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Preface

After the Twente Data Management workshop on Uncertainty in Databases

held at the university of Twente in June 2006, the speakers and partic-
ipants expressed their wish for a workshop on the same topic colocated
with a large, international conference. This Management of Uncertain
Data workshop, colocated with the international conference on Very Large
DataBases (VLDB) is the result of this wish.

We received 9 submissions from all over the world. Each of these sub-
missions was reviewed by at least 3 different reviewers, resulting in 6
accepted papers for the workshop. In addition, we have 2 invited talks.
The first talk Combining Tuple and Attribute Uncertainty in Probabilistic

Databases by Lise Getoor from the University of Maryland, and the sec-
ond talk Supporting Probabilistic Data in Relational Databases by Sunil
Prabhakar from Purdue University.

We would like to thank the PC members for their effort in reviewing
the papers and of course the authors of all submitted papers for their
work. We also would like to thank the Centre for Telematics and Infor-
mation Technology (CTIT) for sponsoring the proceedings. Last, but not
least, we would like to thank the VLDB organizers for their support in
organizing this workshop.

Ander de Keijzer
Maurice van Keulen

Alex Dekhtyar
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Combining Tuple and Attribute Uncertainty in

Probabilistic Databases

Lise Getoor

Computer Science Department
University of Maryland, College Park

There has been a long history of work in the database community
on probabilistic databases. There is also a long tradition of work within
the machine learning and reasoning under uncertainty communities on
tractable factored representations of probability distributions, such as
probabilistic graphical models. Recently, research from these two commu-
nities are starting to share more and more commonalities, as the proba-
bilistic database work incorporates richer probabilistic dependencies and
the machine learning work incorporates richer relational models.

In this talk, I will survey some of the recent work, including work on
probabilistic relational models. I will show how these models can capture
both tuple and attribute uncertainty, and discuss effective query methods.
Joint work with Prithviraj Sen and Amol Deshpande.
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Supporting Probabilistic Data in Relational

Databases

Sunil Prabhakar

Department of Computer Science
Purdue University

Many applications domains are faced with the need to store and ma-
nipulate uncertain or imprecise data. Examples include sensor databases,
data cleansing, scientific data, and information retrieval systems. Proba-
bilistic modeling of this uncertainty is an attractive option for these ap-
plications. There is current interest in developing database management
systems for uncertain data and several projects have begun to address
this need.

In this talk we discuss some of the challenges and emerging solutions
for supporting probabilistic data in relational databases. The challenges
extend from the design of probabilistic relational models to performance,
and user interfaces. Models are an essential first step with several design
choices including the types of uncertainty handled (discrete, continuous,
tuple, attribute, etc.) and semantics of the operators. Implementation
issues include the choice of implementing the probabilistic support in the
core or as an external wrapper. We will discuss some performance issues
including indexing and optimization. The talk will draw upon experience
with developing the Orion uncertain data management system.
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Flexible matching of Ear Biometrics

Antoon Bronselaer(1), Joan De Winne(2), and Guy De Tré(1)

(1) Department of Telecommunications and Information Processing, Ghent University,
Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium

(2) Disaster Victim Identification Team, Federal Police Belgium, Ruiterijlaan 2,
B1040 Brussels, Belgium

Antoon.Bronselaer@ugent.be

Abstract. When identifying found bodies at the scene of a large-scale
disaster, a technique for fast and cheap identification is very useful. Many
techniques have been proposed in the past for this purpose. The method
developed here allows flexible matching of ante mortem and post mortem
pictures taken of the human ear and faces a challenge left unhandled
before: the low quality control on the pictures of missing persons. As
these pictures can be unsharp and out of profile, the comparison becomes
more difficult and a flexible approach is required.
Keywords: Flexible Object Matching, Ear Biometrics

1 Introduction

When severe disasters occur, the Disaster Victim Identification (DVI) team,
has the task of identifying the found bodies at the scene. In case of large scale
disasters such as a tsunami or an earth quake, their mission becomes very time-
critical. Further on, they often reside in countries where no DNA-databases or
fingerprint databases are at hand. In such cases, the team is in need for a fast
and accurate strategy to identify found bodies. To help them do this, a method
is developed that allows such an identification based on pictures of the ears. Next
to the scenario described in this paper, there are many other applications where
identification techniques can be very usefull, for example in analyzing images of
security cameras. The idea is that first, a database is filled with information of
found bodies (Post Mortem Cases or for short PMC’s). Next, a database with
information on missing persons is filled (Ante Mortem Cases or for short AMC’s).
Finally, a flexible matching of AMC’s and PMC’s allows the identification of the
found bodies. The biggest problem at hand is the poor quality of some AM
pictures which are for example retrieved from relatives (e.g.: family pictures).
In fact, there is no quality control of any kind at all. The main consequences
are that the AM pictures are often unsharp (Figure 1) and out of profile. These
two difficulties are the main challenges for our technique to cope with, but are
already recognized in other techniques. In [8] a multiple identification method
is presented and in [2] and [3], Voronoi diagrams are used. In both methods,
the quality control is recognized as the major pitfall in ear identification with
arbitrary pictures. The best known technique up to now is given in both [6]
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and [7] which works good on noisy pictures. The remainder of the paper will
be as follows. In section 2 the problem is described in detail. In section 3 a
solution is given to this problem by describing the Ear Identification System
(EIS). The system is discussed in 4 and some future work is discussed. Finally,
some concluding remarks are given in section 5.

Fig. 1. Example of low quality picture of an ear.

2 Problem description

When a body is found, the DVI-team will take a picture of each ear. These
pictures are labeled as follows:

PMXXX/EGR/Y Y Y Y

where XXX is a unique identification number for the found body, E signifies
the ear (Left (L) or Right (R)), G signifies the gender (Female (F), Male (M)
or Unknown (U)), R signifies the race (Caucasoid (C), Negroid (N), Mongoloid
(M) or Unknown (U)) and Y Y Y Y signifies the year when the picture was taken.
PM signifies ’Post Mortem’. So an example for a label is:

PM001/LFN/2006

The labels combined with the two pictures present a Post Mortem Case (PMC).
When a person is missing, the DVI-team will ask the relatives for pictures of the
missing person’s ears. These pictures are labeled as follows:

AMXXX/EGR/yyyy − Y Y Y Y/N

where AM signifies ’Ante Mortem’, yyyy signifies the birth year of the missing
person and N signifies the number of AM-pictures received from the relatives.
The other signs have the same meaning as with the PMC labels. So an example
for a label is:

Proceedings of the first international VLDB workshop on Management of Uncertain Data
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AM005/RMM/1985− 2006/4

The labels combined with the pictures present an Ante Mortem Case (AMC).
Considering the set of AMC’s and PMC’s, the challenge is now to match the
AMC’s to the correct PMC’s, or otherwise to match the PMC’s to the correct
AMC’s. The chosen direction of identification changes nothing to the technique
and for the sake of simplicity, only the matching of AMC’s to PMC’s is consid-
ered. Hence, our problem can be stated as: Given an AMC, find the PMC that
refers to the same person. The solution to this problem is described next.

3 Ear Identification System

We will now present the Ear Identification System (EIS) which is capable of
matching a given AMC to a resulting set of PMC’s, called R from now on. The
structure of R is specified later on. As a founding for the methods described
in this paper, a generic framework for the matching of objects is chosen [5].
The framework allows a generic comparison scheme to be tailored onto a given
situation by specifying the configuration of the scheme. This paper focuses on
the specification of this configuration to achieve an accurate comparison scheme.

3.1 Feature extraction

The first step towards comparison of cases is to somehow extract features from
the pictures in each case. More specific, a finite and ordered list of points L =<
p1, p2, ..., pn > with pi = (xi, yi), i = 1, 2, .., n, uniquely describing the ear on a
picture, is required. Since it is impossible to prove that a certain set P uniquely
describes a given ear, the number of points and the position of points is based
on expert knowledge and former scientific work. Therefore, the exact number
n and the position of the points is not specified here. They are considered as
variables for the system. The only restriction is that the points need to be ordered
to allow a point-to-point comparison. The question remains how to extract the
points from the picture. This could be done manually through clicking the points
or automatically, by means of an image processing algorithm. This choice does
not poses any restriction on the system. It is assumed that points are extracted
somehow from a (low quality) picture resulting in a list L. Once this is done,
each picture is replaced in the case by it’s corresponding list L. However, the
automated and ordered extraction of the points is a complex problem [2].

3.2 Evaluation domain

The choice of the evaluation domain is very important with respect to the ac-
curacy of the system. The choice here is influenced by two aspects. Firstly, the
goal of EIS is to tell if two cases are describing the same person. According to
[5], possibilistic truth values are preferred in this case because they allow elegant
modeling of uncertainty about truth. Motivated by this, the evaluation domain
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used within EIS is the domain of possibilistic truth values. Consequently, the
result of evaluation operators and aggregation operators must be a possibilistic
truth value, which is an extension of the classical two-valued boolean logic [4],
[9]. A formal definition of a possibilistic truth value is given next.

Definition 1 (Possibilistic truth value)
With the understanding that ℘̃ (I) represents the set of all fuzzy sets defined
over the universe I = {T, F} and P represents the set of all propositions, the
possibilistic truth value t̃ (p) of a proposition p ∈ P is formally defined by means
of the function t̃:

t̃ : P → ℘̃ (I) : p 7→ t̃ (p)

which associates a fuzzy set t̃ (p) with each p ∈ P . This fuzzy set presents a
possibility distribution, i.e. it’s membership grades are interpreted as degrees of
uncertainty:

∀x ∈ I : πt(p) (x) = µt̃(p) (x)

which means that

∀p ∈ P : πt(p) = t̃ (p)

where t : P → I is the mapping function which associates the value T with p if p
is true and associates the value F with p otherwise. In conclusion, a possibilistic
truth value is a fuzzy set with the following general form:

t̃ (p) =
{(

T, µt̃(p) (T )
)

,
(
F, µt̃(p) (F )

)}
According to definition 1, the possibilistic truth value t̃(p) of a proposition p ∈ P
must be interpreted as follows:

Pos [t (p) = T ] = µt̃(p) (T )
Pos [t (p) = F ] = µt̃(p) (F )

When modeling uncertainty by use of a possibilistic truth value, it is assumed
here that there always is one possibility completely possible. This means that
in this work, the fuzzy set t̃ (p) is assumed to be normalised. If not, one should
assume that there is another possibility, which we don’t know, that is completely
possible.

3.3 Evaluation operators

The comparison of two cases start with comparison of elementary aspects of the
cases. These elementary aspects are called attributes of a case. There are four
attributes to be compared:

– gender
– ear
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– race
– list L of points describing the ear

For each of these attributes, an evaluation operator E(.) is needed. The result
of the evaluation operator must be a possibilistic truth value (PTV) expressing
the possibility that the arguments are the same and the possibility that the
arguments differ. The first evaluation operator described here is the evaluation
operator Eear(e1, e2) for the comparison of the attribute ’Ear’. The value for
this attribute is never unknown and the domain contains two values: domear =
{L,R}. Hence, the evaluation operator is the standard equality operator adjusted
to the domain of PTV’s.

Eear(e1, e2) =
{
{(T, 1)} , e1 = e2

{(F, 1)} , e1 6= e2

The second evaluation operator is the operator to compare the attribute ’gender’.
Since the gender can be unknown, a model that incorporates uncertainty is
adopted here. The domain for attribute ’gender’, where M signifies ’male’ and
F signifies ’female’, is domgender = {{(M, 1)} , {(F, 1)} , {(M, 1), (F, 1)}}. The
element {(M, 1), (F, 1)} models the case where the genders ’male’ and ’female’
are equally possible, hence representing the case where the gender is unknown.
The domain consists of three elements which are possibility distributions defined
over the set {F,M}. The first two distributions have membership degrees 0
for respectively F and M. For a formal definition of possibility distributions,
the reader is referred to [11]. The evaluation operator for equality of possibility
distributions defined here is based on the Extension Principle of Zadeh [10]. The
generic operator is formally given by the following definition.

Definition 2 (Equality of possibility distributions)
With the understanding that ℘̃ (I) represents fuzzy power set defined over the
universe I = {T, F} and ℘̃(U) represents the fuzzy power set defined over an
arbitrary universe U, the equality operator for possibility distributions is defined
as:

Eπ : ℘̃(U)× ℘̃(U) → ℘̃(I) : S̃1 × S̃2 7→ Eπ(S̃1, S̃2)

where Eπ(S̃1, S̃2) is calculated by applying the extension principle of Zadeh [10]
for equation:

µEπ(S̃1,S̃2)
(T ) = sup

(x,y)∈{(x,y)| (x,y)∈U×U∧x=y}

(
min(µS̃1

(x), µS̃2
(y))

)
and

µEπ(S̃1,S̃2)
(F ) = sup

(x,y)∈{(x,y)| (x,y)∈U×U∧x6=y}

(
min(µS̃1

(x), µS̃2
(y))

)
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This definition allows for a comparison of possibility distributions. The evalua-
tion operator for ’gender’ simplifies to:

Egender(g1, g2) =
{
(T, µgender(T )) ,

(
F, µgender(F )

)}
with

µgender(T ) = max
x∈{F,M}

(min (µg1(x), µg2(x)))

and
µgender(F ) = max

x,y∈{F,M}∧x6=y
(min (µg1(x), µg2(y)))

The same considerations can be made for the attribute ’race’. We consider three
basic Races of craniofacial anthropology : Negroid (N), Caucasoid (C) and Mon-
goloid (M). As domain of the attribute ’gender’ the set of all possibility distrib-
utions over {C,N,M} is considered. The evaluation operator for ’race’ is again
based on definition 2 which simplifies to:

Erace(r1, r2) = {(T, µrace(T )) , (F, µrace(F ))}

with
µrace(T ) = max

x∈{C,N,M}
(min (µr1(x), µr2(x)))

and
µrace(F ) = max

x,y∈{C,N,M}∧x6=y
(min (µr1(x), µr2(y)))

The last and most complex evaluation operator is the operator for the attribute
L: the list of points describing a human ear. The reason why an operator is con-
sidered for the whole list and not for individual points is a theoretical subtlety.
There is a need for an operator that measures the similarity between two points.
In [5] the best solution for expressing similarity between two objects/attributes
is a similarity degree. However, the logical framework does not allow two differ-
ent evaluation domains within the same comparison scheme. Consequently, we
consider the operator Epoints(L1, L2) that compares two lists of points L1 and
L2 and results in a PTV.

The comparison of L1 and L2, each of length l, starts by rescaling points of
one list, so that points are matched on the same scale. Since it is possible that
the pictures do not show the ear in good profile, a 3-dimensional affine transfor-
mation of the points is needed, which is represented by the 3× 3-transformation
matrix A:

a1 a2 a3

b1 b2 b3

c1 c2 c3


The transformation equations θ are given by the equation:

X = A.X ′
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where X is a reference point of L1 and X ′ is a reference point of L2, or otherwise.
Since the points are two-dimensional, the elements c1, c2 and c3 are not important
and assigned the next values:

c1 = 0, c2 = 0, c3 = 1

The other elements of A are determined by three reference points, resulting in a
linear uniquely solvable system 1 of six equations and six variables. The theoreti-
cal linear system is presolved so that for three given reference points of both lists,
A is uniquely determined. The question remains if there in fact are three points
that are always unambiguously defined on the ear. We consulted the DVI-team
with this question. The three points are (1) the tip of the tragus, (2) the inter-
section of the helix and antihelix the point as constructed on Figure 2. Once the

Fig. 2. Reference points of the transformation.

transformation matrix is known, points from one list can be transformed onto
points of another list. The point-to-point transformation θ is given by:

θ(X) = A.X

For further reasoning, it is assumed that list L1 is preserved and list L2 is
transformed. Hence, the transformation operator ΘL1(L2) will transform L2 and
the transformation matrix A depends on L1. This is formally given by:

ΘL1(L2) : (<3)l → (<3)l : [x, y, 1]T 7→ θ([x, y, 1]T )

1 It is assumed that the reference points are not colinear in order to obtain a unique
solution.
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When the points are transformed, the next step is comparison of individual
points. The similarity between two points used here is based on the 2D-gaussian
distribution:

G = Ae
(x−xm)2

−2σ2
x e

(y−ym)2

−2σ2
y

where A is a scaling factor, σx and σy are the standard deviations and (xm, ym)
is the mean of the distribution. An example of the distribution is shown in Figure
3. The similarity for two points P1(x1, y1) and P2(x2, y2) (notice that the third

Fig. 3. 2D Gaussian distribution with A = 1, σx = 5, σy = 8 and mean (0, 0)

component of the points is skipped since the affine coordinates are normalised)
is given by the formula:

simσx,σy
= e

(x1−x2)2

−2σ2
x e

(y1−y2)2

−2σ2
y

This similarity measure is parameterised with the standard deviations σx and
σy, which determine the e−

1
2 similarity interval. This is illustrated on Figure

4 where the grey zone represents the e−
1
2 similarity interval of the center of

the ellipses. This means that points lying in this interval have a similarity with
the mean of the distribution of more than e−

1
2 ≈ 0.60653. The combination of

parameters can thus be interpreted as a degree of inaccuracy that is allowed in
the assignment of the points. A larger value for the standard deviances implies
a larger e−

1
2 similarity interval. This means that more inaccuracy is allowed

and the restriction for two points to be similar is less severe. Since the scale
of the picture is not predetermined, it is important that the parameters of the
similarity measure are dynamically adapted. More precise, σx and σy are rescaled
depending on the scale of the constellation in which points are compared. With
linear rescaling the formula is:

σ = σ∗(1− S∗−s
S∗ )

where s represents the scale of a given picture and σ∗ and S∗ represent the
parameter value and scale of a referential picture. When the points are compared
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Fig. 4. Projected similarity intervals in XY-plane

one on one, the combination of the results is the next step. This can be done
in different ways. Possibly choices are the (weighted) average operator or an
arbitrary t-norm. All these operators result in a similarity degree d in the unity
interval [0, 1]. The results can be combined by taking the (weighted) average
of the individual similarity degrees. This results in the following intermediary
evaluation operator for lists of points:

εpoints(L1, L2) =
1
l

l∑
i=1

e
L1[i].x−ΘL1

(L2)[i].x

−2σ2
x ∗ e

L1[i].y−ΘL1
(L2)[i].y

−2σ2
y

where L[i].x signifies the abscis of the i-th point of L and L[i].y signifies the
ordinate of the i-th point of L. Notice that a weighting average offers the mod-
elling of uncertainty on the level of point assignment, which may be caused by
the fact that the point is hard to identify. The parameter scaling is assumed to
be implicit here. The result of εpoints(L1, L2) is a similarity degree. However, the
evaluation operator should result in a PTV. This considerations results in the
final evaluation operator for lists of points:

Epoints(L1, L2) =n�
T,

εpoints(L1,L2)

max(εpoints(L1,L2),1−εpoints(L1,L2))

�
,
�
F,

1−εpoints(L1,L2)

max(εpoints(L1,L2),1−εpoints(L1,L2))

�o

3.4 Aggregation operators

In the previous section, four evaluation operators are proposed, all resulting in
a possibilistic truth value. The second step of the system is to aggregate these
results into a general result. Given that all the attributes should be satisfied
in order to conclude a positive identification, conjunctive behaviour of the ag-
gregator is needed here. A weighted conjunction operator for PTV’s will be
introduced here based on a (t-norm,t-conorm)-pair. Which pair is best used for
optimal identification is currently under research. The required operator is ex-
plained step by step. The first step induces a dynamic calculation of weights for
the four basic evaluations. This mechanism determines the weights depending
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on the outcome of the evaluations [1]. Since these outcomes are all PTV’s, they
represent the possibilities that the outcome is true or false. In order to model
this dependence, a weight point (wt, wf ) in a two dimensional weight space is
predetermined for each evaluation. This weight point reflects the importance of
the evaluation in case the outcome is true (wt) and in case the outcome is false
(wf ). Next to these weights this mechanism needs a measure for the degree to
which an evaluation is certainly true or false. An appropriate measure is the
necessity measure for possibility distributions, which in case of PTV’s simplifies
to:

Nec(E = T ) = 1− µE(F )
Nec(E = F ) = 1− µE(T )

where E represents the outcome of an evaluation operator, hence a PTV. The
weight w∗

i for the evaluation with outcome E is given by:

w∗ = wt ∗ (1− µE(F )) + wf ∗ (1− µE(T ))

Once the weights are calculated, an operator is needed to model the impact of
the weight on the outcomes of the evaluations. For this purpose, an implicator
for PTV’s is used. The implicator ∧⇒f should only be used in combination with
a conjunction operator and is defined as:

Definition 3 (Implication operator for combination with conjunction)
Assume a fuzzy implicator ⇒f is given and that ℘̃(I) is the fuzzy powerset of
I = {T, F}. The generic implication operator for combination with a conjunction
operator is defined as:

∧⇒f : [0, 1]× ℘̃(I) → ℘̃(I) : (w, Ṽ ) 7→ ∧⇒f (w, Ṽ )

where:
µ ∧⇒f (w,Ṽ )

(T ) = w ⇒f µṼ (T )

and
µ ∧⇒f (w,Ṽ )

(F ) = ¬ (w ⇒f ¬(µṼ (F )))

Next to the impact of weight, a conjunction operator for PTV’s is required
in order to combine PTV’s. An appropriate operator could be found in the
application of the extension principle of Zadeh. However, a more simple approach
is preferred here. The conjunction operator used is a direct extension of a given
t-norm t.

