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Introduction

Algorithms and Complexity

This thesis consists of five papers within the design and analysis of efficient algorithms.
Algorithms lie at the heart of computing. They are vitally important for the modern so-
ciety. Before describing the contents of the papers we introduce (somewhat informally)
some basic notions and concepts.

According to [2020] an algorithm is any well-defined computational procedure that
takes some value, or set of values, as input and produces some value, or set of values, as
output, using a sequence of computational steps.

An algorithm is applied to a well-specified computational problem. An example of
such a computational problem is to find the largest number in a given list of numbers.
Here the input for this problem is a list of numbers and the desired output is a number
from this list, that is not less than any other number on the list.

Given such a computational problem, any input that satisfies the problem’s de-
scription is called an instance of the problem. For example, the list (5, 3, 7, 1, 10, 2) is
an instance of the aforementioned problem, and the required output for this instance
is 10.

An algorithm is said to be correct [2020] if, for every input instance of a problem, it
halts with the correct output. In this case the algorithm solves the given computational
problem. An incorrect algorithm either never halts for some problem instances, or
returns an incorrect answer for some of them.

If the operations performed by an algorithm are always determined solely by the
input instance of a problem, such an algorithm is called deterministic. If the operations
performed by an algorithm are determined by the input instance of a problem with
the help of a random bits, such an algorithm is called randomized.

An algorithm can be specified in many different ways with different levels of detail.
For example, it can be an English text, or code written in some computer programming
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language such as C++, or hardware chip design. Using such a specification the
algorithm can be executed by whatever means possible. For example, by a person
following the text description, or by a CPU running the software built from the code,
or by a hardware chip created from the chip design document. In this thesis algorithms
are expressed using a pseudocode which is somewhat less strict than programming
language code, but still more formal than a plain English text.

Since a computational problem can have infinitely many instances, in order to
show that a given algorithm solves it, one needs to prove (usually formally) that the
algorithm halts for all possible input instances of the problem and returns the correct
output. Not all problems admit an algorithm that halts for all possible input instances
of the problem (e. g., halting problem [2020]).

Having several algorithms that solve the same computational problem, the natural
question arises: which algorithm is the best one? Also, what amount of resources this
algorithm requires? In order to answer these questions the analysis of algorithms has
been developed. Often the running time is used to compare algorithms (space complexity
and input/output complexity or I/O complexity are also studied, but we won’t use these
concepts in the thesis).

In order to analyze the running time, the computational model should be chosen.
In this thesis we use the basic random-access machine (RAM) model of computation.

Given a particular computational model, the running time of an algorithm on a
particular input is the number of primitive operations (steps) executed [2020]. It should
be noted, that for different inputs (instances) the running time of the same algorithm
can be quite different. It is quite easy to find the largest number in the list of ten
numbers, but a bit more difficult if the list has billion numbers.

The standard approach here is to analyze the dependency of the running time on
the input size parameter, which is some measure of the input instance of a problem
and depends on a computational problem being studied. For example, for the problem
of finding the largest number in a list of 32-bit integer numbers, the input size might
be the length of the list. Running an algorithm on different instances of the problem
with the same input size can result in different running times: best-case, average-case,
and worst-case running time. In this thesis, we are interested in the worst-case running
time, i. e., the longest running time among all possible input instances of the same size.

The running time T (n) of an algorithm is a function of an input size n. Instead of
the closed-form expression one uses the following asymptotic notation.

T (n) = O(f (n)) means that the function f (n) is an asymptotic upper bound for the
function T (n), or more formally: T (n) ∈ {g(n) | ∃c > 0, n0 > 0, s. t. 0 ≤ g(n) ≤
cf (n),∀n ≥ n0}. For example, T (n) = 3

4 n2 − 2n + 17 = O(n3).
T (n) = Θ(f (n)) means that the function f (n) is an asymptotically tight bound
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for the function T (n), or more formally: T (n) ∈ {g(n) | ∃c1 > 0, c2 > 0, n0 >
0, s. t. 0 ≤ c1f (n) ≤ g(n) < c2f (n),∀n ≥ n0}. For example, T (n) = 3

4 n2 − 2n +
17 = Θ(n2).

T (n) = Ω(f (n)) means that the function f (n) is an asymptotic lower bound for the
function T (n), or more formally: T (n) ∈ {g(n) | ∀c > 0∃n0 > 0, s. t. 0 ≤ cf (n) ≤
g(n),∀n ≥ n0}. For example, T (n) = 3

4 n2 − 2n + 17 = Ω(n).
If the running time of an algorithm is T (n) = Θ(1), such an algorithm is called a

constant-time algorithm.
If the running time of an algorithm is T (n) = Θ(n), such an algorithm is called a

linear-time algorithm.
If the running time of an algorithm is T (n) = Θ

(
n2
)
, such an algorithm is called

a quadratic-time algorithm.
In general, if the running time of an algorithm is T (n) = Θ(nk) for some constant

k > 0, such an algorithm is called a polynomial-time algorithm, and if the running
time of an algorithm is T (n) = Θ(2εn) for some constant ε > 0, such an algorithm is
called an exponential-time algorithm.

Some computational problems can be solved by polynomial-time algorithms, while
for others there are only exponential-time algorithms known. Finally, some computa-
tional problems cannot be solved by any algorithm at all (e. g., halting problem [2020]).

Computational problems that require yes or no as an answer are called decision
problems, and computational problems that require the maximum or the minimum
of some objective function of the input as an answer are called optimization problems.
For example, the problem of determining if a given number is the largest number in a
given list, is a decision problem, and the problem of finding the largest number in a
given list is an optimization version of the former decision problem.

Complexity classes group computational problems according to the complexity of
algorithms known to solve them. Decision problems that admit a polynomial-time
algorithm form the class P (polynomial-time). All decision problems for which the
proposed solution can be verified in polynomial time in the size of the input form the
class NP (nondeterministic polynomial-time).11

In order to better understand the possibility of having an efficient algorithm for the
problems from NP, a notion of NP-complete problem has been introduced. Informally
speaking, an NP-complete problem is a problem in NP that is as hard as any other
problem in NP [2020]. There is no polynomial algorithm known for any NP-complete
problem, and it is conjectured that P 6= NP.

When a decision version of an optimization problem is NP-complete and the

1For problems in NP one can nondeterministically guess the solution and then verify that it is indeed a
solution in polynomial time, hence the name “nondeterministic polynomial-time”.
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optimization problem cannot be solved exactly in an efficient way, it is natural to look
for an efficient approximation algorithm, which finds a near-optimal solution to the
optimization problem in polynomial time.

In order to measure the quality of an approximate solution, an approximation ratio
is used. An algorithm has an approximation ratio ρ(n) [2020] if, for any input size n, the
cost C of the solution produced by the algorithm is within a factor of ρ(n) of the cost

C∗ of an optimal solution, i. e., max
(

C
C∗ ,

C∗

C

)
≤ ρ(n), where C ,C∗ > 0.

An approximation scheme is an approximation algorithm that takes an instance
of the problem, a parameter ε > 0 and returns an approximate solution with the
approximation ratio 1 + ε. The running time of such an algorithm depends both on
the size of the problem instance and on the parameter ε. If for any fixed ε > 0 the
running time is polynomial in the size of the input, such an approximation scheme
is called a polynomial-time approximation scheme (PTAS). If the running time of a
polynomial-time approximation scheme is also polynomial in 1/ε, such a scheme is
called a fully polynomial-time approximation scheme (FPTAS). It should be noted that
not all optimization problems whose decision version is in NP admit PTAS, unless
P = NP (for example, the minimum vertex cover problem [2020]).

Graphs

Most of the problems discussed in this thesis deal with undirected or directed graphs.
An undirected graph is a mathematical object that is formally defined as an ordered

pair (V , E) where V is a finite set of vertices and E ⊆ {{v, u} | v ∈ V , u ∈ V } is a set
of unordered pairs of vertices called edges [2020]. A directed graph is defined similarly
as an ordered pair (V ,E) where V is a finite set of vertices and E ⊆ V × V is a set
of ordered pairs of vertices called edges. In both cases edges or vertices or both can
have weights. An undirected graph is complete, if every pair of distinct vertices forms
an edge. A graph G′ = (V ′,E ′) is a subgraph of a graph G = (V ,E), if V ′ ⊆ V and
E ′ ⊆ E .

A path of length k from a vertex v to a vertex u in an undirected (directed) graph
G = (V ,E) [2020] is a sequence of vertices (v0, v1, v2, . . . , vk), where v0 = v, vk = u
and {vi−1, vi} ∈ E ((vi−1, vi, respectively) for i = 1, 2, . . . , k. The path contains
the vertices v0, v1, . . . , vk and the edges {v0, v1}, {v1, v2}, . . . , {vk−1, vk} ((v0, v1),
(v1, v2), . . . , (vk−1, vk), respectively). The length of the path is the number of edges in
the path [2020]. The path (v0, v1, v2, . . . , vk) in an undirected (directed) graph of length
k > 2 (k > 1, respectively) where v0 = vk is called a cycle. An undirected graph where
for every pair of distinct vertices v and u there is a path connecting them is called
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connected.
An undirected connected graph without cycles is called a tree.
A subgraph of a graph G = (V ,E) that is a tree which includes (spans) all the

vertices from V is called a spanning tree of G. The spanning tree of an edge-weighted
graph that has the minimum total weight is called a minimum weight spanning tree.

Paper 1: All-Pairs Shortest Paths

We consider the problem of computing all-pairs shortest paths in a directed graph
with real weights assigned to vertices. The general all-pairs shortest paths problem in
an edge-weighted directed graph can be solved in time O(n3/2Ω(log n)1/2

) [6969]. For
a special case of vertex-weighted graphs the all-pairs shortest paths problem can be
solved in time O(n2.842) [7171].

For an n×n (0, 1)-matrix C , let KC be the complete weighted graph on the rows of
C where the weight of an edge between two rows is equal to their Hamming distance
(i. e., the number of positions at which the corresponding row elements are different).

Let MWT (C ) be the weight of a minimum weight spanning tree of KC .
We show that the all-pairs shortest path problem for a directed graph G on n

vertices with nonnegative real vertex weights and adjacency matrix AG can be solved
by an (combinatorial) randomized algorithm in time

Õ(n2
√

n + min{MWT (AG),MWT (At
G)}).

(The notation Õ( ) suppresses polylogarithmic factors and Bt stands for the transposed
matrix B.)

As a corollary, we conclude that the transitive closure of a directed graph G can be
computed by an (combinatorial) randomized algorithm in the aforementioned time.

We also conclude that the all-pairs shortest path problem for so-called uniform
disk graphs, with nonnegative real vertex weights, induced by point sets of bounded
density within a unit square can be solved in Õ(n2.75) time.

Paper 2: Optimal Partitions

A pair of sets V1 ⊂ V ,V2 = V \ V1 in an undirected graph G = (V , E) is called a cut.
The weight of the cut (V1,V2) is the total weight of the edges crossing the cut (i. e.,
{u, v} ∈ E , v ∈ V1, u ∈ V2). The Maximum (Minimum) Cut problem is to find a
cut in a given edge-weighted graph achieving the maximum (minimum) weight. If
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the required sizes of V1 and V2 are given as an input, the problem is called Maximum
(Minimum) Partition problem. In particular, if |V | = 2k and |V1| = |V2| = k, the
problem is called a Maximum (Minimum) Bisection problem.

We present a polynomial-time dynamic programming algorithm for optimal
partitions of a complete edge-weighted graph, where the edges are weighted by the
length of the unique shortest path connecting those vertices in the a priori given tree
(shortest path metric induced by a tree). This resolves, in particular, the complexity
status of the optimal partition problems in one dimensional geometric (Euclidean)
setting. We discuss also an extension of our method to the class of shortest path metrics
induced by the so-called bounded treewidth graphs.

Paper 3: Geometric Matrix Multiplication

The problem of partitioning an orthogonal polyhedron P into a minimum number of
3D rectangles is known to be NP-hard. In this paper, we first develop an approximation
algorithm with the approximation ratio 4 for the special case of the problem in which
P is a so-called 3D histogram. It runs in O(m log m) time, where m is the number
of corners in P. We then apply it to compute the exact arithmetic matrix product of
two n× n matrices A and B with nonnegative integer entries. The computation takes
time Õ(n2 + min{rArB, n min{rA, rB}}) where Õ suppresses polylogarithmic (in n)
factors and rA and rB denote the minimum number of 3D rectangles into which the
3D histograms induced by A and B can be partitioned, respectively.

Paper 4: Counting Triangulations

The number of triangulations of a planar n point set S is known to be cn, where the
base c lies between 2.43 and 30. Similarly, the number of crossing-free spanning trees
on S is known to be dn, where the base d lies between 6.75 and 141.07. The fastest
known algorithm for counting triangulations of S runs in O∗(2n) time while that for
counting crossing-free spanning trees runs in O∗(7.125n) time. The fastest known
arbitrarily close approximation algorithms for the base of the number of triangulations
of S and the base of the number of crossing-free spanning trees of S, respectively, run
in time subexponential in n. We present the first quasi-polynomial approximation
schemes for the base of the number of triangulations of S and the base of the number
of crossing-free spanning trees on S, respectively. (A quasi-polynomial approximation
scheme (QPTAS) is an approximation algorithm that takes an instance of the problem,
a parameter ε > 0 and returns an approximate solution with the approximation ratio
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1 + ε in time quasi-polynomial in n (i. e., n(log n)c
for some constant c > 0) for any

fixed ε > 0.)

Paper 5: Detecting Monomials with k Distinct Variables

We study the complexity of detecting monomials with special properties in the sum-
product expansion of a polynomial represented by an arithmetic circuit of size polyno-
mial in the number of input variables and using only multiplication and addition. We
focus on monomial properties expressed in terms of the number of distinct variables oc-
curring in a monomial. Our first result is a randomized fixed-parameter tractable (FPT)
algorithm for detection of a monomial having at least k distinct variables, parametrized
with respect to k. (A fixed-parameter tractable (FPT) algorithm, parametrized with
respect to some k, is an algorithm that runs in time f (k)O(nc) for some constant
c > 0, where n is the size of an input, and f is an arbitrary function of k.) For a
more restricted class of circuits, we can also provide a deterministic FPT algorithm
for detection of a monomial having at most k distinct variables parametrized by the
degree of the polynomial represented by the input circuit. Furthermore, we derive
several hardness results on detection of monomials with such properties within exact,
parametrized and approximation complexity.
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Paper 1

A Combinatorial Algorithm for
All-Pairs Shortest Paths in
Directed Vertex-Weighted
Graphs with Applications to
Disc Graphs

1.1 Introduction

The problems of finding shortest paths and determining their lengths are fundamental
in algorithms. They have been extensively studied in algorithmic graph theory. A
central open question in this area is if there is a substantially subcubic in the number of
vertices algorithm for the all-pairs shortest path problem for directed graphs with real
edge weights (APSP) in the addition-comparison model [7070, 7272]. For several special
cases of weights and/or graphs substantially subcubic algorithms for the APSP problem
are known [55, 1515, 6161, 7171, 7272, 7373]. However, in the general case the fastest known
algorithm due to Chan [1515] (see also [1414]) runs in time O(n3 log3 log n/ log2 n),
achieving solely a moderate polylogarithmic improvement over the O(n3) bound
yielded by Floyd-Warshall and Johnson’s algorithms [33, 7272].

The situation is different for directed graphs with real vertex weights. Recently,
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Chan has shown that the APSP problem for the aforementioned graphs can be solved
in time O(n2.844) [1515] and Yuster has slightly improved the latter bound to O(n2.842)
by using an improved bound on rectangular multiplication [7171].

The basic tool in achieving substantially subcubic upper bounds on the running
time for the APSP for directed graphs with constrained edge weights or real vertex
weights are the fast algorithms for arithmetic square and rectangular matrix multipli-
cation [1919, 3838]. One typically exploits here the close relationship between the APSP
problem and the so called distance or (min,+) product [55, 6161, 7070, 7171, 7272, 7373].

Unfortunately, these fast algorithms for matrix multiplication, yielding equally fast
algorithms for Boolean matrix product, are based on recursive algebraic approaches
over a ring difficult to implement. Thus, another central question in this area is
whether or not there is a substantially subcubic combinatorial (i.e., not relaying on ring
algebra) algorithm for the Boolean product of two n× n Boolean matrices [1010,5858,7070].
Again, the fastest known combinatorial algorithm for Boolean matrix product due to
Bansal and Williams [1010] running in time O(n3 log2 log n/ log9/4 n) achieves solely a
moderate polylogarithmic improvement over the trivial O(n3) bound. On the other
hand, several special cases of Boolean matrix product admit substantially subcubic
combinatorial algorithms [1111, 3434, 5151].

In particular, Björklund et al. [1111] provided a combinatorial randomized algorithm
for Boolean matrix product which is substantially subcubic in case the rows of the first
n×n matrix or the columns of the second one are highly clustered, i.e., their minimum
spanning tree in the Hamming metric has low cost. More exactly, their algorithm runs
in time Õ(n(n + c)), where c is the minimum of the costs of the minimum spanning
trees for the rows and the columns, respectively, in the Hamming metric. It relies on
the fast Monte Carlo methods for computing an approximate minimum spanning tree
in the L1 and L2 metrics given in [4040, 4141].

The assumption that the input directed graph is highly clustered in the sense
that the minimum spanning tree of the rows or columns of its adjacency matrix in
the Hamming metric has a subquadratic cost does not yield any direct applications
of the algorithm of Björklund et al. [1111] to shortest path problems, not even to the
transitive closure. The reason is that the cost of the analogous minimum spanning
tree can grow dramatically in the power graphs11 of the input graph. In particular,
we cannot obtain directly an upper time-bound on the transitive closure of Boolean
matrix corresponding to that for the Boolean matrix product from [1111] by applying
the asymptotic equality between the time complexity of matrix product over a closed
semi-ring and that of its transitive closure over the semi-ring due to Munro [5454]. The

1In the i-th power graph there is an edge from v to u if there is a path composed of at most i edges from
v to u in the input graph.
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reason is the dependence of the upper bound from [1111] on the cost of the minimum
spanning tree.

In this paper, we extend the idea of the method from [1111] to include a mixed
product of a real matrix with a Boolean one. We combine the aforementioned
extension with the ideas used in the design of subcubic algorithms for important
variants of the APSP problem [55, 7373], in particular those for directed graphs with
vertex weights [1515, 7171], to obtain not only a substantially subcubic combinatorial
algorithm for the transitive closure but also for the APSP problem in highly clustered
directed graphs with real vertex weights.

For an n × n 0 − 1 matrix C , let KC be the complete weighted graph on the
rows of C where the weight of an edge between two rows is equal to their Hamming
distance. Let MWT (C ) be the weight of a minimum weight spanning tree of KC . We
show that the all-pairs shortest path problem for a directed graph G on n vertices with
non-negative real weights and an adjacency matrix AG can be solved by a combinatorial
randomized algorithm in Õ(n2

√
n + min{MWT (AG),MWT (At

G)}) time. It follows
in particular that the transitive closure of a directed graph G can be computed by a
combinatorial randomized algorithm in the aforementioned time.

