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Abstract
Probabilistic databases (PDBs) are used to model uncertainty in data in a quantitative way. In the
standard formal framework, PDBs are finite probability spaces over relational database instances. It
has been argued convincingly that this is not compatible with an open-world semantics (Ceylan et al.,
KR 2016) and with application scenarios that are modeled by continuous probability distributions
(Dalvi et al., CACM 2009).

We recently introduced a model of PDBs as infinite probability spaces that addresses these
issues (Grohe and Lindner, PODS 2019). While that work was mainly concerned with countably
infinite probability spaces, our focus here is on uncountable spaces. Such an extension is necessary
to model typical continuous probability distributions that appear in many applications. However,
an extension beyond countable probability spaces raises nontrivial foundational issues concerned
with the measurability of events and queries and ultimately with the question whether queries have
a well-defined semantics.

It turns out that so-called finite point processes are the appropriate model from probability theory
for dealing with probabilistic databases. This model allows us to construct suitable (uncountable)
probability spaces of database instances in a systematic way. Our main technical results are
measurability statements for relational algebra queries as well as aggregate queries and Datalog
queries.
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1 Introduction

Probabilistic databases (PDBs) are used to model uncertainty in data. Such uncertainty
could be introduced by a variety of reasons like, for example, noisy sensor data, the presence
of incomplete or inconsistent information, or because the information is gathered from
unreliable sources [3, 63]. In the standard formal framework, probabilistic databases are
finite probability spaces whose sample spaces consist of database instances in the usual sense,
referred to as “possible worlds”. However, this framework has various shortcomings due
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16:2 Infinite Probabilistic Databases

to its inherent closed-world assumption [16] – in particular, any event outside of the finite
scope of such probabilistic databases is treated as an impossible event. There is also work on
PDBs that includes continuous probability distributions and hence goes beyond the formal
framework of finite probability space. Yet, these continuous PDBs lack a general formal basis
in terms of a possible worlds semantics [20]. While both open-world PDBs and continuous
probability distributions in PDBs have received some attention in the literature, there is no
systematic joint treatment of these issues with a sound theoretical foundation. In [38], we
introduced an extended model of PDBs as arbitrary (possibly infinite) probability spaces
over finite database instances. However, the focus there was on countably infinite PDBs.
An extension to continuous PDBs, which is necessary to model probability distributions
appearing in many applications that involve real-valued measurement data, raises new
fundamental questions concerning the measurability of events and queries.

In this paper, we lay the foundations of a systematic and sound treatment of infinite,
even uncountable, probabilistic databases, and we prove that queries expressed in standard
query languages have a well-defined semantics.

Our treatment is based on the mathematical theory of finite point processes [53, 49, 18].
Adopting this theory to the context of relational databases, we give a suitable construction
of measurable spaces over which our probabilistic databases can then be defined. The
only assumption that we need to make is that the domains of all attributes satisfy certain
topological assumptions (they need to be Polish spaces; all standard domains such as integers,
strings, reals, satisfy this assumption). For queries and views to have a well-defined open-
world semantics, we need them to be measurable mappings between probabilistic databases.
Our main technical result states that indeed all queries and views that can be expressed in the
relational algebra, even equipped with arbitrary aggregate operators (satisfying some mild
measurability conditions) are measurable mappings. The result holds for both a bag-based
and set-based relational algebra. We also prove the measurability of Datalog queries.

Measurability of queries may seem like an obvious minimum requirement, but one needs
to be very careful. We give an example of a simple, innocent looking “query” that is not
measurable (see Example 8). The proofs of the measurability results are not trivial, which
may already be seen from the fact that they depend on the topological assumption that the
attribute domains are Polish spaces (most importantly, they are complete topological spaces
and have a countable dense subset). At their core, the proofs are based on finding suitable
“countable approximations” of the queries.

In the last section of this paper, we briefly discuss queries for probabilistic databases that
go beyond “standard” database queries lifted to probabilistic databases via an open-world
semantics. Examples of such a queries are probabilistic threshold queries and rank queries.
Such queries refer not only to the facts in a database, but also to their probabilities, and
hence are inherently probabilistic.

Related Work. Early work on models for probabilistic databases dates back to the 1980s
[69, 35, 15] and 1990s [8, 56, 26, 34, 71]. These models may be seen as special cases or
variations of the now-acclaimed formal model of probabilistic databases that features a
usually finite set of database instances (the “possible worlds”) together with a probability
distribution among them [3, 63].

The work [45] presents a formal definition of the probabilistic semantics of relational
algebra queries as it is used in the MayBMS system [46]. A probabilistic semantics for
Datalog has already been proposed in the mid-90s [33]. More recently, a version of Datalog
was considered in which rules may fire probabilistically [25]. Aggregate queries in probabilistic
databases were first treated systematically in [59] and reappear in various works concerning
particular PDB systems [54, 28].
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The models of possible worlds semantics mentioned above are the mathematical backbone
of existing probabilistic database prototype systems such as MayBMS [46], Trio [68] and
MystiQ [12]. Various subsequent prototypes feature uncountable domains as well, such as
Orion [60], MCDB [41, 42], new versions of Trio [4] and PIP [44]. The MCDB system in
particular allows programmers to specify probabilistic databases with infinitely many possible
worlds with database instances that can grow arbitrarily large [42] and is therefore probably
the most general existing system. Its system-driven description does not feature a general
formal, measure theoretic account of its semantics though. In a spirit that is similar to our
presentation here, the work [64] introduced a measure theoretic semantics for probabilistic
data stream systems with probability measures composed from Gaussian mixture models but
(to our knowledge) on a per tuple basis and without the possibility of inter-tuple correlations.
Continuous probabilistic databases have already been considered earlier in the context of
sensor networks [27, 17, 24]. The first work to formally introduce continuous possible worlds
semantics (including aggregation) is [1] for probabilistic XML. However, the framework has
an implicit restriction bounding the number of tuples in a PDB.

Models similar in expressivity to the one we present have also been suggested in the
context of probabilistic modeling languages and probabilistic programming [51, 52, 58, 22, 7].
In particular notable are the measure theoretic treatments of Bayesian Logic (BLOG) [51] in
[70] and Markov Logic Networks (MLNs) [58] in [61]. While these data models are relational,
it is unclear, how suitable they are for general database applications and in particular, the
investigation of typical database queries is beyond the scope of these works.

