
Improved Approximation for Node-Disjoint Paths
in Grids with Sources on the Boundary
Julia Chuzhoy1

Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave., Chicago, Illinois 60637, USA
cjulia@ttic.edu

David H. K. Kim2

Computer Science Department, University of Chicago, 1100 East 58th Street, Chicago, Illinois
60637, USA
hongk@cs.uchicago.edu

Rachit Nimavat3

Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave., Chicago, Illinois 60637, USA
nimavat@ttic.edu

Abstract
We study the classical Node-Disjoint Paths (NDP) problem: given an undirected n-vertex graph
G, together with a set {(s1, t1), . . . , (sk, tk)} of pairs of its vertices, called source-destination, or
demand pairs, find a maximum-cardinality set P of mutually node-disjoint paths that connect
the demand pairs. The best current approximation for the problem is achieved by a simple greedy
O(
√
n)-approximation algorithm. Until recently, the best negative result was an Ω(log1/2−ε n)-

hardness of approximation, for any fixed ε, under standard complexity assumptions.
A special case of the problem, where the underlying graph is a grid, has been studied ex-

tensively. The best current approximation algorithm for this special case achieves an Õ(n1/4)-
approximation factor. On the negative side, a recent result by the authors shows that NDP is
hard to approximate to within factor 2Ω(

√
logn), even if the underlying graph is a subgraph of a

grid, and all source vertices lie on the grid boundary. In a very recent follow-up work, the authors
further show that NDP in grid graphs is hard to approximate to within factor Ω(2log1−ε n) for any
constant ε under standard complexity assumptions, and to within factor nΩ(1/(log logn)2) under
randomized ETH.

In this paper we study the NDP problem in grid graphs, where all source vertices {s1, . . . , sk}
appear on the grid boundary. Our main result is an efficient randomized 2O(

√
logn·log logn)-

approximation algorithm for this problem. Our result in a sense complements the 2Ω(
√

logn)-
hardness of approximation for sub-graphs of grids with sources lying on the grid boundary, and
should be contrasted with the above-mentioned almost polynomial hardness of approximation of
NDP in grid graphs (where the sources and the destinations may lie anywhere in the grid).

Much of the work on approximation algorithms for NDP relies on the multicommodity flow
relaxation of the problem, which is known to have an Ω(

√
n) integrality gap, even in grid graphs,

with all source and destination vertices lying on the grid boundary. Our work departs from this
paradigm, and uses a (completely different) linear program only to select the pairs to be routed,
while the routing itself is computed by other methods.

2012 ACM Subject Classification Theory of computation → Routing and network design prob-
lems

Keywords and phrases Node-disjoint paths, approximation algorithms, routing and layout

1 Supported in part by NSF grants CCF-1318242 and CCF-1616584.
2 Supported in part by NSF grants CCF-1318242 and CCF-1616584.
3 Supported in part by NSF grant CCF-1318242.

EA
T

C
S

© Julia Chuzhoy, David H.K. Kim, and Rachit Nimavat;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella;
Article No. 38; pp. 38:1–38:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cjulia@ttic.edu
mailto:hongk@cs.uchicago.edu
mailto:nimavat@ttic.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 Improved Approx. for Node-Disjoint Paths in Grids with Sources on the Boundary

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.38

Related Version A full version of the paper is available at https://arxiv.org/abs/1805.
09956.

1 Introduction

We study the classical Node-Disjoint Paths (NDP) problem, where the input consists of
an undirected n-vertex graph G and a collectionM = {(s1, t1), . . . , (sk, tk)} of pairs of its
vertices, called source-destination or demand pairs. We say that a path P routes a demand
pair (si, ti) iff the endpoints of P are si and ti. The goal is to compute a maximum-cardinality
set P of node-disjoint paths, where each path P ∈ P routes a distinct demand pair inM.
We denote by NDP-Planar the special case of the problem when the underlying graph G

is planar, and by NDP-Grid the special case where G is a square grid4. We refer to the
vertices in set S = {s1, . . . , sk} as source vertices; to the vertices in set T = {t1, . . . , tk} as
destination vertices, and to the vertices in set S ∪ T as terminals.

NDP is a fundamental graph routing problem that has been studied extensively in both
graph theory and theoretical computer science communities. Robertson and Seymour [31, 33]
explored the problem in their Graph Minor series, providing an efficient algorithm for NDP
when the number k of the demand pairs is bounded by a constant. But when k is a part
of input, the problem becomes NP-hard [20, 18], even in planar graphs [27], and even in
grid graphs [26]. The best current approximation factor of O(

√
n) for NDP is achieved

by a simple greedy algorithm [25]. Until recently, this was also the best approximation
algorithm for NDP-Planar and NDP-Grid. A natural way to design approximation algorithms
for NDP is via the multicommodity flow relaxation: instead of connecting each routed
demand pair with a path, send maximum possible amount of (possibly fractional) flow
between them. The optimal solution to this relaxation can be computed via a standard
linear program. The O(

√
n)-approximation algorithm of [25] can be cast as an LP-rounding

algorithm of this relaxation. Unfortunately, it is well-known that the integrality gap of this
relaxation is Ω(

√
n), even when the underlying graph is a grid, with all terminals lying on its

boundary. In a recent work, Chuzhoy and Kim [12] designed an Õ(n1/4)-approximation for
NDP-Grid, thus bypassing this integrality gap barrier. Their main observation is that, if all
terminals lie close to the grid boundary (say within distance O(n1/4)), then a simple dynamic
programming-based algorithm yields an O(n1/4)-approximation. On the other hand, if, for
every demand pair, either the source or the destination lies at a distance at least Ω(n1/4)
from the grid boundary, then the integrality gap of the multicommodity flow relaxation
improves, and one can obtain an Õ(n1/4)-approximation via LP-rounding. A natural question
is whether the integrality gap improves even further, if all terminals lie further away from
the grid boundary. Unfortunately, the authors show in [12] that the integrality gap remains
at least Ω(n1/8), even if all terminals lie within distance Ω(

√
n) from the grid boundary. The

Õ(n1/4)-approximation algorithm for NDP-Grid was later extended and generalized to an
Õ(n9/19)-approximation algorithm for NDP-Planar [13].

