
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2016

Learning To Scale Up Search-Driven Data
Integration
Zhepeng Yan
University of Pennsylvania, zhepeng@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2653
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Yan, Zhepeng, "Learning To Scale Up Search-Driven Data Integration" (2016). Publicly Accessible Penn Dissertations. 2653.
https://repository.upenn.edu/edissertations/2653

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2653?utm_source=repository.upenn.edu%2Fedissertations%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2653
mailto:repository@pobox.upenn.edu

Learning To Scale Up Search-Driven Data Integration

Abstract
A recent movement to tackle the long-standing data integration problem is a compositional and iterative
approach, termed “pay-as-you-go” data integration. Under this model, the objective is to immediately support
queries over “partly integrated” data, and to enable the user community to drive integration of the data that
relate to their actual information needs. Over time, data will be gradually integrated.

While the pay-as-you-go vision has been well-articulated for some time, only recently have we begun to
understand how it can be manifested into a system implementation. One branch of this effort has focused on
enabling queries through keyword search-driven data integration, in which users pose queries over partly
integrated data encoded as a graph, receive ranked answers generated from data and metadata that is linked at
query-time, and provide feedback on those answers. From this user feedback, the system learns to repair bad
schema matches or record links.

Many real world issues of uncertainty and diversity in search-driven integration remain open. Such tasks in
search-driven integration require a combination of human guidance and machine learning. The challenge is
how to make maximal use of limited human input. This thesis develops three methods to scale up search-
driven integration, through learning from expert feedback: (1) active learning techniques to repair links from
small amounts of user feedback; (2) collaborative learning techniques to combine users’ conflicting feedback;
and (3) debugging techniques to identify where data experts could best improve integration

quality. We implement these methods within the Q System, a prototype of search-driven integration, and
validate their effectiveness over real-world datasets.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Zachary G. Ives

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2653

https://repository.upenn.edu/edissertations/2653?utm_source=repository.upenn.edu%2Fedissertations%2F2653&utm_medium=PDF&utm_campaign=PDFCoverPages

LEARNING TO SCALE UP SEARCH-DRIVEN DATA

INTEGRATION

Zhepeng Yan

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2016

Supervisor of Dissertation

Signature

Zachary G. Ives

Graduate Group Chairperson

Signature

Lyle Ungar, Professor of Computer and Information Science

Dissertation Committee

Val Tannen, Professor of Computer and Information Science (Chair)

Sudipto Guha, Associate Professor of Computer and Information Science

Lyle Ungar, Professor of Computer and Information Science

Cong Yu, Research Scientist at Google Research NYC (External)

LEARNING TO SCALE UP SEARCH-DRIVEN DATA INTEGRATION

COPYRIGHT

2016

Zhepeng Yan

DEDICATION iii

To my father Guoqiang Yan, mother Jingjuan He, and wife Tianjiao Zhang.

iv ACKNOWLEDGEMENTS

Acknowledgements

I am greatly indebted to my advisor Zachary Ives, who is always available to listen to

my (sometimes naive) ideas, offer me insightful comments, teach me how to be a mature

researcher, and give me encouragement, despite his very busy schedule. It has been an

absolute privilege and an incredible experience working with and learning from Zachary

Ives.

I am extremely grateful to Val Tannen, who has taught me theories of data exchange

and database provenance. He has been a great mentor during my Ph.D career. I also wish

to thank other members in the Penn Database Group, especially Susan Davidsan and Boon

Thau Loo, for valuable discussions in regular group seminars. I am also thankful to Cong

Yu and Boulos Harb for a fruitful internship at Google.

From the CIS Department, I am grateful to Sudipto Guha and Lyle Ungar for serving

on my WPE-II and dissertation committee and suggesting numerous improvements to my

thesis. I have had a great amount of fun playing chess with Sanjeev Khanna, who has also

helped me start my Ph.D journey.

I wish to thank my friends at Penn, especially Mingchen Zhao, Yifei Yuan, Chen Chen,

and Yang Li, for making my graduate school life memorable. I am also grateful to You Wu

for his friendship.

And above all, I thank my parents for their unconditional support and love, without

which this would have been impossible.

Last but not least, I thank my wife Tianjiao Zhang for her love and sacrifice. She has

been working in California since 2011 and long-distance relationship is not easy for us. I

look forward to starting a new chapter of my life with her.

This work was funded in part by the following grants: NSF IIS-0513778, IIS-1217798,

ACKNOWLEDGEMENTS v

ACI-1547360, NIH 1U01EB02954, and a gift from Google.

vi ABSTRACT

ABSTRACT

LEARNING TO SCALE UP SEARCH-DRIVEN DATA INTEGRATION

Zhepeng Yan

Zachary G. Ives

A recent movement to tackle the long-standing data integration problem is a compositional

and iterative approach, termed “pay-as-you-go” data integration. Under this model, the

objective is to immediately support queries over “partly integrated” data, and to enable

the user community to drive integration of the data that relate to their actual information

needs. Over time, data will be gradually integrated.

While the pay-as-you-go vision has been well-articulated for some time, only recently

have we begun to understand how it can be manifested into a system implementation. One

branch of this effort has focused on enabling queries through keyword search-driven data

integration, in which users pose queries over partly integrated data encoded as a graph,

receive ranked answers generated from data and metadata that is linked at query-time, and

provide feedback on those answers. From this user feedback, the system learns to repair

bad schema matches or record links.

Many real world issues of uncertainty and diversity in search-driven integration remain

open. Such tasks in search-driven integration require a combination of human guidance

and machine learning. The challenge is how to make maximal use of limited human input.

This thesis develops three methods to scale up search-driven integration, through learning

from expert feedback: (1) active learning techniques to repair links from small amounts of

user feedback; (2) collaborative learning techniques to combine users’ conflicting feedback;

and (3) debugging techniques to identify where data experts could best improve integration

quality. We implement these methods within the Q System, a prototype of search-driven

integration, and validate their effectiveness over real-world datasets.

CONTENTS vii

Contents

1 Introduction 1

1.1 Traditional Data Integration Techniques . 2

1.2 An Alternative: Keyword Search-based Data Integration 3

1.3 Research Challenges . 4

1.4 Contributions . 5

1.5 Roadmap . 7

2 Background of the Q System: Search-Driven Integration 8

2.1 Search-Driven Integration: A Sketch . 8

2.2 Q System Implementation . 11

2.3 Data Model and Learning Model . 14

2.4 Summary of Open Issues . 19

3 Active Learning in the Q System 20

3.1 Background . 22

3.2 Finding Informative Queries . 24

3.3 Ranking and Learning . 29

3.4 Increasing Diversity in the Top-k . 38

3.5 Incremental Update on Source Discovery . 42

3.6 Experimental Analysis . 43

3.7 Conclusion . 57

4 Collaborative Learning in the Q System 58

4.1 Combing Weights across Users . 60

viii CONTENTS

4.2 Constraint-based Collaborative Filtering . 62

4.3 Collaborative Filtering-based Learning . 65

4.4 Experimental Analysis and User Study . 70

4.5 Conclusion . 82

5 Interactive Query Debugging in the Q System 83

5.1 The Debugging Problem . 87

5.2 Boolean Model . 89

5.3 Generalized Weighted Model . 92

5.4 Experimental Analysis . 97

5.5 Conclusion . 104

6 Related Work 105

6.1 Related Work in Data Management . 105

6.2 Related Work in Machine Learning . 109

7 Conclusion and Future Work 112

7.1 Summary . 112

7.2 Directions for Future Work . 113

Bibliography 116

LIST OF TABLES ix

List of Tables

1 Average number of edges receiving feedback per round, until full separation is

achieved. 76

2 Number of conflicting edges in datasets allowing multiple views. 78

3 Learning rate: minimum number of feedback rounds to achieve separation of

costs of gold edges and invalid edges. 78

4 Minimum number of feedback rounds to achieve full precision & recall of answers

to holdout queries. 79

5 Excerpt from queries used in user study . 81

6 User study results . 82

7 Average number of labeling questions required to get a correct answer. 101

8 Total number of true and false links confirmed, respectively, given the same

amount of feedback on each dataset. 102

9 Average number of labeling questions required to get a correct answer. 103

x LIST OF FIGURES

List of Figures

1 Search graph with keyword search terms. In this example, the biologist wants

to explore information related to the GO term “plasma membrane” as well as

titles of publications containing this information. Each keyword may match a

node with a similarity score and each pair of attributes may also match with a

similarity score; this is captured by an edge cost cci that can further be broken

into features with weights. Query results are comprised of trees whose leaves are

the matching nodes; each result is given a cost equal to the sum of the edge costs. 9

2 Neuroscience search graph, for animal and human data uploaded from several

sources. Metadata (tables, fields) nodes are white-on-dark, and data nodes are

black-on-white. Keyword nodes (on bottom) are matched against both data and

metadata, illustrated by dashed directed arrows. From these matched nodes,

schema aligments (bidirectional dashed arrows) are inferred. Query answers are

formed from trees linking keyword nodes. 10

3 Q System components: offline loading produces a search graph (with incomplete

edges) and a keyword index of content. Given a keyword search, links are dis-

covered as-needed via alignment algorithms. Top-scoring results are returned,

according to feature weights that are learned based on collaborative filtering and

user feedback. 12

4 Neuroscience data portal [55]: the user searches for “mayo seizure” and may give

feedback on ranked results. Answers union and join across multiple sources (in-

cluding the Mayo Clinic) and incorporate outputs of seizure detection algorithms. 12

LIST OF FIGURES xi

5 Speed of learning to distinguish gold vs. invalid edges, without considering

diversity . 46

6 Speed of learning to distinguish gold vs. invalid edges: benefits of incorporating

diversity . 47

7 Separation for Relevance in the Bioinformatics dataset 47

8 Separation for Mixed Ent in the Bioinformatics dataset 48

9 Separation for Clustering in the Bioinformatics dataset 48

10 Separation for Diversification in the Bioinformatics dataset 49

11 Feedback rounds required to reach maximum recall, without considering diversity 51

12 Feedback on edges using Relevance: width is proportional to feedback steps;

dotted lines indicate an invalid edge. 52

13 Feedback on edges using EMC Ent: width is proportional to feedback steps;

dotted lines indicate an invalid edge. 52

14 Recall rate versus feedback rounds . 52

15 Feedback rounds required to reach maximum recall: benefits of incorporating

diversity . 53

16 Quality of initial query answers . 54

17 Quality of initial query answers . 54

18 Diversification vs. clustering behavior with respect to feedback on Bioinformatics

data (k = 5 for top-k, and lower value is better rank) 55

19 Diversification vs. clustering behavior with respect to feedback on IMDB data

(k = 5 for top-k, and lower value is better rank) 56

20 Diversification vs. clustering behavior with respect to feedback on Mondial data

(k = 5 for top-k, and lower value is better rank) 56

21 Graphical model for probabilistic matrix factorization (PMF) 69

22 Learning rate: feedback rounds to separate costs of gold vs. bad edges. 74

23 Costs of gold & bad edges after each feedback round, for Co-MiRA over Bio.

Distribution of edge costs is indicated with error bars. 75

24 Costs of gold & bad edges after each feedback round, running Co-MiRA on

IMDB. Distribution of edge costs is shown via error bars. 76

xii LIST OF FIGURES

25 Average time spent on collaborative filtering versus overall query answering &

learning, in each feedback round. 79

26 A worst case graph Gworst for the boolean model with n nodes. The left part

has n/2 nodes and the right part has n/2 nodes. Either part is a clique. The

left part and the right part are connected through a bridge. 90

Chapter 1

Introduction

Today innovation in data science provides the potential for increasing enterprise profitability

and accelerating scientific discoveries. Due to the growing demands for “big data” explo-

ration and analysis, data are now being collected in a broad range of application domains –

thus are inherently heterogeneous in type and format. The huge promise of rapidly growing

“big data” is driving greater needs for data integration techniques to link disparate sources

and reveal valuable information. Data integration, therefore, is a generator of value in many

aspects of modern society. For example, neuroscientists can build personalized medicine or

diagnosis algorithms faster, if they could combine shared data from the scientific commu-

nity. Search engines can better respond to question-answering style queries, if they could

synthesize data from multiple sources on the Web. Policy makers in government organiza-

tions would have better resource for decision making, if they have access to more relevant

data collected from different agencies.

Ideally, a desirable integration solution should support end users in the following aspects.

First, the system should make it easy for end users to find and locate relevant data, i.e.,

data that meet users’ information need. This also means a convenient interface for users

to specify what information they are seeking and to refine retrieved results if necessary.

Second, as data and meta-data evolve, such changes should be propagated to and reflected

in integrated data as well, to keep the system up-to-date. Third, an integration solution

should be scalable and easily maintainable over time, when new data sources are being

constantly added. Finally, it should be able to serve a community of users, where user’s

1

2 CHAPTER 1. INTRODUCTION

interests may diverse in terms of information need and/or preference of data sources.

Example 1.0.1 Consider the following scenario. Movie expert Alice would like to use

the popular IMDB dataset, together with relevant entries with richer details in DBpedia

(directors, actors, and places), as a whole. The underlying integration system maintains

meta-data that specifies how to map elements from IMDB to DBpedia, and vice versa. She

may be interested in finding movies that have certain actors, or more complex information

such as how two actors are “connected” through common place of birth or common movie.

Being a non-database expert, she would like to have an intuitive interface to specify her

queries. These two datasets will change over time, as IMDB will contain new entries and

DBpedia will extract frequently updated content from Wikipedia. In addition, another

movie expert Bob may wish to use the same system. But he prefers to use entries in

YAGO instead of those in DBpedia. The integrated solution should take this into account

by promoting answers using entries in YAGO. In addition, in order to (semi)-automatically

linking entities across different datasets, Alice or Bob may wish to specify how entities should

be linked, e.g., due to similar names or same values for certain attributes.

1.1 Traditional Data Integration Techniques

Great progress has been made on Enterprise Information Integration (EII [12]), where, due

to central control and a well understood problem domain, standards can be defined and

schema and data mappings can be developed. In general, the approach is to define one or

more integrated or mediated schema capturing the data domain, use schema mappings [5]

to map data sources into the mediated schema, and finally allow users to pose structured

queries against mediated schemas.

A problem with this approach is that mappings are often created from combining outputs

of schema matching algorithms [24, 32] and/or entity resolutions tools [28]. The resulting

matchings are often ambiguous and can only be resolved with domain (commonly, human)

expertise. As a result, many of today’s tools aim for semiautomated matching, where the

system makes predictions and relies on a human domain expert to correct any mistakes or

resolve any uncertainties. Unfortunately, administrator vetting becomes a bottleneck to the

system incorporating sources, so does the mediated schema itself as new sources may have

1.2. AN ALTERNATIVE: KEYWORD SEARCH-BASED DATA INTEGRATION 3

concepts that do not yet exist at the global level. Moreover, EII techniques are not flexible

in more open-ended, community-scale data integration settings for two reasons. First, it

is generally difficult or impossible for the participants to agree on a single consensus data

representation. Second, the needs of the community tend to evolve over time, making a

single fixed schema obsolete very quickly.

In addition, there are also several shortcomings to having a database administrator

inspect the output of a schema matching tool before adding the mapping to an existing

system: (1) administrator vetting becomes a bottleneck to the system incorporating sources;

(2) the metadata might not clearly describe the data that must be mapped1; (3) subtle

variations in semantics may only show up in occasional, incorrect query results. Moreover,

the mediated schema itself can be a bottleneck to adding new data, as new sources may

have concepts that do not yet exist at the global level.

Finally, large-scale data sharing settings today pose problems beyond those commonly

faced in the enterprise, where conventional Enterprise Information IntegrationII [12] tech-

niques have been successful. Consider, e.g., the needs of the National Institutes of Health’s

“Big Data 2K” initiatives, which involve integrating data across scientific or medical fields,

such as genomics or neuroscience, to build personalized medicine or diagnosis algorithms;

or alternatively consider the Semantic Web problem of linking and querying Web tables,

structured knowledge bases, and Linked Open Data sources on the Web. In these set-

tings, open-ended data domains are constantly changing as new resources and concepts are

created.

1.2 An Alternative: Keyword Search-based Data

Integration

These observations have triggered a recent movement to tackle the data integration problem

in a more compositional [38] and iterative fashion (sometimes termed “pay-as-you-go” data

integration [22] or “dataspaces” [30]). Under this model, the objective is to immediately

support queries over “partly integrated” data, and to enable the user community to drive

1Consider, e.g., the situation where users put data into comments fields because there was no appropriate
column in the schema.

4 CHAPTER 1. INTRODUCTION

integration of the data that relate to their actual information needs. Over time, data will

be gradually integrated.

While the pay-as-you-go vision has been well-articulated for some time, only recently

have we begun to understand how it can be manifested into a system implementation. One

branch of this effort has focused on enabling “schema independent” queries through keyword

search-based (search-driven) data integration [77], where matches to individual keywords

are assembled into query results by discovering “join trees” that link the matches. The

model resembles keyword search over databases [88], but here the data is remote and links

may be induced on-demand via schema matching and record linking algorithms. Under

this model, the output of alignment algorithms is used directly to answer queries, with no

administrator intervention: the system relies on the end user to have the domain expertise to

vet the results, and to provide feedback [76, 77] on the system’s ranking of (some) individual

query results. Now instead of having a human administrator correct bad associations, the

system must learn the correct score (possibly zero or infinite) of each individual association,

given the user’s feedback on query answers that are formed from multiple associations.

Hence, the quality of search results can be improved iteratively.

Search-driven integration promises greater scale-up in the number of sources, since it

leverages feedback on data quality from the end-user community, as opposed to a central

administrator who may be a bottleneck. It has some overlap with recent work on crowd-

sourcing for schema matching [89], entity resolution [82] and query answering [31] — which

employ third-party workers (or Turkers) to link or fetch data. However, the search-driven

integration model has some key distinctions: the users giving feedback are looking for an-

swers to their query, thus are incentivized to help the system give good answers; the users

are expected to have some expertise in the data domain, and thus can assess the plausibility

of (many of) the answers.

1.3 Research Challenges

Surprisingly, there is little progress made on realizing this pay-as-you-go vision in end-to-

end systems. A full implementation requires a set of methods to handle real world issues

of uncertainty and diversity and poses several fundamental challenges.

1.4. CONTRIBUTIONS 5

(C1) Uncertainty of schema matchers: User feedback and attention are a limited

resource. By contrast, the number of potential answers can grow rapidly due to the

number and complexity of sources, keyword matches and schema alignments, whereas

the user only sees a screen of results. Given that we wish to disambiguate uncertain

links from limited user feedback, how do we systematically determine what to present

to the user and how to learn from limited feedback?

(C2) Diversity of user population: In a community setting, users often have different

information needs and goals as they pose queries, since they belong to different lower

clusters: they may be seeking different kinds of data and may trust different data

sources. As a result, they may give different feedback to the same query answer. How

do we personalize query answers to each user in a community with different objectives?

(C3) Noise of automatically constructed datasets: Due to noisy and incorrect align-

ments, keyword search algorithms may fail to give users relevant answers for a partic-

ular query, especially when amount of noise is overwhelming. In this case, how does

the system interactively help users find relevant answers and remove bad links?

1.4 Contributions

This dissertation attempts to tackle the above challenges by developing a full keyword

search-driven integration system that breaks large end-to-end integration efforts into user-

driven, incremental sub-tasks. In particular, this dissertation aims to show that, combing

expert guidance and machine learning can scale up many tasks in “pay-as-you-go” data

integration. More precisely, this dissertation validates the hypothesis that search-driven

integration can effectively

1. Help users identify relevant answers they have not previously seen and disambiguate

irrelevant answers, even if they only see a screen of results (Chapter 3);

2. Combine and resolve different user feedback, even if user opinions diverse in a com-

munity (Chapter 4);

6 CHAPTER 1. INTRODUCTION

3. Assist users to debug incorrect answers by directing their attention to relevant data

(Chapter 5).

Before diving into technical details, we briefly describe the key ideas we develop to

validate the above thesis. First, for a user’s keyword query, the screen of returned results

is both the means for a user to get relevant answers and the place for integration system to

obtain feedback. These are two separated and sometimes even competing goals. The key

challenge is to select a set of results to present that balances user’s information need and

system’s need of learning. To address, our approach is to estimate the “utility” of a given

result to both the user and the system, base on which our system decides what results to

show. In addition, serving different users’ information needs in a community requires the

system to personalize query results. To do this, the system collaboratively learns for each

user what elements contribute to correct integration, combines and resolves such evidence,

and discovers missing relevant elements for each user. Finally, during assisting user to

interactively debug incorrect answers, the system attempts to repeatedly ask for and learn

from informative feedback. The challenge is to generate on demand a minimum series of

questions to ask, so that user can see correct results quickly. Our approach aims to quickly

identify problematic links so as to reduce the amount of erroneous answers.

To summarize, this dissertation makes the following contributions.

1. We develop active learning techniques to repair schema alignments from small amount

of user feedback, through uncertainty reduction and result diversification. The novelty

here includes that of estimating amount of uncertainty associated with a query result

and a scoring model for ranking and diversifying both useful and uncertain query

answers.

2. We develop collaborative learning techniques to personalize structured query results

from possibly conflicting user feedback in a community. The novelty here includes

techniques for propagating feedback from one user to others and incorporation of

collaborative filtering methods to generate user-specific answer-ranking strategies.

3. We develop interactive debugging techniques to identify where data experts could

best improve integration. The novelty here includes methods for updating link clas-

1.5. ROADMAP 7

sification under various models and for synthesizing informative examples, as well as

prioritization strategies for selecting examples for user to inspect.

4. We develop a full implementation of the above techniques in the Q System prototype

and conduct comprehensive experimental evaluation of the methods on datasets from

different domains.

In most cases, we will leverage techniques from the machine learning community. How-

ever, directly applying them will be problematic, since the query trees we deal with have

combinatorial structure. We will discuss this in more depth in corresponding chapters and

in related work. Our application and adaptation of these techniques to address unique

challenges in keyword search-based data integration is novel.

1.5 Roadmap

The thesis is organized as follows. In Chapter 2, we provide an overview of the keyword

search-based integration model and review the Q System, a prototype implementation. We

also define our data model and learning model in Chapter 2. We describe active learning

techniques in Chapter 3 [86, 87], collaborative learning methods in in Chapter 4, and inter-

active debugging approaches in Chapter 5. We survey related work in Chapter 6. Finally,

we conclude and point out directions for future work in Chapter 7.

Chapter 2

Background of the Q System:

Search-Driven Integration

In this chapter, we review the background of model and setting for search-driven data

integration, generalizing across several models [9, 11, 66]. This builds upon previous

work [76, 77] but adds several modules that implement the proposed methods in this the-

sis. We begin with an example (Section 2.1), before presenting the prototype search-driven

integration implementation in the Q System (Section 2.2). We then describe the data

representation and learning components of our system model (Section 2.3). Finally, we

summarize the open issues in the framework that this thesis addresses (Section 2.4).

2.1 Search-Driven Integration: A Sketch

We start with two examples. The first example consists of a search graph with keyword

search terms in a bio-informatics application, illustrated in Figure 1. The second example is

motivated by search-driven integration in neuroscience data sharing [55]. Figure 2 illustrates

how data is extracted from user-uploaded files and added to a content graph.

Example 2.1.1 User-contributed items are tracked in Uploads, and consist of a folder of

files. One user uploads human data with PDF details (extracted into the Patient table) and

a set of EEG traces in files. The EEG header gives unique IDs that include pathnames. A

second user contributes data of animals with epilepsy, tracked in Uploads and the Animals

8

2.1. SEARCH-DRIVEN INTEGRATION: A SKETCH 9

GO term Interpro 2 GO entry 2 pub pub

acc name ... go_id entry_ac entry_ac pub_id... pub_id ... title

entry

entry_ac name...

GO:00059 plasma membrane...

ca2ca1
cf2

cf3cf1

titleplasma membraneGO term name

Query: “GO term name ‘plasma membrane’ titles”

cc2 cc4 cc3 cc5

ca3

cc1

Figure 1: Search graph with keyword search terms. In this example, the biologist wants
to explore information related to the GO term “plasma membrane” as well as titles of
publications containing this information. Each keyword may match a node with a similarity
score and each pair of attributes may also match with a similarity score; this is captured
by an edge cost cci that can further be broken into features with weights. Query results are
comprised of trees whose leaves are the matching nodes; each result is given a cost equal to
the sum of the edge costs.

table, along with additional EEG traces. A third user uploads a set of Detected events

from externally running tool1 over the EEG data. A fourth user uploads seizure predictions

made by the MHills tool over EEG files.

Nodes in the search graph represent relations, attributes, and values. Solid edges rep-

resent known links, including is-a and has-a relationships, foreign keys, etc. Initially the

dashed and dotted edges are not present as the Q System is not given knowledge of links

among data and metadata items.

Not shown in the figure, each node and edge is also annotated with features (sources of

evidence for why we should believe the values obtained) that will be assigned weights,

giving us a probability.

Suppose that a neuroscientist wants to find EEG data for patients with seizures detected

in the left temporal lobe. To this point, we do not actually have links between all of the

necessary data (no dashed lines), but the query itself can drive the system to do additional

work.

Example 2.1.2 The keyword query “left temporal seizure” will capture this. As illustrated

10
CHAPTER 2. BACKGROUND OF THE Q SYSTEM: SEARCH-DRIVEN

INTEGRATION

Patient

Animals

Uploads

EEG
Detected

Events

MHills
Seizure

Predictor
id dset loc

file start end

PDF

1

dir file typcond

id species

file tool typeid file

ds2 pdf1 left temporal

ds1 dog

ds2 human

ds3 rat

by

Mayo

CHOP

HUP

dog1 ds1 left temporal

rat1 ds3 left frontal

ds1/ch1 F1.mef

ds2/ch1 F2.mef
ds2/ch3 F4.mef

ds3/ch1 F5.mef

ds1/ch1

ds2/ch3

tool1

tool1

seizure

seizure

F1.mef 100 200

F4.mef 550 803

F5.mef 2043 2991

seizureleft temporal

Figure 2: Neuroscience search graph, for animal and human data uploaded from several
sources. Metadata (tables, fields) nodes are white-on-dark, and data nodes are black-on-
white. Keyword nodes (on bottom) are matched against both data and metadata, illustrated
by dashed directed arrows. From these matched nodes, schema aligments (bidirectional
dashed arrows) are inferred. Query answers are formed from trees linking keyword nodes.

in Figure 2, we can encode search terms as nodes in the graph (at bottom), and match these

(using string similarity metrics) against data and metadata nodes (directed dashed lines).

Now the system will seek to find trees connecting the keyword terms, using a search

process and schema/data alignment algorithms [24, 28, 32, 58] to find new links. These are

illustrated by dashed bidirectional edges at the attribute (metadata) level (though value-

level links are also possible). Each edge will be given a weighted score, and different

candidate trees will be returned to the user in score-ranked order. Example trees include

Patient-Uploads-EEG-MHills (selecting on left temporal), Patient-Uploads-EEG-

DetectedEvents (selecting on left temporal), Animals-Uploads-EEG-MHills (select-

ing on left temporal), and Animals-Uploads-EEG-MHills (selecting on the substring

left).