Our algorithms are of Monte Carlo type and by increasing the polylogarithmic
factor at the time bounds, the probability that they return a correct output within the
bounds can be amplified to 1− 1

nα , where α ≥ 1.
Since there are no practical or combinatorial substantially subcubic-time algorithms

not only for the APSP problem but even for the transitive closure problem for arbitrary
directed graphs at present, our simple adaptive method might be a potentially interesting
alternative for a number of graph classes.

As an example of an application of our method, we consider the APSP problem for
vertex-weighted uniform disk graphs induced by point sets of bounded density within
a unit square. We obtain a combinatorial algorithm for this problem running in time
O(
√

rn2.75), where r is the radius of the disks around the vertices in a unit square.
The recent interest in disk graphs, in particular uniform disk graphs, stems from

their applications in wireless networks. In this context, the restriction to point sets
of bounded density is quite natural. In [3232], Fürer and Kasiviswanathan provided a
roughly O(n2.5)-time preprocessing for approximate O(

√
n)-time distance queries in

arbitrary disk graphs.
Our paper is structured as follows. In the next section, we show a reduction of the

APSP problem for directed graphs with real vertex-weights to a mixed matrix product
of a distance matrix over reals with the 0 − 1 adjacency matrix. In Section 1.31.3, we
present an algorithm for such a mixed product which generalizes that for the Boolean
matrix product from [1111] and runs in subcubic time if the input 0 − 1 matrix is

11



highly clustered. By combining the results of Sections 1.21.2, 1.31.3, we can derive our main
results in Section 1.41.4. In the next section, we present the application of our method to
uniform disk graphs induced by point sets of bounded density. We conclude with final
remarks.

1.2 A Reduction of APSP to Mixed Matrix Products

1.2.1 The APSP problem

Formally, the All-Pairs Shortest Paths problem (APSP) in a directed graph G = (V ,E)
with real weights w(v) associated to vertices v ∈ V is to compute the |V | × |V |
distance matrix DG such that DG(v, u) is the distance δG(v, u) from v to u in G, i.e.,
the minimum total weight of vertices on a path from v to u in G. An additional goal
of the APSP problem is to compute a concise data structure representing the shortest
paths.

Note that δG(v, u) is equal to the minimum total weight of inner vertices on a
path from v to u in G increased by the weights of v and u.

We shall assume |V | = n throughout the paper.
For i = 0, 1, . . . , n−1, let δi

G(v, u) be the distance from v to u on paths consisting
of at most i edges, i.e., the minimum total weight of vertices on a path from v to u
having at most i edges in G. Next, let Di

G be the |V | × |V | matrix such that Di
G[v, u]

is equal to δi
G(v, u).

For convention, we assume δ0
G(v, v) = 0 and δ0

G(v, u) = +∞ for v 6= u. Hence,
D0

G has zeros on the diagonal and +∞ otherwise. In D1
G , all the entries D1

G[v, u]
where (v, u) ∈ E are set to w(v) + w(u) instead of +∞. Thus, both D0

G and D1
G can

be easily computed in time O(n2).

1.2.2 Mixed matrix products

Let A be an n× n matrix over R ∪ {+∞}, and let B be an n× n matrix with entries
in {0, 1}. The mixed right product C of A and B is defined by

C [i, j] = min{A[i, k]|1 ≤ k ≤ n & B[k, j] = 1} ∪ {+∞}.

If C [i, j] 6= +∞ then the index k such that C [i, j] = A[i, k] (and thus B[k, j] = 1)
is called a witness for C [i, j]. Analogously, the mixed left product C ′ of B and A is
defined by

C ′[i, j] = min{A[k, j]|1 ≤ k ≤ n & B[i, k] = 1} ∪ {+∞},

12



and if C ′[i, j] 6= +∞ then the index k such that C ′[i, j] = A[k, j] is called a witness
for C ′[i, j].

An n×n matrix W such that whenever C [i, j] 6= +∞ then W [i, j] is a witnesses for
C [i, j] is called a witness matrix for the right mixed product of A and B. Analogously,
we define a witness matrix for the left mixed product of B and A.

1.2.3 The reduction

Let AG denote the n × n adjacency matrix of G = (V ,E), i.e., AG[v, u] = 1 iff
(v, u) ∈ E .

Lemma 1.1. For an arbitrary i ∈ {0, 1, . . . , n− 2}, Di+1
G can be computed on the basis

of Di
G and the right mixed product of Di

G with AG or Di
G and the left mixed product of

AG with Di
G in time O(n2).

Proof. It is sufficient to observe that for any pair v, u of vertices in G, Di+1
G [v, u] is

equal to

min{Di
G[v, u],min{Di

G[v, x] + w(u)|1 ≤ x ≤ n & AG[x, u] = 1} ∪ {+∞}}

Symmetrically, Di+1
G [v, u] is equal to

min{Di
G[v, u],min{Di

G[x, u] + w(v)|1 ≤ x ≤ n & AG[v, x] = 1} ∪ {+∞}}

The following lemma follows the general strategy used to prove Theorem 3.4
in [1515].

Lemma 1.2. Let G be a directed graph G on n vertices with non-negative real vertex
weights. Suppose that the right (or left) mixed product of an n× n matrix over R ∪{+∞}
with the adjacency matrix AG of G along with the witness matrix can be computed in time
Tmix(n) = Ω(n2). The APSP problem for G can be solved in time Õ(n1.5

√
Tmix(n)).

Proof. We begin by computing Dt−1
G for some t ∈ [2, . . . , n] which will be specified

later. By Lemma 1.11.1 this computation takes time O(tTmix(n)).
It remains to determine distances between pairs of vertices where any shortest

path consists of at least t edges. For this purpose, we determine a subset B of V , the
so called bridging set [7373], hitting all the aforementioned long paths. We apply the
following fact to l = t and sets of t vertices on shortest consisting of exactly t − 1
edges, similarly as in [55, 1515, 7171, 7373].
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Fact 1.1. Given a collection of N subsets of {1, . . . , n}, where each subset has size exactly
l , we can find a subset B of size O((n/l) log n) that hits all subsets in the collection in time
O(Nl).

Since our application of Fact 1.11.1 is analogous to those in [55, 1515, 7171, 7373], we solely
sketch it referring the reader for details to the aforementioned papers.

Note that for each pair v, u, of vertices for which any shortest path has at least
t edges there is a pair v′, u′ of vertices on a shortest path from v to u such that any
shortest path from v′ to u′ has exactly t − 1 edges. For all such pairs v′, u′, we can
find a shortest path on t − 1 edges, and thus on t vertices, by backtracking on the
computation of Dt−1

G and using witnesses for the mixed products. In total, we generate
O(n2) such paths on t vertices in time O(tn2). The application of Fact 1.11.1 also takes
time O(tn2).

Next, we run Dijkstra’s single-source shortest path algorithm [33] for all vertices
in the bridging set B in the input graph G and in the graph resulting from reversing
the direction of edges in G. In this way, we determine DG[v, u] for all pairs (v, u) ∈
(B × V ) ∪ (V × B).

Now, it is sufficient for all remaining pairs (v, u) in V × V to set

DG[v, u] = min{Dt−1
G (v, u),min

b∈B
{DG[v, b] + DG[b, u]− w(b)}

in order to determine the whole DG .

The computation of Dt−1
G takes O(tTmix(n)) time which asymptotically is not

less than the O(tn2) time taken by the construction of the bridging set. The runs of
Dijkstra’s algorithm and the final computation of DG require Õ( n

t n2) time. By setting

t =
√

n3

Tmix (n) , we obtain the lemma.

1.3 Fast Computation of the Mixed Products for Clus-
tered Data

Our algorithm for the right (or, left) mixed product relies on computation of an
approximate minimum spanning tree of the columns (or rows, respectively) of the
Boolean input matrix in the Hamming metric.

14



1.3.1 Approximate minimum spanning tree in high dimensional
space

For c ≥ 1 and a finite set S of points in a metric space, a c-approximate minimum
spanning tree for S is a spanning tree in the complete weighted graph on S, with edge
weights equal to the distances between the endpoints, whose total weight is at most c
times the minimum.

In [4040] (section 4.3) and [3939] (section 3), Indyk and Motwani in particular
considered the bichromatic ε-approximate closest pair problem for n points in Rd with
integer coordinates in O(1) under the Lp metric, p ∈ {1, 2}. They showed that there
is a dynamic data structure for this problem which supports insertions, deletions and
queries in time O(dn1/(1+ε)) and requires O(dn + n1+1/(1+ε))-time preprocessing. In
consequence, by a simulation of Kruskal’s algorithm they deduced the following fact.

Fact 1.2. For ε > 0, a 1 + ε-approximate minimum spanning tree for a set of n points
in Rd with integer coordinates in O(1) under the L1 or L2 metric can be computed by a
Monte Carlo algorithm in time O(dn1+1/(1+ε)).

In [4141] Indyk, Schmidt and Thorup reported even slightly more efficient (by a
poly-log factor) reduction of the problem of finding a 1 + ε-approximate minimum
spanning tree to the bichromatic ε-approximate closest pair problem via an easy
simulation of Prim’s algorithm.

Note that the L1 metric for points in Rn with 0, 1-coordinates coincides with the
n-dimensional Hamming metric. Hence, Fact 1.21.2 immediately yields the following
corollary.

Corollary 1.1. For ε > 0, a 1 + ε-approximate minimum spanning tree for a set of n
0− 1 strings of length n under the Hamming metric can be computed by a Monte Carlo
algorithm in time O(n2+1/(1+ε)).

1.3.2 The algorithm for mixed matrix product

The idea of our combinatorial algorithm for the right mixed product C of A with B
and its witness matrix is a generalization of that from [1111]. Let P(r, v) denote a priority
queue (implemented as a heap) on the entries A[r, k] such that B[k, v] = 1 ordered by
their values in nondecreasing order.

First, we compute an approximate minimum spanning tree of the columns of B
in the Hamming metric. Then, we fix a traversal of the tree. Next, for each row r
of A, we traverse the tree, construct P(r, start) where start is the first column of B in
the tree traversal and then maintain P(r, v) for the currently traversed v by updating
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P(r, u) where u is the predecessor of v in the traversal. A minimum element in P(r, v)
yields a witness for C [r, v]. The cost of the updates in a single traversal of the tree is
proportional to the cost of the tree modulo a logarithmic factor.

Algorithm 1.1

Input: n× n matrix A over R ∪{+∞} and an n× n Boolean matrix B; P(r, v) stands
for a priority queue on the entries A[r, k] s.t. B[k, v] = 1 ordered by their values
in nondecreasing order.

Output: A witness matrix W for the right mixed product C of A and B.
1: Compute an O(log n)-approximate minimum spanning tree TB of the columns of

B in the Hamming metric;
2: Fix a traversal of the tree TB linear in its size;
3: Set start to the first node of the traversal;
4: for each pair of consecutive neighboring columns v, u in the traversal do
5: precompute the set Dv,u of positions where 1s occur in v but not in u and the

set Du,v of positions where 1s occur in u but not in v;
6: end for
7: for each row r of A do
8: Construct the priority queue P(r, start) and if P(r, start) 6= ∅ set W [r, start] to

the index k where A[r, k] is the minimum element in P(r, start);
9: Traverse the tree TB and for each node v different from start compute the

priority queue P(r, v) from the priority queue P(r, u), where u is the predecessor
of v in the traversal, by utilizing Dv,u and Du,v. If P(r, v) 6= ∅ set W [r, v] to
the index k where A[r, k] is the minimum element in P(r, v).

10: end for

Lemma 1.3. Algorithm 1.11.1 is correct, i.e., it outputs the witnesses matrix for the right
mixed product of matrices A and B.

For an n × n Boolean matrix C , let KC be the complete weighted graph on the
rows of C where the weight of an edge between two rows is equal to their Hamming
distance. Next, let MWT (C ) be the weight of a minimum weight spanning tree of KC .

Lemma 1.4. Algorithm 1.11.1 can be implemented in time Õ(n(n + MWT (Bt ))) + t(n),
where t(n) is the time taken by the construction of the O(log n)-approximate minimum
weight spanning tree in step 1.

Proof. Step 1 can be implemented in time t(n) while steps 2, 3 take time O(n). Step 4
takes O(n2) time. The block in Step 7 isciterated n times.

16



The first step in the block, i.e., the construction of P(r, start) takes O(n log n)
time. The update of P(r, u) to P(r, v) takes O(log n(|Dv,u|+ |Du,v|)) time. Note that
|Dv,u| + |Du,v| is precisely the Hamming distance between the columns v and u. It
follows by the O(log n) approximation factor of TB that the total time taken by these
updates is O(MWT (Bt ) log2 n).

We conclude that Step 7 can be implemented in time Õ(nMWT (Bt )).

Theorem 1.1. The right mixed product of two n × n matrices A over R ∪ {+∞}
and B over {0, 1} can be computed by a combinatorial randomized algorithm in time
Õ(n(n + MWT (Bt ))). Analogously, the left mixed product of B and A can be computed by
a combinatorial randomized algorithm in time Õ(n(n + MWT (B))).

Proof. By Corollary 1.11.1, an Θ(log n)-approximate minimum spanning tree can be
constructed by a Monte Carlo algorithm in time Õ(n2) (observe that n1/f = O(1)
if f = Ω(log n)). Hence, by Lemmata 1.31.3, 1.41.4, we obtain the theorem for the right
mixed product. The upper bound on the time required to compute the left mixed
product follows symmetrically.

1.4 Main Results

Lemma 1.21.2 combined with Theorem 1.11.1 yield our main result.

Theorem 1.2. Let G a directed graph G on n vertices with non-negative real vertex
weights. The all-pairs shortest path problem for G can be solved by a combinatorial
randomized algorithm in time

Õ(n2
√

n + min{MWT (AG),MWT (At
G)}).

By setting vertex weights, say, to zero, we obtain immediately the following
corollary.

Corollary 1.2. The transitive closure of a directed graph G on n vertices can be computed
by a combinatorial randomized algorithm in time

Õ(n2
√

n + min{MWT (AG),MWT (At
G)}).

Equivalently, we can formulate Corollary 1.21.2 as follows.

Corollary 1.3. The transitive closure of an n × n Boolean matrix B (over the Boolean
semi-ring) can be computed by a combinatorial randomized algorithm in time

Õ(n2
√

n + min{MWT (B),MWT (Bt )}).
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Figure 1.1

1.5 APSP in Vertex-Weighted Uniform Disk Graphs
of Bounded Density

In this section, we consider uniform disk graphs that are induced by a set P of n points
in a unit square in the plane that are b(n)-dense, where b : N → N . Formally, we say
that P is b(n)-dense iff each cell of the regular

√
n×
√

n grid within the unit square
contains at most b(n) points. The vertices of such an induced disk graph are the points
in P, and two vertices are adjacent in the graph iff their Euclidean distance is at most
r, where r is a positive constant not exceeding 1. We shall term the aforementioned
graphs as uniform disk graphs induced by b(n)-dense point sets.

Lemma 1.5. Given two intersecting disks on the plane of the same radius r with the
distance d between centers, the area of the symmetric difference is O(rd ).

Proof. AC = d
2 ,AB = r.

The area of the triangle ABC is

AreaABC =
1
2

ACBC =
1
2

d
2

√
r2 − d2

4
=

1
8

d
√

4r2 − d2.

The area of the circular sector ABD is

AreaABD =
1
2

r2∠BAC =
1
2

r2 arccos

(
d
2r

)
.

The area of BCD is AreaBCD = AreaABD − AreaABC .
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The area of the symmetric difference

Area = 2(πr2 − 4AreaBCD) = 2πr2 − 4r2 arccos

(
d
2r

)
+ d
√

4r2 − d2.

Finally, by using Taylor series expansion

4r2 arccos

(
d
2r

)
= 4r2

(
π

2
− d

2r
+ O

((
d
2r

)2
))

=

= 2πr2 − 2dr + O(d2) = 2πr2 − 2dr + O(rd )

and
√

4r2 − d2 ≤ 2r we get Area = O(rd ).

Lemma 1.6. Let G be a uniform disk graph induced by a b(n)-dense point set. For each
edge (v, u) of G, the number of vertices in G that are a neighbor of exactly one of the
vertices v, u, i.e., the Hamming distance between the two rows in the adjacency matrix of
G corresponding to v and u, respectively, is O(r × b(n)(dist(v, u)× n +

√
n)).

Proof. The number of vertices of G that are a neighbor of exactly one of the vertices v
and u is at most the minimum number of cells of the regular

√
n×
√

n grid within
the unit square that cover the symmetric difference S(v, u) between the disks centered
at v and u, respectively, multiplied by b(n). The aforementioned number of cells is
easily seen to be at most the area A(v, u) of S(v, u) divided by the area of the grid cell,
i.e., A(v, u)× n, plus the number of cells of the grid intersected by the perimeter of
S(v, u), i.e., O(r

√
n). By Lemma 1.51.5, we have A(v, u) = O(dist(v, u)× r). Hence, the

aforementioned number of cells is O(r(dist(v, u)× n +
√

n)).

The following lemma is a folklore (e.g., it follows directly from the upper bound
on the length of closed path through a set of points in a d -dimensional cube given in
Lemma 2 in [4444]).

Lemma 1.7. The minimum Euclidean spanning tree of any set of n points in a unit
square in the plane has total length O(

√
n).

Combining Lemmata 1.61.6, 1.71.7, we obtain the following one.

Lemma 1.8. For a uniform disk graph G induced by a b(n)-dense n-point set, a spanning
tree of the rows (or, columns) of the adjacency matrix of G in the Hamming metric having
cost O(rn3/2) can be found in time O(n2).
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Proof. Construct a minimum Euclidean spanning tree of the n points forming the
vertex set of G. It takes time O(n log n) and the resulting tree T has total length O(

√
n)

by Lemma 1.71.7. Form a spanning tree U of the rows (or, columns) of the adjacency
matrix of G by connecting by edge the rows corresponding to v and u iff (v, u) ∈ T .
By Lemma 1.61.6 and the O(

√
n) length of T , the total cost of U is O(rn3/2b(n)).

By plugging Lemma 1.81.8 into Theorem 1.21.2, we obtain our main result in this
section.

Theorem 1.3. Let G be a uniform disk graph, with non-negative real vertex weights,
induced by a b(n)-dense n-point set. The all-pairs shortest path problem for G can be solved
by a combinatorial algorithm in time Õ(

√
rn2.75

√
b(n)).

In the application of the method of Theorem 1.21.2 yielding Theorem 1.31.3, we can
use the deterministic algorithm of Lemma 1.81.8 to find a spanning tree of the rows
or columns of the adjacency matrix of G instead of the randomized approximation
algorithm from Fact 1.21.2.