Definition 4 (Conjunction for possibilistic truth values)
Assume a generic t-norm t and a t-conorm s is given and that ℘̃(I) is the fuzzy
powerset of I = {T, F}. The conjunction operator ∧̃t is formally defined as:

∧̃t : ℘̃(I)× ℘̃(I) → ℘̃(I) : (Ũ , Ṽ ) 7→ Ũ ∧̃tṼ

with
µŨ∧̃tṼ

(T ) = t(µŨ (T ), µṼ (T ))
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and
µŨ∧̃tṼ

(F ) = s(µŨ (F ), µṼ (F ))

All the theoretical pieces are now available to define the weighted conjunction
operator that is used within the EIS system.

Definition 5 (Weighted conjunction for possibilistic truth values)
Assume a implicator for conjunction

∧⇒f , a conjunction operator for PTV’s ∧̃t

and let ℘̃(I) be the fuzzy powerset of I = {T, F}. The weigthed conjunction
operator is then formally given by:

∧w
t : ([0, 1]× ℘̃(I))2 → [0, 1]× ℘̃(I) :

((w1, Ṽ1), (w2, Ṽ2)) 7→ (max(w1, w2),
∧⇒f (w1, V1)∧̃t

∧⇒f (w2, V2))

Definition 5 is the operator used in the EIS system to combine the outcome of
all evaluations into a single PTV representing the result of the match.

3.5 Result set R

When the results are known, the best matching PMC’s need to be identified. For
this purpose an ordering function on PTV’s is needed. The ordering function o
considered here is:

o : ℘̃(I) → < : {(T, µT ), (F, µF )} 7→ µT +(1−µF )
2

This function can be applied on each PTV that is the result of a case-to-case
match. Next, the ordering on the set of real numbers is used to identify the
best matching cases. There are several strategies for the decision of which cases
are returned. A first possibility is a threshold τ on the outcome of the ordering
function o. Consequently, a PM-case with the PTV p as result of the match will
be added to R if:

o(p) > τ

Another strategy is a top-n result set, meaning that the n best matches will be
represented in R. The precise strategy is of low theoretical importance and is
quite user-dependent.

4 Discussion and future work

A first implementation of the system based on the probabilistic t-norm/t-conorm
pair has been achieved. A first small test, being the matching of twenty cases
yielded an accuracy of 65%. In 90% of the cases the correct case was retrieved
within the top three. The main accuracy problem is the bias in the decision
criteria caused by the most general affine transformation. However, this is an
issue at the level of feature extraction while the system focusses on intelligent
matching. Due to this, the feature extraction system must be expanded first
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to cope with cases where perspective is a problem. This requires a number of
restriction posed over the affine transformation used. This is immediatly the
main reason why the test scope is limited in this work.

The current system implements the theoretical framework described in [5] for
identification of humans. This identification is based mainly on the biometrics
of the ear. However, next to the biometrics of the ear, there are several non-
biometric features that can assist to a better identification. Adding extra features
for which the value can easily be given (like gender and race) narrows down the
search space very quickly. The automated combination of biometric and non-
biometric data offers a very fast and cheap strategy in identification processes.

As for the biometrics matching the solution presented here uses a general
affine transformation to rescale sets of points. Because there is no control on the
angle from which the picture is taken, nor the distance from which it is taken,
this affine transformation might bias the similarity measure on points. Hence, the
technique as it is now is invariant to rotation, scaling and translation. It allows
for minor variations in the perspective but as this variation becomes large, the
matching process becomes tedious. For this purpose a dynamic method may be
used to assign the points incalculating the perspective to some extent. However,
better methods might be available and this should be the base for research in
the future. Following this direction, it might be usefull to extend the system
towards the matching of curves describing the biometrics. However, it should be
tested if these methods work well when large amounts of noise are present.

5 Conclusions

We have proposed a method to identify victims of severe disasters quick and
easily, based on (low quality) pictures of the victim’s ears. The method offers
flexibele comparison of cases, where a case consist of information drawn from the
picture of the ear, gender, race and the side of the ear. The comparison of cases
includes two major steps: evaluation of the main attributes of two cases and
aggregation of the results of the evaluations. These two steps are theoretically
guided by an underlying mathematical framework proposed in [5]. We defined
appropriate evaluation and aggregation operators to implement an identification
system.
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Abstract. Uncertainty is an intrinsic feature of automatic and semi-
automatic data integration processes. Although many solutions have
been proposed to reduce uncertainty, if we do not explicitly represent
and keep it up to the end of the integration process we risk to lose rel-
evant information, and to produce misleading results. Models for uncer-
tain data can then be used to represent integrated data sources resulting
from uncertain data integration processes. In this paper we present a
survey of existing approaches directly dealing with uncertainty in data
integration, define a generic data integration process that explicitly rep-
resents uncertainty during all its steps, and present some preliminary
results and open issues in the field.

Keywords: Uncertainty, Data integration, Data models

1 Introduction

This paper concerns the management of uncertainty in the field of data integra-
tion. We introduce the problem defining a generic probabilistic data integration
process, present the state of the art, give some original contributions and outline
open issues. In addition, we discuss the relationships between data integration
and models for uncertain data.

Information integration is the general process of producing a single infor-
mation source out of some local information sources [1–13]. Many studies re-
gard structured information sources, for which we can define two sub-problems:
schema integration and instance integration. The term data integration is often
used to refer to information integration applied to structured data (both schema
and instances), and we will use it in this acception in the following.

While uncertainty is unavoidable in data integration, and the majority of
existing methods and systems deal with uncertain information, specific studies
on this topic have emerged only recently, and to the best of our knowledge

⋆ This work has been supported by projects Prin 2005 “Middleware basato su Java
per la fornitura di servizi interattivi di TV digitale” and CIPE 4/2004 “Innovazione
e centri di ricerca nelle Marche”.
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they focus on specific tasks of the data integration process, without describing
how to use uncertain information outside those tasks. In fact, many existing
methods remove the uncertainty at some point, through defuzzification or a
(semi-)automatic choice of the most likely outcomes.

To make an analogy with the field of data modeling, database theory was
initially developed with a crisp-and-closed-world assumption, and early data
models could not represent uncertain information. However, it soon became clear
that uncertain information could be valuable, and sometimes more useful than
missing information. This leaded to the study of several formalisms, from null
values and C-tables to probabilistic and possibilistic data models.

In the field of information integration we are experiencing a similar process.
In a 2003 survey paper about data integration, the problem of uncertain data
management was not mentioned, and the main difficulty was to identify correct
semantic relationships between schema objects, i.e., to remove uncertainty about
the relationships [14]. Later, on another survey paper, the problem of dealing
with imprecise mappings was mentioned, without explicitly referring to uncer-
tainty management [10]. However, it was recognized that we will never be able
to find all correct matches between all schema objects we compare, and we must
therefore be aware of possible errors and find ways to use partially incorrect
results. In a recent survey paper by the same author, uncertainty management
has been explicitly indicated as one of the future challenges in the field [11].

In the next section we define a generic data integration process ex-

plicitly representing uncertainty, and indicate where the management of
uncertainty is more critical, pointing out the difficulties in implementing this
approach. As we will see, there are both computational problems and repre-
sentation problems, i.e., information that is difficult to formalize. This process
extends existing methods that at some point during the integration activity
transform uncertain information into exact one, and provides a common gen-
eral context for further research. Then, we present some preliminary results

we have obtained trying to tackle the aforementioned problems. In particular,
we show that top-K mappings can be used to increase the recall of a data in-
tegration process, justifying the usage of less probable outcomes. However, we
also see that cutting low-probability mappings may result in the loss of correct
information. In addition, we show that probabilistic dependencies can provide
information on how to improve the schema matching phase. Section 5 presents
an up-to-date survey of existing data integration methods that explicitly deal
with uncertainty. Finally, we conclude the paper with a brief discussion of open

issues.

2 A probabilistic data integration approach

In Figure 1 we have represented the tasks composing a general data integra-
tion process, with 1:1 mappings and two input data sources, like in [13]. This
is made of three main tasks: wrapping, matching and merging. First the data
sources are translated into homogeneous data models (wrapping), that allow
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Fig. 1. A generic data integration process
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People Administrators

Men Women Buildings

Fig. 2. A visual description of some possible semantic relationships between two en-
tities. In this figure we have considered equivalence (S

=), subset-subsumption (
S

⊂),

superset-subsumption (
S

⊃), overlapping (
S

∩), disjointness (
S

∩/), and incompatibility (
S

/∼).
However, the majority of systems uses only two relationships, i.e., match and not match

(M and /M)
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the comparison of otherwise heterogeneous data models with different informa-
tion representation constructs. For now, we can model these information sources
as sets of schema objects S1 = {O11, . . . , O1M} and S2 = {O21, . . . , O2N}. Then,
each object from the first data source is compared with all or some of the objects
of the second (matching). The objective of the matching phase is to find one or
more candidate mappings between S1 and S2. A mapping associates each pair
of objects from the two input data sources to a semantic relationship3, like the
ones represented in Figure 2.

Definition 1. Let R be a set of mutually exclusive semantic relationships, and

S1 and S2 two sets of schema objects. A mapping is a function m : S1×S2 → R.

An uncertain mapping between data sources S1 and S2 is a probability distribu-
tion over the set M(S1, S2) of all mappings between them. Finally, the discov-
ered mapping is used to merge the data sources, i.e., to generate the integrated
database (merging). Before merging, many methods implement user feedback
cycles or other learning approaches to improve the quality of the mapping. The
objective of these technique is to remove the uncertainty on the mapping, but
in many cases we can only reduce it, and must find ways to manage it during
the rest of the data integration process. The merging phase depends on the set
R of semantic relationships. Many approaches look for two simple kinds of rela-
tionships (match and not match), put together matching objects, and evaluate a
data mapping between them (also called record linkage, deduplication, and other
names from different fields). In our vision, the result of the merging phase should
be an uncertain data model, to provide to the final users/applications a com-
plete view of the result of the integration. In particular, this will be necessary in
all applications where human intervention is difficult or impossible to perform,
like in peer-to-peer data integration/management, and in our opinion should be
also used after human intervention to represent all the information for which
it has not been possible to identify the correct relationships for sure. As a last
consideration, there is still an assumption that we need to relax: in the process
described so far, the input data sources were traditional databases. However,
we can think of not only producing an uncertain data model, but also starting
from uncertain data models. This assures the closure property of the process
we are defining, that can be applied iteratively also to data sources obtained as
integration of others, to merge more than two input databases.

To identify the critical points of the process, we must expand the most diffi-
cult task, i.e., the matching phase, to see how it is organized in existing methods.
Modern systems do not use a single monolithic matcher, but a pool of matchers,
each with specific expertise on some properties of the analyzed objects, like type,
name or structure. After all matchers have compared the required objects, for
each pair of objects their outcomes are combined (matcher aggregation) to

3
Semantic relationships are not relationships between data instances, like strings or
numbers, but between the real world objects they represent. This is one of the main
causes of uncertainty in automatic schema matching. In the following we will always
consider semantic relationships

Proceedings of the first international VLDB workshop on Management of Uncertain Data

21



produce a single relationship. If we do not need to represent uncertainty, the
result of a matcher M comparing two objects O1 and O2 can be modeled by a
tuple 〈O1, O2, r〉, where r ∈ R. For example, the relationship between schema ob-

jects S1.Country and S2.State can be modeled as 〈Country, State,
S

∩〉, stating
that they overlap each other. To represent the inherent uncertainty of auto-
matic schema matching algorithms we are going to use the following extended
definition, that we call probabilistic uncertain semantic relationship (pUSR).

Definition 2 (pUSR). A probabilistic uncertain semantic relationship between

two objects O1 and O2 is a tuple 〈O1, O2, R, P 〉, where R is a set of mutually

exclusive relationships and P is a probability distribution over R.

As an example, we can substitute the aforementioned relationship between

Country and State with the pUSR 〈Country, State, { S
=,

S

⊂,
S

⊃,
S

∩,
S

∩/,
S

/∼}, Pex〉,

where Pex(
S

∩) = .8, Pex(
S
=) = .2 and Pex(

S

⊂) = Pex(
S

⊃) = Pex(
S

∩/) = Pex(
S

/∼) = 0.

This means that we are no longer certain that
S

∩ is the correct relationship,
assigning a probability of .8 to it and a probability of .2 to the alternative
hypothesis S

=.
The second step of the matching phase is the production of the mapping

(relationship aggregation), which corresponds to a combination of all the
identified uncertain semantic relationships and the production of an uncertain
mapping, as previously defined. The merging phase depends on the data model-
ing formalism and on the set of semantic relationships used during the matching
phase.

2.1 Critical points in the uncertain data integration process

The critical points of a probabilistic data integration approach are the same as
in many other applications of probability theory: probabilities must be produced

and then aggregated. In particular, each matcher must return probabilities that
can be compared and aggregated with the ones produced by other matchers. It
should be therefore clear which interpretation of the theory is used inside each
matcher, e.g., classical, frequency or subjective, and also if different probability
distributions can be aggregated as they are. For example, assume a matcher
finds some common instances inside two schema objects, supporting a match

relationship, and another matcher thinks that the names of the two objects
are not related, supporting a not match. How much probability mass should
we assign to the two hypotheses? Surely we can tune these values after some
experiments, but this is very different from having an underlying theory —
which is the main reason to use probability theory.

Even if the matchers produce probabilities that can be aggregated, the ag-
gregation itself is problematic. The first aggregation of probabilities concerns
the outcomes of different matchers about the same pair of schema objects. Some
matchers may be independent, meaning that we can change the features analyzed
by one of them without affecting the outcome of the other. As an example, con-
sider two matchers comparing respectively the number of instances in a schema
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object and its name. If you change the name, but not the cardinality, the out-
come of the cardinality matcher will not change, and vice versa. However, in
general different matchers can be interdependent. As a consequence, the method
that performs the combination needs to know the pUSRs it must merge and

additional information about their dependencies.

The second aggregation of probabilities is problematic as well. Also in this
case there can be dependencies between different pUSRs. For example, the
matchers can believe that schema objects A and B are equivalent, that schema
objects B and C are equivalent as well, but A and C are incompatible (A S

=

B, B S
= C, C

S

/∼ A). Evidently, this is not possible: the probability of this map-
ping would be 0, and not the product of the probabilities locally assigned to
the three relationships. Depending on the set of semantic relationships under
consideration, some relationships between different pairs of schema objects can
be mutually exclusive, referring to common schema objects, and there can also
be other dependencies to be studied.

3 Preliminary results

The first result we present is an empirical evaluation of the effect of keeping
(or not) uncertainty in the mapping produced by the matching phase. Figure 3
illustrates two portions of schemata obtained as views over a database containing
political and geographical information about our Planet [15], that we use in the
following experiments. These schemata contain many schema objects that are
difficult to be matched. For example, the two tables Country and State contain
some common information, despite their different names. The two tables named
Organization are exactly the same, while one of the two tables called City

refers only to Country capitals, despite their common name. Then, there are
tables that are completely unrelated, like Lake and Language, although they
share some column names. Even if we look at the instances (values) contained
inside some columns, we see that automatic matchers could make the wrong
decision. For example, both columns area and population contain integers,
and probably even similar values.

In our experiments we compared subsets of the input schemata using the
approach described in the previous section, and obtaining an uncertain mapping.
Then, we extracted and analyzed the top-K (K=50) mappings. When we consider
the most likely mapping, we retrieve N1 = m · n relationships, where m and n

are the sizes of the two input schemata. Of these, only N t
1 will be correct. If we

consider the first two most likely mappings, they will contain N2 mappings, of

which only N t
2 correct. We will therefore evaluate the precision (

Nt

i

Ni

) and recall

(
Nt

i

N1
) of the uncertain mapping varying i, to see if using less likely mappings we

can increase the recall without significantly decreasing the precision. If this is the
case, we will know that considering uncertain information may generate better
results. Similarly, we will check the maximum recall we obtain considering only
a bounded number of mappings, i.e., not using all the uncertain information we
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Fig. 3. Two schemata S1 and S2, containing geographical and political data

collected during the matching phase. This to show that even a top-K approach
may lose some valuable information.

The matchers used in our experiments analyze the following features of the
schema objects: name, data type, number of instances, value of instances, statis-
tics on the values of instances. In addition, in the first set of tests we used only
match and not-match relationships, with which there cannot be mutually ex-
clusive semantic relationships and we can compute the top-K mappings in time
linear to the number of pairs of schema objects. As the objective of this paper
is not to describe a prototype and compare it with existing software, we do not
provide the algorithms used by our matchers to compare the local databases.

In the following we perform a qualitative and a quantitative analyses. We
will first describe some relevant examples manually chosen from the results of
our tests, where the matchers failed in identifying the correct relationship in
the top-1 mapping. These examples are very important, because they justify
the discovery of additional mappings: the correct relationships can in fact be
found in subsequent results produced by our method. Then, we will compute
the increase in the recall of correct relationships, and study how this affects the
precision of the integration. This analysis is partial, because we do not consider
the probabilistic information associated to the mappings, but only their order-
ing. However, as we have already mentioned, this would be useful to compare
our prototype with other methods, which is not an objective of this paper. In
addition, one of the open problems highlighted in this paper concerns the repre-
sentation and aggregation of probabilities, making the analysis of the probability
of our results too preliminary.
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We will now examine some relationships that have not been correctly identi-
fied in the first mapping retrieved by the matchers — we remind the reader that
Figure 3 illustrates only part of the input schemata, for space reasons. In partic-
ular, we consider the relationships between a column Country in S1, referring to
non-American Countries, and other columns of S2. The first case is the compar-
ison with a table (primary key) named Politics. Here, the correct relationship
is a match, because this table contains one row for each non-European country,
and uses the code of the country as its primary key. However the Name matcher
supports the not match relationship. The correct relationship is identified af-
ter a few mappings, according to the different opinion of the Instance matcher.
This could make us think of considering instances more than other information.
However, even if a detailed study of expert weighting is outside the scope of
this paper, giving too much responsibility to the comparison of instances is not
necessarily a good idea. In fact, we can be unlucky in the choice of the samples,
or there can be unrelated instances with the same string representation, as it
happens in the two columns Country.Code and Organization.Abbreviation.

Finally, as a more tricky example, consider a comparison between columns
Country and Population. Here, the Instance matcher correctly identifies that
the two columns do not match. However, the Name matcher finds that the two
names have a common hypernym — both a country and a population are groups
of people. Unfortunately, this is not the intended meaning of the columns named
Population in our test databases, and the resulting relationship is wrong.

Also from a quantitative point of view the results we obtained with a limited
number of relationships (177) to find are very good, and have been represented
in Figure 4. In fact, we have been able to find all correct relationships, with
an increase of 4% in the recall of the matcher, paying only a decrease of less
than 1% in its precision. Also on a larger input (885 pairs of schema objects) we
could increase the recall of a similar percentage. However, we could not identify
all correct relationships.

In summary, the results obtained with these experiments show that it is worth
keeping uncertainty after the matching phase, and that on complex integration
problems the information loss caused by the removal of uncertainty becomes
more relevant.

When we use 6 semantic relationships, different pUSRs are no longer indepen-
dent. As an example, consider the pairs of schema objects Borders.Country1,
Economy.Country, State.Code. During the schema analysis phase, the following
relationships could be identified4:

– Borders.Country1
S

⊂ Economy.Country

– Borders.Country1
S

∩ State.Code

– Economy.Country
S

⊂ State.Code

Unfortunately, the relationship between schema objects Borders.Country1 and
Economy.Country is wrong, because the two objects overlap each other. In fact,

4 To be more precise, one of the relationships is extracted from one of the input
schemata, because two of the objects belong to the same schema. However, this is
not relevant to our discussion
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Fig. 4. Precision/Recall curve using two (match/not-match) relationships and 177/885
pairs of schema objects

the Instance matcher must have chosen a sample from Borders.Country1whose
elements belonged to Economy.Country. However, this matcher was also aware
that it was analyzing only a fraction of the instances, therefore it assigned some
(smaller) probability to overlapping (

S

∩), depending on the relative size of the
sample.

Now consider again the mappings ordered by their likelihood with an inde-
pendence assumption (which we have already seen to be wrong in general). If
unsatisfiable mappings have probability 0, they do not affect the ranking and the
probability of the other discovered mappings. However, if there is some probabil-
ity assigned to them, this is wrong, and should be decreased to 0 and distributed
to other mappings. Therefore, with respect to the mappings obtained using the
independence assumption the computed probabilities could differ from the real
probabilities of a value depending on the probability incorrectly assigned to un-
satisfiable mappings. However, the practical effect depends on the distribution
of unsatisfiable mappings.