The user provides feedback on the quality of the answers for these queries, from which

the system learns to reweight evidence and recompute top-k answers. For instance, query

answers including the Patient table may be preferred to those including the Animals table;

2.2. Q SYSTEM IMPLEMENTATION 11

and the approximate-match to the substring “left” may in fact introduce incorrect data. The

process iterates until the user is satisfied with all of his or her results scoring above some

threshold or watermark.

Observe that search-driven data integration is distinguished from keyword search work by

its ability to perform automatic linking on demand (using domain specific algorithms), and

to incorporate the output of tools with uncertain output — followed by learning to rank

the quality of joined results based on the user’s feedback. Note that for users from different

subfields, the notion of what constitutes a good or bad link, or a trustworthy or untrusted

source, may vary. In the above example, our user preferred human data; but a second user

in another lab may prefer animal data. It is not possible to mutually satisfy both users

with the same scoring function.

Ultimately, for a given user, features on the bad edges and nodes in the search graph

will receive poor scores (high costs that correspond to low probabilities), meaning that in

effect the edges and noes will be removed from consideration in top-k query processing.

Past work [76] has shown the model to be highly effective in distinguishing between bad

and good edges, largely assuming feedback from a single user with consistent feedback. This

thesis goes beyond existing work by (1) incorporating active learning techniques

to accelerate identifying good and bad edges, (2) considering multiple users

who may not always provide feedback with the same goals in mind, and (3)

developing query debugging mechanism to direct user to problematic graph

regions.

2.2 Q System Implementation

Now that we have seen the steps involved in search-driven integration, we discuss in more

detail the system architecture required to support it. The core of this architecture, based

on which this dissertation adapts, has been proposed and used in prior work on the Q

System [48, 76, 77]. The overall architecture of the Q System, shown in Figure 3, can be

divided into three stages, where extensions to the second and third stages are main

contributions of the thesis.

12
CHAPTER 2. BACKGROUND OF THE Q SYSTEM: SEARCH-DRIVEN

INTEGRATION

Result Ranking Feedback-Based LearningQuery-Driven Linking

Query

Formulator

Ranked Query

Evaluation
Interactive

User

Interface

Association Generator

Schema

alignment

Entity

resolution

Keyword query
User

feedback

Ranked

query results

Interactive

Learner

User

profile

User

profile

User

profiles

Feature

Weight

Assignment

Query

author

profile

Content

Index

Search Graph

Figure 3: Q System components: offline loading produces a search graph (with incomplete
edges) and a keyword index of content. Given a keyword search, links are discovered as-
needed via alignment algorithms. Top-scoring results are returned, according to feature
weights that are learned based on collaborative filtering and user feedback.

Figure 4: Neuroscience data portal [55]: the user searches for “mayo seizure” and may give
feedback on ranked results. Answers union and join across multiple sources (including the
Mayo Clinic) and incorporate outputs of seizure detection algorithms.

2.2. Q SYSTEM IMPLEMENTATION 13

1. Query-Driven Linking. The search graph starts off relatively sparse, in particular

missing many candidate edges connecting data items obtained from different sources. Based

on a combination of the past query workload and any current queries as obtained by the

Query Formulator, the Q System’s Association Generator runs a series of schema

matching and record linking tools to discover new edges related to the concepts of interest.

It does this in a way that focuses exploration of candidate edges to portions of the graph

that are related to topics being queried [76].

2. Customized Result Ranking. Given a data graph and a set of edge and node weights,

the Q System generates a ranked set of Steiner trees (minimal-cost trees connecting leaf

nodes matching the keyword terms), whose results are merged to return top-k results. The

Ranked Query Evaluation module uses an approximation algorithm for Steiner tree

computation [77] to scale query answering to large graphs.

The actual assignment of weights for ranked query evaluation (the focus of

Chapter 4), done periodically, is a contribution of this thesis: instead of simply

using a set of weights per user (or a global set of weights), we develop alternative Feature

Weight Assignment modules in subsequent sections. The task of this module is to take

not only the user’s past feedback into account, but also feedback from the rest of the user

community, and to combine this to produce a set of weight assignments to be used in ranking

answers for the current user.

3. Feedback-Based Learning. After it computes ranked answers, the Q System shows

them in an Interactive User Interface (illustrated in Figure 4). The user is requested

to mark answers he or she feels are correct and those that appear to be incorrect. The

system uses these as training examples for an online Feedback-based Learner to adjust

the scores on the edges (more specifically, weights for certain features that were used as

evidence supporting the presence of the edge) in the particular results. The system will

then refresh the results in the user interface, and the user may provide feedback for multiple

rounds until the answer set looks good. This thesis develops a set of active learning

techniques [86, 87] (described in Chapter 3) that mixes high-quality answers

with uncertain answers and a set of debugging methods(described in Chapter 5)

that interacts with user to cleanse problematic edges and find satisfying answers

14
CHAPTER 2. BACKGROUND OF THE Q SYSTEM: SEARCH-DRIVEN

INTEGRATION

when returned items do not meet user’s information need.

2.3 Data Model and Learning Model

We now provide a more formal definition of the basic data model (Section 2.3.1), search pro-

cedure (Section 2.3.2), and learning model (Section 2.3.3) used in the Q System to produce a

ranking of candidate query answers customized for each specific user. We start from models

for an individual user then extend to multiple users. The models described in this section

will lay the groundwork for how we incorporate active learning (Chapter 3) collaboratively

learn from all users (Chapter 4), and interactively debug query results (Chapter 5).

2.3.1 Data Model: Graph, Features and Weights

The Q System’s search graph encodes metadata and data items as nodes. Certain asso-

ciation edges are then added to capture relationships such as containment, subclassing,

membership, and foreign key references. Edge costs depend on features and associated

weights, upon which cost of a query result is developed. We give more precise definitions

to these terms as follows.

Search graph: nodes and edges. Initialize the search graph to be G = (V,E) where

V is the set of nodes for each relation and attribute, and E is the set of association edges

linking these nodes. The node set V will also dynamically add keyword nodes when user

poses keyword queries. Each edge connects a pair of nodes and can be classified into the

following four categories. (1) A relation-attribute edge connects a relation node and one of

its attributes. These edges are derived from schema specification and will always be in the

graph; (2) An association edge, or alignment edge, links two attribute nodes and represents

a possible join. These edges have adjustable costs to measure the likelihood of a join,

which will be learned over time (Section 2.3.3); (3) A keyword edge dynamically connects

a keyword node to an attribute node, if an input keyword matches data in the attribute

column. Such an edge also has associated cost to describe the quality of matching, described

in Section 2.3.2; (4) A node-node edge represents (OO-style) subclassing or instantiation.

Features. The global feature set F contains several types of features. These features

have weights, from which the cost of a query result (i.e. a Steiner Tree) is derived. Features

2.3. DATA MODEL AND LEARNING MODEL 15

include the following. (1) A relation feature identifies user’s preference for (or bias against)

a particular relation R, e.g., due to its authoritativeness or its relevance to his or her

information need. This can also capture provenance of nodes, like the organization or

author of a dataset. (2) An alignment feature describes evidence for attribute or data

alignments. (3) A keyword match feature identifies keyword matching. We will describe in

Section 2.3.2 how the Q System incorporates these features to perform search and ranking.

Feature vector. Given the features, every edge is mapped to a feature vector, which

is a bit vector of binary feature values, where each bit specifies if that feature relates to

the edge. This feature vector is associated with a weight vector we describe next. For

a given edge, its participating features takes into account its type as well as the relations

or keyword connected by the edge. For instance, given an alignment edge e connecting

two relation attributes, its feature vector
−→
Fe will set value 1 for its alignment feature and

relation features and set value 0 for all the other features.

Feature weights and weight vector. Each feature in the global feature set has an

associated weight, from which the cost of an edge is derived. The weight of a relation

feature describes table authoritativeness; the weight of an edge alignment feature or a

keyword match feature captures the quality of that matching. In our model, lower weights

indicate better quality. Feature weights are adjusted through machine learning. We denote

by −→w the global weight vector where each element describes the weight value for a feature.

Edge cost and tree cost. Each feature f has a probability 0 ≤ Pr[f] ≤ 1 of being

relevant or being a correct link (for alignment feature). This translates to the weight of

each feature w(f) = − log Pr[f], which is the negative log likelihood (and we will see why

this is useful shortly). Each edge e has an associated cost C(e), which is the dot product

of its feature vector and the weight vector. This represents the negative log likelihood of

the edge being relevant, since the dot product sums log likelihoods for features, assuming

independence. This can be converted back to a probability by computing 2−C(e). Like most

keyword search-over-database systems [88], the Q System represents a query result for a

given keyword query using a Steiner tree (explained in more detail in Section 2.3.2). For a

given tree T , its feature vector consists of all features associated with tree edges and its tree

cost C(T) is the dot product of its feature vector and the weight vector. Again, the

16
CHAPTER 2. BACKGROUND OF THE Q SYSTEM: SEARCH-DRIVEN

INTEGRATION

log likelihood interpretation is convenient, since it translates the product of probabilities in

a tree to a summation of feature costs.

From metadata-level graph to data graph. To this basic metadata-level graph, we fur-

ther add (on demand) nodes representing data values for individual attributes. These data

nodes are linked to the attribute nodes in the search graph using has-a edges (from ellipses

to rectangles in Figure 2, where “left temporal” is a data value for the cond attribute).

Observe that we also link values from the same tuple.

Multiple users. We can naturally extend this data model to multi-user case by maintain-

ing personalized weight vector −→wu for each user u. Search graph and features are shared by

all users.

2.3.2 Query-Driven Linking, Search and Ranking

We now describe how the Q System ranks results for a keyword query by linking edges

together, under this data model.

When the Q System is given a keyword query of the form KQ = {K1, . . . ,Km}, the

query formulator first uses a keyword similarity metric1 to match each keyword Ki ∈ KQ

against all search graph nodes (schema and data elements). It “overlays” onto the search

graph a keyword node representing each Ki (see keyword nodes at bottom in Figure 2). It

then adds a keyword edge from Ki to each graph node whose label matches the keyword

with a sufficiently large similarity score. These edges are annotated with keyword match

features and weights and have assigned costs. (Recall the dashed lines in Figure 2.)

The search procedure aims to connect keyword nodes together. It triggers an explo-

ration of the search graph G, starting from graph nodes adjacent to each keyword node

Ki. Explored nodes will be compared with other nodes in the overall search graph using

aligner algorithms such as record linking or schema matching algorithms. If these predict

a promising match, an association edge is permanently added between the nodes, anno-

tated with alignment features. Feature weights, which predict alignment quality and will

be adjusted through learning, are initially obtained from the outputs of existing matchers

and alignment tools from the literature, such as [24, 28, 58]. The Q System currently uses

1By default tf-idf over the tuples in the data, although other metrics such as edit distance or n-grams
could be used.

2.3. DATA MODEL AND LEARNING MODEL 17

the primitive matchers provided by the COMA++ system [24], but could also directly use

the final output from any matching tool.

In parallel with query-driven linking, the Q System explores the graph to return top-k

query answers with minimum tree costs explained in Section 2.3.1. In the search graph,

the Q System considers each tree with leaf nodes K1 . . .Km to represent a possible join

query (each relation node in the tree, or connected to a node in the tree by a zero-cost

edge, represents a query atom, and each non-zero-cost edge represents a join or selection

condition). Q generates queries that may produce relevant answers by running an approxi-

mate top-k Steiner tree algorithm [77] to connect matching nodes in the search graph with

the lowest-cost tree, and executes them and unions their results together in ranked order

using a top-k query processing algorithm [46]. As discussed in Section 2.3.1, the cost of

each query result tree is the dot product of its binary feature vector representing the set

of participating alignments, and a weight vector representing the weight values for those

features.

2.3.3 Learning from Consistent Feedback

In general the Q System’s task is not finished once it has returned a set of query answers.

Rather, the user may pose feedback over these results, by identifying good and bad results

(we will formalize this shortly). We assume that the user looks over a portion of the k

answers returned, and provides (1) feedback about which results are known to be incorrect,

and (2) indirectly indicates a watermark separating the set of results verified from those

that have not been inspected. In contrast to Web search, where the user generally only

wants one valid answer and does not reuse query results, we expect here that the user

wishes to keep the set of correct answers to a query, and that he or she may make the

results persistent in the form of a view. Hence the user is incentivized to provide feedback.

The baseline model [77]. Assume that determining correct vs. incorrect results is

context-insensitive (all users’ feedback is consistent and can be combined). Then, the Q

System can take a sequence of feedback, expressed as linear constraints on the (relative and

absolute) costs of results, and learn to adjust the feature weights to satisfy those constraints.

Intuitively, each unit of feedback on a query answer tuple should give the system knowl-

18
CHAPTER 2. BACKGROUND OF THE Q SYSTEM: SEARCH-DRIVEN

INTEGRATION

edge that a certain set of features have lower combined costs than some other set of features.

Given that feedback is provided on tuples, yet some of our features are related to queries,

we must be able to determine which query produced each tuple, and such that the feedback

can be applied to the combination of query- and data-level features. The Q System tracks

features associated to a tuple via data provenance: each query answer is obtained from run-

ning a union of conjunctive queries, which is in turn translated from a set of Steiner trees.

Given two query results from one keyword query, one with positive feedback the other with

negative, a “good” query result should have tree cost at least equal to the cost of a “bad”

result, plus a minimum penalty (a “loss” explained below).

To incrementally adjust weights given user’s feedback, our previous work [77] uses the

MIRA learning algorithm [20], an online approximation to support vector machines. In a

nutshell, MIRA attempts to find a new weight vector which is closest to the previous one

and which satisfies constraints formalized from user’s feedback. Since it will be adapted in

this dissertation, we reproduce pseudocode for this as Algorithm 1. The algorithm takes

input the search graph G along with the feature set F , stream of keyword queries {KQr}

for each point of time r, stream of user feedback U = {Gr, Br}, where Gr is the set of good

trees and Br is the set of bad trees, given TS as the set of top-k Steiner trees for the current

keyword query (k is a parameter). A key aspect of the MIRA algorithm is its reliance on

a loss function that defines a penalty to assess to a tree that is “out of order” according

to feedback (as described intuitively above). The default formulation is to use symmetric

loss defined in terms of the number of non-overlapping edges between a given pair of query

result trees:

L(T, T ′) = |E(T)\E(T ′)|+ |E(T ′)\E(T)| (2.1)

Observe from Line 7 of the algorithm that, given two query trees that are out of order,

weights are adjusted to ensure that the difference between the cost of the trees satisfies the

user constraint, with a cost differential of at least the loss function. The updated weight

vector is closest to previous weights (Line 6) and ensures positive edge costs (Line 8). It

can be iteratively found by a modification of the MIRA algorithm [77].

2.4. SUMMARY OF OPEN ISSUES 19

Algorithm 1 Online Learner.

Input: Search graph G, features F , stream of keyword queries KQ, stream of user feedback
U , required number of query trees k
Output: Updated weights −→w

1:
−→w0 =

−→
0 , r = 0

2: while U is not exhausted do
3: r = r + 1
4: TS = TopKSteinerTrees(G,−→w , k,KQr)
5: (Gr, Br) = U.Next()
6:

−→w (r) = arg min−→w ||
−→w −−→w (r−1)|| s.t.

7: C(Tb,
−→w − C(Tg,

−→w) ≥ L(Tb, Tg), ∀Tb ∈ Br, Tg ∈ Gr

8: and −→w ·
−→
fe > 0 ∀e ∈ E(G)

9: end while
10: return −→wr+1

2.4 Summary of Open Issues

To summarize, building upon architecture of the Q System proposed in the literature [77],

this thesis targets the following open issues:

1. A more efficient feedback-based learner (in terms of labeling complexity that mixes

high quality answers with uncertain answers to adjust feature weights with minimum

amount of user feedback.

2. A feature weight assignment module that is scalable to a community of users to

collaboratively learn from feedback provided by different users.

3. A more robust component of the interactive learner that guides user to debug incorrect

results for a specific query.

Chapter 3

Active Learning in the Q System

The keyword-based data integration model enables the system and its users to focus their

attention on those associations that relate to actual information needs. The associations

relevant to frequently posed queries should be the ones that receive the most attention and

refinement. In fact the pay-as-you-go approach can be used to complement and inform more

traditional integration techniques: the keyword search log can help a human administrator

determine which parts of the data to prioritize integrating, and provide clues for what

mappings are most relevant.

However, to successfully learn to integrate data, the system must balance its need to

acquire feedback useful for answering future queries, versus the requirement that each user

immediately gets the information he or she needs. Today’s keyword search systems have

approached this problem by simply assuming the query scoring function is accurate: they

return the top-k results according to the scoring function, which in turn bases its scores on

the predicted (but possibly incorrect) output of matching tools. Under this model the user

will attempt to remove false positives but has no way of seeing — and providing feedback

on — false negatives.

Such a model works well when the system returns a good mix of correct and invalid

results and the user can “separate” them. However, as the number and complexity of sources

and their attributes increases, many potential queries are likely to have similar scores,

due to inherent uncertainty in combining low-confidence results from various matching

algorithms. The number of potential results can grow rapidly as the number of keyword

20

21

matches increases, whereas the number of results seen by the user remains constrained

by the dimensions of the screen and the limits of user attention. Thus, when a keyword-

based data integration system selects queries to produce answers, it should not merely

choose alignments based on the relative scores of associations — but also the uncertainty

associated with a given query result, and the informativeness of feedback given on that

particular result.

In this chapter, we use active learning to help the system determine which query results

to present, given a combination of their predicted score, their inherent uncertainty, and the

amount of information gained about other potential queries. Intuitively, the informative-

ness of feedback on a query result is related to how much uncertainty there is about the

result’s relevance to the query, and how many other similar share features with this result

— meaning that feedback on the first result also reduces their uncertainty. We provide a

more precise characterization of informativeness later in the chapter. Our work goes be-

yond previous attempts to use uncertainty-directed ranking in the pay-as-you-go-integration

space, such as Jeffery et al. [49], which focused on individual mappings, by looking at the

total uncertainty associated with queries and their results, and how this uncertainty should

be combined with relevance ranking.

The key questions addressed in this chapter are how to estimate the utility of a given

query to the system and to the user, and how to estimate the uncertainty of a query’s score,

in applying active learning to the problem of determining the relevance of associations to a

query. Specifically, this chapter aims to make the following contributions:

• Techniques for estimating the uncertainty associated with a query, through the notions

of entropy and variance, and by combining the probability distributions of the output

for individual schema matching or record linking outputs.

• Pruning and active learning techniques that focus the user’s attention on the query

results most likely to either be relevant, or help the system produce better results.

• A scoring model using expected model change to relate the user’s model of browsing

data to how we should combine and rank both useful and uncertain query answers.

22 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

• A comparative study of two techniques to increase the diversity of results upon which

feedback is provided: clustering similar join queries and choosing the most useful

representative, versus directly selecting results for diversity.

• An experimental evaluation demonstrating and comparing the effectiveness of our

approaches across several real data domains.

The chapter is organized as follows. Section 3.1 provides the context of our problem.

Section 3.2 shows how we assess the informativeness of each query. Section 3.3 then de-

scribes how we combine informativeness and predicted score to return ranked query results,

and to learn from feedback on them. Section 3.4 describes methods to increase diversity

among top results (and hence improve the benefits of user feedback). We experimentally

analyze our results in Section 3.6 and conclude this chapter in Section 3.7.

For simplicity, we present our work under the assumption that the data graph in the

system is static, hence our goal is to return top-k answers from the graph as queries are

posed and feedback is given. In reality, data in the Q system is dynamic (as new sources are

discovered), and queries may be persisted in the form of dynamically updated top-k views.

Hence we provide supplemental material in Section 3.5 explaining how this is achieved.

3.1 Background

The Q system encourages the user to “curate” the results of the query, distinguishing good

answers from bad ones and establishing a preferred ranking order for the results. This leads

to a tension between two desiderata: we must provide some relevant answers so the user

is motivated to look through the results; but we want the system to continuously expand

its ability to score new sources and new edges, i.e., increase its recall, meaning that we

must also solicit feedback on results that include uncertain edges. These contrasting goals

motivate the focus of this chapter: an active learning [68] approach incorporated into a

component called the suggester module.

The Q system’s suggester module ranks queries based on its uncertainty about their

score, and how much feedback about their validity aids the system in predicting the score

for other queries that have features in common with them. Its top results will typically be

3.1. BACKGROUND 23

merged with the top-scoring query results, giving a mix of items for the user’s inspection

and feedback. Effective output from the suggester will help the system accelerate learning

convergence while reducing the need for user intervention.

To achieve this, we incorporate the idea of active learning from the machine learning

literature. Active learning improves the accuracy of learning while reducing the amount

of training data: it relies on the ability of the learning algorithm to choose the data from

which it learns. This is especially desirable for applications where labeled training data

(in our setting, correct scores or costs for association edges, leading to correct query result

rankings) is difficult to obtain. Typically, an active learning algorithm has access to an

oracle and issues queries on unlabeled data. The oracle answers the learning algorithm by

assigning a label associated with the query instance. In our setting, the user serves as the

oracle.

The key question in applying active learning is how to select the next unlabeled instance

for the oracle’s annotation. A common approach is to adopt uncertainty sampling, a query

strategy based on an uncertainty measure. This measure determines how uncertain the

label given to the instance will be, and indicates how much extra information the underlying

model may learn. In our setting, a computed query result is a sample, and its label indicates

whether it satisfies the user’s information need with the correct ranking. We develop a novel

means of measuring a query result’s uncertainty, given the uncertainty associated with its

individual components like join associations.

We also explore another aspect: estimating how much feedback on a single tuple can

help label a group of similar queries and their results. We develop a clustering strategy

where queries sharing common edge and node structure are grouped together into one

cluster, and a representative is presented to the user. Such clustering-ranking schemes have

been previously used in other active learning applications, such as guided data repair [84]

and record linking [4]. A major novelty of our work lies in determining and ranking the

uncertainty of clusters of queries. We develop a measure based on the uncertainty score

from the alignment(s).

24 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

3.2 Finding Informative Queries

In this section, we develop mechanisms for measuring the uncertainty of a query result,

given knowledge of the uncertainty associated with the edge (schema match) and node

(relation authoritativeness) components of the search graph. We then take into account

the fact that queries may have overlapping edges or relations, meaning that feedback may

benefit multiple queries. We seek to focus on returning “more informative” query results.

Our approach is to build over existing schema matchers and their underlying compo-

nents. However, a challenge is that modern matchers [24, 25] combine the results of many

base matchers, but return a single similarity score that does not reveal any information

about how this was obtained. In order to determine the level of uncertainty associated with

each potential alignment, we seek to estimate the probability distribution over the range of

values, as suggested by [58]. To form this estimate, we compute a predicted distribution

over all primitive matchers’ scores for each association edge. We learn a weight for each of

the base matchers, and use each weighted value as a point within a probability distribu-

tion for the possible values for the composite matcher. (The Q system learns how to best

combine the weights from these base matchers, as described in Section 3.3.3.2.) Modeling

feature weights as random variables enables us to estimate overall relevance of an edge, as

well as the amount of uncertainty associated with it. This generalizes the model of our

previous work [77], since the previous feature weight corresponds to a sure event with only

one possible value and probability 1.

We consider in Section 3.2.1 how to compute weight distributions for the search graph

using features of two types: (1) those suggesting attribute alignments (possible join edges)

across relations on an attribute; (2) those representing authoritativeness or quality of rela-

tions or nodes. Section 3.2.2 then shows how such features’ uncertainties can be combined

across multiple relations and joins to get the uncertainty associated with a query (and its

results).

3.2.1 Uncertainty in the Search Graph

We first explain how the estimated probability distributions for base matchers are incor-

porated into our search graph. We divide our discussion into the basic features associated

3.2. FINDING INFORMATIVE QUERIES 25

with edges and nodes in the graph, and weights assigned to those features. These are built

upon our simplified model in Section 2.3

3.2.1.1 Graph Components and Features

Extending our basic model described in Section 2.3, we treat the weights as random vari-

ables, to model the uncertainty of predictions of the schema and record alignment tools.

For each alignment feature fAB, we denote by WfAB
the random variable which maps a

possible weight of the alignment feature to a probability value. Hence, WfAB
= w is the

event that the feature weight takes value w. Similarly, there is a weight random variable

WfRi
for each relation feature fRi ∈ Fr. Thus, the cost of an edge e = (A,B) ∈ E, where A

is an attribute of relation R1 and B is an attribute of relation R2, is given by the random

variable

C(e) =
∑
i

W (i)fei = WfR1
+WfR2

+WfAB
. (3.1)

We now describe how features are computed for edges and nodes. (Our system also

supports features whose values come from the data, e.g., score attributes within tuples [48,

76], and our model generalizes to this where each score attribute just becomes another

weighted feature. For simplicity we focus on query rather than instance-based attributes.)

3.2.1.2 Edge (Schema Alignment) Features

The Q system encodes schema matches (attribute alignments) as alignment features, whose

weights represent alignment qualities. For any two attributes A and B, the random variable

WfAB
represents the score distribution we derive. We first focus on a single pair of

attributes, where we treat the set of base matchers’ outputs as an ensemble of classifiers,

and let them vote on a prediction.

Schema Matcher Ensemble. The initialization procedure utilizes m matching primi-

tives, i.e., base schema matchers. For any attribute pair (A,B), the ith matching primitive

algorithm produces a normalized discrete cost score 0 ≤ si(A,B) ≤ 1. In our framework,

as described before, a low score indicates high similarity.

Voting Heuristic. Since precision varies from different matching algorithms, we can assign

each member a normalized preference p(Mi), such that
∑

i p(Mi) = 1. This preference can

26 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

be interpreted as the confidence level of a primitive. It also represents how heavily a

primitive contributes to the final aggregated matching score. The values will be trained

ahead of time, and will be learned (see Section 3.3.3.2). For any possible weight value

w ∈ [0, 1], we have the following estimation formula based on voting from the matching

ensemble,

Pr(WfAB
= w) =

∑
1≤i≤m

1(si(A,B) = w)p(Mi). (3.2)

The above formula states that the probability of the alignment having a score w is the

summation over all weights of matching primitives yielding the same score.

Relevance and Uncertainty. We can reason about both relevance and uncertainty of

a particular alignment based on distributions over weight values for alignment features.

For example, we can use the expectation E(WfAB
) to measure relevance, and then use the

entropy of WfAB
, H(WfAB

), or its variance, V(WfAB
), to measure uncertainty. We discuss

this in more detail in later in this section.

3.2.1.3 Node (Relation Authoritativeness) Features

In some cases the user may have a certain preference for (or bias against) a particular

relation R, e.g., due to its authoritativeness. We model this as a feature shared across all

edges linking to the node R and its attribute nodes, and we initialize a uniform weight

distribution for this feature.

3.2.2 Composing Uncertainty for Queries

In the Q system, keyword queries on the schema graph produce a set of structured queries,

each generated from a Steiner tree T which is a subgraph of G. We combine uncertainty

from each edge and define the uncertainty of a query by examining its corresponding Steiner

tree as follows.