Problems raised by the closed-world assumption [57] in probabilistic databases was
discussed initially by Ceylan et al. in [16] where they suggest the model of OpenPDBs. In
[10], the authors make a more fine-grained distinction between an open-world and open-
domain assumption, the latter of which does not assume the attribute values of the database
schema to come from a known finite domain. The work [31] considers semantic constraints on
open worlds in the OpenPDB framework. The semantics of OpenPDBs can be strengthened
towards an open-domain assumption by the means of ontologies [9, 10, 11].

The classification of views we discuss towards the end of this paper shares similarities
with previous classifications of queries such as [17] in the sense that it distinguishes how
aggregation is involved. The work [66] suggests a distinction between “traditional” and
“out-of-world aggregation” quite similar to the one we present.

2 Preliminaries

Throughout the paper, we denote the set of nonnegative integers by N, the set of rational
numbers by Q and the set of real numbers by R. We write N+, Q+ and R+ for the restrictions
of these sets to strictly positive numbers.

If M is a set and k ∈ N, then
(
M
k

)
denotes the set of subsets of M of cardinality k. The

set of all finite subsets of M is then given by
⋃
k≥0

(
M
k

)
=:
(
M
<ω

)
.

A bag (also called multiset) over a set U is an unordered collection of elements of U ,
possibly with repetitions. In order to distinguish sets and bags, we use double curly braces
{{· · ·}} when explicitly denoting bags. Similarly to the notation for sets, we let

((
M
k

))
denote

the set of bags over the set M of cardinality k ∈ N (that is, containing k elements, counting
copies). The set of all finite bags over M is given by

⋃
k≥0
((
M
k

))
=:
((
M
<ω

))
.

There are multiple equivalent ways to formalize the notion of bags. We introduce two
such definitions that we use interchangeably later:

ICDT 2020



16:4 Infinite Probabilistic Databases

Multiplicity perspective A bag B over some set U is a function #B : U → N assigning a
multiplicity to every element of U . The cardinality of B is |B| :=

∑
u∈U #B(u).

Quotient perspective For all a, b ∈ Uk, let a ∼ b if b is a permutation of a. A bag B of
cardinality |B| = k is a ∼-equivalence class on Uk.

While the multiplicity perspective better matches the intuitive semantics of bags, the
quotient view later has a closer connection to the probability spaces we are going to construct.

2.1 Relational Databases
We follow the general terminology and notions of the named perspective of databases, see for
example [2]. We fix two countably infinite, disjoint sets Attributes and Relations of attribute
names and relation names, respectively. As usual, we drop the distinction between names of
attributes and relations and their model-theoretic interpretation. A database schema is a
pair S = (A,R) with the following properties:
A and R are finite subsets of Attributes resp. Relations.
For every attribute A ∈ A there exists a set domS(A), called its domain.
For every relation symbol R ∈ R there exists an associated k-tuple of distinct attributes
from A for some k, called its type typeS(R).

Implicitly, every relation R ∈ R has an arity arS(R) := |typeS(R)| and a domain domS(R) :=∏
A∈typeS(R) domS(A). Elements of the domain of R ∈ R are called R-tuples. Whenever a

pair (A,R) is given, we assume that all of the aforementioned mappings are given as well,
unless it is specified otherwise. Given a database schema S = (A,R) and a relation R ∈ R,
the set of R-facts in S is formally defined as factsS(R) = {R} × domS(R). The set of all
facts of schema S is given as factsS(R) :=

⋃
R∈R factsS(R).

As usual, we denote R-facts in the fashion of R(a1, . . . , ak) rather than (R, a1, . . . , ak).
If U ⊆ domS(R) for R ∈ R, we let R(U) := {R(u) : u ∈ U}. If U is a Cartesian product
involving singletons, like for example U = {a} × V , we may omit the braces of the singletons
and replace crosses with commas so that R(a, U) = {R(a, u) : u ∈ U}.

Finally, a database instance D of schema S = (A,R) is a finite bag of facts from factsS(R),
that is, an element of the set DS :=

((
factsS(R)

<ω

))
. We want to emphasize that in particular

we allow single facts to appear two or more times within an instance. That is, we use bag
semantics in our database instances.

2.2 Topology and Measure Theory
We assume that the reader is familiar with the basic notions of point set topology such as
open and closed sets and continuous mappings. For a more detailed introduction to the
concepts we refer to standard text books such as [14, 13]. In the following, we concentrate
on the background from measure theory. The definitions and statements are based upon [62]
and Chapter 1 of [43].

In topological terms, the spaces we use as our attribute domains later on are called
Polish spaces - complete, separable metrizable spaces. Such spaces are the default choice
for probability theory in a general setting, as they are quite general while still exhibiting
the nice behavior of closed intervals of the real line, in particular the ability to approximate
points by converging sequences of a countable collection of open sets.
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I Example 1 (see [32, ch. 18] and [62, pp. 52 et seqq.]).
All finite and countably infinite spaces (with the discrete topology) are Polish.
The spaces R and R ∪ {±∞} are Polish.
Closed subspaces of Polish spaces are Polish.
Countable disjoint unions and countable products of Polish spaces are Polish.

These examples already capture the most relevant cases for standard database applications.
Nevertheless we stick to the abstract notion of Polish spaces in order to keep the framework
as general as possible. When we work with Polish spaces, we will later always assume that
we work with a fixed metric on the space (turning it into a complete separable metric space).
In particular, we will use the standard notation Bε(x) for the ball of radius ε around the
point x (with respect to said metric).

Let X be some set. A σ-algebra on X is a family X of subsets of X such that X ∈ X and X

is closed under complementation and countable unions. If G is a family of subsets of X, then
the σ-algebra generated by G is the smallest σ-algebra X on X containing G. A measurable
space is a pair (X,X) where X is an arbitrary set and X is a σ-algebra on X. Subsets of
X are called X-measurable (or measurable if X is clear from context) if they belong to X.
A probability measure on X is a countably additive function P : X → [0, 1] with P (∅) = 0
and P (X) = 1. (P being countably additive means P

(⋃
i Xi
)

=
∑
i P (Xi) for any sequence

X0,X1,X2, . . . of disjoint measurable sets.) A measurable space equipped with a probability
measure is called a probability space. If Ξ is a probability space (X,X, P ), we also write
PrX∼Ξ(X ∈ X ) = P (X ) or even omit the subscript X ∼ Ξ, if the underlying probability
space is clear from context.

Let (X,X) and (Y,Y) be measurable spaces. A mapping ϕ : X → Y is called (X,Y)-
measurable (or simply measurable if the involved σ-algebras are clear from context) if the
preimage under ϕ of every Y-measurable set is X-measurable. That is, if

ϕ−1(Y ′) = {X ∈ X : ϕ(X) ∈ Y ′} ∈ X for all Y ′ ∈ Y.

