

e) . fL> 2fp

Fig 2.4.b Aliasing Frequency Spectra due to sampling

frequency too low

16

. . - .
el P s . -

.

LT

Bra

i A4

)

I9371d OT3dITId I9pI0 UI L

0.0,

0'73/\4H 057\/4“

1L

o:’é,uH

1]

! LA
w1 pk 209p

ho®pf

]

]

11
l"*?,oﬁ—

155 ps

l}o’n-’.

SofL

8T

7th Order

Chebychev
, 2 off 6
4@— i CA3300 >
A/D
Bw=12.5MHz
Differentiotor
d PROM 13305 5.5MHz
70MHz IF 70MHZ R 8 _r_ VIDED FILTER
- — {—— 30MHz 4 ofF ~ -
30MHz BW L0 gasisl E 9 D ~_ VIDED OUT
90" IK A - 7Sohm
7th Order + IV p to p
Chehbychev WiTH
2 off 6 DE-EMPHASIS
4®_—- e CA3300 —
AZD

Aw=]12.5MHz

Fig 2.4.d4 Demodulation of an FM signal using

Quadrature Down Conversion

be seen that the vector is represented as being a positive
increasing value to a maximum of +180 degrees in an anti
-clockwise direction and a negative increasing value to a
maximum of -180 degrees in the clockwise direction. The
difference value is obtained between two successive sample
vector values, and in each case the 'shortest route' must
be taken. This is fully explained in a later section but a
simple interpretation can be obtained by considering
sampling theory. If a rotating phasor of period T,
represented by two quadrature components is sampled
according to sampling theory, this sampling must take place
at a frequency of 2/1t. Hence if the first sample occurs at
0 degrees then the next sample occurs at the 180 degree
point. If the period is less the t then the phasor sample
difference will be less than 180 degrees. Since this is the
case and we have defined the maximum phasor difference to
be 180 degrees by the sampling theorem then the phasor can
only have followed a path around the unit circle which is
less than 180 degrees. This is termed the "shortest route'".
The calculaticn can be performed by signed magnitude
subtraction modulo 360 degrees fig 2.4.f. This form of
shortest route subtraction can be more easily expressed in
a 2's Complement form of subtraction modulo 360. Following
the differentiator the output 1is fed to a digital to
analogue converter. This reproduces the sampled analogue
signal which because of its sample nature has frequency
spectra existing around multiples of the sample rate
frequency. These must be removed by low pass filtering to
fully implement the equivalent of the analogue FM
demodulator. The analogue signal is then de-empasised and
buffered to drive the 75Q@ load of the video monitor. Hence
by the use of the above processes the FM signal has been
demodulated digitally. This approach has been fully

explored experimentally as a first stage to this project
and the results and conclusions can be found described in

detail in reference <21>.

19

F0°

0100 0000 { o0o11 111}

+180° o 1 0000 0000

o n°
=180° un un / 1000 0000

_//

1100 000 | 1011 1111

o .
-1 .
Fig 2.4.e Qutput Phase Map for Extended Tan Function
Lg-l(.)) With Sign/ Magnitude Representation

20

30°

«=—— shortest route

180° — ' : Lo

Fig 2.4.f Example of a 'Shortest Route' Calculation

around the Unit Circle

21

3. A Discrete Time Version of the Digital Demodulator for

Data Transmission.

-In the previous section the digital demodulator was used to
implement the discrete reception of a continuously changing
-time signal i.e analogue, without any loss of definition. A
configuration will now be considered where a binary
modulated signal is demodulated. From equation 2.1.1.f, it
should be noted that the phase angle &(t) is a continuous
variable with time, as is the magnitude A(t). Even if this
is not the case, and the phase and amplitude only change at
discrete instants in time, the complex envelope model can
still be used to model the bandpass waveform. If the
In-phase and Quadrature components represent the 2
dimensional axis of Eucilidean space, a vector space
diagram can be constructed. A simple conétellation whereby
the amplitude is constant at unity and the phase can take
on any one of four equispaced values of 45,135,225,315
degrees can be represented on the space diagram as in Fig
3.a. This is a representation for Quadrature Phase Shift
Keying. If the amplitude takes on any one of two values as
well as the four phase value then a form of Quadrature
Amplitude Modulation 1is described, as shown in Fig 3.Db.
Both these signals can be easily decoded by the digital
demodulator already described from the ratios of the phase
and quadrature channel values by changing the decoder
function incorporated into the decode PROM. Many forms of
signal constellation can therefore be demodulated by the
use of the ‘same digital demodulator technique by
programming appropriate decode PROM's. However for a
discrete sampled system the function of symbol
synchronization and carrier phase lock have also to be
carried out. These subjects will be dealt with in a later
section but first some basic principles of Binary Phase
Shift Keying (BPSK) are considered in connection with its
spectrum, spectral shaping by means of filtering and the

effects of noise at the receiver.

22

Irmog

Real

01 00
T 0

Constellation for QPSK

Fig 3.a Space Diagram

I O
\

o - 109
A "\
S ‘ . o
001 »/ e 00D
. :
Fanl
on g
Py
111 16
-4-
Fig 3.b Space Diagram Constellation for Quadrature

Amplitude Modulation

23

3.1. The Maximum Likelihood Demodulator.

For a completely known signal in Additive White Gaussian
Noise it 1is possible to implement a demodulator which
minimizes the probability of making an decision error
between the observed received signal r(t), and the
transmitted signal s(t). Consider an M'ary signalling
system with transmitted signal waveform sm(t) given by:-
e(jz.n.f.t)] (Eq3.1.a)
m=1,2,..M

sm(t) = Re[um(t).

where um(t) represent the low-pass equivalent signal
waveforms. The M signals have signal energies individually
defined by <13>:-

r-
E = | s(t)” at
] o (Eq3.1.b)
[T
=1, | Ju (e)]? at
— o ® (Eq3.1.c)
2

The transmission of this signal through a channel results

in the received signal being attenuated by a factor a

,delayed by 'TO' and corrupted by Additive White Gaussian
Noise (AWGN), represented by n(t) which is +the complex
representation of frequency shifted bandpass noise. This

results in the received signal r(t) being represented by:-

r(t) = Re[{ﬂ-um(t—TO)e(_JznfTO) " n(t)}e(JZT[ft)]
(Egq3.1.d)
the factor e(‘J2nfTo) represents a constant phase delay

between the transmitted signal and the received signal.

Assuming that the demodulator is synchronized to the

24

transmitter the dependance of the received signal on 't'
can be eliminated. This results in the the received signal

being expressed in the equivalent lowpass form:-
r{t) = Re[a.um(t)e_Je+n(t)] (Eq3.1l.e)

where 8 = anTo radians. The demodulator must therefore
observe the signal for a time t such that 0<t<T and decide
from this observation which of the M signal has been
transmitted. It 1is desirable for the probability of an
error in this decision to be a minimum. This occurs if the

demodulator selects the signal with the largest posterior

probability i.e. it computes the probability of signal m
being transmitted given the signal r(t) is received, during

the observation interval. This can be expressed as:-
p{m|r(t),0<t<T) m=1,2,..M (Eq3.1.f)

It can be shown (Proakis <13>) that for a set of M
signals, of equal likely a-priori probability equal to 1/M,
with AWGN the demodulator must compute the M decision

variables: -

. [T
(je) | a.E
n=1,2..M

J o
(Eq3.1.9)
where un*(t) = is complex conjugate of the variable un(t)

Dn = Re[e r(t).un*(t)dt]l -

and decide in favour of the largest Dn' and hence signal m.
If however, the signalling waveforms are of equal energy
then the a.E term is a constant and can be neglected in the

computation and hence becomes:-

r(t).u *(t)dt]
(Eg3.1.h)

For a Quadrature Amplitude Modulated signal, u(t) is given
by:-

25

n=wo

u(t) = X In. g(t-nT) (Eg3.1.1i)
n=0
where I = 1 + 3T ,and I and I _, are two
n nr ni nr . ni

information carrying symbols which can take on any one of k
states. If Inr and Ini can only take on the value +/- 1 ,
then this is equivalent to Quadrature Phase Shift Keying
(QPSK). If the Iy symbol is set to zero then Binary Phase
Shift Keying results. The function g(t) represents the
low-pass pulse shaping function and is one factor that
restricts the bandwidth of the transmitted signal. The

transmitted signal s(t) therefore becomes:-

s_(t) =Re[g(t). gli2nfe + 84 + L)y (Eg3.1.3)
Bd = Tan-l(Ini/Inr) adjusted for a f?ll 360 degrees.
ed - P-I(Ini/lnr)

for Inr'Ini = +/- 1 for QPSK, and Inr =+/- 1, Ini = 0

for BPSK. L is a phase offset on the resultant
constellation, an example of which can be seen in fig

3.1.a. Assuming g(t) is real then :-

s (t) = g(t).{Cos (2nft + B

. + L)} (Eg3.1.k)

d

by simple trigonometry :-

sm(t) = g(t){Ap.Cos 2nft + Aq.sin 2nft} (Eg3.1.1)

26

Tmag
ul

ul

11 (0]

Space Diagram for QPSK with Phase Offset

Fig 3.1.a
L=45 deg

27

where

A

A
d

o Cos(ed + L)

Sln(ed + L)

hence the transmitted signal can be constructed from the
addition of two quadrature carriers individually modulated

by the shaped information stream Ini and Inr

Maximum Likelihood Demodulation of this transmitted signal
in the presence of noise results in the computation of the
decision variable Dm, by substitution of equation 3.1.j.

into 3.1.h produces:-

T i
=e(JB) | (39d+L)dt

D (t).g (t)e

n

(= o I |

(Egq3.1.m)

The exponent under the integral is independent of the
integration variable and hence can be factored out of the

decision variable.

[T *

e(je)J r(t). g (t) dt
0

(Eq 3.1.n)

This can be implemented as a single matched filter or cross
correlator. The resultant vector D can be phase processed
to obtain a received phasor Br which is then compared

d
against the set of transmitted phasors produced by [sm(t)}.

The optimum demodulator must therefore compute this complex
decision variable D from the received signal r(t) during
the interval 0<t<T, convert from a complex to polar form
and compare the resultant phase against a set of possible
transmitted phasor. This can be achieved by a system as

shown in fig 3.1.b. The main objective of the research has

28

been to implement the above processes with increased
accuracy in both the transmitter and receiver, compared to
previous methods while carefully shaping the transmit

spectrum by the correct selection of the function g{t).

29

s

#*
UL(T—t)

Compute
% decision
U_(T-1 varicbles

(Day

LMultiply
by e‘J8

rit
2. Toke

real part

3.Select
largest
Dp

S

U %T +)
M 3

Decision

- D

Matched Filter Demodulator

Fig 3.1.b Optimum Demodulator Implementation

30

3.2. Binary Phase shift Keying.

If we consider a binary random waveform in a non return to
zero format (NRZ) such that a logical 0O is represented by a
-1, and a logical 1 by a +1, the space diagram can be
displayed as two points 180 degrees apart Fig 3.2.a. For an
analysis of this waveform we can consider it as a series of
random impulses convolved with a rectangular impulse
response of period + and - T/2 (where T is the symbol
period) and amplitude of value 1. As the impulse sequence
is random {(or pseudo-random) it's frequency spectrum is
ostensibly uniformly flat over the bandwidth of interest
and of normalized amplitude equal to 1, hence the
convolution of the two time responses, now represented by
the multiplication of the two frequency responses, produces
a power spectrum identical to that of a rectangular impulse
response. From the Fourier transform this is found to be

that of the Sinc function as shown in Fig 3.2.b

| v(£) | = T (Sin nfT)

(nfT)
(BEg3.2.a)

by observation of fig 3.2.b it can be seen that the spectra
of the BPSK signal has major components >-50dB out as far
as 100 times the symbol rate (single sided spectrum) and
99% of the power is contained within 20 times the symbol
rate (double sided spectrum) <6>. Hence this means that
very large bandwidths would be required to transmit the
whole BPSK spectrum without loss or distortion and hence
makes the transmission of a NRZ format undesirable. To
overcome this restriction the spectrum of the NRZ symbol
stream is shaped by filtering. This introduces new
problems. Filtering of the signal with little care produces

Inter-Symbol Interference produced by the convolved impulse

31

Feal

Fig 3.2.a Space Diagram for a BPSK signal

32

A ar e

548 Y
19] 1
- £ =i I[, .",-‘-‘-.
15 ﬁB -’l luf \EI =
-28 0B] 1“! I S
| | S o
-25 4B T THN T A A A oy
I T T TR AR
38 48 R T N T A A TS
TR I NN R A A A T I
i [N R B B
_ 4 b i ik s W
-4 8 | 1 | i ;
: i it i [
-45 dR ' { } : H
] I A T
-58 48 x T = * ! ! i ' !

230 768 1,28E2 1.79E3 2,383
312 1.82E3 1.5483 2.93E3 2.36E3

) Kz
BPSK Frequency Spectruam

Fig 3.2.b Frequency Response for an Unfiltered BPSK
Signal

33

. 4 i . e L, - K
. vlf'; - . 1 LA [e e
, A

4 Ay
- i

responses;of thé NRZ pulses. and the: filter. Thisi is
manifest in. the form of impulse response: tails adding to
the main: lobe at: the 'sampling instant. resulting in a
closure .0of the Data Eye:ian example of. which iis shown ini Fig
3.2:¢c:

34

3.3. Nyquist Filter Criteria

Nyquist <1> proposed that to overcome this problem the
spectrum of a filter must conform to a specific function

related to the symbol rate, 2fo:-

1+ Y(f) f < fo
H(f) = Y(f) fo ¢ £ < 2fo
0 £ > 2fo

(Eg3.3.a)

Where Y(f) is a real function that is even symmetric about
f=0 i.e

Y(-f) =Y(f) f < 2fo (Eq3.3.b)

and odd symmetric about f=fo such that:

Y(-f+fo) = -¥Y(f+fo) £ < fo (eg3.3.c)

there is no ISI if the symbol rate is 2fo. A simple example
of this symmetry can be seen in fig 3.3.a, but a commonly
used form of the Nyquist Filter is that of the Raised

Cosine Filter.

3.4, Raised Cosine Roll-off Filters

The family of Raised Cosine Roll-off filters is defined
by:-

) 0< £ < (1-B)/2T
X(£) = | 1/2¢ 1-sin(n(f'1/2T)/%izp)/2T < f < (1+B)/2T
. £ > (1+B)/2T

- (Eg3.4.a)

with the time response x(t) being given by:-

36

x(t) = sin nt/T Cos Bnt/T

nt/T 1—(2[5t/T)2
(Eg3.4.b)

The roll-off factor B has a range from 0 to 1 and is often
called the percentage roll-off of the filter i.e. 0% and
100%. In all cases the zero crossings occur at the symbol
rate period. The Raised Cosine filters have a symmetrical
time response around t=0 and Hence have a constant phase
response, i.e a 2zero imaginary component. It can be seen
from fig 3.4.a that the 0% filter is equivalent to that of
a rectangular frequency response and represents the minimum
bandwidth that can be used to transmit a signal of symbol
rate 2fo symbols/sec without degradation. This produces a
sinc function time response which although it complies with
the Nyquist filter criteria can produce implementation
problems and therefore produces worse ISI. If the symbol
timing at the receiver is not exact the data eye is sampled
away from the point of zero ISI. Due to the large
overshoots that the sinc function produces the ISI 1is
increased and hence the recovered signal is degraded . As
the percentage roll-off is increased the impulse response
tails reduce more rapidly and hence the amount of ISI can
be reduced by the use of a higher percentage roll-off
impulse response. Hence symbol timing must be more accurate
for low percentage roll-off factors. An analogue approach
to the frequency response is hard to practically realize
since the filters are usually minimum phase filters with
causal impulse responses of very long duration and
difficult to phase equalize. Hence by the appropriate
choice of roll-off factor we can trade ISI, complexity of
symbol timing recovery, and filter realization problems,

for increases in transmit bandwidth.

37

8¢

AMP

| |

I I

| 05 |
I

I

I

I

-2f

Fig 3.3.a Simple Example of a Nyquist Filter Frequency
Spectrum

[| o=

e o ill
o
[%4

q

Pig 3.4.a Pamily of Raised Cosine Filter Frequency

39

3.5. Matched Receive Filters

In the case of digitally derived signals where the
transmitted waveform is known and easily defined it has
long been known <6> that it is possible to filter the
received signal in such a way that, in the presence of
additive white gaussian noise, the output signal can be
maximized against the noise.These Matched Filters require
the filter impulse response to be the 'mirror image' of the
transmitted time signal.If we consider a Raised Cosine
filter impulse response its mirror image is also a raised
cosine filter impulse response due to its inherent symmetry
and hence its zero phase response. Hence the matched filter
for a Raised Cosine filter is in itself a Raised Cosine
filter. However the spectral response of the channel is now
that of a (Raised Cosine Filter)2 which no longer exhibits
zero crossings at the sampling instant. We therefore
require a set of filters that exhibit an overall response
of a Raised cosine filter while being matched at the
receiver. Lucky, Salz and Weldon <7> have shown that the
optimum solution is that the transmitter and receiver
filters are designed such that their overall response is:

172 (Egq3.5.a)

Ho(£).H (f).H (f)= (H(f))
Where subscript N indicates Nyquist filter, R receiver
filter and 1 & 2 any other filters in receiver processing.
This filter response is repeated in the transmitter.
Therefore to have a Root Raised cosine Filter in both the
transmitter and the receiver preserves the overall Nyquist

frequency response and the Matched filter criteria.

40

3.6. Design and Development of Multi-Rate Data Modem

3.6.1. Introduction to Design Requirements.

It has previously been shown that a digital implementation
of a phase demodulator can be used to detect a variable
phase signal in a continuous format with the output from
the phase decode PROM being an exact representation of the
received vector relative to the receiver local oscillator.
It has been postulated that this could be extended to a
discrete binary signal format by the use of a symbol timing
recovery function. It has also been shown that one optimum
form of filtering in a binary signalling channel for both
transmitter and receiver are that of Root Raised cosine
filters which can simultaneously comply with both the
Nyquist filter and Matched filter criteria. This results
in the design for the data modem to become that in fig
3.6.1.a. Due to the digital nature of the proposed system,
it is envisaged that by a simple re-configquration of the
modem, data rates ranging from 16Ksymbols/sec to
256ksymbols/sec can be achieved. To obtain minimum
degradation through the system, all filters must be highly
accurate in both the time and frequency domains. Due to the
symmetry of the root raised cosine filter impulse response,
the theoretical filter is non causal and difficult to

realize using standard LC networks, or active filters.

41

3.7. Multi-Rate Modem Modulator.

In the discussion so far attention has concentrated on the
receiver aspect although it has been proposed that a Root
Raised Cosine filter should be used at the transmitter for
efficient spectral shaping. The theory and implementation

behind the modulator will now be explored.

3.7.1. The Modulator; A Brief Overview.

Consider a previously scrambled,hence pseudo-random data
stream being presented to a modulator where by it will be
converted into a QPSK signal format and fed to frequency
conversion circuitry on a 1.024MHz First 1IF carrier. The
conventional approach has been described by Feher <9>,Couch
<6>,Proakis <13> and many other authors with spectral
shaping either taking place in the baseband channels, or at
the carrier frequency, using analogue filters. The basic
block diagram can be seen in fig 3.7.1.a. The incoming data
sequence is multiplexed into two data sequence at half the
incoming data rate. These two parallel data sequences of
NRZ pulses are then filtered for efficient spectral shaping

before modulating onto a IF carrier in quadrature.

43

DATA. INi

‘G A —_——

Date RatesTh

SERIAL.
T !
IEPARALLEL

Fig 3.7.1.a Typical :QPSK Medulation Méthod

Modtilated Ovp’

3.7.2. Background to Digital Filters.

Consider a simple system as shown in fig 3.7.2.a. The input
waveform x(t) with spectrum X(f) is filtered by the filter
with transfer function H(f) to produce an output waveform

y(t) of spectrum Y(£f) <8>. This can be expressed as
Y(£) = H(E).X(f) (Eq3.7.2.a)

If we consider the same system in the time domain we

obtain:-

y(t) = x(t)*h(t)
(Eq3.7.2.Db)

where * represents the convolution of two time responses

and h(t) the impulse response of the filter H(f).i.e.

y(t) = [h{(T).x(t-T)dT

(Eg3.7.2.c)

Using the sampling theorem and by sampling at least twice
the highest frequency the discrete time representation

becomes: -

1
8

y(kT) h(nT).x({(k-n)T)

"
S Mo
i
!
8

(Eq3.7.2.d)

hence if this mathematical function can be performed on the
sampled data sequence the output sample data is
effectively filtered. This function can therefore be
modelled in digital hardware and repeated to any degree of

accuracy required.

45

XCF) HCEY | YR

<t h(t y ()

Fig 3.7.2.a Simple Linear Time Invariant _Filter System

46

3.7.3. Digital Transmit Filters.

In the transmitter the incoming data pulses are of the NRZ
format and hence only ascribe to two values +1 and -1.The

convolution process is therefore limited to:

y(kT)= = h(nT).x((k-n)T)
n= -o (Eg3.7.3.a)

where x(iT)= +1 or -1,k=0 to = and can be approximated by
Eq3.7.3.b for a finite length of h(nT).

N
v(kT)= = h(nT).x((k-n)T)

n= 0
(Eg3.7.3.b)

nhence only a limited number of coefficient multiplications
and additions need to take place. Consider the data
sequence not as a series of NRZ pulses but as a series of
pseudo-random impulses with a flat normalized spectral
response.The output spectrum from any filter is therefore
defined by the filter spectrum only and hence its impulse
response. The digital filter now consist of the convolution
of two impulse responses. This can be considered as in fig
3.7.3.a for a filter impulse response which is only
significant over 6 symbol periods for a Root 30% cosine
roll-off filter (Appendix B). 1In the centre of the
sequence the tails from all the filter impulse responses
converge. For this region of interest it is possible to
define the intermediate results for any input sequence of
6 symbols i.e. calculate the convolution results and store
them in memory. If the sampling rate of the filter impulse
response has been correctly chosen with a 6 symbol input
word it is possible to store all combinations of results in
a PROM. Since the two quadrature channels are both filtered
by the same frequency response it is possible to use the

same information for both channhels. However care must be

47

y 4. - ¢ | n n-*o :] i v

[Y - 1 [R P . o 4
[l . 1 . : A i r o

" [. b , J:{. A .

- ¥ ‘__ ! " ’ ¥
* o ! v .
1 , k] B
- t n 1
! | ! H
«

‘taken such that the ;imgfs§mpie chosen by ‘each channel
‘corresponds to the correct #£ilter response and that no

phase shifts exist between channels.

48

Tt

REGION OF

INTEREST

-2 ta ta It—s_ - t-6

n

t

Fig 3.7.3.a Convolution of Data Impulse Stream with

Filter Impulse Response

49

3.7.4. Digital Up-conversion to First IF.

Consider a sequence of 4.096MHz samples, of infinitesimal
pulse width, output from the above digital filter PROM, fig
3.7.4.a and a carrier frequency of 1.024MHz is to be used.
The sampled In-Phase carrier waveform can be consider to be
as in fig 3.7.4.b. If these two waveforms are multiplied
together the result is as in fig 3.7.4.c i.e. a 4.096MHz
sample stream with alternate samples equal to zero. If
another sample stream is multiplied by the quadrature
carrier as shown in fig 3.7.4.b the resultant is as shown
in fig 3.7.4.d. 1t can be clearly seen that again a
4.096MHz sample stream results, with alternate samples
equal to 2zero. For the corresponding positions- in the
In-phase channel when the quadrature channel is zZero the
In-phase is non-zero and vicé versa. The output modulated
carrier signal therefore consists of the In-phase and
quadrature channels added together which can be implemented
by simply multiplexing the two channels. With the setting
of the phase offset, L, for the data cqnstellation, the
modulated carrier signal can be synthesised within the Prom
and hence carrying out both with the filter and modulator
functions. The complete modulator circuit becomes that of
fig 3.7.4.e. For a BPSK signal format the incoming data is
only diverted to the In-phase channel and the quadrature
channel output is set to zero. Other data rates can be
accommodated by scaling the number of samples per symbol or
the sampling rate. Scaling of the sampling rate causes the
IF output frequency to change but this can be adjusted for
by the use of frequency synthesisers in the- analogue

frequency up and down converters.

50

- 4 ‘ ' . " = I -4 % ‘ .
| I ! i))
Bl 1
il
| I
H ; ke P Channel 4MHz
| | [Sample. Stieain
— e T H; !
'2S0ns .
; ‘ ;
|
! :: *lMHg Carrier
! il Sampled at 4MHz

‘ Multiplied: Resultant’
‘ on IMHZ Carrier

‘Eh 51
H
|
I
i
| | Siitarly For 0 Channel
L . on IMHz CGarrier
=% = T T 6= &
| ‘
il

Fig 3.7.4.a/b/c/d An Example of ‘the Quadrature

Modulation Process in a iSampled Data System

51

Z6

1/P Data |

Stream

DataRate[Clock

CK

"SR CK

. |

sipo] P

L —e"s

BPSK
LMHz L CK
CK -

MS1

{ ’ l_‘>

2MHz CK

—— |—>— SR{symbol rate)
CK

T

QPSK
inhibit -

> latch

A

g

ADACH—C

Py A

8w |oa _
128 \ € ©Q _
I 33—

-+ il

f

4 MHzZCK

Fig 3.7.4.e Digital Modulator SYStPTIP l]j_jiagram

{"_

4MHz CK -

3.7.5. Effects of Sinc Function on Modulated Signal

Frequency Spectra

The Modulator is designed to produce a shaped bandpass
frequency response that conforms to the root 30% Raised
Cosine spectrum. In the example given above the samples are
of infinitesimal pulse width, as this width is increased a
Sinc function, in the frequency domain corresponding to the
pulse width, is superimposed over the desired frequency
response. The response is therefore degraded by the effect
of the sample and hold function produced by the DAC. The
output sample rate is set at 4.096MHz and will therefore
produce a (SIN (X))/X (Sinc function) response around 0 Hz
with a first null at 4.096MHz. This response multiplies the
required raised cosine response and a degraded frequency
response is the result. This sinc function and its effect
can be seen in fig 3.7.5.a. The effect of this asymmetric
slope across the passband is to create cross gquadrature
interference. In the region of interest that the raised
cosine response passband extends i.e.+/- 128KHz around
1.024MHz for a 256Ksymbol/sec data rate then the slope
across the passband is 0.5dB. This could be removed by a

number of different techniques:-

1) Increasing the sample rate to carrier frequency

ratio throughout the system.

2) Equalise the asymmetry by the use of a digital

equalization filter.

3) Decrease the hold time of the DAC by inserting a
Zero sample between each calculated output sample i.e.

increase the output sample rate.

4) Consider the effect of the asymmetry to be

negligible over the frequency range of interest.

53

¥ AR T
=548 e
| BIT ATE
-18 48 3.1966 2
-15 48 7 -
28 48 .
i i ¢
-25 d8]
* ! i
-38 48 |
-35 8 N
| I ¥
-48 a8 # 3
| i L
-45 dB I i
59 4p | ; L .
1.82E3 3.87E3 5.1263 7.17E3 2223
2.95€3 4.1E3 5. 1463 51953 124
CTHE EHNETTIN BRGRIETR BG o o Kliz
STHC FUNCTION PRODUCED BY DAC SAHPLE RATE OF 4 894MHZ

Fig 3.7.5.a

Effect of

Response

Sampling on

54

Qutput Frequency

Solution 4 was considered the most appropriate for this
investigation with solution 3 favoured over 1 and 2 as this
required a minimal amount of hardware. Solution 1 will
increases the memory size of the PROM's to cover the
required symbol rate range while also increasing the
operating speed with solution 2 increasing the complexity
of the modulator.

3.8. Multi-Rate Digital Demodulator.

From the previous discussions of the modulator it can be
postulated that a demodulator can be based on a similar
concept. The digital demodulator proposed consists of an
input signal on a minimum carrier frequency of 1.024MHz
being digitally converted to baseband in quadrature and
then digitally filtered. Sample rate reduction will be used
to enable Root 30% raised cosine filters to be implemented
practically while covering a span of symbol rate from
l6Ksymbols/sec to 256Ksymbols/sec. The final output sample
rate from these filters is four times the symbol rate. From
these four samples per symbol, one of the samples must be
extracted as the peak sample instant corresponding to zero
ISI (when in conjunction with a matched transmitter filter)
and the center of the data eye where the SNR is a maximum.
A coherent Carrier phase reference with the 1MHz IF is also
required to enable data to be correctly decoded from the
received phase angle. Tc enable both of these processes to
occur the symbol timing must be recovered and a carrier

reference established.

