122 research outputs found

    A Green TDMA Scheduling Algorithm for Prolonging Lifetime in Wireless Sensor Networks

    Get PDF
    Fast data collection is one of the most important research issues for Wireless Sensor Networks (WSNs). In this paper, a TMDA based energy consumption balancing algorithm is proposed for the general k-hop WSNs, where one data packet is collected in one cycle. The optimal k that achieves the longest network life is obtained through our theoretical analysis. Required time slots, maximum energy consumption and residual network energy are all thoroughly analyzed in this paper. Theoretical analysis and simulation results demonstrate the effectiveness of the proposed algorithm in terms of energy efficiency and time slot scheduling

    The Minimum Scheduling Time for Convergecast in Wireless Sensor Networks

    Get PDF
    We study the scheduling problem for data collection from sensor nodes to the sink node in wireless sensor networks, also referred to as the convergecast problem. The convergecast problem in general network topology has been proven to be NP-hard. In this paper, we propose our heuristic algorithm (finding the minimum scheduling time for convergecast (FMSTC)) for general network topology and evaluate the performance by simulation. The results of the simulation showed that the number of time slots to reach the sink node decreased with an increase in the power. We compared the performance of the proposed algorithm to the optimal time slots in a linear network topology. The proposed algorithm for convergecast in a general network topology has 2.27 times more time slots than that of a linear network topology. To the best of our knowledge, the proposed method is the first attempt to apply the optimal algorithm in a linear network topology to a general network topology

    Real-Time and Energy-Efficient Routing for Industrial Wireless Sensor-Actuator Networks

    Get PDF
    With the emergence of industrial standards such as WirelessHART, process industries are adopting Wireless Sensor-Actuator Networks (WSANs) that enable sensors and actuators to communicate through low-power wireless mesh networks. Industrial monitoring and control applications require real-time communication among sensors, controllers and actuators within end-to-end deadlines. Deadline misses may lead to production inefficiency, equipment destruction to irreparable financial and environmental impacts. Moreover, due to the large geographic area and harsh conditions of many industrial plants, it is labor-intensive or dan- gerous to change batteries of field devices. It is therefore important to achieve long network lifetime with battery-powered devices. This dissertation tackles these challenges and make a series of contributions. (1) We present a new end-to-end delay analysis for feedback control loops whose transmissions are scheduled based on the Earliest Deadline First policy. (2) We propose a new real-time routing algorithm that increases the real-time capacity of WSANs by exploiting the insights of the delay analysis. (3) We develop an energy-efficient routing algorithm to improve the network lifetime while maintaining path diversity for reliable communication. (4) Finally, we design a distributed game-theoretic algorithm to allocate sensing applications with near-optimal quality of sensing

    Convergecast with Unbounded Number of Channels

    Full text link
    We consider a problem of minimum length scheduling for the conflict-free aggregation convergecast in wireless networks in a case when each element of a network uses its own frequency channel. This problem is equivalent to the well-known NP-hard problem of telephone broadcasting since only the conflicts between the children of the same parent are taken into account. We propose a new integer programming formulation and compare it with the known one by running the CPLEX software package. Based on the results of a numerical experiment, we concluded that our formulation is more preferable in practice to solve the considered problem by CPLEX than the known one. We also propose a novel heuristic algorithm, which is based on a genetic algorithm and a local search metaheuristic. The simulation results demonstrate the high quality of the proposed algorithm compared to the best known approaches

    Balanced Multi-Channel Data Collection in Wireless Sensor Networks

    Get PDF
    Data collection is an essential task in Wireless Sensor Networks (WSNs). In data collection process, the sensor nodes transmit their readings to a common base station called Sink. To avoid a collision, it is necessary to use the appropriate scheduling algorithms for data transmission. On the other hand, multi-channel design is considered as a promising technique to reduce network interference and latency of data collection. This technique allows parallel transmissions on different frequency channels, thus time latency will be reduced. In this paper, we present a new scheduling method for multi-channel WSNs called Balanced Multi Channel Data Collection (Balanced MC-DC) Algorithm. The proposed protocol is based on using both Non-Overlapping Channels (NOC) and Partially Overlapping Channels (POC). It uses a new approach that optimizes the processes of tree construction, channel allocation, transmission scheduling and balancing simultaneously. Extensive simulations confirm the superiority of the proposed algorithm over the existing algorithms in wireless sensor networks

    The Hybrid Algorithm for Data Collection over a Tree Topology in WSN

    Get PDF
    Wireless sensor networks have wide range of application such as analysis of traffic, monitoring of environmental, industrial process monitoring, technical systems, civilian and military application. Data collection is a basic function of wireless sensor networks (WSN) where sensor nodes determine attributes about a phenomenon of concern and transmits their readings to a common base station(sink node). In this paper, we use contention-free Time Division Multiple Access (TDMA) support scheduling protocols for such data collection applications over tree-based routing topology. We represent a data gathering techniques to get the growing capacity, routing protocol all along with algorithms planned for remote wireless sensor networks. This paper describes about the model of sensor networks which has been made workable by the junction of micro-electro-mechanical systems technologies, digital electronics and wireless communications. Firstly the sensing tasks and the potential sensor network applications are explored, and assessment of factors influencing the design of sensor networks is provided. In our propose work using data compression and packet merging techniques; or taking advantage of the correlation in the sensor readings. Consider continuous monitoring applications where perfect aggregation is achievable, i.e., every node is capable of aggregate the entire packets expected from its children as well as that generate by itself into a particular packet before transmit in the direction of its sink node or base station or parent node. Keyword: Aggregation, Data Converge-cast, Data fusion, Energy Efficiency, Routing and TDMA

    Optimal Multi-TDMA Scheduling in Ring Topology Networks

    Get PDF
    A scheduling algorithm will be proposed for wireless ring topology networks, utilizing time division multiple access (TDMA) with possible simultaneous operation of nodes. The proposed algorithm finds the optimal schedule to minimize the turnaround time for messages in the network. The properties of the algorithm are mathematically analyzed and proven, and practical test results are also provided
    • …
    corecore