I Fact 2 (cf. [43, Lemmas 1.4, 1.7 & 1.10]). Let (X,X), (Y,Y), (Z,Z) be measurable spaces.
Let G generate Y. If ϕ : X→ Y satisfies ϕ−1(G) ∈ X for all G ∈ G, then ϕ is measurable.
If ϕ : X→ Y and ψ : Y→ Z are measurable, then ψ ◦ ϕ : X→ Z is (X,Z)-measurable.
If Y is a metric space and (ϕn)n≥0 is a sequence of measurable functions ϕn : X → Y
with limn→∞ ϕn = ϕ, then ϕ is measurable as well.

If (X,TX) is a topological space, the Borel σ-algebra BorX on X is the σ-algebra generated
by TX. Sets in the Borel σ-algebra are also called Borel.

I Fact 3 (cf. [43, Lemma 1.5]). Any continuous function between the topological spaces
(X,TX) and (Y,TY) is (BorX,BorY)-measurable .

Two measurable spaces (X,X) and (Y,Y) are called isomorphic if there exists a bijection
ϕ : X → Y such that both ϕ and ϕ−1 are measurable. The mapping ϕ is then called an
isomorphism between the measurable spaces. If X = BorX and Y = BorY, then ϕ is called
a Borel isomorphism and the measurable spaces are called Borel isomorphic. Measurable
spaces that are isomorphic to some Polish space with its Borel σ-algebra are called standard
Borel spaces.

If Xi is a σ-algebra on Xi for all i ∈ I, the product σ-algebra
⊗

i∈I Xi of (Xi)i∈I is the
σ-algebra on

∏
i∈I Xi that is generated by the sets {π−1

j (X ) : X ∈ Xj}j∈I where πj is the
canonical projection map πj :

∏
i∈I Xi → Xj .

ICDT 2020



16:6 Infinite Probabilistic Databases

I Fact 4 (cf. [43, Lemma 1.2]). Let (Xi)i∈I be a countable sequence of Polish spaces and
let Bori be the Borel σ-algebra of Xi. Then X =

∏
i∈I Xi is Polish and BorX =

⊗
i∈I Bori.

That is, countable products of standard Borel spaces are standard Borel.

2.3 (Finite) Point Processes
Point processes are a well-known concept in probability theory that is used to model
distributions of a discrete (but unknown or even infinite) number of points in some abstract
“state space”, say the Euclidean space Rn [18]. They are used to model a variety of both
practical and theoretical problems and appear in a broad field of applications such as, for
example, particle physics, ecology, geostatistics, astronomy and tracking [53, 18, 6, 50, 23].
A concrete collection of points that is obtained by a draw from such a distribution model
is called a realization of the point process. If all realizations are finite, we speak of a finite
point process [18]. We proceed to construct a finite point process over a Polish state space,
following the classic constructions of [53, 49]. While modern point process theory is much
more evolved by casting point processes in the more general framework of random measures
[19], the seminal model of [53, 49] suffices for our studies due to our restriction to finite point
processes.

Let (X,X) be a standard Borel space. Then for every n, the product measurable space
(Xn,X⊗n) with X⊗n := X ⊗ · · · ⊗ X (n times) is standard Borel as well (Fact 4). Letting
∼n denote the equivalence relation on Xn with (x1, . . . , xn) ∼n (y1, . . . , yn) if there exists a
permutation π of {1, . . . , n} with (y1, . . . , yn) = (xπ(1), . . . , xπ(n)), then elements of Xn/ ∼n
are basically unordered collections of n (not necessarily different) points, that is, bags (or
multisets). Formally, we identify Xn/ ∼n with the space (( X

n )) of all n-element bags from X.
The space of all possible realizations is then naturally defined as(( X

<ω

))
=
⋃
n∈N

(( X
n )) =

⋃
n∈N

Xn/ ∼n .

This is the canonical sample space for a finite point process [18, 53], but we need to define a
σ-algebra on this space. The original construction of [53] considers the symmetrization trans-
formation sym from X<ω to

(( X
<ω

))
where sym(x1, . . . , xn) = [(x1, . . . , xn)]∼n = {{x1, . . . , xn}}

and sym(X ) = {sym(x̄) : x̄ ∈ X} and defines the σ-algebra on X to be the set of all subsets of(( X
<ω

))
whose preimage under sym is measurable with respect to the σ-algebra on X<ω that

is generated using (X⊗n)n∈N (pursuing the idea to lift probability measures from well-known
product spaces to the new, in terms of measure theory inconvenient “bag-space” – note that
the construction above indeed yields a σ-algebra on

(( X
<ω

))
, see [43, Lemma 1.3]). An equiva-

lent, but technically more convenient construction (see [49]) is motivated by an interpretation
of point processes as “random counting measures” [53, 49, 19]: for X ∈ X and n ∈ N, the
set C(X , n) ⊆

(( X
<ω

))
is the set of bags C over X with #C(X ) :=

∑
X∈X #C(X) = n (that is,

with exactly n “hits” in X ) is called the counting event of X and n. We define CX to be the
σ-algebra that is generated by the family of counting events C(X , n) where X is Borel in X
and n is a nonnegative integer. The family CX is known as the counting σ-algebra on

(( X
<ω

))
.

It can be shown that the σ-algebra generated by the counting events is the same as the
σ-algebra defined from product σ-algebras and the symmetrization operation (see [53, 49]).

I Definition 5 (cf. [49, Def. 1]). Let (X,X) be a standard Borel space and let P be a probability
measure on

((( X
<ω

))
,CX

)
. Then

((( X
<ω

))
,CX, P

)
is called a finite point process with state

space (X,X).
A finite point process (Y,Y, P ) with state space (X,X) is called simple, if any realization

is almost surely a set, i. e. if Pr
(
#Y

(
{X}

)
∈ {0, 1} for all X ∈ X

)
= 1.



M. Grohe and P. Lindner 16:7

3 Probabilistic Databases

In [38], we introduced a general notion of infinite probabilistic databases as probability spaces
of database instances, that is, probability spaces (D,D, P ), where D ⊆ DS for some database
schema S. Here D may be infinite, even uncountable. In fact, in [38] we only considered
instances that are sets rather than bags, but this does not make much of a difference here.
We left it open, however, how to construct such probability spaces, and in particular how to
define a suitable measurable spaces (D,D), which is nontrivial for uncountable D. In this
section, we provide a general construction for constructing such measurable spaces.

3.1 Probabilistic Databases as Finite Point Processes
Throughout this paper, we only consider database schemas S where for every attribute A
the domain domS(A) is a Polish space. This is no real restriction; all domains one might
typically find, such as the sets of integers, reals, or strings over a finite or even countable
alphabet have this property.

