. Let (u, v) be
an essential pair. A u-v path P in G is said to realize (u, v) if all internal nodes of P lie
in F . A set P ′ of paths is said to realize Me if every pair inMe is realized by some path
in P ′ and if two paths in P ′ can only intersect at their end nodes. Note that the optimal
routing P induces a natural realization ofMe, by considering all maximal subpaths of paths
in P whose internal nodes all lie in F . Conversely, for any realization P ′ of Me, we can
concatenate paths in P ′ to obtain a feasible routing that connects all terminal pairs inMR.
Therefore, we consider P ′ (slightly abusing notation) also as a feasible routing forMR.

In our algorithm, we first guess the setMe (and thusMR). Then, by a dynamic program,
we construct two sets of paths, Pe and PF where Pe realizes Me and PF connects in F

a subset of MR := M\MR. In our algorithm, the set Pe ∪ PF forms a feasible routing
that maximizes |PF | and routes all pairs inMR. (Recall that we consider the realization Pe
ofMe as a feasible routing forMR.)

Now assume that we know set Me. We will describe below a dynamic program that
computes an optimum routing in time 2O(r)(k + r)O(1)n. For the sake of easier presentation,
we only describe how to compute the cardinality of such a routing.

We make several technical assumptions that help to simplify the presentation. First, we
modify the input instance as follows. We subdivide every edge incident on a node in R by
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introducing a single new node on this edge. Note that this yields an instance equivalent
to the input instance. As a result, every neighbor of a node in R that lies in F , that is,
every node in NG(R), is a leaf in F . Moreover, the set R is an independent set in G. Also
recall that we assumed that every terminal is a leaf. Therefore, we may assume that R does
not contain any terminal. We also assume that forest F is a rooted tree, by introducing
a dummy node (which plays the role of the root) and arbitrarily connecting this node to
every connected component of F by an edge. In our dynamic program, we will take care
that no path visits this root node. We also assume that F is an ordered tree by introducing
an arbitrary order among the children of each node.

For any node v, let Fv be the subtree of F rooted at v. Let cv := degF (v) − 1 be
the number of children of v and let v1, . . . vcv

be the (ordered) children of v. Then, for
i = 1, . . . , cv, let F iv denote the subtree of Fv induced by the union of v with the subtrees
Fv1 , . . . , Fvi

. For leaves v, we define F 0
v as Fv = v.

We introduce a dynamic programming table T . It contains an entry for every F iv and
every subsetM′e ofMe. Roughly speaking, the value of such an entry is the solution to the
subproblem, where we restrict the forest to F iv, and the set of essential pairs toM′e. More
precisely, table T contains five parameters. Parameters v and i describing F iv, parameterM′e,
and two more parameters u and b. Parameter u is either a terminal, or a node in R, and b
is in one of the three states: free, to-be-used, or blocked. The value T [v, i,M′e, u, b] is the
maximum cardinality of a set PF of paths with the following properties:
1. PF is a feasible routing of some subset ofMR.
2. PF is completely contained in F iv.
3. There is an additional set Pe of paths with the following properties:

a. Pe is completely contained in F iv ∪R and node-disjoint from the paths in PF .
b. Pe is a realization ofM′e ∪ {(u, v)} if b = to-be-used. Else, it is a realization ofM′e.
c. There is no path in Pe ∪ PF visiting v if b = free.

If no such set PF exists then T [v, i,M′e, u, b] is −∞.
Note that the parameter u is only relevant when b = to-be-used (otherwise, it can just be ig-

nored). Observe that T [v, i,M′e, u, blocked] ≥ T [v, i,M′e, u, free] ≥ T [v, i,M′e, u, to-be-used].
Below, we describe how to compute the entries of T in a bottom-up manner.

In the base case v is a leaf. We set T [v, 0, ∅, u, free] = 0. Then we set T [v, 0,M′e, u, blocked]
= 0 if M′e is either empty, consists of a single pair of nodes in R ∩ NG(v), or consists of
a single pair where one node is v and the other one is in R ∩ NG(v). Finally, we set
T [v, 0, ∅, u, to-be-used] = 0 if u = v or u is in R∩NG(v). For all other cases where v is a leaf,
we set T [v, i,M′e, u, b] = −∞.