On the negative side, until recently, only an Ω(log1/2−ε n)-hardness of approximation was
known for the general version of NDP, for any constant ε, unless NP ⊆ ZPTIME(npoly logn) [4,
3], and only APX-hardness was known for NDP-Planar and NDP-Grid [12]. In a recent

4 We use the standard convention of denoting n = |V (G)|, and so the grid has dimensions (
√

n×
√

n); we
assume that

√
n is an integer.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.38
https://arxiv.org/abs/1805.09956
https://arxiv.org/abs/1805.09956

J. Chuzhoy, D.H.K. Kim, and R. Nimavat 38:3

work [15], the authors have shown that NDP is hard to approximate to within a 2Ω(
√

logn)

factor unless NP ⊆ DTIME(nO(logn)), even if the underlying graph is a planar graph with
maximum vertex degree at most 3, and all source vertices lie on the boundary of a single face.
The result holds even when the input graph G is a vertex-induced subgraph of a grid, with all
sources lying on the grid boundary. In a very recent work [14], the authors show that NDP-Grid
is 2Ω(log1−ε n)-hard to approximate for any constant ε assuming NP * BPTIME(npoly logn),
and moreover, assuming randomized ETH, the hardness of approximation factor becomes
nΩ(1/(log logn)2). We note that the instances constructed in these latter hardness proofs
require all terminals to lie far from the grid boundary.

In this paper we explore NDP-Grid. This important special case of NDP was initially
motivated by applications in VLSI design, and has received a lot of attention since the
1960’s. We focus on a restricted version of NDP-Grid, that we call Restricted NDP-Grid:
here, in addition to the graph G being a square grid, we also require that all source
vertices {s1, . . . , sk} lie on the grid boundary. We do not make any assumptions about
the locations of the destination vertices, that may appear anywhere in the grid. The best
current approximation algorithm for Restricted NDP-Grid is the same as that for the general
NDP-Grid, and achieves a Õ(n1/4)-approximation [12]. Our main result is summarized in the
following theorem.

I Theorem 1. There is an efficient randomized 2O(
√

logn·log logn)-approximation algorithm
for Restricted NDP-Grid.

This result in a sense complements the 2Ω(
√

logn)-hardness of approximation of NDP
on sub-graphs of grids with all sources lying on the grid boundary of [15]5, and should
be contrasted with the recent almost polynomial hardness of approximation of [14] for
NDP-Grid mentioned above. Our algorithm departs from previous work on NDP in that it
does not use the multicommodity flow relaxation. Instead, we define sufficient conditions
that allow us to route a subsetM′ of demand pairs via disjoint paths, and show that there
exists a subset of demand pairs satisfying these conditions, whose cardinality is at least
OPT/2O(

√
logn·log logn), where OPT is the value of the optimal solution. It is then enough

to compute a maximum-cardinality subset of the demand pairs satisfying these conditions.
We write an LP-relaxation for this problem and design a 2O(

√
logn·log logn)-approximation

LP-rounding algorithm for it. We emphasize that the linear program is only used to select
the demand pairs to be routed, and not to compute the routing itself.

We then generalize this result to instances where the source vertices lie within a prescribed
distance from the grid boundary.

I Theorem 2. For every integer δ ≥ 1, there is an efficient randomized(
δ · 2O(

√
logn·log logn)

)
-approximation algorithm for the special case of NDP-Grid where all

source vertices lie within distance at most δ from the grid boundary.

We note that for instances of NDP-Grid where both the sources and the destinations
are within distance at most δ from the grid boundary, it is easy to obtain an efficient
O(δ)-approximation algorithm (see, e.g. [12]).

A problem closely related to NDP is the Edge-Disjoint Paths (EDP) problem. It is defined
similarly, except that now the paths chosen to route the demand pairs may share vertices,

5 Note that the two results are not strictly complementary: our algorithm only applies to grid graphs,
while the hardness result is only valid for sub-graphs of grids.

ICALP 2018

38:4 Improved Approx. for Node-Disjoint Paths in Grids with Sources on the Boundary

Figure 1 A wall graph.

and are only required to be edge-disjoint. The approximability status of EDP is very similar
to that of NDP: there is an O(

√
n)-approximation algorithm [10], and an Ω(log1/2−ε n)-

hardness of approximation for any constant ε, unless NP ⊆ ZPTIME(npoly logn) [4, 3]. As
in the NDP problem, we can use the standard multicommodity flow LP-relaxation of the
problem, in order to obtain the O(

√
n)-approximation algorithm, and the integrality gap of

the LP-relaxation is Ω(
√
n) even in planar graphs. Recently, Fleszar et al. [19] designed an

O(
√
r · log(kr))-approximation algorithm for EDP, where r is the feedback vertex set number

of the input graph G = (V,E) — the smallest number of vertices that need to be deleted
from G in order to turn it into a forest.

Several special cases of EDP have better approximation algorithms: an
O(log2 n)-approximation is known for even-degree planar graphs [9, 8, 22], and an O(logn)-
approximation is known for nearly-Eulerian uniformly high-diameter planar graphs, and
nearly-Eulerian densely embedded graphs, including grid graphs [5, 24, 23]. Furthermore,
an O(logn)-approximation algorithm is known for EDP on 4-edge-connected planar, and
Eulerian planar graphs [21]. It appears that the restriction of the graph G to be Eulerian,
or near-Eulerian, makes the EDP problem on planar graphs significantly simpler, and in
particular improves the integrality gap of the standard multicommodity flow LP-relaxation.

The analogue of the grid graph for the EDP problem is the wall graph (see Figure 1):
the integrality gap of the multicommodity flow relaxation for EDP on wall graphs is Ω(

√
n).

The Õ(n1/4)-approximation algorithm of [12] for NDP-Grid extends to EDP on wall graphs,
and the 2Ω(

√
logn)-hardness of approximation of [15] for NDP-Planar also extends to EDP

on sub-graphs of walls, with all sources lying on the top boundary of the wall. The recent
hardness result of [14] for NDP-Grid also extends to an 2Ω(log1−ε n)-hardness of EDP on
wall graphs, assuming NP * BPTIME(npoly logn), and to nΩ(1/(log logn)2)-hardness assuming
randomized ETH. We extend our results to EDP and NDP on wall graphs:

I Theorem 3. There is an efficient randomized 2O(
√

logn·log logn)-approximation algorithm
for EDP and for NDP on wall graphs, when all source vertices lie on the wall boundary.