In the following, we fix a database schema S = (A,R). It follows from Fact 4 that
not only the domains domS(A) of the attributes A ∈ A, but also the spaces domS(R) and
factsS(R) for all R ∈ R are Polish. We equip all of these spaces with their respective Borel
σ-algebras and note that domS(R) and factsS(R) are Borel-isomorphic from the point of view
of measurable spaces. Thus, they can be used interchangeably when discussing measurability
issues with respect to a single relation. For the set factsS(R) of facts using relation symbol
R ∈ R, let FS(R) denote its (Borel) σ-algebra. We equip factsS(R), the set of all facts of
schema S with the σ-algebra

FS(R) = {F ⊆ factsS(R) : F ∩ factsS(R) ∈ FS(R) for all R ∈ R}.

Note that this is indeed a σ-algebra and, moreover, turns (factsS(R),FS(R)) into a standard
Borel space (cf. [30, p. 39] and [29, p. 166]).

Now a probabilistic database of schema S is supposed to be a probability space (D,D, P )
where D ⊆ DS . Without loss of generality we may assume that actually D = DS =

((
factsS(R)

<ω

))
,

because we can adjust the probability measure to be 0 on instances we are not interested in.
Thus a probabilistic database is a probability space over finite sets of facts. This is exactly
what a finite point process over the state space consisting of facts is. We still need to define
the σ-algebra D, but the theory of point processes gives us a generic way of doing this: we
let DS = CfactsS(R) be the counting σ-algebra of DS (cf. Section 2.3).

I Definition 6. A standard probabilistic database of schema S is a probability space
(DS ,DS , P ).

That is, a standard probabilistic database of schema S is a finite point process over the
state space (factsS(R),FS).

The reason we speak of “standard” PDBs in the definition is to distinguish them from
the more general PDBs introduced in [38, Definition 3.1]. In [38], we left the σ-algebra
unspecified and only required the (mild) property, that the occurrence of measurable sets of
facts is themselves measurable. This requirement corresponds to a set version of the counting
events defined above and is thus given by default in a standard probabilistic database.

Even though the construction of counting σ-algebras for point processes is nontrivial, we
are convinced that it is a natural generic construction of σ-algebras over spaces of finite (or
countable) sets and the extensive usage of these constructions throughout mathematics for

ICDT 2020



16:8 Infinite Probabilistic Databases

more than fifty years now indicates their suitability for such tasks. Throughout this paper,
all probabilistic databases are standard. Therefore, we omit the qualifier “standard” in the
following and just speak of probabilistic databases (PDBs).

We defined instances of PDBs to be bags of facts. However, if a PDB, that is, a finite point
process is simple (see Section 2.3), then it may be interpreted as a PDB with set-instances.

I Example 7. Every finite probabilistic database (as introduced, for example, in [63]) can
be viewed as a standard PDB: Let D̃ be a finite set of set-valued database instances over
some schema S = (A,R) and let P̃ : D̃ → [0, 1] a probability measure on D̃ (equipped
with the power set as its σ-algebra). Then (D̃, P̃ ) corresponds to the simple finite point
process (D,D, P ) on the instance measurable space of S with state space (factsS(R),FS(R))
where P (D) = P̃ (D ∩ D̃) (interpreting D̃ with a (finite) collection of bags with {0, 1}-valued
multiplicities).

3.2 The Possible Worlds Semantics of Queries and Views
In the traditional database setting, views are mappings from database instances of an input
schema (or source schema) S = (A,R) to database instances of some output schema (or
target schema) S ′ = (A′,R′). Views, whose output schema S ′ consists of a single relational
symbol only are called queries. Queries and views are usually given by syntactic expressions
in some query language. As it is common, we will blur the distinction between a query (or
view) and its syntactic representation.

Let ∆ = (DS ,DS , P ) be a probabilistic database of schema S = (A,R) and let V be a
view of input schema S and output schema S ′ = (A′,R′). The image of a set D ⊆ D of
instances is V (D) = {V (D) : D ∈ D} ⊆ DS′ .

Now we would like to define a probability measure on the output space (DS′ ,DS′) by

P ′(D′) := P
(
V −1(D′)

)
= P

(
{D ∈ D : V (D) ∈ D′}

)
(1)

for all D′ ∈ DS′ . Then V would map ∆ to ∆′ := (DS′ ,DS′ , P ′). This semantics of views over
PDBs is known as the possible worlds semantics of probabilistic databases [36, 3, 63, 65].

However, P ′ (as defined in (1)) is only well-defined if for all D′ ∈ DS′ the set V −1(D′) is
in DS , that is, if V is a measurable mapping from (DS ,DS) to (DS′ ,DS′).

Measurability is not just a formality, but an issues that requires attention. The following
example shows that there are relatively simple “queries” that are not measurable.

I Example 8. Let S = S ′ be the schema consisting of a singe unary relation symbol R with
attribute domian R (equipped with the Borel σ-algebra), and let B be some Borel set in R2.

We define a mapping QB : DS → DS , our “query”, by

QB(D) :=
{
D if D is a singleton {{R(x)}} and there exists y ∈ R s. t. (x, y) ∈ B,
∅ otherwise.

Observe that Q−1
B (DS) = {{{R(x)}} : x ∈ proj1(B)}, where proj1(B) = {x ∈ R : there is y ∈

R s. t. (x, y) ∈ B}. It is a well known fact that there are Borel sets B ⊆ R2 such that the
projection proj1(B) is not a Borel set in R (see [62, Theorem 4.1.5]). For such sets B, the
query QB is not measurable.

The rest of this paper is devoted to proving that queries and views expressed in standard
query languages, specifically relational algebra, possibly extended by aggregation, and Datalog
queries, are measurable mappings and thus have a well-defined open-world semantics over
probabilistic databases.
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It will be sufficient to focus on queries, because views can be composed from queries
and the measurability results can be lifted (as we formally show in the next subsection).
Throughout the rest of the paper, we adopt the following notational conventions: queries are
denoted by Q and map a PDB ∆ = (D,D, P ) to a PDB ∆′ = (D′,D′, P ′) such that ∆ is of
schema S and ∆′ is of schema S ′.
I Observation 9. The task of establishing measurability of queries in our framework is
simplified by the following.
1. If we want to demonstrate the measurability of Q, it suffices to show that Q−1(D′) ∈ D

for all counting events D′ = C′(F, n) of (D′,D′). This is due to Fact 2 because they
generate D′.