For the inductive step, we consider the two cases i = 1 and i > 1. Let i = 1. It
holds that T [v, 1,M′e, u, to-be-used] = T [v1, cv,M′e, u, to-be-used] since the path in Pe re-
alizing (u, v) has to start at a leaf node of Fv1 . It also holds that T [v, 1,M′e, u, blocked]
and T [v, 1,M′e, u, free] are equal to T [v1, cv,M′e, u, blocked].

Now, let i > 1. In a high level view, we guess which part ofM′e is realized in F i−1
v ∪R

and which part is realized in Fvi
∪ R. For this, we consider every tuple (M′e1,M′e2) such

thatM′e1 ]M′e2 is a partition ofM′e. By our dynamic programming table, we find a tuple
that maximizes our objective. In the following, we assume that we guessed (M′e1,M′e2)
correctly. Let us consider the different cases of b in more detail.

For b = free, node v is not allowed to be visited by any path, especially by any path
in F i−1

v ∪R. Hence, T [v, i,M′e, u, free] is equal to

T [v, i− 1,M′e1, u, free] + T [vi, cvi
,M′e2, u, blocked] .
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In the case of b = to-be-used, we have to realize (u, v) in F iv ∪R. For this, there are two
possibilities: rither (u, v) is realized by a path in F i−1

v ∪R, or there is a realizing path that
first goes through Fvi

∪R and then reaches v via the edge (vi, v). Hence, for the first case,
we consider

T [v, i− 1,M′e1, u, to-be-used] + T [vi, cvi ,M′e2, u, blocked],

for the second case, we consider

T [v, i− 1,M′e1, u, free] + T [vi, cvi ,M′e2, u, to-be-used] .

Maximizing over both, we obtain T [v, i,M′e, u, to-be-used].
For the case of b = blocked, we will consider two subcases. In the first subcase, there is

no path in Pe ∪ PF going through edge (vi, v), hence, we get

T [v, i− 1,M′e1, u, blocked] + T [vi, cvi ,M′e2, u, blocked] .

In the second subcase, there is a path P in Pe ∪ PF going through edge (vi, v). Since P
is connecting two leafs in F iv, a part of P is in F i−1

v ∪ R and the other part is in Fvi
∪ R.

If P ∈ Pe, then it is realizing a pair ofM′e. Hence, for every pair (u1, u2) ∈M′e, we have to
consider the term

T [v, i− 1,M′e1 − (u1, u2), u1, to-be-used] + T [vi, cvi ,M′e2 − (u1, u2), u2, to-be-used]

and the symmetric term where we swap u1 and u2. If P ∈ PF , then it is realizing a terminal
pair ofMR. Hence, for every pair (u1, u2) ∈MR we get the term

1 + T [v, i− 1,M′e1, u1, to-be-used] + T [vi, cvi
,M′e2, u2, to-be-used]

and the symmetric term where we swap u1 and u2. Note that we count the path real-
izing (u1, u2) in our objective. Maximizing over all the terms of the two subcases, we
obtain T [v, i,M′e, u, to-be-used].

Let us analyze the run time of algorithm described in Sect. 5. In order to guessMe, we
enumerate all potential sets of essential pairs. There are at most (2k + r + 1)2r candidate
sets to consider, since each pair contains a node in R, and each node in R is paired with
at most two other nodes each of which is either a terminal or another node in R. For
each particular guess Me, we run the above dynamic program. The number of entries
in T—as specified by the five parameters v, i, M′e, u and b—for each fixed Me is at
most (

∑
v∈V (F ) degF (v))× 22r × (2k + r)× 3. For the computation of each such entry, we

consider all combinations of at most 22r partitions of M′e with either at most r essential
pairs in M′e, or with at most k terminal pairs in MR. Altogether, this gives a run time
of (8k + 8r)2r+2 · O(n). This finishes the proof of Theorem 4.

6 Hardness of Edge-Disjoint Paths in Almost-Forests

In this section we show that EDP (and hence MaxEDP) is NP-hard already in graphs that
are forests after deleting two nodes. That is, we prove Theorem 6.

