15 research outputs found

    Fast Matching-based Approximations for Maximum Duo-Preservation String Mapping and its Weighted Variant

    Get PDF

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Passenger-Centric Urban Air Mobility: Fairness Trade-Offs and Operational Efficiency

    Full text link
    Urban Air Mobility (UAM) has the potential to revolutionize transportation. It will exploit the third dimension to help smooth ground traffic in densely populated areas. To be successful, it will require an integrated approach able to balance efficiency and safety while harnessing common resources and information. In this work we focus on future urban air-taxi services, and present the first methods and algorithms to efficiently operate air-taxi at scale. Our approach is twofold. First, we use a passenger-centric perspective which introduces traveling classes, and information sharing between transport modes to differentiate quality of services. This helps smooth multimodal journeys and increase passenger satisfaction. Second, we provide a flight routing and recharging solution which minimizes direct operational costs while preserving long term battery life through reduced energy-intense recharging. Our methods, which surpass the performance of a general state-of-the-art commercial solver, are also used to gain meaningful insights on the design space of the air-taxi problem, including solutions to hidden fairness issues.Comment: Submitted to Transportation Research Part C: Emerging Technologie

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Studies in Efficient Discrete Algorithms

    Get PDF
    This thesis consists of five papers within the design and analysis of efficient algorithms.In the first paper, we consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. We develop a combinatorial randomized algorithm that runs in subcubic time for a special class of graphs.In the second paper, we present a polynomial-time dynamic programming algorithm for optimal partitions of a complete edge-weighted graph, where the edges are weighted by the length of the unique shortest path connecting those vertices in the a priori given tree (shortest path metric induced by a tree). Our result resolves, in particular, the complexity status of the optimal partition problems in one-dimensional geometric (Euclidean) setting.In the third paper, we study the NP-hard problem of partitioning an orthogonal polyhedron P into a minimum number of 3D rectangles. We present an approximation algorithm with the approximation ratio 4 for the special case of the problem in which P is a so-called 3D histogram. We then apply it to compute the exact arithmetic matrix product of two matrices with non-negative integer entries. The computation is time-efficient if the 3D histograms induced by the input matrices can be partitioned into relatively few 3D rectangles.In the fourth paper, we present the first quasi-polynomial approximation schemes for the base of the number of triangulations of a planar point set and the base of the number of crossing-free spanning trees on a planar point set, respectively.In the fifth paper, we study the complexity of detecting monomials with special properties in the sum-product expansion of a polynomial represented by an arithmetic circuit of size polynomial in the number of input variables and using only multiplication and addition. We present a fixed-parameter tractable algorithms for the detection of monomial having at least k distinct variables, parametrized with respect to k. Furthermore, we derive several hardness results on the detection of monomials with such properties within exact, parametrized and approximation complexity

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    12th International Conference on Geographic Information Science: GIScience 2023, September 12–15, 2023, Leeds, UK

    Get PDF
    No abstract available

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    A tale of two packing problems : improved algorithms and tighter bounds for online bin packing and the geometric knapsack problem

    Get PDF
    In this thesis, we deal with two packing problems: the online bin packing and the geometric knapsack problem. In online bin packing, the aim is to pack a given number of items of different size into a minimal number of containers. The items need to be packed one by one without knowing future items. For online bin packing in one dimension, we present a new family of algorithms that constitutes the first improvement over the previously best algorithm in almost 15 years. While the algorithmic ideas are intuitive, an elaborate analysis is required to prove its competitive ratio. We also give a lower bound for the competitive ratio of this family of algorithms. For online bin packing in higher dimensions, we discuss lower bounds for the competitive ratio and show that the ideas from the one-dimensional case cannot be easily transferred to obtain better two-dimensional algorithms. In the geometric knapsack problem, one aims to pack a maximum weight subset of given rectangles into one square container. For this problem, we consider online approximation algorithms. For geometric knapsack with square items, we improve the running time of the best known PTAS and obtain an EPTAS. This shows that large running times caused by some standard techniques for geometric packing problems are not always necessary and can be improved. Finally, we show how to use resource augmentation to compute optimal solutions in EPTAS-time, thereby improving upon the known PTAS for this case.In dieser Arbeit betrachten wir zwei Packungsprobleme: Online Bin Packing und das geometrische Rucksackproblem. Bei Online Bin Packing versucht man, eine gegebene Menge an Objekten verschiedener Größe in die kleinstmögliche Anzahl an Behältern zu packen. Die Objekte müssen eins nach dem anderen gepackt werden, ohne zukünftige Objekte zu kennen. Für eindimensionales Online Bin Packing beschreiben wir einen neuen Algorithmus, der die erste Verbesserung gegenüber dem bisher besten Algorithmus seit fast 15 Jahren darstellt. Während die algorithmischen Ideen intuitiv sind, ist eine ausgefeilte Analyse notwendig um das Kompetitivitätsverhältnis zu beweisen. Für Online Bin Packing in mehreren Dimensionen geben wir untere Schranken für das Kompetitivitätsverhältnis an und zeigen, dass die Ideen aus dem eindimensionalen Fall nicht direkt zu einer Verbesserung führen. Beim geometrischen Rucksackproblem ist es das Ziel, eine größtmögliche Teilmenge gegebener Rechtecke in einen einzelnen quadratischen Behälter zu packen. Für dieses Problem betrachten wir Approximationsalgorithmen. Für das Problem mit quadratischen Objekten verbessern wir die Laufzeit des bekannten PTAS zu einem EPTAS. Die langen Laufzeiten vieler Standardtechniken für geometrische Probleme können also vermieden werden. Schließlich zeigen wir, wie Ressourcenvergrößerung genutzt werden kann, um eine optimale Lösung in EPTAS-Zeit zu berechnen, was das bisherige PTAS verbessert.Google PhD Fellowshi

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF
    corecore