55

3.8.1. System Implementation.

The initial bandlimiting of the received signal to
prevent aliasing prior to sampling and digitizing, is
obtained by the use of a SAW filter having a symmetrical
impulse response and hence goocd phase linearity, producing
minimal group delay variations. The incoming signal, in
the range 52-88MHZ, is first up-converted to 200MHz, the
frequency being mainly dependent on the availability and
cost of BSAW filters and then bandlimited to a 700
KHz bandwidth. The bandlimited signal is then down
converted to a 1.024MHz minimum carrier frequency before
being digitally sampled by a 6 bit Analogue to Digital
converter giving a mean-squared signal to quantization
noise ratio of 31dB <5>. This is considered to be
sufficiently below the noise floor of the received bandpass
signal under normal operating conditions, approximately 4
dB SNR in 700 KHz for a 256 Kbit/sec signal with Eb/No of 8
dB, to produce no degradation. At higher signal to noise
ratios the degradation will limit the final performance of
the system but due to the steepness of the theoretical
error curves at high signal to noise this degradation will
be insignificant. The sampling takes place at a 4.096MHz
rate to fulfil sampling theorem requirements and allow
synchronization with the symbol clock. In practice it
was found that a choice of sampling rate of two or three
times the carrier frequency caused aliasing due to the
spectrum extending out to 1.8 MHz for the particular SAW
filter used. This sampled signal is then digitally mixed

to baseband before filtering.

56

3.8.2. Digital Quadrature Down-Conversion

The method used for down-conversion to baseband is
obtained by a similar argument as in the modulator.
Assume that the incoming signal is on a carrier locked to
a quarter of the sampling frequency. Down converting with
a sampled 'local oscillator', synchronous with the
sampling frequency such that the sampling points occur at
the 0,90,180,270 degree points, produces alternate =zero
value samples 1in the Phase and gquadrature baseband
channels. This can be implemented by the multiplication of
sample pairs by 1.024MHz local oscillator i.e. +1 and
-1 which is implemented by complementing samples,
demultiplexing these samples into the phase and quadrature
channels, and adding a zero value sample in the
opposite channel while one channel is being enabled. This
zero term would normally be a product of the mixing
process. The addition of the alternate zero term into a
channel when the data sample is diverted into the other
channel results in two baseband 4.096MHz sample streams
and allows sampling to occur at half the rate that would
normally be required for the 4.096 MHz sample rates per

channel while maintaining the correct mathematical model.

3.8.3. Receiver Digital Filter Design

The digital filter design problem is similar to that of the
modulator, however, now the filtered sample sequence 1is
multi- level, i.e. 64 level for 6 bit A/D. If the concept
of the pre-stored response is to be used the size of memory
device required becomes prohibitive (in the order of 236)

and a new approach is undertaken.

57

3.8.3.1. Choice of Raised Cosine Roll-off Factor.

The roll-off factor for the overall channel spectrum was
chosen to be 0.3 or 30%. This figure is a compromise
‘ between minimum channel bandwidth requirements and timing
jitter tolerances on the symbol timing recovery circuitry
giving rise to ISI. Higher roll-off factors i.e. 50%,
produce wider bandwidths but a higher timing jitter can be
tolerated before the 1ISI significantly degrades the data
eye.

3.8.3.2. Basic Digital Filter Implementation.

The Root 30% Raised Cosine Filter that is required for the
receiver is linear phase and must hence be of a Finite
Impulse Response Design (FIR), fig 3.8.3.2.a. 'Here the
delayed input samples are multiplied by the appropriate
coefficients and the results summed to produce the
convolved output. The digital hardware implementation of a
FIR filter can be undertaken in a variety of ways, 1i.e.
Parallel multiplication and addition fig 3.8.3.2.Db,
parallel multiplication and serial addition fig 3.8.3.2.c,
parallel multiplication and cascaded addition fig
3.8.3.2.d. The format used in the designed filters was as
shown in fig 3.8.3.2.e and can be termed a Direct Form FIR
Filter with Serial multiplication and Addition. The
incoming sample stream is stored along a delay line, of
length 15T ,which is constructed of 6 bit latches, clocked
at the input sample rate fSi = 1/T. If the frequency
response of the filter is restricted to fsi/a, i.e
frequency components higher than 1/8 input sample rate are
attenuated more than 20 dBs, then it 1is possible to
sub-sample the output of the filter at fsi/4' This causes
the filter response to repeat around the output frequency

and the aliasing point now occurs at 1/8th of the input

58

65

Qr

INPUT

Fig 3:8:.3.2.a Finite Impulse RéesponSe Filtert

. Ci:_

S . ouTPUT

Funiction

Diagram

[
-
, =
g
e - !
.
'
-
-
-
:
t
A :
Y
o
-
- v
t
¢ N

09

=
. -]
| oe

Fig 3.8.3.2.b FIR Filter Implementation with Parallel

Multiplication and Addition

19

INPUT Di T

Cg C6 C?@

0/P S,

Fig 3.8.3.2.c FIR Filter Implementation with Parallel
Multiplication and Serial Addition

Z9

INFUT

) , : . .
c_3>® c3 l Cg C‘:(S]‘-) ?& €3

Fig 3.8.3.2.d FIR Filter Implementation with Parallel

Multiplication and Cascaded Addition

Y

asp

£9

SAamPLE RATE Cre

As - A9

A0

Ao—A3) 2Kkx 8

FILTER
PROM

OuTPuT RATE

ProceSaINg
CcK.
k A li \SCALINE
+ [=Y1] 2 7|12 }FPReM
H H 32Kkx8
12
CLR

D _._DE'
4 > E E AMux Conrfos
: L % : Lnwmgees 674
PQ“‘SSC':(G COUNTIR [T OB S s LATCES
CLR
(AlD 4 D/A For Tesr Purroces)
Fig 3.8.3.2.e FIR Filter Implementation

used in

Demodulator Filters

sample frequency. As the output sample rate is reduced by a
factor of 4:1 then the redundant samples need not be
calculated. This increases the time available to carry out
the convolution process since only one in four of the input
samples takes place in the convolution and hence allows
high input rates to be practical. The selection of a set of
input samples is dependant on the phase relationship
between the input and output sampling signals. Any of the
sets will create the required frequency response but since
we require the central maximum sample, ie the centre of the
data eye at the output of the filter, selection of these
sample sets is <critical. The required set of samples is
taken from the delay line and latched onto a set of buffers
during one input clock sample. This transfer to the buffers
takes place at the output sample clock rate. The correct
selection of input sample sets is required to enable the
correct final impulse response. Adjustment is provided by
changing the phase reference of the output/transfer clock
with respect to the input samplerclock. Once the required
set of samples 1is present on the latches the convolution
takes place. This is carried out by multiplexing the
latched samples onto the PROM address lines, along with a
number representing the effective coefficient that the
sample is multiplied. The PROM is pre-programmed with the
answers to the multiplication of the coefficient in form of

the algorithm:-

(Egq3.8.3.2.a)

where R(A(i,j) = result from address A(i,j) given by:-

A(i,§) = i' x 16 + j
(Eq3.8.3.2.b)

64

j=coefficient number =0..15 i=sign/magnitude equivalent
sample value of a 6 bit 2's complement input value, i',
with. equivalent maximum ,i, equal to +/-1. Hence A(i,j) can
be represented by 10 bits. The output from the PROM is a 8
bit representation also in 2's complement format scaled to
a maximum of +/- 1. The resulting products are accumulated
over the coefficient number count 0 to 14, i.e. 15
coefficients. On count 16 the data is output to a scaling
PROM and the accumulator cleared. A new set of input
samples is now transferred to the multiplex latches. The
accumulator can in these 15 additions in theory produce a
maximum 12 bit result. The coefficients are not all at a
maximum of 1, as they are a sampled version of the root 30%
Raised Cosine filter impulse respcnse, and consequently
this maximum is never reached. Also for different
coefficients corresponding to different data rates the
accumulated maximum result will correspondingly change. To
enable this output to be adjusted for maximum signal to
gquantizing noise the Scaling PROM allows the maximum input
value to be adjusted to produce a maximum L bit output
value. This is performed by the PRCM being pre-programmed
with the algorithm:-

R(A(3)) = j' x N

Maximum input value
(Eq3.8ﬂ3.2.c)

where maximum input value is magnitude of maximum value,
j'=sign/magnitude equivalent of 2's complement input wvalue
J, N=2L-l ;,where L= number of bits in output word, i.e. 6
bit output. This acts as a gain in the system, while also
allowing the number of bits representing the output to
remain at a manageable size. The error of re-scaling to the
L bit output is therefore minimized and is only dependant
on the output word size. The maximum error is therefore
half a LSB but the signal is maximized to the maximum word

length and hence preserving the signal to quantizing noise

65

ratio. This method also allows for increased flexibility in
the usage of the basic filter design. Since the overall
convolution technique relies on the coefficients of
multiplication i.e. the desired impulse response being
multiplied by the incoming samples, the rate at which this
convolution takes place results in the scaling of the
frequency response obtained from the filter. This design
therefore has the flexibility to change the scaling of the
frequency response by changing the processing rate of the
filter. It is also possible to switch from a 15 coefficient
convolution to a 7 coefficient convolution, by changing the
multiplexing buffer addressing system (coefficient pointer)
and stored coefficient multiplication results in the PROM.
By the use of a larger PROM this can be achieved by a
simple address selection.For a 15 coefficient filter 4 Dbit
wWwill be required for the coefficient pointer and with a 6
bit input word then a total of 10 bits is required for the
multiplication. Hence a minimum memory size of 1Kbytes is
required. The addition of another set of coefficients
led to the choice of Signetics 82S191BN 2Kbyte Bipolar
Proms with access times of 45 nSec enabling the filter to
produce a multiplication and addition result in 61lnS i.e. a

maximum clock frequency of 16.384MHz.

3.8.3.3 Multi-Symbol Rate Receive Filter.

Consider the 16Ksymbol/sec case: the incoming sample
stream is highly over sampled but cannot be reduced in
sample rate due to aliasing constraints imposed by the SAW
filter. One alternative is to change SAW filters. This
can be very expensive for a large number of symbol rates.
A better alternative was proposed and implemented. Digital
bandlimiting filters known as primary filters reduce the
bandwidth of the 4MHz sample stream such that sample rate
reduction can take place as previously described i.e..

Sub-sampling of the output data producing a decimation in

66

time. The lowpass primary filters are cascaded in series to
reduce the bandwidth of the received signal and the
sampling rate wuntil it is at a practical bandwidth and
sample rate to allow the final shaping of the frequency
response to take place. Each primary -filter contains the
same impulse response coefficients, but due to different
sample rates used, produces scaled frequency responses. The
frequency response used for the primary filters was
obtained by a computer optimization trading passband
flatness and stopband attenuation against impulse response
length. The impulse and frequency responses of the primary
filters can be seen in fig 3.8.3.3.a/b . The lower the
data rate the greater the number of primary filters that
must be used to reduce the bandwidth to a manageable level

for pulse shaping.

67

1 ——__-__—'—.
8.9 T

i BIT RATE
8.3 7.36E5 HZ
8.7]
9.5 B
9.5 7
8.4 7
8.3 7
8.2 7
8.1 J
(] l T —= T

B.977
1.95

PRIMARY FILTER IMPULSE RESPONSE

Fig 3.8.3.3.a Impulse Response of Primary Filters

68

ud

BiT RATE
1.82E0 HZ

-39 dB i : T

128 384 648 2% £ 1SE3
236 312 768 1.8283 1.28E3

Khz
PRIMARY FILTER FREQUENCY RESPOHSE

Fig 3.8.3.3.b Frequency Response of Primary Filters

69

3.8.3.4 Shaping Filter

The final filter is designed to equalize the frequency
response of the primary filters and provide the final
shaping to obtain the overall .root 30% Raised Cosine
Filter. The required —frequency response of the shaping
filter can be seen in fig 3.8.3.4.a. To enable this to Dbe
achieved with a target of the frequency sidelobes being
greater than 30 dB down, the impulse response of the final
filter is arranged such that alternate sample coefficients
are set to zero. This enables the long impulse response of
the equalizing filter to be convolved while only using 15
coefficients. The-introduction of the zero terms results in
the frequency response ¢f the filter repeatiné around one
half of the output rate, i.e. twice the symbol rate since
the sample rate is effectively reduced by a factor of 2 but
with a narrow sample width. The spectrum of the input
signal te this filter must therefore be greater than 30 dB
down over this frequency range otherwise the noise power at
the output will increased. To facilitate these zero samples
in the convolution process the input samples are latched
into the multiplex buffers with a 2T delay between latched
samples. This results in the delay line for the final
filter being 31T . samples long. The final output rate is
four times that of the symbol rate and allows the spectrum
to be correctly shaped for conformity to the overall 30%
raised cosine response. The selection of Filters required
for a multi-data rate Receiver from 16 Ksymbol/sec to 256

Ksymbol/sec can be seen in table 3.8.3.4.a

70

- BIT RATE '
\ 2.56E5 H2 !

32 96
64

EQUALIZED FINAL FILTER FREQUENCY RESPONSE

128

1689 224 288 '
192 256 328 '

XHz

Fig 3.8.3.4.a Freguency Response of Shaping Filter

71

ZL

Symbol

16K
32K
64K
128K
256K

* Requires switchable

Filter 1 *
I/P O/P Co
rate rate

4M 2M 7
4aM 1M 15
M 2M 7
4M 1M 15
4M 2M 7

Hz

1M
512K
1M
512K
1M

Filter 2
i1/P O/P Co BW

rate

2M
1M
2M
1M
ZM

rate

512K
256K
512K
512K
1M

15
15
15
15
15

Hz

256K
128K
256K
128K
256K

Filter 3

I/P o/P Co
rate rate
512K 128K 15
256K 128K 15
512K 256K 15
BYPASS

BYPASS

coefficient and scaling proms

BW
Hz

64K
32K
64K

Filter 4
I/P O/P Co BW

rate rate Hz

128K

BYPASS
BYPASS
BYPASS
BYPASS

64K 7 32K

Table 3.8.3.4.a Filters Required for a Multi-Data

Rate

Recelver

from

Ksymbol/sec

18

Ksymbol/sec

to

256

Filter 5

I/P

rate

64K
128K
256K
512K
1M

o/P

rate

64K
128K
256K
512K
1M

co

15
15
15
15
15

3.8.3.5 Frequency Spectra Due to Decimation in Time

Considering the sampled bandpass frequency spectra at the
1.024MHz input, the spectral shape to the components is
defined by the SAW filter and will be distributed across
the frequency spectrum as in fig 3.8.3.5.a. If the required
_signal is 256 Ksymbols/sec, three filtering operations are
required with decimations in time from 4 MHz to 2 MHz to 1
MHz. Care must be taken to remember that the bandpass
spectra repeats around the sampling frequency, and at

multiples of the sampling frequency.

-
—
_—

L, — — —

0.274 1.774 f MHz

1.024 3072 4096 5.120

Fig 3.8.3.5.a sSample Bandpass Frequency Spectrum at
A/D Input.

down converting this signal to baseband by mixing with a

1.024MHz 'Local Oscillator' results in fig 3.8.3.5.b.

73

—_———
I

750 f MHz

DC

Fig 3.8.3.5.b. Down-Converted Spectra

Filtering this signal by the 1st primary filter with 7
active coefficients would produce the frequency spectra of
fig 3.8.3.5.c. However this signal is sub sampled before it
is generated at the output of the filter and hence the
spectra now repeat around 2.048 MHz as in fig 3.8.3.5.4d.
The spectra response of the wanted signal is shown dotted

within the filter response.

Filter respanse

f MHz

Fig 3.8.3.5.c Qutput from Primary Filter Before Sub

Sampling Occurs.

74

f MHz

Fig 3.8.3.5.d Qutput from First Primary Filter After

Sub-sampling.

The signal is the filtered again by a 2nd Primary Filter
with 15 active coefficients precducing the frequency spectra

of fig 3.8.3.5.e before sub sampling at 1 MHz occurs.

Lo e =

0256 I 179¢ 2.304 f MHz

Fig 3.8.3.5.e Output from 2nd Primary Filter Before

Sub-sampling at 1MHz Occurs.

75

carrier as previously discussed in section 3.7.3. This is
all performed by a lock-up table implemented within a PROM.
To enable this to take place as required the PROM must be
programmed with the correct information. This required the

development of a number of algorithms.

3.9.1.1. Raised Cosine Frequency Response and Impulse

Response Generation.

This is obtained by the calculation of sample values from
either the closed form time expression or transformation of
the Frequency expression for the Raised Cosine Filter <13>.
The Time domain response of the Raised Cosine function is

given by :-

x(nt) = Sin nnt/T .Cos nnt/TPR

nnt/T (1—(2ﬁnT/T)2)
(Eg3.9.1.1.a)

where t = 1/fs, T = kt, n = 0 to Nk and N is the number of
symbol periods over which the single sided impulse response

exists.

The Frequency domain response given by:-

1 0< nf' < (1-B)/2T

X(nf') = 1/2(1-sin(n(nf'-1/2T)/B))
(1-B)/2T < nf' < (1+B)/2T

0 nf' > (1+p)/2T

(Eq3.9.1.1.b)

Where f' = 1/Nt , n =0 to N-1 and N is the transform
size. The Root raised cosine is obtained by taking the
square root of the raised cosine frequency response values.
The impulse response can then be obtained by taking the

Inverse Discrete Fourier Transform IDFT of the result.

85

3.9.1.2. A Discrete Fourier Transform and the Inverse

Discrete Fourier Transform

The DFT and IDFT algorithms were obtain from <5> and
modified to save processing time. This saving in processing
time was only Viable since the time response was always
symmetrical, hence the imaginary part of the complex result
is always zero, and that the impulse response was
generally quite short with respect to the total number of
transform samples. Since the remaining samples are all zero
then these contribute nothing by completing the remaining
processing. This reduced the processing time by reducing
the generality of the transforms and enabled a result to be
obtained after say M*N multiplications and additions,where
M << N and M is the required number of output samples and N
is the N point DFT, instead of N*N for the DFT or Nlog2 N
for the FFT,

Hence where

M < log2 N
(Eg3.9.1.2.a)

then this form may be processed quicker than the FFT. This
was not necessarily always the case but the simplicity of
the program also increases the confidence in the final

result. The DFT algorithm therefore became:-

F(iw) = g_%(kT).COS 2mikT/NT
K0 (Egq3.9.1.2.Db)
for 1 = 0 to M-1
and the IDFT becomes
£(iT) = 1 g—;(kW).Cos 2nikT/NT
Tkzo (Eq3.9.1.2.c)

for i= 0 to M-1

86

These programs were developed and integrated with the other
software packages to enable any symmetrical sequence of
real samples to be converted from the time domain to the

frequency domain and vice versa.

3.9.1.3. Convolution of Data Impulse Response.

This is required to take the data impulse stream of 6 data
bits, convert to an input data address, and calculate the
convolved ocutput for all intermediate samples and their

appropriate PROM addresses.

In = SD * h(T)
for n = 0 to N-1, where N= sample rate/symbol rate and
where h(T) is the impulse response of the transmit filter
sampled at the sampling rate i.e. 4.096MHz.
SD is the sequence of impulses at period ts = symbol period
given by the data word D

5 4’ 3 2 1 0
= + 2
D d52 + d42 + d32 + dzz + d12 dO
and d0 = 1sb
(Eg3.9.1.3.a)
such that
5 4 3 1 0
= 1 1 ¥] +] Z + dl z
SD d 52 + d 4Z + 4 3Z + d 2Z d 1 0
(Eq3.9.1.3.b)
and
I a =1
a'. = | '
S a.=0 i=0tos
- * (Eq3.9.1.3.c)

87

with the address location given by:-

A(Drn) = DN + n
(Eq3.9.1.3.d)

The resulting data can be modulated onto a carrier
frequency 1/4 of the output sample rate by the inversion of
alternate pairs of data samples. A pair consist of one P
channel sample and one Q channel sample and forms one half
cycle of the quadrature carrier output waveform. This
enables the P and Q channels to use the same PROM but the
data each channel accesses is offset by one sample period
from the other,i.e. the P channel accesses even addresses

while the Q channel accesses only the odd addresses.

3.9.1.4. Plotting of Eye Diagram, Impulse Response, and

Freguency Response.

Software routines were produced to depict graphical results
for data outputs. This reduced the probability of an
undetected major error in the calculations since all the
sampled data represents analogue processes which through
experience can be evaluated more easily than tables of

numbers.

3.9.2. Recejver Algorithms.

The receiver algorithms and software can capitalise on the
programs already developed for the transmitter in that the
Raised Cosine, DFT/IDFT, and Plot programs can all be

utilised in the receiver designs.

88

3.9.2.1. The Primary Decimation Filters.

The primary filter perform two function:-

a) Bandwidth reduction

b) Output sample rate reduction.

The bandwidth reduction is obtained by choosing a series of
coefficients that produce a sharp roll-off while preserving
the signal passband, linear phase and short impulse
response. This can be obtained by using a successive
approximation technique whereby an initial frequency
response is converted back and forth between its time and
frequency responses reducing undesired effects until all
criteria are met. This technique resulted in an impulse
response as previously seen in fig 3.8.3.3.a and frequency
response in fig 3.8.3.3.b. This impulse response can be
implemented using 15 coefficients but it should be noted
that the frequency response has a small degradation at the
3dB point of the signal. This can be equalized by tailoring
the combine response of the Primary and Shaping filters to
produce the root 30% raised cosine response required. The
frequency response now forms a null at 1/8th of the input
sample rate the output can be sub-sampled down to a minimum

rate of 1/4 the input sample rate.

3.9.2.2. The shaping and Equalization Filters.

From the frequency response of the primary filters, X(W),
and the required frequency response of Root 30% Raised
Cosine Filters, Y(W), it is possible to calculate the
required frequency response of the shaping filter, H(W)
by: -

X(W) (Eq3.9.2.2.a)

89

By the use of the IDFT, the time response and hence the
coefficients can be found. Software routines were developed
for all these manipulations. This results in the frequency
response and time response of the shaping filter being as
in fig 3.9.2.2.a and fig 3.9.2.2.b respectively.

90

10T

LO Reference Imaginary Axis

N
AN

N
~

Recty=PSndic-gh+0Cas(fit>-p ¢
N\

N
\ -

Recelved vector
o sincfetr-g@>

T >0 costico-ip
Vd

>P sincficey=ph

/M PCosdit@

Tronsnitted Reference ,
Real Axis ’

N \ikp(t)-PEos(@(t)-ﬂ)-DSh(@(t g

 Transmitted Reference
Imaginary Axis

Fig 4.1.a Argand Diagram of Received Vecters Against

Local Oscillator Reference.

LO Reference Real Axis

coT

90 «wo=2TTfO
T=1/fo
[)
180° 01111111 000G0000 ° R
10000000 111111
~-90°

-180°

10000000

+180°

000€0000
H1

Fig 4.1.b Linear Representation of Frequency Offset as

Changing Phase with Time.

01111111

n bl o ¢ 1 ' -
= o , 1 1 .o -
[' \ ' 'oE ‘o 3 Kall e
- W | 3 R N !,
' ® M '
1 ' o
t a1 A 1 [
»
"
[i

'

N 1

HpinT)

! |
Brct> | | Data |
{ . Remoyedﬂ
i

et P

_ \
<

Fig 4. 3.a Basic Phase Processor Block Diagram

105

h(t

P

hence

(3 (t) + @(t)-g (t)+ n/4) mod m/2
(#(t) + n/4) mod n/2

A
¢ (t)+p'(t)

(Eq4.3.Db)
The phase estimating lcop 1is now only dependent on the
filter time constant and not the integrator as before. If

this is considered with a noise component Eg4.2.c then

becomes :-
p(t) = (e(t) + ¢d(nT) tgo¥ n/4) mod 2n (Eq4.3.c)
where ¢n = phase noise, with 2zero mean, and bi-variate

. 2
gaussian distribution, and variance o . and Eg4.3.b

becomes: -

@ (t)+p'(t)
(e(t) + g+ n/4) mod n/2 (Eq4.3.4)

2
L)

i.e. phase, @(t)+¢n, is limited to *n/4 but variations.
greater than n/4 re-enter at 0 or n/2. This is represented
as a sawtooth waveform with amplitude 0 to n/2 and
repeating four times for every revolution of the received
phasor. The rotating phasor has therefore been recovered
with phase noise variance superimposed. We wish to obtain

A
the expected value of @& n(t). Hence :-

E[3 L(E)] s E((8(t) + g_ + n/4) mod n/2]
(Eq4.3.e)
= E[®#(t) mod n/2] + E[;an mod m/2]
+ E[n/4 mod wn/2]
and

E[¢n(t)] = 0 therefore E[¢n(t) mod n/4] = 0O

E[& J(£)) = E[2(t)mod n/2] + n/4 (Eq4.3.£)

106

The expected or mean value being defined as:-

—-®

co
E[x]= [xp(x)dx (Eg4.3.9)
where p(x) is the probability of x

A
The expected value of E[® n(t)] is. therefore the mean of
el
the signal ®(t)med n/2 + n/4 . If the function & n(t) is
filtered by a filter with impulse response h(t) the output

becomes: -
y(£) =2 (£)*h(t)

-~ A
where & n(t) = @ (t) + ¢n(t) and ¢n(t) is a sampled

function of a stationary stochastic process

[>4]

jwt

A
y(t) = 1. & nUJ)-HUD)e dw
2n |-o
] [o [® - jut j(Jt)
yi{t) =1 @ n(t)e dt . H(w)e da

0
RELE

1
'_\

y(t) (3 (t)+g_(t)]e I atnw)

2N |-@ |-

107

e

@Y A

now
f w®
JIszsn(t)e et = ()
and [@ .
J e P3¢ = 2ns ()
-
therefore
[jtf)t
y(t) =1 | [2n8()e g (@) JHE e Tdl
2n J—m
[3 [=
y(t) = 1 | 2ns(@er()e) Taw + 1 |g (W)HE)

:3

B

o o |-

as the bandwidth of H((?) tends to 0 then

| eI g
1 l¢n e’ "d&» tends to 0
2n J -@
and © jar
1 ZHGUQ)QH(Lne du) tends to &65(0)H(Q)
2n | -®

Jj -t
Ye dt + |¢n(t)e J tdtIH(t’.J)e

17
It 30

j‘utdr.)

where ®8(0) represents a dirac impulse at DC of height @&

and H(Q0) represents the DC gain function of the filter.

H(0)=1 then the output value of the filter :-

108

If

y(t) = & (Egq4.3.h)

If the bandwidth of H(W) does not tend to =zero then the
value of ® is degraded by the inclusion of the noise term.
If & (t) is not constant then ®(w) has a finite bandwidth
and again the mean value is degraded. Eq 4.3.h shows that
it is possible to recover the value of &(t) from a noise
plus data phase signal. Practically the filter function
does not reduce the bandwidth to zero and hence the random
component of the noise is not reduced to =zero but only
close to it, depending on the bandwidth of the filter. This
manifests itself as a random variation around the expected
mean of the rotating phasor. The wuse of the filter
introduces a time delay Td into the process. This
effectively means that the estimated value of a'n(t) lags
the value of the rotating phasor by Td. If the rotating
phasor's rate of change is slow compared to Td then this
has little effect. However as the rate of changes increases
then the estimated value $ n(t) has an increasing phase
error difference with ®(t) and the estimation will then
become ambiguous as this phase error increase to #*mn/4
radians for QPSK or n/2 for BPSK. This can be overcome by
projecting the phase estimate over the delay time Td. This
requires a knowledge of both the time delay Td and the
estimate of the rate of change of &(t) 1i.e. the slope of
the phase ramp or the frequency offset. The maximum
possible offset frequency range for the mean phase filter

system alone therefore occurs when the phase delay around

109

the phase filter loop is less than n/M :-

¢delay < m/M
2nde < n/M
f < 1
— (Eqa.3.1)
2MTd

4.4. Frequency Offset Calculation

At the output of the I -l(.) function, for a received M'ary
signal plus noise with a frequency offset, it has been
shown that by the subtraction of an estimated phase, data
removal and filtering that it is possible to update that
phase estimate. If an output is taken from the F_l(.)
function in parallel to this, and the data phase changes
are removed from it by the use of a xM mod 2n function, a
M.@n(t) phase cutput can be obtained, where @n(t)= @(t)+¢n.
Against time on a linear scale this can be represented as a
ramp with period T=1/Mfo where fo is the offset frequency,
over a phase change of 0 to 2n radians; 0 and 2n positions
are the same as the function is mod 2rn and can be
represented on a wunit circle. It is required that an
estimate for the rate of change of phase 1is to be found,
d@n(t)/dt.

d@n(t) = @n(t)—én(t—T)

dr T (Egq4.4.a)

Due to the effect of noise on the phasor, @n(t), there is a
probability density distribution about the @(t). One
method of obtaining the most accurate value of d@n(t)/dt is

by the evaluation of the sum of least squares error <29>.

110

m

The least square error slope, m, can be shown to be given
by :-

{n(@(n)-8(1))+ (n-1)(®(n-1)-2(2))+(n-2)(®(n-2)-2(3))+...]

2(n%+(n-1)% +(n-2)% +...1)

(Eq 4.4.b)
n=(N-1)/2 where N=total 0dd number of samples.

Hence by sampling @n(t) at regular points it is possible to
calculate the best slope passing through these points. With
the calculation of this slope value it is now possible to
evaluate a projected value m.X, where m.X is defined in Eq
4.7.3.2.b for the rate of change of &(t) of the delay time
of the mean filter.i.e. Calculation of expected value of
¢(t). By the addition of this projected slope value it is
now possible to compensate for any known constant time
delays within the system and estimate a value of ¢ (t)
which is very «close to that of the incoming rotating
phasor. The final system model becomes that of fig 4.4.a.
The advantage of placing the slope detection outside of the
main loop is that once the slope has been correctly deduced
then this aids the locking of the mean loop. If the slope
detector is within the loop unless the system is locked the
the projected slope can enhance the error in the estimated

value and the system may never acquire lock.