The cost of an edge e ∈ E with features f1, f2, . . . and associated weights W1,W2, . . . ,

where Wi is a random variable, can be calculated using Formula 3.1. Abusing the notation

a little, we have the cost of a tree T derived from costs of all edges presented in T , as follows

C(T) =
∑

e∈E(T)

C(e) =
∑
i

∑
e∈E(T)

feiWfi , (3.3)

3.2. FINDING INFORMATIVE QUERIES 27

where E(T) denotes the set of edges of tree T . We treat each Wi as being independent of

the others. While in reality this may not be true, we will show experimentally that this

heuristic is effective, and that it simplifies the learning procedure.

Consider a structured query plan modeled by a Steiner Tree T , we can infer relevance and

uncertainty of the query from its cost expression. The Q system measures query relevance

by the expectation E(C(T)), and it captures query uncertainty using either entropy or

variance. We describe each next.

Entropy. In information theory, entropy roughly represents the expected number of ques-

tions to be asked to decode a distribution. The entropy for a given random variable X is

defined as:

H(X) = −
∑
x∈X

Pr(X = x) log Pr(X = x).

However, since the distribution of C(T) can be a set of possible values each with a uniform

probability, we need more contextual information to derive more meaningful entropy values.

Let D = [smin, smax] be the domain of all scores, and {B1, B2, · · · , Bb} be the scoring

“bins” which uniformly partition D into several ranges. Each Bi represents the range

[smin + (i − 1) smax−smin
b , smin + i smax−smin

b). Let Gj denote the event C(T) ∈ Bj . We have

Pr(Gj) =
∑

c 1(c ∈ Bj) Pr(C(T) = c). In this case, we consider the sample space to be all

possible Bi. Hence, we can define the entropy value as follows

H(C(T)) = −
∑

1≤j≤b
Pr(Gj) log Pr(Gj). (3.4)

In the Q system, given a tree T , we can compute its entropy by maintaining the distribution

over total cost when traversing T . As Formula 3.3 suggests, when edge e is visited, we

maintain the sum SF (i) =
∑

e∈E(T) f
e
i for feature fi. Finally, we can compute the cost

distribution by independence assumptions on Wi, and therefore derive the entropy. This

can be done by dynamic programming as shown in Algorithm 2.

Variance. Much like entropy, the variance value of a probabilistic distribution describes

how diverse is the range of its possible outcomes. Using Formula 3.3 and independence

assumption on different weights, we can compute the variance value as follows

V(C(T)) =
∑
i

SF 2(i)V(Wi). (3.5)

28 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

Algorithm 2 Computing entropy/variance for a query, or a tree

Input: A Steiner tree T
Output: Entropy and variance values for the total cost C(T)

1: for all feature fi do
2: SF (i)← 0
3: end for
4: for all edge e ∈ E(T) do
5: for all feature fi appears on e do
6: SF (i)← SF (i) + fei
7: end for
8: end for
9: for all d in the value domain D do

10: P 0(d)← 0
11: end for
12: P 0(0)← 1.
13: for i← 1 to |F | do
14: for all d ∈ D do
15: P i(d)← 0.
16: end for
17: for all d in domain D s.t. P i−1(d) > 0 do
18: for all possible value w which Wi can take do
19: P i(d+ w)← P i−1(d) Pr(Wi = w)
20: end for
21: end for
22: end for
23: for all bin Bi of total cost do
24: Pr(Bi) =

∑
d∈Bi

P |F |(d)

25: end for
26: return H = −

∑
Bi

Pr(Bi) log Pr(Bi) and

V =
∑

i SF
2(i)V (Wi).

3.3. RANKING AND LEARNING 29

Given the various schemes for estimating queries’ uncertainty, our next consideration is

how to incorporate this uncertainty measure into a scoring function, such that we can rank

the top-k answers to the user’s query.

3.3 Ranking and Learning

The previous section showed how to estimate the relevance of a query (and its results).

Once the Q system identifies the set of Steiner trees, it must rank them, such that the

top-k results answer the user’s initial query and maximize the utility of the potential user’s

feedback.

In this section, we consider two closely related issues. First, we need to rank the answers

to a keyword query Q = {K1,K2, . . . ,Km}, taking both relevance and uncertainty into

account. We then consider how the system can learn from the user’s feedback and update

the scores and probability distributions associated with individual features.

3.3.1 Basic Ranking of Query Results

The cost of a query, i.e., a Steiner tree, derived in Formula 3.3, is a random variable from

which our Q system determines its rank. A query’s rank should depend on relevance, i.e.,

how likely is a query result to satisfy the user’s information need. However, the query also

has a certain amount of uncertainty in its score, which indicates how much extra information

the Q system can learn from possible user feedback given on results derived from the query.

A query’s amount of uncertainty should also determine its rank since the user only sees a

few top results and the system needs to maximize its learning gain. We have shown in the

above section how to compute these two measurements for a given query. We now consider

how to rank queries based on these values.

There is a tension between these two goals, rendering it semantically difficult to aggre-

gate them for ranking and learning. We cannot directly use the decision-theoretical notion

of stochastic dominance, nor skyline-based ranking, as these only produce partial orderings

of results. Moreover, they fail to consider how the ordering affects the way a user provides

feedback. Our trade-off between relevance and uncertainty in the long run is very similar

to the problem of “exploration versus exploitation” in machine learning [68]. However, we

30 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

must adapt existing techniques, because some of the key metrics are intractable to obtain

in our setting.

We first consider two orthogonal notions of ranking, one based on the predicted relevance

of results, and the other based purely on uncertainty, followed by a weighted combination of

the two. Later in this section In Section 3.3.2 we will consider a more sophisticated means

of combining the different facets.

Predicted-Relevance Ranking. A natural method of ranking is based on predicted

relevance, i.e., the score obtained by combining the expected values of the features in the

Steiner tree (query). Most keyword search-based systems, including prior versions of the Q

system, adopt this ranking semantics. The final answer set in this model is a list of the k

lowest-cost trees, in increasing order of expected cost. The top-k queries in this model can

be computed by taking the graph, computing the expected cost for each edge and assigning

it as the edge weight, then running a k-best Steiner tree approximation algorithm [77],

which is tractable in practice.

Uncertainty Ranking. Conceivably, one could instead rank queries (and answers) accord-

ing to the level of associated uncertainty. This is in some sense what systems supporting

active learning typically do: focus the user’s attention on the results that have the highest

uncertainty, and thus the highest utility in learning how to rank.

The problem with this approach is that the entropy of a tree does not follow the principle

of optimality with respect to the entropy of its subtrees. Due to this issue, we cannot

directly apply previous methods [54], for enumerating and ranking top-k trees with respect

to decomposable cost functions, as our uncertainty criteria are not decomposable. Although

our algorithm for predicted-relevance ranking is similar to the Lawler-Murty procedure [54],

there is no obvious way to determine the top-k trees with respect to entropy, without

enumerating all trees. Moreover, since a tree’s entropy is not directly related to its predicted

relevance, the highest-entropy query answers may not be useful to the user. Similarly, query

answers with high variance values may not help answer the user’s information need. For

these reasons we next consider a more feasible hybrid strategy we term mixed ranking.

Mixed Ranking. The notion behind mixed ranking is that top answers should include

a predicted relevance component to try to satisfy the user’s information need, while still

3.3. RANKING AND LEARNING 31

including some uncertain answers that are useful from an active learning perspective. This

can be achieved as follows. We first compute a large subset k′ of the queries predicted

to be relevant, e.g., the 2k most relevant query trees, and then choose from among these

according to their uncertainty scores. Since we can tractably obtain approximate Steiner

trees and compute entropy or variance for an individual tree, the overall mixed ranking is

tractable in practice.

The scheme incentivizes the user to provide feedback: some of the query answers are

likely to be of good quality, but they be mixed with bad answers. The user will be able to

see that a small amount of feedback may result in an even more complete answer set.

Algorithm 3 Computing top ranked queries

Input: Schema graph G
Output: A ranked list of k trees

1: Compute all top-k′ Steiner trees {Ti}
w.r.t. minimum expected cost, where k′ ≥ k is some set of candidate answers

2: (Optional; see Section 3.4.1) Cluster these trees into k clusters,
and choose for each cluster a representative Tr(ci)

3: Select and rank the top k results using one of the ranking methods, or a diversification
scheme (see Section 3.4)

3.3.2 Ranking by Expected Model Change

The previous ranking semantics fail to consider position bias: the user typically examines

results from top to bottom and stops at some point. This behavior suggests that top items

are more likely to receive feedback. Even for the same set of results, different orderings

may yield different amounts of feedback to the system. To address this problem, we present

a novel ranking semantics using the notion of expected model change [69] and taking the

user’s browsing behavior into account. Briefly, the expected model change resulted from an

unlabeled sample quantifies the estimated change to the current model if we knew its label.

Typically, if a sample has a higher value of expected model change, the system is likely to

learn more information if its label is revealed. Furthermore, our ranking by expected model

change algorithm yields a provable relevance guarantee: we show a cost lower bound for

the list of top-k results obtained from this ranking method. This is desirable because query

32 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

answers need to satisfy the user’s information need.

3.3.2.1 Browsing and Feedback Model

We adopt a user browsing model very similar to click models used in web search [37, 70].

The user starts by looking at the first result in the list and gives feedback on it. Then he

or she continues to the second result with some probability p, or terminates his or browsing

with probability (1− p). If he does examine and give feedback on the second result, he will

repeat the above behavior for the third result and so on. The user’s browsing procedure

terminates if he reaches the end of the list, or when he or she stops at a certain position.

This stop position is what we refer to as the watermark, and we assume the user has vetted

each result up to the watermark, and given negative feedback on any answers known to be

incorrect.

Formally, if we let r1, r2, · · · , rk be the top-k results where ri is displayed at position i

and let Fi denote the event that ri is examined and feedback is given on it, we can model

the user’s browsing behavior as follows.

Pr(F1 = 1) = β1,

Pr(Fi = 1|Fi−1 = 0) = 0,

Pr(Fi = 1|Fi−1 = 1) = βi,

where
0 ≤ βj ≤ 1, ∀j.

The second formula assumes that the user stops browsing if he does not examine the

previous result in the list. The third formula quantifies the probability that the user contin-

ues to the result at position i if he has examined the result at position i− 1. We generally

assume that probabilities for continuing may vary for different positions. We also do not

assume these conditional probabilities diminish as position moves from top to bottom.

3.3.2.2 Expected Model Change

Given the browsing model, we now formalize the definition for expected model change.

This will allow us to quantify the aggregated amount of relevance and that amount of

uncertainty associated with the top-k results. Consider the top results {r1, · · · , rk}, where

3.3. RANKING AND LEARNING 33

each ri has a corresponding Steiner tree Ti, whose cost is a random variable. Informally,

the expected model change for ri is the expected amount of uncertainty reduction if ri is

given feedback to and no other trees in the top list receive feedback. The expected amount

of uncertainty reduction can be computed by simulating our learning module, described in

Section 3.3.3. The learning algorithm takes the list of top-k trees and feedbacks given to

each tree (positive, negative or no feedback) as input, and changes probability distributions

over feature weights in the schema graph accordingly. This results in change of cost variables

for graph edges, and therefore the uncertainty measure of cost functions associated with the

schema graph G. We denote by G+ the new graph if ri is given a positive feedback, and

by G− the new graph if ri is given a negative feedback. We also denote by U(G) the total

amount of uncertainty associated with schema graph G, obtained by U(G) =
∑

e∈E(G)U(e),

where U is a given uncertainty measure, for instance, variance or entropy. Similarly, U(G+)

and U(G−) describe amount of uncertainty associated with G+ and G−, respectively. If we

let ∇Li be the amount of uncertainty reduction if ri is given a positive feedback and ∇Li

be the amount of uncertainty reduction if ri is given a negative feedback, we can compute

these values as follows.

∇Li = U(G)− U(G+), ∇Li = U(G)− U(G−).

According to the probabilistic interpretation of edge cost described in Section 2.3, we assume

that αi = 2−E[C(Ti)] estimates the probability that ri meets the user’s information need,

which in turn estimates the probability that ri receives a positive feedback. Hence, the

expected model change if ri receives a feedback is given by

Ji = αi∇Li + (1− αi)∇Li.

Now that we have defined the expected model change for a given unlabeled query, we

consider how to maximize the expected total amount of uncertainty reduction by incorpo-

rating our user browsing model. For a given query ri, the user must first examine it in order

to provide feedback. Hence, we can compute the Q system’s expected utility from learning

feedback given to ri, denoted by Ys(i), as follows

Ys(i) =
i∏

j=1

βjJi =
i∏

j=1

βj(αi∇Li + (1− αi)∇Li).

34 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

Denote Bi =
i∏

j=1
βj , which is the probability that the user has examined ri. Similarly, we

can obtain the relevance estimation, or the user’s utility, for ri, denoted by Yu(i) as

Yu(i) =
i∏

j=1

βjαi = Biαi.

Combining utility scores for each individual result, we obtain the following two objective

functions, one utility function for Q system’s learning, and the other for the overall relevance.

Ys =
k∑

i=1

Ys(i), Yu =
k∑

i=1

Yu(i).

We apply an active learning strategy to maximize Ys with respect to an ordering of a

candidate result set, so that the Q system can learn as much information as possible. We

will show that greedily ranking by Ji maximizes this objective function. Furthermore, we

will show that Yu has a lower bound if we rank results by Ji. This indicates that the total

amount of relevance can be guaranteed.

Proposition 1 Ys is maximized if {ri} is ranked by descending Ji. Moreover, Yu ≥ Y ∗s√
k∑

i=1
J2
i

,

where Y ∗s is the optimal maximized value.

Proof. We show that the above two statements hold for any given k > 0. The first part

follows from the fact that B1 ≥ B2 ≥ B3 ≥ To see this, assuming that there is an

optimal solution Y ′s where Ji′ ≤ Ji′+1 for some i′, we can obtain a new solution no worse

than Y ′s by swapping Ji′ and Ji′+1. We can keep applying the exchange operation until {Ji}

is sorted. To prove the second part, we have

Y ∗s =

k∑
i=1

Ys(i) =

k∑
i=1

BiJi =

k∑
i=1

(BiαiJi/αi) =

k∑
i=1

Yu(i)Ji/αi

≤
k∑

i=1

Yu(i)Ji =

√√√√(
k∑

i=1

Yu(i)Ji)
2 ≤

√√√√ k∑
i=1

Y 2
u (i)

√√√√ k∑
i=1

J2
i

≤ (

k∑
i=1

Yu(i))

√√√√ k∑
i=1

J2
i = Yu

√√√√ k∑
i=1

J2
i ,

which immediately yields the inequality.

3.3. RANKING AND LEARNING 35

The above proposition establishes a nice connection between exploration and exploita-

tion: actively learning by the Q system still provides relevance lower bound. In practice,

since computing the full ranking requires enumerating all Steiner trees, which takes expo-

nential time, we instead compute a group of most relevant Steiner trees and rank them by

their values of expected model change.

3.3.3 Learning from User Feedback

Recall that the keyword search-based data integration model identifies correct attribute

alignments by learning from user feedback over query answers. In our Q system imple-

mentation, two modules — the interactive user interface and the feedback-based learner —

enable this capability. Once a keyword query is issued, the Q system returns the results

computed by the top-k Steiner trees1, using one of the ranking algorithms. The system

then converts these trees to conjunctive queries, executes these queries, and returns tuple

answers [77]. The Q system displays resulting tuples to the user annotated with provenance,

in the form of a tree describing the query or queries that produced the answer.

The user examines a portion of the result set of tuples and gives feedback, either positive

(via explicit positive marking or by specifying the “watermark”) or negative (via explicit

negative marking). From the cumulative feedback, the Q system learns which features in

the schema graph, i.e., attribute alignments and data source qualities, are most relevant to

the user.

In reality, there are two sets of weight parameters that must be learned: those for cor-

recting edge alignments, which take uncertainty and the weighted scores of base schema

matchers into account (Section 3.3.3.1), and the weights that should be given by default

to each of those individual base schema matchers, before further feedback is given (Sec-

tion 3.3.3.2).

3.3.3.1 Learning Edge Costs

Our prior implementation for the Q system [77] incorporates the MIRA [20] online learning

algorithm, an online approximation to support vector machines, to receive feedback from the

1For simplicity we describe the outcome as if each query produces one result, although the system
actually iteratively enumerates top-scoring queries, even beyond k such queries, until it gets k answers.

36 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

user in a streaming fashion and to update weight values. In a nutshell, MIRA attempts to

find a new weight vector which is closest to the previous one and which satisfies constraints

formalized from the feedback.

The implementation in this chapter requires that feature weights be random variables

instead of scalar values. The challenge, then, is how to adapt the online learning algorithm

so that it can deal with probability distributions over feature weights. We adapt MIRA to

our new setting as follows. The user indicates that a particular tree T ∗ should be the top

ranked tree among the set of all top-k trees B. Let w be the vector where wi = E(Wi). We

directly apply the MIRA algorithm, which takes the weight vector w as input and returns

a new weight vector w’ as output.

Finally, we compare wi with w’i for each i. If wi = w′i, then we keep the existing

probability distribution for the weight on feature fi, because fi does not separate correct

alignments and incorrect ones in the top-k trees and its weight does not need adjustment.

On the other hand, if wi 6= w′i for some i, the Q system will update this feature weight to a

sure event: the weight random variable Wi will have value w’i with probability 1. We show

pseudocode for our learning algorithm in Algorithm 4, and the loop in Line 12 computes

the new weight update. We use symmetric difference between two trees as the loss function,

as in [77]:

L(T, T ′) = |E(T)\E(T ′)|+ |E(T ′)\E(T)| (3.6)

The online learning algorithm takes an initial score for an edge, based on a weighted

combination of schema matcher outputs, and adjusts it. We next discuss how we set the

initial score weights.

3.3.3.2 Learning Weights for Schema Matchers

The schema matching literature suggests that different matchers should have different

weights in order to achieve a matching prediction with good precision and recall [24]. Such

weight distributions may be different for different databases.

In the Q system, matcher weights are first applied to form probability distributions over

alignment scores which compute query relevance and uncertainty. As the user poses more

queries, the Q system learns the cost of individual attribute alignment. Under this model, it

3.3. RANKING AND LEARNING 37

Algorithm 4 Online learner

Input: Search graph G, user feedback stream U ,
required number of query trees k
Output: Updated weights W

1: Initialize W
2: r = 0
3: while U is not exhausted do
4: r = r + 1
5: (Sr, Tr) = U.Next()

6: w
(r)
i = E(Wi)

7: Cr−1(i, j) = w(r−1) · fij ∀(i, j) ∈ E(G)
8: B = KBestSteiner(G,Sr, Cr−1,K)
9: w(r) = arg minw ||w−w(r−1)||

10: s.t. C(T,w)− C(Tr,w) ≥ L(Tr, T), ∀T ∈ B
11: w · fij > 0 ∀(i, j) ∈ E(G)
12: for all i do
13: if w

(r−1)
i 6= w

(r)
i then

14: Update Wi s.t. Pr(Wi = w
(r)
i) = 1

15: end if
16: end for
17: end while
18: return W

may seem that matcher weights are no longer needed after initialization. However, consider

the case where new data sources are added into the current system. In order to apply the

same active learning module, we will still have to compute probability distributions over

alignment features for new relations. The results of such estimations directly depend on

matcher weights. Hence, we need to learn, and periodically re-learn, such weights in order

to perform more accurate predictions for new data sources. Note that, however, the newly

learned matcher weights should not be propagated to edges whose costs are already updated

from user’s feedback.

We periodically use a linear regression model to relearn matcher weights: we choose

this learning method because the goal of learning the best parameter settings fits naturally

into the regression setting. Alternatives like Naive Bayesian or SVM learning are more

appropriate for classification tasks.

The aggregate matching score for an attribute alignment is a weighted sum of individual

matching scores obtained from base matchers. Each alignment edge in the schema graph (af-

38 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

ter several rounds of learning edge costs) is a labeled sample, where the expected value of the

alignment feature weight serves as the aggregated score. Formally, let {M1,M2, · · · ,Mm}

be the set of matches and p(Mi) be the normalized matcher weight of Mi. For each attribute

alignment edge e = (A,B), the estimated aggregated matching, computed by E(WfAB
), is

its label and we assume that the score correctly reflects alignment quality. Each matcher

Mi produces score si(A,B) on edge (A,B). The learning procedure aims to find {p(Mi)}

and to minimize the loss objective function

min
∑

e=(A,B)

((
∑
i

p(Mi)si(A,B))− E(WfAB
))2.

This is a classic linear regression problem, and we can invoke the learning procedure peri-

odically.

3.4 Increasing Diversity in the Top-k

In active learning, the goal is to select query results such that the system maximizes its

ability to learn (in this case, from user feedback). The uncertainty measure developed

previously identifies the single sample (query result) with lowest confidence, in isolation.

Similarly, the ranking schemes discussed effectively consider answers to be independent of

one another. However, in the Q system, the user labels derived query results as positive or

negative, and the feedback is converted into a modification of weights on individual features

on edges or nodes. Some of these features may be shared with other queries and their

results.

Clearly, this can lead to an issue: multiple closely related answers might have similar

ranks by the metrics from the previous section. Yet feedback on any one of the answers

might give most of the benefit of feedback on all of the answers.

Hence, in this section, we consider two approaches to increasing the diversity of the top-k

answers, in order to get more beneficial feedback. We note that the diversity scheme should

increase the number of different features present in the top-k answer set, such that the user

has an opportunity to provide greater feedback. Yet (sometimes at odds with the previous

goal) it should not suppress the best answers (particularly the most-likely-relevant answers)

3.4. INCREASING DIVERSITY IN THE TOP-k 39

from appearing in the answer set. Finally, there should be some mechanism whereby the

diversity scheme can be dampened as further feedback is given.

To address these goals, we consider two different schemes. In Section 3.4.1, we propose

a clustering scheme, whereby we generate a large number of candidate results (in our ex-

periments of Section 3.6, we generate 4k), then we collect them into k clusters and choose

a representative result from each cluster. In Section 3.4.2, we try an alternative approach,

based on incorporating a diversity component into our ranking scheme, by extending one

of the most effective techniques from the information retrieval literature.

3.4.1 Clustering Queries

Ideally, we can find a few “representative” query results to return in the top-k results, and

learn about many other results’ scores from these representatives.

Our clustering strategy targets this problem. It presents to the user the results of

a query (Steiner tree) that shares some highly uncertain edges with other, also-highly-

uncertain, queries — such that feedback given on results from the first query (tree) can

also reduce the uncertainty of the other queries. To achieve this, we must estimate common

uncertain information between two Steiner trees and how informative a given Steiner tree

is with respect to a keyword query. We use these to cluster overlapping queries and choose

a representative query per cluster.

Clustering Algorithm. Our clustering algorithm takes a set of query trees {T1, T2, · · · }

as input and clusters them into k groups, one associated with each top-k answer, similar

to the k-means algorithm. (Note that in our domain it is intractable to compute the entire

set of query results and then perform hierarchical agglomerative clustering; instead we can

only produce some partial set of results and return k of them. Hence k-clustering makes

sense.)

We define the center tree T of a set of trees to be a tree where each edge e has an

associated appearance frequency rT (e), which is the ratio of number of trees having e to

the size of the set. For any general Steiner tree T , rT (e) is defined as 1(e ∈ E(T)). Now,

we define the similarity between two trees as follows.

Ŝ(T1, T2) =
∑

e∈E(T1)∩E(T2)

U(e) min(rT1(e), rT2(e)).

40 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

This similarity roughly estimates the amount of common uncertainty of the two trees by

summing up uncertainty values on their common edges. It can estimate the similarity

between two Steiner trees as well as similarity between a Steiner tree and a “center” tree

of a set. We use standard k-means clustering over this similarity function to build clusters.

Choosing Cluster Representatives. Once we have a cluster of similar queries, the next

key question is how to choose one from them for feedback, such that the Q system can learn

as much information as possible. We determine such a representative based on a notion

of informativeness. Intuitively, the informativeness of a query with respect to a cluster of

queries measures how much uncertainty this particular query shares with other trees in the

cluster. Formally, given a cluster of trees C and a tree T ∈ C, we define the informativeness

as follows:

IC(T) =
∑

T ′∈C,T ′ 6=T

∑
e∈E(T)∩E(T ′)

U(e) (3.7)

where U(X) is any uncertainty measurement over a random variable X. Thus, we vote on

a representative according to the above informativeness formalism, and choose the most

informative tree to represent the cluster.

3.4.2 Directly Incorporating Diversity in the Score

The clustering approach of the previous section is well-aligned with our intuition that we

would like to choose the “best” result from each group of related results. Yet there are

some potential pitfalls to the approach. First, our choice of a representative result for each

cluster may be poor: in this case, the user might see (and provide feedback on) a bad

result, when other members of the cluster were good. Unfortunately the results of this

feedback may down-rank all of the answers in the cluster. Second, it is not obvious how

to gradually dampen the clustering scheme, such that initially we select with a heavy bias

towards diversity, and after a few rounds of feedback we progressively de-emphasize the

diversity component.

The information retrieval literature considers an alternative to clustering: there, the

approach is to incorporate diversity directly into the scoring function [23, 27, 35]. Section 3.3

described how we can incorporate two different optimization criteria, namely predicted

3.4. INCREASING DIVERSITY IN THE TOP-k 41

relevance and uncertainty, into the scoring function. Here we extend this even further, to

consider diversity as a third optimization criterion.

A commonly used family of approaches in information retrieval comes from Gollapudi

et al. [35], who proposed a series of functions to combine an existing score with a diversity

measure. Of the proposed measures, we favor the one that chooses a set of results that

maximizes the overall combination of relevance and diversification. Thus we adopt a scheme

called max-sum diversification, which maximizes a linear combination of utilities of selected

query answers and their pairwise distances. More specifically, we are given a universe U of

objects to choose from (in our case, U is the set of all Steiner trees), the scoring function

Ydiv is defined over a subset S of k selected items from U as a weighted linear combination

of any standard score metric from Section 3.3, plus a diversity component:

Ydiv(S) = (k − 1)
∑
T∈S

Score(T) + 2λ
∑

T1,T2∈S
D̂(T1, T2). (3.8)

We can use the symmetric difference of the two trees as the distance function, which is

defined as the number of edges in the union of the two trees but not shared by both of

them.

Maximizing the above objective function is NP-hard [35]. Instead, consider the following

equivalent reformulation [35]:

Ydiv(S) =
∑

T1,T2∈S
D
′
(T1, T2) =

∑
T1,T2∈S

Score(T1) + Score(T2) + 2λD̂(T1, T2)

This results in the Max-Sum Dispersion problem which has a 2-approximation [20]. We use

this reformulation, but with the following adaptations in the Q System.

1. Unlike in many IR applications where the scoring function is mostly about relevance,

we adopt our proposed ranking functions (for example, expected model change) so as

to consider relevance, uncertainty and diversity together.