Other related work

Cutler and Shiloach [17] studied an even more restricted version of NDP-Grid, where all source
vertices lie on the top row R∗ of the grid, and all destination vertices lie on a single row R′

of the grid, far enough from its top and bottom boundaries. They considered three different
settings of this special case. In the packed-packed setting, all sources appear consecutively on
R∗, and all destinations appear consecutively on R′ (but both sets may appear in an arbitrary
order). They show a necessary and a sufficient condition for all demand pairs to be routable
via node-disjoint paths in this setting. The second setting is the packed-spaced setting. Here,
the sources again appear consecutively on R∗, but all destinations are at a distance at least

J. Chuzhoy, D.H.K. Kim, and R. Nimavat 38:5

d from each other. For this setting, the authors show that if d ≥ k, then all demand pairs
can be routed. We note that [12] extended their algorithm to a more general setting, where
the destination vertices may appear anywhere in the grid, as long as the distance between
any pair of the destination vertices, and any destination vertex and the boundary of the grid,
is at least Ω(k). Robertson and Seymour [32] provided sufficient conditions for the existence
of node-disjoint routing of a given set of demand pairs in the more general setting of graphs
drawn on surfaces, and they designed an algorithm whose running time is poly(n) · f(k) for
finding the routing, where f(k) is at least exponential in k. Their result implies the existence
of the routing in grids, when the destination vertices are sufficiently far from each other and
from the grid boundaries, but it does not provide an efficient algorithm to compute such a
routing. The third setting studied by Cutler and Shiloach is the spaced-spaced setting, where
the distances between every pair of source vertices, and every pair of destination vertices
are at least d. The authors note that they could not come up with a better algorithm for
this setting, than the one provided for the packed-spaced case. Aggarwal, Kleinberg, and
Williamson [1] considered a special case of NDP-Grid, where the set of the demand pairs is a
permutation: that is, every vertex of the grid participates in exactly one demand pair. They
show that Ω(

√
n/ logn) demand pairs are routable in this case via node-disjoint paths. They

further show that if all terminals are at a distance at least d from each other, then at least
Ω(
√
nd/ logn) pairs are routable.
A variation of the NPD and EDP problems, where small congestion is allowed, has been a

subject of extensive study, starting with the classical paper of Raghavan and Thompson [29]
that introduced the randomized rounding technique. We say that a set P of paths causes
congestion c, if at most c paths share the same vertex or the same edge, for the NDP and
the EDP settings respectively. A recent line of work [9, 28, 2, 30, 11, 16, 7, 6] has lead to an
O(poly log k)-approximation for both NDP and EDP problems with congestion 2. For planar
graphs, a constant-factor approximation with congestion 2 is known [34].

Organization

The majority of this extended abstract is dedicated to a detailed but informal overview of
the proofs of Theorem 1 and Theorem 2. The formal proofs, as well as the extension to EDP
and NDP on wall graphs, are deferred to the full version of the paper.

2 High-Level Overview of the Algorithm

The goal of this section is to provide an informal high-level overview of the main result of the
paper – the proof of Theorem 1. With this goal in mind, the values of various parameters are
given imprecisely in this section, in a way that best conveys the intuition. The full version
of the paper contains a formal description of the algorithm and the precise settings of all
parameters.

We first consider an even more restricted special case of NDP-Grid, where all source
vertices appear on the top boundary of the grid, and all destination vertices appear far enough
from the grid boundary, and design an efficient randomized 2O(

√
logn·log logn)-approximation

algorithm A for this problem. We later show how to reduce Restricted NDP-Grid to this
special case of the problem; we focus on the description of the algorithm A for now.

We assume that our input graph G is the (` × `)-grid, and we denote by n = `2 the
number of its vertices. We further assume that the set of the demand pairs is M =
{(s1, t1), . . . , (sk, tk)}, with the vertices in set S = {s1, . . . , sk} called source vertices; the
vertices in set T = {t1, . . . , tk} called destination vertices; and the vertices in S ∪ T called

ICALP 2018

38:6 Improved Approx. for Node-Disjoint Paths in Grids with Sources on the Boundary

(a) Global routing. In this figure, the sub-grids Bi

are aligned vertically and horizontally. A similar
(but somewhat more complicated) routing can be per-
formed even if they are not aligned. For convenience
we did not include all source vertices and all paths.

(b) Local routing inside Bi

Figure 2 Schematic view of routing of spaced-out instances.

terminals. Let OPT denote the value of the optimal solution to the NDP instance (G,M).
We assume that the vertices of S lie on the top boundary of the grid, that we denote by R∗,
and the vertices of T lie sufficiently far from the grid boundary – say, at a distance at least
OPT from it. For a subsetM′ ⊆M of the demand pairs, we denote by S(M′) and T (M′)
the sets of the source and the destination vertices of the demand pairs inM′, respectively.
As our starting point, we consider a simple observation of Chuzhoy and Kim [12], that
generalizes the results of Cutler and Shiloach [17]. Suppose we are given an instance of
NDP-Grid with k demand pairs, where the sources lie on the top boundary of the grid, and the
destination vertices may appear anywhere in the grid, but the distance between every pair of
the destination vertices, and every destination vertex and the boundary of the grid, is at least
(8k + 8) – we call such instances spaced-out instances. In this case, all demand pairs inM
can be efficiently routed via node-disjoint paths, as follows. Consider, for every destination
vertex ti ∈ T , a square sub-grid Bi of G, of size (2k × 2k), such that ti lies roughly at the
center of Bi. We construct a set P of k node-disjoint paths, that originate at the vertices of
S, and traverse the sub-grids Bi one-by-one in a snake-like fashion (see a schematic view on
Figure 2a). We call this part of the routing global routing. The local routing needs to specify
how the paths in P traverse each box Bi. This is done in a straightforward manner, while
ensuring that the unique path originating at vertex si visits the vertex ti (see Figure 2b).
By suitably truncating the final set P of paths, we obtain a routing of all demand pairs in
M via node-disjoint paths.

Unfortunately, in our input instance (G,M), the destination vertices may not be located
sufficiently far from each other. We can try to select a large subsetM′ ⊆M of the demand
pairs, so that every pair of destination vertices in T (M′) appear at a distance at least Ω(|M′|)
from each other; but in some cases the largest such setM′ may only contain O(OPT/

√
k)

demand pairs (for example, suppose all destination vertices lie consecutively on a single row
of the grid). One of our main ideas is to generalize this simple algorithm to a number of
recursive levels.