4.4.1 Phase Estimator Recovered Phase Deviation

By analysis of the Final Phase estimator diagram as shown
in Fig 4.4.a it can be shown that the deviation on the

Estimated Carrier Phase can be given by:-

2 . 2 2 2 2
= . . . +
oT 2.(m'.M) On + 20T on
4.4.1.a
Lf Lp (Eq)
where cT = the estimated carrier Phase, on = the phase

111

deviation due to AWGN,m'= frequency offset slope
multiplier, M = M'ary PSK (2 or 4) and Lf and Lp the number
of symbols over which the frequency and Phase means are
averaged over. i.e 16 for Phase coefficient = 15/16 and 128

for Frequency coefficient = 127/128.

This can be shown to be:;-

g “ =g | 2.Mm")°.L. + L
Egq 4.4.1.b
Lf(Lp + 2) (Eq)
For Lp = 16, Lf = 128, m'= 0.547, and M = 4 for QPSK
OT = 0.30n

For BPSK m' = 1.094, M = 2

G = 0.
T 30,

This is the same as for QPSK and is due to m'M being equal
for BPSK and QPSK as expected. For an input signal to noise
of 7 dB Eb/No for BPSK a Phase deviation (lg) is equal to
19.5 degrees. The expected Phase estimator deviation 1is

therefore 5.8 degrees.

4.5. Conversion from Phase Incoherent to a Phase Coherent

System

With the system as described above in 1lock the error
between the estimated value S {(t) and &(t) the rotating
phasor is small. Neglecting the phase ambiguity created by
the data removal process, the resultant value p(t) consists
of the phase data information plus noise. Since the
Amplitude of the phase data sample is known it is now
possible to convert from the present polar representation
to that of a rectangular representation by the use of the
functions:-

112

Phase incoherently received signal has been transformed and
processed to produce: a phase coherent result. The ambiguity
in the absolute phase must be resolved by the ‘'usual
, _ methods, i.e Differential encoding, use of an FEC codec, Or

the transmission of a unique word:

113

:) |

| P = A .Cos p(t)) (Eq4.5.a)
' Q2 A .Sin pi(t) : {E44.5.b)
| : wherei.P''and Q are the data signals as before. Hence the
|

|

P
ACasP(t) ——
—
Soft Decision
0s/P to FEC
k2, g2 A Td Q
B ASINP(EY =

Phose DATA 0/F

Decode

PCt)
P - .
o | Eoo DATA et
FROM + REMOVED
Q —
N
gt
Data
Renavol
Slope
Detect Mean
Phase
Fater
m
Slope | T | Frequency |7 ECf o
Fiter Correction +

Fig 4.4.a Final System Diagram for Phase Estimator

114

4.6. Phase Estimator Mathematics

The operation of the Phase estimator has already been
described, however the mathematics associated with the
filtering operation must be considered. The arithmetic that
is used relate to values constrained within 0 and 2m, i.e.
a circular function, and not to values in the theoretical
range of - ® to + ® as is wusually the case in filtering.
Let us consider the unit circle as in fig 4.6.a, the
diagram is marked with degrees and quadrants and can
represent the path taken by a rotating phasor. Consider a
point Pl on the circle. If we add to Pl another point P2
which also lies on the circle the resultant Pr will also

lie on the circle and can be represented by the formula:-

Pr= Pl + P2 mod 360
(Eq4.6.a)

The function mod 360 confines the result to 1lie on the
circle. Hence the addition of two points can be simply
achieved. To perform a subtraction around the circle
another factor must be known. If we consider points P1 and
P2 again and tried to calculate the difference between
phasors we can obtain two results. One if the difference is
taken along the route P2->90->P1 and another if the route
is taken along P2->180->270->360->P1. Hence the filter must
be able to distinguish which is the preferred route. From
sampling theory it is known that a signal must be sampled
at least at twice its highest frequency for the signal to
be preserved without aliasing. The frequency that
rotational speed around the circle represents is the
inverse of the time taken for one complete revolution and
hence twice this frequency indicates that the circle will
be correctly sampled at points 180 degrees apart. If this
is now the case it can be simply seen that it 1is the

shortest route that produces the correct result.

115

P2+90-P]

=

P2-150~-270-3u0-F1

Fig 4.6.a "Shortest Route" Subtraction Around the Unit

Circle

116

It is necessary to establish the arithmetic rules which
always allows this to be the case. This can be achieved by
the use of Complementary Arithmetic, for example consider
the case of P1=32 degrees and P2 =211 degrees, the
difference between the two points, minimum distance is 179

degrees.

Pr =p2 -P1

(Eq4.6.b)

In complementary arithmetic this could be calculated as

Pr P2+(360-P1) mod 360

(Egq4.6.c)

ie

Pr

211+(360-32) mod 360
211+328 mod 360

539 mod 360

179

1]

il

If P2 is increased to 213 degrees then the result becomes
181 degrees which in complementary form represent -179
degrees, hence it is possible to distinguish the direction
of the minimum distance as well as its magnitude. The
function Pr, eq4.6.b can be simply represented in digital
circuitry by the use of 2's Complement arithmetic and the
modulo function accomplished by allowing the overflow of

adders not to be acknowledged.

117

4.7. Implementation of the Phase Estimator.

The phase estimator requires in its implementation a number

of algorithms which will be considered individually.

4.7.1. The © T(.) Function

The conversion from rectangular to polar coordinates is
achieved by the use of two PROMs. These are pre-programmed
with algorithms to ceonvert the sign magnitude quadrature
signals to a Amplitude and Phasor representation. The r—l
information is a look-up table which conforms to the

algorithm :-

@a(PQ) = F—l(Qn/Pn) + x (Egq4.7.1.a)

where @a(PQ) is the output phase value & for address a(PQ),
P,Q are the sample values for the centre of the symbol
period of the P and Q channels nth sample respectively. The
function x =0,n/4 for BPSK and QPSK respectively,
equivalently rotates the space diagram at the output of the
I'-1 function such that the symbol centre phase angles are
decoded onto the 0,n/2,m,3n/2,2n axis for QPSK, and O,m
axis for BPSK if the transmitter is locked to the receiver.
This allows the xM MOD 2n function to fold all phase errors
around the 0 radian axis. The address conforms to the

algorithm, for the two 6 bit sample values:-

a(PQ) = 64.Pn + QOn P,0=0..63,
(Eg4.7.1.b)

Hence a minimum 12 bit address prom is required for each
data format with a 8 bit output word. This gives an output
accuracy of 1.41 degrees and a error deviation of 0.26

degrees (table 4.7.1.a) . Increasing the output word width

118

has very little effect on the overall performance of the
system since this 1is already approximately 48dB S/Nquant
and the system is limited by the quantization of the input
to the F—l(.) function. However the accuracy, and
- monctonicity of the output signal can be improved by the
use of 7 bit Channel words at the address inputs (as shown

in table 4.7.1.b).

n Bits OQutput Phase error
deviation
Quantization in degrees

.14
.12
.06
.04
.52
.26

W~ W
OO R NN D

Table 4.7.1.a The Effects of Output Quantization on
Phase in Rectangular to Polar Conversion

n Bits Input Phase Error Deviation in degrees
Quantization True Output 8 bit Quantized
output

4 8.94 8.94

5 4.06 4.06

6 3.07 3.08

7 1.25 1.28

8 0.37 0.45

Table 4.7.1.b The Effects of Input Quantization on
Phase Output in Rectangular to Polar Conversion

It can also be seen from the table 4.7.1.a and 4.7.1.b that
the total output phase deviation oqo conforms to the rules
of power wise addition:-

g = 0. + g (Eq47C)

where oiq = phase error deviation due to input quantization

119

and ooq = phase error deviation due to cutput quantization.
Hence an overall 16 kbyte PROM could provide the decoding
of the r'l(.) for both BPSK and QPSK without any major
increase in cost whilst producing a reduction in phase
error variance which is additive to the noise created
variance. The transformation to an amplitude function can
be similarly performed using a PROM 1lcok-up table

pre-programmed with the algorithm:-

A_(PQ) = ¥ (pn® + on?)
(Eg4.7.1.4)

the address a(PQ) being given by Eg4.7.1.b as before.

The 8 bit output words from the F-l(.) PROM are in 2's
Complement form to minimise the hardware for the processor
implementation. The block diagram for the processor now
being as in fig 4.7.1.a, and all values of degrees are
scaled to an 8 bit representation of 256 levels or gquanta,

given by:

X quanta = Deg.m/360
(Egd.7.1.e)

n
where q=2 ,N=8 bits, and deg is in the range 0 to 360
degrees. The output from the P_l(.) PROM, at the data
Symbol rate is fed into the Mean Estimator and the Slope

Estimator and the operations carried out in parallel.

4.7.2. Mean Estimator.

The mean estimate 1is obtained following a number of

sub-processes as described below.

120

P. {sin)
Channel

0. (cos)
Channel

-1
Tan
T eron | g A+ 83

Fhase Predicet

4(nT) +8LO + 4 n{t}

+ 8 N prconk MUX

D.1.L. Set Phasc
Switch Shift Offset

RPSY
%2 dr— - a
MOD 36O P— _l

T

Phare Ervror

x4 ‘4
wop 360 arsk BLO+ S nlt) -
8
>+
ls
*I\ ALQ + ¢ nltt
} MEAN FILTER
Edge
Detactor

S1OPE DETECTOR

Fig 4.7.1l.a

MOD 350°:> _l

X4

#oD 360°

8 shifc
reaister

8 bit

SLOPE FILTER

QPSK

_O\i MULTI
K 8 PROM

BPSK MULTI
4 PROM
L: (:2)

(:d)

i

Block Diagram

Processor Implementation

121

of

Reset

the Digital Phase

= Scrianl Data

Pal
4.7.2.1. Subtraction of Current Phase Estimate & (nT).

The first operation is the subtraction of the current phase
estimate & (nT), from the output of the F—l(.) PROM,
¢'(nT). This is achieved by the use of 2's complement
arithmetic. The subtrahend,g (nT), is first cdmplemented
and then added to @'(nT) in an B8 bit adder formed from 2
off 74F283 1.C.s. The complementation is performed by
inverting the sample word and adding one, the addition
being performed as a 'carry-in' to the adders. The output
is allowed to overflow if required fulfilling the

requirements of the circular function.

4.7.2.2. Data Symbol Removal.

Data is removed by the wuse of the xM mod 2n operation,
where M= 2,4 for BPSK and QPSK respectively. This is simply
carried out for a 2's Complement number by the shifting of
the data log2 M bits to the left, i.e. multiplying by M.
Bits that are shifted into position 9, MSB+1 are lost and
bits shifted into position 0, the LSB are set to zero. The
8 bit output now represents the phase scale (+/-180) x M
degrees so to readjust to the correct scale the result must
be divided by M. This is done by bit shifting the word back
to the right with the MSB's tied to MSB-1 for BPSK and MSB
to MSB-1 and MSB-2 for QPSK. This can be implemented by the
use of a selector IC 74F157 as in fig 4.7.2.2.a

~
4.7.2.3. Re-Addition of & (nT)

This is achieved by the use of 2 off 74F283 adders. The 8
bit words being added together without the use of overflows
to perform the circular function addition. The output is
still an 8 bit word.

122

D7' —o g Y3 5
D6 | A
g Yo b———=
D3 e Y —
D4] g Yo f———>
S
BPSK/QPSK
b3] g I —
De i__g Yo lb— =
D [_.g I
Do T__ A Y0 7
B <
T If S=0 then Yi=Ai
e BPSK
BPSK/QPSK

Fig 4:7.2.2.a Implementation of Data Removal From

Received Phasor

123

4.7.2.4. Mean Filter

The mean filter is required to filter the rotating phasor
without the filtering of the transition created by the MOD
operator. The operation of the filter will be described in
detail later. The filter is of the 1Infinite Impulse
Response Type ,IIR, and consists of an 8 bit input word and
an 8 bit output word.To maintain the accuracy of the
calculation and to allow for the <changing of filter
coefficients the filter addition is carried out with 16
bits resolution. The input word of 8 bits is adjusted to 16
bit addition by the connecting the MSB's together. Shifting
the position of this 8 bit input word relative to the 16
bit feedback word allows the maximum attainable value ,with
reference to the input word, to change by factors of 2.
This therefore allows the coefficient K to be simply
changed by factors of 2 and hence allows the bandwidth of
the filter to be simply changed. The accumulator answer is
stored as a 16 bit word. The storage is performed by 2 off
74F374 latches, strobing the data when it has settled to a
correct value. These latches also provide the one symbol
period time delay of the filter. Enough bits, to be
economically viable while preserving the accuracy of the
filter, are fed back to the coefficient multiplying PROMs
where the input address representation is multiplied by K,
the coefficient. This is at present 11 bits in the mean
filter with 1 bit representing a transform condition to
modify the accumulator history. This bit effectively swaps
the coefficient lookup table to one which has the
accumulator data complemented before the coefficient
multiplication was performed. The use of 2 off 2732 ,4096
byte PROMs is therefore required. Two PROMs are used in
parallel +to obtain a 16 bit output, with one PROM
containing the High byte information and the other the Low
byte information. It is this 16 bit word that is fed back

to the adders.The output is taken from the accumulated

124

value stored on the latches and is adjusted back down to 8
bit representation by dividing this stored value by the
coefficient denominator, m where K = m-1/m. By careful
choice of m and K ° this can be a simple bit shift right
operation, with zero entering the MSB positicns. The 8 bit
output word from this filter is now ready to be compensated

for the frequency offset by the projected Slope Estimate.

4.7.3. Slope Estimation

Slope estimation or frequency offset estimation is

performed by a number of sub processes as described below.

4.7.3.1. Data Removal

Data is removed from the P_l(.) coutput value &' (nT) by the
same principle as in the Mean Filter section 4.7.2.2. The
output is processed in the XM state to increase accuracy

in the estimation process.

4.7.3.2. Slope Calculation.

Although it has been shown that the optimum fit to a series
of points can be achieved on a least squares principle, the
performance benefit of such a scheme is at a considerable
cost in complexity and is therefore questionable. Another
factor for consideration is that each increase in the
accuracy of the 'fit' requires more points, increasing
cost, and complexity. A simpler method is to take a first
case approximation of the least squares approach given in

Egq4.4.b and the calculation reduces to:-

m (nT) = &' (nT)-&'((n-k)T)

k
(Eq4.7.3.2.a)

where n & k are integers. Careful choice of k can precduce a
simple solution,i.e let k= 2L ,L= 0,1,2.. and this is
125

easily implemented in hardware. Filtering of this function
can therefore be used to to 1limit the bandwidth of such a
signal to optimize the estimated value. The filter is
performed by an IIR filter of similar design as before but
since it is the difference between phasor samples that 1is
being taken the transition does no longer exist. The IIR
filter therefore requires no transition detection and 12
bits of the accumulator result can be used to access the
multiplied resultant of the 16 bit output. Shifting of the
input word relative to this 16 bit word also allows
cocefficient changes to be implemented as before. The output
from the accumulator must then be scaled and projected
forward in time to compensate for all time delays

introduced around the mean estimator by :-

5d(nT) = m(nT).Tt

d
k.M
(Eq4.7.3.2.b)
where Ttd =Td+2T+O.5T, the total time delay in Mean
Estimator path; T_. is the delay due to the Mean Estimate

d
filter; 2T is the extra delays in the Mean Estimator due to

the digital 1logic timing constraints in this case; 0.5T
allows calculations of the value to the centre of the next
sample period with k = the number of samples over which the
difference is taken and M compensates for the xM scaling
factor. This is implemented by the use of a scaling PROM
using 12 bit input addresses with the output given by the
representation of the input address value being multiplied
by the factor d&{nT)/dk and adjusted to give an 8 bit
output. The 8 bit output word can now be added to the Mean
Estimate to obtain the compensated phase estimate
& ((n-1)T).

126

4.7.4. Conversion from Poclar to Rectangular Representation.

Having removed the rotating phasor by the subtraction of
the instantaneous phase estimate the resultant signal
represents the phase positions of the data plus a noise
component. Since the Amplitude of this phasor is also known
it is . possible to reconvert back to a rectangular
representation by the wuse of the functions given in
eq4.7.4.a/b. These can be implemented by the use of two

PROMs pre-programmed to form a look-up table containing the

functions:-
Pn(A,®%) = An. Cos %n
(Eq4.7.4.a)
Qn(A,®) = An. Sin @n
(Eq4.7.4.Db)

where Pn(A,®) and On(A,®) are the Amplitude values of the P
and Q data samples at the nth instant given by the address
created by the functions A and &, such that

Address{A,®) = 256.A + @
(Eq4.7.4.c)

This indicates that a 14 bit address line is required and
hence a memory space of 16 Kbytes. This will then give a
soft decision output with 256 levels. This is considerably
more than the accuracy normally required for a soft
decision FEC decoder.It has been shown that there is only a
0.25 dB degradation in performance if only 3 bit (8 level)
quantization of the soft decision output is used compared
to the unquantized output <30>. However,the interface to
such a decoder could possibly be of an analogue nature and
hence conversion form Digital to analogue may be required.
Accuracy can be preserved and at minimal extra cost since 8

bits are readily available from the PROMs .

127

4.8. An IIR Filter Filtering a Circular Function

The circular function representation although being limited
to the range 0-360 degrees by the MOD operator is in fact
representing a continuous linear slope, proportional to the
frequency offset, stretching to infinity . It is only the
need to represent this as a finite number that reduces it
to a saw tooth waveform produced by the MOD operator. It
is required that the rotating phasor is filtered to remove
phase variations due to noise but that the slope is
preserved. If we simply filter this waveform in the
conventional manner then the bandwidth of the filter will
cause the transition point at 0/360 degrees to be modified
from a sharp transition to that of a gentle transition with
the introduction of a smoothing cof the waveform. This would
not occur if the waveform was a continuous slope to
infinity and hence the output waveform from such a filter
function would be incorrect. We must therefore modify the
filter function such that the 0 and 360 degree points are
classed as the same point and hence no smoothing of the
transition occurs, only the reduction in Phase variations
on the slope, caused by noise. To achieve this the
transition edge must be detected whenever it occurs, not
just once per cycle since noise can cause the phasor to
oscillate around any point and hence the transition can
occur many times wunpredictably. Careful attention to the
signal processing carried out here is important otherwise
unnecessary cycle slip events will be introduced. With the
detection of this transition point the history of the slope
must be modified such that it appears that the information
that is contained within the memory of the filter now comes
from a continuous 1line and not the sawtooth ramp. The
requirement to modify the history of the waveform stored by
the filter must be able to be achieved on an instant to
instant basis and the most suitable form of filter for this

type of operation is that of a digital single pole,

128

recursive, Infinite Impulse Response filter or IIR filter.
Other forms are not ruled out but can have enormous
complexity with little apparent benefit. This is as
depicted in fig 4.8.a, the small signal (1 o phase error
<45 deg) transfer function of such a filter being given
by: -

H(Z) = 1
-1
1 - K.Z (Eq 4.8.a)
substituting 27t - e 19T Eq 4.31 becomes : -
2
|H(wW) |® = 1
l—KZ - 2.K.cos T ' (Eq4.8.b)

where (J = angular frequency, T = sample rate of IIR filter
(equal to the modem symbol rate), and K = feedback
coefficient of the form K= (m-1)/m. By varying the value of
the coefficient K it is therefore possible to adjust the
frequency response of the filter as shown in fig 4.8.b, and
can be shown (Appendix C) to have a constant time delay,

Td, for any filter coefficient K of:-

Td = -K.T

1 - K (Eq4.8.c)

Hence with Td constant it is possible to correctly
calculate the projection factor for the slope coefficient.
From Eq4.3.1 ,this therefore gives a maximum mean phase
filter tracking range for QPSK at 256Ksymbols/sec of less
than 1032 Hz. The large signal response due to frequent
transition errors will be quite different from the above
due to the non linear nature of the filter arithmetic.
However this condition only pertains to SNR values i.e. -1
dB, much less than the operating point i.e 2 dB and hence
the small signal transfer function can be regarded as valid

for the range of interest.

129

Vi

> Vo

VoZ™

K VoZ™!

Fig 4.8.a Single Pole IIR Filter

130

4.8.1. Transition Transformation.

To enable the filter to operate without smcothing of the
sawtooth waveform generated by the MOD function it must be
possible to detect the fact that a transition is occurring
and modify the accumulator result in such a manner that
this appears to change the history of the input function
such that no transition appears to occur. Once the
transition has been detected the modification of the
accumulator must take place. Consider the circle of fig
4.8.1.a the inner circle represents the sample values of
the rotating phasor that are permissible and the outer
circle the accumulator values which will tend to a maximum
value of m times the maximum input value for an infinite
series addition. For convenience the transition area is
transferred to the +/- 180 degree point and hence the
maximum value for the accumulator is +/-m x 180, This
accumulator value will also lag the rotating phasor by the
time delay Td. Hence if the phasor was approaching the 180
degree point in a positive direction i.e. anticlockwise.
Then the accumulator value would be lagging behind it but
also approaching m.180 from a positive direction. As the
transition is reached and the phasor becomes negative the
accumulator value, which is positive, must be transformed
to appear to the new sample that the phasor has been
approaching from more negative values but still going

positive. This can be achieved by the transformation:-

~ [_A(nT) - m.360 for 0=< A(nT) =<m.180
A (nT) =
A(nT) + m.360 0 > A(nT) > -m.180
(Egq4.8.1.a)

The algorithm which detects whether the history and input
signal are on opposite sides of a transition boundary is

defined as:-

Ed = (Vo/m)Z * - vi (Eq4.8.1.b)

132

Lag due to
Time delay Td/
of filter

-~ .
T T
TN

_Current accumutator

. / value.

Modified Histor
Value ofter
Trangformation

Y

Accumulator Prase

Trohsformed Value to
Modify History :of

the Accumutaiton

in or IR Filter

Fig 4.8.1.a Transition Detection :A_r-qunq ‘Fhé Upii:

Cirele

133

This can therefore be used to create a 'History Modifier'
which modifies the 'sense' of the filter history dependent

on the Edge detection function Ed such that:-

If EQA > 180 then C=1
if E4d <-180 then C=-1
Else C=0

By the use of this transformation with the detection of the
transition area the it is now possible to low pass filter
the rotating phasor as if the transition did not occur.

Considering the following conditions:-

I/P = Vi in range +/- 180

Multiplication Coefficient K = (m-1/m)
O/P = Vo in range +/- Ma , where Ma = m x Vi
max

The single pole IIR Filter is defined by :-

Vo = Vi +K{(Vo + C.Ma)Z—1 (Eq4.8.1.c)

, -1
Vo = Vi + K.C.Ma 2
1-xz * (Eq4.8.1.d)

where C is the History Modifier.

134

4.8.1.1. Digital Implementation of Transition Detection

The 2's Complement numbering system being used throughout
the phase processor allows the performing of addition and
subtraction conforming to the rules of the circular
function and the implementation of sign magnitude
arithmetic by considering the operation of overflow bits.
The detection circuit is required to detect the transition
created by the MOD operator. To detect this transition it
is only required that the difference is taken between an
input sample value and the appropriately scaled accumulator
value to detect if the sample value has passed the
transition while the accumulator has not. This can be
undertaken on a sign magnitude basis and is defined by
equation eq4.é.l.b. The magnitude, if greater than 180
degrees, suggests that a transition has been reached while
the sign indicates the direction that the phasor has moved,
i.e. from the second quadrant to the third or vice versa.
Noise will corrupt this decision but the probability of a
noise sample causing a change of 180 degrees, without the
transition being present, 1is less than 2.2 e-7 at 3dB
Eb/No. It is the following of these transitions which allow
the filtered phase output in a xM MOD 360 degree format i.e
4 times the carrier phase change/symbol for QPSK, to be
converted to the linear ramp representing the phase
change/symbol of the nominal carrier. Without careful
monitoring of the transitions the phase estimate will cycle
slip in relation to the received carrier phase and produce
errors in the demodulation of the data. This is analogous
to the squaring circuit used for the recovery of a carrier
signal in BPSK. The output is twice the carrier £frequency
and hence must be filtered and divided by 2 before use in
the local oscillator. If this division by 2 is undertaken
in the presence of ncise cycle slips could occur and hence

the recovered data would be in error.

135

LET

Input Plhasor

Tronsition Edge Detection

+ Ed Threshotd| C

Logic

I
|
I
I
et !
I
I
|

Fig 4.8.1.1.a

UMPLEMENTED WITHIN A PROM

Transition Detection Circuit used

Phase Processor

History Modifier

in

4.8.2. Digital Implementation of the IIR Filter.

The TIR filter is implemented using a 16 bit accumulator
with the Time delay being combined into a 16 bit latch to
strobe the data once the result is stable. The output from
the latch is then fed back to a 12 bit PROM which acts as a
coefficient multiplier and also provides the transformation
of the accumulator result. These results are pre-programmed
into a lock-up table with the following memory map, table

4.8.2.a. With the address given by :-

Address = H.2048 + Acczmnl (Eq 4.8.2.a)

where H=0 for C=1 and H=1 for C=-1. The value of 'Multin'’
is the decimal représentation in sign/ magnitude form of
the 2's complement accumulator delayed by 1 symbol pericd
and truncated to an 11 bit address word, Acczmnl, and hence
'2048' is the maximum number of values required. In the Off
line calculation process for the lookup table, this word is
converted from 2's complement to sign magnitude, multiplied
by the coefficient and history modified as required. It is
then reconverted from a sign magnitude representation to a
2's complement representation in a 16 bit wide word, the
two bytes being stored as a High byte and a Low byte answer

for the same input address.

138

[4°1"

G044

litJEPJIJ 3

Eot = 8)

[}
o
ry

i

P11

g

y y
RN
[

ey

‘I
CLUnE -
P e

Il
.
Lot t

e : I R et e
N T il I i it ¥l

Frlease Fooooa ane Liorircaa® T ipe 0 A0
Fig 4.9.4.2.1.a Example of Plotted Phase Deviation due
to AWGN

tdt)

LST

FLF

N

CeLE

IR

R

B T

b vl s

Fig 5.1.l.a Simulated Phase Deviatiofis PDF produced by

z "."_"_
(N
haEa

Erasbdre o Vil

Fotubho = Sl

¥ bbb mahs

AWGN Source

EbNo dB

" _
g, 0 1 & 3 4 35 6 7 & 95 18 1
r ' '

G ey olstat fptste — %

— tosis i N
i LT CC T e

19 Probability of Bit Error BPSK for Phase mean filter coef=13/16

Fig 5.1.2.1l.a Simulated BPSK Phase Estimation

= 0 Hz
Performance for foffset = 0 Hz

158

Eb/to B
/

BN

/ theorgg

tsiat / pter

18

Probability of Bit Errar BPSK for Phase mean filter coef=13/16

Fig

5.1.2.1.b

Simulated BPSK

Phase

Estimation

Performance for f

offset =0 Hz

159

greater. We cannot draw any conclusions as to the required

phase and frequency coefficients.

If we now consider fig 5.1.2.1.c and fig 5.1.2.1.d more can
be inferred as the the nature of the coefficient
requirements. If we consider p31£15 then the frequency
estimate is filtered 1less than the phase estimate and as
such is 1less accurate. Since this frequency estimate is
used to project the mean phase estimate then an inaccuracy
in this calculation will increase the likelihood of an
error in the phase estimate 3 (t) and hence the performance
is degraded by approximately 1.5dB. As the frequency
estimate coefficient is increased then the degradation
becomes less until again the curve lies close to that of
theoretical. This implies that the greater the accuracy of
the frequency estimate the better the performance of the
Phase estimator. If we now consider fig 5.1.2.l1.e the phase
coefficient has been increased to 63/64 and again lower
values of frequency coefficient produce a degradation in
performance. It must also be remembered that as the phase
mean filter coefficient increases, the delay time around
the feedback loop also increases and hence the projection
increases. This results in any small errors in the
frequency estimate being magnified and degrading the
performance. Considering fig 5.1.2.1.f the phase mean
coefficient is now 127/128 and even with a large frequency
filter coefficient the degradation is considerable. The
concluéions that must be drawn from these simulation

results are :-

a) The phase mean filter coefficient must be kept low
to reduce the projection time.
b) The phase mean filter coefficient must not be too

low otherwise the noise performance is impaired.

160

¢) The fréquency filter coefficient must be close
enough to unity such that an accurate frequency
estimate is obtained. When projecting the phase this
estimate must not degrade the overall performance.
However if the frequency filter ccefficient is close
to unity then the acquisition time of the phase
estimator 1ie. the time taken for the frequency
estimate to be valid , increases. It may therefore be
necessary to trade acquisition time for estimator
performance,

d) Near unity frequency filter coefficients may also
reduce the frequency following ability of any rapid

short term frequency variations.

From these conclusions the best choice of phase mean filter
coefficient is 15/16 with a frequency filter coefficient of

127/128. This performance can be seen in Fig 5.1.2.1.Db.

