1,550 research outputs found

    Proceedings of the first international VLDB workshop on Management of Uncertain Data

    Get PDF

    Infinite Probabilistic Databases

    Get PDF
    Probabilistic databases (PDBs) are used to model uncertainty in data in a quantitative way. In the standard formal framework, PDBs are finite probability spaces over relational database instances. It has been argued convincingly that this is not compatible with an open-world semantics (Ceylan et al., KR 2016) and with application scenarios that are modeled by continuous probability distributions (Dalvi et al., CACM 2009). We recently introduced a model of PDBs as infinite probability spaces that addresses these issues (Grohe and Lindner, PODS 2019). While that work was mainly concerned with countably infinite probability spaces, our focus here is on uncountable spaces. Such an extension is necessary to model typical continuous probability distributions that appear in many applications. However, an extension beyond countable probability spaces raises nontrivial foundational issues concerned with the measurability of events and queries and ultimately with the question whether queries have a well-defined semantics. It turns out that so-called finite point processes are the appropriate model from probability theory for dealing with probabilistic databases. This model allows us to construct suitable (uncountable) probability spaces of database instances in a systematic way. Our main technical results are measurability statements for relational algebra queries as well as aggregate queries and Datalog queries

    Opportunistic linked data querying through approximate membership metadata

    Get PDF
    Between URI dereferencing and the SPARQL protocol lies a largely unexplored axis of possible interfaces to Linked Data, each with its own combination of trade-offs. One of these interfaces is Triple Pattern Fragments, which allows clients to execute SPARQL queries against low-cost servers, at the cost of higher bandwidth. Increasing a client's efficiency means lowering the number of requests, which can among others be achieved through additional metadata in responses. We noted that typical SPARQL query evaluations against Triple Pattern Fragments require a significant portion of membership subqueries, which check the presence of a specific triple, rather than a variable pattern. This paper studies the impact of providing approximate membership functions, i.e., Bloom filters and Golomb-coded sets, as extra metadata. In addition to reducing HTTP requests, such functions allow to achieve full result recall earlier when temporarily allowing lower precision. Half of the tested queries from a WatDiv benchmark test set could be executed with up to a third fewer HTTP requests with only marginally higher server cost. Query times, however, did not improve, likely due to slower metadata generation and transfer. This indicates that approximate membership functions can partly improve the client-side query process with minimal impact on the server and its interface

    Learning To Scale Up Search-Driven Data Integration

    Get PDF
    A recent movement to tackle the long-standing data integration problem is a compositional and iterative approach, termed “pay-as-you-go” data integration. Under this model, the objective is to immediately support queries over “partly integrated” data, and to enable the user community to drive integration of the data that relate to their actual information needs. Over time, data will be gradually integrated. While the pay-as-you-go vision has been well-articulated for some time, only recently have we begun to understand how it can be manifested into a system implementation. One branch of this effort has focused on enabling queries through keyword search-driven data integration, in which users pose queries over partly integrated data encoded as a graph, receive ranked answers generated from data and metadata that is linked at query-time, and provide feedback on those answers. From this user feedback, the system learns to repair bad schema matches or record links. Many real world issues of uncertainty and diversity in search-driven integration remain open. Such tasks in search-driven integration require a combination of human guidance and machine learning. The challenge is how to make maximal use of limited human input. This thesis develops three methods to scale up search-driven integration, through learning from expert feedback: (1) active learning techniques to repair links from small amounts of user feedback; (2) collaborative learning techniques to combine users’ conflicting feedback; and (3) debugging techniques to identify where data experts could best improve integration quality. We implement these methods within the Q System, a prototype of search-driven integration, and validate their effectiveness over real-world datasets

    Viewpoints on emergent semantics

    Get PDF
    Authors include:Philippe Cudr´e-Mauroux, and Karl Aberer (editors), Alia I. Abdelmoty, Tiziana Catarci, Ernesto Damiani, Arantxa Illaramendi, Robert Meersman, Erich J. Neuhold, Christine Parent, Kai-Uwe Sattler, Monica Scannapieco, Stefano Spaccapietra, Peter Spyns, and Guy De Tr´eWe introduce a novel view on how to deal with the problems of semantic interoperability in distributed systems. This view is based on the concept of emergent semantics, which sees both the representation of semantics and the discovery of the proper interpretation of symbols as the result of a self-organizing process performed by distributed agents exchanging symbols and having utilities dependent on the proper interpretation of the symbols. This is a complex systems perspective on the problem of dealing with semantics. We highlight some of the distinctive features of our vision and point out preliminary examples of its applicatio
    • …
    corecore