For simplicity, let us first describe the algorithm with just two recursive levels. Suppose
we partition the top row of the grid into z disjoint intervals, I1, . . . , Iz. LetM′ ⊆M be a
set of demand pairs that we would like to route. Denote |M′| = k′, and assume that we are
given a collection Q of square sub-grids of G, of size (4k′ × 4k′) each (that we call squares),

J. Chuzhoy, D.H.K. Kim, and R. Nimavat 38:7

such that every pair Q,Q′ ∈ Q of distinct squares is at a distance at least 4k′ from each
other. Assume further that each such sub-grid Q ∈ Q is assigned a color χ(Q) ∈ {c1, . . . , cz},
such that, if Q is assigned the color cj , then all demand pairs (s, t) ∈M′ whose destination t
lies in Q have their source s ∈ Ij (so intuitively, each color cj represents an interval Ij). Let
M′j ⊆M′ be the set of all demand pairs (s, t) ∈ M′ with s ∈ Ij . We would like to ensure
that |M′j | is roughly k′/z, and that all destination vertices of T (M′j) are at a distance at
least |M′j | from each other. We claim that if we could find the collection {I1, . . . , Iz} of the
intervals of the first row, a collection Q of sub-grids of G, a coloring χ : Q → {c1, . . . , cz},
and a subsetM′ ⊆M of the demand pairs with these properties, then we would be able to
route all demand pairs inM′.

In order to do so, for each square Q ∈ Q, we construct an augmented square Q+, by
adding a margin of k′ rows and columns around Q. Our goal is to construct a collection P
of node-disjoint paths routing the demand pairs inM′. We start by constructing a global
routing, where all paths in P originate from the vertices of S(M′) and then visit the squares
in {Q+ | Q ∈ Q} in a snake-like fashion, just like we did for the spaced-out instances described
above (see Figure 2a). Consider now some square Q ∈ Q and the corresponding augmented
square Q+. Assume that χ(Q) = cj , and let Pj ⊆ P be the set of paths originating at the
source vertices that lie in Ij . While traversing the square Q+, we ensure that only the paths
in Pj enter the square Q; the remaining paths use the margins on the left and on the right of
Q in order to traverse Q+. This can be done because the sources of the paths in Pj appear
consecutively on R∗, relatively to the sources of all paths in P . In order to complete the local
routing inside the square Q, observe that the destination vertices appear far enough from
each other, and so we can employ the simple algorithm for spaced-out instances inside Q.

In order to optimize the approximation factor that we achieve, we extend this approach
to ρ = O(

√
logn) recursive levels. Let η = 2

⌈√
logn

⌉
. We define auxiliary parameters

d1 > d2 > · · · > dρ > dρ+1. Roughly speaking, we can think of dρ+1 as being a constant (say
16), of d1 as being comparable to OPT, and for all 1 ≤ h ≤ ρ, dh+1 = dh/η. The setup for
the algorithm consists of three ingredients: (i) a hierarchical decomposition H̃ of the grid
into square sub-grids (that we refer to as squares); (ii) a hierarchical partition I of the first
row R∗ of the grid into intervals; and (iii) a hierarchical coloring f of the squares in H̃ with
colors that correspond to the intervals of I, together with a selection of a subsetM′ ⊆M
of the demand pairs to route. We define sufficient conditions on the hierarchical system H̃
of squares, the hierarchical partition I of R∗ into intervals, the coloring f and the subset
M′ of the demand pairs, under which a routing of all pairs inM′ exists and can be found
efficiently. For a fixed hierarchical system H̃ of squares, a triple (I, f,M′) satisfying these
conditions is called a good ensemble. We show that a good ensemble with a large enough set
M′ of demand pairs exists, and then design an approximation algorithm for computing a
good ensemble maximizing |M′|. We now describe each of these ingredients in turn.

2.1 A Hierarchical System of Squares.

A hierarchical system H̃ of squares consists of a sequence Q1,Q2, . . . ,Qρ of sets of sub-grids
of G. For each 1 ≤ h ≤ ρ, Qh is a collection of disjoint sub-grids of G (that we refer to as
level-h squares); every such square Q ∈ Qh has size (dh × dh), and every pair of distinct
squares Q,Q′ ∈ Qh are within distance at least dh from each other (see Figure 3). We require
that for each 1 < h ≤ ρ, for every square Q ∈ Qh, there is a unique square Q′ ∈ Qh−1
(called the parent-square of Q) that contains Q. We say that a demand pair (s, t) belongs
to the hierarchical system H̃ = (Q1,Q2, . . . ,Qρ) of squares iff t ∈

⋃
Q∈Qρ

Q. We show a

ICALP 2018

38:8 Improved Approx. for Node-Disjoint Paths in Grids with Sources on the Boundary

Figure 3 A schematic view of a hierarchical system of squares with 2 levels.

simple efficient algorithm to construct 2O(
√

logn) such hierarchical systems of squares, so
that every demand pair belongs to at least one of them. Each such system H̃ of squares
induces an instance of NDP — the instance is defined over the same graph G, and the set
M̃ ⊆M of demand pairs that belong to the system H̃. It is then enough to obtain a factor
2O(
√

logn·log logn)-approximation algorithm for each resulting instance (G,M̃) separately.
From now on we fix one such hierarchical system H̃ = (Q1,Q2, . . . ,Qρ) of squares, together
with the set M̃ ⊆M of demand pairs, containing all pairs (s, t) that belong to H̃, and focus
on designing a 2O(

√
logn·log logn)-approximation algorithm for instance (G,M̃).

2.2 A Hierarchical Partition of the Top Grid Boundary
Recall that R∗ denotes the first row of the grid. A hierarchical partition I of R∗ is a sequence
I1, I2, . . . , Iρ of sets of sub-paths of R∗, such that for each 1 ≤ h ≤ ρ, the paths in Ih
(that we refer to as level-h intervals) partition the vertices of R∗. We also require that for
all 1 < h ≤ ρ, every level-h interval I ∈ Ih is contained in a unique level-(h − 1) interval
I ′ ∈ Ih−1, that we refer to as the parent-interval of I. For every level 1 ≤ h ≤ ρ, we define a
collection χh of colors, containing one color ch(I) for each level-h interval I ∈ Ih. If I ′ ∈ Ih
is a parent-interval of I ∈ Ih+1, then we say that color ch(I ′) is a parent-color of ch+1(I).