By straightforward calculations, our upper time-bound for APSP in vertex-weighted
uniform disk graphs induced by O(1)-dense point sets subsumes that for APSP in
sparse graphs based on Dijkstra’s single-source shortest-path algorithm, running in
time Õ(nm), where m is the number of edges, for r >> n−1/6.

Finally, we can also easily extend Theorem 1.31.3 to include uniform ball graphs
in a d -dimensional Euclidean space. In the extension, the term

√
r in the upper

time-bound generalizes to
√

rd−1.

1.6 Final Remarks

We can easily extend our main result to include solving the APSP problem for vertex
and edge weighted directed graphs in which the number of different edge weights is
bounded, say by q. This can be simply achieved by decomposing the adjacency matrix
AG into the union of up to q matrices A1,A2, . . . ,Al in one-to-one correspondence
with the distinct edge weights and consequently replacing each mixed product with
l such products in Lemmata 1.11.1, 1.21.2. In the final upper bound, MWT (AG) and
MWT (At

G) are replaced by
∑l

i=1 MWT (Ai) and
∑l

i=1 MWT (At
i ), respectively.

It is an interesting problem to determine if there are other natural graph classes
where MWT (AG) or MWT (At

G) are substantially subquadratic in the number of
vertices.
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It follows from the existence of the so called Hadamard matrices [1313] that there is
an infinite sequence of graphs with ni × ni adjacency matrices Ai such that

min{MWT (Ai),MWT (At
i )} = Ω

(
(ni)

2
)

holds.

21



22



Paper 2

Optimal Cuts and Partitions in
Tree Metrics in Polynomial
Time

2.1 Introduction

The optimal partition problems for unweighted and weighted graphs are classical
NP-hard combinatorial optimization problems.

The typical partition problems, like MAX-CUT and MAX-BISECTION are well
known to be APX-hard [3636]. Also the existence of a PTAS for MIN-BISECTION
has been likely ruled out in [4848]. The maximization problems are typically APX-
complete [3636] whereas for MIN-BISECTION only logarithmic approximations are
know [99,5959]. The metric counterparts of these problems are to find the corresponding
optimal partitions of the complete graph on the input point set, where edges are
weighted by metric distances between their endpoints. The metric MAX-CUT, MAX-
BISECTION, MIN-BISECTION and other partitioning problems were all proved
to have polynomial time approximation schemes (PTAS) [44, 2222, 2323, 2424, 2525, 4343, 4545].
These problems are known to be NP-hard in general metric setting (e.g., for 1 − 2
metrics [2525]). Their exact computational status for geometric (i.e., Lp) metrics and
this even for dimension one was widely open.

In this paper, in particular, we resolve the complexity status of these problems for
just dimension one by giving a polynomial time algorithm. Our solution, somewhat
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1 1 1

(a)

1 1 1

(b)

Figure 2.1: The cut values of the first partition (a) and the second partition (b) are
respectively 8 and 6. It follows that single geometric cuts are not always sufficient to
generate minimum bisections on the real line.

surprisingly, involves certain new ideas for applying dynamic programming which
could be also of independent interest (see [4646] for a preliminary version). In fact,
our dynamic programming method works for the more general case of tree metric
spaces, where the underlying trees have nonnegative real edge weights (see also the
embeddability properties of arbitrary metrics in tree metrics [2929]). Observe that
the one-dimensional case can be modeled by line graphs with nonnegative real edge
weights. We also give an evidence that our polynomial time method can be extended
to include analogous partition problems in metric spaces induced by shortest paths in
graphs of constant treewidth.

2.2 Preliminaries

We define our dynamic programming method in terms of generalized subproblems on
finite multisets of vertices in an undirected graph with nonnegative real edge weights.

For a partition of a finite multiset P of graph vertices into two multisets P1 and
P2, the value of the cut is the sum over all pairs (v,w) ∈ P1 × P2 of length (i.e., total
weight) of a shortest path connecting v with w. For example, see Fig. 2.1a2.1a.

The MAX-CUT problem for P will be now to find a partition of P into two
multisets that maximizes the value of the cut. If |P| = n and the two multisets are
additionally required to be of cardinality k and n − k, respectively, then we obtain
the (k, n − k) MAX-PARTITION problem for P. In particular, if n is even and
k = n/2 then we have the MAX-BISECTION problem. Next, if we replace the
requirement of maximization with that of minimization then we obtain the (k, n− k)
MIN-PARTITION and MIN-BISECTION problems for P, respectively.

The aforementioned optimal partition problems can be generalized to include
a multiset of points in an arbitrary metric (in particular, geometric) space by just
replacing the weight of a shortest path connecting v with w with the distance between
v and w.

Given a graph G = (V ,E), a tree decomposition is a pair (X ,T ), where X =
{X1, . . . ,Xl} is a family of subsets (called bags) of V , and T is a tree whose nodes are
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the bags Xi, satisfying the following properties [2727, section 12.3]:

1. The union of all bags Xi equals V .

2. For each (v,w) ∈ E , there is a bag Xi that contains both v and w.

3. If Xi and Xj both contain a vertex v, then all nodes Xk of the tree in the (unique)
path between Xi and Xj contain v as well.

The width of a tree decomposition is the size of its largest set Xi minus one.
The treewidth tw(G) of a graph G is the minimum width among all possible tree
decompositions of G.

2.3 The Algorithm

Let T be a tree with at most n vertices and nonnegative real edge weights. Next, let P
be a multiset of vertices of T whose cardinality does not exceed n.

Let us root T at some vertex r. Next, for each vertex v of T , let Tv stands for the
subtree of T induced by all vertices of T from which the path to r passes through v.
We shall assume that Tv is rooted at v. Finally, let Pv be the set of all elements in P
that are copies of vertices in Tv, and let P(v) stand for the set of all elements in P that
are copies of the vertex v.

Consider a subtree Tv of T and a partition of P into two multisets A and B. The
crucial observation is as follows.

In order to compute the total weight of shortest paths or their fragments contained
within Tv, it is sufficient to know the partition of Pv into Pv ∩ A and Pv ∩ B, and just
the number of elements in P \ Pv that belong to A or B.

Indeed, the specific placement of the elements of (P \ Pv) ∩ A or (P \ Pv) ∩ B in
the tree T is not relevant when we consider solely the maximal fragments of shortest
paths connecting to these elements that are contained within Tv.

The subproblem MAXCUT (v, p, q, s, t) is to find a partition of Pv into two multi-
sets A and B of cardinality p and q, respectively, that maximizes the sum of:

1. the total weight of shortest paths between pairs of elements in A× B;

2. t times the total weight of the paths between pairs of elements in A× {v};

3. s times the total weight of the paths between pairs of elements in B × {v}.
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The parameters s and t are interpreted as the number of elements in P \ Pv that
belong to the same set as those in A or B, respectively, in the sought two partition of P.

We shall denote the maximum possible value of the sum by mc(v, p, q, s, t). Note
that the total number of subproblems is O(n3).

Assume first that T is binary.
If Tv is the singleton ({v}, ∅) then MAXCUT (v, p, q, s, t) can be trivially solved in

O(1) time. Otherwise, we can reduce the subproblem to smaller ones by the recurrences
given in the following lemmata.

Lemma 2.1. Suppose that v has two children v1 and v2. The value mc(v, p, q, s, t) is
equal to the maximum over partitions of |P(v)| into the sum of natural numbers p(v), q(v),
partitions of |Pv1 | into the sum of natural numbers p1 and q1, and partitions of |Pv2 | into
the sum of natural numbers q1, q2, where p = p(v) + p1 + p2 and q = q(v) + q1 + q2,
of the total of:

1. mc(v1, p1, q1, s + p2 + p(v), t + q2 + q(v));

2. mc(v2, p2, q2, s + p1 + p(v), t + q1 + q(v));

3. (p1q2 + p2q1)(weight(v1, v) + weight(v2, v));

4. p1t × weight(v1, v) + p2t × weight(v2, v);

5. q1s × weight(v1, v) + q2s × weight(v2, v).

Proof. The first and second component values correspond to the total weights of
shortest paths or their fragments within Tvi connecting pairs of elements in Pvi ×Pvi or
in Pvi × (P \ Pvi ), i ∈ {1, 2}, that belong to different sets in the sought two partition
of P (see Fig. 2.2a2.2a).

The three remaining ones correspond to the total weight of the edges {v, v1} and
{v, v2} on shortest paths between copies of vertices in P belonging to different sets in
the sought two partition. In particular, the third component value corresponds to the
total weight of the {v, v1} and {v, v2} fragments of shortest paths connecting pairs
{a, b} of elements in P, where a is a copy of a vertex in Tv1 while b is a copy of a vertex
in Tv2 and a, b belong to different sets of the two partition (see Fig. 2.2b2.2b).

Next, the fourth component value corresponds to the total weight of the {v, v1}
and {v, v2} fragments of shortest paths connecting pairs {a, b} of elements in P, where
a is a copy of a vertex in Tv1 or Tv2 belonging to the first set in the sought partition,
while b is a copy of a vertex in P \ Pv belonging to the second set in the partition. The
fifth component value can be specified symmetrically by switching the first set with the
second set in the two partition. For p1t × weight(v1, v) term see Fig. 2.2c2.2c, the other
terms are symmetrical.
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Figure 2.2: Distinct cases in the proof of Lemma 2.12.1

Lemma 2.2. Suppose that v has a single child v1. The value mc(v, p, q, s, t) is equal to
the maximum over partitions of |P(v)| into the sum of natural numbers p(v), q(v), of the
total of:

1. mc(v1, p− p(v), q − q(v), s + p(v), t + q(v));

2. (p− p(v))t × weight(v1, v);

3. (q − q(v))s × weight(v1, v).

Proof. The first component value corresponds to the total weight of shortest paths or
their fragments within Tv1 connecting pairs of elements in Pv1×Pv1 or in Pv1×(P\Pv1 )
that belong to different sets in the sought two partition of P (see Fig. 2.3a2.3a). The
second component value corresponds to the total weight of the {v, v1} fragments of
shortest paths connecting pairs {a, b} of elements in P, where a is a copy of a vertex in
Tv1 belonging to the first set in the sought partition, while b is a copy of a vertex in
P \ Pv belonging to the second set in the partition (see Fig. 2.3b2.3b). Finally, the third
component value can be specified symmetrically by switching the first set with the
second set in the two partition.

In Lemma 2.12.1, after picking a partition of |P(v)| and |Pv1 |, the partition of |Pv2 |
is determined by the constraints p = p(v) + p1 + p2 and q = q(v) + q1 + q2. It
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Figure 2.3: Two cases in the proof of Lemma 2.22.2, where p1 = p − p(v), and q1 =
q − q(v).

follows that the number of candidates for partition sequences in Lemma 2.12.1 does not
exceed O(n2) while that number in Lemma 2.22.2 is only O(n). Furthermore, if the input
multiset P is a set, i.e., |P(v)| ≤ 1 for all vertices v, then the number of candidate
partition sequences in Lemmata 2.12.1, 2.22.2 is O(n) and 2, respectively. We conclude that
if the tree T is binary then we can compute mc(v, p, q, s, t) for all the corresponding
subproblems MAXCUT (v, p, q, s, t) in a bottom up fashion in order of nondecreasing
|Tv| in O(n5) time in the general case and in O(n4) time if P is a set.

Now, to obtain the maximum value of a cut for P it is sufficient to find the
maximum among the values of the form mc(r, p, q, 0, 0) (recall that r is the root of
T ). If we additionally require p = q then we obtain a maximum value of bisection
etc. By backtracking, we can construct maximum cut, maximum bisection etc. The
minimum variants of the partition problems can be solved analogously.

If the rooted T is not binary, we can easily transform it to a binary tree T ′ by
adding totally at most n − 2 dummy vertices between parents with more than two
children and their respective children. The dummy vertices between a parent v and
its children form a binary subtree rooted at v whose leaves are the children. We set
the weight of the edges incident to the children to the corresponding weights of the
edges between v and their respective children in T . All other edge weights are set to
zero in the subtree. The considered optimal cut and partitions problems for P in T
are equivalent to those for P in T ′.

28



Theorem 2.1. Let T be a tree with at most n vertices and nonnegative real edge weights,
and let P be a multiset of vertices in T with cardinality at most n. The MAX-CUT,
MAX-BISECTION, (k, n− k) MAX-PARTITION, MIN-BISECTION and (k, n− k)
MIN-PARTITION problems for P can be solved by dynamic programming in O(n5) time.
If P is a set then these problems can be solved in O(n4) time.

The geometric optimal partition problems for a finite mulitset of points on the
real line can be equivalently formulated as the corresponding partition problems in the
shortest-path metric induced by the line graph whose vertices correspond to the points
in the multiset and whose edges correspond to the minimal intervals between different
points. The edges are weighted with the length of intervals. In the case of a line graph,
the reductions of subproblems to smaller ones rely solely on Lemma 2.22.2, where the
number of candidate partitions is asymptotically smaller than that in Lemma 2.12.1 by a
factor of n. Hence, the overall asymptotic time complexity decreases correspondingly.

Corollary 2.1. The geometric MAX-CUT problem on the real line as well as the geometric
MAX-BISECTION, (k, n− k) MAX-PARTITION, MIN-BISECTION and (k, n− k)
MIN-PARTITION problems on the real line are solvable in O(n4) time. If the input
multiset of points is a set then these problems are solvable in in O(n3) time.

2.4 Extensions to Graphs of Bounded Treewidth for
Minimum Partition Problems

A natural way of generalizing our method for tree metrics to those induced by graphs
of bounded treewidth is as follows. Construct a tree decomposition T of the input
graph G. For a bag b in the decomposition, let Tb be the subtree of T rooted at b, and
let Gb stand for the subgraph of G induced by vertices contained in the bags of Tb.
One could consider analogously subproblems with Gb, the number of vertices in the
first and the second set of sought partition within Gb and G \ Gb, respectively, as the
subproblem parameters.

Unfortunately, the aforementioned parameters do not seem sufficient to specify
such a generalized subproblem. Simply put, if b is not a singleton (as this is in the case
of trees) then it is not clear which vertex in b on a shortest path connecting a vertex in
Gb with a vertex in G \ Gb belonging to a different set in the sought partition, would
be the last one on the path within Gb.

One could try to tackle this problem by introducing 2|b| new parameters specifying
for each vertex in b the number of shortest paths connecting vertices in Gb with those
in G \ Gb belonging to a different set in the sought partition, where v is the last vertex
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in Gb on the shortest paths before entering G \ Gb. (A single shortest path for each
such pair would be counted.) Then, one could generalize the recurrences given in
Lemmata 2.12.1, 2.22.2 but just in case of the minimum partition problems.

The reason is that taking minimum would naturally force shortest path connections
in the solutions to the subproblems. On the contrary, taking maximum would
rather force longest path connections in these solutions. Thus, in the latter case, the
generalized method would not yield a correct solution to the posed maximum partition
problem.

Let us take a closer look at the generalized recurrences for minimum partition
problems. We may assume w.l.o.g. that T is binary [1212]. Let b1 and b2 be the child bags
of the bag b in the tree decomposition T of G. For each of the aforementioned 2|b|
parameters of a subproblem associated with Gb, we need to consider possible partitions
into at most |b1|+ |b2| components corresponding to the analogous parameters for the
subproblems associated with Gb1 and Gb2 , respectively. Thus, if the width of the tree
decomposition T is d , such a generalized recurrence would involve (nO(d ))O(d ) = nO(d2)

optimal solutions to smaller subproblems. It follows that the total time taken by the
generalization to include minimum partitions in metric spaces induced by shortest
paths in G would be nO(d2). The cost of the preprocessing, i.e., the construction of the
decomposition tree of G of minimal width is marginal here [1212].

Claim 2.1. Let G be a graph of treewidth d with at most n vertices and nonnegative real
edge weights, and let P be a multiset of vertices in G with cardinality at most n. The
MIN-BISECTION and (k, n− k) MIN-PARTITION problems for P can be solved by
dynamic programming in nO(d2) time.

2.5 Final Remarks

Our dynamic programming method for optimal partitions in tree metrics yields in
particular polynomial time solutions to these problems on the real line. It remains an
open problem whether optimal partitions in geometric metrics of dimension greater
than 1 admit polynomial time methods or they turn out to be inherently hard. At
stake is the exact computational status of other geometric problems for which our
knowledge is very limited at the moment. The exact computation complexity status
of the maximum partition problems for shortest-path metrics in bounded treewidth
graphs is also a challenging open problem.
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Paper 3

3D Rectangulations and
Geometric Matrix
Multiplication

3.1 Introduction

This paper considers two intriguing and at a first glance unrelated problems.
The first problem lies at the heart of three-dimensional computational geometry.

It belongs to the class of polyhedron decomposition problems, whose applications range
from data compression and database systems to pattern recognition, image processing,
and computer graphics [4747, 6060]. The problem is to partition an input orthogonal
polyhedron into a minimum number of 3D rectangles. Dielissen and Kaldewai [2626]
have shown this problem to be NP-hard. (Formally, the NP-hardness proof by [2626]
is for polyhedra with holes, but the authors remark that the proof should also work
for simple polyhedra.) To the best of our knowledge, no non-trivial approximation
factors for minimum rectangular partitions of simple orthogonal polyhedra are known,
even in restricted non-trivial cases such as that of a 3D histogram, a straightforward
generalization of a planar histogram; see Section 3.23.2 below for the definition. In
contrast, the problem of partitioning an orthogonal (planar) polygonal region into a
minimum number of 2D rectangles admits a polynomial-time solution [4242, 4747].

The second problem we consider is that of multiplying two n× n matrices. There
exist fast algorithms that do so in substantially subcubic time, e.g., a recent one due
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to Le Gall runs in O(n2.3728639) time [3333], but they suffer from very large overheads.
On the positive side, input matrices in real world applications often belong to quite
restricted matrix classes, so a natural approach is to design faster algorithms for such
special cases. Indeed, efficient algorithms for sparse matrix multiplication have been
known for long time. In the Boolean case, despite considerable efforts by the algorithms
community, the fastest known combinatorial algorithms for Boolean n × n matrix
multiplication barely run in subcubic time (in O(n3(log log n)2/(log n)9/4)) time [1010],
to be precise), but much faster algorithms for Boolean matrix product for restricted
classes of Boolean matrices have been developed [1111, 3434, 5151]. For example, when
at least one of the input Boolean matrices admits an exact covering of its ones by a
relatively small number of rectangular submatrices, the Boolean matrix product can
be computed efficiently [5151]. Similarly, if the rows of the first input Boolean matrix
or the columns of the second input Boolean matrix can be represented by a relatively
cheap minimum cost spanning tree in the Hamming metric (or its generalization to
include blocks of zeros or ones) then the Boolean matrix product can be computed
efficiently by a randomized combinatorial algorithm [1111, 3434].

