313 research outputs found

    Optimal FIR filter design

    Get PDF
    The design of Finite Impulse Response (FIR) digital filters that considers both phase and magnitude specifications is investigated. This dissertation is divided into two parts. In Part I we present our implementation of an algorithm for the design of minimum phase filters. In Part II we investigate the design of FIR filters in the complex domain and develop a new powerful design method for digital FIR filters with arbitrary specification of magnitude and phase;Part I considers the design of minimum-phase filters. The method presented uses direct factorization of the transfer function of a companion Parks-McClellan linear-phase filter of twice the length of the desired minimum-phase filter. The minimum-phase filter is derived with excision of half the zeros of the companion linear-phase filter. The zeros of the prototype filter are found using Laguerre\u27s method. We will present our implementation of the design method, and describe some practical aspects and problems associated with the design of minimum-phase filters;Part II investigates the design of optimal Chebychev FIR filters in the complex domain. The design of FIR filters with arbitrary specification of magnitude and phase is formulated into a problem of complex approximation. The method developed is capable of designing filters with real or complex coefficients. Complex impulse response designs are an extension of the real coefficient case based on a proper selection of the approximating basis functions;The minimax criterion is used and the complex Chebychev approximation is posed as a minimization problem in linear optimization. The primal problem is converted to its dual and is solved using an efficient, quadratically convergent algorithm developed by Tang (14). The relaxation of the linear-phase constraint results in a reduction of the number of coefficients compared to linear-phase designs. Linear-phase filters are a special case of our filter design approach. We examine the design of frequency selective filters with or without the conjugate symmetry, the design of one-sided, two-sided, narrowband and fullband Hilbert Transformers and differentiators

    An Introduction to Digital Signal Processing

    Get PDF
    An Introduction to Digital Signal Processing aims at undergraduate students who have basic knowledge in C programming, Circuit Theory, Systems and Simulations, and Spectral Analysis. The book is focused on basic concepts of digital signal processing, MATLAB simulation and implementation on selected DSP hardware in which the candidate is introduced to the basic concepts first before embarking to the practical part which comes in the later chapters. Initially Digital Signal Processing evolved as a postgraduate course which slowly filtered into the undergraduate curriculum as a simplified version of the latter. The goal was to study DSP concepts and to provide a foundation for further research where new and more efficient concepts and algorithms can be developed. Though this was very useful it did not arm the student with all the necessary tools that many industries using DSP technology would require to develop applications. This book is an attempt to bridge the gap. It is focused on basic concepts of digital signal processing, MATLAB simulation and implementation on selected DSP hardware. The objective is to win the student to use a variety of development tools to develop applications. Contents• Introduction to Digital Signal processing.• The transform domain analysis: the Discrete-Time Fourier Transform• The transform domain analysis: the Discrete Fourier Transform• The transform domain analysis: the z-transform• Review of Analogue Filter• Digital filter design.• Digital Signal Processing Implementation Issues• Digital Signal Processing Hardware and Software• Examples of DSK Filter Implementatio

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    An Introduction to Digital Signal Processing

    Get PDF
    An Introduction to Digital Signal Processing aims at undergraduate students who have basic knowledge in C programming, Circuit Theory, Systems and Simulations, and Spectral Analysis. The book is focused on basic concepts of digital signal processing, MATLAB simulation and implementation on selected DSP hardware in which the candidate is introduced to the basic concepts first before embarking to the practical part which comes in the later chapters. Initially Digital Signal Processing evolved as a postgraduate course which slowly filtered into the undergraduate curriculum as a simplified version of the latter. The goal was to study DSP concepts and to provide a foundation for further research where new and more efficient concepts and algorithms can be developed. Though this was very useful it did not arm the student with all the necessary tools that many industries using DSP technology would require to develop applications. This book is an attempt to bridge the gap. It is focused on basic concepts of digital signal processing, MATLAB simulation and implementation on selected DSP hardware. The objective is to win the student to use a variety of development tools to develop applications. Contents• Introduction to Digital Signal processing.• The transform domain analysis: the Discrete-Time Fourier Transform• The transform domain analysis: the Discrete Fourier Transform• The transform domain analysis: the z-transform• Review of Analogue Filter• Digital filter design.• Digital Signal Processing Implementation Issues• Digital Signal Processing Hardware and Software• Examples of DSK Filter Implementatio

    Improved Frequency-selective Filters

    Get PDF
    This paper gives an account of some techniques for designing recursive frequency-selective filters which can be applied to data sequences of limited duration which may be nonstationary. The designs are based on the Wiener-Kolmogorov theory of signal extraction which employs a statistical model of the processes generating the data. The statistical model may be regarded as an heuristic device which is designed with a view to ensuring that the resulting signal-extraction filters have certain preconceived properties.Signal extraction, Linear filtering, Filter design, Trend estimation, Frequency-domain analysis

    The Use Of Digital Signal Processing in Satellite Communication

    Get PDF
    The recent emphasis on Information Technology has increased the need for methods of data communications with a greater interest in the areas of Satellite communications. Data communications over a satellite can be easily achieved by the use of excessive power and bandwidth but efficient management of the satellite resource requires more elegant means of transmission. The optimum modulator and demodulator can be described by mathematical expressions to represent the physical processes that are required to transmit and receive a signal. Digital Signal Processing circuits can be use to implement these mathematical functions and once correctly designed are not susceptible to variations in accuracy and hence can maintain an accurate representation of the mathematical model. This thesis documents an investigation into the algorithms and techniques that can be used in the digital implementation of a Satellite Data Modem. The technique used for carrier phase recovery and data decoding is a major variation on a method proposed by Viterbi and Viterbi and relies on Phase Estimation instead of the more common carrier regeneration techniques. A computer simulation of this algorithm and its performance is described and the overall performance of the simulation is compared to theoretical analysis and experimental performance of a Multi-Data Rate Satellite Modem covering data rates in the range 16 Ksymbol/sec to 256 Ksymbol/sec in both the BPSK and QPSK data formats.Royal Signals and Radar Establishment, Deffor

    Designs of Digital Filters and Neural Networks using Firefly Algorithm

    Get PDF
    Firefly algorithm is an evolutionary algorithm that can be used to solve complex multi-parameter problems in less time. The algorithm was applied to design digital filters of different orders as well as to determine the parameters of complex neural network designs. Digital filters have several applications in the fields of control systems, aerospace, telecommunication, medical equipment and applications, digital appliances, audio recognition processes etc. An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, processes information and can be simulated using a computer to perform certain specific tasks like clustering, classification, and pattern recognition etc. The results of the designs using Firefly algorithm was compared to the state of the art algorithms and found that the digital filter designs produce results close to the Parks McClellan method which shows the algorithm’s capability of handling complex problems. Also, for the neural network designs, Firefly algorithm was able to efficiently optimize a number of parameter values. The performance of the algorithm was tested by introducing various input noise levels to the training inputs of the neural network designs and it produced the desired output with negligible error in a time-efficient manner. Overall, Firefly algorithm was found to be competitive in solving the complex design optimization problems like other popular optimization algorithms such as Differential Evolution, Particle Swarm Optimization and Genetic Algorithm. It provides a number of adjustable parameters which can be tuned according to the specified problem so that it can be applied to a number of optimization problems and is capable of producing quality results in a reasonable amount of time
    • …
    corecore