2. We also adaptively change λ. At the beginning, the system is actively exploring for

more feedback. However, after the system has gathered certain amount of information,

it will apply the exploitation strategy. To enable this, we can gradually decrease

the value of λ to reduce the effect of the pairwise similarities (and hence that of

diversification).

42 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

3.5 Incremental Update on Source Discovery

Algorithm 5 Incrementally add new data source

Input: Search graph G, subgraph representing new source G
′
, keywords (K) associated

with current view, cost function C, cost threshold τ .
Output: Augmented schema graph G

′′
,

with alignments between G and G
′
.

1: G
′′ ← G ∪ G′

2: S ← ∅
3: for k ∈ K do
4: S = S ∪GetCostNeighborhood(G,C, τ, k)
5: end for
6: for v ∈ S do
7: A = BaseMatcher (G

′
, v)

8: E(G
′′
) ← E(G

′′
) ∪A

9: end for
10: Return G

′′

In addition to finding informative query answers and learning from user’s feedback,

another challenge in keyword search-based data integration is to incrementally update the

underlying model when we add new data sources [76]. This involves not only updating

the base data in the form of the schema graph, but also updating any materialized views

that were formulated through keyword search. We wish to automatically combine new data

sources into the existing schema graph, and to predict edge costs in order to discover query

trees to generate potentially useful new results for existing keyword search-based views.

In more detail, within the Q System, each keyword query can be saved as a view whose

results can be revisited over time. For each view, we seek to only add new alignment edges

that can potentially affect the results in the view, upon new data sources are connected.

Formally, suppose we have G = (V,E) as the existing schema graph and G′ = (V ′, E′). We

are also tied to a fixed view derived from a keyword search query Q = {Ki}. The goal

of automatic incremental update is to derive a probability distribution over edge costs for

each pair of attribute nodes (v, v′) where v ∈ V and v′ ∈ V ′. Notice that a naive way

of performing such computation for all possible pairs requires examining Ω(|V ||V ′|) pairs,

which is an undesirable quadratic term that does not scale well as the number of schema

graph nodes becomes large. Ideally, we need a strategy to compute only that subset of

3.6. EXPERIMENTAL ANALYSIS 43

possible joins that indeed produces results affecting the top-k answers of the existing view.

Our information need-based strategy adopts a pruning approach and limits our search

space to only a subset of possible pairs. Let Cmax be the maximum expected tree cost

(relevance) among all top-k trees in a fixed view. We also set a threshold τ > Cmax (but

not too large). Building upon [76], we say that a new attribute node A is feasible if and

only if there exists a keyword node Ki ∈ Q such that the minimum expected cost from Ki

to A is less than τ .

We formalize this in Algorithm 5, which identifies all feasible attribute nodes by using

BFS. The algorithm starts with all the keyword nodes as seeds, and iteratively expands

new regions. When a node is to be expanded, we check if its expected distance to the

keywords is greater than τ . If this happens, the algorithm will stop further expansion from

the node. After we obtain all feasible nodes, we will align each of them with every node in

V to compute the costs.

3.6 Experimental Analysis

We now experimentally evaluate the different options for the suggester module, and their

impact on learning, in the Q system. We seek to validate that active learning improves our

ability to distinguish correct from incorrect schema mapping edges and return better query

results, and to understand the differences among the ranking models, uncertainty metrics,

and diversification schemes.

Datasets. A major challenge in conducting keyword search experiments across integrated

data sources is that it is very difficult to identify the complete set of correct (“gold”)

alignments, and even more difficult to identify the set of correct answers. To simulate this

in a controlled yet realistic way, we focus on real data where the possible joins are known.

We chose three well-curated datasets and removed information about foreign keys, meaning

the Q system must use schema alignment tools to discover potential edges, and learning

to improve its knowledge of the correct scores. The datasets were chosen to represent very

different domains, and include the bioinformatics testbed used in [76], which combines the

widely referenced Interpro and GeneOntology (GO) datasets; the popular Internet Movie

Database; and the Mondial geographic encyclopedia. For each dataset, we choose a subset

44 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

of the tables. Details about the datasets are shown below.

Name Bioinf. IMDB Mondial

No. Tables 9 7 9

No. Attributes 48 21 36

No. True alignments 9 6 9

Size (in MB) 172 1082 7

Query Workload. For each dataset, we generated a workload comprising 7 (for Bioin-

formatics) or 10 (for IMDB and Mondial) keyword queries, whose results are revisited

(and new feedback is given) three times. The queries were based on common-knowledge

searches, and keywords with low selectivity were emphasized. Each of the visits (phases)

is done in a randomly permuted order. Sample queries include “isomerase protein” for

Bioinformatics and “Greece ‘health organization”’ for Mondial. Queries cover most pos-

sible join paths, including some with high and some with low uncertainty. For example,

the path (roles.movie id, movies.id) in IMDB has low uncertainty, while the path (inter-

pro interpro2go.go id, GO term.id) in Bioinformatics has high uncertainty.

Methodology. Experiments were conducted using our implementation of the Q system,

which comprises approximately 55,000 lines of Java code. Evaluation was done using on an

Intel Xeon CPU (2.83GHz, 2 processors) Windows Server 2008 (64-bit) machine with 8GB

RAM, using JDK 1.60 11 (64-bit). For each dataset, the Q system first loads its schema

(without knowing foreign keys) and constructs the schema graph. We run in parallel a set

of schema matching primitives from the COMA++ schema matcher (Community Edition)

to compute a weight distribution between [0, 1] for every alignment feature. We prune

potential edges for which all matching primitives give low similarity scores. We also assign

one of 10 possible uniform weight distributions over [0, 1] to each node (relation) feature.

Once the schema graph is constructed, we iteratively pose keyword queries. In each iter-

ation, the Q system returns the top-k ranked Steiner trees for the keyword query, according

to one of our ranking algorithms to be evaluated. Then we simulate the user’s feedback: a

Steiner tree receives positive feedback if all of its edges are correct alignments (according

to the actual schema information not provided to the system), and negative feedback oth-

erwise. Note that our definition of a correct Steiner tree is very strict, as there might be

3.6. EXPERIMENTAL ANALYSIS 45

additional useful alignments that are not specified in the schema. The Q system then uses

the feedback to learn adjustments to the feature weights, and updates the costs of edges in

the schema graph.

We initially consider two dimensions: the uncertainty metric, namely entropy and vari-

ance; and the means of scoring results from relevance and uncertainty, including using rele-

vance only, mixed ranking, and expected model change. Combining these options, we look

at predicted relevance (Relevance), mixed ranking using entropy (Mixed Ent), mixed

ranking using variance (Mixed Var), expected model change using entropy (EMC Ent),

and expected model change using variance (EMC Var). We then consider a third dimen-

sion, diversity: here we consider both Clustering and direct Diversification within the

score function; we combine these approaches with the EMC Var ranking scheme, which

proved to be the most effective.

Parameter Settings. We used k = 5 as the number of top queries to compute answers

for each keyword search. To consider both relevance and uncertainty, we actually have the

Q system fetch the top-2k most relevant Steiner trees, and to choose from among these the

top-k trees according to the combined ranking metric of study. When clustering, we use the

top-4k trees, which we combine into 2k clusters and then choose the top-scoring k results.

We use the following COMA++ [24] schema matching primitives: data type similarity,

string edit-distance, string q-gram distance, semantic similarity, and instance matchers.

Initial matcher weights are trained offline before the experiment using a very small set of

example attribute pairs. For diversification, we have used λ = 0.9round−1 (where round is

the answer-feedback step, starting at 1) for Bioinformatics and Mondial. For IMDB, we

have used λ = 0.7round−1.

We consider the following questions and present preliminary results

• Which active learning schemes most reduce the amount of training required to distin-

guish between gold and invalid schema alignments? Do clustering and diversification

help? (Section 3.6.1)

• Which schemes require the least feedback to help the system discover correct align-

ments? (Section 3.6.2)

46 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

• Do the improvements in learning correct edges translate into an improvement in initial

(before feedback) answer quality for keyword searches? (Section 3.6.3)

• For diversification, how does our clustering scheme compare with directly incorporat-

ing diversity into the ranking function? (Section 3.6.4)?

3.6.1 Speed of Learning

0

5

10

15

20

25

30

35

Bioinformatics IMDB Mondial

M
in

im
u

m
 f

e
e

d
b

ac
k

st
e

p
s

to
 s

e
p

ar
at

e
 g

o
ld

an

d
 n

o
n

-g
o

ld
 e

d
ge

s

Dataset and ranking algorithm

Relevance

Mixed Ent

Mixed Var

EMC Ent

EMC Var

did not separate

did not separate did not separate

Figure 5: Speed of learning to distinguish gold vs. invalid edges, without considering
diversity

The focus of our work on active learning is speeding up (in terms of feedback steps

required) the Q system’s ability to discriminate between valid (gold) and invalid edges.

Hence in this first experiment we measure how many feedback steps are required to separate

gold-standard and erroneous edges, where our test for separation is whether the intervals

corresponding to the mean plus or minus one standard deviation, for gold-standard and

erroneous edges, are non-overlapping and remain non-overlapping.

We performed a comprehensive set of experiments comparing the various algorithms

across our three datasets. We summarize in Figure 5 how many feedback steps (rounds)

were required to separate the intervals, for the various methods of combining uncertainty

3.6. EXPERIMENTAL ANALYSIS 47

0

2

4

6

8

10

12

Bioinformatics IMDB Mondial

M
in

im
u

m
 f

e
e

d
b

ac
k

st
e

p
s

to
 s

e
p

ar
at

e
 g

o
ld

an

d
 n

o
n

-g
o

ld
 e

d
ge

s

Dataset and ranking algorithm

EMC Var

Clustering

Diversification

Figure 6: Speed of learning to distinguish gold vs. invalid edges: benefits of incorporating
diversity

0

5

10

15

20

0 5 10 15 20

A
ve

ra
ge

 e
d

ge
 c

o
st

Feedback round

Gold edge

Spurious edge

Figure 7: Separation for Relevance in the Bioinformatics dataset

and predicted relevance one answer at a time. Note that there are a maximum of 21 rounds

for the Bioinformatics dataset and 30 for the other datasets. If separation was not achieved

48 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

0

5

10

0 5 10 15 20

A
ve

ra
ge

 e
d

ge
 c

o
st

Feedback round

Gold edge

Spurious edge

Figure 8: Separation for Mixed Ent in the Bioinformatics dataset

0

5

10

15

20

25

0 5 10 15 20

A
ve

ra
ge

 e
d

ge
 c

o
st

Feedback round

Gold edge

Spurious edge

Figure 9: Separation for Clustering in the Bioinformatics dataset

within this limit, we mark this on the figure.

We see that the standard Relevance scheme achieves separation after around 18 steps,

and in fact the mixed ranking schemes using entropy and variance, Mixed Ent and Mixed

3.6. EXPERIMENTAL ANALYSIS 49

0

4

8

12

16

0 5 10 15 20

A
ve

ra
ge

 e
d

ge
 c

o
st

Feedback round

Gold edge

Spurious edge

Figure 10: Separation for Diversification in the Bioinformatics dataset

Var, cause a drop in performance such that separation is not achieved within the maximum

number of rounds. The expected model change schemes, EMC Ent and EMC Var, on the

other hand, show dramatic improvement, achieving separation in 6 steps. For both IMDB

and Mondial, the Relevance method does not achieve separation. With IMDB, Mixed

Ent actually does best, with Mixed Var and its its expected model change variation EMC

Var, also performing well. Surprisingly, expected model change plus entropy is ineffective

here, given that entropy itself is useful. For Mondial, which has a relatively small set of

edges, the various methods have equal performance.

Next, we consider how schemes for diversification change performance, in Figure 6. Here

we use EMC Var as the baseline, since it was the most consistently effective method in

the prior figure. We see that for Bioinformatics, the Clustering method speeds separation

by a small amount (one step) versus the baseline and versus the Diversification scheme.

For IMDB, the Clustering scheme provides significant benefit, but Diversification per-

forms best by a notable margin. Finally, with Mondial, where there are relatively few

edges, Clustering actually is less effective than the baseline algorithm. In contrast the

Diversification scheme does not impede performance.

50 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

To give a greater sense of the differences in costs, we provide more detail for the Bioinfor-

matics dataset, showing incremental change in each feedback round. This is representative

of the other results, and focused on the target domain of the Q system. We see in Fig-

ures 7–9 the one-standard-deviation intervals around the mean score for gold-standard and

invalid edges in the bioinformatics dataset, as each round of feedback is given to the system.

(Recall that high scores mean high costs or dissimilarity.) In this dataset it takes 18 rounds

to achieve separation of intervals for the Relevance method (Figure 7). The Mixed Ent

method (Figure 8) never achieves separation within the 21 rounds of feedback (as its top-k

answer set does not include results with several of the error-producing features).

The Clustering method (Figure 9) improves the situation, achieving separation after

only 5 feedback steps. It does this in a relatively gradual way. The performance of the

Diversity scheme is markedly different: for the first four rounds, the edge weights are

relatively close in value (similar means, small intervals). In the 5th round, the values diverge

more widely. There is a tiny overlap between the intervals around the gold and spurious

edges (overlap of 0.05), and in the 6th round complete separation is achieved. Here we

argue that the two diversification methods are essentially equivalent in performance, and

as we saw previously, Diversification is strictly better (by at least 2 feedback steps) for

the other datasets.

Although learning produces a large gap between the average costs of gold and non-gold

edges, in a few cases, full separation is not achieved. Here the base schema matchers’ scores

for the incorrectly categorized edges have low variance and entropy — the matchers are

“certain” about wrong alignments — so such edges do not show up in the top-k results and

receive feedback.

Overall, expected model change with variance, with or without clustering or diversifica-

tion, does best in learning to separate gold and invalid edges.

3.6.2 Recovering Gold Edges

We next study when active learning helps the Q system to find a more complete set of

gold edges. The overall edge recall (ratio of gold edges to edges the system predicts) is

determined by a combination of query load (which determines the set of nodes and to some

3.6. EXPERIMENTAL ANALYSIS 51

extent trees) and ranking scheme (which determines feedback), and it may not always hit

1.0. For the diversity-agnostic methods, we show in Figure 11 how rapidly the system

reaches its maximum recall value given our limited number of queries and feedback steps

(21 for Bioinformatics and 30 for the others). We include in the captions, in parentheses,

the maximum recall value achieved for each dataset.

On average, active learning (particularly the expected model change-based methods)

significantly speeds up the rate at which the system achieves maximum recall. For Bioin-

formatics all of our new methods converge more quickly than Relevance, but the mixed

ranking methods do not achieve separation and thus include a significant number of invalid

edges. For IMDB and Mondial, the Relevance method is the one that does not achieve

separation. We see little difference among the performance of the different active learning

methods.

0

2

4

6

8

10

12

Bioinformatics (0.89) IMDB (1.0) Mondial (0.89)

M
in

im
u

m
 f

e
e

d
b

ac
k

st
e

p
s

to
 c

o
n

ve
rg

e
 t

o

m
ax

im
u

m
 e

d
ge

 r
e

ca
ll

va
lu

e

Dataset (maximum recall) and ranking algorithm

Relevance

Mixed Ent

Mixed Var

EMC Ent

EMC Var

did not separate

did not
separate

did not
separate

Figure 11: Feedback rounds required to reach maximum recall, without considering diver-
sity

For more detail on the methods’ behavior, we show in Figures 12 and 13 a visualization

of a subset of the Q search graph, showing various relations and the edges among them.

Dotted edges indicate invalid edges predicted by the schema matchers, and the width of the

line indicates the amount of feedback given. We see that the Relevance method (Figure 12)

provides less overall feedback on the edges, and explores fewer edges, than the EMC Ent

52 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

interpro_method.method_ac

interpro_method2pub.method_ac

interpro_method.method_date

Figure 12: Feedback on edges using Relevance: width is proportional to feedback steps;
dotted lines indicate an invalid edge.

interpro_method.method_ac

interpro_entry2method.method_ac

interpro_method2pub.method_ac

interpro_method.method_date

Figure 13: Feedback on edges using EMC Ent: width is proportional to feedback steps;
dotted lines indicate an invalid edge.

method of Figure 13. We conclude that expected model-change-based methods achieve the

best combination of separation plus edge recall. To give an idea of how edge recall changes

over time, we plot this for all three of our datasets versus feedback rounds in Figure 14.

Observe that maximum recall is achieved within 5-9 rounds of feedback.

0

0.25

0.5

0.75

1

0 5 10 15 20

Ed
ge

 r
ec

al
l v

al
u

e

Feedback round

Bio (EMC Var)

IMDB (EMC Var)

Mondial (EMC Var)

Figure 14: Recall rate versus feedback rounds

3.6. EXPERIMENTAL ANALYSIS 53

0

2

4

6

8

10

12

Bioinformatics (0.89) IMDB (1.0) Mondial (0.89)

M
in

im
u

m
 f

e
e

d
b

ac
k

st
e

p
s

to
 c

o
n

ve
rg

e
 t

o

m
ax

im
u

m
 e

d
ge

 r
e

ca
ll

va
lu

e

Dataset (maximum recall) and ranking algorithm

EMC Var

Clustering

Diversification

Figure 15: Feedback rounds required to reach maximum recall: benefits of incorporating
diversity

Finally, Figure 15 shows the impact of incorporating diversity. The diversification

schemes have no impact on the number of rounds required to get to maximum recall in the

Bioinformatics dataset. For IMDB, the Clustering scheme actually achieves maximum

recall in 3 steps versus 5 for the other schemes (yet it takes longer to achieve separation,

see the previous experiment). For Mondial, the Clustering algorithm slightly impedes

performance (as it did in the previous experiment).

3.6.3 Initial Query Answer Quality

While the system’s goal is to learn correct rankings for the edges, the user’s goal is to

retrieve good query answers. Our final experiment measures how quickly the system —

given feedback on the results from a set of training queries — can achieve 100% precision in

the set of answers returned for a different but related test set of 5 queries. Figures 16 and 17

show the number of feedback rounds required over the training data; arrows over the bars

indicate that full precision was not achieved even after the maximum number of steps. The

figures shows that for the first two datasets, active learning makes a measurable difference,

and that the Clustering and Diversification algorithms provide equivalent benefits over

54 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

0

5

10

15

20

25

Bioinformatics IMDB Mondial

M
in

im
u

m
 f

e
e

d
b

ac
k

st
e

p
s

to
 a

ch
ie

ve
 1

0
0

%

p
re

ci
si

o
n

 o
n

 t
e

st
 q

u
e

ri
e

s

Dataset and ranking algorithm

Relevance

Mixed Ent

Mixed Var

EMC Ent

EMC Var

Figure 16: Quality of initial query answers

0

5

10

15

20

25

Bioinformatics IMDB Mondial

M
in

im
u

m
 f

e
e

d
b

ac
k

st
e

p
s

to
 a

ch
ie

ve
 1

0
0

%

p
re

ci
si

o
n

 o
n

 t
e

st
 q

u
e

ri
e

s

Dataset and ranking algorithm

EMC Var

Clustering

Diversity

Figure 17: Quality of initial query answers

3.6. EXPERIMENTAL ANALYSIS 55

the expected model change methods. For Mondial the number of edges used in queries is

small, so all methods receive adequate feedback to achieve perfect answers.

3.6.4 Clustering vs. Diversification

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

R
an

k
o

f
th

e
 f

ir
st

 v
al

id
 a

n
sw

e
r

Last 10 feedback rounds

Clustering Diversification

Figure 18: Diversification vs. clustering behavior with respect to feedback on Bioinformatics
data (k = 5 for top-k, and lower value is better rank)

We have already seen from previous results that both Diversification and Clustering

can help improve learning by a small but notable amount. Here, we further compare these

approaches from the perspective of stability. Intuitively, we notice that the gradual change

of λ in the diversification framework allows a “smooth” transition from heavily favoring

diversity (aggressively gathering feedback from many different trees), towards a scheme with

less emphasis on diversity (employing a more conservative strategy as more information is

available to the system). With Clustering, however, since the system consistently explores

a broader set of potential answers — even after several rounds, (1) the cluster representatives

might not be correct and (2) correct answers may be affected by feedback on the (possibly

incorrect) representatives.

We seek to experimentally validate this intuition by examining how stable the algorithms

are at maintaining correct answers within the top-k answer set. In Figures 18, 19 and 20, we

plot for each dataset, the rank of the first valid answer in the result set at each of the last

56 CHAPTER 3. ACTIVE LEARNING IN THE Q SYSTEM

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

R
an

k
o

f
th

e
 f

ir
st

 v
al

id
 a

n
sw

e
r

Last 10 feedback rounds

Clustering Diversification

Figure 19: Diversification vs. clustering behavior with respect to feedback on IMDB data
(k = 5 for top-k, and lower value is better rank)

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

R
an

k
o

f
th

e
 f

ir
st

 v
al

id
 a

n
sw

e
r

Last 10 feedback rounds

Clustering Diversification

Figure 20: Diversification vs. clustering behavior with respect to feedback on Mondial data
(k = 5 for top-k, and lower value is better rank)

10 rounds. Since we set k = 5 in our experiments, a rank of value 6 means that the top-k

answers do not contain any correct tree. As we can see, for Bioinformatics and Mondial,

Diversification is always more stable than Clustering: in any round, the rank of the

first valid answer using Diversification is always higher than that using Clustering. In

3.7. CONCLUSION 57

particular, for the Bioinformatics data, at the sixth of the last ten rounds, Clustering

fails to present any correct tree but Diversification does. This property also holds almost

everywhere on the IMDB data, except for the second time point. Still, at the sixth round,

Clustering drops off all valid answers but Diversification is able to find at least one.

3.6.5 Discussion

Overall, with respect to combining predicted relevance and uncertainty, we conclude that

EMC Var is effective in virtually all scenarios, generally beating EMC Ent. Diversifica-

tion generally does have the potential to speed up convergence by a small but measurable

amount. Between the two diversification methods, we slightly prefer Diversification to

Clustering, as it generally does not reduce performance versus the baseline, and it provides

greater stability across feedback rounds.

While our active learning techniques show significant benefits, there remains room for

improvement. We have assumed that the different base matchers’ scores will be relatively

uncorrelated, allowing us to detect uncertainty. Section 3.6.1 showed that sometimes,

though, the base matchers do not provide enough score diversity to indicate potentially

incorrect alignments. In the future we hope to study whether a greater diversity of base

matchers would help.

3.7 Conclusion

In this chapter, we studied several techniques for incorporating active learning into keyword

search-based data integration. The primary challenges were how to estimate the amount of

uncertainty associated with a query built from edges induced during schema matching, and

how to rank results in a way that maximizes utility to the user and the system, simultane-

ously. Our goal is a mix of relevance, uncertainty, and diversity. We showed experimentally

that the notion of expected model change was highly effective.

Chapter 4

Collaborative Learning in the Q

System

Search-driven integration leverages feedback on data quality from the end-user community,

as opposed to a central data integrator or administrator. This makes it appropriate for

community data-sharing efforts; we are seeking to validate our own efforts using real-world

data and users from neuroscience [55]. Search-driven integration differs from crowdsourcing

for schema matching [89], entity resolution [82] and query answering [31] in that the users

giving feedback are those asking queries; and the users often have expertise in the data

domain, and thus can assess the quality of (many) answers. Moreover, our users are directly

incentivized to provide feedback to the system, as their goal is to assemble high-quality

collections of (top-k) results to be analyzed.

Note that while we are performing learning over query results, our approach differs signif-

icantly from other work on learning conjunctive (or other) queries [14, 71]: we seek to learn

from users how to rank query results produced through a Steiner tree matching algorithm,

as opposed to learning the actual query expression in a particular language. Importantly,

in scientific applications, it is well known that the “ideal” ranking of results may

vary substantially from user to user [15, 61], depending on his or her domain of

interest, the task at hand, preferences for specific data sources, or confidence in particular

alignment (e.g., record linking, gene sequence matching, coregistration) algorithms. This

means that feedback from different users may be inconsistent — not because users

58

59

are unreliable, but because they have different information needs and goals as they pose

queries[61]. As we have applied search-driven data integration techniques to neuroscience

and other applications with large user communities [55], we have found differences among

users in:

• Definitions of terms: e.g., a “spike” in an electrical signal measured from the brain

(e.g., EEG) often refers to a single “action potential” burst event to one subcommu-

nity, but refers to a sustained event in another subcommunity.

• Trust in sources or tools: when different methodologies are used to record a value or

classify a condition, different users may have different preferences.

• Implicit goals: one user may be looking for human data, and another for animal data;

or one may be looking for EEG data and another may be looking for image data.

Therefore, a natural question is how to combine feedback from a community of users who

may have different objectives, and also who may pose dissimilar queries and provide different

amounts of feedback to the system. Due to the variations above, we require personalization

of the query answers to each user, rather than consensus query answers [56, 82, 89, 91] or

clustering of users based on overlapping queries [9].

Thus, this chapter investigates the problem of combining end-user feedback from hetero-

geneous users of search driven integration systems. More specifically, the feedback is over

results generated from keyword searches converted into Select-Project-Join-Union queries

over uncertain edges and nodes. An example application is the neuroscience data sharing

and search portal being developed by our group (see Figure 4 for an example of a set of

query results, using data from the world-renowned Mayo Clinic).

The task of combining feedback on a set of items from different users, to predict missing

feedback for any item-user pair, has been extensively studied in recommender systems [51]

and in the area of collaborative filtering (CF) [73]. Yet our problem setting is different

and requires novel solutions. First, we are dealing with the combinatorial nature of query

answers on which users give feedback: answers may consist of multiple data items and

joins among them. We must learn the quality of each individual item and each possible

alignment (as judged by a particular user). Second, we seek to combine online learning and

60 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

collaborative filtering aspects into a unified framework that produces effective rankings for

users with different preferences. We make the following contributions:

1. Formal semantics for combining and resolving conflicting feedback on structured query

answers from end-users, to learn to better integrate data.

2. Techniques to combine training examples from feedback from multiple users, to learn

a custom answer-ranking strategy per user.

3. Alternate techniques that take learned weights from each user and combines them us-

ing collaborative filtering techniques, to generate user-specific answer-ranking strate-

gies.

4. Extensive experimental validation, over real data in several domains, to compare our

strategies and demonstrate that they effectively combine and resolve feedback from

multiple users.

5. We confirm our experimental conclusions through a real user study with neuro-

science data, in which users have different preferences in the kinds of data they

seek.

The chapter is organized as follows. Section 4.1 outlines the collaborative learning function-

ality that is the focus of the chapter. We describe in detail our two families of collaborative

filtering techniques in Sections 4.2 and 4.3. We report experimental results and user study

in Section 4.4. We conclude this chapter in Section 4.5.