2. Since compositions of measurable mappings are measurable (again from Fact 2), composite
queries are immediately measurable if all their components are measurable queries to
begin with. In particular, we can demonstrate the measurability of general queries of
some query language by structural induction.

I Remark 10. Let us again mention something related to the well-established knowledge on
point processes. The mappings (queries) we investigate map between point processes that are
defined on different measure spaces that are themselves a conglomerate of simpler measure
spaces of different shape. It is well-known that measurable transformations of the state space
of a point process define a new point process on the transformed state space (a strengthening
of this result is commonly referred to as the “mapping theorem” [48]). Our queries however
are in general already defined on point configurations and not on the state space of facts.
Thus, their measurability can in general not be obtained by the idea just sketched.

3.3 Assembling Views from Queries
We think of views as finite sets of queries, including one for every relation of the output
schema. Suppose V = {Q1, . . . , Qk} is a view consisting of measurable queries Q1, . . . , Qk
where the names of the target relations of the Qi are mutually distinct. The target schema
S ′ of V is given by the union of the target schemas of V s individual queries. Now every fact
f ∈ factsS′(R′) of the new schema originates from the target schema of exactly one of the
queries Q1, . . . , Qk. We refer to that query as Qf . Then for all D ∈ D and f ∈ factsS′(R′),
we define #V (D)(f) := #Qf (D)(f). Now if F ⊆ factsS′(R′), let Fi := F ∩ factsS′

i
(R′i) where

S ′i = (A′i,R′i) is the target schema of Qi. Then

#V (D)(F ) = n ⇔ there are n1, . . . , nk with
∑k
i=1 ni = n such that #Qi(D)(Fi) = ni.

Since the Fi are measurable if and only if F is measurable, the above describes a countable
union of measurable sets. Thus, V is measurable.

4 Relational Algebra

As motivated in Section 3.2, we now investigate the measurability of relational algebra queries
in our model. The concrete relational algebra for bags that we use here is basically the
(unnested version of the) algebra that was introduced in [21] and investigated respectively
extended and surveyed in [5, 40, 39]. It is called BALG1 (with superscript 1) in [40]. We
do not introduce nesting as it would yield yet another layer of abstraction and complexity
to the spaces we investigate, although by the properties that such spaces exhibit, we have
strong reason to believe that there is no technical obstruction in allowing spaces of finite
bags as attribute domains.
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The operations we consider are shown in the Table 1 below. As seen in [5, 40, 39], there
is some redundancy within this set of operations that will be addressed later. A particular
motivation for choosing this particular algebra is that possible worlds semantics are usually
built on top of set semantics and these operations naturally extend the common behavior of
relation algebra queries to bags. This is quite similar to the original motivation of [21] and
[5] regarding their choice of operations.

Table 1 BALG1-operators considered in this paper.

Base Queries Constructors Q = {{}} and Q = {{R(a)}}
Extractors Q = R

Renaming Q = %A→B(R)

Basic Bag Operations Additive Union Q = R1 ]R2

Difference Q = R1 −R2

Max-Union Q = R1 ∪R2

(Min-)Intersection Q = R1 ∩R2

Deduplication Q = δ(R)

SPJ-Operations Selection Q = σ(A1,...,Ak)∈B(R)
Projection Q = π(A1,...,Ak)(R)
Cross Product Q = R1 ×R2

The main result we establish in this section is the following theorem:

I Theorem 11. All queries expressible in the bag algebra BALG1 are measurable.

Since compositions of measurable mappings are measurable, the measurability of the operators
from Table 1 directly entails the measurability of compound queries by structural induction.

First note that the measurability of the base queries is easy to prove.

I Lemma 12. The queries {{}}, {{R(a)}} and R are measurable.

Proof. First consider Q = {{}} and fix some D′ ∈ D′. If {{}} ∈ D′, then Q−1(D′) = D ∈ D.
Otherwise, Q−1(D′) = ∅ ∈ D. Thus, Q is measurable. The same argument applies to
Q = {{R(a)}}.

Now consider the query Q = R and let C′(F, n) be a counting event in the output
measurable space. Then for every instance D ∈ D, #Q(D)(F ) = n if and only if #D(F ) = n

Thus, Q−1(C′(F, n)) is the counting event C(F, n) in (D,D). Hence, Q is measurable. J

4.1 Basic Bag Operations
We will obtain the measurability of the basic bag operations ], −, ∩, ∪, δ as a consequence
of the following, more general result that gives some additional insight into properties that
make queries measurable.

Consider a query Q of input schema S and output schema S ′ operating on relations R1
and R2 of S. Let R′ be the single (output) relation of S ′.

I Lemma 13. Suppose that given Q there exist functions q1 : factsS′(R′)→ factsS(R1) and
q2 : factsS′(R′)→ factsS(R2) with the following properties:
1. for all n ∈ N there exists a set M(n) ⊆ N2 with (0, 0) /∈M(n) for n > 0 such that for all

D ∈ D and all f ∈ factsS′(R′) it holds that

#Q(D)(f) = n if and only if
(
#D(q1(f)),#D(q2(f))

)
∈M(n);
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2. both q1 and q2 are injective and continuous;
3. the images of F under q1 and q2 are measurable: q1(F ) ∈ FS(R1) and q2(F ) ∈ FS(R2).
Then Q is measurable.

Let us briefly mention the impact of the various preconditions of the lemma before turning
to its proof. The existence of the functions q1 and q2 ensures that preimages of counting
events C′(F, n) under the query Q can be approximated by using the fact that our state
spaces are Polish. They “decompose” the set F of facts into disjoint (and measurable!) sets
of facts for the preimage in a continuous, invertible way that exactly captures how tuples in
the preimage relate to tuples in the image.

Proof (Lemma 13). Assume that q1 and q2 exist with properties 1 to 3. We fix F ∈ FS′(R′)
and n ∈ N+ and show that Q−1(C′(F, n)) is in D. Let F0 be a countable, dense set in
factsS′(R′). We claim that #Q(D)(F ) = n if and only if

there exist ` ∈ N+ and n1, . . . , n` ∈ N with
∑`
i=1 ni = n and

there exist (ni,1, ni,2) ∈M(ni) and k0 ∈ N+ and
there exist Cauchy sequences (fk1 )k∈N, . . . , (fk` )k∈N in F0 with

B1/k0(fki ) ∩B1/k0(fk
′

i′ ) = ∅ for all k, k′ and i 6= i′ such that for all k > k0

#D(q1(F ) ∩B1/k(q1(fki ))) = ni,1 and #D(q2(F ) ∩B1/k(q2(fki ))) = ni,2

for 1 ≤ i ≤ ` and

#D(q1(F ) \
⋃`
i=1B1/k(q1(fki ))) = 0 and #D(q2(F ) \

⋃`
i=1B1/k(q2(fki ))) = 0.