3.1.1 New results

Our first contribution is an O(m log m)-time, 4-approximation algorithm for comput-
ing a minimum 3D rectangular partition of an input 3D histogram with m corners. It
works by projecting the input histogram onto the base plane, partitioning the resulting
planar straight-line graph into a number of 2D rectangles not exceeding its number of
vertices, and transforming the resulting 2D rectangles into 3D rectangles of appropriate
height. Importantly, the known algorithms for minimum partition of an orthogonal
polygon with holes into 2D rectangles [4242, 4747] do not yield the aforementioned upper
bound on the number of rectangles in the more general case of planar straight-line
graphs.

Our second contribution is a new technique for multiplying two matrices with
nonnegative integer entries. We interpret the matrices as 3D histograms and decom-
pose them into blocks that can be efficiently manipulated in a pairwise manner using
the interval tree data structure. Let A and B be two n× n matrices with nonnegative
integer entries, and let rA and rB denote the minimum number of 3D rectangles into
which the 3D histograms induced by A and B can be partitioned. By applying our
4-approximation algorithm above, we can compute A×B in Õ(n2 + rArB) time, where
Õ suppresses polylogarithmic (in n) factors. Next, by using another idea of slicing
the histogram of A (or B) into parts corresponding to rows of A (or columns of B)
and measuring the cost of transforming a slice into a consecutive one, we obtain an
upper bound of Õ(n2 + n min{rA, rB}). We also give a generalization of the latter
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upper bound in terms of the minimum cost of a spanning tree for the slices, where the
distance between a pair of slices corresponds to the cost of transforming one slice into
the other.

We remark that rA = O(n2) and rB = O(n2) always hold. For inputs where rArB =
Õ(n2), the worst-case running time of our first algorithm for matrix multiplication
is Õ(n2), which is almost optimal and much better than that of the currently fastest
one for the general case [3333]. Furthermore, when at least one of rA and rB is Õ(n), the
worst-case running times of our second and third algorithms are almost optimal.

3.1.2 Organization of the paper

Section 3.23.2 presents our 4-approximation algorithm for a partition of a 3D histogram
into a minimum number of 3D rectangles. Section 3.33.3 presents our algorithms for the
arithmetic matrix product. Section 3.43.4 concludes with some final remarks.

3.2 3D Histograms and Their Rectangular Partitions

A 2D histogram is a polygon with an edge e, which we call the base of the histogram,
having the following property: for every point p in the interior of histogram, there is a
(unique) line segment perpendicular to e, connecting p to e and lying totally in the
interior of the histogram. In this paper, we consider orthogonal histograms only. For
simplicity, we consider the base of a histogram as being horizontal, and all other edges
of the histogram lying above the base. In this way, a 2D histogram can also be thought
of as the union of rectangles standing on the base of the histogram.

A 3D histogram is a natural generalization of a 2D histogram. To define a 3D
histogram, we need the concept of the “base plane”, which for simplicity we define as
the horizontal plane containing two of the axes in the Euclidean space. A 3D histogram
can then be thought of as the union of orthogonal 3D rectangles, standing on the base
plane. The base of the histogram is the union of the lower faces (also called bases) of all
these rectangles.

Definition 3.1. A 3D histogram is a union of a finite set C of orthogonal 3D
rectangles such that: (i) each element in C has a face on the horizontal base plane; and
(ii) all elements in C are located above the base plane.

(In the literature, what we call a 3D histogram is sometimes termed a 2D histogram
or a 1D histogram when used to summarize 2D or 1D data, respectively [5555].)

By a rectangular partition (or rectangulation) of a 3D histogram P, we mean an
orthogonal partition of P into 3D rectangles. In Section 3.2.23.2.2 below, we consider
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the problem of finding a rectangular partition of a given 3D histogram P into as few
3D rectangles as possible. We present a 4-approximation algorithm for this problem
with time complexity O(m log m), where m denotes the number of vertices in P.
The algorithm partitions P into less than m′ 3D rectangles, where m′ is the number
of vertices in the vertical projection of P (i.e., m′ < m), by applying a subroutine
described in Section 3.2.13.2.1 that partitions any orthogonal planar straight-line graph
(PSLG) with m′ vertices into less than m′ 2D rectangles.

3.2.1 Partitioning an orthogonal PSLG into 2D rectangles

The problem of partitioning an orthogonal polygon in two dimensions into as few rect-
angles as possible has been well studied in the literature [4242, 4747], and polynomial-time
algorithms for this problem exist (see [4242,4747] and the references therein). However, for
our purposes, it is not necessary to compute an optimal solution for the 2-dimensional
problem. Instead, we just need a partition of a planar straight-line graph (PSLG) into
less than m′ rectangles, where m′ denotes the number of vertices in the input PSLG.
We will show that a simple algorithm, which is faster than the optimal algorithms
in [4242, 4747], suffices to obtain this (not always optimal) upper bound.

Since this subsection considers 2D only, we use the term “horizontal” for line
segments parallel to the X -axis. By “vertical” lines, we mean lines or line segments
parallel to the Y -axis. Each vertex in the planar graphs in our application has degree 2,
3, or 4.

Definition 3.2. A planar straight-line graph (PSLG) PG = (V ,E), as used in this
paper, is a planar graph where every vertex has an x- and a y-coordinate. Each edge is
drawn as a straight line segment, all edges meet at right angles, and each vertex has
degree 2, 3, or 4. A rectangular partition of PG is a partition R = (V ∪ VR,E ∪ ER)
that adds edges and vertices to PG so that R is still a PSLG while every face in R is a
rectangle.

Given a PSLG PG, we denote m′ = |V |. We say that a vertex v of PG is concave if
it has degree 2, its two adjacent edges are perpendicular to each other, and the corner
at v which is of 270 degrees does not lie in the outer, infinite face of PG. Any vertex
which is not concave is called convex.

We use a sweep line approach to generate a partition into less than m′ rectangles.
We perform a horizontal sweep with a vertical sweep line [2121], using the vertices of
PG as event points. Whenever the sweep line reaches a concave vertex v, we insert
into the graph PG a vertical line segment s connecting v to the closest edge of PSLG
upwards or downwards, thus canceling the concavity at v and transforming v into a
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convex vertex of degree 3. Hence, if there was already an edge of PG below v, then
the new segment s is inserted above v, otherwise it is inserted below v. To preserve the
property that the resulting graph is still a PSLG, the other endpoint of s may have to
become a new vertex of the PSLG. (This is a standard procedure for trapezoidation;
see, e.g., [2121] for more details.) After the sweep is complete, all concave vertices have
been eliminated. (It may happen that two concave vertices with the same x-coordinate
are connected by a single vertical segment that is disjoint from the rest of the input
PSLG. In this case, the plane sweep algorithm will produce this segment. Thus, no
two segments produced by the algorithm overlap or touch each other.)

The correctness of the algorithm is easy to see: it eliminates all concave corners of
PG by adding vertical line segments. Hence, in the resulting PSLG, each face, except
for the outer face, is a rectangle. The running time of this algorithm is dominated by
the cost of the plane sweep, which is O(m′ log m′) according to well-known methods
in computational geometry; see, e.g., [2121].

The next lemma relates the resulting number of 2D rectangles to the number of
vertices in the input PSLG.

Lemma 3.1. Any PSLG PG = (V ,E) with |V | = m′ and minimum vertex degree 2
can be partitioned into b rectangles with b < m′ in O(m′ log m′) time.

Proof. Let R denote the set of rectangles in the rectangular partition produced by the
plane sweep algorithm described above. We use a “charging scheme” to prove the stated
inequality. The charging scheme starts by giving each vertex v ∈ V four tokens; thus,
a total of 4m′ tokens are used. Each vertex v then distributes its tokens in a certain
way to the rectangles in R that are adjacent to v. We will show that every rectangle
in R receives at least four tokens. Since we started by giving a total of 4m′ tokens to
the vertices, this will prove that there exist at most m′ rectangles, and thus b ≤ m′.
Moreover, vertices adjacent to the outer face do not give away more than three tokens.
We will thus obtain the strict inequality b < m′.

Now we describe the details of the charging scheme. Let v be any vertex of V . The
vertex v gives one token to each rectangle r in R which in any way is adjacent to it, with
one exception. The exception occurs when v is a concave vertex; then, v is partitioned
by a vertical segment er added by the algorithm. This segment partitions the three
quadrants at the concave corner around the vertex so that one rectangle occupies one
quadrant and one occupies the two others. Then v distributes two tokens to the new
rectangle occupying only one quadrant, which therefore has a corner at v, and only
one token to each one of the other rectangles of R adjacent to v. See Fig. 3.13.1; in this
example, v distributes only three of its four tokens, because v happens to be adjacent
to the outer face.
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Figure 3.1: A concave corner v and a vertical segment (dashed) added by the algorithm.
One of the rectangles receives two tokens, and the other one receives one token. If
there had existed an additional rectangle with v as a corner, it would also have received
one token.

We now show that each rectangle receives at least four tokens. Let r be any
rectangle in R. First note that each vertical segment added by the algorithm has at
least one endpoint at a vertex in V . Moreover, for any rectangle r in R, each of the
vertical sides of r includes at least one vertex of V . Therefore, each rectangle is adjacent
to at least two vertices of V . We distinguish three cases, depending on the number
of vertices of V adjacent to r. Observe that the adjacencies are not necessarily at the
corners of r.

• Case 1: r is adjacent to at least four vertices of V . Since r will receive at least
one token from each of them we are done.

• Case 2: r is adjacent to precisely three vertices of V . Then at one of the vertical
sides of r there is only one vertex of V . Moreover, this vertex v must be at a
corner of r and fulfills the criteria for giving two tokens to r. The remaining two
adjacent vertices of V give at least one token each, so we are done. See Fig. 3.23.2.

• Case 3: r is adjacent to precisely two vertices of V . This must mean that
both vertical sides of r are segments added by the algorithm, and that one of
the endpoints of each of these sides is a vertex of V at a corner of r. This
corresponds to the condition for receiving two tokens mentioned earlier. So in
total, r receives four tokens from the two corners, and we are done. See Fig. 3.23.2.

3.2.2 Partitioning a 3D histogram into 3D rectangles

We now explain how to construct a projected PSLG PP from any input 3D histogram P
and how to apply the fast 2D rectangular partition algorithm from Section 3.2.13.2.1 to PP
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Figure 3.2: An example of two rectangles r2 and r3 that are only adjacent to two
vertices (v2, v4 and v3, v5, respectively). The dashed line segments indicate vertical line
segments added by the algorithm, while the full line segments indicate edges of PG.
The rectangle r1 is adjacent to three vertices from PG, and will get two tokens from
v1 and one from v2 and v3 each. r2 and r3 will receive two tokens from each adjacent
vertex.

to obtain a good partition of P into 3D rectangles.

Definition 3.3. The planar projection PP is an orthogonal projection of the input 3D
histogram P along the “down” direction onto the base plane in Definition 3.13.1.

See Fig. 3.33.3 for an illustration.
We can interpret PP as a PSLG where each corner and each subdividing point on

a line segment corresponds to a vertex. The edges naturally correlate to the connecting
line segments between vertices. Each vertex in PP is the vertical projection of at least
two vertices of P. Two edges of the 3D histogram may partially overlap in the 2D
projection, but the edges in the 2D projection are considered as non-overlapping.
Thus, an edge of the 3D histogram may split into several edges in the 2D projection,
since vertices should only appear as endpoints of edges.

Every vertex in PP must have at least two neighbors. This follows from the fact
that each vertex of P (and of any orthogonal polyhedron) has at least two incident

37



Figure 3.3: A displays a 3D histogram and the direction in which we do the projection.
B displays the projected figure on the plane with corresponding vertices labeled.

horizontal edges. It may happen that some vertex of PP is the vertical projection of up
to four vertices of P, so those four vertices of P may have a total of eight neighbors in
P. But since PP is an orthogonal PSLG, no vertex of PP has more than four neighbors.

Now we are ready to show the main theorem of this section.

Theorem 3.1. For any 3D histogram P with m corners, a 4-approximation R of a
partition of P into as few 3D rectangles as possible can be computed in O(m log m) time.

Proof. We let PP be the planar projection of P as in Definition 3.33.3, assign PG := PP,
and apply the algorithm from Lemma 3.13.1 to compute a planar partition R′ of PG.
The final 3D partition R is obtained from R′ by reversing the projection so that each
2D rectangle corresponds to the top of a 3D rectangle in R.

To analyze the approximation factor, denote the number of 3D rectangles in an
optimal solution Ropt by OPT , the number of 3D rectangles produced by the algorithm
described above by b, and the number of vertices in PP by m′. Every corner of P is
adjacent to at least one vertical edge of a 3D rectangle in Ropt , which means that every
vertex in PP has to be the vertical projection of at least one such vertical edge. Next,
every 3D rectangle in Ropt has 4 vertical edges, so the total number of vertical edges in
Ropt (some of which may be projected onto the same vertex in PP) is 4OPT . Thus,
m′ ≤ 4OPT . By Lemma 3.13.1, we have b < m′ and it follows that b < 4OPT .
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Since the projection can be obtained by contracting each corner in P and all of its
vertical neighbors into one vertex, the projection can be implemented in O(m) time.
Thus, the O(m log m)-term from Lemma 3.13.1 will dominate the time complexity.

3.3 Geometric Algorithms for the Arithmetic Matrix
Product

In this section, we present our three geometric or in part geometric algorithms for
arithmetic matrix product.

3.3.1 Geometric data structures and notation

Our algorithms for arithmetic matrix multiplication use some data structures for
interval and rectangle intersection. An interval tree is a leaf-oriented binary search
tree that supports intersection queries for a set Q of closed intervals on the real line as
follows:

Fact 3.1 ( [5252]). Suppose that the left endpoints of the intervals in a set Q belong to a
subset U of real numbers of size l and |Q| = q. An interval tree T of depth O(log l) for Q
can be constructed in O(l + q log lq) time using O(l + q) space. The insertion or deletion
of an interval with left endpoint in U into T takes O(log l + log q) time. The intersection
query is supported by T in O(log l + r) time, where r is the number of reported intervals.

Remark 3.1. The interval tree of Fact 3.13.1 ( [5252]) can be generalized to the weighted
case, where an integer weight is associated with each interval to insert or delete, by
maintaining in each node of the interval tree the sum of weights of intervals whose
fragments it represents. In effect, the generalized interval insertions or deletions as well
the intersection query have the same time complexity as those in Fact 3.13.1. Moreover,
the generalized interval tree supports a weight intersection query asking for the total
weight of the intervals containing the query point in O(log l + log q) time.

We use the following data structure, easily obtained by computing all prefix sums:

Fact 3.2. For a sequence of integers a1, a2, . . . , an one can construct a data structure that
supports a query asking for reporting the sum

∑j
k=i ak for 1 ≤ i ≤ j ≤ n in O(1) time.

The construction takes O(n) time.

In the rest of the paper, A and B denote two n × n matrices with nonnegative
integer entries, and C stands for their matrix product. We also need the following
concepts:
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Figure 3.4: (a) A matrix D on a grid, and (b) its corresponding histogram his(D).

• For any n× n matrix D with nonnegative integer entries, consider the [0, n]×
[0, n] integer grid whose unit cells are in one-to-one correspondence with the
entries of D. More precisely, the grid cell between the horizontal lines i − 1
and i (counting from the top) and vertical lines j − 1 and j (counting from
the left) corresponds to Di,j (see Fig. 3.4a3.4a). Then, his(D) stands for the 3D
histogram whose base consists of all unit cells of the [0, n] × [0, n] integer
grid corresponding to positive entries of D and whose height over the cell
corresponding to Di,j is the value of Di,j (see Fig. 3.4b3.4b).

• For any n × n matrix D, nonnegative integers 1 ≤ i1 ≤ i2 ≤ n, 1 ≤ k1 ≤
k2 ≤ n, and h1, h2, where h1 < h2 ≤ Di,j for i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2,
recD(i1, i2, k1, k2, h1, h2) is the 3D rectangle with the corners (i1− 1, k1− 1, hl ),
(i1 − 1, k2, hl ), (i2, k1 − 1, hl ), (i2, k2, hl ), where l = 1, 2, lying within his(D).

• For any n × n matrix D, rD denotes the minimum number of 3D rectangles
recD(i1, i2, k1, k2, h1, h2) which form a partition of his(D).

Note that rD ≤ n2 for any n× n matrix D, as his(D) can be trivially partitioned into
n2 3D rectangles, each covering one grid cell.

3.3.2 Algorithm 3.13.1

Our first geometric algorithm for nonnegative integer matrix multiplication relies on
the following key lemma:
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Figure 3.5: An example of how Lemma 3.23.2 works. The two input matrices correspond
to recA(2, 3, 2, 5, 2, 4) and recB(3, 4, 3, 5, 4, 5), respectively.

Lemma 3.2. Let PA be a partition of the matrix A into 3D rectangles
recA(i1, i2, k1, k2, h1, h2) , and let PB be a partition of the matrix B into 3D rectangles
recB(k′1, k′2, j1, j2, h′1, h′2). For any 1 ≤ i ≤ n, 1 ≤ j ≤ n, the entry Ci,j of the matrix
product C of A and B is equal to the sum of (h2− h1)(h′2− h′1)× #[k1, k2]∩ [k′1, k′2] over
rectangle pairs recA(i1, i2, k1, k2, h1, h2) ∈ PA, recB(k′1, k′2, j1, j2, h′1, h′2) ∈ PB satisfying
i ∈ [i1, i2] and j ∈ [j1, j2].

Proof. For 1 ≤ l1 < l2 ≤ n and 1 ≤ m1 < m2 ≤ n, let I (l1, l2,m1,m2) be the
n × n 0 − 1 matrix where I (l1, l2,m1,m2)i,k = 1 if and only if l1 ≤ i ≤ l2 and
m1 ≤ k ≤ m2.

Clearly, we have A =
∑

recA(i1,i2,k1,k2,h1,h2)∈PA
(h2 − h1)I (i1, i2, k1, k2). Similarly, we

have B =
∑

recB(k′1,k
′
2,j1,j2,h

′
1,h
′
2)∈PB

(h′2 − h′1)I (k′1, k′2, j1, j2).
It follows that C = A × B is the sum over pairs recA(i1, i2, k1, k2, h1, h2) ∈ PA,

recB(k′1, k′2, j1, j2, h′1, h′2) ∈ PB of (h2−h1)(h′2−h′1)×I (i1, i2, k1, k2)×I (k′1, k′2, j1, j2). It
remains to observe that (I (i1, i2, k1+1, k2)×I (k′1, k′2, j1+1, j2))i,j = #[k1, k2]∩[k′1, k′2]
if i1 < i ≤ i2 and j1 < j ≤ j2 and it is equal to zero otherwise.

See Fig. 3.53.5 for a visualization of Lemma 3.23.2. Lemma 3.23.2 suggests the following
algorithm.