4.1 Combing Weights across Users

In the Q System, each user is motivated to provide feedback, such that he or she obtains a

set of top-scoring answers to match his or her preferences. A key issue is how to “bootstrap”

a user’s preferences from limited (even zero) feedback, by taking into account the feedback

of other users. At first glance, it seems intuitive to combine feedback by using majority

voting methods (as is commonly done in crowdsourcing to reduce erroneous inputs [31, 82])

to get consensus weights. For example, given a feature, one can aggregate all weights learned

4.1. COMBING WEIGHTS ACROSS USERS 61

from each individual user through averaging. However, consensus weight values may not

be ideal for helping find the “right” search results for a particular user. Alternatively, a

clustering method was recently proposed [9], but it relies on users giving significant amounts

of feedback over common data, which has a “cold start” problem. Instead, we seek to

combine feedback across a community of users with different data expertise, varying amounts

of feedback, and conflicting data interpretations.

Problem definition. This motivates the focus of this chapter: collaborative learning

approaches incorporated into the Feature Weight Assignment module (Section 2.2).

The task is to produce for each user u a personalized weight vector −→wu (Section 2.3.1) that

captures custom cost values, as well as any “unknown” costs. Here we assume that each

user focuses on a region in the search graph as her “area of expertise”, where the user

defines her own preferences over data sources and links. At any point of time, each user can

pose keyword queries and can give feedback onto query results, based on her preferences.

This gives us a stream of queries and feedback from the user community {ui}. The goal

of collaborative learning, given the above stream, is to incrementally find a personalized

weight vector −−→wui
for each ui, such that the following criteria are satisfied in the long run:

1. Within a user’s area of expertise, personalized feature weights should be favored for

her preferred features versus other features, even if other users assign differing scores.

2. Outside a user’s area of expertise and feedback, personalized feature weights should

reflect others’ feedback.

As mentioned previously, the challenges lie in carefully selecting the approach and algo-

rithms with an eye towards both running time (fast response time at scale) and effectiveness

— since the collaborative learning algorithm must be periodically invoked as part of an on-

line learning process. In this chapter we investigate two strategies for customizing the

weights for the personalized search graph.

Strategy 1: Reformulate the online learning problem. As discussed previously, the

Q System translates each item of user feedback to a linear constraint on the scores of query

results. Naturally, we can look at the union of all such constraints expressed by a group

of users. The issue with this approach is, with conflicting feedback among the users, the

system will be over-constrained. However, if we have a measure of similarity among the

62 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

users, in the online setting we can update the set of weights for user u by merging other

users’ feedback with U ’s feedback via scaled soft constraints [64], whose violation should be

approximately minimized. We can associate each soft constraint with a penalty derived from

user similarity between u and the other user. Such an approach allows us to incorporate

the notion of user similarity and fits very nicely into the underlying optimization problem

at the heart of the MIRA algorithm. We consider this approach in Section 4.2.

Strategy 2: Combine the learned weights. The above approach alters the internal

representation of feedback as provided to the online learning algorithm. Alternatively, we

can adapt techniques from the literature on collaborative filtering [73], commonly used

to make personalized recommendations on the Web, to instead formulate a missed value

prediction problem. Here we decouple the filtering problem from the particular online

learning algorithm for adjusting alignment cost values. In this approach, our collaborative

filtering algorithm periodically takes the user u’s learned weights, and “overlays” weights

for alignments that the user has given little feedback on. As mentioned in the Introduction,

adopting the collaborative filtering approach poses several novel challenges, because our

data items overlap due to their tree-structured nature. We describe a solution to these

issues in Section 4.3.

4.2 Constraint-based Collaborative Filtering

In this section, we consider an approach to collaborative learning based on MIRA. For

each user, we can augment his or her feedback (expressed as linear constraints fed into the

MIRA algorithm) with feedback from others. From this we will learn a more general weight

assignment for the user. The benefit of this approach is that the basic setup of the learning

problem remains essentially the same, making the strategy likely to have high effectiveness

in learning scores.

To start, we can consider how to combine the constraints expressed by all users, and to

find an optimal assignment of weight values. This idea encounters difficulties when there

is inconsistency among different users’ feedback. We can resolve this with the following

intuition. For each given user u, feedback from other users should have different degrees

of influence, based on how consistent their standards are with those of u. Feedback from

4.2. CONSTRAINT-BASED COLLABORATIVE FILTERING 63

“similar” users sharing consistent standards should be weighted more than feedback from

highly incompatible users.

This requires that we develop a measure of how compatible one user’s feedback is with

that of another user. For a given user u1, we take each unit of feedback (linear constraint)

from some other user u2 and assign it a “penalty”. This penalty indicates the significance

of violation of the constraint, and is based on a similarity measure between u1 and u2’s

overall query and feedback patterns.

We use such penalty values (Section 4.2.1) to adapt the MIRA algorithm to directly

encode the penalty of each constraint in its loss function (Section 4.2.2). Since MIRA is an

online approximation approach with provable upper bounded cumulative loss, this adapted

version will overall reduce cumulative weighted loss in an online setting. In the remainder

of this section, we explain the details and describe how to combine the approaches in our

Q System.

4.2.1 Weighting Constraints by User Similarity

As described above, given constraints from the full user community, it will often be im-

possible to find a set of compatible feature weights. In contrast to “hard” constraints as

described above, weighted constraints [64] allow us to violate some requirements, with some

penalty. In our setting, the more “similar” two users are, the more impact each user’s

feedback should have on the other’s. We can map this problem of computing edge costs for

a given user as a weighted constraint satisfaction problem as follows.

For a given user u1, consider each linear constraint C provided by any user u2. Associate

this constraint with a “penalty” or weight — indicating its significance of violation —

obtained from similarity measure between u1 and u2:

Penu1(C) = Sim(u1, u2), (4.1)

where Sim(u1, u2) is a similarity measure between two users. In our Q System, we use cosine

similarity between two users’ weight vectors, except that for each user’s own constraints,

their penalty values are taken to be infinite (a hard constraint) rather than 1.

64 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

4.2.2 Weighting the MIRA Loss Function

One naive method to find optimal weight assignments for all users, given a network of

weighted constraints, is to aggressively minimize the total weight of constraints that are

violated. However, this approach has several shortcomings. First, the weighted constraint

satisfaction problem is NP-hard in the number of constraints. When a large amount of

joint feedback is available, the computation becomes intractable. Second, solutions may

evolve dramatically when constraints are added. There is no guarantee that the changes

to solutions are indeed beneficial. By contrast, the original MIRA algorithm formulation

in Algorithm 1 enables “incremental” (thus efficient) weight updates that ensures stability:

each new solution needs to be close to its previous version. It also has provable bound on

cumulative loss incurred [20].

We wish to use this notion of weighted constraint but still preserve the benefits of MIRA.

To achieve this, we directly incorporate the constraint penalty into the loss function. Given

a linear constraint C involving two trees T and T ′, we reformulate the loss function for user

u as follows

Lu(T, T ′) = Penu(C)(|E(T)\E(T ′)|+ |E(T ′)\E(T)|), (4.2)

where Penu(C) denotes the penalty value of a constraint as defined in Equation 4.1. The

user’s own constraint receives penalty value 1, which is consistent with the original loss

function of Section 2.3.3.

The benefit of the loss function is clear once we see the formula for incremental updating

weight vector in MIRA. In fact,

−−−→
wt+1 =

−→
wt + Lu ×−→v , (4.3)

where the new weight vector is updated by adding a “delta” vector −→v (obtained from

feedback) multiplied by a scalar. The length of this “delta” vector is proportional to the

updated loss function Lu in Equation 4.2. Clearly, large constraint penalty forces the

learning algorithm to aggressively update the weight vector.

We outline below how we incorporate this method in the Q System.

1. The online learner (MIRA) is triggered as usual: it is applied immediately whenever

feedback is received. The user’s own weight vector will be updated with new feature

4.3. COLLABORATIVE FILTERING-BASED LEARNING 65

weights, as the online learner updates these for the given user.

2. Whenever any user’s feedback is processed, the feedback is propagated to all other

users in the community.

3. Upon receiving such feedback originating from some other user, the current user will

perform online learning as if the feedback originates locally, but will use the weighted

loss function in Equation 4.2.

This scheme has a running-time advantage over the naive weighted constraint satisfaction

problem. It also has the benefit that it is directly incorporated in each learning step.

4.3 Collaborative Filtering-based Learning

An alternative approach to personalized ranking is to look at combining not the constraints

across users, but rather their different feature weights. For any particular user, we may only

have a small set of existing weights available (learned from small amounts feedback), but

we wish to predict all feature weights for the user, given the feature weights from the entire

community of users.

This motivation of uncovering missing scores from a set of existing weights, is very similar

to that of collaborative filtering [73], which has been very successful in a variety of Web

contexts, such as movie recommendation on Netflix. In this section, we give background

on collaborative filtering and explain why and how we must adapt the techniques to our

structured setting. One key observation is that in our online setting, we would like each

weight update to have a stability property, such that each successive feature weight vector

remains relatively “close” to the previous solution.

4.3.1 Background: Recommendation Systems

The goal of a recommendation system [51] is to predict how likely a user will prefer an

item, based on past history. In our setting, an “item” corresponds to the feature weights for

each user’s search graph. Recommendation systems are typically classified into three main

categories: content-based methods, collaborative filtering methods, and hybrid methods.

66 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

Content-based methods typically recommend items to a user based on what kind of

items the user likes the most, by computing item similarities and examining the user’s past

history. In some cases they may alternatively model user profiles to discover similar users.

Content-based recommendation methods are often limited, since they usually consider only

the history of the particular user, largely ignoring correlations within the huge set of users.

To address this shortcoming, recent methods mostly build on collaborative models [73],

which aim to leverage ratings from other users as well.

Collaborative filtering (CF) methods are further divided into neighborhood-based

and model-based approaches. A neighborhood-based (or memory-based) method usually

predicts a rating based on an aggregated score derived from the entire or a subset of the

ratings (for example, ratings from similar users). In contrast to neighborhood-based meth-

ods, model-based methods seek to build effective statistical models that best reflect the

rating behaviors and patterns. These models are trained from existing data and are be

applied to predict unknown ratings. Examples of such models include Bayesian networks,

clustering, regression, and Singular Value Decomposition (SVD). Recent work has shown

that model-based CF methods give better overall predictions [73], provide intuitive rea-

sons for recommendation, and better addresses issues such as sparsity (few existing ratings

available) and scalability.

Finally, hybrid approaches exist that incorporate both content-based and collabora-

tive methods [73]. Such techniques seek to exploit both semantic knowledge of the data,

plus the ability to find structure among the features.

Model-based CF as a building block. Among the collaborative filtering methods men-

tioned above, model-based CF best addresses our domain: (1) we assume limited domain

or content knowledge, yet seek to predict missing feature weights based on existing feature

weights learned for each user from feedback so far (we have sparsity of feedback and limited

ability to model content); (2) we wish the collaborative prediction to be fast so that it can

be seamlessly combined with each user’s online learning (we desire high scalability).

Collaborative filtering is connected to our problem setting in the following sense. CF

usually takes as input a set of N users and a set of M items. In our setting, items correspond

to features since they compose costs of edges and nodes in user’s search graph. Each item

4.3. COLLABORATIVE FILTERING-BASED LEARNING 67

j receives a rating Rij from user i. The value Rij can be a real number or unknown. In our

setting, item rating corresponds to feature weight. We view R as a matrix where rows and

columns correspond to users and items, respectively, and entries correspond to rating values.

The goal of collaborative filtering is to uncover the unknown ratings from the matrix, so

that the predicted ratings best reflect the user’s underlying preference.

We choose to apply collaborative filtering on feature weights, instead of on the set of

Steiner trees. The reason is that there are exponentially number of such trees in the entire

search graph but linearly many features. Given that trees are already decomposed into

features, it is more effective to perform collaborative filtering on them.

4.3.2 Choice of Model-based Approach

There is already a large body of existing collaborative filtering techniques. For our purpose,

we choose to adapt latent semantic CF models [42], which introduce latent class variables

to describe factors that explain prediction. In our setting, these latent factors correspond to

users’ underlying standards: Suppose that we know there are K co-existing standards (or

“world views”). Also suppose that we know each user’s world view, and under each world

view which features are “good”. Then we can easily compose such knowledge together and

derive personalized standards. More precisely, if we let UT
ik = 1 if user i adopts the kth view

and UT
ik = 0 otherwise, and let Vkj = 1 if feature j is “good” under view k and Vkj = 0

otherwise, then the (i, j) entry in R = UTV will precisely describe if user i thinks feature

j is “good”.

In fact, we are decomposing individual weights using each individual user’s view (the

latent variable that explains predictions). The challenge here is that we do not know these

latent values. We must learn them from a small amount of existing information on the

feature weights. We explain below how to adapt a latent variable-based approach to solve

the problem.

4.3.3 Matrix Factorization-Based Approach

Even within the space of latent semantic CF models, there are many options. Our choice

of algorithms was governed by the concern that in the Q System, features are associated

68 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

with every edge and node in the search graph. Among the many potentially relevant

CF methods, matrix factorization methods [60] have been shown to have excellent overall

prediction performance and scalability. We thus adapt these methods to perform prediction.

Matrix factorization methods use dimensionality reduction to construct latent variables

for both users and items. Let U ∈ RD×N be the latent user matrix, where the column

vector ui consists of all D latent factors for user i. Similarly, define V ∈ RD×M to be the

latent item matrix. The key assumption in a factor model is that, given U and V , the rating

matrix R is generated according via the following computation:

Pr [Rij = r | ui, vj] ∼ N
(
r | uTi vj , σ2

)
. (4.4)

After the incomplete ratings matrix R is computed, the next step is to perform model

fitting, which finds values of U and V that are “optimal,” i.e., maximize the likelihood of

(U, V) given R. Unfortunately, this approach will typically overfit the model, since there

are often only a small number of training examples observed. The Probabilistic Matrix

Factorization (PMF) [60] model addresses this issue.

Model description. PMF is a technique proposed to enhance Singular Value Decompo-

sition (SVD) and to address the issue of sparse data. The key idea of PMF is to specify a

zero-mean prior of latent factors U, V to avoid overfitting.

Pr [U] ∼
N∏
i=1

N
(
ui | 0, σ2uIN

)
, Pr [V] ∼

M∏
j=1

N
(
vj | 0, σ2vIM

)
(4.5)

where IN is the identity matrix of size N ×N (same for IM). We sketch the corresponding

graphical model in Fig 21.

Model fitting. The task of model fitting is to find best parameters for the model, given

some available input data. Fitting the above model requires to maximize the the log-

likelihood of the posterior distribution of parameters U and V , given some ratings (but

4.3. COLLABORATIVE FILTERING-BASED LEARNING 69

2

2

u 2

v

iu jv

ijR
User i

Item j

Figure 21: Graphical model for probabilistic matrix factorization (PMF)

usually not all) in R, as follows:

log Pr
[
U, V |R, σ2, σ2u, σ2v

]
= log Pr

[
R | U, V, σ, σ2u, σ2v

]
+ log Pr

[
U | σ2, σ2u, σ2v

]
+ log Pr

[
V | σ2, σ2u, σ2v

]
− log Pr

[
R | σ2, σ2u, σ2v

]
=− 1

2σ2

N∑
i=1

M∑
j=1

1ij

(
Rij − uTi vj

)2 − 1

2σ2u

N∑
i=1

uTi ui −
1

2σ2v

N∑
j=1

vTj vj

− 1

2

 N∑
i=1

M∑
j=1

1ij

 log σ2 +ND log σ2u +MD log σ2v

+ C,

(4.6)

where 1ij is the indicator function specifying if user i has rated item j and C is a constant.

In our setting, user i has rated item j if her feedback has affected feature j. Maximizing

the above equation is equivalent to minimizing the summation of squared errors according

to the following objective function (by taking partial derivative with respect to U, V)

F (U, V) =

N∑
i=1

M∑
j=1

1ij(Rij − uTi vj)2

+ λu
∑
i

||ui||2 + λv
∑
j

||vj ||2,
(4.7)

70 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

where λu = σ2/σ2u and λv = σ2/σ2v are regularization coefficients. The least sum of squared

errors-based approach provides an alternative explanation of incorporating Gaussian priors,

which is to avoid overfitting through regularization. Learning U and V can be achieved using

gradient descent.

Adapting PMF to the Q System. To implement the above factorization techniques

within a search-driven integration framework, the Q System creates, for each user i, a

feature weight vector and variables {1ij |1 ≤ j ≤M}, indicating which features have received

feedback from user i. During factorization, only features with 1ij = 1 have their weights

stored in R; features with 1ij = 0 have rating ⊥ (unknown). Then R is factored into, and

updated, to the product of UT and V . Finally each user i receives vector Ri as updated

feature weights. This component is periodically invoked.

4.3.4 Stabilizing through Regularization

The above method directly adopts matrix factorization, where users and features are “clus-

tered” to different views. However, this approach does not ensure the stability property

mentioned at the beginning of this section. In normal matrix factorization, the adjusted

weights may deviate significantly from their previous values, and such changes may not be

natural to the user (resulting in wild fluctuations of query answer rankings), nor beneficial.

To improve stability (a key feature offered by the MIRA algorithm), we add into the objec-

tive function in Equation 4.7 a new regularization term which measures the (L2-)distance

between adjusted weights and old weights, as follows:

F (U, V) =
N∑
i=1

M∑
j=1

1ij(Rij − uTi vj)2 + λu
∑
i

||ui||2 + λv
∑
j

||vj ||2 + λ||V − V old||2. (4.8)

Just as with PMF, we can apply gradient descent techniques to learn U and V .

4.4 Experimental Analysis and User Study

In this section we present our experimental evaluation of the proposed methods for combin-

ing and resolving users’ feedback in the Q System. We seek to validate that our collaborative

learning techniques improve the system’s ability to accurately predict a user’s assessment of

the viability of schema mapping edges (and thus query answers that use these mappings),

4.4. EXPERIMENTAL ANALYSIS AND USER STUDY 71

even when different users have different value-assessments (“world views”). We also val-

idate that our implementation incurs reasonable overhead beyond that of learning in the

existing framework, and we seek to better understand the differences among the different

collaborative learning strategies for combining results. To understand performance relative

to different factors, we first conduct a set of synthetic experiments, showing that the

system can learn the mutually incompatible preferences of different sets of users rapidly.

Later, we use our neuroscience data portal [55] to conduct a real user study over actual

neuroscience data.

4.4.1 Experimental Methodology

Conducting keyword search experiments across integrated data sources poses challenges in

(1) recruiting users with representative queries, and (2) identifying a complete set of correct

(“gold”) scores for answers. Thus we combine synthetic experiments (for diversity) with

real user studies (for depth and realism).

Synthetic experiments. To create our first set of experiments, we consulted users (with

knowledge across three domains, bioinformatics, movies, and geography) to identify different

classes of sources and links that might be preferred by different subcommunities. Our

experiments then simulate multiple users’ feedback, to see how quickly we can “recover”

the users’ rankings. In each iteration, the Q system returns the top-k ranked Steiner

trees for the keyword query. Then we simulate the user’s feedback: a Steiner tree receives

positive feedback if all of its edges are viewed as correct alignments by the current user,

and negative feedback otherwise. Next we move “round-robin-style” to the next query

and repeat the process. Note that our definition of a correct Steiner tree is very strict,

as there might be additional useful alignments that are not specified by the user or in the

schema. The Q system uses the feedback to learn adjustments to the feature weights and

updates costs of edges in the search graph for the current user. The system then propagates

the feedback to other users using one of the collaborative learning methods. We describe

further details in Section 4.4.2.

User studies. While we could not recruit users across many diverse domains, we were

able to use the IEEG.org neuroscience data portal [55] to conduct a user study, using actual

72 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

neuroscience data and queries. We describe the setup in Section 4.4.5.

Implementation. Experiments were conducted using our implementation of the Q Sys-

tem, which comprises approximately 60k lines of Java code. Evaluation was done on an

Intel Xeon CPU (2.83GHz, 2 processors) Windows Server 2008 (64-bit) machine with 24GB

RAM, using Java SE 1.60.11 (64-bit). For each dataset, the Q System first loads its schema

(without knowing foreign keys and/or personalized standards) and constructs the schema

graph. We run in parallel a set of schema matching primitives from the COMA++ schema

matcher (Community Edition) to compute a similarity score between [0; 1] for every align-

ment feature. We prune potential edges for which all matching primitives give low similarity

scores.

Parameter Settings. We use k = 10 as the number of top queries to compute answers

for each keyword search. We use the following COMA++ schema matching primitives:

data type similarity, string edit-distance, string q-gram distance, semantic similarity, and

instance matchers. Initial matcher weights are trained offline before the experiment using

a very small set of example attribute pairs. During collaborative filtering, we use cosine

similarities on feature vectors to measure user similarity. We use D = 1 as the number of

latent variables for experiments with consistent feedback and use D = 2 for datasets that

permit multiple standards. We set the regularization strength to be 0.1.

Roadmap. We consider the following questions:

• Do collaborative learning methods help “bootstrap” the system’s ability to predict

which edge alignments are accepted by a given user as correct (“gold”), vs. invalid?

(Section 4.4.2.)

• How does the learning process over edge costs translate into improvements in overall

query answer quality? (Section 4.4.3.)

• How much running-time overhead is added to the existing learning algorithms in the

Q System? (Section 4.4.4.)

• Do the results from simulated users across multiple domains carry over to real users

in neuroscience? (Section 4.4.5.)

4.4. EXPERIMENTAL ANALYSIS AND USER STUDY 73

There are two independent parameters we seek to measure (and minimize). The first is

the number of rounds of learning required to achieve correctness, according to the user’s

preference; we term this the learning rate. The second is the running time as we scale the

number of feedback samples.

4.4.2 Learning Rate: Edge Quality

The strongest correctness criteria for the Q System is for it to correctly distinguish between

what the user would define as correct (“gold”) versus invalid (“bad”) edges in the graph

— i.e., schema alignments (across metadata nodes) or record links (across data nodes). If

all of the edges are correctly identified, then any query returned by the system should also

be correct. To achieve this, in general the system must receive feedback on every feature

(and, since each edge has at least one unique feature, each edge) to appropriately adjust its

weight.

4.4.2.1 Users, Queries, and “World Views”

For clarity of results, all of our experiments focus on the ability of the system to identify

(and return in the top-k answers) a set of correct results as viewed by each user; and to

distinguish these from incorrect results according to the user — i.e., for each user we seek

to classify potential answers as good or bad.

For each dataset, we simulated 10 users posing keyword queries in a round-robin manner.

Our query workload consists of 10 queries for each dataset, each of which has low selectivity.

During each step, each simulated user randomly picks a query from the workload.

To model users with different “world views” and determine if the Q System effectively

combines and resolves feedback, we use a “graph region-based” model, in which each user

has a “focused” sub-region of “expertise” within the search graph, and a world view (of

what links are good) in the region. Each simulated user can:

• within her expertise area, update “good” edges’ feature weights to have costs lower

than those of “bad” edges,

• outside of her expertise area, query and get answers with consensus feature weights.

74 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

We assign a single consistent world view to each basic dataset (Bioinformatics, IMDB and

Mondial), but partition each into different “regions of expertise” and map the regions to

different user groups. Here collaborative learning will help users find quality answers outside

their region of expertise.

To look at collaborative filtering among different world views, our IMDB+DBpedia

dataset takes a set of ambiguous record links across the tables, and assigns each user a differ-

ent view of which links are correct. Finally, we create Bio2 using the same data as Bio, but

allows users to specify if they trust the record links (such as table interpro entry2pub).

4.4.2.2 Learning rate with consistent feedback

0

2

4

6

8

10

Individual M-MIRA PMF PMFreg

N
u

m
. F

e
e

d
b

ac
k

R
o

u
n

d
s

/
U

se
r

 Bio
 IMDB
 Mondial

≥ 10 rounds

Figure 22: Learning rate: feedback rounds to separate costs of gold vs. bad edges.

We start by measuring how quickly (in terms of amount of feedback required) our pro-

posed collaborative learning methods can help a given user achieve the edge-separation

4.4. EXPERIMENTAL ANALYSIS AND USER STUDY 75

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11

Ed
ge

 C
o

st
s

(M
A

X
 c

o
st

 f
o

r
go

ld
, M

IN
 c

o
st

 f
o

r
b

ad
)

Cross-User Feedback Round

Bio - Gold Bio - Bad

Separation between gold & bad edges

Figure 23: Costs of gold & bad edges after each feedback round, for Co-MiRA over Bio.
Distribution of edge costs is indicated with error bars.

property. Figure 22 shows that if each user learns a ranking function in isolation (Indivi-

dual strategy), as in [77], it takes more than 10 rounds per user. The collaborative MIRA

algorithm of Section 4.2, Co-MiRA, achieves much faster amortized results by combining

user similarity and multiple users’ feedback into the loss function. Its performance is essen-

tially indistinguishable from running MIRA across the set of users globally (not shown).

The collaborative filtering algorithms proposed in Sections 4.3.3 and 4.3.4 are denoted

FF (feature factorization through probabilistic matrix factorization) and FF-reg (feature

factorization with regularization). These show significant gains over the Individual learn-

ing baseline. However, they have much more moderate influence on each user’s feature

weights than full-fledged learning-from-combined-feedback methods. Thus, under the con-

sistent world-view assumption, Co-MiRA is clearly the most effective approach.

76 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ed
ge

 C
o

st
s

(M
A

X
 c

o
st

 f
o

r
go

ld
, M

IN
 c

o
st

 f
o

r
b

ad
)

Cross-User Feedback Round

Imdb - Gold Imdb - Bad

Separation between gold and bad edges

Figure 24: Costs of gold & bad edges after each feedback round, running Co-MiRA on
IMDB. Distribution of edge costs is shown via error bars.

4.4.2.3 Cross-user learning with consistent feedback

We next look in more detail at what happens as feedback is provided across users, for

Co-MiRA since it performed best. First, Table 1 shows that in each round, every user is

receiving substantial feedback on edge weights from other users’ feedback.

Dataset Avg no. edges receiving feedback per round

Bio 3.38

IMDB 6.0

Mondial 8.29

Table 1: Average number of edges receiving feedback per round, until full separation is
achieved.

We can see the effect by looking at round-by-round changes for Co-MIRA on the Bio

4.4. EXPERIMENTAL ANALYSIS AND USER STUDY 77

dataset. We pick one user and plot (in Figure 23), as each distinct user provides feedback

in round-robin fashion, the maximum-cost gold edge in her graph, and the minimum-

cost bad edge. We additionally use error bars to show the range of values for the bad

edges (bars going upwards from the minimum-cost bad edge) and gold edges (bars going

downwards from the maximum-cost gold edge). As we see in the figure, after 8 users’

feedback, the values completely separate.

Figure 24 shows a very similar pattern, for the IMDB dataset. Here, 11 round-robin

steps are required, meaning that we cycled back to the first user. We observe that although

IMDB has fewer edges than Bio, and receives more edge feedback per round, the diversity

of the queries (hence the machine learning algorithm’s ability to learn to allocate correct

weights across the edges) is lower.

4.4.2.4 Learning rate with conflicting feedback

The previous experiments focused on settings where a single set of consensus weights is

possible. In general, we target settings where data is inconsistent, hence techniques based

on trying to find global assignments would not converge.