161

B 1 ¢ 3 4 3 6 7 8 9 W U

1974“/ theory | pat1 / p31r127§

G N e e s s

10 Probability of Bit Error BPSK for Phase mean filter cost=3/32

Fig 5.1.2.1.¢ Simulated BPSK Phase Estimator

Performance for foffset = 0 Hz

162

EbNo B

NN

0ot [ey

4 : : ? i
10 Probability of Bit Error BPSK for Phase mean filter coef=31/32

Fig 5.1.2.1.4d Simulated BPS3SK Phase Estimator

= 0 Hz
Performance for foffset = 0 Hz

163

Eb/Mo dB

29123456?891911

— :
164 / theory ; 63731 , p53f137§

o Probability of Bit Error BPSK for Phase nean filter coef=63/64

Fig 5.1.2.1.e Simulated BPSK Phase Estimator

= 0 Hz
Performance for fOffset = 0 Hz

164

8

KN

Eb/No db

e
i ey [t

5 ple7ie3

léo Probability of Bit Error BPSK for Phase mean filter coef=127/128

Fig 5.1.2.1.f Simulated BPSK

Phase

Estimator

Perf =
erformance for fOffset = 0 Hz

165

5.1.2.2. QPSK Performance for varying Coefficients

Initial simulation conditions:-
i) Type = QPSK
ii) Symbol rate = 256Ksymbols/sec
iii) Eb/No 3dB to 7 4B
iv) Number of filter feedback bits = 16
v) Frequency offset = 0 Hz

If we consider figures 5.1.2.2.a through to 5.1.2.2.f then
it can clearly be seen that the same arguments apply for
the QPSK signal as for the BPSK signal. The phase estimator
operates from an Eb/No of 3dB's or greater with the optimum
performance coming from a small phase mean filter
coefficient of 15/16 and a frequency filter coefficient of
127/128.

166

5.1.3. Performance Against Noise with a Frequency Offset.

Initial simulation conditions:-
i) Type = BPSK and QPSK
ii) Symbol rate = 256Ksymbols/sec
iii) Eb/No 3dB to 7 dB
iv) Number of filter feedback bits = 16
v) Frequency offset = 1000 Hz, 2000 Hz, 3000 Hz
vi) Phase Mean filter coefficient 15/16
vii) Frequency filter = 127/128

If we consider fig 5.1.3.a the results for the BPSK
simulation performance can be seen. In this figure the
performance degradation is minimal even with a 3 Khz
frequency offset. If we consider the QPSK case as in fig
5.1.3.b then it can be seen that as the frequency offset
increases then the degradation in performance becomes more
pronounced. This can be explained by an understanding of
the data removal process in both the phase mean and
frequency estimation algorithms. To remove the data from
the rotating phasor the phase is multiplied by 2 mod 360
for BPSK and 4 mod 360 for QPSK. This results in a folding
of the phasor diagram into +/- 90 degrees and +/- 45
degrees respectively. It can easily now be seen that in
the QPSK format an instantaneous phase change from nominal
of only +/- 45 degree would result in an error, whereas for
BPSK an instantaneous change of +/- 90 degrees is required.
With the change in format the accuracy of the projecting
calculation also.effects the overall performance as errors
in the estimated phase can be considered to be noise like
and hence add to the phase deviation produced by the AWGN
in a powerwise manner.The effect of the multiplication
process is therefore to enhance the overall phase variance
of the processed phasor. Hence as the frequency offset
becomes greater and the loop becomes more stressed, then
the probability of this error occurring for a QPSK signal
arises at a higher Eb/No than for a BPSK signal.

173

5.1.4. Cycle $lip Probability

If we examine the predicted phase value) (t) obtained from
the simulation, for varying values of Eb/no, we can see
that the rms phase error deviation for the stimulated
signal has undergone a signal to noise improvement in
relation to the received signal. However, a cycle slip will
occur if the predicted phase crosses a decision boundary
which in the case of QPSK is +/- 45 degrees and +/- 90
degrees for BPSK. The received signal incorporates a phase
error deviation produced by the AWG noise (o) for a given
Es/No. From Eg4.4.1.b it can be seen that the phase
estimate has equal output phase deviation for both BPSK and
QPSK for a given set of coefficients and input noise phase
deviation. However since cycle slips occur for an estimator
error of greater than 45 degrees in QPSK but 90 degrees in
BPSK, then for a given input phase deviation, set by the
input Es/No value, the probability of a cycle slip is less
for BPSK then for QPSK ie. BPSK operates to a Es/No 3 dB
lower than QPSK before cycle slips will occur. By analysis
of the plots produced from the simulation it can be seen
that the bi-variate distribution fits that produced by the
the predicted phase. By using the bi-variate distribution
simulated by the Phase Noise simulation program (Noisel-1
) and the simulated estimated phase sigma value from the
Estimator simulation program (Estl-18) an evaluation of
the probability of the phase estimate crossing a decision
boundary, the probability of a cycle slip, can be
calculated. A table of AWGN Phase deviation can be seen in
Table 5.1.4.a for variation in Eb/No. This is then used in
the evaluation of cycle slip probability for various
frequency offsets from nominal, which increases the stress
in the loop, and varying Eb/No, the results of which can be
seen in Tables 5.1.4.b for BPSK and Table 5.1.4.c for QPSK.

176

Es/No sigma degrees prob>45 prob>90
dB

3 33.6 1.50e-1 2.30e-2
4 29.0 1.08e-1 1l.26e-2
5 26.0 7.22e-2 6.00e-3
6 22.8 4.44e-2 | 2.29%e-3
7 19.4 2.55e-2 7.65e-4
8 17.0 1.2e-2 1.86e-4
9 14.9 4.96e-3 3.45e-5
i0 13.2 1.6e-3 3.3Be-6
11 11.7 3.66e-4 <le-8
12 10.3 6.34e-5 <le-8
13 9.2 7.10e-6 <le-8
14 8.2 2.56e-7 <le-8
15 7.3 <le-8 <le-8
16 6.5 <le-8 <le-8
17 5.7 <le-8 <le-8
18 5.1 <le-8 <le-8
19 4.6 <le-8 <le-8

Table 5.1.4.a Phase Deviation (lg) produced by AWGN at
varying Eb/No.

177

Eb/No Foffeer| Estimator Probability of
dB kfz Phase dev. Cycle Slip/symbol
3 3 15.3 3.4e-5

4 3 10.6 <le-8

5 3 8.0 <le-8

6 3 6.2 <le-8

7 3 4.9 <le-8

3 2 12.0 <3.3e-6

4 2 9.4 <le-8

5 2 7.4 <le-8

6 2 5.7 <le-8

7 2 4.7 <le-8

3 1 9.6 <le-8

4 1 7.6 <le-8

5 1 6.4 <le-8

6 1 5.3 <le-8

7 1 4.6 <le-8

Table 5.1.4.b Cycle Slip Probability Against Eb/No for

BPSK Signals

178

Eb/No F ffset Estimator Probability of
dB ki{z " =° Phase dev. Cycle slip/symbol
3 3 17.8 1l.2e-2

4 3 13.0 1.6e-3

5 3 7.3 <le-8

6 3 4.8 <le-8

7 3 3.7 <le-8

3 2 15.0 4-.9e-3

4 2 10.6 6.3e-5

5 2 6.2 <le-8

6 2 4.6 <le-8

7 2 3.6 <le-8

Table 5.1.4.c Cycle Slip Probability Against Eb/No for
QPSK Signals

179

5.1.5. Quantization Effects due to Feedback Bits in the IIR
Filters.

In the Phase mean and Frequency estimate filters the number
of Bits used in the feedback path of the IIR filter governs
the accuracy of the filter and the minimum residual error
that can occur. For example ,consider a IIR filter that is
impulsed momentarily. This impulse circulates around the
filter, being multiplied by the coefficient and added to
the input. Since the input is now zero and the coefficient
is less than unity (to remain stable) the impulse declines
at a rate set by the coefficient. Due to the finite number
of bits, that are used in the feedback path, a point will
be reached Qhere the coefficient multiplied by the Z—l

. -1 .
value is still equal to the 2 value i.e, :-

-1 -1
| qu | quant = |k. VqZ |quant

(Eg5.1.5.a)

This results in the output value of the filter not being
able to be reduced any further to zero and this is termed
the residual error. This also results in a rounding error
in the coefficient multiplier output which can be analysed
as noise and is often called 'roundoff noise' <8>, We
therefore need to ascertain at what level the number of
bits in the filter path effect the performance of the

system. This was performed for simulation conditions:-

i) Type = BPSK

ii) sSymbol rate = 256Ksymbols/sec

iii) Eb/No 3dB to 7 dB

iv) Number of filter feedback bits = 12,15
v) Frequency offset = 3000 Hz

vi) Phase Mean filter coefficient 15/16

vii) Frequency filter = 127/128

180

The results of this simulation run can be seen in fig
5.1.5.a. It can clearly be seen that a reduction of bits
from 16 bits to 15 bits has a minimal effect of the
performance, with only a reduction to 12 bit causing a
degradation of approximately 1 dB at an Eb/No of 3dB's.
Since the implementation of anything over 8 bits requires
the use of two PROMs to perform the multiplication, 16 bits
are readily available for feeding the addition circuit.
However to create a lookup table with a 16 bit address
requires a Eprom size of 64Kbytes per prom. This is now not
excessive with currently available PROMs and easily
implemented, but due to lack of space on the original
256Ksymbol/sec modem the number of feedback bits was
limited to 12 bits for the frequency filter and 11 bits

for the phase mean.

181

5.2. Experimental Performance of Modem System

The complete modem can be seen in fig 5.2.a and consists of

a 19 inch, 6U Burocard rack comprising of 11 boards.

5.2.1. Modulator

The hardware configuration for the modulator can be seen in
fig 5.2.1.a. This is a single 6U eurocard 220mm in depth.
The modulator takes as its input binary data, at TTL
levels, and outputs a spectrally shaped quadrature signal
on an IF of 1.024MHz. This is folllowed by an up conversion
to 200 MHz where the converted image components are removed
by a Surface Acoustic Wave (SAW) filter before converting
to a standard IF of 70 MHz. It can therefore be seen that
the modulator can be made very compact while still
producing the required performance. The spectral shaping
and up conversion to the first intermediate frequency are
produced by the data stored in the PROM and can hence be
easily changed. Firstly, consider the spectral shaping of a
signal by a 30% raised cosine filter with a baseband
output. By impulsing the modulator with single bits of data
it is possible to view the impulse response of the 30%
raised cosine filters. This can be seen in fig 5.2.1l.Db.
This is shown for a 256 Ksymbol/sec filter. It can be seen
that the response passes through the zero crossing at
symbol period intervals. The impulse response lasts for 6
symbol periods with only a very small ripple outside the
main response. This results in the frequency response as
seen in fig 5.2.1.c. It can be seen that the 6dB point
(i.e. half amplitude) occurs at the half symbol rate point,
i.e 128 KHz, with the first frequency sidelobe
approximately 30dB's down. It is these sidelobes that are
caused by the truncation of the impulse response to 6
symbols. The data eye that this filter will produce can be
seen in fig 5.2.1.d.

183

Due to the symmetrical impulse response, with the zero
crossings all occurring at the symbol period rate, the data
eye is fully open with all transitions passing through two
points. To achieve this with an analogue technique would be
virtually impossible. Now consider the case where the
modulator is producing a root 30% raised cosine response
and being modulated onto a 1.024MHz IF. If the modulator is
impulsed the result will be a carrier component onto which
will be modulated the filter impulse response. Hence if we
observe the output of the modulator we should see a series
of reversals superimposed with a impulse. In the BPSK
format alternate samples,i.e. the quadrature channel
samples, are zero and hence a =zero component Wwill be
observed. This can be seen in fig 5.2.1.e for the impulse
response and the data eye in fig 5.2.1.f. The data eye is
no longer fully open as some transitions do not now pass
through the zero crossing at the symbol periods. However,
since the receiver filters will be matched to this response
then the open eye can be recovered. The spectral response
for BPSK can be seen in fig 5.2.1.g and this conforms to a
root 30% raised cosine signal. The frequency sidelobes are
approximately 30 4B down on the centre frequency with the
half power point i.e. 3dB now occurring at the half symbol
rate points i.e. * 128 KHz. Considering the time and
frequency response for the QPSK signal format the results
are shown in fig 5.2.1.h,i,j. It can clearly be seen that
the time response no longer has a zerc component since the
quadrature channel now conveys data. The effect of this |is
an increase of 3 dBs in the spectral response, due to the
orthoganality of the signals, but with all other spectral
features remaining the same. The spectral response can be

compared to the computer plot in fig 5.2.1.k.

189

3 4R 7 T,
=
! BIT 3MTE
-18 d8 2,56E5 W2
-15 d8 j l
4
2888 1 -
35 48 "]
-38 4B 7 i
-35 48
-0 48
-43 48 j .
-59 4B : T — o T
32 9% 169 24 a2
64 178 192 756 229

-ROOT 387 FREQUEHCY SPECTRR

KHz

308 Raised Cosine

Fig 5.2.1.k Computer Plot of Root
Eilter‘gfeqqucy Response

196

5.2.2. Demodulator

5.2.2.1. Matched Filter Performance

To evaluate the results of the demodulator we will first
evaluate the performance of the quadrature down conversion
and spectral shaping to produce the full 30% roll-off
raised cdsine filter. This is shown for a 256Ksymbol/sec
signalling rate with a signal originated by the modulator
as a root 30% raised cosine on a 1.024MHz IF. This is
received by the demodulator and is down converted and
filtered. The Modulator and demodulator clocks are taken as
synchronous and no timing recovery is required. The Signal
is only passed over the analogue IF interface at 1.024MHz
and as such is not effected by any other analogue
components. We will first consider the overall impulse
response for an impulse in a single channel. The output
response of the matched filter can be seen 1in fig
5.2.2.1.a. It can be seen that the output sémple rate is
now 4 samples /symbol period and the zero crossings take
place at the symbol rate. The Upper trace is the guadrature
channel and it can be seen that no gquadrature channel
interference occurs. The time response for a BPSK data
stream can be seen in fig 5.2.2.1.b; it should be noted
that at the centre of the data eye that the eye takes on
only two major levels with a one quanta variation either
side. This would be very difficult to achieve by the use of
analogue techniques. The QPSK result can be seen in fig
5.2.2.1.c. Now considering the frequency domain in fig
5.2.2.1.4 it can be seen that the spectral shape of the
filter output conforms to that of the 30% raised cosine
function when compared to the computer plot with stop band
frequency components approximately 40dB down. A single
filter board can be seen in fig 5.2.2.1.e. The number of
filters required per channel is dependent on the symbol
rate and hence the system size can bel considerable if a

large range of data rates is required.

197

5.2.2.2. Phase Estimator

The performance of the phase estimator is best considered
by an evaluation of the bits error rate of the overall
system. However, by the use of Digital to Analogue
converters it is possible to monitor the outputs produced
at various points throughout the algorithms. A selection of
outputs from the phase estimator circuitry can be seen in
fig 5.2.2.2 a to c¢. Performance estimations are very
difficult to evaluate in this situation as the performance
relies on the variance of the phase estimate and hence the
variance would have to be measured to give an accurate
performance indication and this could only be achieved by
off line monitoring and post processing, for which the
equipment was not available and hence no attempt is made
at this point. Let us consider the output from the F_l(.)
PROM with a synchronously demodulated signal such that
there is no frequency, phase or symbol timing error. For
the BPSK case the phase output will be two levels
representing 180 degree phase differences. This can be
seen in fig 5.2.2.2.a. The slew from one level to another
is due to the switching time of the Digital to Analogue
Converter (DAC) being used for this output. For the QPSK
signal the output will be four phase levels 90 degrees
apart. The analogue representation can be seen in fig
5.2.2.2.b. However, it can be seen that the 5 levels are
present. This is due to the output being on the
0,90,180,270,360 axis with 0 and just less than 360 degrees
although next to each othér on the unit circle are being
represented by 00 and FF on the digital output which is at
the two extremes of the DAC ranges. If a carrier signal of
approximately 1.024MHz is fed into the demodulator, with no
modulating data, it is possible for the phase estimator to
lock onto this carrier and display the phase varying
ocutput. This can be seen in fig 5.2.2.2.c. the bottom trace
being the output from the P‘l(.) PROM and the upper trace

being the phase estimate

203

from the phase estiﬁator algorithm. In this case the Phase
estimator has locked with zero phase error but this could
be at 0, 180 degrees for BPSK or 0, 90, 180, 270, for QPSK.
The period of the sawtooth waveform is the time required
for the phase to change by 360 degrees and hence the slope
of the waveform i.e. the rate of change of phase, is the
frequency offset from the effective system 'local
oscillator'. The Phase Estimator hardware can be seen in
fig 5.2.2.2.4.

207

5.3 Trials Results

Satellite trials where carried out on the digital modem
system on the 22-23 May 1986 at Goonhilly Downs, Cornwall,
Uk with the help and collaboration of British Telecomm
International. Due to the limitation of the number of bits
" in the frequency filter causing performance degradations
the test was limited to using only the phase mean estimate.
This could only be achieved by keeping the frequency ocffset
from nominal at the digital IF to a minimum. The Test setup
fo the signal path can be seen in fig 5.3.a. The satellite
used was Intelsat 5A flight 11 at 27.5 degrees West. The
signal could also be routed via a 'Test Translator' for
tests when the satellite was unavailable and for more
controlled experiments. The signal was provided to the
up-conversion equipment at a 70 Mhz IF frequency and obtain
from the down conversion equipment at a 70 MHZ IF. Signal
to noise ratio was obtained by removing the modulating
signal from the transmitter and measuring the carrier power
using an HP 8566A spectrum analyser. The noise power was
also calculated in a 1 Hz bandwidth by the HP 8566A by
measuring the noise power away from the carrier.
Corroborating measurements where also made by the use of a
power Meter and a Calibrated Filter. This wvalue of Carrier
to Noise in lﬁz was then converted to Eb/No by the

Formula: -

Eb/No = C/No - 1010910 data rate dB
(Eg5.3a)

209

5.3.1 Experiments Carried Qut Over a Simulated Satellite
Link

To enable the performance of the modem to be evaluated, and
not the degradations caused by the satellite or up/down
link equipment, tests where performed taking measurements
at various stages 1in the system to ascertain the optimum
method for the satellite trials tests. Considering fié
5.3.1.b and ¢ a series of test were performed for BPSK and
QPSK using the test translator to simulate the satellite

link. Measurements where taken with the system in:-

i) A back to back mode via the 70 MHz IF interface.
ii) Back to Back via the Test translator.

ii) Back to back via the test translator and the HPA
at 8dB backoff and 1 dB backoff.

If we first consider BPSK it can be seen in fig 5.3.1.Db,
that the modem via the 70MHZ interface has a degradation
from theoretical of 0.7 dB over the range of Eb/No from 0
dB to 11 dB. This degradation _is within the system as the
degradation becomes less at low Eb/No. This occurs as the
system becomes of less significance in relation to the
additive received noise and hence the effect of the

internal system noise is reduced at low SNR.

Introduction of the test translator results in a further
degradation of 0.1 dB ,fig 5.3.1.c and the HPA with 8dB
backoff a further 0.2 dB, fig 5.3.1.d. With the HPA at 1 dB
backoff the degradation from theoretical is now 1.8dB, fig
5.3.1.e. This is due to the satellite TWT (test Translator)
now becoming non-linear and introducing AM-PM and PM-PM
products, ie any amplitude modulation present on the signal
is converted to phase modulation and any phase modulation

is enhanced.

211

This is therefore no 1longer a measure of the modem
performance but is now dependant on the Non-linearity of
the TWT. This area is therefore to be avoided for modem
evaluation tests but this may not be the case 1in the
operational environment. The results from the QPSK tests
where similar, however the degradation from theoretical is
now between 0.8dB and 1dB over the range 3 4B to 12dB with
greater degradation for the effects of the test translator
and the HPA. This increased degradation is due to the
reduced decision boundary which now occurs at +/- 45
degrees from the transmitted phase position compared with
+/- 90 degrees for BPSK and is hence more susceptible to
phase noise . This also results in cycle slips occurring at
a much higher value than in BPSK and hence the lowest
measured Eb/No is 3 dB's greater than for BPSK as discussed
previously in section 5.1.4 and confirms the results of the
simulation. Considering fig 5.3.1.f and g the relative
degradation for each stage in the transmission and
reception sequence, over a simulated satellite link, can be
seen for BPSK and QPSK respectively. The worst case
degradation between BPSK and QPSK can be found for the 70
MHz interface, ie the Modem degradation from fig 5.3.1.b
and is 0.2 dB at 11.5 dB Eb/No on top of a 0.7 dB

degradation from theoretical.

216

5.3.2 Experiments Qver an QOperational Satellite Link

To investigate the effect of noise over a satellite link
the signal to noise ratio i.e. Eb/No must be varied. This

can be achieved by 2 methods.

i) Varying the transmitted power level and keeping the
satellite system noise floor constant.
ii) Keeping the the transmitted power constant and

increasing the additive noise.

Method 1 has the advantage of simplicity but this relies
on the linearity of the satellite HPA and that the HPA does
not appreocach saturation. The results from this method are
shown in fig 5.3.2.a for BPSK and QPSK. It can be seen that
the degradation from theoretical is no longer as constant
as in the test translator results although the degradations

has not increased by a great amount in either case.

Method 2 is slightly more difficult than method 1 as it
required a White Gaussian Noise source to be added to the
received signal before demodulation. The Noise source was
provided by BTI and added to the the received signal by
the use of a passive combiner. The satellite power was
maintained at 20 dB backoff to reduce the effects of
saturation.The results for BPSK and QPSK can be seen in fig
5.3.2.b. It can be seen that the BPSK results are similar
to those obtained at 70 MHz with a degradation from
theoretical of 0.8 4B across the same Eb/No range. The
QPSK result has a sight divergence from theoretical with a
maximum degradation of 1.2 dB. The degradation is again
thought to be phase noise related. Comparisons of the
satellite degradation against 70 MHz IF can be seen in fig

5.3.2.c and d for BPSK and QPSK respectively.

219

6. Conclusions

The previous sections have documented the investigation
into the possibility of a digital Modulator and Demodulator
for any signal that can be modelled using the quadrature
model. In section 2 it was suggestéd that this model could
be used as the basis for an implementation in digital
hardware and resulted in the design of a Multi-data rate
Phase Shift keying Modem capable of producing a BPSK and
QPSK modulated signal. buring this investigation an
algorithm was hypothesized for the use of a Phase estimator
to predict the received signal carrier phase instead of
using a phase lock loop éystem which produced major
acquisition and stability problems due to the effects of
the long time delays used in the digital filters. This
Phase estimator algorithm was first simulated by the use of
an IBM AT computer with the algorithm implemented in
Pascal. The results from this simulation indicated the need
for a frequency and Phase correction algorithm and that
the algorithm would operate over a maximum of 4KHZ
acquisition range at the symbol rate of 256 Ksymbol/sec. A
reduction in symbol rate will also reduce the

acquisition range on a pro-rata basis. The accuracy of the
filters used in the algorithm where alsc accessed with an
indication that a minimum feed-back path of 15 bits was
required to implement the filters without any major

degradation in the algorithm implementation.

It has also been shown that the degradation becomes less
when the frequency estimate is averaged over more .samples.
Acquisition time could therefore be traded against
performance since the greater the averaging time the

greater the accuracy of the frequency estimate.

224

The Phase estimator then has a minimum acquisition time

of:-

Min acqg. time= 1 + 1
symbols
l—Kp 1- Kf
where Kx is the feedback coefficient of the phase filter

and the frequency filter.

The effects of AWGN on cycle slip performance against
frequency offset from nominal, for varying Eb/No also
suggest that the more stressed the loop becomes due to
frequency offset the higher the probability of cycle slip.
This is due to the effects of calculating a phase mean
estimate of a variable phase and noise component and then
projecting this value forward in time to compensate for the
frequency offset or rate of Change of Phase per symbol.
This projection becomes more prone to error as the
frequency offset increases. It is therefore desirable to
try te minimise the frequency offset by some other method

before phase tracking is used.

The digital implementation of the modem as also been shown
to produce filter implementations of a very high accuracy
for filter responses that are non causal and hence produce
minimal degradation in received data eyes. The filters
where implemented as Root 30% Raised Cosine Filters at both
the transmitter and receiver to produce an overall channel
response of a 30% Raised Cosine Filter. The complete
digital implementation was evaluated in trials at British
Telecomm International Earth Station At Goonhilly,
Cornwall, over a satellite link and was shown to have a

degradation from theoretical of 0.7dB for BPSK and 0.8 dBs

225

for QPSK with a cycle slip performance threshold of 0 dB
Eb/No for BPSK and 3 dB for QPSK .The results of the
simulation and experiments of the digital multi-data rate
modem demonstrate that the use of digital techniques in the
modulation and demodulation of a signal is possible and
that high accuracy and small degradations from theoretical
can be achieved. Although the implementation resulted in a
large number of circuit boards and components the use of
digital signal processing has some major advantages over

that of analogue systems.

Firstly the individual logic elements may be combined by
the use of Very large Scale Integration (VLSI) to reduce
the number and size of logic elements used. This will also

reduce the production costs.

Secondly, by using digital implementations once the correct
system design is achieved , any reproductions of that
system can be produced with the minimum of set wup as
opposed to analogue circuits which require individually

setting up.

Thirdly the multi-data rate system has been designed to
enable a degree of flexibility to be established when using
a satellite communication system. The modem can be
configured to allow for the use of a single data rate or of
a series of data rates dependent on power and availability
of transponder bandwidth or as a customer desires. This can
be achieved by the addition of digital filter boards as
required but with no other major changes to the system. One
anomaly however is that for the lower the data rate
required the greater the complexity of the receiver. Fig
6.a shows the complete data modem as configured for 256

Ksymbols/sec.

226

6.1. Further Investigations

As with all new concepts this dissertation has only
scratched the surface of a large area for investigation.
Although the digital modem systém experimentally developed
was successful in that it operated close to theory and for
low Eb/No values the system design may not have been
optimum from a cost point of view. With the Phase estimator
the algerithm used was found to be very successful but no
attempt has been made to find the optimum algorithm or the
optimum hardware solution for this algorithm. However a few
suggestions for areas of further investigation into the

algorithms design concepts can be discussed.

6.1.1. Digital Implementation

The investigation has centred around the development of
algorithms to implement a Multi-data rate BPSK/QPSK modem
for data rates in the range l6Ksymbol/sec to 256
Ksymbols/sec. This range can be extended with present day
technology to a symbol rate of 4.096 Msymbols/sec by an
increase in the parallelism used in the Modulator and
demodulator. The limiting factor is the speed in which
multiplications and additions can be performed. This 1is
limited in this design by the access times of the bipolar
proms used in the digital demodulator filters. The current
design uses a serial multiply and addition for all
coefficients. This could be reduced to each prom performing
a single multiplication with additions pipelined. This
could result in a throughput rate of 33MHz. Another
improvement in throughput rate can be achieved by only
calculating the sample at the centre of the data eye for
the final output of the matched filters and hence the
throughput rate becomes equal to the symbol rate with the
sampling rate equal to four times the symbol rate. This is
approaching the state of the art in digital TTL compatible

logic at the present time.

228

6.1.2. Phase Estimator

Further investigations can be performed to discover the
optimum solution for the phase filter. It is presently
implemented as a single pole IIR filter with History
modification. Could the filter be implemented as an
integrator, or as a FIR filter and would the performance

increase warrant any extra complexity required?

The current arrangement of the phase estimator has a
certain amount of feedback in the system design. This
results in the wusual manifestations of acquisition and
cycle slip. i.e. If the system 1looses lock due tc noise
then the resultant cycle slip and acquisition time are
dependant on the lcop bandwidth. This can be reduced to
dependance on the phase filter only by the implementation
of a feed forward system as shown in fig 6.1.2.a. In this
implementation the frequency estimate is wused to correct
the phase to within the range of the phase estimator before
the phase is filtered and subtracted from the phase plus
data signal. This algorithm relies on the use of circular
filters and time delays to match the phase estimator output
with the received carrier phase. Another system that could
be implemented even with the long time delays of the
multi-data rate filters requires the use of a frequency
locked loop so that a frequency estimation signal is
derived from the F-l(.) PROM after data removal and
differentiating and fed back to the ' local oscillator' to
correct for any frequency error. The time constant of the
loop can be adjusted by changing the multiplying
coefficient Ki to achieve a stable system. This method is
shown in fig 6.1.2.b. Since the phase estimator is still
used to follow phase and coherently demodulate the signal
the frequency estimate only has to appear stable enough

such that a phase noise degradation is not superimposed on

229

. ! ! . - N - oo ey : l w o~ N Wiy [r . - r _' a
. | . | [oo R l_-l-‘l) "] "‘;_.l \: ,qr” . bt :'r'n, \\
1 1 I ! . . | ’ - -) | - o o i !
1 1 .rj N . 1 1
, the incoming signal. ‘Hence the delay around the loop cam be . = |
' much larger‘ thah is 'possible with a Phase locked loop:)

system:.

TET

-

=
ACos{l:
Aeng

Q'

N ;)

|
% —

=1

dota

| Remoyve [

Phase !
Futer.-

—_— le':‘;i —_— ¥

Fig 6.1.2.a Feed Forward Phase Estimatér Algorithm

(A %4

BANDPASS
INPUT

3
Q
>

+
>

|2

00

[

dato
Rénove

90°

2
il

SYMBOL CLOCK KI

P T

Fig 6.1.2.b Ffequencz Feedback Loop with Feed-Forward

Phase Processing, an Optimum Solution?