Proof of Theorem 6. We first show NP-hardness of EDP for r = 2. We reduce from the
problem Edge 3-Coloring in cubic graphs, which is NP-hard [26]. Given a cubic graph H,
we construct a complete bipartite graph G, where one of the two partite classes of V (G)
consists of three nodes {v1, v2, v3}, and the other partite class consists of V (H). As terminal
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pairs, we create the setM = {(s, t) | {s, t} ∈ E(H)}; in words, we want to connect a pair of
nodes by a path in G if and only if they are connected by an edge in H. This completes the
construction of the instance (G,M) of MaxEDP. Notice that G has a feedback vertex set
of size r = 2, since removing any size-2 subset of {v1, v2, v3} from G yields a forest.

Regarding correctness of the reduction, we show that H is 3-edge-colorable if and only if
all pairs inM can be routed in G.

In the forward direction, suppose that H is 3-edge-colorable. Let ϕ : E(H)→ {1, 2, 3}
be a proper 3-edge-coloring of H. For c = 1, 2, 3, let Ec ⊆ E(H) be the set of edges
that receive color c under ϕ. Then there is a routing in G that routes all terminal
pairs {(s, t) ∈M | {s, t} ∈ Ec} exclusively via the node vc (and thus via paths of length 2).
Notice that this routing indeed yields edge-disjoint paths, for if there are distinct ver-
tices s, t1, t2 ∈ V (H) and edges e1 = {s, t1}, e2 = {s, t2} ∈ E(H), then e1, e2 receive distinct
colors under ϕ (as ϕ is proper), and so the two terminal pairs {s, t1}, {s, t2} are routed via
distinct nodes c1, c2 ∈ {v1, v2, v3}, and thus also via edge-disjoint paths.

In the backward direction, suppose that all terminal pairs in M can be routed in G.
Since H is cubic, any node s ∈ V (H) is contained in three terminal pairs. Therefore, no
path of the routing can have a node in V (H) as an internal node and thus all paths in the
routing have length 2. Then this routing naturally corresponds to a proper 3-edge-coloring ϕ
of H, where any terminal pair {s, t} routed via c means that we color the edge {s, t} ∈ E(H)
with color c under ϕ.

In order to show NP-hardness of MaxEDP for r = 1, we also reduce from Edge 3-
Coloring in cubic graphs and perform a similar construction as described above: This time,
we construct a bipartite graph G with one subset of the partition being {v1, v2}, the other
being V (H), and the setM of terminal pairs being again specified by the edges of H. This
completes the reduction. The resulting graph G has a feedback vertex set of size r = 1.

We claim that H is 3-colorable if and only if we can route n = |V (H)| pairs in G.
In the forward direction, suppose that H is 3-edge-colorable. Let ϕ : E(H)→ {1, 2, 3} be

a proper 3-edge-coloring of H. For c = 1, 2, 3, let Ec ⊆ E(H) be the set of edges that receive
color c under ϕ. Then there is a routing in G that routes all f {(s, t) ∈ M | {s, t} ∈ Ec}
exclusively via the node vc (and thus via paths of length 2) for the colors c = 1, 2. (The
terminals corresponding to edges receiving color 3 remain unrouted.)

The reasoning that the resulting routing is feasible is analogous to the case of r = 2.
Since for each of the n terminals exactly two of the three terminal pairs are routed, this
means that precisely n terminal pairs are routed overall.

In the backward direction, suppose that n terminal pairs inM can be routed in G. Since
any terminal v in G is a node in V (H) has therefore has degree two in G, this means that at
most two paths can be routed for v. As n terminal pairs are realized, this also means that
exactly two paths are routed for each terminal. Hence, none of the paths in the routing has
length more than two. Otherwise, it would contain an internal node in V (H), which then
could not be part of two other paths in the routing. Then this routing naturally corresponds
to a partial edge-coloring of H, where any terminal pair {s, t} routed via c means that we
color the edge {s, t} ∈ E(H) with color c. Since each terminal v in V (H) is involved in
exactly two paths in the routing, exactly one terminal pair for v remains unrouted. Hence,
exactly one edge incident on v in H remains uncolored in the partial coloring. We color all
uncolored edges in H by color 3 to obtain a proper 3-coloring. J

Thus, we almost close the complexity gap for EDP with respect to the size of a minimum
feedback vertex set, only leaving the complexity of the case r = 1 open.
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