Lemma 3.3. Let int(PA,PB) be the number of pairs recA(i1, i2, k1, k2, h1, h2) ∈ PA,
recB(k′1, k′2, j1, j2, h′1, h′2) ∈ PB, for which [k1, k2] ∩ [k′1, k′2] 6= ∅. Algorithm 3.13.1 runs in
Õ(n2 + int(PA, PB)) = Õ(n2 + rArB) time.

Proof. To implement steps 1 and 2 in Õ(n2) time, use the algorithm from Theorem 3.13.1
in Section 3.2.23.2.2. Step 3 can be implemented in Õ(n + rA + rB) = O(n2) time by
Fact 3.13.1. In Step 4, the queries to S take Õ(int(PA, PB)) time by Fact 3.13.1. In Step 5, the
initialization of the data structure U takes Õ(n) time by Lemma 3.23.2. Next, the updates
of the data structure U take Õ(int(PA, PB)) time by Lemma 3.23.2, while computing all
columns of C takes Õ(n2) time by Remark 3.13.1.
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Algorithm 3.1

Input: Two n× n matrices A, B with nonnegative integer entries.
Output: The arithmetic matrix product C of A and B.

1: Compute a partition PA of his(A) into 3D rectangles recA(i1, i2, k1, k2, h1, h2)
whose number is within O(1) of the minimum.

2: Compute a partition PB of his(B) into 3D rectangles recB(k′1, k′2, j1, j2, h′1, h′2)
whose number is within O(1) of the minimum.

3: Initialize an interval tree S on the k- and k′-coordinates of the rectangles in PA

and PB. For each 3D rectangle recA(i1, i2, k1, k2, h1, h2) ∈ PA, insert [k1, k2] with
a pointer to recA(i1, i2, k1, k2, h1, h2) into S.

4: Initialize interval lists Startj , Endj , for j = 1, . . . , n. For each rectangle
recB(k′1, k′2, j1, j2, h′1, h′2) ∈ PB report all intervals [k1, k2] in S that intersect [k′1, k′2].
For each such [k1, k2] with a pointer to recA(i1, i2, k1, k2, h1, h2), insert the interval
[i1, i2] with the weight (h2 − h1)× (h′2 − h′1)× #[k1, k2] ∩ [k′1, k′2] into the lists
Startj1 and Endj2 .

5: Initialize a weighted interval tree U on endpoints 1, . . . , n. For j = 1, . . . , n,
iterate the following steps. For j > 1, remove all weighted intervals [i1, i2] on the
list Endj−1 from U . Insert all weighted intervals [i1, i2] on the list Startj into U .
For i = 1, . . . , n, set Ci,j to the value returned by U in response to the weight
query at i (see also Fig. 3.63.6).

Theorem 3.2. The matrix product of two n× n matrices A, B with nonnegative integer
entries can be computed in Õ(n2 + rArB) time.

Proof. Algorithm 3.13.1 yields the theorem. Its correctness follows from Lemma 3.23.2 that
basically says that for each pair of 3D rectangles, recA(i1, i2, k1, k2, h1, h2) ∈ PA and
recB(k′1, k′2, j1, j2, h′1, h′2) ∈ PB, Ci,j should be increased by (h2 − h1) × (h′2 − h′1) ×
#[k1, k2] ∩ [k′1, k′2] for i ∈ [i1, i2] and j ∈ [j1, j2]. In Step 4, two identical intervals
[i1, i2] corresponding to the left and right edge of the submatrix of C whose entries
should be increased by the aforementioned value are inserted in the lists Startj1 and
Endj2 , respectively. In both cases, they are weighted by the aforementioned value. In
Step 5, in iteration j1, the weighted interval [i1, i2] from Startj1 is inserted into the
weighted interval tree U , and in iteration (j2 + 1), it is removed from U as its copy
is in Endj2 . In the iterations j = j1, . . . , j2 in Step 5, when the interval [i1, i2] is kept
in the weighted interval tree, U and the entries of the submatrix Ci,j , i1 ≤ i ≤ i2,
j1 ≤ j ≤ j2, are evaluated, the weight of the interval contributes to their value. The
upper time bound follows from Lemma 3.33.3.
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Figure 3.6: Illustrating how to fill in the entries of C column-wise in Step 5 of
Algorithm 3.13.1 by sweeping and updating the interval tree U from the left to the right.
In particular, [i1, i2] ∈ Startj1 ∩ Endj2 holds.

3.3.3 Algorithm 3.23.2

When only one of the matrices A and B admits a partition of its 3D histogram into
relatively few 3D rectangles and we have to assume the trivial partition of the other one
into n2 3D rectangles, the upper bound of Theorem 3.23.2 in terms of rA, rB and n seems
too weak. In this case, an upper bound in terms of int(PA,PB) and n in Lemma 3.33.3
may be much better. To derive a better upper bound in terms of just min{rA, rB}
and n, we shall design another algorithm based on the slicing of the 3D histogram
admitting a partition into relatively few 3D rectangles.

For an n × n matrix D with nonnegative integer entries and i = 1, . . . , n, let
slicei(D) stand for the part of his(D) between the two planes perpendicular to the Y
axis whose intersection with the XY plane are the horizontal lines i − 1 and i on the
[0, n]× [0, n] grid. In other words, slicei(D) is a 3D histogram for the i-th row. Also
note that a slicei(D) can be identified with an orthogonal 2D histogram. See Fig. 3.73.7
for an example. We define a geometric distance between two orthogonal 2D histograms
H1 and H2 with a common base as the number of maximal vertical strips s such that:

1. for i = 1, 2, s contains exactly one maximal subsegment ei of an edge of Hi

different from and parallel to the base of the histograms, and

2. the subsegments e1 and e2 do not overlap.

We shall call such strips differentiating strips. For slicei(D) and slicek(D), we define
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Figure 3.7: Let slice1(D) be the 2D histogram on the left and slice2(D) the 2D histogram
on the right. Differentiating strips are shaded. Here, gd (slice1(D), slice2(D)) = 2.

Figure 3.8: An example of how Algorithm 3.23.2 fills in the entries in a column of the
output matrix.

the geometric distance gd (slicei(D), slicek(D)) as that for the corresponding orthogonal
2D histograms.

Lemma 3.4. For an n× n matrix D with nonnegative integer entries,∑n−1
i=1 gd (slicei(D), slicei+1(D)) = O(rD) holds.

Proof. Each differentiating strip contributes, possibly jointly with one or two neighbor-
ing differentiating strips, to two vertices in the projected planar graph considered in the
proof of Theorem 3.13.1. Thus, it contributes to the parameter m′ in the aforementioned
proof with at least 1. It follows

∑n−1
i=1 gd (slicei(D), slicei+1(D)) ≤ m′. Hence, the

inequality m′ ≤ 4OPT established in the proof of Theorem 3.13.1 yields the lemma.

Lemma 3.5. Algorithm 3.23.2 runs in Õ(n(n + rA)) time.

Proof. Step 1 can be easily implemented in O(n2) time. Step 2 (a) takes Õ(n) time
according to Fact 3.23.2 while Step 2 (b) can be trivially implemented in O(n) time.
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Algorithm 3.2

Input: Two n× n matrices A and B with nonnegative integer entries.
Output: The matrix product C of A and B.

1: For i = 1, . . . , n − 1, find the differentiating strips for slicei(A) and slicei+1(A)
and for each such strip s the indices k1(s) and k2(s) of the interval of entries
Ai,k1(s), . . . ,Ai,k2(s) in the i-th row of A corresponding to it, as well as the differ-
ence h(s) between the common value of each entry in Ai,k1(s), . . . ,Ai,k2(s) and the
common value of each entry in Ai+1,k1(s), . . . ,Ai+1,k2(s).

2: for j = 1, . . . , n do
3: Initialize a data structure Tj for counting partial sums of continuous fragments

of the j-th column of the matrix B.
4: Compute C1,j .
5: for i = 1, . . . , n− 1 do
6: Set Ci+1,j to Ci,j .
7: For each differentiating strip s for slicei(A) and slicei+1(A), compute∑k2(s)

k=k1(s) Bk,j using Tj and set Ci+1,j to Ci+1,j+h(s)
∑k2(s)

k=k1(s) Bk,j (see Fig. 3.83.8
for an illustration).

8: end for
9: end for

Finally, based on Step 1, Step 2 (c)-ii takes Õ(gd (slicei(D), slicei+1(D)) time. It follows
that Step 2 (c) can be implemented in Õ(

∑n−1
i=1 gd (slicei(A), slicei+1(A))) time, i.e., in

Õ(rA) time by Lemma 3.43.4. Consequently, Step 2 takes Õ(n(n + rA)) time.

Theorem 3.3. The arithmetic matrix product of two n×n matrices A, B with nonnegative
integer entries can be computed in Õ(n(n + min{rA, rB})) time.

Proof. The correctness of Algorithm 3.23.2 follows from the observation that a differ-
entiating strip s for slicei(A) and slicei+1(A) yields the difference h(s)

∑k2(s)
k=k1(s) Bk,j

between Ci+1,j and Ci,j just on the fragment corresponding to Ai,k1(s), . . . ,Ai,k2(s) and
Ai+1,k1(s), . . . ,Ai+1,k2(s), respectively.

Lemma 3.53.5 yields the upper bound Õ(n(n + rA)) on the running time. The
analogous bound Õ(n(n + rB)) follows from the equalities AB = (BT AT )T , his(B) ≡
his(BT ), and consequently rB = rBT .

45



3.3.4 Algorithm 3.33.3

In Algorithm 3.23.2, the linear order in which the Ci,j are updated to Ci+1,j for i =
1, . . . , n− 1, along the row order of the matrix A is not necessarily optimal. Following
the Boolean case [1111, 3434], it may be more efficient to update Ci,j while traversing a
minimum spanning tree for the slices of his(A) under the geometric distance (i.e., a
minimum spanning tree in a complete undirected graph whose vertices are in one-to-
one correspondence with the slices of his(A) and where each edge {i, j} in is assigned
the weight gd (slicei(A), slicej(A))). Here, however, we encounter the difficulty of
constructing such an optimal spanning tree or a close approximation in substantially
subcubic time. The next lemma will be useful.

Lemma 3.6. Consider the family of orthogonal planar histograms with the base [0, n] for
any n ≥ 2 and integer coordinates of its vertices in [0, 2M − 2], where M = O(log n).
There is an O(n)-time transformation of any histogram H in the family into a 0− 1 string
t(H ) such that, for any H1 and H2 in the family, gd (H1,H2) ≤ hd (t(H1), t(H2)) ≤
M · gd (H1,H2), where hd ( , ) stands for the Hamming distance.

Proof. Any histogram H in the family is uniquely represented by the vector
(H [1], . . . ,H [n]) ∈ {1, . . . , 2M − 1}n, where H [1], . . . ,H [n] are the values of Y
coordinates of the points on the “roof” of H increased by one with X coordinates
0.5, 1.5, . . . , n− 0.5 respectively.

For any y ∈ {0, . . . , 2M − 1} denote its binary representation of length exactly M
(padded with leading zeros if necessary) as bin(y).

Let f (H , i) =

{
bin(H [i]), i = 1 ∨ i > 1 ∧H [i] 6= H [i − 1]

bin(0), otherwise.

The transformation t is then defined as t(H ) = f (H , 1) . . . f (H , n). We have
hd (t(H1), t(H2)) =

∑n
i=1 hd (f (H1, i), f (H2, i)) and

gd (H1,H2) =

{
1, H1[1] 6= H2[1]

0, otherwise
+

+

n∑
i=2

{
1, (H1[i] 6= H1[i − 1] ∨H2[i] 6= H2[i − 1]) ∧ (H1[i] 6= H2[i])

0, otherwise.

Consider all possibilities that contribute exactly one to gd (H1,H2):

1. H1[1] 6= H2[1]. In this case f (H1, 1) = bin(H1[1]), f (H2, 1) = bin(H2[1])
and 0 ≤ hd (bin(H1[1]), bin(H2[1])) ≤ M .
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2. 2 ≤ i ≤ n∧H1[i] 6= H1[i−1]∧H2[i] = H2[i−1]∧H1[i] 6= H2[i]. In this case
f (H1, i) = bin(H1[i]), f (H2, i) = bin(0) and 1 ≤ hd (bin(H1[i]), bin(0)) ≤
M .

3. 2 ≤ i ≤ n ∧ H1[i] = H1[i − 1] ∧ H2[i] 6= H2[i − 1] ∧ H1[i] 6= H2[i]. See
case 2.

4. 2 ≤ i ≤ n ∧ H1[i] 6= H1[i − 1] ∧ H2[i] 6= H2[i − 1] ∧ H1[i] 6= H2[i]. See
case 1.

To complete the proof, observe that in all other cases hd (f (H1, i), f (H2, i)) = 0.

Fact 3.3 ( [4040]). For ε > 0, a (1+ ε)-approximation minimum spanning tree for a set of
n points in Rd with integer coordinates in O(1) under the L1 or L2 metric can be computed
by a Monte Carlo algorithm in O(dn1+1/(1+ε)) time.

By combining the transformation of Lemma 3.63.6 with Fact 3.33.3 applied to the L1

metric in {0, 1}n and selecting ε = log n, we obtain the following lemma.

Lemma 3.7. Let A be two n× n matrix with nonnegative integer entries in [0, nO(1)].
An O(log2 n)-approximation minimum spanning tree for the set of slices of his(A) under
the geometric distance can be constructed by a Monte Carlo algorithm in Õ(n2) time.

By using Lemma 3.73.7, we obtain the following generalization of Algorithm 3.23.2.

Definition 3.4. For an n× n matrix D with non-negative integer entries in [0, nO(1)],
let MD stand for the minimum cost of a spanning tree of slicei(D), i ∈ [1, n].

Lemma 3.8. Algorithm 3.33.3 runs in Õ(n(n + MA)) with high probability.

Proof. The approximate minimum spanning tree S in Step 1 can be constructed by
a Monte Carlo algorithm in Õ(n2) time by Lemma 3.73.7. Its traversal can be easily
found in O(n) time. Since the length of the traversal is linear in n, Step 2 can
be easily implemented in O(n2) time analogously as the corresponding Step 1 in
Algorithm 3.23.2. Finally, based on Step 2, Step 3 (c)-ii takes Õ(gd (slicei(D), slicel (D)))
time analogously as Step 2 (c)-ii in Algorithm 3.23.2. Let U stand for the set of directed
edges forming the traversal of the spanning tree S. It follows that Step 3 (c) can
be implemented in Õ(

∑
(i,l)∈U gd (slicei(A), slicel (A))) time, i.e., in Õ(MA) time by

Lemma 3.73.7. Consequently, Step 3 takes Õ(n(n + MA)) time.

By Lemma 3.83.8 and a proof analogous to that of Theorem 3.33.3, we obtain a
randomized generalization of Theorem 3.33.3:
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Algorithm 3.3

Input: Two n× n matrices A and B with nonnegative integer entries in [0, nO(1)].
Output: The matrix product C of A and B.

1: Find an O(log2 n)-approximate spanning tree S for slicei(A), i = 1, . . . , n, under
the geometric distance and a traversal (i.e., a non-necessarily simple path visiting
all vertices) of S.

2: For any pair (slicei(A), slicel (A)), where the latter slice follows the former in the
traversal, find the differentiating strips for slicei(A) and slicel (A) and for each such
strip s the indices k1(s) and k2(s) of the interval of entries Ai,k1(s), . . . , Ai,k2(s) in
the i-th row of A corresponding to it, as well as the difference h(s) between the
common value of each entry in Ai,k1(s), . . . ,Ai,k2(s) and the common value of each
entry in Al,k1(s), . . . ,Al,k2(s).

3: for j = 1, . . . , n do
4: Initialize a data structure Tj for counting partial sums of continuous fragments

of the j-th row of the matrix B.
5: Compute Cq,j where q is the index of the slice from which the traversal of S

starts.
6: while following the traversal of S do
7: Set i, l to the indices of the previously traversed slice and the currently

traversed slice, respectively.
8: Set Cl,j to Ci,j .
9: For each differentiating strip s for slicei(A) and slicel (A), compute∑k2(s)

k=k1(s) Bk,j using Tj and set Cl,j to Cl,j + h(s)
∑k2(s)

k=k1(s) Bk,j .
10: end while
11: end for

Theorem 3.4. Let A, B be two n× n matrices A, B with nonnegative integer entries in
[0, nO(1)]. The arithmetic matrix product of A and B can be computed by a randomized
algorithm in Õ(n(n + min{MA, MBT })) time with high probability.

Proof. The correctness of Algorithm 3.33.3 analogously as that of Algorithm 3.23.2 follows
from the observation that a differentiating strip s for slicei(A) and slicei+1(A) yields the
difference h(s)

∑k2(s)
k=k1(s) Bk,j between Ci+1,j and Ci,j just on the fragment corresponding

to Ai,k1(s), . . . ,Ai,k2(s) and Ai+1,k1(s), . . . ,Ai+1,k2(s), respectively. Lemma 3.83.8 yields the
upper bound Õ(n(n + MA)). The symmetric one Õ(n(n + MBT )) follows from the
equality AB = (BT AT )T .
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3.4 Final Remarks

A natural question is: In Theorem 3.13.1 in Section 3.2.23.2.2, would it help to replace the
fast but suboptimal algorithm from Lemma 3.13.1 by a (slower) algorithm that optimally
rectangulates the 2D projection? The answer is that it may yield improved results in
certain cases, but it would not give a better approximation factor than 4 in general. An
example of this is when the optimal 3D partition consists of k cubes of decreasing sizes
lying on top of each other. Then the 2D projection is k concentric squares of different
sizes and an optimal rectangulation of the corresponding 2D projection consists of
4k − 3 rectangles. Here, the approximation factor tends to 4 as k increases, and we
conclude that the fast algorithm from Lemma 3.13.1 is good enough.

As mentioned in Section 3.13.1, the general problem of computing a minimum
3D rectangular partition of an unrestricted orthogonal polyhedron is NP-hard [2626].
However, it is unknown whether the problem is NP-hard or not in the special case
where the input is a 3D histogram. Although the existence of a polynomial-time
algorithm for this particular problem variant would not affect the time complexity
of our matrix multiplication algorithms (because the constant-factor approximations
of rA and rB incurred by Theorem 3.13.1 are absorbed into the asymptotic running times
anyway), it might be an interesting theoretical issue to resolve.

The 4-approximation algorithm for minimum rectangular partition of a 3D his-
togram in case the histogram is his(D) for an input n× n matrix D with nonnegative
integer entries can be implemented in O(n2) time. Also note that the resulting partition
of his(D) can be used to form a compressed representation of D requiring solely Õ(rD)
bits if the values of the entries in D are nO(1)-bounded.