Here we use the two partly-synthetic datasets mentioned in Section 4.4.2.1. The joint

dataset IMDB+DBpedia includes entities for people. We created multiple record linkage

tables (choosing one alignment out of every ambiguous matching set) for these entities,

respectively, using string similarity measures to connect records in IMDB to those in DB-

pedia. Each user receives a “trusted” record linkage table. We similarly generated Bio2 by

allowing users to specify which record linkage tables they trust.

Each record linkage table represents a world-view. We expect the system to learn lower

costs for each user’s preferred record linkage edges (if the user has a preference), when

compared to the edges from others tables. Of course, for edges that have consistent global

views, we expect our learning algorithm to correctly separating their costs from costs of

invalid edges. We measure the diversity in the record links in Table 2.

For this experiment, we slightly relax the separation requirements due to scale: with

so many edges, for a given query workload not every edge receives significant feedback.

We focus on 95% separation, i.e., 95% confidence interval of costs for gold edges (mean

78 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

Name Bio2
IMDB+
DBpedia

Avg. conflicting edges (per user pair) 2.84 2.13
Max. conflicting edges (among all pairs) 8 4

Table 2: Number of conflicting edges in datasets allowing multiple views.

±1.96 sd) is completely disjoint from 95% confidence interval of costs for bad edges. We

consider two baseline strategies for combining inconsistent feedback: Individual, which

learns separate weights for each user; and Average, which combines weights from different

users via a standard averaging function.

Dataset Indiv. Avg. Co-MiRA FF FFreg

Bio2 10+ 10+ 6.1 5.2 5.2

IMDB+
DBpedia

10+ 10+ 7.8 7.1 7

Table 3: Learning rate: minimum number of feedback rounds to achieve separation of costs
of gold edges and invalid edges.

As we see in Table 3, neither strategy achieves separation in under 10 rounds per user.

In this case, the two collaborative filtering methods based on matrix factorization, FF and

FFreg, achieve the best results. The Co-MiRA algorithm produces benefits, but under

this setting with conflicting views, it is less effective.

4.4.3 Learning Rate: Query Answer Quality

The previous experiments showed the system’s ability to distinguish between correct and

invalid edges, independent of their impact on query results. We now consider their impact

in a more workload-aware fashion, i.e., how quickly the separation of good and bad edges

leads to better query answers. To do this, in addition to the set of training queries, we also

supply for each dataset a set of 5 holdout test queries. In each round of per-user feedback,

we check if the holdout queries are correctly answered.

Results (for the globally consistent setting, then the multiple-world-view setting) are

presented in Table 4. We observe that here, Co-MiRA again works best under a single

globally consistent world-view. The three methods perform similarly for multiple world-

views, but in fact Co-MiRA has a slight edge for the Bio2 setting.

4.4. EXPERIMENTAL ANALYSIS AND USER STUDY 79

Dataset Baseline Co-MiRA FF FFreg

Globally consistent

Bio 10+ 0.8 2.3 1.4
IMDB 10+ 1 3.7 2.2

Mondial 10+ 0.7 5 5

Multiple world-views

Bio2 10+ 3.8 5 5
IMDB + DBpedia 10+ 7 7 7

Table 4: Minimum number of feedback rounds to achieve full precision & recall of answers
to holdout queries.

4.4.4 Running Time vs. Scale

0

5

10

15

20

25

Se
co

n
d

s

Co-MiRA

Learning

Collab. filtering

FF FFreg

Figure 25: Average time spent on collaborative filtering versus overall query answering &
learning, in each feedback round.

Our setting requires interactive, online learning, hence a key consideration for our col-

laborative learning techniques is not only answer quality, but also running-time overhead.

Figure 25 plots two components: the time spent in each feedback round on query answering

and online learning (the lower, light-gray bar), and then the dark bar shows the additional

overhead added by the different collaborative filtering techniques. The numbers will differ

somewhat across the methods because (1) exact features being updated (and hence total

80 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

number of them) are different during each round and (2) the time includes that of comput-

ing top-k query answers (Steiner trees), which differ when the underlying edge costs change.

We observe that Co-MiRA adds minor overhead for the smaller datasets, but as we scale

up to the IMDB+DBpedia dataset, it adds a further 50% overhead to the response times

of the system. In contrast, the collaborative filtering algorithms add very minor overhead.

Discussion. All three of the methods proposed in this chapter appreciably improve the

Q System’s ability to learn from inconsistent community members’ feedback. Co-MiRA

is more effective for relatively small domains where the diversity is not extreme. However,

FFreg (which dominates FF, thanks to its additional regularization step) is significantly

more efficient, and it is the preferred choice at scale or with high diversity.

4.4.5 User Studies

As a final validation of the effectiveness of our techniques, we conduct a brief user study

over neuroscience data. For this user study, our goal is primarily to show that collaborative

learning can effectively set the ranking function for a user, such that they will frequently

not have to give additional feedback to the system to get their desired answers in the correct

order.

Dataset. The user study was conducted using the data from the IEEG.org neuroscience

data portal operated by the authors, with over 2000 datasets and 1000 users [55]. These

datasets come from approximately 40 different sources, and they vary in several ways.

Data was often collected for different target subfields (e.g., epilepsy research vs. behavioral

research); on different organisms (e.g., humans vs. rats vs. dogs); from different institutions

or labs. Some of the data was “raw” data and other datasets contained annotations, created

by different classification and detection algorithms, “overlaid” on related datasets. This

diversity enabled us to construct a fairly large space of features over which users could

(implicitly through feedback) express preferences.

Users and tasks. We conducted our user study with 10 users of varying backgrounds

including computer science, bioengineering, and neuroscience. Each user was given a brief

description of the kinds of data available, and to come up with a preference for certain kinds

or sources of data, as well as an anti-preference for other kinds of data (we did not tell what

4.4. EXPERIMENTAL ANALYSIS AND USER STUDY 81

users needed to choose). Then the user was asked to pose a series of (10 different) keyword

queries, and, if the results were not according to preference, to provide feedback on a small

number of results to identify the desired (and undesired) data. We provide an excerpt of

some of the queries in Table 5. For each of them, we also list the number of results, the

approximate number of results classes and example of classes that users have used to rank;

however, the queries were not pre-specified and some users posed highly diverse searches.

The average query returned between 50 and 100 results, although this varied greatly by the

search terms.

Query Results Result classes Example preference features

“Seizure detection” 56 8 Detection algorithms; organizations

“Mayo” 70 3 Data collection vs channel

“Dog” 24 3 Organization

“Female” 28 4 Organization

“Hospital” 569 6 Animal vs human; organization

“Seizure” 34 8 Detection algorithms; organization

“Rat” 842 20 Organization

“EEG” 1530 15 Organization

“University” 545 10 Animal vs human; organization

“Children seizure” 59 8 Detection algorithm; organization

Table 5: Excerpt from queries used in user study

We sought to answer two main questions:

1. Can the Q System quickly learn to differentiate the preferences for graph nodes based

on organism type (e.g., human vs animal), source, etc?

2. Can it quickly learn to differentiate user preferences for edges (classification tools that

produce annotations)?

Methodology and results. To limit the time each user needed to spend, we focused

our study on the best-performing algorithms, Co-MiRA and FFreg. For each user, we

measured, out of their 10 rounds of queries, (1) for how many queries they needed to

provide (any) feedback; (2) for how many tuples they needed to provide feedback; (3) how

frequently they were immediately satisfied with the ranking of the returned answers. Each

user had preferences based on the data type and source (node preferences) as well as based

on annotation or classification relationships produced by detection tools (edge preferences).

Results are shown in Table 6.

82 CHAPTER 4. COLLABORATIVE LEARNING IN THE Q SYSTEM

Method Co-MiRA FFreg

Avg no. queries that need feedback 2.4 3.2

Avg no. tuples/query given feedback 1.1 1.2

Avg no. queries showing “satisfactory” results without feedback 7.6 6.8

Table 6: User study results

Overall, out of 10 queries, on average across the user population, only 2.4 (for Co-

MiRA) or 3.2 (for FFreg) queries required any feedback whatsoever; i.e., for the majority of

the queries, the system was able to provide the correct ranking. Even when feedback was

required, on average it was 1-2 tuples’ worth of feedback. Thus we conclude that indeed the

collaborative learning techniques greatly reduce the overall amount of feedback required to

satisfy the users’ information needs.

4.5 Conclusion

In this chapter, we extended the notion of search-driven data integration to learn a custom

ranking function for each user in the system, based on collaborative learning techniques

that adapt to the user’s preferences, query patterns, and similarity of feedback to other

users. We implemented and experimentally validated several approaches to this problem,

and found that probabilistic matrix factorization-based collaborative filtering techniques, in

particular, seem to have good characteristics for both running time and learning rate. The

resulting system is capable of tailoring its behavior when there are multiple communities

with different information needs or preferences, as we validate with a user study.

Chapter 5

Interactive Query Debugging in

the Q System

Search-driven integration systems usually respond to user’s information need, expressed as

keywords, by returning a set of top-k answers. These answers are usually relevant when

integration quality is good. However, this is not always the case. For a given keyword

query, it is entirely possible that users may not see correct (hence satisfactory) results due

to errors in keyword matching, link prediction or result ranking. For instance, problematic

name disambiguation may match query terms to wrong nodes in the input graph, gener-

ating incorrect results. In addition, even when keyword terms are matched correctly to

appropriate terminal nodes, paths or trees connecting them may be wrong when they use

problematic links. Finally, expected items may appear with low ranking.

Incorrect results may also appear in what are commonly termed knowledge graphs that

may arise in searchable, enterprise-wide “data lakes,” Linked Open Data, Web knowledge

extraction (e.g., Probase, Nell, Google’s Knowledge Vault, DBpedia, YAGO), or in crowd-

sourced integration settings. These data resources leverage both human-curated and auto-

matically extracted or linked data, typically in a graph representation where nodes represent

data and weighted edges represent confidence values. Keyword search-over-graphs can be

used to answer user queries about relationships over this data; and machine learning can be

used to learn which data components are of interest, by taking user feedback over returned

top-k answers. However, due to errors made by crowd workers or (semi-)automatic extrac-

83

84 CHAPTER 5. INTERACTIVE QUERY DEBUGGING IN THE Q SYSTEM

tion algorithms, knowledge graphs can have so much “noise” that certain top-k queries only

return useless answers.

Unfortunately, current search-driven integration paradigm does not address the issue of

returning only incorrect results, for both architectural and technical reasons. The current

architecture, outlined in Section 2.2, lacks a component that, when no correct results occur,

triggers an interactive procedure to help user find relevant query answers. Even worse,

technically, online learning algorithms for learning to rank from query result feedback, such

as MIRA, fail to work in this case: MIRA requires at least one positive example and at least

one negative example to form the set of linear constraints, which specifies that cost of each

good tree is less than cost of each bad tree plus a loss function. Hence, these methods are

not applicable when data expert considers all examples to be negative.

For these reasons, we argue that search-driven integration needs an additional debugging

component to aid user to tackle incorrect answers. A major obstacle in search-driven

integration is that the underlying system only learns from feedback on a restricted query

results, i.e., results for user’s keyword query. This inherently limits the full potential

of the huge space of potential samples that the system can learn from. The

purpose of debugging, instead of presenting answers to the keyword query provided by

the user, is to proactively select a series of answers or partial answers for user to give

feedback. In other words, different from prior learning models for search-driven integration,

the debugging module has the ability to select any samples and request their labels from

user. These samples are not necessarily answers to user’s keyword query, but rather most

informative partial answers that best help improve the graph.

In fact, this approach is inspired by the membership query synthesis model in machine

learning [53], in which the learner creates the sample on demand itself before sending it to

an oracle for labeling. This model is similar to but still different from the active learning

model. In both cases, a learning algorithm has access to unlabeled data and has the ability

to explicitly select the next highly informative sample for an oracle’s annotation. Both

attempt to learn a good model with significantly smaller number of samples requested.

However, membership query synthesis self-generates the sample, whereas in active learning

we issue a query with some objective function to a pool of unlabeled samples. In search-

driven integration, the pool of unlabeled samples is the set of answers for a given keyword

85

query.

Our goal of improving graph from expert feedback is very different from crowdsourcing.

Our improvement is biased by the user community’s information need. In crowsourcing,

specific feedback is usually edge-at-a-time and may or may not intersect with candidate

answers to user questions. In the search-driven integration model, specific feedback is tree-

at-a-time and is specifically guided by each user’s information need. In both cases, we

want to guide the feedback towards the most informative results. The place where we have

a challenge, however, is how to do this in a way that provides both positive and negative

training examples. The problem we are confronting is the one in which we are mis-calibrated

enough to not know what is likely to be a positive example.

While this problem is motivated from our own experience in deploying search-driven

integration in real applications [47], in fact our techniques also generalize to other semi-

supervised settings, in which (1) graph links are initially constructed but potential errors

exist; (2) experts incrementally query the graph and indicate if results are correct; (3)

iteratively, links are either confirmed or removed due to feedback. These applications include

path finding in an extracted taxonomy of concepts, explaining relationship among entities

in an automatically constructed knowledge base, and route planning.

Ultimately, the purpose of debugging is to cleanse and improve noisy graphs, e.g., schema

search graphs for integration or knowledge graphs. There are at least two classes of ap-

proaches for debugging: query-based methods and graph-based methods. A query-based

approach aims to find an alternative query that is close to the input query, leaving the

underlying graph unchanged, so that the new query can give good answers to the user.

Alternatively, graph-based approaches seek to change link status, e.g., (probability of) ex-

istence, in the current graph, so that running the same query on the updated graph will

yield correct answers. In this chapter, we focus on the second class of approaches. More

precisely, the debugging problem we are investigating is the following: when there are

only incorrect answers for a keyword query, how to select a series of partial

answers or subgraphs for user’s feedback, from which the system updates the

graph, until correct answers for the same query are returned.

In this chapter, we first examine a slightly restricted model of the graph, where each

link is classified as either correct or incorrect. We term this model the exact learning model,

86 CHAPTER 5. INTERACTIVE QUERY DEBUGGING IN THE Q SYSTEM

since we seek to recover exact correctness of all graph links. We start with a worst case,

then propose two query debugging methods for this model: a recursive mechanism to quickly

pinpoint problematic edges and a greedy method to prune the space of false answers. We

then proceed to an approximate learning setting, in which each link is associated with a

probability. There we develop a Bayesian framework to update link probabilities given

expert feedback and a current graph snapshot. In addition, to address the problem of

limited user attention, we develop prioritization techniques to find the most informative

samples for user to label.

To summarize, we make the following contributions in this chapter.

• A formal model description of query debugging in a noisy graph and using expert

feedback to learn links, under two different learning models: exact learning and ap-

proximate learning;

• A worst case lower bound analysis in the exact learning case where the labeling com-

plexity is large (quadratic), along with efficient recursive search method to identify

problematic links;

• A Bayesian update framework to incorporate feedback, taking into account incorrect

feedback and user confidence.

• Efficient prioritized search strategies to select candidate results for labeling based on

uncertainty reduction.

• Extensive experiments on datasets that span multiple domains.

Roadmap. The rest of the chapter is organized as follows. We formalize in Section 5.1 the

debugging problem studied in the chapter. There we also describe two models we focus on,

a boolean model where the graph maintains binary classification on edges and a weighted

model where edges are associated with probabilities. Next we investigate debugging ap-

proaches under these two models in Section 5.2 and Section 5.3, respectively. We present

our experimental analysis in Section 5.4 and conclude this chapter in Section 5.5.

5.1. THE DEBUGGING PROBLEM 87

5.1 The Debugging Problem

As briefly discussed in the previous section, our focus in this chapter is a graph-based

debugging approach, in which the system iteratively learns to adjust the status of underlying

graph, so that running the same keyword query over the updated graph produces correct

answers. In each iteration, the system asks user to give feedback on a sub-selection of results

and executes a learning method to adjust link status accordingly. Therefore, for a given

keyword query, our debugging approach consists of two components:

1. Synthesizer: this specifies a selection procedure that decides a series of partial results

to get feedback on.

2. Learner: this includes a learning algorithm that takes the current graph along with

user’s feedback as input and makes necessary changes to the graph.

More formally, the debugging problem is defined as follows.

Debugging Problem Definition:. Given a keyword query KQ over a graph G returning

no correct top-k answers, the debugging problem for KQ is to modify G to G′, so that KQ

will return satisfactory answers on G′.

In this section, we describe two models that capture “state of the graph” (we discuss

selection procedures for these two models in Section 5.2 and in Section 5.3, respectively).

These models are also where learning algorithms operate. In general, the goal of learning

is to use expert’s feedback on result correctness to identify link “quality”. Each link is

defined by a pair of node and there are O(n2) of them. We assume that there is a set

of true links (the “gold standard”), which we do not know but wish to learn to recover.

Given the gold standard, each predicted link is classified as either “correct” or “incorrect”,

indicating correctness of link prediction. We call this classification the “underlying” label

of the predicted link.

To recover the gold standard, we consider two learning settings. The first is an exact

learning model where links in the graph are classified to either “true” or “false”. In this

chapter we also use “binary model” to refer to the setting. The second is an approximate

learning model in which each edge is associated with a probability of being present in the

88 CHAPTER 5. INTERACTIVE QUERY DEBUGGING IN THE Q SYSTEM

graph, which is useful in deriving confidence and ranking. We also use “weighted model”

interchangeably. We formally define the labeling function used in each model below. In both

cases, edge labels will be adjusted (through learning) when expert feedback is available and

this loop of learning from feedback will continue. The difference between the two models is

that the approximate learning model may provide more information but is intuitively hard

to learn.

• Exact Learning: The labeling function L : V × V → {T, F} applies to each node

pair (i.e., a possible link) and returns a binary label where T predicts edge existence

and F predicts the opposite.

• Approximate Learning: This is akin to the cost model in Section 2.3. The labeling

function L : V × V → [0..1] assigns a predicted probability value to each potential

link between two nodes.

Given labels on individual edges, we can then determine the label of a given tree. Here

we assume edges are independent of each other, which may not be entirely accurate but is

a good model heavily used in keyword search over structured data and crowdsourcing. In

the boolean model, the label of a tree T is given by

L(T) =
∧
e∈T

L(e). (5.1)

In the weighted model, the probability of tree T is given by the product of edge probabilities,

assuming edges are independent,

L(T) =
∏
e∈T

L(T). (5.2)

In addition, orthogonal to the learning model, there are also two sources of external

information, described as follows.

• Membership Oracle: This oracle O : 2G → {T, F} takes a given connected subgraph

(usually a tree) as input and returns if the input subgraph is “correct” or “incorrect”.

We assume a conjunction model where a subgraph is correct iff all its edges are correct.

This means that even one false edge results in subgraph classified as “incorrect”.

Usually a data expert serves as a membership oracle, as is the case in the Q System.

5.2. BOOLEAN MODEL 89

Typically membership oracle is expensive to invoke and it is desirable to minimize the

number of calls to oracle.

• Prior Link Prediction: This information captures the initial graph state. Usually

the graph does not start from empty. Instead, it may already have some links auto-

matically constructed, even though they might be wrong initially. Sometimes there

may even be predicted probabilities available, e.g., from link analysis tools. In our

Q System, links are initially constructed using a library of schema matchers, which

assigns every node pair a probability of being linked, which can be used as it is or

compared against certain threshold to derive binary link classification.

5.2 Boolean Model

In this section we study the exact learning setting, i.e., the boolean model. We first show in

Section 5.2.1 that with the absence of prior link prediction, even for a single pair of source-

destination, the number of calls to the membership oracle is Θ(|V |2). In Section 5.2.2, we

proceed to show that, when prior link classifiers only make optimistic predictions, querying

the membership oracle with a candidate tree either results in confirming the tree (therefore

all of its edges) to be correct or leads to strict progress where one can quickly identify a

problematic edge in the tree. This justifies the crucial role of prior information. Finally, in

Section 5.2.3, we present a greedy approach that attempts to reduce a large amount of false

answers, by prioritizing feedback on edges heavily shared across possible answers.

5.2.1 Worst Case Analysis

The worst case graph Gworst consists of two cliques connected by a bridge, visualized in

Figure 26

Proposition 2 With no prior link information available, given a pair of node (s, t) in

Gworst, where s and t lie in two different cliques, the number of calls to identify a path with

correct links connecting s and t is O(|V |2).

90 CHAPTER 5. INTERACTIVE QUERY DEBUGGING IN THE Q SYSTEM

Figure 26: A worst case graph Gworst for the boolean model with n nodes. The left part
has n/2 nodes and the right part has n/2 nodes. Either part is a clique. The left part and
the right part are connected through a bridge.

5.2.2 Optimistic Priors and Recursive Search

Our above analysis shows that with the absence of prior information, exact learning is almost

hopeless even for one pair of source destination. Here we show that prior link predictions

can indeed be very helpful. Indeed, we show that in the case of optimistic priors, in which

the prior always classifies a true link to be “true” but may falsely claim a non-existing

link, every call to the membership oracle is making progress in the following sense. If the

membership oracle returns yes for an input tree, then we have found a correct tree, hence

confirming all its edges to be correct. If not, we can apply a recursive binary search strategy

to efficiently identify a false edge, described below.

Proposition 3 Let G∗ be the underlying graph with underlying labeling function and G the

5.2. BOOLEAN MODEL 91

current graph. Any path in G∗ remains in G.

Algorithm 6 Binary search for a false edge.

Input: Tree T with expert labeled as false
Output: A false edge e

1: while T has more than one edge do
2: T ′ ← left half of T
3: L← label of T ′

4: T ← T ′ if L is true, otherwise T ← right half of T .
5: end while
6: return T

Consider a given path P for which the membership oracle returns “false”. We can then

invoke the left half of P as input. If the oracle again returns “false” we know that the left

half must contain at least one false edge so we recurse. If the oracle returns “yes” instead,

we know that the right half must contain at least one false edge so that we recurse there.

We repeat this process until the path degenerates to a single edge, which we have identified

as a false link and can remove from the graph. In addition, each positive response from the

membership oracle confirms a number of edges to be correct. Suppose there are S positive

labels during the search, the number of edges that can be classified as true is at least

1 + 2 + 4 + · · ·+ 2S−1 = Ω(2S). (5.3)

This algorithm is described in Algorithm 6.

Proposition 4 Whenever the membership oracle returns F for an input tree T , it takes

O(lg |T |) additional calls to the membership oracle to identify one false edge in T . In

addition, if there are S positive labels during the binary search, Ω(2S) edges will be confirmed

to be true.

The case for a tree is similar. Instead of continuing with left half, we first compute the

centroid of the tree, which divides the tree into several subtrees, each of size at most half

of the original tree. We then recursive on these subtrees until we identify a false edge.

92 CHAPTER 5. INTERACTIVE QUERY DEBUGGING IN THE Q SYSTEM

5.2.3 Greedily Pruning Multiple Answers

The above method aims to repeatedly find an incorrect link in one of the top trees, thus

improving link quality overtime. Its advantage lies in efficiency. Sometimes, for a given

keyword query over a large noisy knowledge base, there can be hundreds or thousands of

results, with some edges heavily shared among many trees. For instance, our Q System

returns more than 100 paths for the query “shanghai, China”, and edges like “authentic

shanghai snack→ snack” occur frequently in results. In this setting, the above method may

be inadequate since the data expert may not know which result to debug and identifying a

false edge with low frequency seems inefficient.

To solve these problems, this alternative method seeks to help data expert clean edges

that are relevant to most query results. To achieve this, we first compute, for each link, the

number of appearance in the set of returned query results, followed by asking data expert to

label links with the highest occurrence. This procedure is repeated for all edges with high

frequency, until some correct answer can be found in the updated graph. This algorithm is

described in Algorithm 7.

Algorithm 7 Greedily label edges based on frequency.

Input: Set of query trees A = {Ti}, user U , keyword query KQ, input graph G.
Output: Updated graph.

1: Compute for each edge e the count C(e) indicating how many trees in A contains e.
2: All edges are initialized to be “unmarked”.
3: while U is not exhausted do
4: Select an unmarked e′ to be the edge with the largest C(e′)
5: Mark e′.
6: Obtain label of e′ and change the graph if necessary.
7: If recomputing answers for KQ on G yields satisfactory results, stop
8: end while

5.3 Generalized Weighted Model

To this point our discussion has focused on learning exact binary labels for links. However,

this model is restrictive in many cases. Most importantly, its prediction does not have

degree of confidence available. Instead, in this section we consider approximate learning

5.3. GENERALIZED WEIGHTED MODEL 93

to predict a probability value for each possible link. In addition to providing confidence,

these probability values are useful in deriving probability of a subgraph (by assuming edge

independence) and in ranking. For example, our Q system and other keyword-search-over-

structured- data algorithms compute the top-k Steiner trees as candidate answers for a

given set of nodes. Moreover, graphs in our targeted applications are usually constructed

with some initial probability information: for example, in automatically construction of

knowledge bases, links are generated with scoring information [74]. Therefore, it is natural

to start from those values and gradually improve over time based on expert’s response.

In this model, these probability estimations are dynamically adjusted in a query-driven

manner: a data expert indicates if a tree is correct (possibly with some level of confidence),

thus updating probability predictions. A key challenge here is how to update probabilities

in a belief-centric way. We propose a formal Bayesian approach to update link probabilities

in Section 5.3.1. This approach can also incorporates feedback confidence and noisy oracle.

In addition to this Bayesian learner, the interacitve debugger module also requires a

synthesizer to produce a series of trees for expert to label, so that the expert will finally

identify a correct query answer. A key challenge here is that expert feedback is prohibitively

expensive to obtain. Thus, the synthesizer must attempt to best leverage expert’s feedback.

We develop these methods in Section 5.3.2, one of which builds upon the previous greed

method. We summarize our approaches in Section 5.3.3.

5.3.1 Bayesian Link Update

The framework of presenting a tree that the system considers to be correct, getting feedback

from expert, and updating evidence of the tree being correct, naturally fits into the Bayesian

approach. A Bayesian approach usually assumes some “prior” information and, when actual

data is revealed, updates the underlying to obtain “posterior” information. Here we first

formulate how to use Bayesian method to update probabilities associated with edges in a

given tree, given their existing probabilities and the label of the tree. This approach can

also be extended to handle noisy oracle and incorporate confidence.

94 CHAPTER 5. INTERACTIVE QUERY DEBUGGING IN THE Q SYSTEM

5.3.1.1 Model Specification

We assume (1) edge independence and (2) that a tree receives positive expert feedback iff

all of its edges are correct links. We further assume perfect feedback that is always correct

(we consider the case of noisy feedback in Section 5.3.1.2). The challenge here is that one

piece of feedback is applied to a mixed collection of good edges and bad edges. Hence, we

must be able to update all edges in the collection altogether.

In this dynamic learning model, we denote by Prt(e) the probability of a link e being

correct at time t. The global time stamp starts at 0 and each feedback will increment it

by 1. When a tree T receives binary feedback, we will update Prt(e) to Prt+1(e) for each

edge e ∈ T , using values {Prt(e
′), e′ ∈ E(T)}. When T receives positive feedback, Prt+1(e)

is updated to

Pr[e is correct | T is correct] = 1,

since every edge must be correct in order to form a correct tree. On the other hand, when

T receives negative feedback, Prt+1(e) is updated to

Pr[e is correct | T is incorrect] =
Prt(e)(1−

∏
e1∈T,e1 6=e Prt(e1))

1−
∏

e2∈T Prt(e2)

As a sanity check, it is clear that Prt+1(e) ≤ Prt(e) when e belongs to a false tree. In

practice, if 1−
∏

e2∈T Prt(e2) = 0, our Q System first relaxes Prt(e2) to 1− δ where δ is a

small constant then applies the Bayesian formula.