Acknowledgements

I would like to thank the following people, who have helped

in the research and presentation of this thesis.

Telemetrix Research
Ltd.,

Roger Allen

David Sauders - Telemetrix Research
Ltd.,

John Everett - British National Space

' Centre.

Dr Robert Stevens - British National Space
Centre:

British Telecomm International Goonhilly

Downs, Cornwall.

Prof. Martin Tomlinson - Plymouth Polytechnic.

Prof. Des Mapps - Plymouth Pclytechnic.

and especially

Paul Smithson - Plymouth Polytechnic.

233

Bibliography

<1> Nyquist,H.," Certain Topics in Telegraph Transmission
Theory", Trans AIEE, Vol 47, pp 617-644 , Feb 1928.

<2> Shannon, C.E.," A Mathematical Theory of Communication ",
Bell Syst. Tech. J., Vol 27, July 1948.

<3> Bhargava,V.K., D.Haccoun, R.Matyas, P.Nuspl, Digital
Communications By Satellite, Wiley 1981,

<4> Various, IEEE J. on Selected Areas in Communications, Vol
SAC-1, No 1, Jan 1983.

<5> Stremler, F.G.,Introduction to Communication Systems, Addison
Wesly Jan 1977,

<6> Couch II, L.W, Digital and Analogue Communication Systems,
Macmillan 1983.

<7> Lucky,R.W., J.Salz and E.J. Weldon, Principles of Data

Communications, McGraw-Hill, 1968.

<8> Rabiner,L.R and B.Gold, Theory and Application of Digital

Signal Processing, Prentice-Hall, 1975.
<9> Feher,K., Digital Communications,Prentce-Hall, 1981

<10> Lindsey,W.C. and M.K.Simon, Telecommunications Systems

Engineering, Prentice-Hall, 1973

<11> Imbeaux, J.C.," Performance of the Delay-Line Multiplier
Circuit for Clock and Carrier Synchronization in Digital
Satellite Communications ", IEEE J. on Selected Areas of

Communications, Vol SAC-1, No 1, Jan 1983.

234

<12> Gardener,F.M., PhaseLock Techniques, Wiley,1979.
<13> Proakis,J.G.,Digital Communications, McGraw-Hill, 1983.

<14> Palmer, L.C., S.A.Rhodes, and S.H.Lebowitz, "Synchronization
of QPSK Transmission via Communications Satellites ", IEEE Trans

on Comms,Vol Com-28, No 8, Aug 1980.

<15> Modestino,J.W. and K.R.Matis," Interactive Simulation of
Digital Communicatins Systems" IEEE J.Selected Areas cof Comms,
Vol.SAC-2, Jan 1984.

<16> Palmer,L.C. "Computer Modelling and Simulation of
Communications Satellite Channels '", IEEE J. Selected Areas of

Comms, Vol. SAC-2, Jan 198B4.

<17> Braun W.R. and T.M.McKenzie, " Class: A Comprehensive
Satellite Link Simulation Package ", IEEE J. Selected Areas of
Comms,Vol. SAC-2, Jan 1984.

<18> Jeruchim, M.C., " Techniques for Estimating the Bit Error
Rate in the Simulation of Digital Communication Systems', IEEE J.

Selected Areas of Comms,Vol. SAC-2, Jan 1984.

<19> Tomlinson, M. and J.R.Bramwell," Data Communication Method

and Apparatus ", British Patent Application, Jun 1984

<20> Golomb,S.W, et al ," Digital Communications with Space

Applications",Prentice-Hall, 1964.

<21> Tomlinson,M. and Bramwell, J.R." Real Time Digital Signal

Processing in Satellite Modems", Proc. CommsB86 1986, IEE,London.

235

<22> Gardner,F.M.,"Carrier and Clock Synchronization for TDMA
Digital Communications", European Space Agency Tech. Memo ESA
TM-169(ESTEC), pp232-233 Dec 1976.

<23> stiffler,J.J." Theory of Synchronous Communications",
Prentice -Hall, 1971.

<24> Costas ,J.p."Synchronous Communications", Proc IRE vol 44,
ppl713-1718 Dec 1956.

<25> Develet, J.A." The Infuence of Time Delay on Second -Order
Phase-Lock Loop Acquisition Range" ,Proc.Int Telemetering Conf .,
vol 1, sept 23-27, 1963 ,pp432-437,1EE,London.

<26> Viterbi,A.J and Viterbi, A.M " Non Linear Estimation of PSK-
Modulated Carrier Phase with Application to Burst Digital
Transmission'", IEEE Trans on Information Theory, Vol IT-29, no 4,
July 1983.

<27> McVerry, F. "Performance of a Fast Carrier Recovery Scheme
for Burst-Format DQPSK transmission over Satellite Channels', 6th

Conference on Digital Communications, 1985

<28> Jaffe,R. and Rechtin,E. ," Design and Performance of
Phase-lock Circuits Capable of Near Optium Performance Over a
Wide range of Input Signal and Noise Levels", IRE Trans Inform.
Theory, Vol IT-1,pp66-76, Mar 1955.

<29> Meyer,S.L., "Data Analysis for Scientists and Engineers"”
p74, McGraw-Hill.

<30> Heller,J.A. and Jacobs,I.M.,"Viterbi Decoding for Satellite
ans Space Communications", IEEE Trans. on Communications
Technology, Vol COM-19, pp835-848, Oct 71.

236

Ell

et . -

<31> "pro: Pascal Users: Manual", version iid 1.2, May 1984.

Prospéro Software.

237

Proceeding of Communication 86 Conference, NEC, Birmingham, UK.

May 1986, IEE Press

,London.

REAL TIME DIGITAL SIGNAL PROCESSING IN SBATELLITE MODEMS.

M.Tomlinson and J.R.Bramwell

Department of Communications Engineering, Plymouth Polytechnic.

Abstract
This paper contains a brief overview of the
angairng research carried oaut at Plymouth
Polytechnic and Telemetrix PLC, sponsored
by the Department of Trade and Industry,
inta the use of digital signal processing
(DSP) to pravide accurate modelling of the
thannel transmit and receive filters, up
and down conversion, carrier and symbol
timing recovery. Due to the digital nature
of. the modem, changes in configuration can
.easily be performed by micro-processor
resulting in a User friendly Multi-Data
rate modem operating over a range of
lékbite/sec to 4.096Mbits/sec. This,
coupled with virtually zero 1SI and optimal
bandwidth shaping filters, produces a high
performance system capable aof operating
close to theoretical predictions.

Introductiogn.

The use& of the quadrature model in the
field of communications has enabled many
forms of modulation to be developed, one of
which is Ouadrature Fhase Shift Keying,
CFSK. By the wuse of this model it is
passible to convey twice ac much data over
a bandwidth limited channel but at the same
symbal rate as Binary Phase Shift Keying.
However with the Quadrature model the
bandwidth and shape of the modulated
signal 1s determined by the baseband
filtering, 1f any. 14 Non-Return to Zerao
(NRZ) pulses are used i.e. no baseband
filtering the bandwidth required would ba
considerable. Bandlimiting these pulses
with little care results in tha
1intraoductian of Inter-Symbol Interference
(IS1) and hente a degradation of the Bit
Error Rate results.

However, Nyquist <1> proposed that ISI
could be reduced by the use of a filter
that confarms Lo a vkew symmetric transfer
function, One such family that confarms to
this specification is that of the Raised

Cosine function. This enables the 3dB
bandwidth to be contained to half the
symbol rate frequency ,fo. Furthermore

there will be no spectral components beyond

the frequency fo+fx, where #x is a
percentage of fo. This results in the
specification of a filter as a percentage

rall-off factor, where 100% leads ta
spectral companents out to the symbol rate,
2f0, and 0% has no spectral component above
{0 and is often termed a Brick Wall filter
tfig 1). The penalty for this raduction in
bandwidth is an increase in oscillatory
tails of the impulse response. This results
in a nged for more accurate symbol timing
recovery for zerao 181, and the need far
non-causal filters. Frequently only 100%
Rased Casine filters are used due to the
difficulty in producing symmetrical impulse
responses accurately enough to givae zero
151 from analogue components. It has been
proposed by the authors <7> that DSP can be
used to i1ncrease performance in modem
systems. This paper shows that the use of

238

——

DSP in a real time envird;;Eﬁt is a
realistic proposal and can achieve any
reasonable form of filter function that may
be required to produce close to zero 151 at
the receiver while confining tha bandwidth,
An added advantage of the digital approach
is the easy switching of bandwidths
enabling a Multi-Data Rate modem to be
produced.

The Mpdulator, A Brief Overview.

Consider a previously scrambled,hence
pseudo-random data stream being presented
to a modulator where by it will be
converted into @a QPSK signal format and
transmitted to up-conversion circuitry on a
1.024MHz First IF carrier. The conventional
approach would be as describe by Feher
<2>,Cauch <3>,Proakis <4> and many mare,
with spectral shaping either taking place
in the baseband channels ar at the carrier
frequency using analogue methods. The basic
diagram can be seen in f1g 2, The incoming
data sequence is multiplexed inty two data
sequence at half the incaming data rate.
These two parallel data sequences or NRZ
pulses can then be filtered for efficient
spectral shaping before modulating onto a
1F carrier in quadrature.

Digital Transmit Filters,

The roll-off factar for the overall channd
spectrum is chosen to be 0.3 or 30%Z. This
figure is a compromise between channel
bandwidth requirements and Jitter
tolerances an thae symbol racovery circuitry
giving rise to IS1. Higher roll-off factors
i.e. S0%, produce wider bandwidths but a
higher jitter can be tolerated before 151
degrades the data eye. It was decided to
implement Root 304% Raised Cosine Spectral
responses in the both the transmitter and

receiver to conform both toa Nyquist
Criteria and Match Filter criteria as
proposed by Lucky, Salz, and Weldon, <S>.In

the transmitter the inceming
are of the NRI format and hence only
ascribe to two values +1 and -1.The
convalution process 1s therefore limited to
<é&: [}

data pulses

y(kT)= hi{nT).x ¢ (k=PI T)

Az ~e0
(1)

where »(iT)= +1 or -1. In a digital system
the impulse respanse of the filter must be
truncated to allow for an economical
implementation. The cansaguence of this is
an increase in stopband side]lobe power and
hence a compromise must be reached. In this
case the truncation was chosen to be at +/-
3 symbol periods and results in a stopband
30 dB down at the 30%L point. Hence the
convalution can be approximated by:

Ly
y(kT)= g hR(nT).x{(k-n)T)

Az o @2

hence only a limited number of coefficient
multiplications and additions need -to take
place, but there is still anather saving
that can be made. Consider the data
sequence not as a series of NRZ pulses but
as a series of pseudo-random impulses with
a flat normalized spectral response.The
output epectrum from any filter is
therefore defined by the filter spectrum
only and hence its impulse respanse. The
digital filter now consist of the
convolution of two impulse responses. This
can be considered as in fig 3 for a filter
impulse response which is only significant
over & symbol periods. In the centre af the
sequence the tails from all the filter
responses converge. Far this region of
interest it is possible to define the
intermediate results for any input sequence
of & eymbols i.e. calculate the convaolution
results and store them in memory. 1f the
sampling rate of the filter impulse
raespaonse has been correctly chosen with a 6
symbal input word it is possible to store
all combinations of results in a PROM. Due
to the symmetry between the two Quadrature
channels 1t is also possible to use the
same information for both channels, if not
the same PROM.If the sample clock is
therefaore set at 4.096MHz then a 1&Kbyte
Prom would be required for a laKsymbol /sec
symbol rate.By the use of extra PROMS or
intermediate sampling mere data rates could
easily be accommodated.

Digital Up-conversign ta First IF,
Cansider a seaquance of 4.09&MHz samples
output from the above digital filter PROM
fig 4a and we require a carrier frequency
of 1.,02amHz. The sampled In-Phase carrier
wmavefaorm can be consider to be as in fig
4b. 1f these two wavefarms are multiplied
togaether the result is as in fig 4¢c i.e. a
4,094MHz sample stream with alternate
samples equal to zero.If we consider
another sample stream multiplied by the
quadrature carrier ta fig 4b the resultant
is as in fig 4d and it can he clearly seen
thnat again a 4.094MHz sample stream results
with alternate samples equal to zero
however for corraspanding positions in the

In-phase channel whaen the guadrature
channel i1s zero the In-phase is non-zero
and vice versa. The output quadrature

carriar IF therefore consists of the
In-phase and quadrature channels added
together which in this implementation is
simply a multiplexing of the two channels.
By correct choice of the phase refarence
between the two channels the carrier can be
implemented within the PROM and the
camplete modulator circuit becomes that of
f1ig S. For a BPSK gignal format the
1ncoming data is only diverted to the
In-phase channel and the quadrature channel
output is set to zero. The use of other
data rates can be accommadated by scaling
the clocking frequencies appropriately and
hence the IF output frequency.

Multi-rate Digital Demodulator,

From the previous discussions of the
modul ator it is readily apparent that the
damodul atar may be based on the same
concept i.e. the digital demodulatar
consist of an input signal on a minimum
carrier frequency of 1.024MHz. T7This is
digitally converted to baseband in
quadrature and then digitally filtered and
sample rate reduced to enable Root 30%
raised cosine filters to be implemented
practically while covering a span of symbol
rate from 14Ksymbol s/sec to -

239

930

256Ksymbols/sec. The output sample rate from
these filters is four times the symbol
rate. From these four samples per symbol
ane of the samples must be extracted as the
peak sample instant corresponding to :zero
1S! (when in E€aajunclion with a matched
transmitter filter) and the center of the
data eya. Carrier phase reference with the
1MHz IF must alsa be achieved to enable
data to be decoded from the received Phase
and Quadrature samples. To enable both of
these processes to occur the symbol timing
must be first recovered and then a carrier
reference can be established.

igital Filter Implementation.
The Root 307 Raised Cosine Filter that is
required for the receiver must be linear
phase to minimize group delay variatians
and must hence be of a Finite Impulse
Response Design (FIR}. The format used in
the design filtars was as shawn in fig &
and can be termed a Direct Form FIR Filter
with Serial Addition. The convolution
technique relies on the coefficients of
multiplication i.e. the desired impulse
rasponsg being multiplied by the incoming
samples, the rate at which this convolution
takes place results in the scaling of the
{requency response obtained $rom the
filter. It is therefore possible to change
the scaling of the Jrequency response by
changing the processing rate of the filter.

acti 1 Imple tation.
The initial bandlimiting of the received
signal ta prevent aliasing prior to
digitizing, is obtained by the use of a SAW
filter for phase linearity,producing
minimal group delay variations. The
incaming signal, in the range S92-8BMHZ, is
first up-converted to 200MHz, the frequency
being mainly dependent on the availablity
and cost of SAW filters and then
bandlimited to a 700 KHz bandwidth. The
bandlimited signal is then dowmn converted
to @ 1.024MHz minimum carriar freguency
before being digitally sampled. This
sampl ing takes place at a 4.094MHz rate to
fulfil sampling theorem requirements and
allow synchronization with the symbal
clock. In practice it was found that two or
three times the carrier frequency did not
fulfil requirements as the spectrum will
gxtend to 1.8 MHz with the particular ShAW
filter used. This sampled signal is then
digital mixed to baseband before
filtering. This reduces the requirement for
closely phase esgualized low pass filters

before the sampling process can take place.
The method used for down-conversion to
baseband is obtained by a similar argument
as in the modulator. Assume that the
incoming signal is on a carrier locked to a

quartar of the sampling frequency, down
converting with a ‘local aoscillator’
synchronous with the sampling +frequency

produces alternate zero value sanples in
the Phase and quadrature baseband channels.
This can be modelled by the multiplication
of sample pairs by 1.024MHz local
oscillator i.e. +1 and -1 which is
implemented by complementing gamples.
Demultiplexing of these samples into the
phase and quadrature channels, with the
addition of a zerc value sample in the
opposite channel while ane channel is being
enabled, results in two baseband 4MHz
sample streams. The addition of the
alternate zero term into a channel when the
data sample is diverted into the other
channel allows sampling to occur at half

rate than would normally be required far
the 4 MHz sample rates per channel. It is
necessary to maintain the sample rate in
each channel ta enable the switching of
data rates over the given range and reduces
the effect of the sinc function imposed on
the frequency spectrum by the rectangular
sample pulses.

Multi-Symbol Ratg FRececive Filter.

Caonsider the t4Ksymbol/sec case: the
incaming sample stream is highly over
sampled but canngt be reduced in sample
rate due ta aliasing constraints imposed by
the SAW filter. Dne alternative is to
change SAW filters. This can be very
expensive for a large number af symbol
rates. Another alternative was propaosed and
implemented. The digital filters reduce the
bandwidth of the 4MHz sample stream such
that sample rate reduction can take
place.i.e.. Sub-sampling of the output
data. This is the approach taken which
results in the use of switchable Primary

filters. Each one containing the same
impulse response coefficients but produce
different bandwidth scaling due to the

reduced input sample rates and hence
processing rate. The lower the data rate
the greater the number of primary filters
that must be used to reduce the bandwidth
to a managable level for pulse shaping,The
final filter is designed to equalize the
frequency response of the primary filters
and provide the final shaping to obtain the
overall root 307 Raised Cosine Filter. The
final output rate is four times that aof the
symbal rate to allaow a recognizable data
eye to be monitared.

Carrier Reference Acquisition and Data
Decoding.

The receiver is required to make an optimum
deci1sion on the received signal at the
centre of the data impulse only and hence
as lang as the decimation in time keeps the
correct samples no degradation occurs.
Accurate symbol timing is required and can
be obtained from the phase and quadrature
channel ar from the input carrier I[IF
signal. However this system requires that
the sampling at the A/D input must be
synchronous with the symbol timing signal
and the Iinput carrier frequency if an
cptimum decision is to be achieved.One
method to allow both the symbal timing and
the carrier frequency to be synchronizad
relies on phase locking the carrier with
the system clocks synchronized to the
symbol timing component. Another method
using a digital appraach allows the
incoming carrier frequancy to be close to
that of the digital system down-conversion
frequency but not Jlocked to it in any
form.If the frequency offset is not to
great this signal can be processed by the
{filters to produce minimal degradation in
the impulse response . If the incoming
carriser freguency is not synchronous then
quadrature channel interference results.
Due to the symmetry of the incoming signal
the channel autputs become:-

P channel

rit)= P .Cos(®(nT)-8) - Q.Sin{d(nT)-B)
(3
Q channel

rit)= P.Sind(nT}—B) + R.Cos(d(nT)-8)
{4)

240

91

where 8{(nT} 1s the varying phase component
due to the frequency offset of the carrier,
8 is the initial phase offset of the system
clocks with P and 0O representing the
channel information. If this symmetry did

not exist then the cross channel components
would be required to raesolve the channel
signals. From the final sub-sampled filter
outputs the phase and gQuadrature samples
are presented as addresses to the Decode
PROM which is pre-programmed to translate
them to a phase angle representation by a
Tan =1 (.) functian extended over a full
360 degrees. This cutput can be viewed as a
rotating phasar, 9°'{(nT) = B(nT)-B , ar as a
slope, representing the rate of change of
phase modulo 340 degrees, superimposed with
the transmitted data information. From this
information it is now possible to remove
thae data from the phasar and by the use of
an Estimator algorithm the rotating phasor
paosition can be estimated for the next
incoming phasor plus data sample, fig 7.
After subtraction of the phase estimate the
data is removad to give an error value.
Addition of the phase estimate #p(nT}) to
this error valug leaves the instantaneous
phase offset fraom the presumed reference
phase plus any phase noise. The Phase noise
is of a hi-variate Gaussian distribution
produced by the effect of the quadrature
noise components fig B. This signal is now
filtered to reduce the noise variance on
the signal leaving the instantaneous mean
phase positian. If the rate of change of
phase is too great the the mean phase lags
the incoming phase due to the delays
introduced by the filter. This eventually
results in the mean phase cutput aliasing,
not tracking the i1ncoming phase rotation
and the system falls aut of lock. This can
be extended by incorporating inta the
estimator frequency information that can
also be extracted from the Tan-1 PROM and
projecting the instantaneous mean phase
pasition to compensate for the high rate of
change of phase i.e. frequency offset. I¥
the amplitude information of the Jfilter
outputs is also extracted it is how
possible to remove the rotating phase
vector from the data phase information.This
canverts from a phasor amplitude
representation back to a complex
representation, and regenerate the carrect
P and @ channel data information with
®'(nT} = 0,90,180, 270 degrees, the usual 4
phase ambiguity for OPSK. This data is then
available far soft decision decoding. A
hard decision data symbol! can alsa be
extracted from the estimator circuit but
due to the 4 phase ambiguity a set of B8
'decoding maps are required (for @PSK) to
abtain the correct demodul ated data output.
The error rate performance of this system
has been tested in a back to back mode fig
?, mithout cycle slipping, over an
operating frequency range of 12 KHz. (Cycle
slipping is very important for data madems
operating with FEC at law Eb/No values).
Due to the digital nature of this system
bandwidths can be easily adjusted to
produce any trade-offs that are required to
optimize the system for a particular
operating peoint. Another advantage of this
Estimator is that 1t acquires “lock’ within
a very short time period of 32 symbol
periads or less depending on the filtering
requirements used. This system has been
tested by sinulation, back to back testing
and by satellite trials.

Conglusions

The use af DSP in the satellite Data modem
area can be used to :mprove the accuracy
with which filtars can be constructed to
enable the use of zero 181 filter
functions. ln addition to the reduction of
bandwidth many more advantages and savings
can be found an:

1) System setup, lack of Filter

equalization by hand or machine, once

designed accurate reproduction can be

simply achieved.

2) The use of VLSI can

modem costs.

3) Due to the use of Digital

quadrature up and dawn conversion and

a synchronous system both quadrature

channels can be easily matched and

phase quadrature maintained across

the passband.

4) The complete system can maintain

linear phase.

5) Data rates can be made switchable

for the range lékbits/sec ta

25akbits/sec, for both QPSK and BPSK.

A versiaon that can operate from S0

bit/sec up to 4.09&4Mbits/sec OPSK is

under development.These versions are

being implemented wusing similar

techniques but requires more parallel

processing to take place at the

higher rates.
Along with the advantages produced by the
digital filtering the use of Phase
estimation techniques to allow following aof
any phase reference errors between the
carrier and the system local oscillatar
produces an increase in frequency range
over which the system can operate compared
with a more conventional approach. This
4lso reduces the acquisition time of the
system and is also flexible enough to allow
optimum operating canditions to be set .
It is envisaged that the modem will be
micro-pracessor cantrolled to increase user
friendliness and provide flexibility. VLSI
custaom chips will allow manufacturing
problems to be epased, and costs reduced.

reduce the

Acknowledgements.

The authors would like
Smi thsan, Plymouth Polytechnic, for his
considarable efforts in the design and
canstruction of this modem.Thanks are also
due to Roger Allan and Dave Saunders of
Telemetrix Research for their support and
co-operation {n this joint project. The
nork has been guided and supported by John
Evaerett of RSRE and the authors acknowledge
his considerable contribution to the
project.

heferences.

<1> Nyquist,H.," Certain Topics in
Telegraph Transmission Theory ", Trans
AIEE, Vol 47, pp &617-644 ,Feb 1928,

<2> Feher K., Digital
Communications,Prentice-Hall,1981

<3> Couch I1I, L.W, Digital and Analogue
Communication Systems, Macmillan 1983.

<4> Proakis,).G.,pPigital Communications,
McGraw—Hill, 1983,

<35> Lucky,R.W,, J.5alz
Principles of Data
MsGraw-Hill, 1968.

Z&> Rabiner ,L.R ana B.Gold,
Application of Digital Signal
Prentice-Hall, 1975,

<7> Tamlinson,M and Bramwell,J.R. “Data
Cammunications method and Apparatus",
British Patent Application No. 84203B80.

to thank Paul

and E.J. Wkeldon,
Cammunications,

Theory and
Procaessing,

241

22

X

L H

Fig 1 Frequency Response Shaping for
Raised Cosine Filters.

L Y2

re L s Hzf

Rtulsies O/F

A

Fig 2 basic QPSK Modul ator for NRZ
pulse Shaping

I S O
|

gion ot
ararest

Fig 3 Impul se Response Summatian

i
G T

—_—

I ” e | ¢ mmy
(RSN
iy s

I'j
| L

————

Fig 4 Frequency Conversion of Impulse Stream

Saltisl el AnmlLest
-) W Carried

Ny &«

to Allow Channel Multiplexing

93

§ B By Beterer

...h.....—'—{ilfl'l'l'l*I*I'I'I'I'H'l'l'

——y = -u::>n—"'__>...___, mn
1o] |]

—= {]

Preees c1t
(LR +

Fig S Digital oPSK/BPSK Modulator with —_
Root Raised Cosine Filtering o

e

e e = 8,

alsti ¢
—tLrTR CregeT ™
o oarsaToH
TIOAL | omn
. T RS - Fig & Basic Digital Receive Filter
ey - + — —————— Architecture - .- —_—
- mar o
'n—u - +
. -
I
SiCITML l".
- grene] it
v mew ~—
I B N \

M RN

Fig 7 Simplified Phase Estimatar - \ \/"'""""'
Architecture A N\

Titvgs *xprp Wipe Provangiity Bistrituiton For 9 40 €B/M5 51 Ten-) Prom OUtent |
Sir0 of praae 1109 calcuistion = 1.5 degrees .
&

Fites ebed.ant Sior (O3 rhast veror devintions s 1700 dewers ’ \\ AW
K3 I i

. / !
(R [\ i [\ \

* HA \
b Fiy ! \
v] | T
S : iy t \ \
b2] 1] ; T ‘ T Y .
i I b, il P \VEY
ki | I ™ i I H

.] tr o ' ! \
LR T i I

1 ! L ! s 1 ! I]

B ' | . o 1 i | - !
I H i v . ' | ‘
: l I Ll ‘l ' t I
— . _ " H | h ' o
] | i | ! 1 H T ‘ l i
jE—— i L v . ' v a [n L

IR) g-rm‘.a o R PG

— H tyy e

Fig 9 Pit Error rate Curve for BPFSH
-- at 256Kbit/sec

Fig 8 Phase Noise Probability Distribution

$rom Tan-1 Prom

242

Appendix A

Extract from specification of Multi-Data rate Modem
produced by the DTI (later to become the British National
Space Centre) June 1984.

Electrical

Modulation BPSK and QPSK (capability for
Absolute and Differential
Decoding).

Data Rates 32Kbits/sec to 512Kbits/sec
QPSK. '
16Kbits/sec to 256Kbits/sec
BPSK.

Mode of operation Continuous.

Channel Spacing 1.41 x data rate

Channel Filter Response The overall transmit and

receive filter should be that
of a 30% Raised Ccsine Filter
amplitude equalized for
reasonably flat grocup delay.
The Transmit channel filters
shall be such as to produce a
transmit energy mask as shown
in figure A.1l: the receive
channel filter shall have the
characteristics as shown in
figure A.2. Group delay per
symbol period for the
received filter shall be as

shown in figure A.3.

Cycle skipping Performance

Bit Timing Integrity

Back to Back Performance

Transmit Frequency

Receive Frequency

Frequency uncertainty

Acquisition Time

Lock Acquisition

When operating at 6.6 dB
Eb/No the observed cycle slip
rate shall not exceed 1 slip

per minute.

Bit Error Rate due to clock
slip events must be
negligible compared to BER

due to received noise.

Eb/No for a given BER to be
within 1.3 dB of Theoretical
assuming perfect Nyguist

-3
filtering (for BER 10

to 10'10).

In the Range 52 to 88 MHz.
In the Range 52 to 88 MHz
+ 25 KHz

< lsec

Must acquire lock for Eb/No
>4 dB.

/

’

. ‘TENUATION
{dB)
0 VA0 NI P HILILS (o5, o)
Ty TR
’ (03,0577
2 (.65, 8.5)
104
Ll
20+
30 4
a (lo. 30)
40 e T 7 —7 T - — : _ .
3] 01 02 o3 0.4 Qs 05 0.7 0.8 o9 To

Normalised Frequency FREQUENCY
SYMSO0IL RATE

The lilter specirum is symelrical about the centre [requency

Fig A.1 Transmit Filter Mask.

VA

AFENUATION

,./ {dB)
// 0 - (0.5, D) .
'/////////’1411 Py
(0.3,0.5)
¢, (0.5, 8.5)
10~
L]
204
307 (1o, 30)
40— T 1 T T] v T . T |
0 03 c2 03 04 as 0s 0.7 c.8 0.9 1.0
Normalised Frequency FREQUENCY
SYH3IOL RATE

The liltsr specirum is symelrical aboutl the cenire f[requency

Fig A.2 Received Filter Mask.