Our geometric algorithms for integer matrix multiplication can also be applied to
derive faster (1 + ε)-approximation algorithms for integer matrix multiplication; if the
range of an input matrix D is [0, nO(1)], then round each entry to the smallest integer
power of (1 + ε) that is not less than the entry. The resulting matrix D′ has only a
logarithmic number of different entry values and hence rD′ may be much less than rD.

We also note that our algorithms and upper time bounds for integer n × n-
matrix multiplication can be extended to integer rectangular matrix multiplication in a
straightforward way.

Finally, our geometric algorithms for matrix multiplication can be adapted to
compute other matrix product of two integer n × n matrices, e.g., their distance
product, i.e., the matrix product of the matrices over the semi-ring (Z,min,+), within
the same asymptotic complexity. In the case of Algorithm 3.13.1, we need to assume that
the rectangular partitions of the matrices consist solely of 3D rectangles placed on the
base plane. Then in step 4 of the adapted Algorithm 3.13.1, h′1 = h1 = 0, and we just
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assign the weight h1 + h2 to the interval [i1, i2]. We need also to adapt the weighted
interval tree U in step 5, by assigning to each node of the data structure the minimum
(instead of the sum) of the weights of the intervals it represents. Thus, the answer
to an intersection query becomes the minimum of the weights of intervals covering
the query point. Since our 4-approximation algorithm for minimum rectangular
partition of a 3D histogram produces solely partitions satisfying the aforementioned
additional assumption, the asymptotic complexity of the adapted algorithm remains
the same. For Algorithms 3.23.2 and 3.33.3, we need just to replace sums with minima and
multiplications with additions (in step 2(c)-ii of Algorithm 3.23.2 and step 3(c)-iii of
Algorithm 3.33.3, respectively). Also, the data structure Tj needs to be modified to return
the values of partial minima instead of partial sums in both cases.

50



Paper 4

A QPTAS for the Base of the
Number of Crossing-Free
Structures on a Planar Point Set

4.1 Introduction

By a crossing-free structure in the Euclidean plane, we mean a planar straight-line
graph (PSLG), i.e., a plane graph whose edges {v, u} are represented by properly non-
intersecting straight-line segments with endpoints v, u, respectively. Triangulations
and spanning trees on finite planar point sets are the two most basic examples of
crossing-free structures in the plane, i.e., PSLGs. The problems of counting the
number of such structures for a given planar n-point set belong to the most intriguing
in Computational Geometry [77, 88, 3131, 3737, 6262, 6363].

4.1.1 Counting triangulations

A triangulation of a set S of n points in the Euclidean plane is a PSLG on S with a
maximum number of edges. Let Ft (S) stand for the set of all triangulations of S.

The problem of computing the number of triangulations of S, i.e., |Ft (S)|, is easy
when S is in convex position. Simply, by a straightforward recurrence, |Ft (S)| = Cn−2,
where Ck is the k-th Catalan number, in this special case. However, in the general case,
the problem of computing the number of triangulations of S is neither known to be
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#P-hard nor known to admit a polynomial-time counting algorithm.
It is known that |Ft(S)| lies between Ω(2.43n) [6363] and O(30n) [6262]. See also

Table 4.14.1. Since the so called flip graph whose nodes are triangulations of S is
connected [6666], all triangulations of S can be listed in exponential time by a standard
traversal of this graph. When the number of the so called onion layers of the input
point set is constant, the number of triangulations and other crossing-free structures
can be determined in polynomial time [66]. Only recently, Alvarez and Seidel have
presented an elegant algorithm for the number of triangulations of S running in O∗(2n)
time [88] which is substantially below the aforementioned lower bound on |Ft (S)| (the
O∗ notation suppresses polynomial in n factors).

Also recently, Alvarez, Bringmann, Ray, and Seidel [77] have presented an approxi-
mation algorithm for the number of triangulations of S based on a recursive application
of the planar simple cycle separator [5353]. Their algorithm runs in subexponential
2O(
√

n log n) time and over-counts the number of triangulations by at most a subexpo-

nential 2O(n
3
4
√

log n) factor. It also yields a subexponential-time approximation scheme
for the base of the number of triangulations of S, i.e., for |Ft (S)| 1n . The authors of [77]
observe also that just the inequalities Ω(8.65n) ≤ |Ft(S)| ≤ O(30n) yield the large
exponential approximation factor O(

√
30/8.65

n
) for |Ft (S)| trivially computable in

polynomial time.

4.1.2 Counting spanning trees

A spanning tree U on a set S of n points in the Euclidean plane is a connected PSLG
on S that is cycle-free, equivalently, that has n− 1 edges. Let Fs(S) stand for the set of
all spanning trees on S.

It is known that |Fs(S)| lies between Ω(6.75n) [3131] and O(141.07n) [3737]. See also
Table 4.14.1. The fastest known algorithms for computing |Fs(S)| runs in O∗(7.125n)
time [6767].

The aforementioned approximation algorithm for |Ft(S)| due to Alvarez, Bring-
mann, Ray, and Seidel can be adapted to compute |Fs(S)| in the same asymptotic subex-

ponential 2O(
√

n log n) time within the same asymptotic subexponential 2O(n
3
4
√

log n) ap-
proximation factor [77]. The adaption also yields a subexponential-time approximation
scheme for the base of the number of spanning trees on S, i.e., for |Fs(S)| 1n .

4.1.3 Our contributions

We take a similar approximation approach to the problems of counting triangula-
tions of S and counting spanning trees on S as Alvarez, Bringmann, Ray, and Seidel
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Table 4.1: Bounds on the number of different types of plane graphs according to [77].

Graph type Lower bound Reference Upper bound Reference

Triangulations Ω(2.43n) [6363] O(30n) [6262]
Spanning cycles 1 O(54.55n) [6464]
Perfect matchings Ω

∗(2n) [5757] O(10.05n) [6565]
Spanning trees Ω

∗(6.75n) [3131] O(141.07n) [3737]

in [77]. However, importantly, instead of using recursively the planar simple cycle
separator [5353], we shall apply recursively the so called balanced α-cheap l-cuts of
maximum independent sets of triangles within a dynamic programming framework
developed by Adamaszek and Wiese in [22]. By using the aforementioned techniques,
the authors of [22] designed the first quasi-polynomial time approximation scheme
for the maximum weight independent set of polygons belonging to the input set of
polygons with poly-logarithmically many edges.

Observe that a triangulation of S can be viewed as a maximum independent set of
triangles drawn from the set of all triangles with vertices in S that are free from other
points in S (triangles, or in general polygons, are identified with their open interiors).
Also, a spanning tree on S can be easily complemented to a full triangulation on S.
These simple observations enable us to use the aforementioned balanced α-cheap l-cuts
recursively in order to bound an approximation factor of our approximation algorithm.
The parameter α specifies the maximum fraction of an independent set of triangles
that can be destroyed by the l-cut, which is a polygon with at most l vertices in a
specially constructed set of points of polynomial size.

Similarly as the approximation algorithm from [77], our algorithm may over-count
the true number of triangulations or spanning trees because the same triangulation or
spanning tree, respectively, can be partitioned recursively in many different ways. In
contrast with the approximation algorithm in [77], our algorithm may also under-count
the number of triangulations of S or spanning trees on S, since our partitions generally
destroy a fraction of edges in a triangulation or a spanning tree on S.

Our approximation algorithm for the number of triangulations of (or, the number
of spanning trees on, respectively) a set S of n points with integer coordinates in the
plane runs in n(log(n)/ε)O(1)

time. For ε > 0, it returns a number at most 2εn times
smaller and at most 2εn times larger than the number of triangulations of S (or, the
number of spanning trees on S, respectively). Note that even for ε = (log n)−O(1), the
running time is still quasi-polynomial.

As a corollary, we obtain quasi-polynomial approximation schemes for the base
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of the number of triangulations of S, i.e., for |Ft (S)| 1n , and the base of the number of
spanning trees on S, i.e., for |Fs(S)| 1n , respectively. This implies that the problems of
approximating |Ft (S)| 1n and |Fs(S)| 1n cannot be APX-hard (under standard complexity
theoretical assumptions).

4.1.4 Organization of the paper

In Preliminaries, we introduce basic concepts of the dynamic programming framework
from [22]. In the following section, we present five properties of an abstract family
of (crossing-free) structures on which the analysis of our approximation algorithm
relies. Section 4.44.4 presents our approximation counting algorithm for the number
of such structures on S and its time-complexity analysis. In Sections 4.5.14.5.1, 4.5.24.5.2,
upper bounds on the under-counting and the over-counting of the algorithm are
derived, respectively. In Section 4.64.6, we obtain our main results by showing that planar
triangulations and spanning trees satisfy these five properties.

4.2 Preliminaries

An algorithm is called quasi-polynomial-time if its worst case running time is n(log n)c

for some fixed c.
A quasi-polynomial-time approximation scheme (QPTAS) for an optimization or

counting problem P is a family of algorithms {Aε} satisfying the following condition.
For every ε > 0, there is a natural number N such that for each instance I of P
with size n ≥ N , if Opt(I ) is the measure of an optimal solution to I when P is an
optimization problem or just the exact (positive) number in case of counting problem
then the measure Aε(I ) of the approximation solution or just the approximate solution
returned by Aε, respectively, satisfies max{ Aε(I )

Opt(I ) ,
Opt(I )
Aε(I ) } ≤ 1 + ε and Aε runs in

quasi-polynomial-time for the fixed ε.
The Maximum Weight Independent Set of Polygons Problem (MWISP) is defined

as follows [22]. We are given a set Q of n polygons in the Euclidean plane. Each polygon
has at most k vertices, each of the vertices has integer coordinates. Next, each polygon
P in Q is considered as an open set, i.e., it is identified with the set of points forming
its interior. Also, each polygon P ∈ Q has weight w(P) > 0 associated with it. The
task is to find a maximum weight independent set of polygons in Q , i.e., a maximum
weight set Q ′ ⊆ Q such that for all pairs Pi, Pj of polygons in Q ′, if Pi 6= Pj then it
holds Pi ∩ Pj = ∅.

The bounding box of Q is the smallest axis aligned rectangle containing all polygons
in Q .
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Note that in particular if Q consists of all triangles with vertices in a finite planar
point set S such that no other point in S lies inside them or on their perimeter, each
having weight 1, then the set of all maximum independent sets of polygons in Q is
just the set of all triangulations of S. Recall that the latter set is denoted by Ft (S) while
the set of all spanning trees on S is denoted by Fs(S).

Adamaszek and Wiese have shown that if k = poly(log n) then MWISP admits a
QPTAS [22].

Fact 4.1 ( [22]). Let k be a positive integer. There exists a (1+ ε)-approximation algorithm
with a running time of (nk)( k

ε
log n)O(1)

for the Maximum Weight Independent Set of Polygons
Problem provided that each polygon has at most k vertices.

Recently, Har-Peled generalized Fact 4.14.1 to include arbitrary polygons [3535].
We need the following tool from [22].

Definition 4.1. Let l ∈ N and α ∈ R where 0 < α < 1. Let T be a set of pairwise
non-touching triangles. A polygon Γ is a balanced α-cheap l-cut of T if

• Γ has at most l edges,

• the total weight of all triangles in T that intersect Γ does not exceed an α
fraction of the total weight of triangles in T ,

• the total weight of the triangles in T contained in Γ does not exceed two thirds
of the total weight of triangles in T ,

• the total weight of the triangles in T outside Γ does not exceed two thirds of
the total weight of triangles in T .

For a set of triangles T in the plane, a DP-point is a basic DP-point or an additional
DP-point. The set of basic DP-points contains the four vertices of the bounding box
of T and each intersection of a vertical line passing through a corner of a triangle in T
with any edge of a triangle in T or a horizontal edge of the bounding box. The set
of additional DP-points consists of all intersections of pairs of straight-line segments
whose endpoints are basic DP-points. The authors of [22] observe that the total number
of DP-points is O(n4).

Fact 4.2 (Lemma 3.6 in [22]). Let δ > 0 and let T be a set of pairwise non-touching
triangles in the plane such that the weight of no triangle in T exceeds one third of the
weight of T . Then there exists a balanced O(δ)-cheap ( 1

δ
)O(1)-cut with vertices at basic

DP-points.
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4.3 An Abstract Crossing-Free Structure

Triangulations and spanning trees are special cases of planar straight-line graphs
(PSLGs). We shall consider an abstract family (set) Fa of some finite PSLGs hav-
ing five properties (satisfied by triangulations and spanning trees as shown in Section 6)
presented later in this page.

We shall use the following conventions in order to specify these properties and
design an approximation algorithm for counting the number of PSLGs in Fa whose
vertex set is an n-point planar point set S. We shall denote the latter set by Fa(S).

We shall call a member in Fa a (crossing-free) structure, and a member in Fa(S) a
structure on S. Next, we shall call any subgraph of a structure a substructure.

Let P be a polygon with holes. The restriction of a structure G to P is the
substructure consisting of all edges and vertices of G within P. (E.g., if G is a
triangulation then the restriction is a partial triangulation, and if G is a spanning tree
then the restriction is a forest, in general).

We say that a substructure is within P if all its vertices and all its edges are within P.
Next, we shall call a substructure H = (VH , EH ) within P maximal if there is no other
substructure H ′ = (VH ′ ,EH ′ ) within P, where VH = VH ′ , and EH $ EH ′ . (E.g., if
H is a partial triangulation within P then it cannot be extended to any larger partial
triangulation by adding more edges, similarly, if H is a forest within P then it cannot
be extended to any larger forest within P by adding more edges.)

We shall assume that the family Fa has the following properties.

1. One can decide if a PSLG with at most n vertices is a structure, i.e., belongs to
Fa, in at most 2O(n log n) time.

2. If a structure has n vertices then it has Ω(n) edges11.

3. Any substructure is in particular a substructure of a structure on the vertex set
of the substructure.

4. Any extension of the restriction of a structure G to a simple polygon P with
holes to a maximal substructure on the vertices of G within P uses at most
O(l) additional edges, where l is the number of edges of G with endpoints in P
crossed by the boundaries of P.

5. Suppose that polygons P1, P2 with holes form a partition of a polygon P with
holes. The union of a substructure within P1 with a substructure within P2 is a
substructure.

1The corresponding property from the preliminary ICALP 2015 version of this paper additionally
required any two structures with the same set of vertices to have the same number of edges.
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By the definitions, Fa has also the following properties.

Lemma 4.1 (Property 6). A maximal substructure H within the bounding box of the
structure that H is a subgraph is a structure.

Lemma 4.2 (Property 7). Suppose that for j = 1, . . . , k′, Rj is a maximal substructure
within the polygon Pj with holes, and the polygons P1 through Pk′ are pairwise non-
overlapping and their union forms a polygon P with holes. Let R′1, . . . ,R′k′ be another
sequence of maximal substructures within P1, . . . , Pk′ , respectively, where Rj and R′j have
the same vertex set for j = 1, . . . , k′. If Ri 6= R′i for some i ∈ {1, . . . , k′}, each

edge extension of
⋃k′

j=1 Rj to a maximal substructure within P is different from any edge

extension of
⋃k′

j=1 R′j to a maximal substructure within P.

Proof. The proof is by contradiction. The joint edge extension of both sequences
would contain Rj ∪ Rj′ within Pj which would contradict the maximality of both Rj

and Rj′ within Pj .

4.4 Dynamic Programming

Our dynamic programming approximation algorithm for |Fa(S)| is termed Algo-
rithm 4.14.1.

4.4.1 Time complexity

The cardinality of T does not exceed n3. Then, by the analogy with the dynamic
programming algorithm of Adamaszek and Wiese for nearly maximum independent
set of triangles [22], we call a polygon in the list P in Algorithm 4.14.1 a DP cell and
observe that the number of DP cells is (3n3)O(k) = nO(k) (see Proposition 2.1 in [22]).
Consequently, the number of possible partitions of a DP cell into at most k DP cells is

O(
(nO(k)

k

)
), i.e., nO(k2).

It follows that if we neglect the cost of computing the exact number of maximal
substructures contained within a DP cell including at most Δ input points, then
Algorit 4.14.1 runs in nO(k2) time.

We can compute the exact number of maximal substructures contained within a
DP cell with at mostΔ input points in 2O(Δ logΔ) time as follows. By enumerating all
PSLGs on the subset of S contained in the DP cell, and using Property 1 and the fact
that the number of PSLGs on at mostΔ vertices is 2O(Δ logΔ), we can list all structures
on this subset in 2O(Δ logΔ) × 2O(Δ logΔ) = 2O(Δ logΔ) time. Hence, by Property 3, we
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Algorithm 4.1 Approximately counting structures on a finite planar point set.

Input: A set S of n points with integer coordinates in the Euclidean plane and natural
number parameters k and Δ.

Output: An approximate number of structures on the vertex set S, i.e., an approximate
|Fa(S)|.

1: T ← the set of all triangles with vertices in S that do not contain any other point
in S;

2: P← a list of polygons (possibly with holes) with at most k vertices in total at DP
points induced by T , topologically sorted with respect to geometric containment;

3: for each polygon Q ∈ P containing at most Δ points in S do
4: as(Q)← exact number of maximal substructures on the vertex set S∩Q within

Q ;
5: end for
6: for each polygon set Q ∈ P containing more than Δ points in S do
7: as(Q)← 0;
8: for each partition of Q into polygons Q1, . . . ,Qk′ ∈ P, where k′ ≤ k, no Qj

contains more than two thirds of points in S ∩ Q , and as(Q1) through as(Qk′ )
are defined do

9: as(Q)← as(Q) +
∏k′

j=1 as(Qj);
10: end for
11: end for
12: Output as(B), where B is the bounding box of T .
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can exactly count all maximal substructures (on this subset) within the cell by pruning
the aforementioned structures and checking maximality also in 2O(Δ logΔ) time. We
conclude with the following lemma.

Lemma 4.3. Algorithm 4.14.1 runs in nO(k2)2O(Δ logΔ) time.

4.4.2 A comparison of algorithm 4.14.1 with Prior Algorithms

The QPTAS of Adamaszek and Wiese for maximum weight independent set of
polygons [22] is based on dynamic programming. For each polygon (possibly with
holes) with at most k vertices at the DP points induced by the input polygons, termed
a DP cell, an approximate maximum weight independent subset of the input polygons
contained in the DP cell is computed. The computation is done by considering all
possible partitions of the DP cell into at most k smaller DP cells. For each such
partition, the union of the approximate solutions for the component DP cells is
computed. Then, a maximum weight union is picked as the approximate solution for
the DP cell.

Our algorithm, i.e., Algorithm 4.14.1, is in part similar to that of Adamaszek and
Wiese [22]. For each DP cell, an approximate number of maximal substructures within
the cell is computed instead of an approximate maximum number of non-touching
input triangles within the cell. Further modification of the dynamic programming of
Adamaszek and Wiese are as follows.

1. Solely those partitions of a DP cell into at most k component DP cells are
considered where no component cell contains more than two thirds of the input
points in the partitioned cell. (Alternatively, one could generalize the concept of
a DP cell to a set of polygons with holes and consider only partitions into two
DP cells obeying this restriction.)