(∗)

Note that (∗) is a countable combination of counting events in (D,D) (using condition 3,
in particular). Thus, to show the measurability of Q it suffices to show the equivalence of
#Q(D)(F ) = n and (∗).

factsS′(R′)

F

f
fk

f ′

q1(F )

factsS(R1)

q2(F )

factsS(R2)

q1
q2

Figure 1 Example illustration of (∗) for two facts f and f ′. Both these facts are approximated
by Cauchy sequences that under q1 and q2 also approximate their images.

Assume #Q(D)(F ) = n. Let f1, . . . , f` be the facts from F with the property that
#D(q1(f)) > 0 or #D(q2(f)) > 0.

Let ni := #Q(D)(fi). From condition 1 we know that (#D(q1(fi)),#D(q2(fi))) ∈M(ni)
as well as

∑`
i=1 ni = n. Let (fk1 ), . . . , (fk` ) be Cauchy sequences from F0 that converge

to f1, . . . , f`. Since ` is finite, the balls around fki and fki′ do not intersect for sufficiently
large k as well as the balls around their images under q1 respectively q2 (since both of
them are injective and continuous). Thus, #D(q1(F ) ∩ B1/k(q1(fki ))) = #D(q1(fi)) and
#D(q2(F ) ∩B1/k(q2(fki ))) = #D(q2(fi)) for sufficiently large k. Therefore, D satisfies (∗).

Now for the other direction, suppose D satisfies (∗). As the fki are Cauchy sequences,
the spaces factsS′(Rj) are Polish and hence complete, and the qj are continuous there exists
(for every 1 ≤ i ≤ `) some fi ∈ F such that fki → fi, q1(fki )→ q1(fi) and q2(fki )→ q2(fi) as
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k →∞ and (#D(q1(fi)),#D(q2(fi))) = (ni,1, ni,2) ∈M(ni). By condition 1, Q(D) contains
fi with multiplicity ni and as

∑`
i=1 ni = n (and since D had no other facts with positive

multiplicity than the above), it follows that #Q(D)(F ) = n. J

Note that the result above easily generalizes to queries that depend on an arbitrary
number of relations of the input probabilistic database. Lemma 13 provides a criterion
to establish the measurability of queries. Checking its precondition for bag operations we
consider turns out to be quite easy and yields the following lemma.

I Lemma 14. The following queries are measurable:
1. (Additive Union) Q = R1 ]R2 with R1, R2 ∈ R of equal type.
2. (Difference) Q = R1 −R2 with R1, R2 ∈ R of equal type.
3. ((Min-)Intersection) Q = R1 ∩R2 with R1, R2 ∈ R of equal type.
4. (Max-Union) Q = R1 ∪R2 with R1, R2 ∈ R of equal type.
5. (Deduplication) Q = δ(R) with R ∈ R.

Proof. As ∪ and ∩ are expressible via ] and − (cf. [5]), we only show Statements 1, 2 and 5.

1. Define q1 and q2 by qi(R(x)) = Ri(x). Then qi, i ∈ {1, 2} is injective and contin-
uous and qi(F ) = Fi ∈ FS(Ri). Now let k ∈ N and let M(k) ⊆ N2 be the set of
pairs (k1, k2) with the property that k1 + k2 = k. Then #Q(D)(f) = k if and only if(
#D

(
q1(f)

)
,#D

(
q2(f)

))
∈M(k). Together, by Lemma 13, Q is measurable.

2. This works exactly like in the case of ] with M(k) being the set of pairs (k1, k2) with
max(k1 − k2, 0) = k.

5. In this case, we only use a single function q that maps R′(x) to R(x). Again, q is obviously
both continuous and injective and q(F ) ∈ FS(R) for every measurable F . If k = 1, we let
M(k) = N \ {0} and M(k) = {0} otherwise. Then clearly #Q(D)(R(x)) = k if and only if
#D(q(R(x)) ∈M(k) and again, Q is measurable by Lemma 13. J

4.2 Selection, Projection and Join
In this section, we investigate selection and projection as well as the cross product of two
relations. We start with the following helpful lemma that allows us to restructure our
relations into a more convenient shape to work with. Semantically, it might be seen as a
special case of a projection query.

I Lemma 15. Reordering attributes within the type of a relation yields a measurable query.

Proof. Recall that any permutation can be expressed as a composition of transpositions.
Thus, we only consider the case where two attributes, say A and B, switch places within
the type of some relation R ∈ R. Let q be the function that maps factsS(R) to factsS′(R′)
by swapping the entries for attribute A and B. Obviously, under q, the preimage of a
measurable rectangle in FS′(R) is a measurable rectangle itself. As #Q(D)(F ) = n if and
only if #D(q−1(F )) = n, Q is measurable. J

I Lemma 16. The query Q = σ(A1,...,Ak)∈B(R) is measurable for all R ∈ R, all pairwise
distinct attributes A1, . . . , Ak ∈ typeS(R) and all Borel subsets B of

∏k
i=1 domS(Ai).

Proof. Fix some F ∈ FS′(R′) and n ∈ N. By Lemma 15, we may assume that typeS(R) =
(A1, . . . , Am) where m ≥ k. Let FB := {R} × B × domS(Ak+1) × · · · × domS(Am). Note
that FB ∈ FS(R). (This is a consequence of Fact 4.) As #Q(D)(F ) = n if and only if
n = #Q(D)(F ∩ FB) = #D(F ∩ FB), Q is measurable. J
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I Example 17. Assume that domS(A) = domS(B) = R and both A and B appear in the
type of R ∈ R. It is well-known (and can be shown by standard arguments) that the
sets B= := {(x, y) ∈ R2 : x = y} and B< := {(x, y) ∈ R2 : x < y} are Borel in R2. Thus
σA=B(R) := σ(A,B)∈B=(R) and σA<B(R) := σ(A,B)∈B<

(R) are measurable by Lemma 16.

I Lemma 18. . The query Q = πA1,...,Ak
(R) is measurable for all R ∈ R and all mutual

distinct A1, . . . , Ak ∈ typeS(R).

Proof. Again, fix some F ∈ FS′(R′) and n ∈ N. Note that F is of the shape {R′} × B
where B is Borel in domS′(R′) =

∏k
i=1 domS(Ak). By Lemma 15, we may again assume that

typeS(R) = (A1, . . . , Am) with m ≥ k. Define FB exactly like in the proof of Lemma 16:
FB := {R} × B × domS(Ak+1) × · · · × domS(Am). Again, FB ∈ FS(R). Now, we have
#Q(D)(F ) = n if and only if #D(FB) = n and hence, Q is measurable. J

I Lemma 19. The query Q = R1 ×R2 is measurable for all R1, R2 ∈ R.