In Figure 5 we have plotted the number of unsatisfiable schemata found dur-
ing the process — we stopped the algorithm after 500 hits, assuming of having
found an intractable case. The top-K algorithm with the independence assump-
tion determines the order with which the mappings are examined. Therefore,
we may think of an ordered list of 6m×n mappings that we examine starting
from the head — 6 is the number of relationships considered in our tests on
inconsistencies. The situation we want to avoid is of having a distribution of
the unsatisfiable mappings with a high density near the head of the list, and
the reason of this undesired distribution can be the high probability assigned
to a wrong relationship. In this case, this relationship will appear in many of
the most likely mappings, creating inconsistencies with other (correct) relation-
ships. This effect is likely to be exponential, because there would be 6(m×n)−1

mappings containing this problematic relationship. This is the reason because
intractable cases are more frequent when the number of pairs increases: with
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more pairs it is more likely to find a pair where the matchers identify an in-
consistent relationship. Therefore, for many of the schemata that we tried to
match the distribution of unsatisfiable mappings has been near the top of the
list obtained with the independence assumption. However, these cases can be
tackled effectively, and these apparently negative results can be used to improve
the outcome of the integration.
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Fig. 5. Number of unsatisfiable mappings found during the computation of the top-K
mappings, and number of feedbacks needed to reduce the intractable cases to tractable
ones

To tackle this problem, consider that from the satisfiability-checking algo-
rithm we can identify the relationships that caused the inconsistencies. Incon-
sistencies are due to wrong relationships, and this means that our software can
focus our attention on the portion of the schemata where it fails in finding the
correct relationship.

At this point, we can use this information to re-execute and improve the
matching phase. If we can add a user feedback cycle to our approach, when an
inconsistency is identified we can point the user to a few schema objects, which
can be easily manually checked. The user feedback can be specified without
altering the architecture of the software. We will simply add a new matcher to
the pool, which allows a user to specify his/her opinion on some pairs of schema
objects, through a probability assignment. This allows a human expert to give
his/her contribution to the matching phase. Automatic matching is necessary
because schemata may be too large to be manually analyzed. However, a user
can focus on some pairs and “help” the matchers where they fail. These pairs are
those identified as the cause of problems by the satisfiability-checking algorithm,
and notified to the user. More in general, this approach can also be used in case
a matcher behaves in an unexpected way, may be because of some features of the
input schemata that had not been considered when the matcher was designed. In
fact, when we use the unsatisfiability-checker to identify that some relationships
have not been correctly identified, we can also ask the software to display the
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probability assignments of the single matchers. As a result, we should be able to
identify which matcher is causing troubles, and we may remove it from the pool
or fix it, correcting its wrong behavior.

More interestingly, we may think of using this information to automatically
improve the matching phase. In fact, the feedback can also be used by the soft-
ware itself as a way to tune the matchers: when it identifies a wrong relationship,
it can check which matcher(s) is causing troubles and try to reduce its impact
on the results, to see if the problem persists.

To verify our analysis, we have run again the same integration processes.
This time, we included a new manual matcher in the pool, and each time we en-
countered an intractable case we manually compared the pairs of schema objects
highlighted by our software. Sometimes, after having solved an inconsistency, we
have found that the same test databases needed additional feedbacks, as other
inconsistencies were found.

In Figure 5 we have plotted the number of user-feedbacks needed to prevent
an exponential number of steps to be performed by the top-K algorithm. Al-
though we do not present the details of the algorithm used to retrieve the top-K
mappings, it should be intuitively clear that given N pairs of schema objects
and r semantic relationships there can be rN different mappings, and therefore
a top-K algorithm may need to check an exponential number of mappings before
finding K inconsistent ones. According to this graph, we can make the following
considerations:

– At most three user feedbacks where needed to reduce the execution to a
linear time computation. Each user feedback involves the manual comparison
of three schema objects. If we compare the results represented in the figure
with the number of pairs of schema objects in our tests, it appears that
human intervention is very limited and the majority of the process is carried
on by the software.

– From a comparison of the two graphs of Figure 5 it may seem that some of
the problems have been solved without any user feedback. This is due to two
reasons: first, in many cases there was a single difficult pair of objects that
caused the exponential behavior in different tests. We remind the reader that
the tests have been performed on different subsets of the same databases,
containing common schema objects. Therefore, the new matcher with the
information collected in previous cases was already able to solve the problem
without additional input. Moreover, the schema analysis phase is stochastic
(it depends on the samples of instances chosen by the matchers), therefore it
may happen that different executions on the same input databases produce
different results.

The last steps can be repeated many times, if there is more than one prob-
lematic relationship. In summary, when the matchers perform well, i.e., find the
correct or plausible relationships, the distribution of unsatisfiable mappings has
a low impact on the probabilities computed with the independence assumption.
If this does not happen, we are able to identify where the matchers are failing,
and repeat the top-K algorithm providing user feedback — notice that we do not
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need to re-execute the time-wasting schema analysis phase, because we already
have the outcomes of the matchers and need only to incorporate the opinion of
the user or automatically identify and manage badly-behaving matchers.

4 Open problems

In this section we briefly summarize the open issues regarding the implemen-
tation of a probabilistic data integration approach like the one described in
Section 2. First, the nature and compatibility of the probabilities generated

by the matchers should be studied. We cannot think of solving this problem in
general, but we can analyze the problem in specific domains (like the comparison
of specific aspects of schema objects) and make some experimental evaluations
on the impact of different choices on the results of the integration process. Simi-
larly, it must be studied how to represent dependencies between matchers,
to perform a proper combination of their outcomes. Another point that has not
been studied yet is the comparison of uncertain data. In addition to its the-
oretical interest, this is necessary to define a closed integration process, enabling
the definition of an algebra of model management operators [16] and thus
the iterative execution of data integration activities on several local data sources.
Another complex problem is the management of dependencies between dif-

ferent relationships. In Section 3 we have shown some results to reduce the
impact of these dependencies. However, the computation of exact probabilities is
still intractable, and it is not even clear how to redistribute the probability mass
incorrectly assigned to unsatisfiable mappings. Luckily, this case only applies to
the usage of complex semantic relationships. However, it seems possible to tackle
this problem adding some uncertainty also to the probability of the mappings,
or estimating possible errors. Finally, it is necessary to develop mature systems

for the management of uncertain data. In particular, in addition to the studies
on uncertain data models and physical implementations of uncertain data, it is
important to develop adequate user interfaces to access this complex data.
Otherwise, the result of an uncertain integration process would not be of any
practical use.

5 State of the art

As we have already mentioned, uncertainty is present in all (semi-)automatic
data integration processes and methods. In this survey we focus on those works
that concern directly the management of uncertainty.

Probability theory has been used for many years in data integration works,
with the limitations already discussed in previous sections. For example, the
system described in [17] tries to assign probabilities to alternative relationships
between pairs of schema objects. The critical points described in Section 2.1
affect also this work: the algorithm used to generate probabilities is arbitrary,
while their combination does not admit arbitrary dependencies. However, the
characterizing feature of this and other early works using uncertainty theories
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in data integration is that after probabilities have been evaluated a threshold is
used to select matching and non matching objects. Therefore, the uncertainty
generated during the integration process is lost. Probability theory has also been
used in instance integration (entity reconciliation, or record linkage), and also
in this case probabilities are used together with a decision model to choose ex-
act mappings [18]. Another application of probability theory to the field of data
integration is described in [19]. However, in this case probabilities do not char-
acterize the uncertainty in the matching process and in the integrated schema,
but are used to rank the local data sources with the aim of improving query
processing. Data is not uncertain, and mappings between schema objects are
well known, although not explicitly mentioned in the paper.

In 2005, three works focused on the management of uncertainty in data in-
tegration using probability theory or its extensions [20–22]. Interestingly, these
works studied different and complementary aspects of the problem. [20] presents
a method of uncertain schema integration with a multi-matcher architecture,
and keeps the uncertainty modeled during the matching phase up to the merg-
ing step. Dempster-Shafer’s theory, an extension of probability theory, is used as
the formalism to represent uncertainty, and the authors define how uncertainty is
represented and manipulated at each step of the process. In this work the result
of the integration process is not explicitly represented with a data model for un-
certain data, and the paper tackles the aforementioned critical points with inde-
pendence assumptions that should be relaxed in real applications. Another topic
not covered by this paper is the implementation of the method, that presents
many complexity issues. A paper which from some points of view complements
this work is [21], where a data model for uncertain data is provided to represent
the result of a data integration process. In this paper the authors assume to al-
ready have a method that performs the integration and evaluates its uncertainty
(probability), and focus on its representation. In addition, this work concerns the
integration of instances, and not schemata, that are assumed to be equal. This
can therefore be thought of as part of a method that matches schemata, and
subsequently focuses on data mappings — one of the topics not covered in [20].
Finally, [22] and its extended version [23] focus on probabilistic schema match-
ing. This papers do not provide a complete view of uncertain data integration
processes, like in the two aforementioned works, but focus on the implementa-
tion of probabilistic classifiers (matchers), that have not been covered in detail
in [20, 21]. As we have already mentioned, this is still an open issue, and also in
this papers the probability assignment process is reasonable and supported by
experiments, but arbitrary, and the aggregation of probabilities does not con-
sider dependencies, but only the confidence we have in each classifier — it is
therefore a way to weight the matchers. In the same year, a different approach
has been presented to represent uncertainty using fuzzy logic [24]. This tries to
formalize the concept of similarity between schema objects, used in many data
integration approaches. At the same time, the application of probability theory
to the representation and computation of mappings was object of studies in the
semantic web community [25].

Proceedings of the first international VLDB workshop on Management of Uncertain Data

30



Recently, the importance of managing uncertain information in data inte-
gration has become well recognized [11, 26]. In [27] another approach to merge
uncertain information has been proposed. The content of this work is analogous
to [22], but more focused on the formalisms used to represent uncertainty — this
kind of activity is also known as information fusion. A language to represent the
result of an uncertain data integration process has been proposed in [28].

Another topic that has been discussed in many works on schema matching
is the evaluation of top-K mappings. In this paper we have provided an exper-
imental analysis of probabilistic top-K mappings to point out the relevance of
uncertain information. The most recent work on this topic extends the results
of [24] and proposes a method to compute K mappings and choose one mapping
among them [29]. However, also in this case uncertainty is manipulated and
represented only until a choice is made to keep only exact information.

6 Conclusion

In this paper we have described the status of the research about uncertainty in
data integration. From some preliminary investigations, it seems already clear
that the information we lose not considering uncertainty is relevant, and that
the explicit management of uncertainty may also increase the quality of the inte-
grated data sources. However, there are still many open problems, that we have
briefly listed, and for which we may consider this field at its beginning. In partic-
ular, it is fundamental to have advances in related fields, from the interpretation
of the mathematical theories of uncertainty to the modeling, implementation
and external representation of uncertain data.
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Abstract. At present, we have proceeded to extend SQL into a new language 
called dmFSQL (data mining Fuzzy Structured Query Language) which can be 
used to solve real problems of Data Mining. Besides, we have an architecture 
that permits us to use this language dmFSQL for Oracle© Database. This 
enables us to evaluate the process of Data Mining at both a theoretical and a 
practical level. Now, we extend this language and architecture to obtain fuzzy 
global dependencies (GDs) as a common framework to integrate fuzzy and 
gradual functional dependencies on any type of data. We consider that this 
model satisfies the requirements of Data Mining systems.  

Keywords: Fuzzy Functional Dependencies, Gradual Functional Dependencies, 
Flexible Queries, Data Mining, Fuzzy Databases. 

1   Introduction 

We can define Data Mining (DM) as the process of extraction of interesting 
information from the data in databases. According to [6] a discovered knowledge is 
interesting when it is novel, potentially useful and non-trivial to compute. A series of 
new functionalities exist in DM, which reaffirms that it is an independent area [6]: 
high-level language on the discovered knowledge and for showing the results of the 
user's requests for information (e.g. queries); efficiency on large amounts of data; 
handling of different types of data; etc. 
 We considerer, that SQL does not satisfy the minimum requirements (above 
explained) to be a true DM language. To solve this, we have proceeded to extend the 
SQL language into a new language [3]: dmFSQL (data mining Fuzzy Structured 
Query Language). This new language integrates flexible queries, clustering and fuzzy 
classification techniques [2]. We have developed an architecture that permits us to use 
this language dmFSQL for one of the commercial DataBase Management System 
(DBMS) most frequently used: Oracle©. The core of this architecture is a server 
programmed mainly in PL/SQL language. This enables us to evaluate the process of 
DM at both a theoretical and a practical level. 
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Interest in functional dependencies (FDs) has been motivated by the fact that FDs 
can capture some forms of redundancy. Therefore the use of FDs has come about as a 
result of their usefulness in database design. Fuzzy functional dependencies (FFDs) 
arise in the framework of fuzzy relational databases. Various definitions of FFDs have 
been proposed. FFDs have not often been closely connected with database design. 
However, FFDs seem very appropriate to discover properties which exist in the 
current manifestation of the data, i.e. in a Data Mining (DM) process. We can make 
the same observation about gradual functional dependencies (GFDs) which are a 
special type of fuzzy dependencies that reflect monotonicity in the data. We have 
defined a new type of dependencies [1] fuzzy global dependencies (GDs) as a 
common framework to integrate fuzzy and gradual functional dependencies but only 
for a type of data: trapezoidal possibility distributions. 

The objective of this paper is to redefine the fuzzy global dependencies for any 
type of data, on then to extend the dmFSQL language and architecture to obtain theses 
dependencies. 
 This paper is organized as follows: in Section 2 we introduce an explanation about 
the dmFSQL language. In Section 3 we introduce an explanation about the 
architecture of dmFSQL. In Section 4 we define fuzzy global dependencies (GDs) as 
a common framework to integrate fuzzy and gradual functional dependencies on any 
type of data. In Section 5 we extend the dmFSQL language and architecture to obtain 
theses new dependencies. In Section 6 are presented some experimental results on 
stock-market sceneries. Finally, we suggest some conclusions. 

2   dmFSQL 

We considerer, that SQL does not satisfy the minimum requirements to be a true DM 
language. To solve this, we proceed to extend the SQL language into a new language 
[3]: dmFSQL (data mining Fuzzy Structured Query Language). We define the new 
language with a series of desirable properties.  We can say that these properties are 
not found jointly in the definition of similar languages [7, 8, 9]. The properties are: 
similar syntax to SQL; possibility of DM iterative, this is, the language should comply 
the property of closure, that is the possibility to apply the language to a prior result of 
this same language; an approach toward the techniques of DM that are considered 
useful in several sectors: flexible queries, clustering and classification. 

2.1   dmFSQL for Flexible Queries 

dmFSQL includes a language [3] that extends the SQL language to allow flexible 
queries. Thus, the language can manage fuzzy attributes which are classified by the 
system in 4 types:  
- Type 1: These attributes are totally crisp, but they have some linguistic 

trapezoidal labels defined on them. 
- Type 2: These attributes admit crisp data as well as possibility distributions over 

an ordered underlying domain. 

Proceedings of the first international VLDB workshop on Management of Uncertain Data

34



- Type 3: On these attributes, some labels are defined and on these labels, a 
similarity relation has yet to be defined. These attributes have no relation of 
order. 

- Type 4: It is a generic type (fuzzy or crisp), which admits some fuzzy treatment. 
We permitted this attribute is formed by more than a column of the table 
(complex attributes). 

We show an abstract with the main extensions added to DML (Data Manipulation 
Language) of SQL: 
- Linguistic Labels: They represent a concrete value of the fuzzy attribute. 

dmFSQL works with any kind of attributes therefore, by example, a label can 
have associated: a trapezoidal possibility, a text, a XML document, etc. 

- Fuzzy Comparators: In addition to common comparators (=, >, etc.), dmFSQL 
includes fuzzy comparators in Table 1. 

- Fulfillment Thresholds γγγγ: For each simple condition a Fulfillment threshold 
may be established with the format <condition> THOLD γ, indicating that the 
condition must be satisfied with a minimum degree γ in [0,1]. 

- CDEG(<attribute>) function: This function shows a column with the 
fulfillment degree of the condition of the query for a specific attribute.  

Table 1. Fuzzy Comparators for dmFSQL 

Fuzzy Comparator 

Possibility    Necessity 

Significance 

FEQ NFEQ Fuzzy EQual 

FGT 

FGEQ 

NFGT 

NFGEQ 

Fuzzy Greater Than 

Fuzzy Greater or Equal 

FLT 

FLEQ 

NFLT 

NFLEQ 

Fuzzy Less Than 

Fuzzy Less or Equal 

MGT 

MLT 

NMGT 

NMLT 

Much Greater Than 

Much Less Than 

 
 Besides, dmFSQL includes an extension of the DDL (Data Definition Language) of 
SQL to specify these objects: fuzzy types, linguistic labels, fuzzy comparators…  

2.2   dmFSQL for Clustering and Classification 

We define a new type of object called project that does not exist in SQL. This object 
has mainly the following task: It is the backup to keep the initial conditions, 
intermediate and ends results of the DM process to carry out. These intermediate 
results are to improve the performance of the iterative DM process. The DDL of 
dmFSQL for Data Mining consists of a series of operations on the project object 
(create, alter, drop…). The DML of dmFSQL executes the true DM process. 
Continued we explain briefly the semantics of the commands of this language, a more 
detailed description can be found in [3]: 
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2.2.1   DDL of dmFSQL for Clustering and Classification 

 

CREATE_MINING 

With this sentence a new project can be created. In this project the conditions for the 
process are set to carry out DM. The simplified syntax is the following: 

CREATE_MINING  PROJECT id_project [ON OWNER id_owner] ON TABLE id_table_orig_project 
 WITH COLUMNS FOR  [CLUSTERING ‘(‘ list_columns_clu | list_columns_clu_cen ‘)’ ] 
                   [CLASSIFICATION ‘(‘ list_columns_cla ‘)’ ]   ‘;’ where: 

- id_project: project name. 
- id_owner: owner of the project. 
- id_table_orig_project: table name with the original data for the DM process.  
- list_columns_clu: specifications on the table columns id_table_orig_project 

prominent for the clustering process. 
- list_columns_clu_cen: if we want to characterize each one of the clusters 

obtained (with a row centroid), specifications on the table columns 
id_table_orig_project prominent for this characterization process, 

- list_columns_cla: specifications on the table columns id_table_orig_project 
prominent for the classification process. 
 
dmFSQL include others DDL sentences: to modify, drop, grant and revoke 

permission for the management of the project [3]. 

2.2.2   DML of dmFSQL for Clustering and Classification 

We have explained the form to define a project by means of the DDL of dmFSQL.  
Now we can carry out the true DM process, by means of the use of the Data 
Manipulation Language (DML) of dmFSQL. The DML has a unique sentence 
SELECT_MINING by means of which, we will carry out the different processes of 
DM previously described:  

SELECT_MINING CLUSTERING 

This sentence is the interface to carry out the clustering process, and optionally, to 
characterize each one of the groups arisen of such process by means of an only row 
(centroid).  The syntax is the following: 

SELECT_MINING CLUSTERING id_project INTO TABLE_CLUSTERING id_table_result_clu 
                       [‘,’ TABLE_CENTROIDS  id_table_result_cen] 
    OBTAINING {n_clusters|OPTIMAL_ABS|OPTIMAL_H3|OPTIMAL_MED} CLUSTERS where: 

- id_project: project name. 
- id_table_result_clu: table name to be created as result of the clustering process.  
- id_table_result_cen: table name to be created as result of the characterization 

process of each cluster. 
- n_clusters: this value is the number of groups to obtain after the result of the 

execution of the sentence. 
- OPTIMAL_ABS, OPTIMAL_H3, OPTIMAL_MED: we can leave that the system 

determine the number of clusters to obtain more adequate with three methods [2]: 
OPTIMAL_ABS: optimal absolute partition; OPTIMAL_H3: optimal partition from the 
measure H3; OPTIMAL_MED: optimal average partition. 
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SELECT_MINING CLASSIFICATION 

This sentence is the interface to carry out the classification process. It uses as criterion 
of classification one of the two possible results of the clustering process: the table 
with the centroids, or the complete table turned out. The syntax is the following: 

SELECT_MINING CLASSIFICATION id_project  FROM id_table_orig_cla [TO id_table_result_cla] 
ACCORDING_TO {TABLE_CENTROIDS  {id_table_result_cen | LAST} 
   TABLE_CLUSTERING {id_table_result_clu | LAST}WITH n_neighboard NEIGHBOARD} 
   [WHERE CLUSTER_ID IS {id_cluster | THE_BEST}] THOLD threshold where: 

- id_project: project name. 
- id_table_orig_cla: table with the original data for the classification process.  
- id_table_result_cla: table to be created as result of the classification process. 
- id_table_result_cen: if we want to apply the method of fuzzy classification based 

on centroids [2], table with the centroids to use as criterion of classification. 
- id_table_result_clu: if we want to apply the method of fuzzy classification based 

on n-nearest neighboard [2], the table with the result of the clustering process to 
use as criterion of classification. 