2. While a partition of a DP cell into at most k cells is processed, instead of the
union of the solutions to the subproblems for these cells, the product of the
numerical solutions for the component DP cells is computed.

3. Instead of taking the maximum of the solutions induced by the partition of a
DP cell into at most k DP cells, the sum of the numerical solutions induced by
these partitions is computed.

4. When the number of points contained in a DP cell does not exceed the threshold
number Δ then the exact number of maximal substructures within the cell is
computed.
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Q1

Q2

Q3

Q4

Q5

Figure 4.1: An example of a maximal partial triangulation within a DP cell and a
partition of the DP cell into smaller DP cells Q1, . . . ,Q5 crossing some triangles in
the triangulation.

Algorithm 4.14.1 also in part resembles the approximation counting algorithm for
the number of triangulations of a planar point set due to Alvarez, Bringmann, Ray,
and Seidel [77]. The main difference is in the used implicit recursive partition tool.
Algorithm 4.14.1 uses balanced α-cheap l-cuts within the dynamic programming frame-
work from [22] instead of the simple cycle planar separator theorem [77, 5353]. Thus,
Algorithm 4.14.1 recursively partitions a DP cell defining a subproblem into at most k
smaller DP cells while the algorithm in [77] recursively splits a subproblem by a simple
cycle that yields a balanced partition. The new partition tool gives a better running
time since the number of possible partitions is much smaller so the dynamic program-
ming/recursion has lower complexity and the threshold for the base case can be much
lower. Since the algorithm in [77] in particular lists all simple cycles on O(

√
n) vertices,

it runs in at least 2O(
√

n log n) time independently of the precision of the approximation.

4.5 Approximation Factor

4.5.1 Under-counting

The potential under-counting stems from the fact that when a DP cell is partitioned
into at most k smaller DP cells then the possible combinations of structure edges
crossing the boundaries of the cells are not counted. Furthermore, in the leaf DP cells,
i.e., those including at mostΔ points from S, we count only maximal substructures
while the restriction of a structure on S to a DP cell does not have to be a maximal
substructure within the cell. See Q5 in Fig. 4.14.1.

Intuitively, the general idea of the proof of our upper bound on under-counting
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is as follows. For each structure W ∈ Fa(S), there is a substructure counted by
Algorithm 4.14.1 that can be obtained by removing O(εn) edges from W and augmenting
the resulting substructure with O(εn) other edges. The final substructure is a union of
maximal substructures contained in leaf DP cells.

Lemma 4.4. Let S be a set of n points in the plane and let ε > 0. For each W ∈ Fa(S),
there is a substructure W ∗ ⊆ W on S containing at least a 1− O(ε) fraction of the edges
of W and a substructure M (W ∗) on S which is an extension of W ∗ by O(εn) edges such
that the estimation returned by Algorithm 4.14.1 with k set to logO(1)(n)/εO(1) is not less than
|
⋃

W∈F (S){M (W ∗)}|.

Proof. Let W ∈ Fa(S) and let T (W ) be any triangulation of S that is an extension
of W . By adapting the idea of the proof of the approximation ratio of the QPTAS
in [22], consider the following tree U of DP cells obtained by recursive applications of
balanced α-cheap l-cuts.

At the root of U , there is the bounding box. By Fact 4.24.2, there is a balanced
α-cheap l-cut, where l = α−O(1), that splits the box into at most k children DP cells
such that only α fraction of the triangular faces of T (W ) is crossed by the cut. The
construction of U proceeds recursively in children DP cells and stops in DP cells that
contain at most Δ points in S.

Note that the height of U is not greater than log3/2 n.
For a node u of U , let Wu be the substructure that is the restriction of W to the

vertices and edges of W contained in the DP cell Qu associated with u. Analogously,
let T (W )u be the partial triangulation of the points in S ∩ Qu that is the restriction of
T (W ) to (the vertices and edges of T (W ) contained in) Qu. Clearly, Wu is a subgraph
of T (W )u. Next, let W ∗u be the substructure that is the union of Wt over the the leaves
t of the subtree of U rooted at u. Note that W ∗u is a subgraph of Wu. Analogously, let
T (W )∗u denote the restriction of T (W )u to the union of T (W )t over the the leaves t
of the subtree of U rooted at u. Clearly, W ∗u is a subgraph of T (W )∗u .

By induction on the height h(u) of u in U , we obtain that the partial triangulation
T (W )∗u ⊆ T (W )u contains a (1−α)h(u) fraction of triangular faces of T (W )u. Set α to

O(ε)
log(n/ε) . It follows in particular that for the root r of U , T (W )∗r ⊆ T (W ) contains at

least a (1− α)log3/2 n/ε ≥ 1−O(ε) fraction of triangular faces in T (W ). Set T (W )∗ to
T (W )∗r and W ∗ to W ∗

r . By Property 2 ensuring that W has Ω(n) edges and the fact
that each triangular face has three edges, we conclude that analogously W ∗ contains a
1− O(ε) fraction of the edges of W . Thus, the number of edges in W missing in W ∗

is O(εn).
For a leaf t of U , let M (Wt ) be an (edge) extension of Wt to a maximal substructure

within the leaf cell Qt . By Property 4, the number of edges extending Wt to M (Wt ) is
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bounded by a constant times the number of edges in W crossing the boundary of Qt

and having an endpoint within Qt .
For a node u of U , let M (W ∗

u ) be a substructure within Qu that is the union of
M (Wt) over the leaves t of the subtree of U rooted at u. We have also M (W ∗) =
M (W ∗r ) by W ∗ = W ∗r . It follows that the number of edges extending W ∗ to M (W ∗)
is bounded by a constant times the number of edges of W missing in W ∗, i.e., O(εn).

We shall show by induction on h(u) that Algorithm 4.14.1 counts at least the number
of M (W ∗u ) while computing an estimation for Qu.

If h(u) = 0, i.e., u is a leaf in U then W ∗
u = Wu and consequently in particular

M (W ∗u ) = M (Wu) is counted by Algorithm 4.14.1.
Suppose in turn that u is an internal node in U with k′ children u1, . . . , uk′ .

When the estimation for Qu is computed by Algorithm 4.14.1, the sum of products of
estimations yielded by different partitions of Qu into at most k DP cells is computed. In
particular, the partition into Qu1 , . . . ,Quk′ is considered. By the induction hypothesis,
the estimation for Quj includes M (W ∗uj

) for j = 1, . . . , k′. Hence, the product of these

estimations counts also M (W ∗u ) =
⋃k′

j=1 M (W ∗uj
).

By M (W ∗) = M (W ∗
r ), to obtain the lemma it remains to show that the bound

logO(1)(n/ε)/εO(1) on k is sufficiently large. Following the proof of Lemma 2.1 in [22],
observe that each DP cell Qu at each level of U is an intersection of at most O(log(n/ε))
polygons, each with at most l edges and vertices at basic DP points. Hence, by
α = O(ε)

log(n/ε) and l = α−O(1), the resulting polygons have at most O(l2 log2(n/ε))

= logO(1)(n/ε)/εO(1) edges and vertices at basic and additional DP points.

Theorem 4.1. The under-counting factor of Algorithm 4.14.1 with k set to
logO(1)(n/ε)/εO(1) is at most 2O(εn log n).

Proof. Consider any structure W ∈ Fa(S). By Lemma 4.44.4, the number of edges of W
that are missing in the substructure W ∗ ⊆ W is O(εn). It follows that the number
of ways of completing W ∗ to a structure W ′ in Fa(S) satisfying (W ′)∗ = W ∗ is not
greater than the number of subsets of at most O(εn) edges of the complete Euclidean
graph on S, which is 2O(εn log n).

By Lemma 4.44.4, the estimation returned by Algorithm 4.14.1 with k set to
logO(1)(n/ε)/εO(1) is not less than |

⋃
W∈F (S){M (W ∗)}|.

Now it remains to show that the maximum number of substructures (W ′)∗,
W ′ ∈ Fa(S), for which M ((W ′)∗) = M (W ∗) is at most 2O(εn log n). By Lemma 4.44.4,
the number of edges extending (W ′)∗ to M ((W ′)∗) is at most O(εn). Consequently,
the maximum number of such substructures (W ′)∗ is upper bounded by the number

62



of subsets of at most O(εn) edges of M (W ∗) (whose removal may form a substructure
(W ′)∗ satisfying M ((W ′)∗) = M (W ∗) ). The latter number is 2O(εn log n).

We conclude that for W ∈ F (S), the number of other structures W ′ ∈ F (S) for
which M ((W ′)∗) = M (W ∗) is at most 2O(εn log n)2O(εn log n) = 2O(εn log n). Now, the
theorem follows from Lemma 4.44.4.

4.5.2 Over-counting

The reason for over-counting in the estimation returned by our algorithm is as follows.
The same structure or more generally substructure within a DP cell may be cut in
the number of ways proportional to the number of considered partitions of the DP
cell into at most k smaller DP cells. This reason is similar to that for over-counting
of the approximation triangulation counting algorithm of Alvarez, Bringmann, Ray,
and Seidel [77] based on the planar simple cycle separator theorem. Therefore, our
initial recurrences and calculations are similar to those derived in the analysis of the
over-counting from [77].

Lemma 4.5. Let Q be an arbitrary DP cell processed by Algorithm 4.14.1 which contains
more than Δ input points. Recall the calculation of the estimation for Q by summing the
products of estimations for smaller DP cells Q1, . . . ,Qk′ over nO(k2) partitions of Q into
Q1, . . . ,Qk′ , k′ ≤ k. Substitute the true value of the number of maximal substructures
(on input points) within each such smaller cell Qi for the estimated one in the calculation.
Let r be the resulting value. The number of maximal substructures (on input points) within
Q is at least r/nO(k2).

Proof. Note that r is the sum of the number of different combinations of maximal
structures within smaller DP cells Q1, . . . ,Qk′ over nO(k2) partitions of Q into smaller
cells Q1, . . . ,Qk′ , k′ ≤ k. Importantly, each such combination can be completed to
some maximal substructure within Q (Property 5) but no two different combinations
coming from the same partition Q1, . . . ,Qk′ can be extended to the same maximal
substructure within Q by Property 7 (Lemma 4.24.2).

Let M be the set of maximal substructures W within Q for which there is a
partition into smaller DP cells Q1, . . . ,Qk′ , k′ ≤ k, such that for i = 1, . . . , k′, W
constrained to Qi is a maximal substructure within Qi. Note that for each W ∈ M ,
the number of the combinations that can be completed to W cannot exceed that of
the considered partitions, i.e., nO(k2), as each of the combinations has to come from a
distinct partition Q1, . . . ,Qk′ .

Thus, there is a binary relationship between maximal substructures within Q that
belong to M and the aforementioned combinations. It is defined on all the maximal
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substructures in M and on all the combinations, and a maximal substructures in M is
in relation with at most nO(k2) combinations. This yields the lemma.

By Lemma 4.54.5, we can express the over-counting factor L(Q,Δ) of Algorithm 1
for a DP cell Q by the following recurrence:

L(Q,Δ) =
∑

(Q1,...,Qk′ )

k′∏
j=1

L(Qj,Δ) ≤ nO(k2)
k∗∏

j=1

L(Q∗j ,Δ)

where the summation is over all partitions of Q into DP cells Q1, . . . ,Qk′ , such that

k′ ≤ k, and Q∗1 , . . . ,Q∗k∗ is a partition that maximizes the term
∏k′

j=1 L(Qj,Δ). When
Q contains at most Δ input points, Algorithm 4.14.1 computes the exact number of
maximal substructures on these points within Q . Thus, we have L(Q,Δ) = 1 in this
case.

Following [77], it will be more convenient to transform our recurrence by taking
logarithm of both sides. For any DP cell P, let L′(P,Δ) = log L(P,Δ). We obtain
now:

L′(Q,Δ) ≤ O(k2 log n) +
k∗∑

j=1

L′(Q∗j ,Δ)

Lemma 4.6. Let B be a bounding box for a set S of n points in the plane. The equality
L′(B,Δ) = O(k2

Δ
−1n log2 n) holds.

Proof. Let U be the recurrence tree and let D be the set of non-leaf nodes whose all
children are leaves in U . For each node d ∈ D, the corresponding DP cell includes at
leastΔ+ 1 points in S. It follows that |D| ≤ n/Δ. Any node in D has depth O(log n)
in U . Hence, more generally, non-leaf nodes of U are placed on O(log n) height levels
of U , where each level includes at most n/Δ nodes. Each subproblem corresponding
to a non-leaf node of U contributes at most O(k2 log n) to L′(B,Δ). Consequently,
the total contribution of non-leaf nodes of U to L′(B,Δ) is O(k2 log n× (n/Δ) log n).
Finally, recall that the subproblems corresponding to leaves of U do not contribute to
the estimation.

Lemma 4.64.6 and Property 6 (Lemma 4.14.1) immediately yield the following corollary.

Theorem 4.2. Let B be a bounding box for a set of n points in the plane. Set the parameter
k in Algorithm 4.14.1 as in Theorem 4.14.1. If for ε > 0 the parameter Δ in Algorithm 4.14.1 is
set to c

ε
k2 log2 n for sufficiently large constant c then the over-counting factor is at most 2εn.
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4.6 Main Results

Lemma 4.7. Triangulations and spanning trees on finite planar point sets satisfy the five
properties of Fa.

Proof. Properties 1, 2, 3 and 5 are clearly satisfied by triangulations and spanning trees.
To show that Property 4 holds for triangulations, consider an extension of the

restriction of a triangulation G to a simple polygon P with holes to a maximal partial
triangulation on the vertices of G within P. All the edges within P added by the
extension have to be incident to vertices of triangular faces of G with at least one edge
crossed by the boundary of P. Observe, that such a triangular face has to have at least
one vertex within P that is an endpoint of an edge of G crossed by the boundaries
of P. Let l be the number of edges of G with an endpoint within P crossed by the
boundaries of P. It follows that the number of aforementioned triangles is at most 2l
and consequently the number of the endpoints of the edges within P added by the
extension does not exceed 3× 2l = O(l). Hence, the total number of the added edges
is also O(l).

To show in turn that Property 4 holds for spanning trees, consider the forest which
is the restriction of a spanning tree G to a simple polygon P with holes. Let t be the
number of connected components of the forest. It follows that the number l of edges
of the spanning tree G with at least one endpoint within P crossed by the boundaries
of P is at least t − 1. On the other hand, any edge extension of the forest to a maximal
forest within P may add at most t − 1 ≤ l edges to the forest.

By combining Lemmata 4.74.7 and 4.34.3 with Theorems 4.14.1, 4.24.2 with ε set to ε/ log n,
we obtain our main result.

Theorem 4.3. There exists an approximation algorithm for the number of triangulations
of (or, the number of spanning trees on) a set S of n points with integer coordinates in the
plane with a running time of at most n(log(n)/ε)O(1)

that returns a number at most 2εn times
smaller and at most 2εn times larger than the number of triangulations of (or, spanning
trees on, respectively) S.

Corollary 4.1. There exists a (1 + ε)-approximation algorithm with a running time of
at most n(log(n)/ε)O(1)

for the base of the number of triangulations of (or, spanning trees on)
a set of n points with integer coordinates in the plane.

Proof. Let cn be the number of triangulations of (or, the number of spanning trees
on) the input n point set, and let Λ be the number returned by the algorithm from
Theorem 4.34.3. We have max{ cn

Λ
, Λcn } ≤ 2εn by Theorem 4.34.3. By taking the n-th root
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on both sides, we obtain max{ c

Λ
1
n
, Λ

1
n

c } ≤ 2ε. Now it is sufficient to observe that

2ε < 1 + ε for ε < 1
2 .

4.7 Final Remarks

One can a bit refine the dynamic programming (Algorithm 4.14.1) and consider solely
partitions of a DP cell obtained by intersection with polygons with holes on most
k DP-points. The number of such partitions is only nO(k), so the whole dynamic
programming would take nO(k)2O(Δ logΔ) time. This however does not change the
form of the main results.

Adamaszek and Wiese presented also an extension of their theorem on α-cheap cut
of an independent set of triangles (Fact 4.24.2) to include independent polygons with
at most K edges (Lemma 3.1 [22]). This makes possible to generalize our QPTAS for
counting triangulations to include the approximation of the number of maximum
weight partitions into K -gons.

The other popular crossing-free structures like perfect matchings and cycle covers
(see Table 4.14.1) do not satisfy all the five properties of Fa. It is an intriguing open
problem if they admit similar quasi-polynomial time approximation algorithms.
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Paper 5

Detecting Monomials with k
Distinct Variables

5.1 Introduction

Koutis initiated a group algebra approach to derivation of fully parametrized algorithms
for combinatorial problems in [4949]. He considered the k-path problem, which is to
determine if a graph contains a simple path of length at least k, and packing problems
in [4949]. Williams continued this approach in [6868] and improved Koutis’ parametrized
upper time bound for the k-path problem to O∗(2k) (the O∗ notation suppresses
polynomial in n and k factors). The aforementioned bounds have been obtained by
a fixed-parameter reduction to the detection of the so called multilinear monomial
in the sum-product expansion of a polynomial represented by arithmetic circuit of
polynomial size using only addition and multiplication. A monomial is multilinear if
no variable occurs in it more than once. Williams showed that a multilinear monomial
in the sum-product expansion of the aforementioned polynomial can be detected in
O∗(2l ) time, where l is the degree of the polynomial (Theorem 3.1 in [6868]). In the
subsequent paper [5050], Koutis and Williams derived new fixed-parameter upper time
bounds for several other combinatorial problems by fixed-parameter reductions to the
problem of multilinear monomial detections. Chen et al. generalized the FPT method
of Koutis and Williams to detecting a monomial in which no variable occurs p or more
times, where p is a prime number, parametrized by the degree of the polynomial [1717].
A further generalization to include non-necessarily prime p was given in [1818]. For the
recent application of the algebraic method to include a natural generalization of the
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k-path problem, see [11].
In this paper, we continue the topic of detecting monomials having some special

property in the sum-product expansion of a polynomial in n variables, represented by
an arithmetic circuit of size polynomial in n, using only addition and multiplication.
We focus on special properties of a monomial expressed in terms of the number
of distinct variables occurring in it. We consider two basic problems: detecting a
monomial with at least k distinct variables, and detecting a monomial with at most k
distinct variables. We also study the corresponding optimization versions searching for
monomials with maximum or minimum number of distinct variables, respectively.

Our first result is a randomized FPT algorithm for detection of a monomial having
at least k distinct variables, parametrized by the threshold parameter k. It relies on a
slight generalization of the group algebra method from [4949, 6868] given in [5050]. Our
algorithm runs in O∗(2k) time, where the O∗ notation suppresses polynomial in the
size of input factors. It yields also an FPT algorithm for the decision version of the
max q-cover problem [3030] with the threshold k on the number of covered elements,
parametrized by k.