2.3 Coloring the Squares and Selecting Demand Pairs to Route
The third ingredient of our algorithm is an assignment f of colors to the squares, and a
selection of a subset of the demand pairs to be routed. For every level 1 ≤ h ≤ ρ, for every
level-h square Q ∈ Qh, we would like to assign a single level-h color ch(I) ∈ χh to Q, denoting
f(Q) = ch(I). Intuitively, if color ch(I) is assigned to Q, then the only demand pairs (s, t)
with t ∈ Q that we may route are those whose source vertex s lies on the level-h interval I.
We require that the coloring is consistent across levels: that is, for all 1 < h ≤ ρ, if a level-h
square is assigned a level-h color ch, and its parent-square is assigned a level-(h− 1) color
ch−1, then ch−1 must be a parent-color of ch. We call such a coloring f a valid coloring of H̃
with respect to I.

Finally, we would like to select a subsetM′ ⊆ M̃ of the demand pairs to route. Consider
some demand pair (s, t) and some level 1 ≤ h ≤ ρ. Let Ih be the level-h interval to which s
belongs. Then we say that s has the level-h color ch(Ih). Therefore, for each level 1 ≤ h ≤ ρ,

J. Chuzhoy, D.H.K. Kim, and R. Nimavat 38:9

vertex s is assigned the unique level-h color ch(Ih), and for 1 ≤ h < ρ, ch(Ih) is the parent-
color of ch+1(Ih+1). Let Qρ ∈ Qρ be the level-ρ square to which t belongs. We may only add
(s, t) toM′ if the level-ρ color of Qρ is cρ(Iρ) (that is, it is the same as the level-ρ color of
s). Notice that in particular, this means that for every level 1 ≤ h ≤ ρ, if Qh is the level-h
square containing t, and it is assigned the color ch(Ih), then s is assigned the same level-h
color, and so s ∈ Ih. Finally, we require that for all 1 ≤ h ≤ ρ, for every level-h color ch, the
total number of all demand pairs (s, t) ∈M′, such that the level-h color of s is ch, is no more
than dh+1/16 (if h = ρ, then the number is no more than 1). IfM′ has all these properties,
then we say that it respects the coloring f . We say that (I, f,M′) is a good ensemble iff I is
a hierarchical partition of R∗ into intervals; f is a valid coloring of the squares in H̃ with
respect to I; andM′ ⊆ M̃ is a subset of the demand pairs that respects the coloring f . The
size of the ensemble is |M′|.

2.4 The Routing
We show that, if we are given a good ensemble (I, f,M′), then we can route all demand pairs
inM′. The routing itself follows the high-level idea outlined above. We gradually construct
a collection P of node-disjoint paths routing the demand pairs inM′. At the highest level,
all these paths depart from their sources and then visit the level-1 squares one-by-one, in a
snake-like fashion, as in Figure 2a. Consider now some level-1 square Q, and assume that
its level-1 color is c1(I), where I ∈ I1 is some level-1 interval of R∗. Then only the paths
P ∈ P that originate at the vertices of I will enter the square Q; the remaining paths will
exploit the spacing between the level-1 squares in order to bypass it; the spacing between the
level-1 squares is sufficient to allow this. Once we have defined this global routing, we need
to specify how the routing is carried out inside each square. We employ the same procedure
recursively. Consider some level-1 square Q, and let P ′ ⊆ P be the set of all paths that visit
Q. Assume further that the level-1 color of Q is c1(I). Since we are only allowed to have
at most d2/16 demand pairs inM′ whose level-1 color is c1(I), |P ′| ≤ d2/16. Let Q′ ⊆ Q2
be the set of all level-2 squares contained in Q. The paths in P ′ will visit the squares of Q′
one-by-one in a snake-like fashion (but this part of the routing is performed inside Q). As
before, for every level-2 square Q′ ⊆ Q, if the level-2 color of Q′ is c2(I ′), then only those
paths of P ′ that originate at the vertices of I ′ will enter Q′; the remaining paths will use the
spacing between the level-2 squares to bypass Q′. Since |P ′| ≤ d2/16, and all level-2 squares
are at distance at least d2 from each other, there is a sufficient spacing to allow this routing.
We continue this process recursively, until, at the last level of the recursion, we route at most
one path per color, to its destination vertex.

In order to complete the proof of the theorem, we need to show that there exists a good
ensemble (I, f,M′) of size |M′| ≥ |OPT|/2O(

√
logn·log logn), and that we can find such an

ensemble efficiently.

2.5 The Existence of the Ensemble
The key notion that we use in order to show that a large good ensemble (I, f,M′) exists
is that of a shadow property. Suppose Q is some (d × d) sub-grid of G, and let M̂ ⊆ M
be some subset of the demand pairs. Among all demand pairs (s, t) ∈ M̂ with t ∈ Q, let
(s1, t1) be the one with s1 appearing earliest on the first row R∗ of G, and let (s2, t2) be the
one with s2 appearing latest on R∗. The shadow of Q with respect to M̂ is the sub-path of
R∗ between s1 and s2. Let NM̂(Q) be the number of all demand pairs (s, t) ∈ M̂ with s
lying in the shadow of Q (that is, s lies between s1 and s2 on R∗). We say that M̂ has the

ICALP 2018

38:10 Improved Approx. for Node-Disjoint Paths in Grids with Sources on the Boundary

shadow property with respect to Q iff NM̂(Q) ≤ d. We say that M̂ has the shadow property
with respect to the hierarchical system H̃ = (Q1, . . . ,Qρ) of squares, iff M̂ has the shadow
property with respect to every square in

⋃ρ
h=1Qh. Let P∗ be the optimal solution to the

instance (G,M̃) of NDP, where M̃ only includes the demand pairs that belong to H̃. Let
M∗ ⊆ M̃ be the set of the demand pairs routed by P∗. For every demand pair (s, t) ∈M∗,
let P (s, t) ∈ P∗ be the path routing this demand pair. Intuitively, it feels likeM∗ should
have the shadow property. Indeed, let Q ∈