5.3.1.2 Incorporating Noisy Oracle

The above formulation assumes perfect expert feedback. We now extend this model to the

case where expert has a probability of ε to make a mistake. Suppose that a tree T receives

positive feedback, then

Pr
t+1

(e) = (1− ε) Pr[e is correct | T is correct]

+ εPr[e is correct | T is incorrect].

Similarly, when a tree T receives negative feedback, then

Pr
t+1

(e) = (1− ε) Pr[e is correct | T is incorrect]

+ εPr[e is correct | T is correct].

5.3. GENERALIZED WEIGHTED MODEL 95

This model has a natural connection to the Steiner tree model used in keyword search

over structured data and search-driven integration. Indeed, if each edge is associated with

a cost equal to the negative loglikelihood of its probability, then the cost of a tree (which

is the sum of all edge costs) will exactly be the negative loglikelihood of this tree being

correct [77, 86].

5.3.1.3 Incorporating Confidence

Depending on query results and/or expertise of the data analyst, feedback may vary in

confidence. This, ideally, should be reflected in the update formula as well. In fact, suppose

that the data expert specifies a confidence value 0 < c ≤ 1. To achieve the confidence at

the required level, for any given tree T , we repeatedly apply the above Bayesian formula

until Pr[T] > c if feedback is positive or Pr[T is incorrect] > c if feedback is negative.

5.3.1.4 Summary: Bayesian Update

Algorithm 8 Bayesian Update.

Input: Tree T with expert label L, expert confidence c, probability of expert error ε,
current edge probabilities Prt
Output: Updated edge probabilities Prt+1

1: while Pr[T matches L] < c do
2: Apply Bayesian formula in Section 5.3.1.2
3: end while
4: return Prt+1

Algorithm 8 puts the above models together and describes the Bayesian approach.

5.3.2 Synthesizing Labeling Samples

We have described above a formal framework for updating edge weights with respect to

expert feedback. Unfortunately, it is not always easy to identify, for the purpose of query

debugging, which tree(s) should be selected for expert to label, for two reasons: (1) expert

feedback is usually expensive to obtain; (2) there are exponential numbers of candidate

answers for a given keyword query. Therefore, a challenge for the debugger module is a

strategy for selecting a series of trees to best leverage expert feedback interactively.

96 CHAPTER 5. INTERACTIVE QUERY DEBUGGING IN THE Q SYSTEM

This problem setting is orthogonal to computing relevant answers in keyword-search-

over-structured-data. In fact, we compute top-k Steiner trees for a given keyword query,

which are mostly adopted in the literature [88]. We assume that top answers are incorrect

and hence user enters the interactive debugging mode. Thus, for a given keyword query,

we focus on strategies for selecting samples for experts to label. But these samples are

not required to be Steiner trees connecting leaf nodes that match keywords, but rather

informative partial answers that help the system get feedback and update underlying graph.

We consider two selection strategies. The first method (Section 5.3.2.1) directly com-

putes alternative Steiner trees for the same query, but uses different measures other than

predicted probability. The second method (Section 5.3.2.2) is mostly similar to selecting

links mostly shared in the boolean model – it selects links that appear in a large number of

query results. We describe both methods below.

5.3.2.1 Reducing Uncertainty

Our first selection strategy is motivated by uncertainty sampling in active learning, which

seeks to select samples that can mostly alter the underlying model. This class of methods is

shown to be highly effective in the literature when there is limit on the amount of feedback

obtained.

Here, we use the notion of expected model change, defined as the expected amount of

uncertainty reduction. At any point of time, we can measure the amount of uncertainty

of an edge e using entropy. By assuming edge independence, we can further compute the

uncertainty of a tree by summing up entropy values of individual edges. In addition, for an

unlabeled tree T with probability p being correct, assuming membership oracle has error

rate ε, with probability (1− ε)p+ ε(1−p) tree T receives positive feedback, with probability

εp+ (1− ε)(1− p) tree T receives negative feedback. Furthermore, we can simulate either

positive feedback or negative feedback to compute tree entropy after feedback. The differ-

ence between before-feedback entropy and expected after-feedback entropy is, therefore, the

expected model change. In fact, it is always non-negative when ε = 0, meaning that the

amount of model uncertainty keeps reducing.

Proposition 5 When ε = 0, the expected amount of uncertainty reduction is always non-

5.4. EXPERIMENTAL ANALYSIS 97

negative.

Using this debugging strategy, within the top-k Steiner trees, a tree with the most

amount of expected model change will be selected for receiving expert feedback, so that its

edge weights will be updated. This feedback-loop continues until a correct tree is found.

5.3.2.2 Recursive Search based on Edge Frequency

Alternatively, our second selection is similar to labeling the mostly shared link in the boolean

model 5.2.3. The selection criteria is the same. Edges that show up frequently in query

answers will be prioritized for getting feedback on.

5.3.3 Putting it All Together

Algorithm 9 Debugging Weighted Graph.

Input: Set of query trees A = {Ti}, user U , keyword query KQ, input graph G.
Output: Updated graph.

1: while U is not exhausted do
2: Select a tree T with the largest expected model change(Section 5.3.2.1) or an edge

T = {e} with the largest frequency(Section 5.3.2.2).
3: Obtain label of T and apply the Bayesian method to update edge weights in the

graph.
4: If recomputing answers for KQ on G yields satisfactory results, stop
5: end while

We summarize our approaches for debugging each keyword query.

1. Find the top-k Steiner trees and enter the debugging mode if none is satisfactory.

2. Repeatedly select samples for labeling, using either Section 5.3.2.1 or Section 5.3.2.2,

until expert is exhausted or a correct tree is found.

This is illustrated in Algorithm 9.

5.4 Experimental Analysis

In this section, we describe in detail our experimental design and analysis. Our goal is to

validate effectiveness of our proposed methods over diverse real world datasets requiring

98 CHAPTER 5. INTERACTIVE QUERY DEBUGGING IN THE Q SYSTEM

automatic record linking and schema matching, with different sizes in different domains

(details are presented in Section 5.4.1). In addition, we evaluate the effectiveness and

understand the differences among various debugging approaches.

Specifically, we conduct our experiments in the keyword-search-driven framework [77],

where data is represented as a graph (with nodes linked within data sources via existing

structural information, and with nodes linked across data sources via automated record

linking algorithms; note that in both cases the links may be incorrect). After a dataset is

loaded, a pool of keyword queries will be issued in a sequence, each generating some ranked

query results. If the top query results are not satisfactory according to a gold-standard (as

defined by the raw source data or a human panel), this triggers debugging mode and invokes

the algorithms we study in this chapter. During debugging, we execute one of our proposed

methods until some termination condition occurs, e.g., the top recomputed answers match

the gold standard, or too much feedback has been requested (i.e., the user is exhausted).

We describe detailed setup and methodology in Section 5.4.1.

Given the above evaluation flow, we wish to answer the following questions:

1. Are our methods efficient at debugging a given keyword query, in general? More

precisely, can they quickly identify and remove false links and discover correct results?

2. Do graph repairs (altering link classification in the boolean model or changing edge

probability in the weighted model) benefit other keyword queries as well, due to

common edges? Can our proposed graph updates distinguish good links from bad

ones, given enough amount of feedback?

3. Does search-driven integration benefit from the addition of the debugging module?

Observe that we assume a user can typically identify whether a result is a plausible

answer to his or her query, as is often true in practice (particularly with data-expert or

scientist users). This query-driven assessment of answers is easier for many users than a

query independent question, e.g., about whether two data values should be linked, for any

generic query.

With these questions in mind, we outline a set of metrics and report evaluation re-

sults. We present our analysis for the Boolean edge model in Section 5.4.2, and for the

5.4. EXPERIMENTAL ANALYSIS 99

weighted-edge model in Section 5.4.3, respectively. There, we also disscuss the benefits

of the debugging module over prior learning approaches in search-driven integration. We

discuss the results and briefly comment on the difference between the two models in Sec-

tion 5.4.4.

5.4.1 Overview: Datasets and Methodology

Platform. We implement our algorithms within our Q System [86], which contains roughly

60k lines of Java code. We conduct the experiments on an Intel Xeon CUP (2.83GHz, 2

processors) Windows Server 2008 (64-bit) machine with 24GB RAM, using 64-bit Java SE

1.60.11. We leverage Q’s capability to return a ranked list of answers for a given keyword

search and its ability to interact with user feedback in real time.

Datasets. We wish to cover a variety of real datasets in different domains. One difficulty

of choosing datasets for keyword search experiments is that, it is difficult (and sometimes

impossible) to derive the set of correct links and therefore query answers. As one objective

baseline, we first choose the popular IMDB database, for which links are known (encoded

in the database as foreign keys). Our experiment hides information from the system about

these correct links, and seeks to recover them automatically, from record linking algorithms

and the debugging process. Our second dataset integrates subsets of IMDB database

and DBpedia, where we establish a set of weighted, thresholded schema alignments from

IMDB attributes to DBpedia attributes (such as properties related to people and movies).

Finally, we evaluate our approaches on the Probase concept hierarchy, which is automat-

ically extracted from the Web, and hence inherently contains many noisy and incorrect

links. For example, edges such as “nonprofit → social enterprise”, “video.google.com →

engine”, and “internet → utility cost” seem reasonable, but edges such as “characteristic→

inventory cost factor” do not seem very informative. Probase is the largest dataset in our

evaluation (in terms of number of links). Although it is hard to derive a gold standard for

correct links in Probase, we try to remain conservative when we claim a link to be false.

We outline properties of these datasets below. The “number of possible edges” describes

how many links our schema matchers claim to be true initially, which we will explain in

more detail in the next paragraph. For Probase, since it is infeasible to examine all 14k

100 CHAPTER 5. INTERACTIVE QUERY DEBUGGING IN THE Q SYSTEM

links, the exact number of true alignments is unknown.

Name IMDB IMDB + DBpedia Probase

No. Nodes 21 255 8,087,141

No. Possible edges 20 668 13,949,065

No. True alignments 9 14 N/A

Size (in MB) 1082 1417.8 1139

Methodology. For each dataset, the first stage is to predict a set of possible links. For

Probase, this is simply the set of input links. For IMDB and IMDB+DBpedia, we run

a set of schema matching primitives from the COMA++ library and obtain a value in [0, 1]

for every possible alignment. We prune links for which all matching primitives provide very

low probabilities. The remaining edges are therefore initially classified as true. In addition,

edge probabilities (averaged over all matchers) will be used as priors in the weighted model.

Query workload and feedback. Our query workload consists of 10 queries for each

dataset, whose results are revisited (and new feedback is given) three times. The queries

were based on common-knowledge searches. Sample queries include “academic, technology”,

“Shanghai, China”, “Aaria, Final Fantasy”.

5.4.2 Boolean Model

For each dataset, in the boolean model, we start from a graph where links may be falsely

predicted. As described previously, these predictions (for IMDB and IMDB+Dbpedia)

are obtained from applying COMA++ matchers followed by pruning links with very low

probabilities. In fact, these optimistic predictions only contain one-sided error: a true link

always receives positive prior classification. Then we simulate to issue each keyword query

and enter the interactive debugging mode if the top-1 result obtained is not “correct”. For

IMDB and IMDB+Dbpedia, based on the provided gold standard, we mark a query

result to be true if and only if all links in the tree are known to be correct. For Probase,

we use real-world knowledge to judge result correctness, as there is no known gold standard.

The system will invoke one of the debugging algorithms to select some edges for labeling,

and update answers for the same keyword query until the top-1 result is satisfactory.

We compare three methods in our experiments.

5.4. EXPERIMENTAL ANALYSIS 101

1. (Baseline) Ask labeling of each edge in a false tree. These edge labels will be reused

later whenever possible: if a candidate tree contains a false edge claimed earlier, it

will not show up. Each edge will be requested for its label at most once.

2. Recursive search until a false link is confirmed, based on Section 5.2.2. This is triggered

when a false tree is presented, and when a false edge is found, the Q System recomputes

the top-1 tree.

3. Sort links based on how many times they appear in the top-k answers and request

label for the most heavily shared link. This is described in Section 5.2.3. We term

this method “frequency-based prioritization” and use k = 10.

Name IMDB IMDB + DBpedia Probase

Baseline 0.6 3.3 8
Recursive Search 0.2 1.1 3.7
Frequency-based Prioritization 0.2 0.6 2

Table 7: Average number of labeling questions required to get a correct answer.

We conduct a set of experiments to measure how these three approaches perform on the

three datasets. To start, our first experiment measures the number of labeling questions

required to obtain a correct answer. This measures the “efficiency” of each of our methods –

smaller numbers mean less feedback requested. During the process, feedback on recomputed

top-1 results is not counted as labeling questions. We only count labeling questions in the

debugging procedure.

The results for this experiment are shown in Table 7. As we see, both of our methods out-

perform the baseline and frequency-based method is slightly better. Note that for IMDB,

all methods require very little feedback, since running schema matching algorithms cleans

up a large portion of the input graph. But on Probase where noisy links are common, our

proposed methods save on average 4-6 labeling questions.

Next, we proceed to measure if our methods can improve the system’s ability to repair

underlying graph. Towards this goal, in the third and fourth experiment, using the same

10 keyword queries, we apply the same number of labeling questions allowed (5 questions)

for debugging each query. We measure, using the same total amount of feedback, number

102 CHAPTER 5. INTERACTIVE QUERY DEBUGGING IN THE Q SYSTEM

Name IMDB IMDB + DBpedia Probase

Baseline (9, 2) (5, 10) (6,17)
Recursive Search (9, 2) (5, 16) (8,19)
Frequency-based Prioritization (9, 2) (5, 20) (11,24)

Table 8: Total number of true and false links confirmed, respectively, given the same amount
of feedback on each dataset.

of edges confirmed to be true and false, respectively. We exclude keyword matching edges

in the measurement.

We show the results for this set of experiment in Table 8. As illustrated, our proposed

methods are able to remove more false edges than the baseline does. On Probase, our

methods can also confirm more correct links. This verifies their abilities to repair the

graph. Between our proposed methods, frequency-based method is slighter better.

5.4.3 Weighted Model

We now look at the weighted model. Like the boolean model, we wish to understand how

our debugging methods can get correct answers and improve the graph in general. Here the

evaluation process is similar to what we have used in the boolean model. However, here we

must incorporate probability values, instead of directly using binary classification. Hence,

for each keyword query, we rank the candidate answers (i.e. Steiner trees) based on their

probabilities of being true.

Similar to the boolean model, we first use COMA++ matchers to predict link probabil-

ities in IMDB and IMDB+Dbpedia. Unlike the boolean model, we will not threshold

these probabilities and convert them to zero or one. Instead, we will use these probabilitie

as they are to compute ranked answers. Simulation of feedback loop is the same. For each

keyword query, the Q System invokes the interactive debugging model if the top-1 result

obtained is not “correct”. During debugging, the system applies one of the debugging algo-

rithms to select a series of samples for labeing, resulting in updates on edge probabilities,

until a recomputed top-1 result is satisfactory.

We compare three methods in our experiments.

1. (Baseline) Ask labeling of each edge in a false tree. This will assign a close-to-zero

probability or a close-to-one probability, depending on feedback. These probabilities

5.4. EXPERIMENTAL ANALYSIS 103

will be reused. Each edge will be requested for its label at most once.

2. Apply Bayesian link update (Section 5.3.1) and select a sample with the largest ex-

pected model change (Section 5.3.2.1). We term this method BayesianEMC.

3. Apply Bayesian link update and select a link with the largest frequency (Section 5.3.2.2).

We term this method BayesianGreedy.

Notice that although the Bayesian method allows us to specify probability of oracle

making an error and oracle confidence, here we do not use these two parameters due to the

challenge of defining a single gold standard.

Name IMDB IMDB + DBpedia Probase

Baseline 0.6 3.3 8
BayesianEMC 0.4 1.7 3.6
BayesianGreedy 0.2 0.6 1.9

Table 9: Average number of labeling questions required to get a correct answer.

We now look at the efficiency of our debugging approaches and examine how many

labeling questions are needed to get a correct answer. We show the results in Table 9. This

shows that our proposed methods very effectively find correct answers and that they perform

better than the baseline. We discover that BayesianGreedy is slightly better, since it is

mostly efficient in lowering probabilities of those false trees containing heavily-shared false

edges.

Our experiments have also shown that in noisy graphs such as Probase, debugging

is able to aid user to find satisfactory results. This is hard to achieve in search-driven

integration, where the system fails to learn from negative answers to a keyword query.

5.4.4 Discussion

Our experiments have demonstrated effectiveness of our proposed methods. Overall they

provide noticeable improvements over naive debugging approaches. The advantage of the

boolean model is precise classification and its debugging procedure is to identify one false

edge either as fast as possible or as efficient in pruning search space as possible. On the other

hand, the weighted model does not require strict classification and is perhaps a better model

104 CHAPTER 5. INTERACTIVE QUERY DEBUGGING IN THE Q SYSTEM

for modeling knowledge bases. Its debugging procedures aim to reduce model uncertainty

as much as possible, but differ from the boolean model since the Bayesian method adjusts

weights of multiple edges at once instead of pinpointing to a single problematic edge.

5.5 Conclusion

Motivated by debugging keyword search results in search driven data integration, we study

the generalized problem of repairing links in automatically constructed knowledge bases

and semi-supervised graphs, where graph links are initially predicted and then gradually

fixed over time, by learning from expert feedback. We have studied in detail two learning

models, the exact learning model and the approximate learning model. In these two models,

we develop methods to select labeling samples and to update graph links based on expert

feedback. Experiment results have demonstrated that our proposed methods can efficiently

take advantage of user feedback to repair graph links. Building upon this work, we seek to

study more generalized learning models, for instance, one that relaxes the edge independence

assumption.

Chapter 6

Related Work

This thesis decomposes tasks in search-based integration into user-driven components and

adapts learning techniques to solve them. This work is at thematically related to several

threads of research in the database and machine learning communities. We discuss these

related areas in this chapter.

6.1 Related Work in Data Management

6.1.1 Data Integration

We have already briefly commented prior work on conventional integration techniques

mostly in Chapter 1. We provide more references here.

To actually obtain scores, Q system incorporates a suite of off-the-shelf schema match-

ers. Like most modern matchers [24, 28], the Q system combines output from multiple

sub-matchers [24] (in particular we use their base matchers and learn to compose them).

Our approach differs from many others [24], such as LSD [25] and COMA++ [24], by fo-

cusing on online learning given candidate answers for queries posed by the user. It is also

notable that our approach eliminates the notion of a mediated schema, going directly to a

user-driven query — which makes it quite different from the example-driven approach to

learning schema mappings of ten Cate et al. [1, 17]. The focus of thesis is on a general

architecture for incorporating the output of matchers while obtaining entropy information.

A key contribution of the work in Chapter 3 is to create, then compose across a query

105

106 CHAPTER 6. RELATED WORK

tree, a probability distribution based on (weighted) outputs of the different matchers. The

problem of modeling uncertainty in schema matching is discussed in [58].

A variety of vision papers have proposed pay-as-you-go or dataspaces models for inte-

gration [22, 30], and some aspects of that vision were implemented in iTrails [81]. However,

many aspects of achieving the pay-as-you-go vision have remained open. We argue that the

Q System provides some building blocks towards the overall goals.

More generally, data integration and its theoretical counterpart data exchange are on-

going research topics in the database community. Most recent surveys can be found in [5]

and [26].

6.1.2 Keyword Search over Structured Data and Top-k Query

Answering

We have briefly outlined related work on keyword search over structured data in Chap-

ter 1 and Chapter 2. The Q System extends the basic approach of BANKS, BLINKS,

DISCOVER, and XRANK [13, 39, 43, 50] originally proposed for centralized databases, to

a model where the data is distributed across many sources and where answers’ scores must

be learned [48, 76, 77]. Later systems also explored keyword search as a model for data

integration [11, 66]. The key difference in our work on the Q System is the iterative loop

through end-user feedback on query answers.

To return effective answers at scale, our query answering subsystem [48, 77] must ef-

ficiently compute approximate top-k query answers according to the scoring model. The

general top-k problem has been studied in a variety of contexts [29, 46, 54, 57], and our

system leverages many ideas from that literature. However, as noted in Chapter 3, the

key challenge for active learning lies in the fact that parts of our scoring function are not

decomposable.

6.1.3 Learning Queries and Mappings

Belhajjame et al developed a model to group users into feedback clusters [9] that gets

similar ranking functions; this relies on overlap among the query load, unlike our more

general collaborative learning that relies on shared features. Most current search-driven

6.1. RELATED WORK IN DATA MANAGEMENT 107

integration systems make use of online learning given candidate answers to queries posed

by the user – as opposed to query-independent schema matching techniques, most notably

COMA++ [24] and recent work on pay-as-you-go schema matching by communities [62].

Recent work has studied example-driven approaches to learning mappings, such as that

of ten Cate et al. [79], which attempts to learn schema mappings in a mediated schema.

Recent work has also explored learning queries from data [71], but our approach is focused

on learning to rank output trees as opposed to query expressions.

6.1.4 Crowdsourcing

We have already pointed out how this thesis work is related to and different from recent

work in crowdsourcing in Chapter 1. Here we provide some additional comments.

Learning in search-driven integration can be viewed as a form of “expert”-sourcing or

crowdsourcing. Crowdsourced techniques for finding record links, using Mechanical Turkers

and others, have been shown to be quite effective [82], and in fact most of the strate-

gies used here are closely related to active learning. Entity resolution or record linking

in these settings is typically done in a query-independent fashion. A variety of schemes

relied on voting to resolve conflicting input, though several machine learning approaches to

the problem [52, 56, 91] use probabilistic techniques such as expectation maximization or

belief propagation to estimate user expertise and reliability. In contrast our approach to

collaborative learning does not assume a single “true” value.

Crowdsourced routing has been recently studied [72, 90], in which the notion of uncer-

tainty reduction has also been applied. However, the focus there is on finding the best path

between a pair of source and destination nodes, which is different from ours. An additional

key difference lies in our development of learning from expert feedback. On the other hand,

the question studied in crowdsourced graph search [63] is also very different from ours. In

that work, the goal is to recover all “target nodes” from a given source by asking reachability

questions.

108 CHAPTER 6. RELATED WORK

6.1.5 Others

The problem of selecting the most informative feedback has been studied in data clean-

ing [84] and data integration. For integration, approaches include focusing on highest-value

candidate schema matches for dataspaces [49] and on active learning for refining record

linking [4]. These are related in spirit to our approach, but they get feedback over individ-

ual alignments whereas our active learning technique seek to understand the uncertainty

associated with an entire query, and combine high-scoring and uncertain queries’ results.

Methods for incorporating diversity into top-k query answers have been studied exten-

sively in the information retrieval context. Gollapudi et al [35] developed several measures

in addition to the max-sum diversification scheme we adopt, which emphasize factors such

as minimum amount of diversity instead of combined diversity. An excellent survey of

appears in [27]. Deng and Fan [23] also study the complexity of result diversification.

6.1.6 Debugging keyword query

Closely related to the query debugging chapter is recent work on debugging incorrect results

in keyword search systems [7]. That paper proposes efficient search strategies for finding a

maximal query tree that returns non-empty answers with respect to a given “false” query

tree. However, their model assumes known relations and links in a static schema graph.

Our work goes beyond that by incorporating a dynamic cost model in a wider range of

applications.

6.1.7 Why and why-not

Why and how a tuple contributes to query answers have been extensively studied in context

of provenance [36], responsibility [59], and formal explanations [65]. By contrast, there has

been increasing amount of work on modeling and computing explanation of non-answers

in the database community. These approaches can be roughly classified into three cate-

gories. Data-centric methods propose modifications to the input database, often based

on the notion of provenance, so that running the same query over the updated database

yields the missing answers [41, 44, 59]. Alternatively, query-centric approaches attempt

to modify the input query so that the new query produces the missing answer [18, 80].

6.2. RELATED WORK IN MACHINE LEARNING 109

Finally, ontology-based approaches rely on auxilary external ontologies to compute ex-

planations [34, 78]. Such ontologies model relationships among schema elements and are

usually provided externally or inferred from schema. There are also studies on why-not

explanations in the context of top-k queries [19, 33, 40]. The goals of our work are different

and consist of determining where data experts should focus on and helping data experts to

debug incorrect answers, by learning a dynamic cost model. Recent work Data X-Ray [83]

with a similar cost model and Bayesian update method is also close related. The different

lies in learning settings and generalization of the the Bayesian method.

6.2 Related Work in Machine Learning

6.2.1 Active Learning

Active learning attempts to address the issue of high labeling cost. Typically, in active

learning, a learning algorithm has access to unlabeled data and has the ability to select

the next (explicit) sample for an oracle’s annotation. Requesting the next labeled sample

can either be done by explicitly constructing the sample or by issuing a query for a highly

informative sample, depending on different learning models. The objective of active learning

is to learn a good model with significantly smaller number of samples requested.

While active learning is a popular area of machine learning [68], standard techniques

cannot be directly used on tree-structured queries in which individual edges have uncer-

tainty. Three strategies have been primarily used in prior research: (1) the least confident

strategy considers only the most likely prediction; (2) the maximum margin strategy consid-

ers the top two predictions; (3) the entropy maximization strategy considers all predictions,

which can be exponential in the size of the structured object predicted. Our approach of

clustering predictions and choosing a representative tree per cluster is, in some sense, an

intermediate strategy.

Prior work on active learning over structured output has sought to select the next in-

stance upon which to receive feedback, with feedback directly over the predicted objects [68,

Sec. 2.4]. Our work differs in keeping the instance (keyword query) the same, and solic-

iting feedback over different trees (interpretations) of the given query. With the notable

exception of [45], most previous work on active learning over structured output involved

110 CHAPTER 6. RELATED WORK

sequences [21, 67], whereas in the Q system we infer trees. Also, our use of active learning

in the keyword search-based data integration is novel.

Although cluster-based active learning has been found to be useful in previous re-

search [68, Sec. 5.2], such work has focused on classification and not structured prediction.

Moreover, clustering in those cases is performed over the input instances, rather than the

output Steiner trees corresponding to the given keyword query.

Another thread of related work is active learning methods on trees and graphs [?

], which investigates optimal arrangement of queries to minimize mistakes on non-queries

nodes. It uses spanning tree-based query selection methods and provides bounds on number

of mistakes. This work assumes a different model from ours, in which it predicts binary

labels on nodes.

6.2.2 Recommendation Systems

The rise of recommendation systems, especially of their techniques, has drawn much atten-

tion from both academia and industry: there have been tons of related techniques developed

in this area and many modern sites like Amazon and Netflix deploy recommendation sys-

tems to pursue more profit. The goal of a recommendation system is to predict how likely

a user will prefer an item, based on past history.