We can also provide a deterministic FPT algorithm for detection of a monomial
having at most k distinct variables, parametrized by the degree of the polynomial,
provided that in the circuit representing the polynomial no multiplication gate precedes
an addition gate on a directed path from an input gate to the output gate. It runs in
O∗(2l ) time, where l is the degree of the polynomial and the notation O∗ suppresses
polynomial in l and the size of the input factors. To obtain this algorithm, we design
an O∗(2l )-time algorithm for the hitting set problem, where l is the number of sets to
be hit and O∗ suppresses polynomial in the input size factors.

Next, we observe that detecting a monomial with at most k distinct variables
is W [2]-hard with respect to the parameter k. We also observe that detecting a
monomial with at least n distinct variables is W [2]-hard with respect to the degree of
the polynomial divided by n.

We also consider the problem of finding the smallest k such that the polynomial
has a monomial with at most k distinct variables as well as the problem of finding the
largest k such that the polynomial has a monomial with at least k distinct variables. We
show that the minimization problem cannot be approximated within O(2log1−ε n) for
any ε > 0, unless NP ⊂ DTIME(npoly log(n)) while the maximization problem cannot
be approximated within 1− 1

e + ε for any ε > 0, unless NP = P.
Finally, we observe that analogous algorithmic, hardness, and inapproximability

results on detection of implicants of Boolean functions represented by monotone
Boolean circuits, with at most (or, at least, respectively) k distinct variables hold. As
by-product, we infer also that deciding whether or not two monotone Boolean circuits

68



compute different functions is NP-complete.

Organization. In the next section, we define a monotone arithmetic circuit, a
monotone Boolean circuit, and state a lemma from [5050] generalizing the main results
from [4949, 6868]. In Section 5.35.3, we present and analyze our FPT algorithms while in
Section 5.45.4, we show our hardness and inapproximability results. In Section 5.55.5, we
discuss the extensions to include the Boolean case.

5.2 Preliminaries

A monotone arithmetic circuit is a directed acyclic graph where each leaf (i.e., vertex
of indegree 0) is labeled either with a variable or a real non-negative constant (input
gates), each non-leaf vertex has fan-in two and it is labeled with either + (addition
gate) or × (multiplication gate), and a single vertex is distinguished as an output gate.
A monotone Boolean circuit is defined analogously, with ∨ labels instead of + labels,
∧ labels instead of × labels and Boolean 0, 1 constants instead of real constants.

For a positive integer k, the set of positive integers not greater than k will be
denoted by [k].

In Lemma 1 in [5050], Koutis and Williams provided a slight generalization of their
main results from [4949, 6868]. We can rephrase the generalization for our purposes as
follows.

Fact 5.1 (See [5050].). Let P(x1, . . . , xn, z) be a polynomial represented by a monotone
arithmetic circuit of size polynomial in n. There is a randomized algorithm that for every
P runs in O∗(2kt2) time and outputs “YES” with high probability if there is a monomial
of the form ztQ(x1, . . . , xn), where Q(x1, . . . , xn) is a multilinear monomial of degree at
most k, in the sum-product expansion of P, and always outputs “NO” if there is no such
monomial ztQ(x1, . . . , xn) in the expansion.11

5.3 FPT Algorithms

5.3.1 Detecting a monomial with at least k variables

In this section, we present an FPT algorithm with respect to the polynomial degree
for the “at least k distinct variables” monomial property. Our FPT algorithm relies on
Fact 5.15.1.

1A slightly improved version of this fact with t2 replaced by t log t can be found in the latest version of
the paper on the web page of the authors.
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Theorem 5.1. Let k, n be natural numbers such that k ≤ n. Next, let P(x1, . . . , xn) be
a polynomial represented by a monotone arithmetic circuit of size polynomial in n. There
is a randomized algorithm that for every P runs in O∗(2k) time and outputs “YES” with
high probability if there is a monomial with at least k distinct variables in the sum-product
expansion of P, and always outputs “NO” if there is no such monomial in the expansion.

Proof. To begin with, we modify the circuit C to the circuit D as follows. We create a
new input gate labeled with z, n multiplication gates representing zxi and n addition
gates representing 1 + zxi, for i = 1, . . . , n, respectively. We connect each direct
descendant of the input gate labeled with xi with the addition gate representing 1+ zxi

instead, for i = 1, . . . , n, respectively. Thus, the circuit D represents the polynomial
P(1 + zx1, . . . , 1 + zxn).

Note that each monomial in the sum-product expansion of P(1+zx1, . . . , 1+zxn)
can be obtained from some monomial in the sum-product expansion of P(x1, . . . , xn)
by substitution of zxi for some occurrences of some variables xi and substitution of 1
for some occurrences of some variables xj . Hence, there is a monomial with at least k
distinct variables in the sum-product expansion of P(x1, . . . , xn) if and only if there is a
monomial of the form zkQ(x1, . . . , xn), where Q(x1, . . . , xn) is a multilinear monomial
with precisely k distinct variables in {x1, . . . , xn}, in the sum-product expansion of
P(1 + zx1, . . . , 1 + zxn). By Fact 5.15.1, we can detect the existence of such a multilinear
monomial in O∗(2kk2) time.

Applications. The max q-cover problem [3030] is as follows: for given subsets
S1, S2, . . . , Sm of a ground set X , find a subfamily of {S1, . . . , Sm} containing at most
q subsets maximizing the number of elements in X covered by the subsets included.
In the decision version of this problem, there is also given a positive integer k and
the objective is to decide if there is a subfamily of {S1, . . . , Sm} containing at most q
subsets whose union covers at least k elements.

Theorem 5.2. The decision version of the max q-cover problem with the threshold k on
the number of covered elements admits an FPT algorithm with respect to the parameter k.

Proof. For i = 1, . . . , |X |, associate the variable xi with the i-th element in X . We
shall denote elements in X by their numbers. Next, for j = 1, . . . ,m, let Mj denote

the monomial
∏

i∈Sj
xi. It is clear that a monomial of the polynomial

(∑m
j=1 Mj

)q

with at least k distinct variables corresponds to a union of at most q subsets Sj covering
at least k elements in X and vice versa. The theorem follows from Theorem 5.15.1.
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Note that the known FPT algorithms for the hitting set with bounded set size [2828,
5656] translate to FPT algorithms for set cover with a bound on maximum number of
sets that can cover a single element.

5.3.2 Detecting a monomial with at most k variables

In this subsection, we present an FPT algorithm with respect to the polynomial
degree for the “at most k distinct variables” monomial property for polynomials
represented by restricted monotone arithmetic circuits. The restriction does not allow
any multiplication gate to precede an addition gate on a directed path from an input
gate to the output gate. We shall call a monotone arithmetic circuit obeying this
requirement an addition-multiplication circuit. A polynomial represented by such a
circuit is simply a product of polynomials of degree at most one.

Recall that a subset X ′ of an universe X is a hitting set for a family of subsets
U1, . . . ,Ul of X if for i = 1, . . . , l , X ′ ∩ Ui 6= ∅. We begin the following straightfor-
ward observation.

Lemma 5.1. Let P(x1, . . . , xn) be a polynomial of maximum degree l of the form∏l
i=1

∑
xj∈Ui

xj , where Ui ⊆ {x1, . . . , xn} for i = 1, . . . , l . For each monomial M (in
the sum-product expansion) of P, the set of variables occurring in M forms a hitting set for
the subsets U1 through Ul . Contrary, for each hitting set X ′ for the subsets U1 through Ul

there is a monomial M of P such that the set of variables occurring in M equals X ′.

The next lemma demonstrates that the hitting set admits an FPT algorithm with
respect to the cardinality of the input family of subsets of the universe to be hit.

Lemma 5.2. Let U be a family (more precisely, a multi-set) of l subsets U1,U2, . . . ,Ul

of {x1, . . . , xn}. A minimum cardinality hitting set for U can be found in 2l (ln)O(1) time.

Proof. We shall iteratively construct a subset F of the Cartesian product of the set
of all subfamilies of U = {U1, . . . ,Ul} and the set {0, 1, . . . , l}. Whenever F is
augmented by a new element (S, k) in the j-th iteration then the subfamily S can be
hit by k element subset of {x1, . . . , xj}. For xj , j = 1, . . . , n, let U (xj) denote the
subfamily of U consisting of all Ui containing xj .

We initialize F by setting it to {(∅, 0)}. Next, for j = 1, . . . , n, we iterate the
following step: For each (S, k) ∈ F augment F by (S ∪ U (xj), k + 1) provided that
(S ∪ U (xj),m) /∈ F for all m ≤ k + 1.

Observe that after the n-th iteration, if (U , k) ∈ F then there is a hitting set for
U of size k which can be found by backtracking. Contrary, if the minimum size of
hitting set for U is k then the final F will contain (U , k). Thus, it is sufficient to
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find the smallest k such that (U , k) ∈ F and find the corresponding hitting set by
backtracking.

Since the cardinality of F never exceeds 2l (n + 1), the whole procedure takes
2l (ln)O(1) time.

By combining Lemmata 5.15.1, 5.25.2, we obtain our main result in this subsection.

Theorem 5.3. Let l be a natural number and let k be a natural number not larger
than l . Next, let P(x1, . . . , xn) be a polynomial of maximum degree l represented by an
addition-multiplication circuit of size polynomial in n. There is an algorithm that for every
P runs in O∗(2l ) time and outputs “YES” if there is a monomial with at most k distinct
variables in the sum-product expansion of P, and otherwise outputs “NO”.

Proof. Since sums with constant components as well as multiplicative non-zero con-
stant factors are irrelevant and can be omitted, we may assume w.l.o.g. that the
polynomial P is of the form stated in Lemma 5.15.1. Thus, it is sufficient to combine
Lemmata 5.15.1, 5.25.2 to obtain the theorem.

5.4 Hardness and Inapproximability Results

5.4.1 Detecting a monomial with at most k variables

Since the decision version of the set cover problem can be easily encoded as a problem
of detecting a monomial with at most k variables, we obtain the following theorem.

Theorem 5.4. Let P be a polynomial in n variables represented by a monotone arithmetic
circuit with O(n2) gates. The problem of deciding if P has a monomial with at most k
distinct variables is NP-complete as well as W [2]-hard for the parameter k.

Proof. Consider an instance of the set cover problem with ground set X , a family
of subsets S1, . . . , Sn of X whose union covers X , and a positive integer k. We may
assume w.l.o.g. that |X | ≤ n since the W [2]-hardness of set cover follows from that of
dominating set [2828]. For j = 1, . . . , n, associate with Sj the variable yj . Let PS stand
for the polynomial

∏
x∈X (

∑
j s.t. x∈Sj

yj). Note that the polynomial PS has n variables

and it can be represented by a monotone arithmetic circuit of size O(n2). It is clear
that X can be covered with ≤ k of the subsets S1, . . . , Sn iff PS has a monomial with
≤ k distinct variables. This many-one reduction is clearly fixed-parameter with respect
to k. Since the set cover problem is NP-complete and W [2]-complete with respect to
k, we conclude that the decision version of the minimum-variable monomial problem
is NP-complete and W [2]-hard for the parameter k.
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Chechik et al. [1616] have recently studied among other things the following secluded
path problem: for a graph and two of its vertices, find a path connecting the two
vertices that minimize the number of neighbors of vertices on the path. Note that in
particular all vertices on such a path are accounted to the set of the path neighbors.
They proved among other things that the secluded path problem is NP-hard and,
unless NP ⊂ DTIME(npoly log(n)), inapproximable within a factor of O(2log1−ε n) for
any ε > 0.

For a vertex v in a graph G = (V ,E), let N (v) denote the (closed) neighborhood
of v, i.e., the set of all vertices adjacent to v in G, augmented by v. A neighborhood
walk in G is a sequence of vertex neighborhoods N (v1),N (v2), . . . ,N (vl ) in G such
that for j = 1, . . . , l − 1, {vj, vj+1} ∈ E . The length of the walk is l − 1.

We define recursively the polynomial Ql (i, j) whose monomials are in one-to-one
correspondence with neighborhood walks of length l − 1 in G starting from N (vi)
and ending with N (vj) as follows:

Q1(i, i) =
∏

vk∈N (vi)

xk

Ql (i, j) =
∑

vq∈N (vj )

Ql−1(i, q)
∏

vk∈N (vj )

xk

Two following lemmata are straightforward.

Lemma 5.3. There is a neighborhood walk of length l−1 starting from N (vi) and ending
with N (vj) in G such that the union of its vertex neighborhoods has cardinality at most k
iff Ql (i, j) has a monomial having at most k different variables.

Lemma 5.4. For a graph on n vertices, i, j ∈ [n], the polynomial
∑n

l=1 Ql (i, j) can be
represented by a monotone arithmetic circuit of size O(n2). Furthermore, there is a path
in G with at most k neighbors starting from vi and ending with vj iff the polynomial∑n

l=1 Ql (i, j) has a monomial having at most k different variables.

Lemma 5.45.4 yields the following theorem.

Theorem 5.5. Let P be a polynomial in n variables represented by a monotone arithmetic
circuit with O(nc) gates. For c ≥ 2, the problem of determining the smallest k such
that P has a monomial with at most k distinct variables cannot be approximated within
O(2log1−ε n) for any (fixed) ε > 0, unless NP ⊂ DTIME(npoly log(n)). On the other hand,
for any positive constant c, it can be solved exactly in O(nk0+c) time, where k0 is the
minimum number of distinct variables in a monomial of P.
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Proof. Lemma 5.45.4 yields a many-one fixed-parameter reduction from the secluded
path problem to the problem of determining the smallest k such that a polynomial in
n variables represented by a circuit of polynomial size has a monomial with precisely k
distinct variables. Let m be a minimum number of neighbors on a path connecting
two vertices vi and vj of a graph G on n vertices. By Lemma 5.45.4, if the aforementioned

minimum-variable monomial problem had an O(2log1−ε n) approximation algorithm
then we could answer that there is a path connecting this pair of vertices and having
at most O(m/2log1−ε n) neighbors (importantly, observe that that the number n of
variables in the polynomial

∑n
l=1 Ql (i, j) is equal to the number of vertices in G).

This would contradict the lower bound on the approximability of the secluded path
problem established in [1616].

We can obtain an exact solution to the minimum -variable monomial problem by
simply evaluating the polynomial

∑n
l=1 Ql (i, j) for q = 1, 2, . . . on all assignments of

zero-one values with q ones until a non-zero value is produced.

5.4.2 Detecting a monomial with at least k variables

By a reduction from the max q-cover problem (see Applications in Section 5.3.15.3.1), we
can obtain also similar although weaker results on inapproximability of the symmetric
problem where monomials with maximum number of distinct variables are sought.

Theorem 5.6. Let P be a polynomial in n variables represented by a monotone arithmetic
circuit with polynomial in n number of gates. The problem of determining the largest k
such that P has a monomial with precisely k distinct variables cannot be approximated
within 1− 1

e + ε for any ε > 0, unless NP = P. The decision version of this problem is
NP-hard.

Proof. Use the notation and the polynomial
(∑m

j=1 Mj

)q
from the proof of The-

orem 5.25.2. A monomial of this polynomial with the maximum number of distinct
variables corresponds to a union of at most q subsets Sj covering the same maximum
number of elements in X and vice versa. This combined with the fact that max q-cover
cannot be approximated within 1− 1

e + ε for any ε > 0, unless NP = P (see [3030])
yields the theorem.

If we set k to n in the proof of Theorem 5.65.6, then we obtain a fixed-parameter
reduction of the set cover problem to the problem of detecting if the constructed
polynomial of degree O(nq) has a monomial with precisely n distinct variables, with
respect to the parameter q. Since the set cover problem is W [2]-complete, we obtain
the following theorem.
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Theorem 5.7. Let P be a polynomial with n variables and maximum degree l represented
by a monotone arithmetic circuit with polynomial in n number of gates. The problem of
determining if P has a monomial with precisely n distinct variables is W [2]-hard for the
parameter l/n.

5.5 Extensions to the Boolean Case

By substituting ∨ gates for + gates and ∧ gates for × gates in a monotone arithmetic
circuit, we obtain a corresponding monotone Boolean circuit (i.e., a directed acyclic
graph whose non-leaf nodes are labeled with either ∨ or ∧, leaves are labeled with
distinct variables, and a single node is distinguished as an output node). It computes a
Boolean function which is a disjunction of Boolean monomials, called implicants, cor-
responding to the monomials of the polynomial represented by the original arithmetic
circuit.

Hence, all our hardness and inapproximability results on detecting monomials
with at most or at least k distinct variables and their optimization versions have
their analogous Boolean counterparts. The latter are simply obtained by replacing
“monotone arithmetic circuits” with “monotone Boolean circuits” and “monomials in
the sum-product expansion ...” with “implicants of the Boolean function computed
by the input circuit” etc. For instance, the Boolean counterpart to Theorem 5.55.5 is as
follows.

Corollary 5.1. Given a monotone Boolean circuit with n input variables, and O(n2)
gates, the problem of determining the smallest k such that the Boolean function computed
by the circuit has an implicant with precisely k distinct variables cannot be approximated
within O(2log1−ε n) for any ε > 0, unless NP ⊂ DTIME(npoly log(n)). The decision version
of this problem is NP-complete.

By the reverse aritmetization of a monotone Boolean circuit consisting in replacing
∨ gates by + gates and ∧ gates by ×, respectively, we can also immediately extend our
FPT algorithms for the arithmetic case to include the Boolean case.

As a by-product, we obtain the following theorem of interest in its own rights.

Theorem 5.8. Given two monotone Boolean circuits with the same set of n input variables,
O(n2) gates, the problem of determining if the Boolean functions computed by them are
different is NP-complete.

Proof. Let B be the monotone Boolean function computed by a given monotone
Boolean circuit with n variables x1, . . . , xn and a single output node. Next, for

75



1 ≤ l < n, let Dl be the Boolean function that is a disjunction of all monotone
implicants with precisely l distinct variables in {x1, . . . , xn}.

Dl can be easily computed by a monotone Boolean circuit of polynomial size
as follows. Let Dj

l be the Boolean function that is a disjunction of all monotone
implicants with precisely l distinct variables in {x1, . . . , xj}. For 1 < l and j < n, we

have Dj
l = Dj−1

l−1 ∧ xj ∨ Dj−1
l .

Let k < n. Note that Dk+1 = Dn
k+1 is true exactly on all assignments of variables

in {x1, . . . , xn} with at least k + 1 ones. For this reason, the functions Dk+1 ∨ B and
Dk+1 are different iff B can be satisfied by an assignment with at most k ones, i.e., iff
B has an implicant with at most k variables. But the latter problem is NP complete by
Corollary 5.15.1.

Theorem 5.85.8 is interesting since no negation is used by any of the two circuits, oth-
erwise the theorem would follow trivially from the NP-completeness of the satisfiability
problem.
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