Normalised
Group delay

GROUP DELAY
— -
SYMBOL PERIOD
0.71]
’ 0.6

Sis R Prar b I rrr iy SIS AR AAIILIIEL AL 2 st b

0.4+ (0.5.0.45} % » ,,/””Wg {0.5,0.45)
{0825,0.375!) VI 10.25,0.375)

0.3 {01,0.33) (0.1,0.33)

i O 1 1 O 0 v T 1 0 ' 1
07 06 05 04 ©3 02 ©O1 O 0f 02 03 04 C5 06 07
Normalised Frecuency FREQUENCY)
: SYMBOL RATE,

Fig A.3 Received Filter Group Delay per Symbol Period

Appendix B

The Truncation of Root 30% Raised Cosine Impulse Response

and it Effect in the Frequency Domain

In the design of the Raised Cosine filters a number of
factors can be traded to obtain the most elegant and
convenient solution. These factors include the choice of
roll-off factor, truncation length for the impulse
response, size of filters required in terms of delay
sections or Proms etc. Careful choice is required. For
example in the transmitter the 1length of the impulse
response is constrained by the size and access times and
economics of available Proms. The initial specification
called for Root 30% raised cosine filters at the
transmitter and receiver with a 304B stopband at 1.4 times
the symbol rate hence the final filter arrangement must
conform to these conditions. For the required number of
data rates to be implemented with a 4.096MHz sampling
frequency the size of prom required is 16Kbytes. This can
be economically implemented in 8Kbyte 2764 EPROMs but this
constrains the impulse response length to 6 symbol periods
(double sided), but is this enough to fulfil the design

specification?

If an analysis is undertaken on a root 30% Raised Cosine
impulse response it can be seen in fig B.1 that if the
response is reduced to 2 symbol periods (single sided) the
the frequency response obtained will have sidelobes to a
level of -26dB. If the truncation is 3 symbol periods the
sidelobe level is -29dB and if 4 symbol period the level is
-32dB. The 3 symbol period truncation was chosen to be
close match to the desired response for the research model

without incurring the extra cost of the 4 symbol system.

4845

58138

BIT RATE
2,96E51HZ.

T S

A=

81T RATE
25555 H2

Fig B.1 Variations 4in sidelobe Performance due to

R 4R T*" e
5d8)
' |) §I7 RATE
-16 d8 2,543 42
I .
-15 48 y
19 o8
1
=23 dB. 4 L
i 4
-3 dp .
i v
-35 48 P
! AR
-48 dB] Lo
4548 " A
584 — - -
32 9% 158 224 w8
54 128 192 756 328
. . . Wz
ROOT 38% FRERUENCY SPECTRR WITH TTHE RESPOHSE 47
gdp T T
-5d8]
: N 8IT RATE
-18 48 7 : 2,565, HZ
-15 48
_ -1 I‘..
-20 48 |
-25 48 ‘:'
-38 48 i ‘f'“ |
3548 Pro T,
] . .‘I ': .’ A
-48 d8 'i{ 1 Lo
] Yo '
-45 4B 7] ; L :
L o iy ;
58 g T T . : —
32 % 168 4 248
64 irg 192 256 328
¥hz

ROOT 38 FREQUENCY SPECTRA WITH TRUNCATION AT LAST ZERD 3T

Fig B.1 Variations in Sidelobe Performance due to
Impulse Response Truncation.

Appendix [of

Infinite Impulse Response Single Pole Filter

The single pole filter can be defined by the equation:-

v =v +K.vV .2t
) in 0

(eq C.1)

where Vo = output ,Vin = input, K= feedback coefficient,

is the Z transform.

Therefore
v = 1
0
-1
v, 1 -XK.2 (eq C.2)
in
now Z_l = ed:IWT
and eq C.2 becomes
\Y% = 1
0
Vin 1 - K.Cos WwT + jK.5in wT
(eq C.3)
Hence the magnitude response is given by:-
v |* - 1
o
v | 1 -2.K.Cos Wl + K
(eq C.4)
and the phase difference output to input elag
-l'— —
0 = tan | - K.Sin wT |
lag
L_ 1- K.Cos WT _J
(eg C.5)

if w << 1/T , wT<<1l, Sin WwT tends to wT, and Cos wT
to 1

z

is given by:-

tends

Therefore

8 = tan | - K.wT |
lag
and tan " (.) tends to (.)
hence
elag tends to [_— K.wT _1
e
(eq C.7)
- = Tj h filte
now elag w.Td where Td Time delay throug i r

and hence approximates to:

Yo [er]
L +-x]

(eq C.8)
hence for a coefficient of K= 15/16

Td = -15.7

Appendix D

This appendix contains program listings for the programs
used in the phase estimator simulation. The programs were
written in Pascal and were compiled wusing The Propero

Pascal Compilef.

Program 1 Phase Deviation Due to AWGN

This program generates guadrature noise components for a
normalised sigma deviation. The resulting noise PDF is of a
bi-variate distribution and is stored as a Histogram with a
selected phase cell width. The resulting histogram can be
used to calculate the probability of a particular phase
error due to AWGN occuring and hence the error function
integrations. The following pages contain the program
listing for Noisel-l.pas with appropriate comments. Due to
the naming conventions used, whereby a meaningfull name is
used for a function or procedure, the use of flow charts

and line by line commenting is considered superfluous.

NOISEl-1.pas

phase_noise statistics(input,output);
{ calculate statistical distribution and probabilities of

phase errors}

label 10,20;

const pi=3.141592653589793;
maxloc=360;
vers=1.12;
type historarray=array[-maxloc..maxloc] of
longreal;

intarray=array[-maxloc..maxloc] of integer;

real=longreal;

choice=0..5;

var ebno,noisestep,stepsize:real;

quit:string;

function antilog(x:real):real;

{calculates le }

begin
antilog:= exp(x*2.302585093);{ 2.3025= 1ln 10}

end;

function prob(x,propc:real):real;
{gaussian probability of x, scale for unit area by propc]

var y:real;

begin
y:= -1l*sqr(x)/2; {sigmasquared=1}
prob:=propc*exp(y)/sqrt(2*pi);
end;

procedure quitread(var quit:string);

[sets quit to yes to leave menu area}
begin
quit:='yes'

end;

procedure proportionalConstant(var propc,stepsize,

noisestep:real);
{calculates constant such that area under calculated curve = 1}

var X,prob,y,sum:real;

n,i:integer;

begin
n:=round(5/noisestep);
sum:=0;
for i:= -n to n do
begin
X:=i*noisestep;
y:= (-1*sqr(x))/2; {sigmasquared =1}
prob:= exp(y)/sqgrt(2*pi);
sum: =prob+sum;
end;
propc:= 1/sum;
writeln('propc =',propc);

end;

procedure EboverNo(var rmsEbNo,ebno:real);

{ requests Eb/No ratio in dBs and converts to rms}

var X:real;
begin
x:= ebno/10;
x:=antilog(x);
X:=x*2;(split into inphase and quadrature components
keeping No =1}
rmsEbNo:=sqrt(x);
end;

procedure clearhist(var thetahist:historarray;

var cellcount:intarray);

{clears historgram memory area ready for start of calculation}

var h:integer;

begin
for h:=-maxloc to maxloc do
begin
thetahist[h]:=0;
cellcount[h]:=0;
end;
énd;
procedure add_to_hist(etheta:longreal;probtheta:longreal;
stepsize:real;var thetahist:historarray;
var cellcount:intarray;

var listends:integer);

{calculates historgram for radian stepsize of probability of

phase deviation}

var number:integer;

newprob,oldprob: longreal;

begin
number:= round(etheta/stepsize});
cellcount[number]:=cellcount [numberj+1;

{increment cell count of cell number

oldprob:= thetahist([number];

newprob:= oldprob+probtheta;
thetahist [number]:=newprob;
if abs(number)>listends then listends:=number;

end;

procedure thetaerror(var thetahist:historarray;
var cellcount:intarray; rmsEbNo,propc,
stepsize,noisestep:real;

var listends:integer);

{calculate array of noise samples for all values of noise

variations}

begin

var n,i, j,location:integer;
Xi,xj,piby2,pmag,gmag,quadshift,
probsum, probtheta:real;

etheta:longreal;

n:= round(sqr{2*(5/noisestep)+1));
writeln('Calculating ',n:7,' noise samples');
piby2:=pi/2;

n:=round(5/noisestep);

probsum:=0;

location:=0;

for i:=-n to n do

begin
Xi:= i*noisestep;
for j:= -n to n do
begin

Xxj:=j*noisestep;

pmaqg:=rmsEbNo+ xi;

gmag:= Xj;

if pmag<>0 then

begin
etheta:=arctan(gmag/pmag);
if (pmag<0) and (gmag>0) then

etheta:=pi+etheta;

if (pmag<0) and (gmag=0) then etheta:

if (pmag<0) and (gmag<0) then

etheta:=-pi+etheta;

end

else

begin
if gmag=0 then etheta:=0;
if gmag>0 then etheta:=piby2;
if gmag<0 then etheta:= -piby2;

end;

=pi;

probtheta:= prob(i*noisestep,propc)
* prob(j*noisestep,propc);
add_to_hist(etheta,probtheta,stepsize,
thetahist,cellcount,listends);
probsum: =probsum+probtheta;
location:=location+1;
end;
end;
writeln('probsum= ', probsum:10:5);
listends:=listends-1;
end;
procedure averagephasevariance(thetahist:historarray,
listends:integer;

var sigma:real;stepsize:real);

{ calculates average phase variance from sum of

p(i)*error”2}

var h:integer;
etheta:real;

sum: longreal;

begin
sum:=0;
for h:= -listends to listends do
begin
etheta:= h*stepsize;
sum:= thetahist{h]*sgr(etheta)+sum;
end;
sigma:= sqrt(sum)*180/pi;
writeln('RMS phase deviation = ',sigma:10:6,'

degrees'); end;

procedure savedisc(thetahist:historarray;
cellcount:intarray;

listends:integer;

sigma,stepsize:real});

{ write data to disc as a text file}

label 10;

var outfilel:text;
h:integer;
sum: real;

name:string;

begin
writeln{'entered save to disc');
sum:=0;
10:writeln('Name of file (max 8 characters.dat)');
readln(name);
if length(name)>12 then goto 10;
stepsize:=stepsize*180/pi; {convert to degrees}
assign(outfilel,name);
rewrite(outfilel);
writeln(outfilel,listends,stepsize,sigma);
for h:= -listends to listends do
begin
sum:=sum+thetahist[h];
writeln{outfilel,thetahist[h]);
end;
writeln('sum of Probabilities under curve = ',
sum:6:4);

end;

procedure write to_disc(thetahist:historarray;
cellcount:intarray;
listends:integer;
sigma,stepsize:real);

{ question of writing to disc statistical phasenocise data}

label 10,20;

var ch:char;

begin
10 : writeln('Save phase statistics to disc? (y/n)
readln(ch);
case ch of
" 'y':savedisc(thetahist,cellcount, listends,
sigma,stepsize);
'Y':savedisc(thetahist,cellcount,listends,
sigma,stepsize);
'n':goto 20;
'N':goto 20;
otherwise goto 10;
end;
20:end;

procedure erfc(listends:integer;stepsize:real;

thetahist:historarray);

{produces complimentary error function i.e probability

error being greater than x}

var h:integer;

sum,etheta, x,xdeg:real;

begin
stepsize:=stepsize*pi/180;{converts to rads}
writeln('Enter prob(phase error >x degrees)');
readln({xdeqg);
x:=xdeg*pi/180;
sum:=0; {calculates complimentary errror function}
for h:= -listends to listends do
begin
etheta:= h*stepsize;

if abs(etheta)>=x then sum:= sum+thetahist[h];

")

of

{probability of etheta>x radians}
end;
writeln('probability of phase error >',6xdeg:4:2,'
degs = ',sum:15:12);

end;

procedure setnoisepower(var ebno:real);

begin
write('Noise power required in dB ');
readln(ebno};

end;

procedure setnoisestep(var noisestep:real);

label 10;

begin
10: write('Noisestep size required (include leading zeros)
in sigma ');
readln(noisestep);
if (noisestep<0) or (noisestep>5) then goto 10;

end;

procedure sethiststep(var stepsize:real);

label 10;

begin
10: write('Cell width stepsize in degrees (min =0.5 deg)
')
readln(stepsize);
if stepsize<0.5 then goto 10;
if stepsize>10 then
writeln('Stepsize too large for accuracy');

end;

prccedure computencisestat(ebno,noisesteps,stepsize:real;
var listends:integer;
var thetahist:historarray);

{calculates Phase noise statistics in this procedure}

var X,propc,sigma,probability,rmsEbNo:real;
h,n:integer;

cellcount:intarray;

begin

stepsize:= stepsize*pi/180;{ converts to radians}

proportionalConstant (propc,stepsize,noisestep);

EboverNo(rmsEbNo, ebno) ;

c¢learhist{thetahist,cellcount);

thetaerror(thetahist,cellcount, rmsEbNo,propc,stepsize,

noisestep,listends);

averagephasevariance(thetahist,listends,sigma,
stepsize);

write to disc(thetahist,cellcount,listends,sigma,
stepsize);

end;

procedure computegaussian(ebno,stepsize:real;
var listends:integer;
var thetahist:historarray);

{Caluculates Gaussian historgram in this procedure}

label 10,20,30;

var scale,sum,y,sigma,
rmsEbNo,maxangle,etheta:real;

h:integer;

ch:char;
cellcount:intarray; {dummy}
begin
sum:=1;
clearhist(thetahist,cellcount);
‘EboverNo(rmsEbNo,ebno);
write('Enter value of sigma in degrees for which plot
" required ? ');
readln(sigma); 30: write('Comparison plot ? (y/n) ');
readln(ch);
case ch of
Y
'¥Y': goto 20;
'N':goto 10;
'n':goto 10;

goto 20;

otherwise goto 30;
end;
10: write('Enter max phase angle to which plot is required
?2'Y);
readln(maxangle);
listends:=round({maxangle/stepsize);
20: scale:=1/sum;
sum:; =0;
for h:=-listends to listends do
begin
etheta:=h*stepsize/sigma;
y:=(-1l*sgr(etheta))/2;
thetahist[h]:=scale* 0.3989422*exp(Yy);
sum: =sum+thetahist[h];
end;
if (sum>1.01) or (sum<0.99) then goto 20;
write_to disc(thetahist,cellcount,listends,sigma,
stepsize);
end;

procedure plot;

{cails Plot program }

begin
chain('plotstat');

end;

procedure menu(var ebno,noisestep,stepsize:real;
var quit:string);

{sets up menu for desired set of statistics}

label 10,20;
var value:choice;
listends:integer;

thetahist:historarray;
begin

listends:=0;
10: writeln;

.] .
wrlteln(Tk ok ok koK ok ok ok ok ok ok k ok ok kb ok Kk ok ok ok do ek Kk ok Kk ke k ke ok ok)’

writeln(' PHASE NOISE PROBABILITY ")

writeln(version ',vers:6:2);

writeln(Pk kK kA Aok khhkhkhkhkhkkkhkhkkkhkhkkhkkkxxkxx!);
writeln;
writeln('l) Noise power is ',EbNo:6:1 ,' dB');
writeln;
writeln{'2) Noise stepsize is ', noisestep:6:3,

' Sigma');
writeln;

writeln('3)'Historgram cell width ', stepsize:6:3,
'Degrees’');

writeln;

writeln('4) Compute Phase noise statistics');

writeln;

writeln('5) Compute Gaussian Distribution');

writeln;

writeln({('6) Call Plot Program');
writeln;

writeln('7) Calculate ERFC ');
writeln;

writeln('0) End');

writeln;

write('ENTER ');

readln(value);

case value of

0: quitread(quit);

1: setnoisepower(ebno);

2: setnoisestep(noisestep);

3: sethiststep(stepsize);

4: computenoisestat(ebno,noisestep,stepsize,listends,
thetahist);

5: computegaussian(ebno,stepsize,listends,thetahist);

6: plot;

7: erfc(listends,stepsize,thetahist);
otherwise goto 10;
end;
if quit='yes' then goto 20;
goto 10;
20:end;

procedure loaddefault({var ebno,noisestep,stepsize:real);
{loads default setting into menu }
begin

ebno:= 0;

noisestep:=0.03;

stepsize:=0.5;

end;

[***x* Main program starts here ***xxx*x]

D:13

begin {main program}
quit:='no';
loaddefault(ebno,noisestep,stepsize);
10:menﬁ(ebno,noisestep,stepsize,quit);
if quit='yes'then goto 20;
goto 10;
20:end.

Phase Estimator Simulation Program

The phase estimator simulation program inputs noise
statistic data from a series of files created by
Noisel-1.pas for different Eb/No values. This values are
take for integer steps in SNR. The program then simulates
the behaviour of the phase estimator algorithm for a given
set of variables which can be selected via a set of menus.
The resultant simulation output is. stored to disc,
providing records of the setup conditions and the
performance evaluation for post processing. The following
pages contain the program listing for Estl-18.pas which was
used in the evaluation of the algorithm. As before flow
diagrams and 1line by line commenting 1is considered

superfluous.

EST1-18.pas

program Estimator(input,output);

{program allows reading of statistical data from files of
different Eb/No. This program is for the analysis of the
phase estimator wusing an IIR filter with single order
coefficient selectable from , 15/16,31/32,63/64,127/128

The Frequency information is now obtained outside the loop
of the estimator and feeds forward to the predicted phase

mean }

label 10,20;

const maxint=4194304;
pi=3.14159263;
nmax=128;
m=256;
offset=0;

ver=1.18;

type sample= array[0..nmax] of real;
intsample=array[0..nmax] of integer;
intresults= array [0..nmax] of integer;
intarray= array[-360..360] of integer;
rlresults= array [0..nmax] of real;
delayspace=array(0..32] of integer;
samplearray= array(-360..360] of real;
weightingarray=array [0..721,0..1] of real ;
{ could be too small if noise stepsize<0.5 degrees}
choice=1l..6 ;
timeseconds=0..60;
results=record
trap:string;
elapsedarray:rlresults;
anglearray:rlresults;
binsample:intsample;
datain:intsample;
noiseimpulsearray:intresults;
noiseyloarray:intresults;
meanphasearray:intresults;
projectslopearray:intresults;
predphasearray:intresults;
noise:sample;
cerror:sample;
dataoutarray:intresults;
end;
menurecord= record
ebno,esno:integer;

trapsprung:boolean;

D:15

trapcount: integer;
errate:real;
errcount: integer;
sigma:real;
fo:real;

fs:real;
runtime:real;
mag:real;
quantbits:integer;
datatype:string;
dstate:string;
nstate:string;
filter:string;
slope:string;
mean:string;
slopeccoef:string;
meancoef :string;
coefinc:string;
bits:integer;
refstepsize:real;
reflistends:integer;
auto:string;

end;

statrecord= record
errormean:real;
errordev:real;
carriermean:real;
carrierdev:real;

end;

var value:choice;
etheta,sigma,stepsize,maxy:real;
ycord:samplearray;

noise:sample;

esno,h,listends: integer;
name,quit,sesno:string;
readbefore:boolean;
waittime:timeseconds;

setup:menurecord;

function rand:real; external;
function cstat:boolean; external;
procedure time(var hours,minutes,seconds,

hundreths:integer); external;

function convertdegtognt(x:integer):integer;

{converts degrees to quantized level number}

begin
convertdegtoqnt:=x*m div 360;

end;

procedure wait(var waittime:timeseconds);

{waits for a set time period before returning}

var hours,minutes,seconds,hundreths,

starttime:integer;

begin
time(hours,minutes, seconds, hundreths);
starttime:=seconds;
repeat
time(hours,minutes,seconds,hundreths);
until seconds>starttime+waittime;

end;

procedure quitread(var quit:string);

{sets quit variable to yes}

begin

quit:='yes';

end;

procedure keypressed(var quit:string);
{sets acknowlegdement if key pressed]
label 10,20;

var value:choice;

begin

L
[

quit:='no
10:writeln(' Key pressed :-');
writeln;
writeln(' 1) Continue ');
writeln;
writeln(' 0) Quit ');
writeln;
write(' ENTER ');
readln{value);
case value of
0:quitread(quit);
l:goto 20;
otherwise goto 10;
end;
20:end;
procedure clearcellcount(var cellcount:intarray);

{clears histogram array cells}

var h:integer;

begin
for h:=-360 to 360 do
begin
cellcount[h]:=0;
end;

end;

procedure disksave(setup:menurecord;statresult:statrecord;
phaseresult:results);

{saves setup and results to disk}
label 10;

var filename:string;
estimatorfile:text;
h:integer;
begin
str(setup.trapcount,filename);
if setup.trapcount>99 then filename:='2Z';
filename:=concat('a:phdata',filename,'.dat');
assign(estimatorfile,filename);
rewrite(estimatorfile);
writeln(estimatorfile,
'Eb/No = ',setup.ebno:6,' dB,"',
' Noise SD = ',6setup.sigma:6:2,' degrees,’',
' Add Noise ',setup.nstate,',’',
' Add Data ',setup.dstate,'-',6 setup.datatype);
writeln(estimatorfile,
'Frequency offset ', setup.fo:6:3,' Hz,',

Symbol rate = ',setup.fs:6:1,' KHz,',
1

Filter is ',6setup.filter);

writeln(estimatorfile,

‘Sim time = ',setup.runtime:8:6,'sec,’,
' Quantizing Bits = ',setup.gquantbits,’,’,
' Magnitude of signal = ',6setup.mag};

writeln(estimatorfile,
'Error count = ',setup.errcount,',',
'! Error rate inclusive of this data block ',
setup.errate:8:6);
writeln({estimatorfile, 'Type of Trap is ',
phaseresult.trap);
writeln(estimatorfile, 'Mean is ',6setup.mean,

' Coefficient = ', setup.meancoef);

writeln(estimatorfile, 'Slope is ',setup.slope,

'Coefficient = ', setup.slopecoef);
of Bit in IIR feedback is '

writeln(estimatorfile, 'No.

, setup.bits});

writeln{estimatorfile);

'bin':6, 'noise':5, 'offsetP':8, 'mean':5,
'slope':6,'thetaP’':7, 'Mod0/p':7,'C/Est

'Data’

writeln(estimatorfile,'Elapsed':8,‘Data':5,'angle':6,

' 7,
:6);

writeln(estimatorfile, 'sec':8,'degs':5,'degs':6,

'gqnt':5,'deg':5,'qnt':8,'qnt"':5,'ant’:6,

'qnt':7,

begin

for h:=0 to nmax do

writeln(estimatorfile,

phaseresult.

phaseresult

phaseresult.

phaseresult.

phaseresult
phaseresult
phaseresult

phaseresult

phaseresult.
phaseresult.

phaseresult.

end;

binsample[h]

10: close(estimatorfile);

end;

procedure

aver(n:integer;ransample:sample;var

'qnt':7,'degs':6);

elapsedarray[h]:8:6,
.datain([h]:5,

phaseresult.anglearray[h}:6:1,

15,

noiseimpulsearray[h]:5,
.noiseyloarray[h]:8,
.meanphasearray[h]:5,
.projectslopearray[h]:6,
.predphasearray({h):7,
noise[h]}:7:1,
cerror[h]:6:1,

dataoutarray[h]:6);

mean

{calulates mean of integer samples}

var h:integer;

sum:real;

:real);

begin
sum:=0;
for h:= 0 to nmax do
begin
sum:= sum+ ransample[h];
end;

mean:=sum/(nmax+1);
end;

procedure variance(randsample:sample;var oldmean,mean,
sd:real);

{calculates variance of random input samples]

var h,n:integer;

sum,sigmasqrd,meanl:real;

begin
n:=nmax;
aver(n,randsample,mean);
sum:=0; meanl:=oldmean;{uses current mean value}
for h:=0 to nmax do
begin
sum:= sqr(randsample{h]-meanl)+sum;
end;
sigmasqrd:= sum/(nmax);
sd:= sqrt{sigmasqrd);
end;

{*********************‘k*phase lOCk procedures******‘k*****}

{These procedures are all used in the phase estimator
simulation }

function convert2scom(y, X:integer):integer;

{Converts sign magnitude to 2's complement notation}

begin
if x<0 then
convert2scom:= y+x
else
convertZscom:=X;
end;

function inverse2s(y, x:integer):integer;

{converts from 2's complement to sign magnitude}

begin

if x<0 then writeln('ERROR in Inverse 2s complement');

if x>=y div 2 then
inversels:=x-y
else
inverse2s:=x;

end;

function subcyclic(augend,addend:integer):integer;
{performs 2s compliment subtraction aqn a circular

ignoring overflows}

begin
subcyclic:= (augend+(m-addend)) mod m;

end;

function addcyclic(augend,addend:integer):integer;
{performs 2's complement addition on a circular

ignoring overflows}
begin
addcyclic:=(augend+addend) mod m;

end;

function power(x,y:real):real;

basis

basis

{calculates x to power of vy}
begin

power:= exp(y*1ln(x));
end;
function log(x:real):real;
{calculates log to base 10}
begin

log:=1n(x)/1n(10);

end;

function divide2scom(y,x,denom:integer):integer;

{divides 2's complement number by denom}

begin
x:=inverse2s(y,x);
x:=x div denom;
divide2scom:=convert2scom(y,x);
end;

procedure initializeloop(var startphase:real;
var predphase,avl,adl,dt,accum,
slopaccuminusl:integer;
var averphase,averslope,

slopedly:delayspace);

{initialize arrays and predicted phase}

var h:integer;

begin
startphase:=0;
predphase:=0; {initial phase prediction value}
accum:=0; {initial value of average accumulator}
avl:=16;{ set length of averaging circuit}
dt:=8 ;(set slope detect over 8 symbols}
adl:=16;{ set slope averager to 16 symbols}
slopaccuminusl:=0;{set slope average accumulator }
for h:=0 to avl do {flush out to initialize averaging
space}

begin

averphase(h]:=0;

end;

for h:= 0 to adl do

[flush out averaging space for slope
detector}
begin
averslope[h]:=0;
end;
for h:= 0 to dt do
{ flush out delay space for slope

detector}
begin
slopedly[h]:=0;
end;

end;

procedure greaterthanl80(var x:real);

{if x greater than 180 degrees converts to negative value}

begin
if x<-180 then x:=360+x;
if x%x>180 then x:=x-360;

end;

procedure modulus(s,y:real;var ans:real);
{produces modulo arithmetic}

var multi:real;

begin
multi:=trunc(s/y);
ans:= s - (multi*y);

end;

procedure shiftintarray(var inputarray:delayspace;
length:integer);
(shifts data through array space}

var h:integer;

begin
for h:= length-1 downto 0 do
begin
inputarray[h+1]:=iﬁputarray[h];
end

end;

procedure setinsample(var phaseresult:results;
var worksample:sample) ;

{sets up a set of input samples}

var h,y:integer;

temp:real;

begin
v:=360;
for h:=0 to nmax do

begin

phaseresult.noiseimpulsearray[h]:=round(worksample[h]);
temp:=phaseresult.anglearray[h]+phaseresult.datain[h]
+worksample[h];
modulus(temp,y,temp);
greaterthanl80(temp);
worksample[h]:=temp;
end;

end;

- procedure convert to m binary(inputsample:sample;
var binsample:intsample);
{converts real input sample (simulated from prom output) to

m bit binary representation}
var h:integer;

begin
for h:= 0 to nmax do
begin
binsample[h]:=round(inputsample[h]*m/360);
if binsample[h]= 128 then binsample[h]:=-128;
end

end;

procedure removedata(gsk, currentsample:integer;
var phaserr:integer);
{removes data form incoming signal and <calcultes phase

error of predicted value and local oscillator phase}
var multi:integer;

begin
multi:=2+2*gsk;
currentsample:=(currentsample*multi) mod m ;
phaserr:= divide2scom(m,currentsample,multi);

end;

procedure locate cell(cerror:real;var cellnumber:integer;

setup:menurecord) ;

{locates the cell number that a particular value to thete
resides in}
var theta:real;
begin
theta:=cerror;
if theta<0 then
cellnumber:=round((theta+setup.refstepsize/2)
/setup.refstepsize)
else
cellnumber:=round((theta-setup.refstepsize/2)
/setup.refstepsize);

end;

procedure referrorplot(phaseresult:results;
setup:menurecord; '
var cellcount:intarray);
{accumulates count of cells that theha falls in for

calculation of estimated phase deviation}

var h,cellnumber:integer;
begin
for h :=0 to nmax do
begin
locate cell(phaseresult.cerror[h],cellnumber,setup);
cellcount[cellnumber]:=cellcount[cellnumber]+1;
end;

end;

procedure savedisc(cellcount:intarray;listends:integer;
sigma,stepsize:real);

{ write data to disc as a text file}

begin

end;

var outfilel:text;
h,numbercfsamples:integer;
etheta:real;

name:string;

numberofsamples:=trunc(setup.fs*le3*setup.rﬁntime);
str(setup.ebno,name);
name:=concat('OP',setup.datatype,name,'.dat');
assign(outfilel,name);
rewrite{(outfilel};
writeln(outfilel,listends,stepsize,sigma);
for h:= -listends to listends do
begin
writeln(outfilel,cellcount[h])/numberofsamples);
{calculates probability}
end;

procedure refdatasave(cellcount:intarray;setup:menurecord;

statresult:statrecord);

{saves reference data to file }

begin

end;

savedisc(cellcount,setup.reflistends,
statresult.carrierdev,

setup.refstepsize);

procedure saveresult(setup:menurecord;

statresult:statrecord; filename,

display,trap,ercount:string);