⋃ρ
h=1Qh be some square of size (dh × dh), and

let (s1, t1), (s2, t2) ∈ M∗ be defined for Q as before, so that the shadow of Q with respect
toM∗ is the sub-path of R∗ between s1 and s2. Let P be any path of length at most 2dh
connecting t1 to t2 in Q, and let γ be the closed curve consisting of the union of P (s1, t1), P ,
P (s2, t2), and the shadow of Q. Consider the disc D whose boundary is γ. The intuition is
that, if (s, t) ∈M∗ is a demand pair whose source lies in the shadow of Q, and destination
lies outside of D, then P (s, t) must cross the path P , as it needs to escape the disc D. Since
path P is relatively short, only a small number of such demand pairs may exist. The main
difficulty with this argument is that we may have a large number of demand pairs (s, t),
whose source lies in the shadow of Q, and the destination lies in the disc D. Intuitively, this
can only happen if P (s1, t1) and P (s2, t2) “capture” a large area of the grid. We show that,
in a sense, this cannot happen too often, and that there is a subsetM∗∗ ⊆M∗ of at least
|M∗|/2O(

√
logn·log logn) demand pairs, such thatM∗∗ has the shadow property with respect

to H̃.
Finally, we show that there exists a good ensemble (I, f,M′) with

|M′| ≥ |M∗∗|/2O(
√

logn·log logn). We construct the ensemble over the course of ρ itera-
tions, starting withM′ =M∗∗. In the hth iteration we construct the set Ih of the level-h
intervals of R∗, assign level-h colors to all level-h squares of H̃, and discard some demand
pairs from M′. Recall that η = 2

⌈√
logn

⌉
. In the first iteration, we let I1 be a partition

of the row R∗ into intervals, each of which contains roughly d1
16η = d2

16 ≤
|M∗|
η vertices of

S(M′). Assume that these intervals are I1, . . . , Ir, and that they appear in this left-to-right
order on R∗. We call all intervals Ij where j is odd interesting intervals, and the remaining
intervals Ij uninteresting intervals. We discard from M′ all demand pairs (s, t), where s
lies on an uninteresting interval. Consider now some level-1 square Q, and letM(Q) ⊆M′
be the set of all demand pairs whose destination lies in Q. Since the original set M∗∗
of demand pairs had the shadow property with respect to Q, it is easy to verify that all
source vertices of the demand pairs in M(Q) must belong to a single interesting interval
of I1. Let I be that interval. Then we color the square Q with the level-1 color c1(I)
corresponding to the interval I. This completes the first iteration. Notice that for each
level-1 color c1(I), at most d2/16 demand pairs (s, t) ∈ M′ have s ∈ I. In the following
iteration, we similarly partition every interesting level-1 interval into level-2 intervals that
contain roughly d3/16 ≤ |M∗|/η2 source vertices ofM′ each, and then define a coloring of
all level-2 squares similarly, while suitably updating the setM′ of the demand pairs. We
continue this process for ρ iterations, eventually obtaining a good ensemble (I, f,M′). Since
we only discard a constant fraction of the demand pairs ofM′ in every iteration, at the end,
|M′| ≥ |M∗∗|/2ρ = |M∗∗|/2O(

√
logn) ≥ |M∗|/2O(

√
logn·log logn).

2.6 Finding the Good Ensemble
In our final step, our goal is to find a good ensemble (I, f,M′) maximizing |M′|. We show
an efficient randomized 2O(

√
logn·log logn)-approximation algorithm for this problem. First,

we show that, at the cost of losing a small factor in the approximation ratio, we can restrict
our attention to a small collection I1, I2, . . . ,Iz of hierarchical partitions of R∗ into intervals,

J. Chuzhoy, D.H.K. Kim, and R. Nimavat 38:11

and that it is enough to obtain a 2O(
√

logn·log logn)-approximate solution for the problem of
finding the largest ensemble (Ij , f,M′) for each such partition Ij separately.

We then fix one such hierarchical partition Ij , and design an LP-relaxation for the problem
of computing a coloring f of H̃ and a collectionM′ of demand pairs, such that (Ij , f,M′)
is a good ensemble, while maximizing |M′|. Finally, we design an efficient randomized
LP-rounding 2O(

√
logn·log logn)-approximation algorithm for the problem.

2.7 Completing the Proof of Theorem 1

So far we have assumed that all source vertices lie on the top boundary of the grid, and
all destination vertices are at a distance at least Ω(OPT) from the grid boundary. Let A
be the randomized efficient 2O(

√
logn·log logn)-approximation algorithm for this special case.

We now extend it to the general Restricted NDP-Grid problem. For every destination vertex
t, we identify the closest vertex t̃ that lies on the grid boundary. Using standard grouping
techniques, at the cost of losing an additional O(logn) factor in the approximation ratio,
we can assume that all source vertices lie on the top boundary of the grid, all vertices in{
t̃ | t ∈ T (M)

}
lie on a single boundary edge of the grid (assume for simplicity that it is the

bottom boundary), and that there is some integer d, such that for every destination vertex
t ∈ T (M), d ≤ d(t, t̃) < 2d. We show that we can define a collection Z = {Z1, . . . , Zr} of
disjoint square sub-grids of G, and a collection I = {I1, . . . , Ir} of disjoint sub-intervals of
R∗, such that the bottom boundary of each sub-grid Zi is contained in the bottom boundary
of G, the top boundary of Zi is within distance at least OPT from R∗, Z1, . . . , Zr appear in
this left-to-right order in G, and I1, . . . , Ir appear in this left-to-right order on R∗. For each
1 ≤ j ≤ r, we letMj denote the set of all demand pairs with the sources lying on Ij and
the destinations lying in Zj . For each 1 ≤ j ≤ r, we then obtain a new instance (G,Mj)
of the NDP problem. We show that there exist a collection Z of squares and a collection
I of intervals, such that the value of the optimal solution to each instance (G,Mj), that
we denote by OPTj , is at most d, while

∑r
j=1 OPTj ≥ OPT/2O(

√
logn·log logn). Moreover, it

is not hard to show that, if we can compute, for each 1 ≤ j ≤ r, a routing of some subset
M′j ⊆ Mj of demand pairs in G, then we can also route all demand pairs in

⋃r
j=1M′j

simultaneously in G.
There are two problems with this approach. First, we do not know the set Z of sub-grids of

G and the set I of intervals of R∗. Second, it is not clear how to solve each resulting problem
(G,Mj). To address the latter problem, we define a simple mapping of all source vertices in
S(Mj) to the top boundary of grid Zj , obtaining an instance of Restricted NDP-Grid, where
all source vertices lie on the top boundary of the grid Zj , and all destination vertices lie at a
distance at least OPTj ≤ d from its boundary. We can then use algorithm A in order to solve
this problem efficiently. It is easy to see that, if we can route some subsetM′j of the demand
pairs via node-disjoint paths in Zj , then we can extend this routing to the corresponding set
of original demand pairs, whose sources lie on R∗.