- n_neighboard: this number indicates the number n of rows of the table 
id_table_result_clu that should be used for the criterion of classification based on n-
nearest neighboard. 

- id_cluster: it indicates whether we want to restrict the classification to a single 
group id_cluster, obtained before the clustering process. If we use the clause 
CLUSTER_ID IS THE_BEST then each row will be assigned to the cluster with 
greater degree of membership.   

- threshold: minimum degree of membership to the different clusters (results of the 
clustering) that should satisfy the rows result of the classification. 

3   Architecture of dmFSQL 

We have developed an architecture that permits to use dmFSQL language available 
for Oracle© Databases. The architecture (Figure 1) is made up by: Data, dmFSQL 
Server and dmFSQL Clients. Following, we explain these elements: 

Figure 1. Architecture of dmFSQL 
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3.1   Data: Traditional Database and dmFMB 

The data can be classified in two categories: 
 

- Traditional Database: They are data from our relations with a special format to 
store the 4 types of fuzzy attributes. 

- data mining Fuzzy Meta-knowledge Base (dmFMB): It is the support to the 
project object and it stores information about the Fuzzy Relational Database in a 
relational format. It stores attributes which admit fuzzy treatment for Data 
Mining and it will store different information for each one of them, depending on 
their type: 
- Fuzzy Attributes Type 1: In order to use crisp attributes in flexible queries 

we will only have to declare them as being a fuzzy attribute Type 1 and store 
the following data in the dmFMB: Trapezoidal linguistic labels; value for the 
margin of the approximate values (used en FEQ and NFEQ); etc. 

- Fuzzy Attributes Type 2: As well, as declare them as being a fuzzy attribute 
Type 2, these attributes have to store the same data in the dmFMB as the 
fuzzy attributes Type 1. 

- Fuzzy Attributes Type 3: They store in the dmFMB their linguistic labels, 
the similarity degree amongst themselves and the compatibility between 
attributes of this type, i.e., the attributes that use the same labels and that can 
be compared amongst them. 

- Attributes Type 4: The dmFMB stores information for the fuzzy treatment of 
the attributes Type 4:  
- Fuzzy Comparison Functions: The user can define the functions of 

comparison (Table 1) for the treatment of each attribute of Type 4.  The 
format is: CDEG (A fcomp B) -> [0,1] with CDEG the compatibility 
degrees, A, B two attributes or linguistic labels Type 4 and fcomp any 
fuzzy comparator in Table 1. The user can associate each attribute 
functions already defined in the dmFMB. 

- Representation Functions: The user can optionally define it to show 
the attributes in a more comprehensible way.  Of course, the user can 
associate each attribute functions already defined in the dmFMB. 

- Linguistic labels: They represent a concrete value of the attribute. 
- Complex attributes: We permitted this attribute is formed by more than 

a column of the table. Therefore, the dmFMB stores information on 
structure of the attributes Type 4. 

3.2   dmFQL Server 

It has been programmed mainly in PL/SQL and it carries out a lexical, syntactic and 
semantic analysis of the dmFSQL query. If errors, of any kind whatsoever, are found, 
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it will generate a table with all the found errors. If there are no errors, the dmFSQL 
Sever always generates a standard SQL sentence. The Server works (semantic 
treatment) depending on the kind of dmFSQL sentence: 
- DDL sentences: Normally, the treatment consists either to insert information in 

the dmFMB or to execute grant sentences on the SGBD host. 
- DML of fuzzy sentences (fuzzy SELECT command): The dmFSQL query is 

translated into a standard SQL sentence. The resulting SQL sentence includes 
reference to the following kinds for attributes Type 1, Type 2 and Type 3 (as we 
have seen, these functions are included in the dmFMB for the attributes Type 4): 
- Representation Functions: These functions are used to show the fuzzy 

attributes in a comprehensible way for the user and not in the internally used 
format. 

- Fuzzy Comparison Functions: They are utilized to compare the fuzzy values 
and to calculate the compatibility degrees (CDEG function). 

- DML of Data Mining sentences (SELECT_MINING command): The treatment 
consists to call the Data Mining process: clustering, characterization or 
classification [2, 3]. These processes obtain a table and the Server returns a 
conventional SELECT command on this table. 

4   Fuzzy Global Dependencies in Databases 

We have defined a new type of dependencies [1] fuzzy global dependencies (GDs) as 
a common framework to integrate fuzzy and gradual functional dependencies but only 
for a type of data: trapezoidal possibility distributions. In this section we extend this 
definition on any type of data. 

There have been several approaches to the problem of defining the concept of FFD 
but unlike classical FDs one single approach has not dominated. We begin by briefly 
describing the concept of classical FD, later we give a general definition of FFD and 
GFD based on fuzzy functions and then, we shall introduce a more relaxed definition 
of FFD and GFD in order to manage exceptions. 
Definition 1. Functional Dependency (FD). 
The relation R with attribute sets  X=(col_ant1, col_ant2,…, col_antl) and 

Y=(col_con1, col_con2,…, col_conq) in its scheme verifies the FD X→ Y if and only if, 
for every instance r of R it is verified: 

∀t1, t2 ∈ r, t1[X] = t2[X] ⇒  t1[Y] = t2[Y] 
The concept of FFD given by Cubero and Vila in [4] is a smoothed version of the 

classical FD. The basic idea consists in replacing the equality used in the FD 
definition by fuzzy resemblance relations, in such a way that: 

Definition 2. α -β Fuzzy Functional Dependency (α -β FFD). 

The relation R verifies an α -β  FFD X→ FTY if and only if, for every instance r of R it 
is verified: 

∀t1, t2 ∈ r, F(t1[X] ,t2[X])  ≥  α  ⇒  T(t1[Y],t2[Y]) ≥  β where F and T are fuzzy 
ressemblance relations. 
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The flexibility provided by the combined use of the parameters α and ß and the 
different kinds of resemblance relation should be noted. If F is a weak resemblance 
measure and T is a strong one, we get interesting properties for database design 
(decomposition of relations). A more detailed description of these concepts can be 
found in [4]. 

Often just a few tuples in a database can prevent the FFD from being completed. 
To avoid this, we can relax the FFD definition in such a way that all the tuples of the 
relationship are not forced to fulfill the above condition, therefore we define:  
Definition 3. Confidence of a FFD. 

For a instance r of R is verified an α -β  FFD X→ FTY with confidence c, where 

c∈ [0,1] is defined as: 

{ }
{ }
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where ∧ is the logical operator and. The basic idea consists in computing the 
percentage of tuples which fulfill the antecedent and consequent together with respect 
to those which only fulfill the consequent. 
Definition 4. Support of a FFD. 

For a instance r of R is verified an α -β  FFD X→ FTY with support s, where s∈ [0,1]  
s defined as: 
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






≥∧≥∈=

==

otherwise 
  [Y])t[Y],T(t     [X])t, [X]F(tr / t  t)t,t(

0 if 0

2121 21,21

n

Card
s

ns

βα  

where n is the number of tuples of the r instance of the relation R. 

The idea is to find the percentage of tuples which fulfill the antecedent and 
consequent together with respect to the total rows of the relation. 

Another way of considering the connections between data in databases is to specify 
a relationship between objects in a dataset and reflect monotonicity in the data by 
means of that we have called gradual fuzzy dependencies (GFDs). It is closely related 
to the idea of gradual rules introduced by Dubois and Prade [5]. An intuitive example 
of a GFD is “the bigger businesses are the higher earnings they have” and we assume 
that the concept of GFD can be considered, in this way, as similar to the FFD one. 
Therefore we define: 

Definition 5. α–ß Gradual Functional Dependency (α -β GFD). 

The relation R verifies an α -β  GFD X→ F’T’Y if and only if, for every instance r of R 
it is verified: 

∀t1, t2 ∈ r, F’(t1[X] ,t2[X]) ≥  α  ⇒  T’(t1[Y],t2[Y]) ≥  β where F’ and T’ are fuzzy 
relations of the type: fuzzy greater than, fuzzy greater than or equal to, fuzzy less 
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than, fuzzy less than  or equal to, fuzzy not equal, etc. We can define an α -β  GFD 
with confidence c and support s in the same way that we have made it for FFD (see 
Definition 3 and 4). 

Now, it is necessary to relate the dmFSQL environment to our definitions.  To do 
so, we first introduce a general definition of fuzzy global dependencies (GD) based on 
FSQL operators and FSQL CDEG function, later we will show how GD can be 
calculated with FSQL. 

Definition 6. (α i)-(β j) Fuzzy Global Dependency ( (α i)-(β j) GD) 

The relation R with attribute sets  X=(col_ant1, col_ant2,…, col_antl) and 
Y=(col_con1, col_con2,…, col_conq) where the attributes are of fuzzy type 1, 2, 3 or 4 

verifies a (α i)-(β j) GD X→ F*T*Y with (α i)=(α 1,α 2,…,α l) / α i∈ [0,1] ∀ i=1,…,l 

and (β j)=(β 1,β 2,…,β q) / β j∈ [0,1] ∀ j=1,…,q, if and only if, for every instance r 
of R it is verified: 

∀ t1, t2 ∈  r,  ∧ i=1,2…,l[F
*
i(t1[col_anti],t2[col_anti]) ≥  α i] ⇒  

∧ j=1,2…,q[T
*
j(t1[col_con j],t2[col_con j]) ≥  β j] where 

F*
i:UxU→  [0,1]/F*

i(A,B)=CDEG(A fuzzy_comp_anti B) 

T*
j:UxU→ [0,1]/T*

j(A,B)=CDEG(A fuzzy_comp_conj B) 

∀ A, B ∈ U where U is a instance of the dmFMB. 
fuzzy_comp_anti, fuzzy_comp_conj defined as any fuzzy comparator in 

dmFSQL (see Table 1) defined on the fuzzy attributes A and B in the 
dmFMB. 

Definition 7. α -β Fuzzy Global Dependency (α -β GD) 

The relation R with attribute sets  X=(col_ant1, col_ant2,…, col_antl) and 
Y=(col_con1, col_con2,…, col_conq) where the attributes are of fuzzy type 1, 2, 3 or 4 

verifies a α -β GD X→ F*T*Y with α ∈ [0,1] AND β ∈ [0,1], if and only if, for every 
instance r of R it is verified: 

∀ t1, t2 ∈  r,  ∧ i=1,2…,l[F
*
i(t1[col_anti],t2[col_anti])] ≥  α  ⇒  

∧ j=1,2…,q[T
*
j(t1[col_con j],t2[col_con j])] ≥  β ∀ i=1,…,l y ∀ j=1,…,q 

Now, we can make a new definition of FFDs and GFDs as a particular case of 
GDs: 

Definition 8. (α i)-(β j) Fuzzy Functional Dependency ( (α i)-(β j) FFD) 

In Definition 6, if fuzzy_comp_anti, fuzzy_comp_conj ∈  {FEQ,NFEQ} then we say 

that R verifies an (α i)-(β j) FFD X→ F*T*Y. 

Definition 9. α -β Fuzzy Functional Dependency (α -β FFD). 
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In Definition 7, if fuzzy_comp_anti, fuzzy_comp_conj ∈  {FEQ,NFEQ} then we say 

that R verifies an α -β FFD X→ F*T*Y. 

Definition 10. (α i)-(β j) Gradual Functional Dependency ((α i)-(β j) GFD)  

In Definition 6, if ∃ a / a ∈  {1,2,…,l} which fulfils that fuzzy_comp_anta ∉  

{FEQ,NFEQ} or ∃ b / b ∈  {1,2,…,q} which fulfils that fuzzy_comp_conb ∉  

{FEQ,NFEQ} then we say that R verifies an (α i)-(β j) GFD X→ F*T*Y. 

Definition 11. α -β Gradual Functional Dependency (α -β GFD) 

In Definition 7, if ∃ a / a ∈  {1,2,…,l} which fulfils that fuzzy_comp_anta ∉  

{FEQ,NFEQ} or ∃ b / b ∈  {1,2,…,q} which fulfils that fuzzy_comp_conb ∉  

{FEQ,NFEQ} then we say that R verifies an a α -β GFD X→ F*T*Y. 
Of course, we can define GD with confidence c and support s in the same sense 

that we have made it for FFD. To simplify notation, in (α i)-(β j) DGD X→ F*T*Y we 

will denote F* as (fuzzy_comp_anti)* ∀ i=1,…,l, and similar notation for T*.  

5   dmFSQL for Fuzzy Global Dependencies in Databases 

In this section we process to extend the dmFSQL language (DDL and DML 
sentences) and architecture to obtain the fuzzy global dependencies above explained: 

5.1   DDL of dmFSQL for Fuzzy Global Dependencies 

CREATE_MINING 

With this extension of CREATE_MINING sentence a new project to obtain GDs can 
be created. The simplified syntax is the following: 

CREATE_MINING  PROJECT id_project [ON OWNER id_owner] ON TABLE id_table_orig_project 
 WITH COLUMNS FOR  [FGLOBAL_DEPENDENCIES ‘(‘   
    {ANTECEDENT list_columns_gd   CONSEQUENT list_columns_gd | 
      ANTECEDENT list_columns_gd THOLD_ANT threshold 
      CONSEQUENT list_columns_gd THOLD_CON threshold | 
      ANTECEDENT list_columns_gd_thold CONSEQUENT list_columns_gd_thold } ‘)’  ]  ‘;’ where: 

- id_project: project name. 
- id_owner: owner of the project. 
- id_table_orig_project: table name with the original data for the DM process in 

this project.  
- list_columns_gd: They are the specifications on the table columns 

id_table_orig_project prominent for the process to obtain (α i)-(β j) Fuzzy Global 
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Dependencies (see Definition 6) or α -β Fuzzy Global Dependencies (see 
Definition 7). It is necessary to do the specifications for antecedent columns 
col_anti with i=1..l (ANTECEDENT clausule) and for the consequent columns 
col_conj with j=1..q (CONSEQUENT clausule). Such specifications are the 
following: 
- id_column: column name the antecedent i.e. col_anti or the consequent i.e. 

col_conj.  This column should be defined as a fuzzy type 1, 2, 3 or 4. 
- FCOMP_FGLOBAL_DEPENDENCIES fuzzy_comp: is a fuzzy comparator 

in dmFSQL (see Table 1) defined on the fuzzy attribute id_column in the 
dmFMB. It indicates the fuzzy_comp_anti for the antecedent and the 
fuzzy_comp_conj  for consequent specify in Definition 6 and 7.  If we want 

to obtain a α -β  GD with a α  and β  value prefixed for the user, then we 
must to specify for the antecedent and consequent columns two clausules 
THOLD_ANT and THOLD_CON indicating for each one: 
- threshold: is a real number in [0,1] that indicates the minimum degree 

that must satisfy the T-norm of the fuzzy comparation of the antecedent 

and consequent, i.e. it is the α value for the antecedent and β value for 
the consequent. 

It is an optional value because we can obtain it automatically with the DML 
sentence. 

- list_columns_gd_thold: They are the specifications on the table columns 

id_table_orig_project prominent for the process to obtain (α i)-(β j) Fuzzy Global 
Dependencies (see Definition 6) with the (α i) and (β j) values prefixed for the 
user. It is necessary to do the specifications for antecedent columns col_anti with 
i=1..l (ANTECEDENT clausule) and for the consequent columns col_conj with 
j=1..q (CONSEQUENT clausule). Such specifications are the same that for 
list_columns_gd  above explained including for each column id_column the 
following: 
- threshold: is a real number in [0,1] that indicates the minimum degree that 

must satisfy the fuzzy comparation (using fuzzy_comp) of the antecedent and 

consequent, i.e. it is the α i values for the antecedent and the β j values for 
the consequent. 

5.2   DML of dmFSQL for Fuzzy Global Dependencies 

SELECT_MINING FGLOBAL_DEPENDENCIES 

This sentence is the interface to obtain the GDs. The syntax is the following: 
SELECT_MINING FGLOBAL_DEPENDENCIES id_project 
USING {T_NORM | SINGLE} THOLD_ANT_CON[WITH CONFIDENCE HIGHEST] where 

- id_project: project name. Previously, for this project a create (or alter) sentence 
must have been carried out including the clause WITH COLUMNS FOR […] 

FGLOBAL_DEPENDENCIES. 
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With this sentence we can obtain: 

- α -β  GD X→ F*T*Y: if we use the clausule USING T_NORM 
THOLD_ANT_CON.  

- (α i)-(β j) GD X→ F*T*Y: if we use the clausule USING SINGLE 
THOLD_ANT_CON.  

Verifying if the prefixed (in the DDL sentence) α -β or (α i)-(β j) values are fulfilled 
for the GD, or computing theses values for the confidence highest possible, if we 
specify the WITH CONFIDENCE HIGHEST clausule. Always, the confidence, 

support and α -β or (α i)-(β j) values are return by the sentence in form a SQL query 
on a default table. 

5.3   Extension of the dmFSQL Architecture to obtain GDs 

We have extended the architecture to permits us use dmFSQL language to obtain 
GDs. The modifications of the architecture (showed in Figure 1) are been on the 
dmFSQL server: 
- Lexical and syntactic analysis to incorporate the new DDL and DML sentences. 
- Semantic analysis to incorporate the process to obtain GDs above explained. 

6   Experimental results 

In this section we are going to apply the previously outlined process to find out 
behaviour patterns on stock-market sceneries. The goal is to identify those patterns 
which imply earnings of a specific stock. To do so, we are going to apply the 
previously outlined process which use DM techniques implemented through 
dmFSQL. Let SHARES_ENTERPRISE be a relation defined as:  

SHARES_ENTERPRISE (value_name, date, williams, MA, value) 
which contains data for a specific enterprise, Telefonica S.A., in the Spanish Stock 
Market. The data corresponds with a period of time between 01/01/2005 and 
08/20/2006. The meaning of the attributes is: 
- value_name: identifies the enterprise which the stock value belongs to. In this 

case, all rows shown in Table 2 belong to the same enterprise: Telefonica S.A. 
- date: date of the data. 
- williams: 14-day Williams’s oscillator value. 
- MA: 20-day moving average value. 
- value: value in euros for the enterprise at the end of the session. 
The step needed to solve the problem are: 
- Identification of the ideal earnings scenarios, taking into account some of the 

previously detailed indicators used in technical analysis. 
- Expert’s theory formulation related to earning scenarios. 
- Expert’s theory validation for earning scenarios given the historical data stored. 
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Earning scenarios identification and expert’s theory formulation 

By means of graphical representations of the data (Figure 2) of the table 
SHARES_ENTERPRISE and the indicators outlined in first section the expert 
identifies as ideal earning scenery: 
- Period: from 06/27/2006 to 07/09/2006. 
- Situation: starting from date 06/27/2006, a change in the trend value has been 

produced with a value of 81.22 (cross with horizontal line 80). There is no 
significant change until 07/09/2006, when the value line cross the MA line and 
%R value with horizontal line 20. 
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 Figure 2. Telefonica S.A. values from 06/27/2006 to 07/09/2006.  

So the expert formulates the theory about earning sceneries shown bellow: 
“Greater Williams index and roughly equal moving average implies a greater value 
for a specific enterprise” 

Expert’s theory validation through GDs using FSQL 

First step consist in define the different attributes of table SHARES_ENTERPRISE in 
dmFMB:  
- williams: although it is a crisp value, we decide to define it as Type 1. The value 

of the margin for approximate values has been determined as 10.  
- MA: this is a crisp attribute but we decide define this as Type 1 in the dmFMB. 

The value of the margin for approximate values has been determined as 2. 
- value: as well as MA attribute, this is a crisp attribute but we decide define this as 

Type 1 in the dmFMB. The value of the margin for approximate values has been 
determined as 2. 
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Table 2. Earning sceneries identified by the expert. 

Value_name Date Williams Expert’s Interpretation MA(20) Value 

TELEFONICA 27-jun-06 81,22 Purchase signal 9,64 8,19 

TELEFONICA 28-jun-06 68,57   9,50 8,50 

TELEFONICA 01-jul-06 63,01   9,36 8,54 

TELEFONICA 02-jul-06 78,54   9,23 8,20 

TELEFONICA 03-jul-06 84,95 Purchase signal 9,11 8,01 

TELEFONICA 04-jul-06 82,26 Purchase signal 8,98 8,06 

TELEFONICA 05-jul-06 36,02   8,88 8,92 

TELEFONICA 08-jul-06 14,57 Sell signal 8,83 9,02 

TELEFONICA 09-jul-06 25,37   8,79 8,73 

 
Now, we define a project called SHARES by means a DDL sentence of dmFSQL 

(see Figure 3) and then we execute the Data Mining process by means a DML 
sentence (see Figure 4). The results of this sentence are showed in Figure 5. Thus, we 
can say that SHARES_TELEFONICA verifies: 

(1, 1)–(1) GD (Williams, MA) → (FGT, FEQ)*(FGT)* (Value) 
with confidence c=0.9. We can conclude that this GD is fulfilled with a sufficient 
degree and therefore he will be useful for future earnings sceneries identification. 