Recommendation systems [51] are typically classified into three main categories: content-

based methods, collaborative filtering methods, and hybrid methods. Content-based meth-

ods attempt to recommend items to a user based on what kind of items the user likes

the most, by computing item similarities and examining user’s past history. Alternatively,

content-based methods may also model user profiles to discover similar users. Content-

based recommendation methods are often limited since they only consider the history of

the particular user, largely ignoring correlations within the huge set of users. To this ex-

tent, recent methods mostly build on collaborative models, which aim to leverage ratings

from other users as well. Collaborative filtering methods are further divided into neighbor-

hood based-approaches and model-based approaches. A neighborhood based- (or memory

based-) method usually predicts a rating based on an aggregated score derived from the

entire or a subset of the ratings (for example, ratings from similar users). In contrast to

6.2. RELATED WORK IN MACHINE LEARNING 111

neighborhood-based methods, model-based methods seek to build effective statistical mod-

els that best reflect the rating behaviors and patterns. These models are trained from

existing data and will be applied to predict unknown ratings. Examples of such models in-

clude Bayesian networks, clustering, regressions, and Singular Value Decomposition (SVD).

Recent work [10] shows that neighborhood-based methods are strong at discovering local

structure but weak at predicting overall ratings while the opposite holds for model-based

approaches. Furthermore, in a hybrid approach, one seeks to utilize content data and to

build a unified model incorporating both content-based and collaborative methods.

Our work in Chapter 4 builds upon, that of collaborative filtering [8, 51, 73], where

the goal is to develop personalized rankings of items, based on their similarities to other

users, and those users’ preferences. Our work has a more difficult problem than traditional

collaborative filtering, in that the basic items we seek to rank — query trees — have struc-

ture and may overlap with one another. We also have close ties between the collaborative

filtering and online learning aspects of our platform. These have been the focal points of

study in Chapter 4.

6.2.3 Learning by Membership Query Synthesis

Our work on query debugging, and more generally the vision of improving integration

quality by synthesizing examples for labeling, is very similar to learning by membership

query synthesis. In this setting, the learner creates the sample on demand itself and requests

sample label from an oracle. This model has been heavily studied in the literature [2, 3, 53].

To the best our knowledge, our proposed learning models differ from those and are more

complex.

Chapter 7

Conclusion and Future Work

7.1 Summary

The vision of rapid information integration remains elusive. Recent work has proposed

to complement (or even replace) conventional integration with a “pay-as-you-go”, keyword

search-driven data integration model. This thesis addresses several fundamental research

challenges in implementing this model in an end-to-end system, where integration is driven

by users’ information needs specified as keywords, and integration quality is iteratively im-

proved from user feedback given onto query results. These challenges require novel solutions

to combine learning and limited amount of expert feedback to best improve integration,

sometimes in very noisy models. Overall, this thesis proposes

• Active learning techniques to repair links from small amounts of user feedback;

• Collaborative learning techniques to combine users’ conflicting feedback;

• Debugging techniques to identify where data experts could best improve integration

quality.

In developing these methods, this thesis also describes several basic building blocks

applicable to global-scale data integration:

• Combing outputs from schema matching and/or record linking tools to estimate the

amount of uncertainty associated with a query results;

112

7.2. DIRECTIONS FOR FUTURE WORK 113

• Active learning-based methods to sample relevant results with high uncertainty to

best improve the system’s ability to learn, such as uncertainty sampling and ranking

by expected model change.

• Means of diversifying query results, through clustering or optimizing a diversity ob-

jective function, so that user feedback can be more informative.

• Directly incorporating user similarity into online learning algorithm, so that feedback

from one user can propagate to other users as well.

• Matrix factorization-based collaborative filtering methods that decompose users and

integration features into smaller spaces, to predict the relevance of any pair of user

and feature.

• Debugging queries through sample synthesis to improve integration over large noisy

data, and two formal models for this approach: exact boolean model and approximate

weighted model.

• Recursive search method to quickly identify false links and greedy method to prune

the search space of query answers, applied in the exact learning model.

• Bayesian method to update the system’s belief on link probabilities and prioritization

strategies to select the best partial answers to ask for user feedback, applied in the

weighted model.

These methods are implemented within the Q System, a prototype of search-driven

integration. Their effectiveness are validated over several real-world datasets, in a variety

of domains such as bio-informatics and movies, through both synthetic experiments and

real user studies.

7.2 Directions for Future Work

Within the huge problem space of search-driven integration, this thesis has only explored a

starting set. Building upon this thesis, there are several possible directions for future work.

We point out some of them below.

114 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2.1 More Expressive Queries

The Q System returns Steiner trees as query answers to keyword search over structured

data. This is widely adopted in the literature. But there are other alternatives [88] to

Steiner trees as well, such as cliques under certain constraints. Similar to Steiner trees,

some alternative semantics also generate unions of conjunctive queries. A natural question

is how to learn from feedback on these types of query results.

Unions of conjunctive queries address a large class of integration tasks. Further along

this direction, we also wish to examine a broader class of queries, including negation and

aggregation. There is a question of how to enable users to specify such queries as well as

how to learn from these query results. This direction might be much more challenging.

7.2.2 Mapping Expressiveness

So far, the Q System has focused on correspondence between data items and matchings

between table attributes. These are much more express mappings that can be specified

between two datasets, heavily studied in the literature of schema mapping and data ex-

change. There are a series of open research problems of learning such mappings in the

search-driven integration framework. For example, what mappings can be learned? What

can be efficiently learned? How to learn from user feedback?

7.2.3 Relaxing Feature Independence Assumption

To this end we have assumed that features are independent. This is an effective assumption

but may not always be true. It might be beneficial to adopt a layered model in which

features are clustered.

7.2.4 Theoretical Analysis

This thesis have provided extensive experimental analysis, sometimes with provable guaran-

tee. More theoretical analysis will be desirable for a better understanding of search-driven

integration. Several directions in this space include, for example, Probably-Approximately-

Correct(PAC)-style analysis [53] and error bounds based on the notion of“no-regret”. In

7.2. DIRECTIONS FOR FUTURE WORK 115

addition, one can study the case of “adversarial matchers” that produce bad matching

scores. A major challenge here is the combinatorial nature of the problem.

7.2.5 Enabling Hypothetical Analysis

Currently, the Q System does not support “unlearning” from a feedback, i.e., reversing

changes made to the model due to learning from feedback. While this seems achievable,

more generally, we wish to allow user perform hypothetical analysis of features in the Q

System. For instance, users may mark a set of features as “bad” all at once and wish to

see how top-k results in a view change. As future work, we seek to leverage recent work on

provenance of linear algebra [85] and enable interactive analysis of this kind.

7.2.6 More Evaluation

We have tested some parts of the system within the www.ieeg.org neuroscience portal [47].

Ultimately we wish to also study performance on a broad class of “knowledge graphs” like

Freebase, YAGO [75], DBpedia [6], DBLP, and Nell [16]. We also seek to integrate these

datasets and others on Linked Open Data.

www.ieeg.org

Bibliography

[1] Bogdan Alexe, Balder Ten Cate, Phokion G Kolaitis, and Wang-Chiew Tan. Designing

and refining schema mappings via data examples. In Proceedings of the 2011 ACM

SIGMOD International Conference on Management of data, pages 133–144. ACM,

2011.

[2] Dana Angluin. Queries and concept learning. Journal of Machine learning, 2(4):319–

342, 1988.

[3] Dana Angluin. Queries revisited. Theoretical Computer Science, 313(2):175–194, 2004.

[4] Arvind Arasu, Michaela Götz, and Raghav Kaushik. On active learning of record

matching packages. In Proceedings of the 2010 ACM SIGMOD International Confer-

ence on Management of data, pages 783–794, 2010.

[5] Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak. Foundations of Data

Exchange. Cambridge University Press, 2014.

[6] Soren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and

Zachary Ives. Dbpedia: A nucleus for a web of open data. In Karl Aberer, Key-

Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon Nixon, Jennifer Gol-

beck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe

Cudr?Mauroux, editors, The Semantic Web, volume 4825 of Lecture Notes in Computer

Science, pages 722–735. Springer Berlin Heidelberg, 2007.

[7] Akanksha Baid, Wentao Wu, Chong Sun, A Doan, and Jeffrey F Naughton. On debug-

ging non-answers in keyword search systems. In International Conference on Extending

Database Technology (EDBT), 2015.

116

BIBLIOGRAPHY 117

[8] Nicola Barbieri, Giuseppe Manco, and Ettore Ritacco. Probabilistic approaches to rec-

ommendations. Synthesis Lectures on Data Mining and Knowledge Discovery, 5(2):1–

197, 2014.

[9] Khalid Belhajjame, Norman W Paton, Cornelia Hedeler, and Alvaro AA Fernandes.

Enabling community-driven information integration through clustering. Distributed

and Parallel Databases, 33(1):33–67, 2015.

[10] Robert M Bell and Yehuda Koren. Lessons from the netflix prize challenge. ACM

SIGKDD Explorations Newsletter, 9(2):75–79, 2007.

[11] Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Raquel Trillo Lado, and Yan-

nis Velegrakis. Keyword search over relational databases: a metadata approach. In

Proceedings of the ACM SIGMOD International Conference on Management of data,

pages 565–576, 2011.

[12] Philip A. Bernstein and Laura M. Haas. Information integration in the enterprise.

Commun. ACM, 51(9):72–79, 2008.

[13] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and Shashank

Sudarshan. Keyword searching and browsing in databases using banks. In IEEE

International Conference on Data Engineering (ICDE), pages 431–440. IEEE, 2002.

[14] Angela Bonifati, Radu Ciucanu, Aurélien Lemay, and S lawek Staworko. A paradigm

for learning queries on big data. In Proceedings of the First International Workshop

on Bringing the Value of Big Data to Users (Data4U 2014), page 7. ACM, 2014.

[15] Sarah Cohen Boulakia, Olivier Biton, Susan B. Davidson, and Christine Froidevaux.

BioGuideSRS: querying multiple sources with a user-centric perspective. Bioinformat-

ics, 2007.

[16] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka Jr,

and Tom M Mitchell. Toward an architecture for never-ending language learning. In

AAAI, volume 5, page 3, 2010.

118 BIBLIOGRAPHY

[17] Balder Ten Cate, Vı́ctor Dalmau, and Phokion G Kolaitis. Learning schema mappings.

ACM Transactions on Database Systems (TODS), 38(4):28, 2013.

[18] Adriane Chapman and HV Jagadish. Why not? In Proceedings of the 2009 ACM

SIGMOD International Conference on Management of data, pages 523–534, 2009.

[19] Lei Chen, Xin Lin, Haibo Hu, Christian S Jensen, and Jianliang Xu. Answering why-

not questions on spatial keyword top-k queries. In IEEE International Conference on

Data Engineering (ICDE), pages 279–290, 2015.

[20] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer.

Online passive-aggressive algorithms. The Journal of Machine Learning Research,

7:551–585, 2006.

[21] Aron Culotta and Andrew McCallum. Reducing labeling effort for structured prediction

tasks. In AAAI, pages 746–751, 2005.

[22] Anish Das Sarma, Xin Dong, and Alon Halevy. Bootstrapping pay-as-you-go data in-

tegration systems. In Proceedings of the 2008 ACM SIGMOD international conference

on Management of data, pages 861–874. ACM, 2008.

[23] Ting Deng and Wenfei Fan. On the complexity of query result diversification. Proc.

VLDB Endow., 6(8), June 2013.

[24] Hong-Hai Do and Erhard Rahm. Matching large schemas: Approaches and evaluation.

Information Systems, 32(6):857–885, 2007.

[25] AnHai Doan, Pedro Domingos, and Alon Y Halevy. Reconciling schemas of disparate

data sources: A machine-learning approach. ACM Sigmod Record, 30(2):509–520, 2001.

[26] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of data integration. Elsevier,

2012.

[27] Marina Drosou and Evaggelia Pitoura. Search result diversification. SIGMOD Record,

39(1), September 2010.

BIBLIOGRAPHY 119

[28] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. Duplicate

record detection: A survey. IEEE Transactions on Knowledge and Data Engineering,

19(1):1–16, 2007.

[29] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for

middleware. Journal of Computer and System Sciences, 66(4):614–656, 2003.

[30] Michael Franklin, Alon Halevy, and David Maier. From databases to dataspaces: a

new abstraction for information management. ACM Sigmod Record, 34(4):27–33, 2005.

[31] Michael J Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold

Xin. Crowddb: answering queries with crowdsourcing. In Proceedings of the 2011

ACM SIGMOD International Conference on Management of data, pages 61–72, 2011.

[32] Avigdor Gal and Tomer Sagi. Tuning the ensemble selection process of schema match-

ers. Information Systems, 35(8):845–859, 2010.

[33] Yunjun Gao, Qing Liu, Gang Chen, Baihua Zheng, and Linlin Zhou. Answering why-

not questions on reverse top-k queries. Proceedings of the VLDB Endowment, 8(7):738–

749, 2015.

[34] Boris Glavic, Sven Köhler, Sean Riddle, and Bertram Ludäscher. Towards constraint-

based explanations for answers and non-answers. In Proceedings of the USENIX Con-

ference on Theory and Practice of Provenance, pages 13–13, 2015.

[35] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversifica-

tion. In Proceedings of the 18th International Conference on World Wide Web, WWW

’09, 2009.

[36] Todd J Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In Pro-

ceedings of the ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems, pages 31–40, 2007.

[37] Fan Guo, Chao Liu, Anitha Kannan, Tom Minka, Michael J. Taylor, Yi Min Wang,

and Christos Faloutsos. Click chain model in web search. In WWW, pages 11–20, 2009.

120 BIBLIOGRAPHY

[38] Alon Y Halevy, Zachary G Ives, Dan Suciu, and Igor Tatarinov. Schema mediation in

peer data management systems. In IEEE International Conference on Data Engineer-

ing (ICDE), pages 505–516, 2003.

[39] Hao He, Haixun Wang, Jun Yang, and Philip S Yu. Blinks: ranked keyword searches

on graphs. In Proceedings of the 2007 ACM SIGMOD international conference on

Management of data, pages 305–316, 2007.

[40] Zhian He and Eric Lo. Answering why-not questions on top-k queries. TKDE,

26(6):1300–1315, 2014.

[41] Melanie Herschel, Mauricio A Hernández, and Wang-Chiew Tan. Artemis: A system

for analyzing missing answers. Proceedings of the VLDB Endowment, 2(2):1550–1553,

2009.

[42] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Transac-

tions on Information Systems (TOIS), 22(1), 2004.

[43] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search in relational

databases. In Proceedings of the international conference on Very Large Data Bases,

pages 670–681, 2002.

[44] Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F Naughton. On the prove-

nance of non-answers to queries over extracted data. Proceedings of the VLDB Endow-

ment, 1(1):736–747, 2008.

[45] Rebecca Hwa. Sample selection for statistical parsing. Computational Linguistics,

30(3):253–276, 2004.

[46] Ihab F Ilyas, Walid G Aref, and Ahmed K Elmagarmid. Supporting top-k join queries

in relational databases. The VLDB Journal, 13(3):207–221, 2004.

[47] Zachary G Ives, Zhepeng Yan, Nan Zheng, Brian Litt, and Joost B Wagenaar. Looking

at everything in context. The 7th biennial Conference on Innovative Data Systems

Research (CIDR), 2015.

BIBLIOGRAPHY 121

[48] Marie Jacob and Zachary Ives. Sharing work in keyword search over databases. In

Proceedings of the 2011 ACM SIGMOD International Conference on Management of

data, pages 577–588, 2011.

[49] Shawn R Jeffery, Michael J Franklin, and Alon Y Halevy. Pay-as-you-go user feed-

back for dataspace systems. In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, pages 847–860. ACM, 2008.

[50] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi Desai,

and Hrishikesh Karambelkar. Bidirectional expansion for keyword search on graph

databases. In VLDB, pages 505–516, 2005.

[51] Paul B Kantor, Lior Rokach, Francesco Ricci, and Bracha Shapira. Recommender

systems handbook. Springer, 2011.

[52] David R. Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable

crowdsourcing systems. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira,

and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24,

pages 1953–1961. Curran Associates, Inc., 2011.

[53] Michael J Kearns and Umesh Virkumar Vazirani. An introduction to computational

learning theory. MIT press, 1994.

[54] Benny Kimelfeld and Yehoshua Sagiv. Finding and approximating top-k answers in

keyword proximity search. In Proceedings of the ACM SIGMOD-SIGACT-SIGAI Sym-

posium on Principles of Database Systems, pages 173–182, 2006.

[55] Brian Litt, Greg Worrell, and Zachary G. Ives. The international epilepsy electrophys-

iology portal. www.ieeg.org.

[56] Qiang Liu, Jian Peng, and Alex Ihler. Variational inference for crowdsourcing. In

Advances in Neural Information Processing Systems, pages 692–700, 2012.

[57] Amélie Marian, Nicolas Bruno, and Luis Gravano. Evaluating top-k queries over web-

accessible databases. ACM Transactions on Database Systems (TODS), 29(2):319–362,

2004.

www.ieeg.org

122 BIBLIOGRAPHY

[58] Anan Marie and Avigdor Gal. Managing uncertainty in schema matcher ensembles. In

SUM, pages 60–73, 2007.

[59] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F Moore, and Dan Suciu. The

complexity of causality and responsibility for query answers and non-answers. Proceed-

ings of the VLDB Endowment, 4(1):34–45, 2010.

[60] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. In Ad-

vances in Neural Information Processing Systems, pages 1257–1264, 2007.

[61] Chad L Myers and Olga G Troyanskaya. Context-sensitive data integration and pre-

diction of biological networks. Bioinformatics, 23(17):2322–2330, 2007.

[62] Quoc Viet Hung Nguyen, Thanh Tam Nguyen, Zoltán Miklós, Karl Aberer, Avigdor

Gal, and Matthias Weidlich. Pay-as-you-go reconciliation in schema matching net-

works. In IEEE International Conference on Data Engineering (ICDE), pages 220–231,

2014.

[63] Aditya Parameswaran, Anish Das Sarma, Hector Garcia-Molina, Neoklis Polyzotis, and

Jennifer Widom. Human-assisted graph search: it’s okay to ask questions. Proceedings

of the VLDB Endowment, 4(5):267–278, 2011.

[64] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint program-

ming. Elsevier, 2006.

[65] Sudeepa Roy and Dan Suciu. A formal approach to finding explanations for database

queries. In Proceedings of the 2014 ACM SIGMOD International Conference on Man-

agement of data, pages 1579–1590, 2014.

[66] Mayssam Sayyadian, Hieu LeKhac, AnHai Doan, and Luis Gravano. Efficient keyword

search across heterogeneous relational databases. In IEEE International Conference

on Data Engineering (ICDE), pages 346–355, 2007.

[67] B. Settles and M. Craven. An analysis of active learning strategies for sequence labeling

tasks. In EMNLP, 2008.

[68] Burr Settles. Active Learning. Morgan & Claypool, 2012.

BIBLIOGRAPHY 123

[69] Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. In

NIPS, 2007.

[70] Si Shen, Botao Hu, Weizhu Chen, and Qiang Yang. Personalized click model through

collaborative filtering. In WSDM, pages 323–332, 2012.

[71] S lawek Staworko and Piotr Wieczorek. Learning twig and path queries. In Proceedings

of the 15th International Conference on Database Theory, pages 140–154. ACM, 2012.

[72] Han Su, Kai Zheng, Jiamin Huang, Hoyoung Jeung, Lei Chen, and Xiaofang Zhou.

Crowdplanner: A crowd-based route recommendation system. In IEEE International

Conference on Data Engineering (ICDE), pages 1144–1155, 2014.

[73] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering techniques.

Advances in artificial intelligence, 2009.

[74] Fabian Suchanek, James Fan, Raphael Hoffmann, Sebastian Riedel, and Partha Pratim

Talukdar. Advances in automated knowledge base construction. SIGMOD Records,

March, 2013.

[75] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A large ontology

from wikipedia and wordnet. Web Semantics: Science, Services and Agents on the

World Wide Web, 6(3):203–217, 2008.

[76] Partha Pratim Talukdar, Zachary G Ives, and Fernando Pereira. Automatically incor-

porating new sources in keyword search-based data integration. In Proceedings of the

2010 ACM SIGMOD International Conference on Management of data, pages 387–398,

2010.

[77] Partha Pratim Talukdar, Marie Jacob, Muhammad Salman Mehmood, Koby Cram-

mer, Zachary G Ives, Fernando Pereira, and Sudipto Guha. Learning to create data-

integrating queries. Proceedings of the VLDB Endowment, 1(1):785–796, 2008.

[78] Balder ten Cate, Cristina Civili, Evgeny Sherkhonov, and Wang-Chiew Tan. High-level

why-not explanations using ontologies. In Proceedings of the ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, pages 31–43, 2015.

124 BIBLIOGRAPHY

[79] Balder ten Cate, Vı́ctor Dalmau, and Phokion G. Kolaitis. Learning schema mappings.

In International Conference on Database Theory (ICDT), pages 182–195, 2012.

[80] Quoc Trung Tran and Chee-Yong Chan. How to conquer why-not questions. In Pro-

ceedings of the 2010 ACM SIGMOD International Conference on Management of data,

pages 15–26, 2010.

[81] Marcos Antonio Vaz Salles, Jens-Peter Dittrich, Shant Kirakos Karakashian,

Olivier René Girard, and Lukas Blunschi. itrails: pay-as-you-go information integra-

tion in dataspaces. In Proceedings of the 33rd international conference on Very large

data bases, pages 663–674. Proceedings of the VLDB Endowment, 2007.

[82] Jiannan Wang, Tim Kraska, Michael J Franklin, and Jianhua Feng. Crowder: Crowd-

sourcing entity resolution. Proceedings of the VLDB Endowment, 5(11):1483–1494,

2012.

[83] Xiaolan Wang, Xin Luna Dong, and Alexandra Meliou. Data x-ray: A diagnostic tool

for data errors. In Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data, pages 1231–1245. ACM, 2015.

[84] Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, Mourad Ouzzani, and

Ihab F. Ilyas. Guided data repair. PVLDB, 4(5):279–289, 2011.

[85] Zhepeng Yan, Val Tannen, and Zachary Ives. Fine-grained provenance for linear algebra

operators. In 8th USENIX Workshop on the Theory and Practice of Provenance (TaPP

16), Washington, D.C., June 2016. USENIX Association.

[86] Zhepeng Yan, Nan Zheng, Zachary G Ives, Partha Pratim Talukdar, and Cong Yu.

Actively soliciting feedback for query answers in keyword search-based data integration.

Proceedings of the VLDB Endowment, 6(3):205–216, 2013.

[87] Zhepeng Yan, Nan Zheng, Zachary G Ives, Partha Pratim Talukdar, and Cong Yu.

Active learning in keyword search-based data integration. The VLDB Journal, pages

1–21, 2015.

BIBLIOGRAPHY 125

[88] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword search in databases. Synthesis

Lectures on Data Management, 2009.

[89] Chen Jason Zhang, Lei Chen, HV Jagadish, and Chen Caleb Cao. Reducing uncer-

tainty of schema matching via crowdsourcing. Proceedings of the VLDB Endowment,

6(9):757–768, 2013.

[90] Chen Jason Zhang, Yongxin Tong, and Lei Chen. Where to: Crowd-aided path selec-

tion. Proceedings of the VLDB Endowment, 7(14):2005–2016, 2014.

[91] Dengyong Zhou, Sumit Basu, Yi Mao, and John C Platt. Learning from the wisdom of

crowds by minimax entropy. In Advances in Neural Information Processing Systems,

pages 2195–2203, 2012.

	University of Pennsylvania
	ScholarlyCommons
	2016

	Learning To Scale Up Search-Driven Data Integration
	Zhepeng Yan
	Recommended Citation

	Learning To Scale Up Search-Driven Data Integration
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Subject Categories

	Introduction
	Traditional Data Integration Techniques
	An Alternative: Keyword Search-based Data Integration
	Research Challenges
	Contributions
	Roadmap

	Background of the Q System: Search-Driven Integration
	Search-Driven Integration: A Sketch
	Q System Implementation
	Data Model and Learning Model
	Data Model: Graph, Features and Weights
	Query-Driven Linking, Search and Ranking
	Learning from Consistent Feedback

	Summary of Open Issues

	Active Learning in the Q System
	Background
	Finding Informative Queries
	Uncertainty in the Search Graph
	Graph Components and Features
	Edge (Schema Alignment) Features
	Node (Relation Authoritativeness) Features

	Composing Uncertainty for Queries

	Ranking and Learning
	Basic Ranking of Query Results
	Ranking by Expected Model Change
	Browsing and Feedback Model
	Expected Model Change

	Learning from User Feedback
	Learning Edge Costs
	Learning Weights for Schema Matchers

	Increasing Diversity in the Top-k
	Clustering Queries
	Directly Incorporating Diversity in the Score

	Incremental Update on Source Discovery
	Experimental Analysis
	Speed of Learning
	Recovering Gold Edges
	Initial Query Answer Quality
	Clustering vs. Diversification
	Discussion

	Conclusion

	Collaborative Learning in the Q System
	Combing Weights across Users
	Constraint-based Collaborative Filtering
	Weighting Constraints by User Similarity
	Weighting the MIRA Loss Function

	Collaborative Filtering-based Learning
	Background: Recommendation Systems
	Choice of Model-based Approach
	Matrix Factorization-Based Approach
	Stabilizing through Regularization

	Experimental Analysis and User Study
	Experimental Methodology
	Learning Rate: Edge Quality
	Users, Queries, and ``World Views''
	Learning rate with consistent feedback
	Cross-user learning with consistent feedback
	Learning rate with conflicting feedback

	Learning Rate: Query Answer Quality
	Running Time vs. Scale
	User Studies

	Conclusion

	Interactive Query Debugging in the Q System
	The Debugging Problem
	Boolean Model
	Worst Case Analysis
	Optimistic Priors and Recursive Search
	Greedily Pruning Multiple Answers

	Generalized Weighted Model
	Bayesian Link Update
	Model Specification
	Incorporating Noisy Oracle
	Incorporating Confidence
	Summary: Bayesian Update

	Synthesizing Labeling Samples
	Reducing Uncertainty
	Recursive Search based on Edge Frequency

	Putting it All Together

	Experimental Analysis
	Overview: Datasets and Methodology
	Boolean Model
	Weighted Model
	Discussion

	Conclusion

	Related Work
	Related Work in Data Management
	Data Integration
	Keyword Search over Structured Data and Top-k Query Answering
	Learning Queries and Mappings
	Crowdsourcing
	Others
	Debugging keyword query
	Why and why-not

	Related Work in Machine Learning
	Active Learning
	Recommendation Systems
	Learning by Membership Query Synthesis

	Conclusion and Future Work
	Summary
	Directions for Future Work
	More Expressive Queries
	Mapping Expressiveness
	Relaxing Feature Independence Assumption
	Theoretical Analysis
	Enabling Hypothetical Analysis
	More Evaluation

	Bibliography