Finally, we employ dynamic programming in order to find the set Z of sub-grids of G
and the set I of intervals of I. For each such potential sub-grid Z and interval I, we use
algorithm A in order to find a routing of a large set of demand pairs of the corresponding
instance defined inside Z, and then exploit the resulting solution values for each such pair
(I, Z) in a simple dynamic program, that allows us to compute the set Z of sub-grids of G,
the set I of intervals of I, and the final routing.

ICALP 2018

38:12 Improved Approx. for Node-Disjoint Paths in Grids with Sources on the Boundary

3 Approximation Algorithm for the Special Case with Sources Close
to the Grid Boundary

In this section we provide a sketch of the proof of Theorem 2. We assume that we are given
an instance (G,M) of NDP-Grid and an integer δ > 0, such that every source vertex is at a
distance at most δ from the grid boundary. Our goal is to design an efficient randomized
factor-(δ ·2O(

√
logn·log logn))-approximation algorithm for this special case. For every terminal

v ∈ S(M)∪T (M), let ṽ be the vertex lying closest to v on the boundary of the grid G. Using
standard grouping techniques, at the cost of losing an O(logn)-factor in the approximation
ratio, we can assume that there is some integer d, such that for all t ∈ T (M), d ≤ d(t, t̃) < 2d.

Assume first that d ≤ δ · 2O(
√

logn log logn). Let M̂ =
{

(s̃, t̃) | (s, t) ∈M
}
be a new set of

demand pairs, so that all vertices participating in these demand pairs lie on the boundary of
G. We can efficiently find an optimal solution to the NDP problem instance (G,M̂) using
standard dynamic programming. We then show that OPT(G,M̂) = Ω(OPT(G,M)/(δ ·
2O(
√

logn·log logn))), obtaining an (δ · 2O(
√

logn·log logn))-approximation algorithm.
From now on we assume that d > δ · 2Ω(

√
logn log logn). Next, we define a new set M̃ of

demand pairs: M̃ = {(s̃, t) | (s, t) ∈M}, so all source vertices of the demand pairs in M̃ lie
on the boundary of G, obtaining an instance of Restricted NDP-Grid. Let OPT′ be the value
of the optimal solution to problem (G,M̃). We show that OPT′ ≥ Ω(OPT(G,M)/δ).

We then focus on instance (G,M̃) of Restricted NDP-Grid. We say that a path P routing a
demand pair (s̃, t) ∈ M̃ is canonical iff it contains the original source s. The crux of the proof
is to show that we can modify the routing produced by the 2O(

√
logn·log logn)-approximation

algorithm to instance (G,M̃), so that in the resulting routing all paths are canonical. In
order to do so, we utilize the fact that the destination vertices lie much further from the
grid boundaries than the source vertices. This creates sufficient margins around the grid
boundaries that allow us to modify the routing to turn it a canonical one.

References

1 Alok Aggarwal, Jon Kleinberg, and David P. Williamson. Node-disjoint paths on the
mesh and a new trade-off in VLSI layout. SIAM J. Comput., 29(4):1321–1333, 2000. doi:
10.1137/S0097539796312733.

2 Matthew Andrews. Approximation algorithms for the edge-disjoint paths problem via
Raecke decompositions. In Proceedings of IEEE FOCS, pages 277–286, 2010. doi:10.
1109/FOCS.2010.33.

3 Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal Talwar,
and Lisa Zhang. Inapproximability of edge-disjoint paths and low congestion routing on un-
directed graphs. Combinatorica, 30(5):485–520, 2010. doi:10.1007/s00493-010-2455-9.

4 Matthew Andrews and Lisa Zhang. Logarithmic hardness of the undirected edge-disjoint
paths problem. J. ACM, 53(5):745–761, sep 2006. doi:10.1145/1183907.1183910.

5 Yonatan Aumann and Yuval Rabani. Improved bounds for all optical routing. In Proceed-
ings of the sixth annual ACM-SIAM symposium on Discrete algorithms, SODA ’95, pages
567–576, Philadelphia, PA, USA, 1995. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=313651.313820.

6 Chandra Chekuri and Julia Chuzhoy. Half-integral all-or-nothing flow. Unpublished Ma-
nuscript.

7 Chandra Chekuri and Alina Ene. Poly-logarithmic approximation for maximum node dis-
joint paths with constant congestion. In Proc. of ACM-SIAM SODA, 2013.

http://dx.doi.org/10.1137/S0097539796312733
http://dx.doi.org/10.1137/S0097539796312733
http://dx.doi.org/10.1109/FOCS.2010.33
http://dx.doi.org/10.1109/FOCS.2010.33
http://dx.doi.org/10.1007/s00493-010-2455-9
http://dx.doi.org/10.1145/1183907.1183910
http://dl.acm.org/citation.cfm?id=313651.313820

J. Chuzhoy, D.H.K. Kim, and R. Nimavat 38:13

8 Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. Edge-disjoint paths in planar
graphs. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Sym-
posium on, pages 71–80. IEEE, 2004.

9 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Multicommodity flow, well-
linked terminals, and routing problems. In Proc. of ACM STOC, pages 183–192, 2005.

10 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An O(
√
n) approximation and

integrality gap for disjoint paths and unsplittable flow. Theory of Computing, 2(1):137–146,
2006. doi:10.4086/toc.2006.v002a007.

11 Julia Chuzhoy. Routing in undirected graphs with constant congestion. SIAM J. Comput.,
45(4):1490–1532, 2016. doi:10.1137/130910464.

12 Julia Chuzhoy and David H. K. Kim. On approximating node-disjoint paths in grids. In
Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2015, August 24-26, 2015, Princeton, NJ, USA, volume 40 of LIPIcs, pages 187–211.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://www.dagstuhl.
de/dagpub/978-3-939897-89-7, doi:10.4230/LIPIcs.APPROX-RANDOM.2015.187.