 

Figure 3. DDL sentence of dmFSQL               

 

Figure 5. Results of the DML sentence showed in Figure 4 

Figure 4. DML sentence of dmFSQL 
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7   Conclusion 

We have extended the dmFSQL language and its architecture to obtain fuzzy global 
dependencies (GDs) as a common framework to integrate fuzzy and gradual 
functional dependencies [1] on any type of data. Now, this language [3] integrates 
flexible queries, clustering, characterization, fuzzy classification and fuzzy global 
dependencies techniques explained in [2]. This architecture has been designed and 
extended considering the desirable functionalities of DM systems [6]: 
- Handling of Different Types of Data: dmFSQL permit to do mining on any type 

of data. 
- Interactive Mining Knowledge: dmFSQL comply the property of closure, that is, 

the possibility to apply the language with a prior result of this same language. 
This allows the user to refine a DM request on line. 

- Efficiency: dmFSQL has been designed to give the answer in real time. This is 
possible because a new object introduced in the language called project. It is the 
backup to keep the initial conditions, intermediate and ends results of the DM 
process to carry out. These intermediate results permit improve the performance 
of the iterative DM process. 

- Friendly Interface: actually we have several client programs that work on 
dmFSQL architecture. 
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IRUPDOLVPV�FDQ�EH�XVHG� WR�UHSUHVHQW� LPSUHFLVH� LQIRUPDWLRQ� �VHH� IRU� LQVWDQFH� >�@�DQG
>��@��� DQG� WKH� SRVVLELOLVWLF� VHWWLQJ� LV� DVVXPHG� LQ� WKH� UHVW� RI� WKH� SDSHU�� :H� WKXV
FRQVLGHU� GDWDEDVHV� ZKHUH� LOO�NQRZQ� YDOXHV� DUH� UHSUHVHQWHG� E\� PHDQV� RI� SRVVLELOLW\
GLVWULEXWLRQV��/HW�XV�UHFDOO�WKDW�IURP�D�VHPDQWLF�SRLQW�RI�YLHZ��D�SRVVLELOLVWLF�GDWDEDVH
'�FDQ�EH� LQWHUSUHWHG� DV� D�ZHLJKWHG� GLVMXQFWLYH� VHW� RI� UHJXODU� GDWDEDVHV� �DOVR� FDOOHG
ZRUOGV��GHQRWHG�E\�UHS�'���VHH�H�J��>�@�IRU�D�JHQHUDO�SUHVHQWDWLRQ�RI�WKH�ZRUOG�EDVHG
VHPDQWLFV�RI�LPSUHFLVH�GDWDEDVHV���(DFK�GDWDEDVH��RU�ZRUOG�:��RI�UHS�'��LV�REWDLQHG
E\�FKRRVLQJ�D�XQLTXH�FDQGLGDWH�YDOXH�LQ�HDFK�LPSUHFLVH�DWWULEXWH�YDOXH�LQ�'��,W�LPSOLHV
WKDW� LQGHSHQGHQFH� RI� LPSUHFLVH� YDOXHV� LV� DVVXPHG� �L�H��� DQ\� FDQGLGDWH� FDQ� EH� WDNHQ
ZKDWHYHU� WKH� RWKHU� FKRLFHV� DUH��� (DFK� ZRUOG� :� LV� DVVRFLDWHG� ZLWK� D� GHJUHH� RI
SRVVLELOLW\� FRUUHVSRQGLQJ� WR� WKH� PLQLPXP� RI� WKH� GHJUHHV� WLHG� WR� WKH� FDQGLGDWHV
DSSHDULQJ� LQ� LW� �GXH� WR� WKH� SURSHUW\�Π�$�∩� %��  � PLQ�Π�$���Π�%���� ZKLFK� DSSOLHV
ZKHQ�$�DQG�%�DUH�QRQ�LQWHUDFWLYH�HYHQWV��
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([DPSOH����/HW�XV�WDNH�D�UHODWLRQ�HPS�ZKRVH�VFKHPH�LV�(03��LG��\HDUV��MRE��ZKHUH
�LG�LV�DQ�LGHQWLI\LQJ�QXPEHU�DVVLJQHG�WR�HDFK�HPSOR\HH��\HDUV�VWDQGV�IRU�WKH�QXPEHU
RI�\HDUV�VSHQW�DEURDG�DQG�MRE�LV�WKH�ODVW�MRE�KH�KHOG��7KH�WZR�DWWULEXWHV�\HDUV�DQG�MRE
DUH�DVVXPHG�WR�EH�LPSUHFLVH��7KH�IROORZLQJ�H[WHQVLRQ�

HPS �LG \HDUV MRE
� ^�������������������` FDVKLHU
�� ^�����������` ^��PDQDJHU�������FDVKLHU`
� � VDOHVPDQ

FDQ�EH�DVVRFLDWHG�ZLWK�������FKRLFHV�LQ�WKH�ILUVW�WXSOH�DQG���
���LQ�WKH�VHFRQG��PRUH�RU
OHVV�SRVVLEOH�ZRUOGV�DPRQJ�ZKLFK�WKH�ZRUOG�

�LG \HDUV MRE
� � FDVKLHU
�� � PDQDJHU
� � VDOHVPDQ

ZKLFK�LV������PLQ�������������SRVVLEOH��
2I� FRXUVH�� LW� ZRXOG� EH� DSSHDOLQJ� WR� EH� DEOH� WR� DGGUHVV� TXHULHV� DV� JHQHUDO� DV

SRVVLEOH� DJDLQVW� VXFK� GDWDEDVHV� �DFFRUGLQJ� WR� WKH� LQWXLWLYH� LGHD� RI� H[WHQGLQJ� WKH
UHODWLRQDO�RSHUDWLRQV�DOORZHG�LQ�WKH�FRQWH[W�RI�UHJXODU�GDWDEDVHV���EXW�LW�WXUQV�RXW�WKDW
WKLV�LV�QRW�REYLRXV�WR�GR�LQ�WKH�SUHVHQFH�RI�LPSUHFLVH�DWWULEXWH�YDOXHV��,QGHHG��WKH�RQO\
JHQHUDO� ZD\� WR� HYDOXDWH� D� TXHU\� FRQWDLQLQJ� DQ\� UHODWLRQDO� RSHUDWLRQ� ZRXOG� EH� WR
SURFHVV� LW� DJDLQVW� HDFK� ZRUOG�� 7KLV� DSSURDFK� LV� VRXQG� EXW� UDLVHV� WKH� LVVXH� RI
WUDFWDELOLW\�GXH�WR�WKH�KXJH�QXPEHU�RI�ZRUOGV��DV�ZHOO�DV�WKH�LVVXH�RI�UHSUHVHQWLQJ�WKH
UHVXOW���+RZHYHU�� LW� UHPDLQV� WKH� VHPDQWLF� UHIHUHQFH�� L�H��� LW� FRQVWLWXWHV� WKH�EDVLV� WKDW
HQDEOHV� WR� IRXQG� WKH�YDOLGLW\�RI�DQ\�RWKHU� DSSURDFK�� ,Q� >�@��ZH�KDYH�GHYLVHG� D�GDWD
PRGHO� ZKLFK� LV� D� VWURQJ� UHSUHVHQWDWLRQ� V\VWHP� �VHH� SURSHUW\� ���� LQ� WKH� IROORZLQJ
VHFWLRQ��IRU�IRXU�RSHUDWLRQV��VHOHFWLRQ��XQLRQ��SURMHFWLRQ�DQG�IN�MRLQ�

7KH� NH\� SRLQW� LV� WR� HYDOXDWH� TXHULHV� LQ� D� ³FRPSDFW´� ZD\�� L�H�� GLUHFWO\� RQ
SRVVLELOLVWLF� UHODWLRQV��ZLWKRXW�FRPSXWLQJ� WKH�PRUH�RU� OHVV�SRVVLEOH�ZRUOGV��ZLWK� WKH
JXDUDQWHH� WKDW� WKH� UHVXOW� RI� D� TXHU\�4� LV� WKH� VDPH� DV� WKDW� RI�4� RYHU� WKH� VHW� RI� WKH
UHJXODU�GDWDEDVHV�LVVXHG�IURP�WKH�LQLWLDO�SRVVLELOLVWLF�GDWDEDVH�'�

,Q�WKH�SUHVHQW�SDSHU��ZH�GHDO�ZLWK�WKH�GLYLVLRQ�RSHUDWLRQ�LQ�WKH�IUDPHZRUN�RI�WKDW
PRGHO��:H� FRQVLGHU� WKH� GLYLVLRQ� RI� UHODWLRQ� U� RI� VFKHPD� 5�$�� ;�� E\� UHODWLRQ� V� RI
VFKHPD�6�%��ZKHUH�$�DQG�%�DUH�FRPSDWLEOH�DWWULEXWHV� �L�H�� DUH�GHILQHG�RQ� WKH� VDPH
GRPDLQV��DQG�ZH�IRFXV�RQ�WZR�SDUWLFXODU�FDVHV�����DWWULEXWHV�;�DQG�$�DUH�SUHFLVH�DQG
%� LV� LPSUHFLVH� DQG� ��� DWWULEXWHV�;� DQG�%� DUH� SUHFLVH� DQG�$� LV� LPSUHFLVH�� 7KLV� ZLOO
HQDEOH� WR� HQULFK� WKH� VHW� RI� WKH� RSHUDWRUV� WKDW� FDQ� EH� XVHG� ZLWKLQ� WKH� SRVVLELOLVWLF
GDWDEDVH�PRGHO�SUHYLRXVO\�GHILQHG�DQG�WR�H[SUHVV�D�ZLGHU�UDQJH�RI�TXHULHV�

7KH�UHPDLQGHU�RI�WKH�SDSHU�LV�RUJDQL]HG�DV�IROORZV��6HFWLRQ���LV�GHYRWHG�WR�D�EULHI
SUHVHQWDWLRQ�RI�WKH�UHODWLRQDO�SRVVLELOLVWLF�PRGHO�WKDW�ZLOO�EH�XVHG�ODWHU��7KH�RSHUDWLRQ
RI� GLYLVLRQ� LQ� WKH� SRVVLELOLVWLF� FRQWH[W�� ZKLFK� LV� WKH� KHDUW� RI� WKLV� FRQWULEXWLRQ�� LV
LQWURGXFHG�DQG�GLVFXVVHG�LQ�VHFWLRQ����DQG�DQ�DOJRULWKP�IRU�D�FRPSDFW�HYDOXDWLRQ�IRU
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HDFK�FDVH�LV�SURSRVHG�DQG�MXVWLILHG��6HFWLRQ���LV�GHYRWHG�WR�VRPH�UHODWHG�ZRUNV��6RPH
FRQFOXVLRQV�DUH�JLYHQ�LQ�VHFWLRQ����DV�ZHOO�DV�VRPH�OLQHV�IRU�IXWXUH�ZRUNV�

����$Q�([WHQGHG�SRVVLELOLVWLF�0RGHO

������2EMHFWLYH
$V�PHQWLRQHG�EHIRUH��D�FDOFXOXV�EDVHG�RQ�WKH�SURFHVVLQJ�RI�D�TXHU\�4�DJDLQVW�ZRUOGV
LV� LQWUDFWDEOH� DQG� D� FRPSDFW� DSSURDFK� WR� WKH� FDOFXOXV� RI� WKH� DQVZHU� WR� 4� PXVW� EH
IRXQG�RXW��,W�LV�WKHQ�QHFHVVDU\�WR�EH�SURYLGHG�ZLWK�ERWK�D�GDWD�PRGHO�DQG�RSHUDWLRQV
ZKLFK� KDYH� JRRG� SURSHUWLHV�� L�� WKH� GDWD� PRGHO� PXVW� EH� FORVHG� IRU� WKH� FRQVLGHUHG
RSHUDWLRQV�� DQG� LL�� LW� PXVW� EH� SRVVLEOH� WR� SURFHVV� DQ\� TXHU\� �DSSO\LQJ� WR� WKH
SRVVLELOLVWLF� GDWDEDVH� '�� LQ� D� FRPSDFW� DQG� VRXQG� ZD\�� L�H��� WKH� UHVXOW� PXVW� EH� D
FRPSDFW�UHSUHVHQWDWLRQ�RI�WKH�UHVXOWV�WKDW�ZRXOG�EH�REWDLQHG�LI�WKH�TXHU\�ZHUH�DSSOLHG
WR�DOO�WKH�LQWHUSUHWDWLRQV��ZRUOGV��GUDZQ�IURP�'��L�H��

UHS�4F�'��� �4�UHS�'���� ���������
ZKHUH�UHS�'��GHQRWHV�WKH�VHW�RI�ZRUOGV�DVVRFLDWHG�ZLWK�'�DQG�4F�VWDQGV�IRU�WKH�TXHU\
REWDLQHG� E\� UHSODFLQJ� WKH� RSHUDWRUV� RI� 4� E\� WKHLU� FRPSDFW� YHUVLRQV�� 7KLV� SURSHUW\
FKDUDFWHUL]HV�GDWD�PRGHOV�FDOOHG�VWURQJ�UHSUHVHQWDWLRQ�V\VWHPV�

,W� WXUQV�RXW� WKDW� WKH� UHODWLRQDO�SRVVLELOLVWLF�PRGHO� LOOXVWUDWHG� LQ� H[DPSOH� �� FDQQRW
FRPSO\�ZLWK� WKLV� SURSHUW\� �VHH� >�@� IRU� D� GHWDLOHG� MXVWLILFDWLRQ� RI� WKLV� DVVHUWLRQ��� $Q
DGDSWHG�GDWD�PRGHO��ZKLFK�KDV�EHHQ�LQWURGXFHG�LQ�>�@��LV�EULHIO\�GHVFULEHG�KHUHDIWHU�

������5HSUHVHQWLQJ�3RVVLEO\�0LVVLQJ�7XSOHV
%HFDXVH�VRPH�RSHUDWLRQV��H�J��VHOHFWLRQ��ILOWHU�FDQGLGDWH�YDOXHV��WKHUH�LV�D�QHHG�DW�WKH
FRPSDFW� OHYHO� IRU� H[SUHVVLQJ� WKDW� VRPH� WXSOHV� FDQ� KDYH� QR� UHSUHVHQWDWLYH� LQ� VRPH
ZRUOGV��$�VLPSOH�VROXWLRQ�LV�WR�LQWURGXFH�D�QHZ�DWWULEXWH��GHQRWHG�E\�1��YDOXHG�LQ�>��
�@���ZKLFK�VWDWHV�ZKHWKHU�RU�QRW�LW�LV�OHJDO�WR�EXLOG�ZRUOGV�ZKHUH�QR�UHSUHVHQWDWLYH�RI
WKH�FRUUHVSRQGLQJ�WXSOH�LV�SUHVHQW��DQG��LI�VR��WKH�LQIOXHQFH�RI�WKLV�FKRLFH�LQ�WHUPV�RI
GHJUHH�RI�SRVVLELOLW\��7KH�YDOXH�RI�1�DVVRFLDWHG�ZLWK�D�WXSOH�W�H[SUHVVHV�WKH�FHUWDLQW\
�DV�GHILQHG� LQ� WKH�SRVVLELOLW\� WKHRU\��RI� WKH�SUHVHQFH�RI� D� UHSUHVHQWDWLYH� RI� W� LQ� DQ\
ZRUOG�� $� WXSOH� LV� GHQRWHG� E\� D� SDLU� 1�W� ZKHUH� 1� HTXDOV� �� IRU� WXSOHV� RI� LQLWLDO
SRVVLELOLVWLF�UHODWLRQV�DV�ZHOO�DV�ZKHQ�QR�FDQGLGDWH�YDOXH�KDV�EHHQ�GLVFDUGHG�
([DPSOH����/HW�XV�FRQVLGHU�WKH�IROORZLQJ�H[WHQVLRQ�RI�WKH�SRVVLELOLVWLF�UHODWLRQ�LP�

LP �L DS GDWH SODFH
L � %���� G � S �
L � $75��� G � S �
L � ^��%�����������$75���` G � S �
L � ^��%���������%����` G � S �
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which is assumed to describe satellite images of aircrafts. Each image is supposed to
represent a single aicraft (whose type ap may be ill-known due to the imprecise nature
of the recognition process) and has been taken in a certain place on a certain date. 7KH
VHOHFWLRQ�EDVHG�RQ�WKH�FRQGLWLRQ�³DS� �%����´�OHDGV�WR�GLVFDUG�WKH�FDQGLGDWHV�ZKLFK
DUH� GLIIHUHQW� IURP� WKLV� GHVLUHG� YDOXH��7KDQNV� WR� WKH� LQWURGXFWLRQ� RI� DWWULEXWH�1�� WKH
UHVXOW�RI�WKH�VHOHFWLRQ�LV�
UHV �L DS GDWH SODFH 1

L � %���� G � S � �
L � %���� G � S � ���
L � %���� G � S � �

,Q�WKH�VHFRQG�WXSOH�1�LV�HTXDO�WR������L�H����PLQXV�WKH�SRVVLELOLW\�GHJUHH�DWWDFKHG�WR�WKH
PRVW� SRVVLEOH� DOWHUQDWLYH� WKDW� KDV� EHHQ� GLVFDUGHG�� )URP� WKLV� UHVXOW�� LW� LV� SRVVLEOH� WR
GHULYH� WKH� ZRUOG� PDGH� RI� WKH� VLQJOH� WXSOH� �L � �� %������ G � �� S � !� ZKRVH� GHJUHH� RI
SRVVLELOLW\�LV��PLQ������±��������±���� ������

������0XOWLSOH�$WWULEXWH�3RVVLELOLW\�'LVWULEXWLRQV
$QRWKHU� DVSHFW�RI� WKH�PRGHO� LV� UHODWHG� WR� WKH� IDFW� WKDW� LW� LV� VRPHWLPHV� QHFHVVDU\� WR
H[SUHVV�GHSHQGHQFLHV�EHWZHHQ�FDQGLGDWH�YDOXHV�FRPLQJ�IURP�GLIIHUHQW�DWWULEXWHV�LQ�D
VDPH� WXSOH�� 7KLV� UHTXLUHV� WKDW� WKH� PRGHO� LQFRUSRUDWHV� DWWULEXWH� YDOXHV� GHILQHG� DV
SRVVLELOLW\� GLVWULEXWLRQV� RYHU� VHYHUDO� GRPDLQV�� 7KLV� LV� IHDVLEOH� LQ� WKH� UHODWLRQDO
IUDPHZRUN� WKDQNV� WR� WKH� FRQFHSW� RI� D� QHVWHG� UHODWLRQ�� ,Q� VXFK� UHODWLRQV�� H[FOXVLYH
FDQGLGDWHV� DUH� UHSUHVHQWHG� DV� ZHLJKWHG� WXSOHV�� 7KHUHIRUH�� OHYHO�RQH� UHODWLRQV� NHHS
WKHLU�FRQMXQFWLYH�PHDQLQJ��ZKHUHDV�QHVWHG�UHODWLRQV�KDYH�D�GLVMXQFWLYH�LQWHUSUHWDWLRQ�
([DPSOH� ��� /HW� XV� FRQVLGHU� WKH� IROORZLQJ� LQWHUPHGLDWH� UHODWLRQ� LQW�U� LQYROYLQJ� WKH
QHVWHG�DWWULEXWH�;�GDWH��SODFH��
LQW�U �L DS ;

GDWH�������������������SODFH
1

L � %���� ^���G � ��S � !��������G � ��S � !��������G � ��S � !` �
L � %���� �G � ��S � ! ���
L � ^����%����` ^�����G � ��S � !` �

7KLV�UHODWLRQ�LV�DVVRFLDWHG�ZLWK����ZRUOGV�VLQFH�WKH�ILUVW�WXSOH�DGPLWV���LQWHUSUHWDWLRQV�
WKH� VHFRQG� DQG� WKLUG� RQHV� KDYH� WZR� LQWHUSUHWDWLRQV� DPRQJ� ZKLFK� �� �QR
UHSUHVHQWDWLYH���

,Q� RUGHU� WR�PHHW� WKH� REMHFWLYH� RI� D� FRPSDFW� SURFHVVLQJ� RI� DOJHEUDLF� TXHULHV�� WKH
RSHUDWRUV� PXVW� EH� DGDSWHG� VR� DV� WR� DFFHSW� FRPSDFW� UHODWLRQV� ERWK� DV� LQSXWV� DQG
RXWSXWV�� ,W� WXUQV�RXW� WKDW� RQO\�RSHUDWLRQV� VXFK� WKDW� DQ� LQSXW� WXSOH�SDUWLFLSDWHV� LQ� WKH
SURGXFWLRQ�RI�DW�PRVW�RQH�HOHPHQW�RI�WKH�UHVXOW��FDQ�EH�H[SHFWHG�WR�DGPLW�D�FRPSDFW
YHUVLRQ��VHH�>�@�IRU�D�MXVWLILFDWLRQ���$V�D�FRQVHTXHQFH��WKH�LQWHUVHFWLRQ��WKH�GLIIHUHQFH
DQG�WKH�&DUWHVLDQ�SURGXFW��WKHQ�WKH�MRLQ�LQ�WKH�JHQHUDO�FDVH��DUH�GLVFDUGHG�DQG�WKH�IRXU
DFFHSWDEOH�RSHUDWRUV�DUH��WKH�VHOHFWLRQ��WKH�SURMHFWLRQ��WKH�IN�MRLQ��D�VSHFLILF�MRLQ��DQG
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WKH�XQLRQ�� ,Q� WKLV�SDSHU��ZH� VKRZ� WKDW�ZH� FDQ� DOVR�GHDO�ZLWK� WKH�GLYLVLRQ�RSHUDWLRQ
�ZLWK�VRPH�UHVWULFWLRQV��

������$�%ULHI�6XUYH\�RI�WKH�)RXU�2SHUDWLRQV
'XH�WR�VSDFH�OLPLWDWLRQV��ZH�OLPLW�RXUVHOYHV�WR�D�EULHI�LQWURGXFWLRQ�RI�WKH�RSHUDWRUV

DQG�WKHLU�EHKDYLRXU�LV�WKHQ�LOOXVWUDWHG�E\�DQ�H[DPSOH��6HH�>����@�IRU�PRUH�GHWDLOV�DERXW
WKH�GHILQLWLRQ�RI�WKHVH�RSHUDWRUV�
8QDU\�RSHUDWLRQV
7KH�WKUHH�DVSHFWV�RI�WKH�VHOHFWLRQ�DUH��WKH�UHPRYDO�RI�XQVDWLVIDFWRU\�FDQGLGDWH�YDOXHV�
WKH� FRPSXWDWLRQ� RI� WKH� GHJUHH� RI� FHUWDLQW\� DWWDFKHG� WR� HDFK� RXWSXW� WXSOH� DQG� WKH
LQWURGXFWLRQ�RI�DSSURSULDWH�QHVWHG�UHODWLRQV�LQ�WKH�RXWSXW�UHODWLRQ�LI�QHHGHG�

7KH� UROH� RI� WKH� SURMHFWLRQ� LQ� WKH� UHJXODU� FDVH� LV� WR� UHPRYH� XQGHVLUHG� DWWULEXWHV�
+HUH�� WKH� SURMHFWLRQ� PXVW�� ��� NHHS� WKH� GXSOLFDWHV� LQ� OHYHO�RQH� UHODWLRQV� �WKLV� LV
MXVWLILHG� LQ� >�@��� ��� VXSSUHVV� QHVWHG� UHODWLRQV� LI� QHFHVVDU\�� ��� XSGDWH� WKH� SRVVLELOLW\
GHJUHHV�
%LQDU\�RSHUDWLRQV
%H\RQG� VHOHFWLRQV� DQG� SURMHFWLRQV�� WZR� ELQDU\� RSHUDWLRQV� FDQ� EH� SURFHVVHG� LQ� D
FRPSDFW� IDVKLRQ�� IN�MRLQ� DQG� XQLRQ�� 7KH� IN�MRLQ� DOORZV� IRU� WKH� FRPSRVLWLRQ� RI� D
SRVVLELOLVWLF�UHODWLRQ�U�RI�VFKHPD�5�:��=���ZKHUH�:�DQG�=�PD\�WDNH�LPSUHFLVH�YDOXHV�
DQG�D�UHJXODU�UHODWLRQ�V�ZKRVH�VFKHPD�LV�6�:��<��ZKHUH�WKH�IXQFWLRQDO�GHSHQGHQF\�:
� <� KROGV�� ,W� FRQVLVWV� LQ� FRPSOHWLQJ� WXSOHV� RI� U� E\� DGGLQJ� WKH� LPDJH� RI� WKH� :�

FRPSRQHQW�� %\� GHILQLWLRQ�� WKLV� OHDGV� WR� D� UHVXOWLQJ� UHODWLRQ� LQYROYLQJ� WKH� QHVWHG
UHODWLRQ�;�:��<���ZKLFK�³FRQQHFWV´�WKH�SDLUV�RI�FDQGLGDWHV�RYHU�:�DQG�<�

/DVW��WKH�XQLRQ�RI�WZR�LQGHSHQGHQW�UHODWLRQV�ZKRVH�VFKHPDV�DUH�FRPSDWLEOH�NHHSV
DOO�WKH�WXSOHV�LVVXHG�IURP�WKH�WZR�LQSXW�UHODWLRQV�ZLWKRXW�DQ\�GXSOLFDWH�UHPRYDO��VHH
>�@�IRU�PRUH�GHWDLOV�DQG�D�MXVWLILFDWLRQ��
([DPSOH� ��� /HW� XV� FRQVLGHU� WKH� SRVVLELOLVWLF� GDWDEDVH� FRPSRVHG� RI� WKH� UHODWLRQV
LP��,0��� LP��,0��DQG�SO�3/��ZKRVH� UHVSHFWLYH� VFKHPDV� DUH� ,0��L�� DS��GDWH�� SODFH�
DQG� 3/�DS�� OJ�� PVS��� 7KH� UHODWLRQV� LP�� DQG� LP�� DUH� DVVXPHG� WR� FRQWDLQ� LPDJHV� RI
DLUSODQHV�WDNHQ�E\�WZR�GLVWLQFW�VDWHOOLWHV�DQG�HDFK�LPDJH��LGHQWLILHG�E\�D�QXPEHU���L��
WDNHQ�RQ�D�FHUWDLQ�ORFDWLRQ��SODFH��D�JLYHQ�GD\��GDWH��LV�VXSSRVHG�WR�LQFOXGH�D�VLQJOH
�SRVVLEO\�LOO�NQRZQ��DLUSODQH��DS���5HODWLRQ�SO�JLYHV�WKH�OHQJWK��OJ��DQG�PD[LPDO�VSHHG
�PVS��RI�HDFK�DLUSODQH�DQG�LV�D�UHJXODU�UHODWLRQ�

SO DS OJ PVS
D � �� ����
D � �� ���
D � �� ����
D � �� ����
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LP� �L DS GDWH SODFH 1
L � D � ^��G � �������G � ` F � �
L � ^��D � �������D � ` G � F � �

LP� �L DS GDWH SODFH 1
L � ^��D � �����D � ` ^����G � �����G � ` F � �

/HW� XV� FRQVLGHU� WKH� TXHU\� ORRNLQJ� IRU� WKH� H[LVWHQFH� RI� LPDJHV� RI� DLUSODQHV� ZKRVH
PD[LPDO� VSHHG� LV� RYHU�����NP�K� DQG� WDNHQ� E\� HLWKHU� RI� WKH� WZR� VDWHOOLWHV� DW� D� GDWH
GLIIHUHQW� IURP� G � � DQG� G � �� ZKLFK� FRUUHVSRQGV� WR� WKH� DOJHEUDLF� TXHU\� 4�� IN�
MRLQ�XQLRQ�VHOHFW�LP���GDWH�∉�^G � ��G � `���VHOHFW�LP���GDWH�∉�^G � ��G � `����VHOHFW�SO��PVS�!
������ ^DS`�� ^DS`���:LWK� WKH� H[WHQVLRQV� DERYH�� ZH� REWDLQ� WKH� UHVXOWLQJ� UHODWLRQ� UHV
KHUHDIWHU�

UHV �L ;
$S���OJ���PVS

GDWH SODFH 1
L � ^�����D � ����������!` G � F � �
L � ^���D � ����������!��

���D � ����������!`
^��G � ` F � ���

ZKLFK�LV�DVVRFLDWHG�ZLWK���ZRUOGV��DPRQJ�ZKLFK�WKH�HPSW\�RQH�

����'LYLVLRQ�RI�3RVVLELOLVWLF�5HODWLRQV
������,QWURGXFWLRQ�DQG�H[DPSOH
7KH�UHODWLRQDO�GLYLVLRQ��L�H���WKH�GLYLVLRQ�RI�UHODWLRQ�U�RI�VFKHPD�5�$��;��E\�UHODWLRQ�V
RI�VFKHPD�6�%��ZKHUH�$�DQG�%�DUH�VHWV�RI�FRPSDWLEOH�DWWULEXWHV�LV�GHILQHG�DV�

����GLY�U��V��$��%�� �^[�_�∀�D�∈�V���D��[!�∈�U`� ���������
,Q�RWKHU�ZRUGV��WKH�GLYLVLRQ�RI�U�E\�V�UHWXUQV�WKH�HOHPHQWV�[�ZKLFK�DUH�DVVRFLDWHG�LQ

U�ZLWK�DW�OHDVW�DOO�WKH�YDOXHV�D�DSSHDULQJ�LQ�V�
,Q� WKH� SUHVHQFH� RI� LPSUHFLVH� GDWD� �UHSUHVHQWHG� DV� SRVVLELOLW\� GLVWULEXWLRQV��� ZH

FRQMHFWXUH�WKDW�WKH�GLYLVLRQ�LQ�WKH�JHQHUDO�FDVH��GLYLVLRQ�RI�D�UHODWLRQ�U�RI�VFKHPD�5�$�
;�� E\� D� UHODWLRQ� V� RI� VFKHPD� 6�%��� $� DQG� %� EHLQJ� FRPSDWLEOH� DWWULEXWHV� DQG� WKH
DWULEXWHV� $�� %� DQG� ;� EHLQJ� SRVVLEO\� LPSUHFLVH�� FDQQRW� EH� SURFHVVHG� ZLWKRXW
FRPSXWLQJ� DOO� RI� WKH� LQWHUSUHWDWLRQV� RI� WKH� SDLU� RI� UHODWLRQV� LQYROYHG�� ZKLFK� ZRXOG
OHDG�WR�DQ�H[SRQHQWLDO�FRPSOH[LW\��7KH�IROORZLQJ�H[DPSOH�LOOXVWUDWHV�WKH�ZRUOG�EDVHG
SURFHVVLQJ�PHWKRG��)RU�WKH�VDNH�RI�UHDGDELOLW\��DWWULEXWH�;�LV�FRQVLGHUHG�WR�EH�SUHFLVH�
([DPSOH����/HW� XV� FRQVLGHU� D�SRVVLELOLVWLF�GDWDEDVH�%� LQYROYLQJ� WKH� WZR� UHODWLRQV� U
DQG�V�UHSUHVHQWHG�EHORZ� 5HODWLRQ�U�KDV�WKH�IROORZLQJ�WZR�LQWHUSUHWDWLRQV�
U � � �^�[ � ��D � !���[ � ��D � !���[ � ��D � !���[ � ��D � !`�ZLWK�SRVVLELOLW\�GHJUHH�Π � � ��
U � � �^�[ � ��D � !���[ � ��D � !���[ � ��D � !���[ � ��D � !`�ZLWK�SRVVLELOLW\�GHJUHH�Π � � ����
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ZKLOH�V�KDV�WKH�IROORZLQJ�IRXU�LQWHUSUHWDWLRQV�
V � � �^�D � !���D � !`� ZLWK�SRVVLELOLW\�GHJUHH�Π
 � � ����
V � � �^�D � !���D � !`� ZLWK�SRVVLELOLW\�GHJUHH�Π
 � � ����
V � � �^�D � !`� ZLWK�SRVVLELOLW\�GHJUHH�Π
 � � ��
V � � �^�D � ��D � !`� ZLWK�SRVVLELOLW\�GHJUHH�Π
 � � �����

U ; $ V %
[ � ^��D � �������D � ` ^����D � �����D � `
[ � D � ^��D � �������D � `
[ � D �
[ � D �

7KH�YDOXH�[ � �EHORQJV�WR�WKH�UHVXOW�RI�WKH�GLYLVLRQ�RI�U�E\�V�LQ�WKH�ZRUOGV��U � ��V � ����U � ��V � ��
�U � ��V � ����U � ��V � ���7KXV��WKH�SRVVLELOLW\�GHJUHH�DWWDFKHG�WR�[ � �LQ�WKH�UHVXOW�RI�WKH�GLYLVLRQ
HTXDOV�
PD[�PLQ�Π � ��Π
 � ���PLQ�Π � ��Π
 � ���PLQ�Π � ��Π
 � ���PLQ�Π � ��Π
 � ��� ���
2Q� WKH�RWKHU�KDQG�� [ � � GRHV�QRW� EHORQJ� WR� WKH� UHVXOW� RI� WKH� GLYLVLRQ� RI� U� E\� V� LQ� WKH
ZRUOGV� �U � �� V � ��� �U � �� V � ��� �U � �� V � ��� �U � �� V � ���7KXV�� DFFRUGLQJ� WR� WKH� D[LRPV� RI� SRVVLELOLW\
WKHRU\�� WKH� QHFHVVLW\� �FHUWDLQW\��GHJUHH� DWWDFKHG� WR� [� LQ� WKH� UHVXOW� RI� WKH� GLYLVLRQ� LV
HTXDO�WR�
��±�PD[�PLQ�Π � ��Π
 � ���PLQ�Π � ��Π
 � ���PLQ�Π � ��Π
 � ���PLQ�Π � ��Π
 � ��� ���±����� �����
$V�WR�[ � ��DFFRUGLQJ�WR�WKH�VDPH�W\SH�RI�FDOFXOXV��LWV�SRVVLELOLW\�GHJUHH�LV�HTXDO�WR�����
$FFRUGLQJ� WR� WKH�D[LRPV�RI�SRVVLELOLW\� WKHRU\��RQH�KDV�Π�(������⇒�1�(�� ��� IRU� D
%RROHDQ�HYHQW�(��FRQVHTXHQWO\�WKH�QHFHVVLW\�GHJUHH�DWWDFKHG�WR�[ � �LQ�WKH�UHVXOW�RI�WKH
GLYLVLRQ�LV�]HUR�

/HW� XV� QRWLFH� LQFLGHQWDOO\� WKDW� D� SURFHVVLQJ� VWUDWHJ\� EDVHG� RQ� WKH� DOJHEUDLF
UHZULWLQJ�RI�WKH�GLYLVLRQ�RSHUDWLRQ��L�H��

GLY�U��V��$��%�� �SURMHFW�U��;��−�SURMHFW��SURMHFW�U��;��×�V��−�U��;�
LV� QRW� H[SORLWDEOH�� VLQFH� WKH� &DUWHVLDQ� SURGXFW� �×�� DQG� WKH� GLIIHUHQFH� �±�� DUH� QRW
RSHUDWRUV�IRU�ZKLFK�WKH�GDWDEDVH�PRGHO�LV�D�VWURQJ�UHSUHVHQWDWLRQ�V\VWHP�

,Q� WKLV� SDSHU�� DV� D� ILUVW� VWHS� WRZDUGV� D� WUDFWDEOH� WUHDWPHQW� RI� WKH� GLYLVLRQ� LQ� DQ
LPSUHFLVH�GDWDEDVH�FRQWH[W��ZH�OLPLW�RXUVHOYHV�WR�WKH�WZR�SDUWLFXODU�FDVHV�ZKHUH�;�LV�D
SUHFLVH�DWWULEXWH�DQG�HLWKHU�$�RU�%�LV�DQ�LPSUHFLVH�RQH��DQG�ZH�SRLQW�RXW�D�ZD\�WR�GHDO
ZLWK� WKLV�RSHUDWLRQ�ZKLFK�GRHV�QRW� FRPSXWH� WKH�GLIIHUHQW�ZRUOGV� DQG� FRPSOLHV�ZLWK
WKH�FKDUDFWHULVWLF�SURSHUW\�RI�D�VWURQJ�UHSUHVHQWDWLRQ�V\VWHP��7KH�UHVXOW�RI�WKH�GLYLVLRQ
FRPSXWHG� WKDQNV� WR� WKLV� DSSURDFK� LV� WKH� VDPH� DV� WKDW� GHOLYHUHG� E\� WKH� ZRUOG�EDVHG
DSSURDFK�� ,QGHHG�� LW� LV� D� UHODWLRQ� FRQWDLQLQJ� WKH� HOHPHQWV� [� DVVRFLDWHG� ZLWK� WZR
GHJUHHV� Π� DQG� 1� �SRVVLELOLW\� DQG� QHFHVVLW\�� H[SUHVVLQJ� WKH� H[WHQW� WR� ZKLFK� WKH\
SRVVLEO\� �UHVS�� FHUWDLQO\�� EHORQJ� WR� WKH� UHVXOW� RI� WKH� GLYLVLRQ�� 7KH� HOHPHQWV� [
DSSHDULQJ� LQ� WKH� UHVXOW� DUH� WKH� RQHV� VXFK� WKDW� Π� ≠� ��� DQG� WKH� GHJUHHV� Π� DQG� 1
FRPSXWHG�DUH��UHVSHFWLYHO\��HTXDO�WR�WKH�SRVVLELOLW\�RI�WKH�PRVW�SRVVLEOH�ZRUOG�ZKHUH
[�EHORQJV� WR� WKH� UHVXOW� RI� WKH�GLYLVLRQ� DQG���PLQXV� WKDW� RI� WKH�PRVW� SRVVLEOH�ZRUOG
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ZKHUH�[�GRHV�QRW�EHORQJ� WR� WKH� UHVXOW� RI� WKH� GLYLVLRQ��%RWK� FDVHV� �;� LV� SUHFLVH� DQG
HLWKHU� $� RU� %� LV� LPSUHFLVH�� DQG� WKH� XQGHUO\LQJ� DSSURDFKHV� DUH� GHWDLOHG� LQ� WKH
IROORZLQJ�VXEVHFWLRQV� ��

������&DVH����RQO\�DWWULEXWH�%�LV�LPSUHFLVH
7KLV� LV� WKH�PRVW�VLPSOH�RI�ERWK�FDVHV��7R�GHDO�ZLWK� WKH�GLYLVLRQ�RSHUDWLRQ� LQ� WKLV

FDVH��ZH�SURSRVH�D�OLQHDU�DOJRULWKP�DLPLQJ�DW�FRPSXWLQJ��IRU�HYHU\�HOHPHQW�[�RI�U��WKH
GHJUHH� RI� SRVVLELOLW\�Π� WKDW� LW� EHORQJV� WR� WKH� UHVXOW� RI� WKH� GLYLVLRQ� RI� U� E\� V�� 7KH
SULQFLSOH�RI� WKLV� DOJRULWKP� FRQVLVWV�� IRU� D� JLYHQ� [� RI� U�� LQ� VFDQQLQJ� WKH� GLIIHUHQW�%�
YDOXHV� LQ� V�� /HW� XV� GHQRWH� E\� VFY�E 	 �� WKH� VHW� RI� �SUHFLVH�� FDQGLGDWH� YDOXHV
FRUUHVSRQGLQJ�WR�WKH�LQWHUSUHWDWLRQV�RI�DQ�LPSUHFLVH�%�YDOXH�E 	 � LQ�V��DQG�E\�$�[��WKH
VHW� RI� DOO� WKH�$�YDOXHV� DVVRFLDWHG�ZLWK�[� LQ� U� �$�[�� FDQ�EH� VHHQ� DV� WKH� UHVXOW� RI� WKH
TXHU\� ³VHOHFW� $� IURP� U� ZKHUH� ;�  � [´��� 7KH� FDQGLGDWH� YDOXHV� E 	 
 � � IURP� VFY�E 	 �� DUH
DVVXPHG� WR�EH� UDQNHG� LQ� GHFUHDVLQJ� RUGHU� RQ� WKHLU� SRVVLELOLW\� GHJUHHV�π 	 
 � �� )RU� HDFK
LPSUHFLVH�E 	 �IURP�V��WKH�DOJRULWKP�FKHFNV�ZKHWKHU�[�LV�DVVRFLDWHG�LQ�U�ZLWK�DW�OHDVW�RQH
E 	 
 � �IURP�VFY�E 	 ��DQG�LI�VR��LW�PHPRUL]HV�WKH�KLJKHVW�SRVVLELOLW\�GHJUHH�DWWDFKHG�WR�VXFK
D� YDOXH�� 8OWLPDWHO\� WKH� ILQDO� SRVVLELOLW\� GHJUHH� DWWDFKHG� WR� [� LQ� WKH� UHVXOW� RI� WKH
GLYLVLRQ�LV�JLYHQ�E\�

Π�[�� �PLQ� � 	 �∈ 
 �PD[� ��� � � ∈ 
 � ��� ��� � ∩ ��� � � �π 	 
 � � �����������������������
,Q�IDFW��IRU�IRUPXOD�����WR�EH�FRUUHFW��DQ�H[WUD�³YLUWXDO´�FDQGLGDWH�YDOXH�ZLWK�GHJUHH