{svaes results to disk}

begin

var outfilel:text;

assign(outfilel,filename);

rewrite(outfilel);

writeln(outfilel);
writeln(outfile1"******************* PHASE

ESTIMATOR COMPUTE MENU**********************

*******');

writeln(outfilel, 'Eb/No = ',6setup.ebno:5,' dB,',
' S8IM time = ',6setup.runtime:6:4,' sec,’,
' Data = ',6setup.dstate,’',',' Type = ',

setup.datatype);
writeln(outfilel,'Noise = ',6setup.nstate,',',

' Prequency offset ',6setup.fo:10:1,' Hz,',
' Symbol rate = ',setup.fs:6:1,' Khz');

writeln(outfilel, 'Number of traps = °,

setup.trapcount:4,"',",
Bit Error rate = ', setup.errate:10:6,',"',
' symbol Error Count = ',k setup.errcount:4 };
writeln(outfilel, 'Slope detector is ', setup.slope,
! Mean filter output is ', setup.mean);
writeln(outfilel, 'Number of feedback bits in IIR= ',
setup.bits:3);
writeln(outfilel, 'Slope Coefficient = ',
setup.slopecoef,
' Mean Coefficient = ', setup.meancoef);
writeln(outfilel, 'Input ncise mean = ',
statresult.errormean:6:3 ,' deg',

Input standard deviation = ',

statresult.errordev:6:3,

deg');

writeln(outfilel"*****************i*********

**');

writeln(outfilel);
writeln(outfilel,' 1) Number of quantizing bits ',
setup.quantbits);

writeln(outfilel);

writeln(outfilel,' 2} Magnitude of input signal
(0-1) ',setup.mag:6:2);
writeln{outfilel);
writeln(outfilel,' 3) Display Estimator Run Time
Data ',display);
writeln(outfilel);
writeln(outfilel,' 4) Error Trap Data and save to
disk, Trap on ',trap);
writeln(outfilel);
writeln(outfilel,' 5) Error rate Count ',
ercount};
writeln(outfilel);
writeln(outfilel,' 6) Compute');
writeln(outfilel);
writeln(outfilel,' 7) Auto compute');
writeln(outfilel);
writeln(outfilel,' 0) End');
writeln(cutfilel);
close(outfilel);

end;

procedure iirfilter(x:integer;var filout,
accminusl:integer;
coef:string; setup:menurecord);
{IIR filter function using 16 bit arithmetic to simulate
constructed system}
{For 16 bit accumulator,16 bit output from accum is fed
back,as n bit prom address})

{plus 1 bit for complement signal}

var acc,dif,multin,multout,augend,addend,
shift:integer;
difbits:real;

begin
difbits:=16-setup.bits;

augend:=inverse2s(m,Xx);
X:=augend;
if coef= '15/16'then x:=x*16;
if coef='31/32' then x:=x*8;
if coef='63/64"' then x:=x*4;
if coef= '127/128' then x:=x*2;{converts 8 bit input
' to}
{faction of max i.e.+/-
32768}
shift:=round(power(2,difbits));
multin:= (accminusl div shift)*shift;
{ 16 bits rounded to n bit address}
dif:= augend- (multin div 256);
{converts to 8 bits from 16 bits for direction
test}
if dif>128 then
multin:=65536+multin;
if dif<-128 then
multin:=-65%536+multin;
if coef='15/16'then multout:= 15*multin div 16;
if coef='31/32' then multout:=31*multin div 32;
if coef='63/64' then multout:= 63*multin div 64;
if coef='127/128"' then multout:= 127*multin div 128;
addend:=multout; augend:=x;
acc:=(augend+addend) ;{accum is 16 bits}
accminusl:=acc;
filout:=acc;

end;

procedure iirslopedet(noiseyslope,dt,qsk:integer;
var projectslope,slopaccuminusl:integer;
var slopedly:delayspace;
setup:menurecord);

{calculates the slope of the changing phase vector}

var meanslope,slope:integer;

D:31

ceef:string;
multi:real;
begin
coef:=setup.meancoef;
slopedly[0]:= noiseyslope;
slope:=subcyclic(slopedly[0],slopedly[dt]);
iirfilter(slope,meanslope,slopaccuminusl,
setup.slopecoef,setup);
[meanslope is 16 bit result}
meanslope:=meanslope div 16;
if meanslope<-m/2*16 then meanslope:= m*1l6+meanslope;
if meanslope>((m/2*16)-1) then
meanslope:=meanslope-(m*16);
shiftintarray(slopedly,dt);
if coef='15/16"'" then multi:=16.5;
if coef='31/32' then multi:=32.5;
if coef='63/64' then multi:=64.5;
if coef='127/128"' then multi:=128.5;
projectslope:= round(multi*meanslope/(dt*16*(2+2*qsk)));
{*16 converts to B8 bits from 12}
projectslope:=convert2scom(m,projectslope);

end;

procedure sloperemovedata(gsk, inputvalue:integer;

var fourxslope:integer);
{removes data from input slope signal}
var multi:integer;
begin
multi:=2+2*gsk;
fourxslope:=(inputvalue*multi) mod m;

end;

procedure fregdetect(inputvalue,gsk,dt:integer;

D:32

var pslope,slopaccuminusl:integer;
var slopedly:delayspace;

setup:menurecord);
{calculates frequency offset from nominal}
var fourxslope:integer;

begin
sloperemovedata(gsk, inputvalue, fourxslope);
iirslopedet(fourxslope,dt,qgsk,pslope,slopaccumninusl,
slopedly,setup);

end;

procedure errortrap(phaseresult:results;
var setup:menurecord;
loop:integer;var lastdata:integer;
var cycleslip,symerror:boolean);

{locks for errors and cycle slips in the decoded data}

var h,trapointer,startdata,comparedata,

datain:integer;

begin

cycleslip:=false;

symerror:=false;

if phaseresult.datain[0]<0 then
datain:=360+phaseresult.datain(0]
else
datain:=phaseresult.datain[0];

datain:=convertdegtognt(datain);

h:=1;

trapointer:=0;

if loop=0 then

startdata:= phaseresult.datacutarray[0]-datain

else
startdata:=lastdata;
while h<= nmax do
begin
if phaseresult.datain[h]<0 then
datain:=360+phaseresult.datain[h]
else
datain:=phaseresult.datain(h];
datain:=convertdegtognt(datain});
comparedata:=phaseresult.dataoutarray(h]-datain;
if comparedata<>startdata then
begin
setup.errcount:=setup.errcount+1l;
symerror:=true;
trapointer:=trapointer+l;
if trapointer>10 then trapointer:=10;
end;
if trapointer= 10 then
begin
startdata:=comparedata;
{ if different values of data for 10 }
{samples then reset startdata to compare
data}
cycleslip:=true;
end;
if comparedata=startdata then
begin
trapointer:=trapointer-1;
if trapointer<0 then trapointer:=0;
end;
h:=h+1;
end;
lastdata:=startdata;
end;

procedure phase estimatel(var phaseresult:results;
setup:menurecord;gsk:integer;
startphase:real ;binsample:intsample;
display,trap,ercount:string;
avl,adl,dt,loop:integer;
var accum,slopaccuminusl, predphase,
numberoftraps, lastdata:integer;
var averphase,averslope,

slopedly:delayspace);

{uses binsamples to estimate the carrier phase and
frequency error using IIR Filter with variable coefficient
+ freqency offset detection and projection, in parallel,
from difference samples taken over 8 symbol periods and

averaged using an iir filter}
label 10,20;

var minuscarrier,promsample,noiseylophase,phaserr,
projectslope,newsample, phasemean,mphaseout,
dataout,noiseimpulse:integer;
modcerror,h,erraccum: integer;
angle,anglel,elapsedtime:real; begin
if display="no' then goto 10;
writeln('Elapsed':8, 'Data':5,'angle':6,'bin':4,
'noise':5,'offsetP':8, 'mean':5, 'slope':6,
'thetaP':7, 'ModO/p':7,'C/Est ':7,'Data':6);
writeln{'sec':8,'degs':5,'degs':6,'qnt':5, 'deg':5,
'gnt':8,'qnt':5,'gqnt':6,'qnt':7,
'gqnt':7,'degs':6);

10: for h:=0 to nmax do
[process binsamples in a sequential manner to obtain
output sequence}
begin
anglel:=phaseresult.anglearray[h]*m/360;

{convert to binary
term]}
phaseresult.cerror[h]:=anglel+{m-predphase};
modulus{phaseresult.cerror[h],m,phaseresult.cerror[h]);
modcerror :=round(phaseresult.cerror[h]);
removedata(gsk,modcerror,modcerror);
phaseresult.cerror{h]:=modcerror;
if phaseresult.cerror(h]>m/2-1 then
phaseresult.cerror[h]:=phaseresult.cerror[h]-m;
phaseresult.cerror[h]:=phaseresult.cerror[h]*360/256;
promsample:=convert2scom(m,binsample(h]);
if setup.slope='ON' then
freqdetect(promsample,gsk,dt,projectslope,
slopaccuminusl,slopedly,setup)
else
projectslope:=0;
minuscarrier:=subcyclic(promsample,predphase);
removedata(gsk,minuscarrier,phaserr);
phaserr:=convertZ2scom(m,phaserr);
dataout:= subcyclic(minuscarrier,phaserr);
noiseylophase:=addcyclic(phaserr,predphase);
if setup.mean='ON' then
iirfilter(noiseylophase,phasemean,accum,
setup.meancocef,setup)
else
phasemean:=0;
phasemean:= (phasemean div 256) ;
if phasemean<-m/2 then phasemean:= m+phasemean;
if phasemean>m/2 -1 then phasemean:=phasemean-m;
phasemean:=convert2scom(m,phasemean);
predphase:=addcyclic(projectslope,phasemean);
mphaseout:= inverse2s(m,phasemean);
noise[h]:=inverse2s(m,phaserr);
elapsedtime:=(loop*(nmax+1)+(h+1))/(setup.fs*lel);
phaseresult.elapsedarray[h]:=-elapsedtime;

phaseresult.noiseyloarray[h]:=noiseylophase;

D:36

phaseresult.meanphasearray[h]:=mphaseout;
phaseresult.projectslopearray[h]:=projectslope;
phaseresult.predphasearray[h]:=predphase;
phaseresult.dataoutarray[h]:= dataout;

phaseresult.binsample[h]:=binsample([h];

phaseresult.necise[h]:=noisel[h];
if display='no'then goto 20;
writeln(elapsedtime:8:6,phaseresult.datain[h]:5,
phaseresult.anglearray[h]:6:1,binsample[h]:5,
phaseresult.noiseimpulsearray(h]:53,
noiseylophase:8,mphaseout:5,projectslope:6,
predphase:7,noise[h]:7:1,
phaseresult.cerror{h]:6:1,dataout:6);
20:end;

end;

procedure mean2scom(var meandif:delayspace;newsample,
len:integer;var phasemean:integer;
var accum:integer);

{returns a current mean value from a sample per sample

input}

var differ,y:integer;
begin
y:=len*m;

meandif([0]:= newsample;

differ:= subcyclic(meandif[0],meandif[len]);
differ:= inverse2s(m,differ);
differ:= convertiZscom(y,differ);

{converts from 8bit to 12
bit}
accum:= (accum + differ) mod y;

phasemean:= divide2scom(y,accum,len);

phasemean:= inverse2s(y,phasemean);

convert2scom(m,phasemean);

phasemean:
shiftintarray(meandif, len);

eng;

procedure slopedet(noiseylophase,dt,avl,adl:integer;
var projectslope,slopaccum:integer;

var slopedly, averslope:delayspace});
var meanslope,slope:integer;

begin
slopedly[0]:= noiseylophase;
slope:=subcyclic(slopedly[0],slopedly[dt]);
mean2scom(averslope,slope,adl,meanslope,slopaccum);
shiftintarray(slopedly,dt);
meanslope:=inverse2s(m,meanslope);
projectslope:= round((avl/2+0.5)/dt*meanslope);
projectslope:=convert2scom(m,projectslope);

end;

procedure phase estimate2{gsk:integer;binsample:intsample;
var noise:sample;display,trap,
ercount:string;
avl,adl,dt:integer;
var accum,slopaccum,predphase:integer;
var averphase,averslope,

slopedly:delayspace);

{uses binsamples to estimate the carrier phase' and
frequency error using mean phase by averaging + fregency
offset detection and projection, in parallel, from
difference samples taken over 8 symbol periods and

averaged)

label 10,20;

var minuscarrier,promsample,noiseylophase,phaserr,

projectslope,newsample,phasemean,mphaseout,
dataout:integer;

h:integer;

begin

writeln('Entered phase estimator');
if display='no' then goto 10;
writeln('h':10, 'binsample’:10, 'meanphase’:10,
'lophase':10, 'predicted’':10, 'phaserr':10,
'Data out':10);

for h:=0 to nmax do

{ process binsamples in a sequential manner to obtain

output sequence]}

begin
promsample:=convert2scom(m,binsample[h]);
minuscarrier:=subcyclic(promsample,predphase);
removedata(gsk,minuscarrier,phaserr);
noiseylophase:=addcyclic(phaserr,predphase);
mean2scom(averphase,noiseylophase,avl,phasemean,
accum) ;
slopedet (noiseylophase,dt,avl,adl,projectslope,
slopaccum, slopedly,averslope});
predphase:=addcyclic({projectslope,phasemean);
mphaseout:= inverse2s(m,phasemean});
dataout:= subcyclic(minuscarrier,phaserr);
noise[h]:=inverse2s(m,phaserr);
if display='no'then goto 20;
writeln(h:10,binsample{h]:10,mphaseout:10,
noiseylophase:10,predphase:10,
noise[h]:10:1, dataout:10);

20:end

procedure phaselock(var phaseresult:results;

setup:menurecord;
worksample:sample;
startphase:real;gsk:integer;
display,trap,ercount:string;
avl,adl,dt, loop:integer;

var accum,slopaccuminusl,predphase,
numperoftraps,lastdata:integer;

var averphase,averslope,

slopedly:delayspace);

var binsample:intsample;
meandif:delayspace;
ch:char;

h:integer;

begin{phaselock main body}
writeln('entered phaselock');
startphase:=startphase*180/pi; {converts to degrees};
setinsample(phaseresult,worksample);
convert to m binary(worksample,binsample);
writeln('converted to binary');
if setup.filter="IIR' then
phase estimatel(phaseresult,setup,gsk,startphase,
binsample, display,trap,ercount,
avl,adl,dt, loop,accum,slopaccuminusl,
predphase,numberoftraps, lastdata,
averphase,averslope,slopedly)
else
phase estimate2(gsk,binsample,noise,display,trap,
ercount,avl,adl,dt,accum,
slopaccuminusl,predphase,averphase,
averslope,slopedly);
end;

{*********‘k************t**********************************

************}

{set up menu procedures}

procedure readname(var name,quit:string);

{read file name}

begin
write('File name= ');
read(name) ;
guit:='no';

end;

procedure readdata(name:string;var ycord:samplearray;
var maxy:real;var listends:integer;
var sigma,stepsize:real);

{read data of phase noise deviation from file}

var h:integer;
infilel:text;
begin
assign(infilel,name);
reset(infilel);
readln(infilel,listends,stepsize,sigma);
stepsize:=stepsize*pi/180;
sigma:=sigma*pi/180;
h:=-listends;
while h<=listends do
begin
readln(infilel,ycord(h]);
if ycord[h]>maxy then maxy:=ycord{h];
{find maximum value for vy}
h:=h+1;
end;

close(infilel);

if h<¢> listends+l then writeln('errror in reading
file');

end;

procedure readfile(var listends:integer;var sigma:real;
var stepsize:real;
var name,quit:string;
var ycord:samplearray;var maxy:real;
var readbefore:boolean;

var esno:integer);

{reads data from named file}
label 10,20,30;

var h:integer;
inebno:real;
checkok:boolean;

ch:char;

begin
Writeln('symbol Energy Es/No dB required (integer
values only)');
readln(inebno);
esno:=round(inebno);
str(esno,name);
name:=concat('ebno',name,'.dat');
10: checkok:=fstat(name};
if checkok=false then
begin
20: writeln('File not found :Enter file name (y/n)');
readln{ch);
case ch of

Yy

1
(

'Y': readname(name,quit);
(
(

': readname(name,quit);

'n': quitread(quit);

'N': quitread(quit);

ctherwise goto 20;
end;
gocto 10
end;
if quit='yes' then goto 30;
readdata(name, ycord,maxy, listends,sigma,stepsize);
readbefore:=true; '
30:end;

procedure erfc(listends:integer;stepsize:real;

ycord:samplearray);

{produces complimentary error function i.e probability of

error being greater than x}

var h:integer;
etheta,x,xl:real;

sum,prob error:longreal;

begin
writeln('Enter prob(phase error >x degrees)');
readln(x);
xl:= x*pi/180;
sum:=0; {calculates complimentary errror function}
for h:= -listends to listends do
begin
etheta:= h*stepsize;
if abs(etheta)<=x1 then sum:= sum+ycord[h];
{probability of etheta<xl radians}
end;
prob_error:=1l-sum;
writeln('Probability of phase error >',x:4:2,' deg =
',prob error:15:10);

end;

procedure pseudorandom(gsk:integer;var iv:integer;var

random: intsample) ;

{from an initial set up value,iv, a pseudo random stream is
produced using 23 stage shift register}

Type rnumber=array[l..23] of integer;

var shiftreg : rnumber;
i,ip,temp,h, j:integer;

p:real;

begin
{initialize shift register with start point}
for h:= 23 downto 1 do { turns seed value into binary
form}
begin
shiftreg(h]:=0;
p:= power(2,h);
ip:=round(p);
shiftreg[h]:=iv div ip;
iv:=iv mod ip;
end;
for j:=0 to gsk do
begin
for i:= 0 to nmax do
begin
temp:=(shiftreg[18]}+shiftreg(23]}) meod 2;
if j=0 then
random[i]:=shiftreg(23]
else
random[i]:=random[i]+2*shiftreq[23};
for h:= 22 downto 1 do

begin
shiftreg[h+1]:=shiftreg[h];
end;
shiftreg([l]:=temp;
end;
end;

end;

procedure nodata({var data:intsample);

{clears data array}

var h:integer;

begin
for h:=0 to nmax do
begin
data[h]:=0;
end;

end;

procedure nonoise(var worksample:sample);

{fills noise locations with zero}

var h:integer;

begin
for h:= 0 to nmax do
begin
worksample[h]:=0;
end;

end;

procedure noiseset(ycord:samplearray;var worksample:sample;

listends:integer;stepsize:real);

var n,h:integer;
sum,uniform:real;
begin
for n:=0 to nmax do
begin
uniform:=round(ie9*rand)/le9;
if uniform=1 then uniform:=1-le-9;
sum:=0;
h:=-listends;
while h<=listends do
begin
sum:=sum+ycord[h];
if sum>uniform then
begin
worksample[n]:=h*stepsize;
h:=listends+1l; {leave loop}
end;
h:=h+1;
end;
end;

end;

procedure denzero(num:integer;var ramp:real);

{set num if denominator zero}

begin
if num=0 then ramp:=0;
if num>0 then ramp:=pi/2;
if hum<0 then ramp:=-pi/2;
end;

procedure promerror(angle,ramp:real;

var sum:real;h:integer);

var error,y:real;

{calculates error due to prom quantization}

begin
y:=360;
angle:=180*angle/pi;
modulus(angle,y,angle);
ramp:= 180*ramp/pi;{converts to degrees}
if ramp<0 then ramp:= ramp+360;
ramp:=round(ramp*m/360); {converts to m bit
binary]}
ramp:= ramp*360/m;{ converts back to real for
error}
error:=angle+(360-ramp);
modulus(error,y,error);
if error>180 then error:=error-360;
sum:=sum+sqr(error);
end;

procedure frequencyoffset(var phaseresult:results;
fo,fs,mag:real;
quantsteps:integer;

var startphase,nextstartphase:real);

{allows frequency offset of carrier to be set and converts

to phase change/sample}

label 10;
var y,h,num,den:inteqger;
sum,sigma,normf,angle, ramp,ncisesam:real;

waittime:timeseconds;

begin

10:

y:=360;
normf:=fo/fs;
sum:=0;
if fo=0 then
begin
for h:=0 to nmax do
begin
phaseresult.anglearray(h]:=0;
end;
goto 10;
end;
for h:= 0 to nmax do
begin.
angle:= Z2*pi*normf*h+startphase;
num: =trunc(sin(angle)*mag*quantsteps);
den:=trunc(cos(angle)*mag*quantsteps);
if den=0 then
denzero(num, ramp)
else
ramp:= arctan(num/den);
if (num=0)and (den=0) then ramp:=0;
if (num>=0) and (den<0) then ramp:= pi+ramp;
if (num<0) and (den<0) then ramp:= -pi+ramp;
promerror(angle, ramp,sum,6 h);
{convert to degrees}
ramp:= ramp*180/pi;
modulus(ramp,y,ramp);
phaseresult.anglearray[h]:=ramp;
end;
nextstartphase:=2*pi*normf* (nmax+1l)+startphase;
modulus(nextstartphase, 2*pi,nextstartphase);
if nextstartphase>pi then
nextstartphase:=nextstartphase-(2*pi);
sigma:=sqrt(sum/{nmax));

writeln('Prom Sigma (standard deviation) from

phase.angle = ',sigma:6:2, 'Degrees');

end;

procedure bpskdata(var phaseresult:results);

{set up data with random phase angles}

var iv,h,gqsk:inteqger;
random: intsample;
begin
qsk:=0;
iv:=4197376;
pseudorandom(gsk,iv,random);
h:=0;
while h<=nmax do
begin
case random[h] of
0: phaseresult.datain[h]:=0;
1: phaseresult.datain(h]:=180;
end;
h:=h+1;
end;

end;

procedure gpskdata(var phaseresult:results);

{set up gpsk random phase samples}

var h,i,iv,gsk:integer;

random: intsample;

begin
gsk:=1;
iv:=4065273;
pseudorandom(gsk, iv, random) ;
h:=0;
while h<=nmax do

begin

case random[h] cf
0:phaseresult.datain[h]:=0;
1l:phaseresult.datain[h]:=90;
2:phaseresult.datain[h]:=180;
3:phaseresult.datain[h]:=-90;

end;

h:=h+1;

end;

end;

procedure datayes(var gsk:integer;var phaseresult:results);
{[creates data}
var ch:char;

i,iv:integer;

begin
case gsk of
0:bpskdata(phaseresult);
1:gpskdata(phaseresult);
otherwise
writeln('qsk="',qgsk);
end;
end;

procedure setoffset(var fo:real);

{sets offset frequency }

begin
writeln('Enter frequency offset in Hz');
readln(fo);

end;

procedure setout(var out:string);

{set display output on or off}

begin

if ocut='ON' then out:='QFF'
else
out:='ON';

end;

procedure setcoef(var coef:string); {set coefficent value}

var temp:string;

begin
if coef='15/16' then
temp:='31/32"';
if ccef='31/32' then
temp:='63/64";
if coef='63/64' then
temp:='127/128"';
if coef='127/128' then
temp:='15/16"';
coef:=temp;

end;

procedure setbits(var number:integer);

[set number of bits in feedback variable}

label 10;

begin
10:write('Enter number of feedback address bits ');
readln(number) ;
if (number <1) or (number>16) then
goto 10;

end;

procedure setiirmenu(var setup:menureccrd);

{sets wup iir filters in phase and slope processing
sections}
label 10,20;
var value:choice;
'~ quit:string;
begin
quit:='no';
setup.filter:="IIR';
]_O: . writeln(o gk Kok ok % ok ek ek Aok kK gk ok ok ke ke ko ok ok ok ke ok ok ok ok ok ok ok k kK k%
IhkKkhkkkhkkhkhkhkhkkkkkhkkx!);
writeln('* IIR Filters menu

*)s

wrlteln(Tk k Kk ke ok gk de ok k ok ok ok ok % %k v de ok ok ok ok ok A ok vk o o ok Sk ko kb ke ke ok

Fedk ok ok ok sk e ok ok ok ok ok ok ok ok ok ok k!)’-

writeln;
1

writeln(' 1) Slope output

writeln;

,setupislope);

writeln(' 2) Slope Coefficient ',6setup.slopecoef);

writeln;
t

writeln(' 3) Mean output

writeln;

,setup.mean);

writeln(' 4) Mean Coefficient ', setup.meancoef);

writeln;

writeln(' 5) Number of Address Bits for Feedback Word

',setup.bits);
writeln; _
writeln(' 0) End');
writeln;
write(' ENTER ');
readln(value);
case value of

0: quitread(quit);
1: setout(setup.slope);

setcoef (setup.slopecoef);

2
3: setout(setup.mean);
4: setcoef(setup.meancoef);
5: setbits(setup.bits);
otherwise goto 10;
end;
if quit='yes' then goto 20;
goto 10;

20:end;

procedure setfilter(var setup:menurecord);

{calls setup procedure for setting filter types}
label 10,20;

var value:choice;
guit:string;
begin

setiirmenu(setup);
goto 20;{ skip this menu}
quit:='no';

10: writeln(' 1) IIR filter '});
writeln;
writeln(' 2) Averageing');
writeln;
writeln(' 0) End');
writeln;
write('ENTER ');
readln(value);
case value of
0: quitread(quit);
1l: setiirmenu(setup);
2: setup.filter:='Averaging’;
otherwise goto 10;

end;

D:53

if quit='yes' then goto 20;
goto 10;
20:end;

procedure setnoise(var nstate:string);

[sets state of noise samples}

begin
if nstate='yes' then
begin
nstate:='no'
end
else
nstate:='yes'

end;

procedure setdstate{var dstate:string);

{set state of data samples}

begin
if dstate='no' then dstate:='yes'
else
dstate:='no';

end;

procedure setbpsk({var gsk:integer;var datatype:string);
{set type of PSK to BPSK}

begin
gsk:=0;
datatype:='BPSK';
end;

procedure setgpsk(var gsk:integer; var datatype:string);
{set type of PSK to QPSK}

begin
gsk:=1;
datatype:="QPSK';
end;

procedure setdata(var dstate,datatype:string;var
gsk:integer);
{calls setting of PSK type}
label 10,20;

var ch:char;

begin
if dstate='yes ' then
begin
dstate:='no';
goto 10;
end
else
dstate:='yes';
20: writeln('BPSK or QPSK (b/q/n) ?');
readln(ch);
case ch of
'b':setbpsk(gsk,datatype);
'B' :setbpsk(gsk,datatype);
'q
'Q':setgpsk(gsk,datatype);
'n':setdstate(dstate);
'N':setdstate(dstate);

:setgpsk(gsk,datatype);

n

otherwise goto 20;
end;

10: end;

procedure setsymbolrate(var fs:real);

{sets the symbol rate of the simulation}

label 10;

begin
10: write('Enter symbol rate in Khz ');
readln(fs};
if (£s<=0) then goto 10;
end; |

procedure setruntime(var runtime:real);

{sets the simulated run time of the simulation}

label 10;
begin
10 : write('Enter required simulated run
")

readln(runtime);

if runtime<=0 then goto 10;

end;

procedure degnoise(var worksample:sample);
{converts from radian noise samples to

samples]
var h:integer;

begin
for h:= 0 to nmax do
begin
worksample[h]:=worksample[h]*180/pi;
end;
end;

procedure maxmin{phaseresult:results);

{calculates maximum and minimum phase noise samples}

var h:integer;

max,min:real;

time in

degree

seconds

noise

begin

max:=-128; min:=127;

for h:=0 to nmax do

begin

if max<phaseresult.noise[h] then
max:= phaseresult.noise[h];

if min>phaseresult.noise[h] then
min:= phaseresult.noise[h]

end;

writeln('max phase error ',max:5:1,' gnts');
writeln('min phase error = ',min:5:1,' gnts');

end;

procedure erroratio(loop:integer;var setup:menurecord);

{calculates error rate of simulation}
var numberofsymbols,numberofbits:integer;
begin
numberofsymbols:=(loop+1)*nmax;
numberofsymbols:=(loop+l)*nmax;
if setup.datatype='BPSK' then
numberofbits:=numberofsymbols
else
numberofbits:=2*numberofsymbols;
setup.errate:=setup.errcount/numberofbits;
end;
procedure sumvariance(var sd:real;oldsigma:real;
loop:integer);
{calculates current variance of complete simulation

new simulated block}

var currentvar,cldvar,newvar:real;

begin
currentvar:=sqr(sd);
oldvar:=sqr(oldsigma);

newvar:=(nmax*loop*oldvar+(nmax*currentvar))

after

/((loop+1)*nmax);
sd:=sqgrt(newvar);

end;

procedure resultstats(var statresult:statrecord;
var cellcount:intarray;
phaseresult:results;
loop,numbercftraps,
errcount:integer;

fs,errate:real);

{output statistical results to screen}

var sd,sddeg,mean:real;
begin

writeln('Elapsed time is ',
(loop+l)*nmax/(fs*1le3):8:6,' sec');

writeln('<<<<<Phase error output statistics>>>>>'};

maxmin{phaseresult);

variance(phaseresult.noise,statresult.errormean,
mean,sd);

sddeg:= 360/m * sd;

sumvariance(sddeg,statresult.errordev, loop);

sd:=sddeg*m/360;

writeln('Mean = ',mean:6:3,' gnts':5,' or ',
mean*360/m :6:3,' deg');
writeln('Standard Deviation =',sd:6:3,' qgnts':5,

or ', sddeg:6:3,' degrees':8);
statresult.errormean:=mean;
statresult.errordev:=sddeq;

writeln('<<<<<Carrier Estimator statistics>>>>>'};
variance(phaseresult.cerror,statresult.carriermean,

mean,sd);
mean:=(mean*nmax+statresult.carriermean*nmax*loop)
/ (nmax* (loop+1));

referrorplot(phaseresult,setup,cellcount);

sumvariance(sd,statresult.carrierdev,loop);

writeln('Mean = ',mean:6:3,' degrees':8);
writeln('Standard Deviation = ',sd:6:3,' degrees':8);

writeln('Number of Results trapped ',

11

numberoftraps);
writeln('Bit Error Rate = ',6errate:10:8);

writeln('Symbol Error Count = ',errcount:6);

writeln(TR Ak Ak AAKRE AKX A A A ARk h kK hkhkkhkhhkkhkhhkhkhrhhhkhhrhkxxk

khkkhkhkhkkkxhkkhkkkkkxk!)'