First we note that this turns out to be more involved than it seems on first sight. The
straight-forward approach would be to take a counting event C(F, n) in the output measurable
space and to decompose F into its “left and right parts” F1 ⊆ factsS(R1) and F2 ⊆ factsS(R2)
such that the instances from the preimage of the query are exactly those with #D(F1) = n1
and #D(F2) = n2 such that n1 · n2 = n, similar to the setting of Lemma 13. This approach
does not settle the case since the sets F1 and F2 need not be measurable in general (see [62,
Theorem 4.1.5]; we used the same argument in Example 8) which in particular violates the
second precondition of Lemma 13.

Proof Sketch. Using renaming, we may assume that the types of R1 and R2 are disjoint in
terms of attribute names. Consider F ∈ FS′(R′) and n ∈ N. If F is a measurable rectangle
F = F1×F2, it is easy to see that the naïve approach sketched above works via #Q(D)(F ) = n

if and only if #D(F1) ·#D(F2) = n.
In the general case of F being an arbitrary Borel set, we consider the k-coarse preimage

of C′(F, n) first. These are the database instances from D whose minimal inter-tuple distance
is at least 1

k for some fixed Polish metrics. One can show that these k-coarse preimages of
the query are measurable for all F, n and k. As the union of these preimages over all positive
integers k is exactly the preimage of C′(F, n), Q is measurable. The details of this proof can
be found in the full version of the paper [37]. J

Altogether, within the last three sections, we have established the measurability of all the
(bag) relational algebra operators from Table 1 and thus have proven Theorem 11. Of course
any additional operator that is expressible by a combination of operations from Table 1
is immediately measurable as well, including for example natural joins Q = R1 1 R2 or
selections where the selection predicate is a Boolean combinations of predicates of the shape
(A1, . . . , Ak) ∈ B.

5 Aggregate Queries

In this section, we study various kinds of aggregate operators. Let U and V be standard Borel
spaces. An aggregate operator (or aggregator) from U to V is a mapping Φ that sends bags
of elements of U to elements of V : Φ:

((
U
<ω

))
→ V . Every such aggregator Φ gives rise to a

query Q = $Φ(R) defined by Q(D) := {{R′(v)}} for v := Φ({{u : R(u) ∈ D}}). (The notation
we use for aggregation queries is loosely based on that of [28].) Observe that for every instance
D, #Q(D)

(
R′(v)

)
= 1 if and only if Φ({{u : R(u) ∈ D}}) = v (and 0 otherwise). It is easy to
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see that Q = $Φ(R) is a measurable query whenever Φ is measurable w. r. t. the counting
σ-algebra on

((
U
<ω

))
: we have #Q(D)(F ) = 1 if and only if D ∈ {R} × Φ−1({v : R′(v) ∈ F})

(and #Q(D)(F ) = 0 otherwise).

I Example 20. The following are the most common aggregate operators:
(Count) CNT({{a1, . . . , an}}) = n and CNTd({{a1, . . . , an}}) = |{a1, . . . , an}|.
(Sum) SUM({{a1, . . . , an}}) = a1 + · · ·+ an where ai are (for instance) real numbers.
(Minimum/Maximum) MIN({{a1, . . . , an}}) = min{a1, . . . , an} and MAX({{a1, . . . , an}}) =
max{a1, . . . , an} for ordered domains.
(Average) AVG({{a1, . . . , an}}) = 1

n

(
a1+· · ·+an

)
where the ai might again be real numbers.

Note that $CNT and $CNTd are trivially measurable within our framework by the usage of
the counting σ-algebra (and the measurability of deduplication for CNTd).

I Lemma 21. For all m ∈ N, let ϕm : Um → V be a symmetric function, i. e., ϕm(u) =
ϕm(u′) for all u ∈ Um and all permutations u′ of u. If ϕm is measurable for all m, then
Φ:
((

U
<ω

))
→ V defined via Φ({{u1, . . . , um}}) := ϕm(u1, . . . , um) is measurable w. r. t. the

counting σ-algebra on
((

U
<ω

))
.

Proof. It suffices to show that the restriction Φm of Φ to (( Um )) is measurable for all m ∈ N.
If V is Borel in V , then ϕ−1

m (V) is Borel in Um as ϕm is measurable. Moreover, since ϕm is
symmetric, ϕ−1

m (V) is a symmetric set (i. e. if ū ∈ ϕ−1
m (V), then every permutation of u is in

ϕ−1
m (V) as well). But then Φ−1

m (V) is measurable since there is a one-to-one correspondence
between the measurable sets of (( Um )) and the symmetric Borel sets of Um [49, Theorem1]. J

As an example application of this lemma we note that all the mappings Φ that were
introduced in Example 20 are measurable – the related mappings ϕm of Lemma 21 are all
continuous and thus measurable in all of the cases.

A concept closely tied to aggregation is grouping. Suppose we want to group a relation R
by its attributes A1, . . . , Ak and perform the aggregation only over the values of attribute
A, and separately for every distinct (A1, . . . , Ak)-entry in R. Without loss of generality, we
assume that the type of R is A1× · · ·×Ak×A. We define a query Q = $A1,...,Ak,Φ(A)(R) by

Q(D) = {{R′(ū, v) : R(ū) ∈ πA1,...,Ak
(R(D)) and v = Φ({{u : R(ū, u) ∈ D}})}}.

I Lemma 22. Let typeS(R) = A1 × · · · × Ak × A and U = domS(A). If Φ:
((

U
<ω

))
→ V is

measurable (with U and V standard Borel), then $A1,...,Ak,Φ(A)(R) is a measurable query.

Proof. Let Q = $A1,...,Ak,Φ(A)(R) and Ā = (A1, . . . , Ak). Observe that for every tuple
x1, . . . , xn, ε with xi ∈

∏k
j=1 domS(Aj) and ε > 0, the following query is a composition of

measurable queries and thus measurable itself:

Q̃(x1,...,xn,ε) =
⋃n
i=1 πĀ

(
σĀ∈Bε(xi)(R)

)
×$Φ

(
πA
(
σĀ∈Bε(xi)(R)

))
.