13 Julia Chuzhoy, David H. K. Kim, and Shi Li. Improved approximation for node-disjoint
paths in planar graphs. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, pages 556–569, New York, NY, USA, 2016. ACM.
doi:10.1145/2897518.2897538.

14 Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. Almost polynomial hardness of
node-disjoint paths in grids. Unpublished Manuscript, 2017.

15 Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. New hardness results for rout-
ing on disjoint paths. In Hamed Hatami, Pierre McKenzie, and Valerie King, edit-
ors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 86–99. ACM, 2017.
doi:10.1145/3055399.3055411.

16 Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm for edge-disjoint
paths with congestion 2. J. ACM, 63(5):45:1–45:51, 2016. URL: http://dl.acm.org/
citation.cfm?id=2893472, doi:10.1145/2893472.

17 M. Cutler and Y. Shiloach. Permutation layout. Networks, 8:253–278, 1978. doi:10.1002/
net.3230080308.

18 Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and multicom-
modity flow problems. SIAM J. Comput., 5(4):691–703, 1976. doi:10.1137/0205048.

19 Krzysztof Fleszar, Matthias Mnich, and Joachim Spoerhase. New Algorithms for Maximum
Disjoint Paths Based on Tree-Likeness. In Piotr Sankowski and Christos Zaroliagis, editors,
24th Annual European Symposium on Algorithms (ESA 2016), volume 57 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 42:1–42:17, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ESA.2016.42.

20 R. Karp. On the complexity of combinatorial problems. Networks, 5:45–68, 1975.
21 Ken-Ichi Kawarabayashi and Yusuke Kobayashi. An O(log n)-approximation algorithm

for the edge-disjoint paths problem in Eulerian planar graphs. ACM Trans. Algorithms,
9(2):16:1–16:13, 2013. doi:10.1145/2438645.2438648.

22 Jon Kleinberg. An approximation algorithm for the disjoint paths problem in even-degree
planar graphs. In Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, FOCS ’05, pages 627–636, Washington, DC, USA, 2005. IEEE Computer
Society. doi:10.1109/SFCS.2005.18.

23 Jon M. Kleinberg and Éva Tardos. Disjoint paths in densely embedded graphs. In Pro-
ceedings of the 36th Annual Symposium on Foundations of Computer Science, pages 52–61,
1995.

ICALP 2018

http://dx.doi.org/10.4086/toc.2006.v002a007
http://dx.doi.org/10.1137/130910464
http://www.dagstuhl.de/dagpub/978-3-939897-89-7
http://www.dagstuhl.de/dagpub/978-3-939897-89-7
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.187
http://dx.doi.org/10.1145/2897518.2897538
http://dx.doi.org/10.1145/3055399.3055411
http://dl.acm.org/citation.cfm?id=2893472
http://dl.acm.org/citation.cfm?id=2893472
http://dx.doi.org/10.1145/2893472
http://dx.doi.org/10.1002/net.3230080308
http://dx.doi.org/10.1002/net.3230080308
http://dx.doi.org/10.1137/0205048
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.42
http://dx.doi.org/10.1145/2438645.2438648
http://dx.doi.org/10.1109/SFCS.2005.18

38:14 Improved Approx. for Node-Disjoint Paths in Grids with Sources on the Boundary

24 Jon M. Kleinberg and Éva Tardos. Approximations for the disjoint paths problem in high-
diameter planar networks. J. Comput. Syst. Sci., 57(1):61–73, 1998. doi:10.1006/jcss.
1998.1579.

25 Stavros G. Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using
packing integer programs. Mathematical Programming, 99:63–87, 2004. doi:10.1007/
s10107-002-0370-6.

26 MR Kramer and Jan van Leeuwen. The complexity of wire-routing and finding minimum
area layouts for arbitrary vlsi circuits. Advances in computing research, 2:129–146, 1984.

27 James F. Lynch. The equivalence of theorem proving and the interconnection problem.
SIGDA Newsl., 5(3):31–36, 1975. doi:10.1145/1061425.1061430.

28 Harald Räcke. Minimizing congestion in general networks. In Proc. of IEEE FOCS, pages
43–52, 2002.

29 Prabhakar Raghavan and Clark D. Tompson. Randomized rounding: a technique for prov-
ably good algorithms and algorithmic proofs. Combinatorica, 7:365–374, December 1987.
doi:10.1007/BF02579324.

30 Satish Rao and Shuheng Zhou. Edge disjoint paths in moderately connected graphs. SIAM
J. Comput., 39(5):1856–1887, 2010. doi:10.1137/080715093.

31 N. Robertson and P. D. Seymour. Outline of a disjoint paths algorithm. In Paths, Flows
and VLSI-Layout. Springer-Verlag, 1990.

32 Neil Robertson and Paul D. Seymour. Graph minors. VII. disjoint paths on a surface. J.
Comb. Theory, Ser. B, 45(2):212–254, 1988. doi:10.1016/0095-8956(88)90070-6.

33 Neil Robertson and Paul D Seymour. Graph minors. XIII. the disjoint paths problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995.

34 Loïc Seguin-Charbonneau and F. Bruce Shepherd. Maximum edge-disjoint paths in planar
graphs with congestion 2. In Proceedings of the 2011 IEEE 52Nd Annual Symposium on
Foundations of Computer Science, FOCS ’11, pages 200–209, Washington, DC, USA, 2011.
IEEE Computer Society. doi:10.1109/FOCS.2011.30.

http://dx.doi.org/10.1006/jcss.1998.1579
http://dx.doi.org/10.1006/jcss.1998.1579
http://dx.doi.org/10.1007/s10107-002-0370-6
http://dx.doi.org/10.1007/s10107-002-0370-6
http://dx.doi.org/10.1145/1061425.1061430
http://dx.doi.org/10.1007/BF02579324
http://dx.doi.org/10.1137/080715093
http://dx.doi.org/10.1016/0095-8956(88)90070-6
http://dx.doi.org/10.1109/FOCS.2011.30

	Introduction
	High-Level Overview of the Algorithm
	A Hierarchical System of Squares.
	A Hierarchical Partition of the Top Grid Boundary
	Coloring the Squares and Selecting Demand Pairs to Route
	The Routing
	The Existence of the Ensemble
	Finding the Good Ensemble
	Completing the Proof of Theorem 1

	Approximation Algorithm for the Special Case with Sources Close to the Grid Boundary