statresult.carriermean:=mean;
statresult.carrierdev:=sd;

end;

procedure compute(var setup:menurecord;
var statresult:statrecord;
stepsize:real; display,trap,
ercount:string;
var quit:string;gsk:integer;
ycord:samplearray;

listends: integer);
{computes phase estimation simulation from here}

label 10,30;

var cellcount:intarray;
worksample:sample;
fs,startphase,nextstartphase,realquantbits,
sigmal:real;
predphase,avl,adl,dt,accum,slopaccuminusl,
totalnumber,numberloops, loop,quantsteps,
lastdata, presentcount:integer;
averphase,averslope,slopedly:delayspace;

noiseimpulsearray,noiseyloarray,

meanphasearray,projectslopearray,
predphasearray,dataoutarray:intresults;
anglearray,elapsedarray:rlresults;
phaseresult:results;
trapsprung,symerror,cycleslip,

keypress:boolean;

begin
writeln('Computing- Please wait');
guit:='no';
realquantbits:=setup.quantbits;
quantsteps:=round(power(2,realquantbits-1));{single
sided}
fs:=setup.fs*1le3; {converts to Hz}
sigmal:=setup.sigma*180/pi;
totalnumber:=trunc(setup.runtime*fs);
statresult.carriermean:=0;
statresult.carrierdev:=0;
clearcellcount(cellcount);
numberloops:=totalnumber div nmax;
initializeloop(startphase,predphase,avl,adl,dt,accum,
slopaccuminusl,averphase,averslope,slopedly);

setup.errate:=0;

setup.trapcount:=0;

setup.errcount:=0;
statresult.errormean:=0;
statresult.errordev:=0;

lastdata:=0; loop:=0;
while loop<= numberloops-1 do
begin

keypress:=false;

trapsprung:=false;

if setup.nstate='no' then

nonoise(worksample)

else

begin

10:

noiseset(ycord,worksample,listends,stepsiie);
degnoise{worksample);
end;
writeln('Noise standard deviation (sigma) = ',
sigmal:6:1,' Degrees');
frequencyoffset(phaseresult,setup.fo,fs,setup.mag,
guantsteps,startphase,nextstartphase);
if setup.dstate='no' then
begin
nodata(phaserefult.datain);
goto 10;
end
else

datayes(gsk,phaseresult);

writeln(Phhkkkkhkkkkhkdkdhkkhkkkkhhhdkhkkehkhkkkhkhkkhkkhkkkkhhkhkhkhh

hAhkkkkhkhkhkkhkkkkhkkkhk!?)’-

writeln('Frequency offset = ',6setup.fo0:10:2,' Hz');
writeln('Noise ', setup.nstate);
writeln('Data ',6setup.dstate,setup.datatype:6);
phaselock(phaseresult, setup,worksample,startphase,gsk,
display,trap,ercount,avl,adl,dt, loop,accum,
slopaccuminusl,predphase,setup.trapcount,
lastdata,averphase,averslope,slopedly);
startphase:=nextstartphase;
if ercount= 'neo' then ‘
presentcount:=setup.errcount;
errortrap(phaseresult,setup, loop, lastdata,cycleslip,
SYmerror);
if ercount='no' then setup.errcount:=presentcount;
erroratio(locp,setup);
writeln('Eb/No = ',setup.ebno:3,'dB', ' Simulation time
= ', setup.runtime:6:4,' sec');
writeln('Slope coefficient = ',setup.slopecoef,' Mean
coefficient = ', setup.meancoef);
resultstats(statresult,cellcount,phaseresult, loop,

setup.trapcount,setup.errcount,setup.fs,

setup.errate);

if trap= 'No' then goto 30;

if (trap= 'Cycle slip') and (cycleslip=true) then

trapsprung:=true;
if (trap= 'Symbol error') and

trapsprung:=true;

setup.trapsprung:=trapsprung;

if trapsprung=true then

begin

phaseresult.trap:=trap;

(symerror=true) then

disksave(setup,statresult,phaseresult);

setup.trapcount:=setup.trapcount+l;

end;
30:1o0p:=loop+l;

keypress:=cstat;

if keypress=true then

EXIT AT END OF NEXT BLOCK

keypressed(quit);
if quit='yes'then
begin
writeln(' ;i iii1{11
| O T T O T I I A B
LI T O I B O |
loop := numberloops;
end;

end;

) .

r

refdatasave(cellcount,setup,statresult);

end;

procedure setststp(var value:integer);

{set up start and stop values for auto computation}

label 10;

var invalue:real;

begin

10:write('Enter Eb/No ');

readln(invalue);

162

value:=round(invalue);
if (value<3) or (value>10) then goto 10;
end;

procedure setcoefinc(var coefinc:string);

{set up for auto coefficent increment}

begin
if coefinc='no' then
coefinc:="'yes'
else
coefinc:="no';

end;

procedure run(var setup:menurecord;
var statresult:statrecord;
stepsize:real;
display,trap,ercount,filename:string;
gsk:integer;ycord:samplearray;listends,

filenumber,start,stop:integer);
{runs program manually for one set up position}

label 10,40;

var h,slopecoefno:integer;
runtime,fs:real;
quit,name :string;

checkok:boolean;

begin
h:=start; quit:='no';
while h<= stop do
begin
if setup.datatype='QPSK' then

setup.esno:=h+3

else
setup.esno:=h;
str(setup.esno,name);
name: =concat('ebno' , name,'.dat');
checkok:=fstat(name);
if checkok=false then
begin
writeln('File ',6name,' not found');
h:=stop+1l;
gquit:='yes';
end;
h:=h+1;
end;
if quit='yes' then goto 10;
quit:='no';
if setup.coefinc='yes' then
slopecoefno:=1
else
slopecoefno:=4;
while slopecoefno<=4 do
begin
h:=start;
while h<= stop do
begin
if setup.datatype='QPSK' then
setup.esno:=h+3
else
setup.esno: =h;
str{setup.esno,name);
name:=concat('ebno',name,'.dat');
writeln('Reading data from file ',6name);
readdata(name,ycord,maxy, listends,sigma,stepsize);
setup.sigma:=sigma;
str(filenumber,filename);
filename:=concat('R',filename,'.dat');

fs:=setup.fs*le3;

case h of
J:runtime:=(100/2.28e-2)/fs;
4:runtime:=(100/1.25e-2)/fs;
5:runtime:=(100/5.95e-3)/fs;
6:runtime:=(100/2.38e-3)/£fs;
7:runtime:=(100/7.7e-4)/fs;
8:runtime:=(100/1.91e-4)/fs;
9:runtime:=(100/3.4e-5)/fs;
10:runtime:=(100/3.8e-6)/fs;
otherwise runtime:=0;
end;
setup.runtime:=runtime;
compute(setup,statresult,stepsize,display,trap,
ercount,quit,gsk, ycord,listends);
saveresult (setup,statresult,filename,display,trap,
ercount);
filenumber:=filenumber+1;
if quit='yes' then h:=stop;
h:=h+1;
end;
if quit='yes' then
begin
slopecoefno:=5;
goto 40;
end;
slopecoefno:=slopecoefno+l;
setcoef (setup.slopecoef);
40:end;
10:end;

procedure autocompute(var setup:menurecord;
var statresult:statrecord;
stepsize:real;
display,trap,ercount:string;

gsk:integer;ycord:samplearray;

{auto
Eb/No

begin

10:

listends:integer);

matically computes simulated runs over a range
}
label 10,20;
var filenumber,start,stop:integer;
fiiename,quit:string;
value:choice;

quit:='no';
write('Enter initial file number (1-9999) ');
readln(filenumber);

str(filenumber,filename);
filename:=concat('R',filename,'.dat');
start:=3;

stop:=7;

setup.coefinc:="'no';

writeln('Saving Files from ',filename);
writeln;

writeln(' 1) Start Eb/No (min 3dB)

writeln;

writeln(' 2) Stop Eb/No (max 10dB)

writeln;

writeln(' 3) Increment Slope Coefficient Values
',setup.coefinc);

writeln;

writeln(' 4) Run');

writeln;

writeln(' 0) End ');

writeln;

write('ENTER ');

readln{value);

case value of

0:guitread(guit);

of

',start:4,' dB');

',stop:4,' dB');

:setststp(start);
isetststp(stop);

:setcoefinc(setup.coefinc);

[PR R

irun(setup,statresult,stepsize,display,trap,ercount,
filename,qsk,ycord,listends,filenumber,start,stop);
otherwise goto 10;
end;
if quit='yes' then gotoc 20;
goto 10;
20: end;

procedure setquantbits(var quantbits:integer);

{sets number of quantizing bits}

label 10;

var realquantbits:real;

begin

10: Write('Enter number of quantizing bits required ');
readln(realquantbits);
quantbits:=round(realquantbits);
if quantbits<l then goto 10;

end;

procedure setmag(var mag:real);
{set magnitude of input signal}
label 10;

begin

10: write('Enter magnitude of input signal ');
read(maq);
if mag<=0 then goto 10;

end;

procedure setdisplay(var display:string);

{set display on or off}

begin
if display='no' then display:='yes'
else
display:='no';
end;

procedure errortrapmenu(var trap:string);

{set error trap option}

label 10;

var value:choice;

begin
10: writeln('***xxxxk*xxxx*xx*xx*ERROR TRAP

MENU*******************')’

writeln;

writein;

writeln(' 1) No trap ');

writeln;

writeln(' 2) Trap on cycle slip ');
writeln;

writeln(' 3) Trap on Symbol error');
writeln;)

write(' ENTER ');

readln(value);

case value of

l:trap:='No';

2:trap:='Cycle slip';
3:trap:='Symbol error';

otherwise goto 10;

end;

end;

procedure seterrorcount(var ercount:string);

{set error count string}

begin
if ercount='no' then
ercount:='yes'
else
ercount:='no';

end;

procedure computemenu(var setup:menurecord;
var statresult:statrecord;
stepsize:real;
gsk:integer; ycord:samplearray;
listends:integer;
var display,ercount,trap:string);

{setup menu for compute options}

label 10,20;

var value:choice;

begin
quit:='no';
10: writeln;
writeln;

writeln('**xkxxkkxhkkikxxx*x PHASE ESTIMATOR COMPUTE
MENU* ¥ %% Ak k kXXX XK KKK KKK KKK KKK KKK K ')

writeln('Eb/No = ',6setup.ebno:5,' dB,',' SIM time =

',setup.runtime:6:4,' sec,',

' Data = ',setup.dstate,',',' Type = ',

setup.datatype);
writeln('Noise = ',setup.nstate,',',

Frequency offset ',setup.fo:10:1,' Hz,',

' Symbol rate = ',setup.fs:6:1," Khz'};
writeln('Number of traps = ', setup.trapcount:4,',',
' Bit Error rate = ',
setup.errate:10:6,',', ' Symbol Error Count =
',setup.errcount:4);
writeln('Slope detector is ', setup.slope,’ Mean
filter output is ', setup.mean,
' Feedback bits in IIR = ',k setup.bits:3);
writeln('Slope Ccefficient = ', setup.slopecoef,
' Mean Coefficient = ',

setup.meancoef);

writeln('Error noise mean = ',

statresult.errormean*360/m:6:3 ,' deg',

Error standard deviation = ',

statresult.errordev:6:3,' deg');

writeln('Sim. Noise S.D = ',
setup.sigma*180/pi:6:3,"' deg',

' Est §.D = ',statresult.carrierdev :6:3,' deg');

WEIt@IN(' A X AKX AKX AR KKK KR KA KKK KKK AR KKK KKK KK X KA KKk X

Akkkhkhkkhkhhkhhhkkhkhkhhkhkkdkhikkdhkkhkkk!)’-

writeln(' 1) Number of quantizing bits ',
setup.quantbits);

writeln;

writeln(' 2) Magnitude of input signal (0-1) ',

setup.mag:6:2);
writeln;
writeln(' 3) Display Estimator Run Time Data ',
display);

writeln;

writeln(' 4) Error Trap Data and save to disk,
Trap on ', trap);

writeln;

writeln{' 5) Error rate Count , ercount);

end;

procedure estimatemenu(var

writeln;
writeln(' 6) Compute');
Wwriteln;
writeln(' 7) Auto compute');
writeln;
writeln{' O0) End');
write('ENTER ');
readln(value);
case value of
quitread(quit);
:setquantbits(setup.quantbits);

setmag(setup.maqg);

0

1

2

3:setdisplay(display);

4: Errortrapmenu(trap);

5:seterrorcount(ercount);

6:compute(setup,statresult,stepsize,display, trap,
ercount, quit, gsk,ycord,listends});

7:autocompute (setup,statresult,stepsize,display,

trap,ercount,qsk, ycord,listends);

otherwise goto 10;

end;

if quit='yes' then goto 20;

goto 10;

20:quit:="no';

var stepsize:real;

var gsk:integer;listends:integer);

label 10,20;

var value:choice;

display,ercount,trap:string;

setup:menurecord;ycord:samplearray;

statresult:statrecord;
begin
display:='no';
trap:='no’;
ercount:="no';
quit:='no';
10: if setup.datatype='QPSK'then setup.ebno:=setup.esno-3
else
setup.ebno:=setup.esno;
setup.errate:=0;
setup.trapcount:=0;
setup.errcount:=0;
statresult.errormean:=0;
statresult.errordev:=0;
statresult.carrierdev:=0;

statresult.carriermean:=0;

writeln;

writeln;

writeln('***xxx****PHASE ESTIMATOR MENU****xxxxx!);

writeln('* Eb/No = ', setup.ebno:5, 'dB
1)

writeln('* version ',ver:6:2,"

'y,

. 1 .
wrlteln(Tk hkhkhkhkkhkhdhkkhkhkhkkkhkkkkhkkhkrkhkhhhkkkkk)r

writeln;

writeln(' 1) Frequency offset ',setup.fo:10:1,"
Hz');

writeln;

writeln(' 2} Add noise ',6setup.nstate);

writeln;

writeln(' 3) Add data ' ,setup.dstate,

setup.datatype:10);
writeln;
writeln(' 4) Filter is ',6setup.filter);

writeln;

writeln(' 5) Symbol Rate ',setup.fs :6:1,'KHz ');

writeln;

writeln(' 6) Simulated Run Time is ',
setup.runtime:10:6,' sec');

writeln;

writeln(' 7) Compute');

writeln;

writeln(' 0) End'y});

writeln;

write(' ENTER ');

readln(value);

case value of
quitread(quit);
setoffset(setup.fo);
setnoise(setup.nstate);
setdata(setup.dstate,setup.datatype,gsk);
setfilter{setup);
setsymbolrate(setup.fs);

setruntime(setup.runtime);

~l U e W N O

computemenu(setup,statresult,stepsize,gsk,ycord,
listends,display,ercount, trap);
otherwise goto 10;
end;
if guit='yes' then goto 20;
goto 10;
20:end;

procedure callestimatemenu(listends:integer;stepsize,
sigma:real;ycord:samplearray,

var setup:menurecord);

var gsk:integer;

begin

setup.nstate:="'no';

end;

setup.dstate:ﬁ‘no';
setup.datatype:='QPSK';
gsk:=1; {set to gpsk}
setup.fo:=0;
setup.filter:='IIR';
setup.fs:=256;{in kHz}
setup.runtime:=3e-3;
setup.quantbits:=6;
setup.mag:=1;
setup.slope:='0QN';
setup.mean:='0ON';
setup.slopecoef:='63/64";
setup.meancoef:='31/32";
setup.bits:=16;

setup.sigma:=sigma;

setup.refstepsize:=0.5;{ stepsize in degrees,min=0.5}

setup.reflistends:=round(180/setup.refstepsize);

estimatemenu(setup,ycord,stepsize,gsk,listends);

procedure menu{var value:choice;var quit:string;

sesno:string; var setup:menurecord);

{produces menu of choices}

begin

quit:='no';
Writeln;
writeln;
writeln(TREKA KK XAKKRKKKMENY*X A *xkkkhkkkkkhkx!)i

writeln(' Es/No = ',6sesno);

writeln(' version ',ver:6:2);

. 'y,
Writeln(' **kkrkkkxkkkkkhkkkhk kA Xk kkdkx !).

end;

writeln;
writeln('Please make slection');
writeln;

writeln;

writeln(1) Readfile from disc.');

writeln;

writeln(2) Calculate Erfc. ');

writeln;

writeln(' 3) Phase Estimator performance.');
writeln;

writeln{' 0) End');

writeln;

write(' ENTER ');

readln(value);

begin{main program}

10:

readbefore:=false;
sesno:='NOT SET';

menu(value,quit,sesno,setup);
if (readbefore=false) and ((value=2)} or (value=3))
then
begin
writeln('Warning:Must read from file first!!');
waittime:=2;
wait(waittime);
goto 10;
end
else
case value of
l:readfile(listends,sigma,stepsize,name,quit,
ycord,maxy,readbefore,esno);
2:erfc{listends,stepsize,ycord);
3:callestimatemenu(listends,stepsize,sigma,ycord,

setup);

nd

0: goto 20;
otherwise goto 10;
end;
setup.esno:=esno}
str(esno,sesno);
sesno:=concat(sesno,' dB');
case value of
l:waittime:=0;
2:waittime:=5;
3:waittime:=0;
O:waittime:=0;
end;
wait(waittime);
goto 10;
20:end.

Plot Phase Statistics Program

This program reads data from the phase estimator simulation a

the noise gemeratiocn program to enable the PDF's of the phase

variations to be plotted.

Plotl-24.pas

program PlotPhaseStat(input,output);
{program reads data from named disc file and plots
probability distribution of phase error}

label 10,20;

const ver= 1.24;
type gsxint =0..32767;
coord=real;
plotarray=array(0..720] of coord;
choice=0..10;
var quit,magx:string;
mag:integer;

procedure openworkstation(ident:gsxint); external;
procedure closeworkstation; external;

procedure clearworkstation;

external;

procedure setwindow(left,right,bottom,top:coord);

external;

procedure setviewport(left,right,bottom,top:coord);

procedure newpoly;
procedure polypoint(x,y:coord);
procedure drawpoly;

procedure clip;

procedure plotstring(x,y:coord;s:string);

procedure stringheight(h:real);

procedure setgetmode(device,mode:gsxint);
procedure getstring(stringdev:gsxint;echo:
X,y:coord;var characters:string);

external;
external;
external;
external;
external;
external;
external;
external;
boolean;
external;

procedure getvaluator{valdev:gsxint;var value:gsxint;

var terminator

:char;

var status:gsxint); external;

procedure quitread(var quit:string};

begin

if quit='no' then

end;

quit:='yes';

procedure averageplot(var ycord:plotarray;var filend,

centreloc:integer;

var stepsize:real;var maxy:coord);

label 10,20;

var avecentre,centre,averend,averageover,i,h,

n:integer;
sum:real;
averycord:plotarray;

begin
averageover:=round(2/stepsize);

if odd(averageover) = false then

averageover:=averageover+l;
stepsize:=averageover*stepsize;
centre:= filend div 2;

averend:=(filend+1) div averageover;

avecentre:= (averend div 2);
n:=avecentre;
maxy:=0;
h:=centre-(averageover div 2};
while h<=filend do

begin

sum:=0;

1:=0;

while i<=averageover-1 do

begin

if h+i>filend then goto 10;

D:77

sum:=ycord[h+i]+sum;
ycord[h+i]:=0;{clears ycord array}
10: i:=i+1;
end;
averycord[n]:=sum;
h:=h+averageover;
if averycord[n]>maxy then
begin
maxy:=averycord[n];
centreloc:=n;
end;
n:=n+l;
end;
h:=centre- (averageover div 2)-1;
{averages in negative direction starting from just
below centre}
n:=avecentre-1;
while h>=0 do
begin
sum: =0;
i:=0;
while i<= averageover-1 do '
begin .
if h-i<0 then goto 20;
sum: =ycord[h-i]+sum;
ycord[h-i}:=0;
20: 1:=1i+1;
end;
averycord[n]:=sum;
h:=h-averageover;
if averycord{n]>maxy then
begin
maxy:=averycord[n];
centreloc:= n;

end;
n:=n-1;

end;

for h:= 0 to averend do
begin
ycord[h]:=averycord[h];
end;

filend:=averend;
end;

procedure normalize(var ycord:plotarray;filend:integer;
var maxy:coord);

var h:integer;

begin
for h:= 0 to filend do
begin
ycord[h]):=ycord(h]/maxy;
end;

D:78

maxy:=1; end;

procedure readfile(var filend,centreloc:integer;
var sigma:coord;
var stepsize:real;var name:string;
var vcord:plotarray;var maxy:coord);
{reads data from named file}
label 10;

var listend,h:integer;
checkok:boolean;
infilel:text;

begin
10:Writeln('File to be plotted ");
readln(name);
checkok:= checkfn(name);
if checkok=false then goto 10;
assign(infilel,name);
reset(infilel);
readln(infilel,listend,stepsize,sigma);
filend:= 2*listend;
h:=0;
while not eof(infilel) do
begin
readln(infilel,ycord[h]};
if ycord[h]>maxy then
begin
maxy:=ycord[h];{find maximum value for y}
centreloc:=h;
end;
h:=h+1;
end;
if h-1<> filend then
writeln('errror in reading file');
if stepsize<2 then
averageplot(ycord,filend,centreloc,stepsize,maxy);
writeln('max y =',maxy);
normalize(ycord,filend,maxy);
end;

procedure datatostring(var result:string;indata:real);
{converts real data to string}

var dataint,reslength,intlength:integer;
intpart, fract:string; '

begin
dataint:=round(indatax100);
str(dataint, result);
reslength:=length(result);
if reslength=1 then
begin
fract:=result;

result:=concat('0.0',fract);
end;
if reslength=2 then
begin
fract:=result;
result:=concat('0.',fract);
end;
if reslength>=3 then
begin
intlength:=reslength-2;
intpart:=copy(result,l,intlength);
fract:= copy(result,intlength+1,2);
result:=concat(intpart,'.',6 fract);
end;
endg;

procedure setscreen(maxy:coord; filend,mag:integer);
{sets up screen co-ordinates}
var windowtop,windowright:coord;

begin
windowtop:= 1.1l*maxy;
windowright:=1.1*filend/mag;
setwindow(0,windowright, 0,windowtop);
setviewport(0,1,0,0.8};

end;

procedure draw_scale(maxy,sigma:coord;filend,centreloc,
mag: integer;stepsize:real);
{draw vertical scales on sceen}

var x,centrex,y,stopx,starty,stopy:coord;
prob:real; ’
value,sprob:string;
nmax,Xsigscale,h,locbetweenline: integer;

begin

stopx:= 1.1*filend/mag;

stopy:= 1.l1*maxy;

starty:=0.1l*maxy;

for h:= 1 to 10 do

begin

newpoly;

prob:= maxy*h/10;
y:= starty+prob;

polypoint(0,y); polypoint(stopx,Y);
drawpoly;

datatostring(sprob,prob);
sprob:=concat(sprob,' ');
plotstring(1l,y-maxy/40,sprob);

end;

centrex:= 1.l*centreloc;
locbetweenline:=round(30/(stepsize*mag));
nmax:= round(centrex/locbetweenline)-1;

D:80

for h:=-nmax to nmax do

begin
X:=centrex+locbetweenline*h;
newpoly; '
polypoint(x,starty); polypoint(x,stopy);
drawpoly;

xsigscale:=round(h*locbetweenline*stepsize);
str(xsigscale,value);
plotstring(x,starty-maxy/20,value);

end;

value:=' deg ';

plotstring(0.5,0,value); end;

procedure draw_axis(maxy,sigma:coord;filend,centreloc,
mag:integer;stepsize:real);
{draw axis for plot}

var stopx,starty,stopy:coord;

begin '
starty:= 0.1l*maxy;

stopx:=1.1*filend/magqg;

newpoly;

polypoint (0,starty); polypoint(stopx,starty);
stopy:=1.1*maxy;

polypoint(stopx,stopy); polypoint(0,stopy);
polypoint{0,starty);

drawpoly;

draw scale{maxy,sigma,filend,centreloc,mag,stepsize);
end;

procedure draw_data(ycord:plotarray;maxy:coord;
filend,mag,centreloc:integer);
{reads data in plot array and plots on workstation}

var h,short:integer;
0ldx,o0ldy,startx,starty,x,y:coord;

begin
h:=centreloc-(centreloc div mag);
startx:=0.05*filend/mag;
starty:=0.1l*maxy;
oldx:=startx;
oldy:=starty;
while h<filend/mag do

begin
short:=0;
newpoly;

polypoint(oldx,oldy);
while short<10 do
begin
x:=h+startx;
y:=ycord[h]+starty;

D:81

oldx:=x;
oldy:=y;
polypoint(x,y);
short:=short+1;
h:=h+1;
if h>= filend then short:=10;
end;
drawpoly;
end; end;

procedure addtitle(name,title:string;sigma,stepsize:real);
{adds title to plot} '

var sigmas:string;
Istepsize,isigma:integer;
echo:boolean;

begin
echo:=true;
setwindow(0,1,0,1);
setviewport(0,1,0.82,1);
title:=concat('Title = ',title);
plotstring(0,0.8,title);
datatostring(sigmas,sigma);
sigmas:=concat('RMS phase error = ', 6 sigmas,
plotstring(0,0.5,sigmas);
name:=concat('File= ', 6 name);
plotstring(0,0.2,name);

end;

degs');

procedure plotfile(mag:integer);

var sigmal,maxy:coord;
ycord:plotarray;
title,name:string;
sigma,stepsize:real;
filend, centreloc,h:integer;

begin

openworkstation(l);

clearworkstation;

closeworkstation;

maxy:=0;

readfile(filend,centreloc,sigma,stepsize,name, ycord, -
maxy);

sigmal:= sigma/stepsize;

writeln('Title ?');

readln{title);

openworkstation(1);

clearworkstation;

clip;

setscreen(maxy,filend,mag); .
draw axis(maxy,sigmal,filend,centreloc,maq,stepsize);
draw data(ycord,maxy,filend,mag,centreloc);
addtitle(name,title,sigma,stepsize);

end;

procedure plotsingle(mag:integer);
{plots single set of data to screen}
label 10,20;

var terminator:char;
value,status:gsxint;

begin
plotfile(mag);
setviewport(0,1,0,1);
10:plotstring(0.8,0, 'MENU ?');
setgetmode(1,2);
getvaluator{l,value,terminator,status);
case terminator of
'Y': goto 20;
'y': goto 20;
'n':quitread(quit);
'N':quitread(quit);
otherwise goto 10;
end;
20: closeworkstation;
end;

procedure plotmulti;
{multiple plot program will go in here}

begin

writeln('multiplot');
end;

procedure magnifx(var magx:string;var mag:integer);
{magnifies area of display around centre}

var temp:string;

begin

if magx= 'Xl'then
begin
temp:='X2";
mag:=2;

end;

if magx= 'X2'then

begin

temp:='X3"';
mag:=3;

end;

if magx= 'X3'then

begin
temp:="'X5";
mag: =5,

end;

if magx= 'X5'then

begin
temp:='X10";
mag:=10;

end;

if magx= 'X10'then

begin

magx:=temp; end;
procedure menu(var magx,quit:string;mag:integer);
{menu for plot setup }
label 10,20;

var value :choice;

begin
if quit='yes' then goto 20;
10:writeln; '
writeln(Pk KA R IR A AR A A A A AR KA kA ko hhkkhkhkhkhkhxk!);
writeln(' Plot Phase Noise statistics');
writeln(' version ',ver:6:2);
writeln(' CGA version ');
writeln(PRk AKAAKK KKK AKAKA KRN AN A AAKRAKR AN K AKX AR R KRR XK kX!);
writeln;
writeln('l) Plot single file');
writeln;
writeln('2) Plot Multiple files');
writeln;
writeln('3) Magnification X-axis ',magx);
writeln;
writeln('0) End ');
writeln;

write('ENTER ');
readln(value);

case value of
0:quitread(quit);
l:plotsingle(mag);
2:plotmulti;
3:magnifx(magx,mag);
otherwise goto 10;
end;

This copy of the thesis has been supplied on condition that
anyone who consults it is understood to recognise that the
copyright rests with its author and that no quotations from
the thesis and no information derived from it may be

published without the author's prior consent.

:;L\I'r.?:'_- L reves o
T

70 5500547 -x
62“ 380422 gpn

r‘[»-s
o

")r‘l” '|

2] KVOOLQ-—:D(D(,QI

if quit='yes' then goto 20;
goto 10; 20: end;

begin{main program}
quit:='no';
magx:='X1l";
mag:=1;
10: menu(magx,quit,mag);
if quit='yes' then goto 20;
goto
20:end.

10;