We have #Q(D)(F ) = n if and only if there exist pairwise distinct f1, . . . , fn ∈ F such that
Q(D) has 1 hit in each of the fi and nowhere else in F . Having D fixed, every fi determines
the value of the (A1, . . . , Ak)-part of an R-fact in D. Call this tuple yi. We can fix a
countable sequence of (n+ 1)-tuples (x1, . . . , xn, ε) such that (1) all xi are from a countable
dense set in

∏k
j=1 domS(Aj), (2) d(xi, yi) < ε for some fixed Polish metric, and, (3) ε→ 0.

Then Q is the (pointwise) limit of the Q̃(x1,...,xn,ε) and, as such, Q is measurable. J

As noted before, the aggregates of Example 20 easily satisfy the precondition of Lemma 22.

I Corollary 23. The query $A1,...,Ak,Φ(R) with A1, . . . , Ak ∈ typeS(R) is measurable for all
aggregates Φ ∈ {CNT,CNTd, SUM,MIN,MAX,AVG}.
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6 Datalog Queries

In this section, we want to show that our measurability results extend to Datalog queries
and in fact all types of queries with operators based on countable iterative (or inductive,
inflationary, fixed-point) processes. We will not introduce Datalog or any of the related query
languages. The details in the definitions do not matter when it comes to measurability of the
queries. Here, we only consider set PDBs and queries with a set (rather than bag) semantics.
The key observation is the following lemma.

I Lemma 24. Let Qi, for i ∈ N+, be a countable family of measurable queries of the same
schema such that Q =

⋃
i≥1Qi, defined by Q(D) :=

⋃
i≥0Qi(D) for every instance D, is a

well-defined query (that is, Q(D) is finite for every D). Then Q is measurable.

Proof. For every n ∈ N+, let Q(n) :=
⋃n
i=1Qi. As a finite union of measurable queries, Q(n)

is measurable. Since Q = limn→∞Q(n), the measurability of Q follows. J

As every Datalog query can be written as a countable union of conjunctive queries, we
obtain the following corollary.

I Corollary 25. Every Datalog query is measurable.

The same is true for queries in languages like inflationary Datalog or least fixed-point
logic. For partial Datalog / fixed-point logic, we cannot directly use Lemma 24, but a slightly
more complicated argument still based on countable limits works there as well.

7 Beyond Possible Worlds Semantics

In the literature on probabilistic databases, and motivated by real world application scenarios,
also other kinds of queries have been investigated that have no intuitive description in the
possible worlds semantics framework. A range of such queries is surveyed in [3, 67]. The
reason for the poor integration into possible worlds semantics is because such queries lack a
sensible interpretation on single instances that could be lifted to PDB events. Instead, they
directly refer to the probability space of all instances.

Notable examples of such queries (cf. [47, 3, 67]) are:
probabilistic threshold queries that intuitively return a deterministic table containing only
those facts which have a marginal probability over some specified threshold;
probabilistic top-k-queries that intuitively return a deterministic table containing the k
most probable facts;
probabilistic skyline queries [55] that consider how different instances compare to each
other with respect to some notion of dominance; and
conditioning [47] the probabilistic database to some event.

Note that the way we informally explained the first two queries above is only sensible if the
space of facts is discrete. In a continuous setting, we interpret these queries with respect to
a suitable countable partition of the fact space into measurable sets.

Let ∆∆S denote the class of probabilistic databases of schema S. Note that all PDBs in
∆∆S have the same instance measurable space (D,D). Queries and, more generally, views of
input schema S and output schema S ′ are now mappings V : ∆∆S → ∆∆S′ .

We classify views in the following way:
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I Definition 26. Let V : ∆∆S → ∆∆S′ with V : ∆ = (D,D, P ) 7→ (D′,D′, P ′) = ∆′.
1. Every view V is of type I.
2. The view V is of type II (or, pointwise local) if for every ∆ ∈ ∆∆S there exists a measurable

mapping q∆ : D→ D such that P ′(D′) = P (q−1
∆ (D′)) for every D′ ∈ D.

3. The view V is of type III (or, uniformly local) if there exists a measurable mapping
q : D→ D such that P ′(D′) = P (q−1(D′)) for every D′ ∈ D′.

Letting VI, VII and VIII denote the classes of type I, type II and type III views (from ∆∆S to
∆∆S′). Then VIII captures the possible worlds semantics of views. Obviously, VIII ⊆ VII ⊆ VI.
The following examples show that these inclusions are strict.

I Example 27. Consider the query Q = Qα(D) = {f ∈ factsS(R) : P (C(f,> 0)) ≥ α} = q∆
for some α > 0. Note that the set of facts of marginal probability at least α is finite in every
PDB [38], hence the query is well-defined. This query is of type II. However, considering the
simple PDBs ∆1 and ∆2 and two distinct facts f and f ′ such that

the only possible world of positive probability in ∆1 is {{f}} with P∆1({{f}}) = 1;
similarly, ∆2 has the worlds {{f}} and {{f ′}} with P∆2({{f}}) = P∆2({{f ′}}) = 1

2 .
Suppose q exists like in the Definition 26, part 3 and consider the event D′ that f ′ occurs
(this is a set of instances in the target measurable space of Qα). Then P∆1(q−1(D′)) = 0
entails {{f}} /∈ q−1(D′). On the other hand P∆2(q−1(D′)) = 1 and thus {{f}}, {{f ′}} ∈ q−1(D′),
a contradiction. Thus, Q is type II, but not type III.

I Example 28. Fix some PDB ∆ with three possible worlds D1, D2 and D3 with probabilities
p1 = 1

6 , p2 = 1
3 and p3 = 1

2 . Now consider the query Q that conditions ∆ on the event
{D1, D2} and pick the database instance D = D1. Then P (D ∩ {D1, D2}) = P ({D1}) = 1

6
and P ({D1, D2}) = 1

6 + 1
2 = 4

6 . Thus, P (Q−1(D)) = 1
6/

4
6 = 1

4 , but there is no event D in ∆
with the property that P (D) = 1/4. Thus, Q is type I, but not type II.

8 Conclusions

In this work, we described how to construct suitable probability spaces for infinite probabilistic
databases, completing the picture of [38]. The viability of this model as a general framework
for finite and infinite databases is supported by its compositionality with respect to typical
database queries. Our main technical results establish that standard query languages have a
well-defined open-world semantics.

It might be interesting to explore, whether more in-depth results on point processes have
a natural interpretation when it comes to probabilistic databases. We believe for example
that there is a strong connection between the infinite independence assumptions that were
introduced in [38] and the class of Poisson point processes (cf. [48, p. 52]).

In the last section of the paper, we briefly discussed queries for PDBs that go beyond the
possible worlds semantics. Such queries are very relevant for PDBs and deserve a systematic
treatment in their own right in an infinite setting.
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