��±�1��ZKHUH�1�GHQRWHV�WKH�QHFHVVLW\�GHJUHH�DVVRFLDWHG�ZLWK�WKH�WXSOH�FRQWDLQLQJ�WKH
%�YDOXH�E 	 �LQ�V��PXVW�EH�DGGHG�WR�VFY�E 	 ���,QGHHG��RQH�PXVW�WDNH�LQWR�DFFRXQW�WKH�FDVH
ZKHUH� WKH� FRQVLGHUHG� WXSOH� RI� WKH� GLYLVRU� PD\� KDYH� QR� UHSUHVHQWDWLYH�� FDVH� ZKRVH
SRVVLELOLW\� LV� HTXDO� WR���±�1�� ,Q� WKH� DOJRULWKP�EHORZ�� WKLV� VLWXDWLRQ� LV� GHDOW�ZLWK� E\
PHDQV�RI�WKH�LQVWUXFWLRQ�Π�←�PD[�Π����±�W�1��

$V� WR� WKH� QHFHVVLW\� GHJUHH�� LW� LV� ]HUR� LI� WKH� GHJUHH� Π� REWDLQHG� LV� OHVV� WKDQ� ��
RWKHUZLVH��LW�LV�HTXDO�WR���PLQXV�WKH�SRVVLELOLW\�GHJUHH�RI�WKH�PRVW�SRVVLEOH�FDQGLGDWH
YDOXH��DSSHDULQJ�LQ�V��WKDW�LV�QRW�DVVRFLDWHG�ZLWK�[�LQ�U�

1�[�� ���±�PD[� � 	 �∈ 
 �PD[� ��� � � ∈ 
 � ��� ��� ��� ��� � � �π 	 
 � ����������������������������������������
7KH�DOJRULWKP�JLYHQ�KHUHDIWHU�KDV�WR�EH�SHUIRUPHG�IRU�HYHU\�HOHPHQW�[�RI�U�

,QSXW��UHODWLRQ�U�DQG�V�ZKRVH�JHQHULF�WXSOHV�DUH�UHVSHFWLYHO\��[��D 	!�DQG��E� !��ZLWK�E� � 
^π� 
�� �D � ���«���π� 
�� �D � `�DQG�π� 
�� ���«���π� 
�� �
2XWSXW��GHJUHH�RI�SRVVLELOLW\�Π�WKDW�[�EHORQJV�WR�WKH�UHVXOW�RI�WKH�GLYLVLRQ�RI�U�E\�V�
$Q�LPSUHFLVH�YDOXH�E� �LV�VHHQ�DV�D�VWUXFWXUHG�W\SH�FRPSRVHG�RI�L��QE�WKH�QXPEHU�RI�LWV
FDQGLGDWH� YDOXHV�� DQG� LL�� WKH� DUUD\V� YDO� DQG� SRVV� FRQWDLQLQJ�� UHVSHFWLYHO\�� WKHVH
FDQGLGDWH�YDOXHV�DQG�WKH�DVVRFLDWHG�SRVVLELOLW\�GHJUHHV��%HVLGHV��IRU�HDFK�WXSOH�W�RI�V�
WKH�DVVRFLDWHG�QHFHVVLW\�GHJUHH�LV�VWRUHG�LQ�W�1�
%RG\�RI�WKH�DOJRULWKP�

Π ← 1; PossMiss ← 0;
while not end(s) and Π ≠ 0 do
    read next tuple t of s;
    i ← 1; found1 ← false; found2 ← false; Πlocal ← 1;
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    while i ≤ t.B.nb and not (found1 and found2) do
        present ← (<x, t.B.val[i]> ∈ r);
        if not found1 and present then

       Πlocal ← t.B.poss[i];
       found1 ← true

        else
            if not found2 and not present then
                PossMiss ← max(PossMiss, t.B.poss[i]);
                found2 ← true
            endif;
        endif;
        i ← i + 1;
    enddo;
    if not found1 and t.N = 1 then Π ← 0
    else
       Πlocal ← max(Πlocal, 1 – t.N);
       Π ← min(Π, Πlocal);
    endif;
enddo;
N ← 1 – PossMiss endif;

,Q�RUGHU� WR�SURYH� WKH�YDOLGLW\�RI� WKH�PHWKRG��ZH�KDYH� WR� VKRZ� WKDW� WKH�DOJRULWKP
DERYH�SURYLGHV�WKH�VDPH�UHVXOW�DV�D�SURFHVVLQJ�DSSURDFK�EDVHG�RQ�WKH�FRPSXWDWLRQ�RI
ZRUOGV�� L�H��� WKDW� WKH�GHJUHHV�Π� DQG�1�FRPSXWHG�E\� WKLV�DOJRULWKP�DUH�� UHVSHFWLYHO\�
WKRVH�RI�WKH�PRVW�SRVVLEOH�ZRUOG�ZKHUH�[�EHORQJV�WR�WKH�UHVXOW�RI�WKH�GLYLVLRQ�DQG��
PLQXV� WKH�SRVVLELOLW\�GHJUHH�RI� WKH�PRVW�SRVVLEOH�ZRUOG�ZKHUH�[�GRHV�QRW�EHORQJ� WR
WKH� UHVXOW�RI� WKH�GLYLVLRQ��7KLV� LV� TXLWH� VWUDLJKWIRUZDUG�� E\� FRQVWUXFWLRQ�� ,QGHHG�� WKH
PRVW� SRVVLEOH� ZRUOG� ZKHUH� [� EHORQJV� WR� WKH� UHVXOW� RI� WKH� GLYLVLRQ� LV� REWDLQHG� E\
FKRRVLQJ��LQ�HDFK�WXSOH�RI�V��WKH�FDQGLGDWH�YDOXH��LI�LW�H[LVWV��ZKLFK�LV�DVVRFLDWHG�ZLWK
[�LQ�U�DQG�ZKLFK�KDV�WKH�KLJKHVW�SRVVLELOLW\��WDNLQJ�DOVR�LQWR�DFFRXQW�WKH�SRVVLELOLW\�RI
QR�UHSUHVHQWDWLYH�IRU�WKH�WXSOH�LQ�V���7KH�SRVVLELOLW\�RI�WKLV�ZRUOG�LV�WKH�PLQLPXP�RI
WKH�GHJUHHV�WLHG�WR�WKH�FDQGLGDWH�YDOXHV�UHWDLQHG�IRU�LWV�FRQVWUXFWLRQ��DQG�WKLV�LV�LQGHHG
ZKDW�WKH�DOJRULWKP�FRPSXWHV��$V�WR�WKH�PRVW�SRVVLEOH�ZRUOG�ZKHUH�[�GRHV�QRW�EHORQJ
WR�WKH�UHVXOW�RI�WKH�GLYLVLRQ��LW�LV�REWDLQHG�E\�FKRRVLQJ�L��WKH�PRVW�SRVVLEOH�FDQGLGDWH
YDOXH�E 	 
 � DSSHDULQJ�LQ�V�IRU�ZKLFK�QR�DVVRFLDWLRQ��E 	 
 � ��[��H[LVWV� LQ�U� �OHW�XV�FDOO� W� � WKH
WXSOH�ZKHUH�E 	 
 � �DSSHDUV���DQG�LL��FDQGLGDWH�YDOXHV��LQFOXGLQJ�∅�LI� WKH�WXSOH�PD\�KDYH
QR� UHSUHVHQWDWLYH�� ZLWK� SRVVLELOLW\� �� LQ� DOO� WXSOHV� RWKHU� WKDQ� W� �� 7KLV� ZRUOG� LV� π 	 
 �
SRVVLEOH�� π 	 
 � � EHLQJ� WKH� SRVVLELOLW\� GHJUHH� DWWDFKHG� WR� WKH� YDOXH� E 	 
 � ��� $JDLQ�� LW� LV
VWUDLJKWIRUZDUG�WR�VHH�WKDW�WKH�DOJRULWKP�FRPSXWHV�WKH�FRUUHFW�YDOXH�RI�WKH�QHFHVVLW\�
VLQFH� LW� VWRUHV� LQ� WKH�YDULDEOH�3RVV0LVV� WKH�GHJUHH� DWWDFKHG� WR� WKH�PRVW� SRVVLEOH�%�
YDOXH�WKDW�LV�QRW�DVVRFLDWHG�ZLWK�[�LQ�U��DQG�ILQDOO\�GHOLYHUV���±�3RVV0LVV�
([DPSOH����/HW�XV�FRQVLGHU�WKH�IROORZLQJ�UHODWLRQV�U�DQG�V�

U ; $ V % 1
[ � D � ^��D � �������D � �������D � ` ���
[ � D � ^��D � �������D � ` �
[ � D � a3 1
[ � D �
[ � D �
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One gets the following results. For x1: Π = min(max(1, 0.7, 1 – 0.2), 1, 1) = 1 and N =
1 – max(0.4, 0.2) = 0.6. As a matter of fact, the most possible world where x1 belongs
to the result of the division is made of both r and the interpretation of s containing the
tuples <a2> and <a3> whose possibility degree equals min(1, 1, 1) = 1. As to the most
possible world where x1 does not belong to the result of the division, it is made of
both r and the interpretation of s containing the tuples <a1>, <a2> and <a3> whose
possibility degree equals min(0.4, 1, 1) = 0.4. Similarly, for x2, one gets the degrees Π
= min(max(1, 0.7), max(1, 0.2), 1) = 1 and N = 1 – 0.4 = 0.6.

������&DVH����RQO\�DWWULEXWH�$�LV�LPSUHFLVH
,Q�WKLV�VHFRQG�FDVH��IRU�WKH�FDOFXOXV�RI�WKH�SRVVLELOLW\�GHJUHH�Π�� WKH�DOJRULWKP�ZH

SURSRVH� FDUULHV� RXW� D� WUHDWPHQW� IRU� HYHU\� HOHPHQW� [� RI� U�� ZKLFK� FRQVLVWV� LQ� WKH
IROORZLQJ�VWHSV�
���RQH�SHUIRUPV�D�VHOHFWLRQ�RQ�UHODWLRQ�U�E\�PHDQV�RI�WKH�VHOHFWLRQ��³W�;� �[�DQG�W�$�∈
V>%@´��ZKLFK�LV�LQWHQGHG�IRU�UHWDLQLQJ�RQO\�WKH�YDOXH�[�DQG�WKH�$�YDOXHV�DSSHDULQJ�LQ
V��OHW�XV�FDOO�WKH�UHODWLRQ�ZH�REWDLQ�U � ��,I�UHODWLRQ�U � �FRQWDLQV�D�QXPEHU�RI�WXSOHV�ZKLFK
LV�OHVV�WKDQ�WKH�FDUGLQDOLW\�RI�UHODWLRQ�V��WKH�SRVVLELOLW\�DQG�WKH�QHFHVVLW\�WKDW�[�EHORQJV
WR�WKH�UHVXOW�RI�WKH�GLYLVLRQ�RI�U�E\�V�DUH�REYLRXVO\�]HUR�
��� RQH� QXPEHUV� WKH� WXSOHV� RI� UHODWLRQ� U � � �U � � LV� SURYLGHG�ZLWK� DQ� DGGLWLRQDO� DWWULEXWH
QXP��
���RQH��GHYHORSV��HYHU\�WXSOH�RI�UHODWLRQ�U � ��(YHU\�LPSUHFLVH�WXSOH�RI�U � �LV�UHSODFHG�E\
LWV�GLIIHUHQW�LQWHUSUHWDWLRQV��)RU�LQVWDQFH��D�WXSOH�W 	 � ��^D � �π � ���«���D � �π � `��[��QXP 	!
RI�U � �ZLOO�JLYH�ELUWK�WR�WKH�SUHFLVH�WXSOHV��D � ��[��QXP 	 ��π � !���D � ��[��QXP 	 ��π � !��«���D � �
[��QXP 	 ��π � !�
7KH� LQIRUPDWLRQ� QXP� LV� XVHG� WR� VROYH� WKH� SUREOHP� UDLVHG� E\� WKH� H[LVWHQFH� RI
GHSHQGHQFLHV� EHWZHHQ� WKH� LQWHUSUHWDWLRQV� RI� D� VDPH� LPSUHFLVH� WXSOH�� ,QGHHG�� WZR
WXSOHV�KDYLQJ�WKH�VDPH�QXPEHU�FDQQRW�FRH[LVW�LQ�D�VDPH�ZRUOG�
5HPDUN��$WWULEXWH�1�LV�QRW�WDNHQ�LQWR�DFFRXQW�VLQFH�LW�LV�QRW�QHHGHG�IRU�WKH�FDOFXOXV�RI
WKH�ILQDO�SRVVLELOLW\�GHJUHH�Π�LQ�WKLV�FDVH�
���7KH�WXSOHV�RI�U � �DUH�UDQNHG�LQ�GHFUHDVLQJ�RUGHU�RQ�WKH�SRVVLELOLW\�GHJUHHV�

�YDO � ��[��QXP � ��π � ����YDO � ��[��QXP � ��π � ���«��ZLWK�π 	 ���π 	�� � �
���/HW�XV�GHQRWH�E\�N�WKH�FDUGLQDOLW\�RI�V��7KH�GHJUHH�RI�SRVVLELOLW\�Π�DWWDFKHG�WR�DQ
HOHPHQW�[�FDQ�EH�GHGXFHG�IURP�U � �WKH�IROORZLQJ�ZD\��:H�FRPSXWH�WKH�PRVW�SRVVLEOH
VHW�' ! �FRQWDLQLQJ�N�WXSOHV�RI�U � �DQG�VDWLVI\LQJ�WKH�SURSHUW\�³' ! �FRQWDLQV�DOO�WKH�YDOXHV
SUHVHQW�LQ�UHODWLRQ�V�ZLWK�GLIIHUHQW�QXPEHUV´�

7KH�DOJRULWKP�IRU�WKH�FDOFXOXV�RI�WKH�GHJUHH�RI�SRVVLELOLW\�LV�JLYHQ�KHUHDIWHU�
,QSXW��UHODWLRQ�U � �ZKRVH�WXSOHV�DUH�RI�WKH�IRUP�W� ��YDO 	 ��[��QXP 	 ��π 	!�
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2XWSXW��GHJUHH�RI�SRVVLELOLW\�Π�WKDW�WKH�HOHPHQW�[�EHORQJV�WR�WKH�UHVXOW�RI�WKH�GLYLVLRQ
RI�U�E\�V�

/HW�XV�GHQRWH�E\�Q � �WKH�FDUGLQDOLW\�RI�UHODWLRQ�U � ��L�H���WKH�QXPEHU�RI�LQWHUSUHWDWLRQV
RI�[��DQG�GHILQH�WKH�UHODWLRQ�ℜ�ZKLFK�H[SUHVVHV�³WR�EH�GLIIHUHQW´�

�YDO��[��QXP��π��ℜ��YDO
��[��QXP
��π
��LII��YDO�≠�YDO
�DQG�QXP�≠�QXP
�����������������
7KLV� DOJRULWKP�PDLQWDLQV� VHWV� RI� WXSOHV�� HDFK� RI� WKHP�� GHQRWHG� E\�$ 	 �� DVVRFLDWHG

ZLWK�DQ�LQFRPSOHWH�ZRUOG��LQ�WKH�VHQVH�WKDW�D�FKRLFH�IRU�HDFK�WXSOH�RI�U�KDV�QRW�EHHQ
PDGH�\HW���,W�JXDUDQWHHV�WKDW�WKH�VHW�IRXQG�ILUVW��WKDQNV�WR�VWHS����FRQWDLQLQJ�N�WXSOHV
ZKLFK�DUH�DOO�SDLUZLVH�GLIIHUHQW�LQ�WKH�VHQVH�RI�UHODWLRQ�ℜ�LV�WKH�PRVW�SRVVLEOH�RQH�DQG
WKHQ�LWV�SRVVLELOLW\�LV�WKDW�RI�WKH�HYHQW�³[�EHORQJV�WR�GLY��U��[��$��%�´�
%RG\�RI�WKH�DOJRULWKP�

Result ← false;
for each tuple t

i
 (i from 1 to n

x
) of r

x
 do

  A
i
 ←�{t

i
};

  for each set A
j
 (j from 1 to i – 1) do;

    if t
i
 is in relation ℜ�with the elements of A

j
 then

      add t
i
 to A

j
 endif;

    if card(A
j
) = k then

      result ←�true;
      Π�←�t

i
.π;

      exit;
    endif;
  endfor;
endfor;
if not result then Π = 0 endif;

$V�WR�WKH�QHFHVVLW\�GHJUHH��LW�LV�FRPSXWHG�WKH�IROORZLQJ�ZD\�
•�LQ�WKH�FDVH�ZKHUH�WKH�SRVVLELOLW\�GHJUHH�FRPSXWHG�WKDQNV�WR�WKH�SUHYLRXV�DOJRULWKP
LV�OHVV�WKDQ����WKH�QHFHVVLW\�GHJUHH�ZLOO�EH���
•�RWKHUZLVH��WKH�QHFHVVLW\�WKDW�D�JLYHQ�[�EHORQJV�WR�GLY�U��V��$��%��LV�WKDW�RI�WKH�HYHQW
³WKH�WXSOHV�RI�V�DUH�LQFOXGHG�LQ�U � >$@´�ZKHUH�U � �LV�REWDLQHG�IURP�VWHS���DQG�U � >$@�LV�WKH
SURMHFWLRQ�RI�U � �RQ�DWWULEXWH�$�

/HW�XV�GHQRWH�E\�^V � �� V � ��«��V " `� WKH� WXSOHV�SUHVHQW� LQ�UHODWLRQ�V��$FFRUGLQJ� WR� WKH
D[LRPV�RI�SRVVLELOLW\�WKHRU\��WKLV�QHFHVVLW\�GHJUHH�LV�HTXDO�WR�
1�V � �∈�U � >$@�DQG�«�DQG�V " �∈�U � >$@�� ���−�Π�V � �∉�U � >$@�RU�«�RU�V " �∉�U � >$@�

��������������������������������������������������� ���−�PD[�Π�V � �∉�U � >$@���«��Π�V " �∉�U � >$@��
��������������������������������������������������� ���−�PD[��−�1�V � �∈�U � >$@���«����−�1�V " �∈�U � >$@���
,Q� >�@��ZH� KDYH� SURSRVHG� D� OLQHDU� FRPSOH[LW\� DOJRULWKP� LQ� RUGHU� WR� FRPSXWH� WKH

QHFHVVLW\�WKDW�D�JLYHQ�WXSOH�W�EHORQJV�WR�WKH�UHVXOW�RI�D�TXHU\�4��1�W�∈�UHV�4����KHUH
U � >$@�SOD\V�WKH�UROH�RI�UHV�4���7KXV��WKH�FRPSXWDWLRQ�RI�1�LQ�WKH�FDVH�FRQVLGHUHG�KHUH
DPRXQWV�WR�UXQQLQJ�N�WLPHV�WKLV�DOJRULWKP�

,Q�RUGHU�WR�GHPRQVWUDWH�WKH�YDOLGLW\�RI�WKH�SURSRVHG�DSSURDFK��ZH�KDYH�WR�FRPSDUH
WKH�UHVXOW��SRVVLELOLW\�DQG�QHFHVVLW\�GHJUHHV��REWDLQHG�WKDQNV�WR�WKH�DOJRULWKPV�DERYH
ZLWK�WKDW�REWDLQHG�E\�PHDQV�RI�WKH�SURFHVVLQJ�WHFKQLTXH�EDVHG�RQ�ZRUOGV�
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7KH�ILQDO�SRVVLELOLW\�GHJUHH�Π�LV�IRXQG�E\�FRQVLGHULQJ�WKH�ILUVW�N�WXSOHV�RI�U � �ZKLFK�DUH
DOO�SDLUZLVH�GLIIHUHQW�LQ�WKH�VHQVH�RI�UHODWLRQ�ℜ��Π� �π " ���/HW�XV�FDOO�(�WKH�VHW�PDGH�RI
WKHVH� N� WXSOHV�� 2QH� FDQ� EXLOG� D� ZRUOG� PDGH� RI� WKH� WXSOHV� IURP� (� ZLWK� DQ� LPSOLFLW
FRPSOHWHO\�SRVVLEOH�FKRLFH��π� ����IRU�WKH�RWKHU�WXSOHV��LQFOXGLQJ�WKH�FKRLFH�����7KLV
ZRUOG�LV�WKH�PRVW�SRVVLEOH�RQH�ZKHUH�[�EHORQJV�WR�WKH�GLYLVLRQ��,QGHHG��WKH�N # $ � WXSOH
�YDO " ��[��QXP " ��π " ��PDNHV�WKH�SURSHUW\�³(�FRQWDLQV�N�WXSOHV�WKDW�DUH�DOO�GLIIHUHQW�LQ�WKH
VHQVH� RI� UHODWLRQ� ℜ´� EHFRPH� WUXH� �LW� ZDV� QRW� WUXH� DW� WKH� SUHYLRXV� VWHS��� %\
FRQVWUXFWLRQ� �GXH� WR� WKH� RUGHU�ZKLFK� JHQHUDWHV� WKH�PRVW� SRVVLEOH� ZRUOGV� ILUVW��� WKLV
ZRUOG�LV�WKH�PRVW�SRVVLEOH�RQH�ZKLFK�VDWLVILHV�WKH�SURSHUW\�
6HH�>�@�IRU�WKH�SURRI�UHODWHG�WR�WKH�FRPSXWDWLRQ�RI�WKH�QHFHVVLW\�

*LYHQ�WKDW�WKH�GLYLVLRQ�RSHUDWLRQ�LV�FRQVLGHUHG��RQH�PXVW�PDNH�VXUH�WKDW�WKH�UHVXOW
REWDLQHG� LV� D�TXRWLHQW�� /HW�XV� UHFDOO� WKDW� WKH� WHUP� ³GLYLVLRQ´� JLYHQ� WR� WKLV�RSHUDWLRQ
UHVWV�RQ�WKH�IDFW�WKDW�WKH�UHODWLRQ�W�UHVXOWLQJ�IURP�WKH�GLYLVLRQ�RI�U�E\�V�KDV�WKH�GRXEOH
FKDUDFWHULVWLF�RI�D�TXRWLHQW��QDPHO\�

��� V�×�W�⊆�U�DQG����∀W
���W�⊂�W
��⇒���V�×�W
�� �U��
7KH� DSSURDFK� ZH� SURSRVH� KHUH� LV� HTXLYDOHQW� WR� WKH� RQH� EDVHG� RQ� ZRUOGV�� 7KLV

HTXLYDOHQFH� DOORZV� XV� WR� VWDWH� WKDW� WKH� UHVXOW� GHOLYHUHG� E\� RXU� GLYLVLRQ� LV� DOVR� D
TXRWLHQW�VLQFH�WKH�SURSHUW\�RI�TXRWLHQW�RI�WKH�UHVXOW�RI�D�GLYLVLRQ�KROGV�LQ�HDFK�ZRUOG�

$V� IRU� WKH� FRPSOH[LW\� RI� WKH� SURSRVHG� DSSURDFK�� LW� LV� RI� FRXUVH� PXFK� PRUH
UHDVRQDEOH� WKDQ� WKDW� RI� WKH� DSSURDFK� EDVHG� RQ� WKH� FRPSXWDWLRQ� RI� ZRUOGV�� )RU
LQVWDQFH�� LI� UHODWLRQ� U � � FRQWDLQV� S� WXSOHV� DQG� QF� FDQGLGDWH� YDOXHV� SHU� SRVVLELOLW\
GLVWULEXWLRQ� IRU� DWWULEXWH� $�� WKH� ZRUOG�EDVHG� DSSURDFK� ZLOO� QHFHVVLWDWH� QF % � XVXDO
GLYLVLRQV�RI�DQ�LQWHUSUHWDWLRQ�RI�U�E\�V��YHUVXV�RQO\��S
QF� � ��DW�ZRUVW��WHVWV�RI�LQVHUWLRQ
LQWR�D�VHW�$ 	 ��FI��WKH�DOJRULWKP�DERYH��IRU�WKH�DSSURDFK�SUHVHQWHG�LQ�WKLV�SDSHU�
([DPSOH����/HW�XV�FRQVLGHU�D�FRPSDQ\�ZKLFK�RZQV�ZDUHKRXVHV� LQ�GLIIHUHQW�)UHQFK
WRZQV��7KHVH�ZDUHKRXVHV�FDQ�VWRUH�SURGXFWV�IURP�GLIIHUHQW�GHSDUWPHQWV��:H�KDYH�WKH
IROORZLQJ� SRVVLELOLVWLF� GDWDEDVH� FRPSRVHG� RI� WKH� UHODWLRQV� ZDUHKRXVH� :� DQG
GHSDUWPHQW�'�ZKRVH�UHVSHFWLYH�VFKHPDV�DUH�:�WRZQ��FRXQWHU��DQG�'�FRXQWHU��

: WRZQ FRXQWHU
3DULV ^����GULQN�����FDQQHG�IRRG`
0DUVHLOOH ^��KRPH�DSSOLDQFH�������IUHVK�IRRG`
*UHQREOH ^��GULQN�������IUHVK�IRRG`
3DULV ^��FDQQHG�IRRG�������KRPH�DSSOLDQFH`
3DULV IUHVK�IRRG
/\RQ +RPH�DSSOLDQFH

' FRXQWHU
IUHVK�IRRG
FDQQHG�IRRG
KRPH�DSSOLDQFH

/HW�XV� DOVR� FRQVLGHU� WKH� IROORZLQJ�TXHU\� LQYROYLQJ� WKH�GLYLVLRQ�RSHUDWRU�� ³WR�ZKLFK
H[WHQW�LV�LW�SRVVLEOH�DQG�FHUWDLQ�WKDW�WKH�ZDUHKRXVH�ORFDWHG�LQ�3DULV�LV�DEOH�WR�VXSSO\�DOO
WKH�FRXQWHUV"´
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:H�SHUIRUP��RQ�UHODWLRQ�:��WKH�VHOHFWLRQ�EDVHG�RQ�WKH�FRQGLWLRQ�³WRZQ� �³3DULV´�DQG
FRXQWHU�LQ�'´��DQG�WKHQ�ZH�QXPEHU�HDFK�WXSOH��ZKLFK�OHDGV�WR�
:& WRZQ FRXQWHU QXP 1

3DULV ^��FDQQHG�IRRG` � ���
3DULV ^��FDQQHG�IRRG�������KRPH�DSSOLDQFH` � �
3DULV IUHVK�IRRG � �

(DFK� WXSOH� LQ� UHODWLRQ� : ' � LV� GHYHORSHG� DQG� WKH� WXSOHV� REWDLQHG� DUH� UDQNHG� LQ
GHFUHDVLQJ�RUGHU�RQ�WKH�SRVVLELOLW\�GHJUHHV�

WRZQ FRXQWHU QXP Π
3DULV FDQQHG�IRRG � �
3DULV FDQQHG�IRRG � �
3DULV IUHVK�IRRG � �
3DULV KRPH�DSSOLDQFH � ���

7KH�DOJRULWKP�UXQV�DV�IROORZV�
2QFH�WKH�ILUVW�WZR�URZV�KDYH�EHHQ�DFFHVVHG��ZH�KDYH�
$ � � �^�3DULV��FDQQHG�IRRG�������`
$ � � �^�3DULV��FDQQHG�IRRG�������`
7KH�WXSOH��3DULV��FDQQHG�IRRG������!�LV�QRW�LQ�UHODWLRQ�ℜ�ZLWK�WKH�HOHPHQW�RI�$��
7KH�WXSOH��3DULV��IUHVK�IRRG������!�LV�DFFHVVHG��:H�KDYH�
$ � � �^�3DULV��IUHVK�IRRG�������`
7KH�WXSOH��3DULV��IUHVK�IRRG������!�FDQ�EH�DGGHG�WR�$ � �DQG�$ � �VLQFH�LW�LV�LQ�UHODWLRQ�ℜ
ZLWK�WKHLU�HOHPHQWV��ZH�WKXV�KDYH�
$ � � �^�3DULV��FDQQHG�IRRG����������3DULV��IUHVK�IRRG�������`
$ � � �^�3DULV��FDQQHG�IRRG����������3DULV��IUHVK�IRRG�������`
7KHQ�ZH�DFFHVV��3DULV��KRPH�DSSOLDQFH��������!�DQG�ZH�JHW�
$ � � �^�3DULV��KRPH�DSSOLDQFH���������`
7KLV�WXSOH�FDQ�EH�DGGHG�WR�$ � ��EXW�QRW�WR�$ � ��
$ � � �^�3DULV��FDQQHG�IRRG����������3DULV��IUHVK�IRRG��������
������������3DULV��KRPH�DSSOLDQFH���������`
7KH� FDUGLQDOLW\� RI� $ � � LV� �� �WKH� FDUGLQDOLW\� RI� UHODWLRQ� '��� WKH� SRVVLELOLW\� WKDW� 3DULV
EHORQJV�WR�WKH�GLYLVLRQ�LV�WKXV������,W�FDQ�EH�FKHFNHG�WKDW�LW�FRUUHVSRQGV�WR�WKH�ZRUOG
FRQWDLQLQJ�WKH�IROORZLQJ�LQWHUSUHWDWLRQ�RI�UHODWLRQ�:�

WRZQ FRXQWHU
3DULV FDQQHG�IRRG
3DULV KRPH�DSSOLDQFH
3DULV IUHVK�IRRG

ZKLFK� LV� SRVVLEOH� DW� GHJUHH� ����� DQG� ZKLFK� LV� WKH� PRVW� SRVVLEOH� RQH� ZKHUH� 3DULV
EHORQJV�WR�WKH�UHVXOW�RI�WKH�GLYLVLRQ��7KH�QHFHVVLW\�GHJUHH�LV�]HUR�VLQFH�WKH�SRVVLELOLW\
GHJUHH�LV�OHVV�WKDQ����
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����5HODWHG�:RUNV
The division operator in the context of fuzzy relations has been studied by several
researchers, mainly in the case of fuzzy relations (associated with a gradual concept)
involving only crisp values (see for instance [7, 8, 9, 12, 14]). However, a few authors
have studied the division operator in the context considered here, i.e., that of relations
with imprecise attribute values described by possibility distributions. Both [10] and
[13] consider the division of r of schema R(A, X) by relation s of schema S(B) where
A and B are imprecise attributes and X is a precise one. Unfortunately, none of these
approaches is consistant with the world-based semantics of imprecise databases, in
other terms it does not satisfy property (1).�Let us consider the following example:

�����U ; $ V % 1
[ ^��D�����E` D �

E �

$FFRUGLQJ�WR�ERWK�DSSURDFKHV��±�GHVFULEHG�LQ�>��@�DQG�>��@�±��WKH�SRVVLELOLW\�WKDW�[
EHORQJV� WR� WKH� UHVXOW� RI� WKH� GLYLVLRQ� HTXDOV� �� ZKHUHDV� WKH� UHVXOW� RI� WKH� GLYLVLRQ� LV
HPSW\� LQ� WKH� WZR� ZRUOGV� DVVRFLDWHG� ZLWK� UHODWLRQV� U� DQG� V�� 7KH� UHDVRQ� ZK\� WKHVH
DSSURDFKHV� DUH� QRW� VRXQG� �ZLWK� UHVSHFW� WR� WKH� ZRUOG�EDVHG� VHPDQWLFV�� LV� WKDW� WKH\
LJQRUH� WKH� GLVMXQFWLYH� LQWHUSUHWDWLRQ� XQGHUO\LQJ� SRVVLELOLW\� GLVWULEXWLRQV�� 0RUH
SUHFLVHO\�� WKH� FDOFXOXV� RQO\� WDNHV� LQWR� DFFRXQW� WKH� IDFW� WKDW� D� YDOXH� [� LV� SRVVLEO\
DVVRFLDWHG�LQ�UHODWLRQ�U�ZLWK�YDOXHV�D�DQG�E�EXW�LJQRUHV�WKH��FUXFLDO��IDFW�WKDW�LW�FDQ�QRW
EH�DVVRFLDWHG�ZLWK�ERWK�YDOXHV�DW�WKH�VDPH�WLPH�

����&RQFOXVLRQ
,Q�WKLV�SDSHU��ZH�KDYH�FRQVLGHUHG� WKH� LVVXH�RI�TXHU\LQJ�SRVVLELOLVWLF�GDWDEDVHV�E\

PHDQV� RI� D� VHW� RI� DSSURSULDWH� DOJHEUDLF� RSHUDWRUV�� )LUVW��ZH� KDYH� UHFDOOHG� WKH�PDLQ
FKDUDFWHULVWLFV� RI� DQ� LPSUHFLVH� GDWDEDVH� PRGHO� HQDEOLQJ� WR� SURFHVV� VXFK� DOJHEUDLF
TXHULHV� LQ� D� ³FRPSDFW´� ZD\�� DQG� ZKLFK� LV� D� VWURQJ� UHSUHVHQWDWLRQ� V\VWHP� IRU� IRXU
TXHU\LQJ�RSHUDWLRQV��VHOHFWLRQ��XQLRQ��SURMHFWLRQ�DQG�IRUHLJQ�NH\�MRLQ��7KHQ��ZH�KDYH
SURSRVHG�D�FRPSDFW�DSSURDFK�±�ZKLFK�FRPSOLHV�ZLWK�WKH�FKDUDFWHULVWLF�SURSHUW\�RI�D
VWURQJ�UHSUHVHQWDWLRQ�V\VWHP�±�WR�WKH�SURFHVVLQJ�RI�GLYLVLRQ�TXHULHV�LQ�WKH�IUDPHZRUN
RI�WKDW�PRGHO��7KH�VWUDWHJ\�SURSRVHG�PDNHV�LW�SRVVLEOH�WR�HYDOXDWH�LQ�D�WUDFWDEOH�ZD\
WKH�GLYLVLRQ�RI�D�UHODWLRQ�U�RI�VFKHPD�5�$��;��E\�D�UHODWLRQ�V�RI�VFKHPD�6�%��LQ� WKH
SDUWLFXODU�FDVHV�ZKHUH�;�LV�D�SUHFLVH�DWWULEXWH�DQG�HLWKHU�$��RU�%�LV�DQ�LPSUHFLVH�RQH�
(YHQ�WKRXJK�LW�LV�LPSOLHG�E\�WKH�SURSHUW\�RI�D�VWURQJ�UHSUHVHQWDWLRQ�V\VWHP��LW�PLJKW
EH� ZRUWK� PHQWLRQLQJ� WKDW� LQ� ERWK� FDVHV�� WKH� GLYLVLRQ� RSHUDWRU� REWDLQHG� FDQ� EH
FRPSRVHG� ZLWK� WKH� RWKHU� DOJHEUDLF� RSHUDWRUV� RI� WKH� PRGHO� VLQFH� LWV� UHVXOW� LV
UHSUHVHQWHG�E\�D�WDEOH�RI�WKH�GDWDEDVH�PRGHO�FRQVLGHUHG��HYHU\�WXSOH�RI�WKH�UHVXOW�LV�RI
WKH�IRUP��1 	 ��π 	 �[ 	!!��

$V�WR�IXWXUH�ZRUNV��LW�LV�RI�LQWHUHVW�WR�SXUVXH�WKLV�VWXG\�LQ�RUGHU�WR�FKHFN�ZKHWKHU
WKH�JHQHUDO�FDVH��L�H���ZKHUH�ERWK�UHODWLRQV�U�DQG�V�DUH�LPSUHFLVH��FRXOG�EH�GHDOW�ZLWK�LQ
D�³FRPSDFW´�ZD\�DW�OHDVW�LQ�VRPH�SDUWLFXODU�VLWXDWLRQV��:H�DOVR�SODQ�RQ�LPSOHPHQWLQJ
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WKH� GLYLVLRQ� RSHUDWRU� GHILQHG� LQ� WKLV� SDSHU� VR� DV� WR� SHUIRUP� VRPH� H[SHULPHQWDO
PHDVXUHV� DLPHG� DW� DVVHVVLQJ� WKH� H[WUD� FRVW� LQGXFHG� E\� WKH� SUHVHQFH� RI� LPSUHFLVH
YDOXHV��ZLWK� UHVSHFW� WR� D� GLYLVLRQ� TXHU\� SURFHVVHG� RQ� D� FODVVLFDO� GDWDEDVH��$QRWKHU
GLUHFWLRQ� RI� UHVHDUFK� FRQFHUQV� WKH� LQIOXHQFH� RI� WKH� PRGHO� RI� XQFHUWDLQW\� FKRVHQ� WR
UHSUHVHQW� LOO�NQRZQ� LQIRUPDWLRQ�� 0RUH� SUHFLVHO\�� RQH� PD\� ZRQGHU� LI� WKH� DSSURDFK
SURSRVHG�LQ�WKLV�SDSHU�ZRXOG�VWLOO�EH�YDOLG�LQ�D�SUREDELOLVWLF�GDWDEDVH�IUDPHZRUN�
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��� %RVF��3���3LYHUW��2���7RZDUGV�DQ�DOJHEUDLF�TXHU\� ODQJXDJH� IRU�SRVVLELOLVWLF�UHODWLRQV���� ( )

,(((�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�)X]]\�6\VWHPV��)8==�,(((
�������������������
��� %RVF��3���3LYHUW��2���2Q�D�VWURQJ�UHSUHVHQWDWLRQ�V\VWHP�IRU�LPSUHFLVH�UHODWLRQDO�GDWDEDVHV�

��( ) �,QWHUQDWLRQDO�&RQIHUHQFH�RQ�,QIRUPDWLRQ�3URFHVVLQJ�DQG�0DQDJHPHQW�RI�8QFHUWDLQW\
LQ�.QRZOHGJH�%DVHG�6\VWHPV��,308
��������������������

��� %RVF�� 3��� 3LYHUW�� 2��� $ERXW� SURMHFWLRQ�VHOHFWLRQ�MRLQ� TXHULHV� DGGUHVVHG� WR� SRVVLELOLVWLF
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Abstract. Consider a database consisting of relations, each of which
may be inconsistent with respect to its primary key. Repairing such
database means selecting a maximal number of tuples from each rela-
tion without ever selecting two distinct tuples that agree on the primary
key. We are interested in the following decision problem: will the natu-
ral join of the repaired relations always be nonempty, no matter which
tuples are selected? We take a new, game-theoretic perspective on this
problem and show its advantages.

1 Introduction

Database schemas consist of both data structures (like relational tables or XML
trees) and integrity constraints. Usually, the integrity constraints are checked
each time a piece of data is inserted, deleted, or modified. This guarantees that
at all times, the data will be consistent with respect to the integrity constraints.

However, such “piecewise” incremental integrity maintenance is untenable in
certain situations. Think of the following scenario. Two banks have merged and
want to integrate client data. The two banks store a different marital status for
the same person, identified by her national identification number (NN). That is,
we may have two records:

{NN : 999 , Sex : Female, Status : Married , . . .} , and
{NN : 999 , Sex : Female, Status : Divorced , . . .} .

If we first insert either record in the integrated database, then the other record
will be refused (NN is the primary key). This may be undesirable. A more ele-
gant solution would be to register two “possible worlds:” one where client 999 is
married, and one where she is divorced. A database that stores multiple possible
worlds is usually called an incomplete database. If the possible worlds origi-
nate form the different ways of restoring consistency, they are commonly called
database repairs.

We say that a piece of information is certain (or consistent) if it evaluates
to true in all possible worlds. For example, “Client 999 is female” is certain. On
the other hand, “Client 999 is married” is uncertain, as there is a possible world
where this client is divorced.
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Consistent query answers [1] is the problem of determining whether a given
piece of information is certain. In technical terms, the repairs of an inconsistent
database db are the maximal (under set inclusion) consistent subsets of db.
Given a Boolean query q (representing the piece of information), the problem is
to decide whether q evaluates to true on every repair of db.

Consistent query answering has gained considerable interest in recent years;
see for example the invited talk by Chomicki [2]. In this article, we focus exclu-
sively on primary key constraints and join queries of the form r1 1 . . . 1 rm.
Primary keys are fundamental in the relational model and are often cited as
a major source of inconsistency in data integration. Join queries have always
enjoyed a lot of attention in the database research community.

Thus, we are given a relational database, i.e. a set of relational tables, each of
which has a primary key. A repair of a relational table is obtained by selecting a
maximum number of tuples from the table without ever selecting two tuples that
agree on the primary key. We are interested in the following decision problem:
Will the (natural) join of the repaired tables always be nonempty, no matter
which tuples are selected?

For example, consider the database {r1, r2} of Fig. 1. The schema of r1 is
AB with primary key A (which will be denoted as (AB, A) or AB later on). The
schema of r2 is BC with primary key B. Clearly, both r1 and r2 are inconsistent.
To repair r1, we must select {A : e, B : 3} and either {A : a, B : 1} or {A : a, B :
2}. To repair r2, we must select {B : 2, C : c} and either {B : 1, C : c} or
{B : 1, C : d}. This yields four possible repairs. It is easy to see that no matter
which tuples are selected, the join of the repaired tables will always contain a
tuple of the form {A : a, B : β, C : γ} (where β and γ are placeholders for
constants). One such repair {s1, s2} is shown in Fig. 2, together with its join.

r1 A B
a 1
a 2
e 3

r2 B C
1 c
1 d
2 c

Fig. 1. Example database {r1, r2}.

s1 A B
a 2
e 3

s2 B C
1 d
2 c

s1 1 s2 A B C
a 2 c

Fig. 2. Repair {s1, s2} with nonempty join.

On the other hand, the database shown next (over a different schema) allows a
repair with an empty join: choose the first tuple from r1, and the second from
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r2; since these tuples disagree on the common attribute C, the join is empty.

r1 A C

a 1
a 2

r2 B C

b 1
b 2

The article is organized as follows. The following section gives a formal def-
inition of the decision problem we are interested in. Section 3 discusses related
work. In Section 4, we define a game played by two players, called Player K and
Player S. We show that there exists a first-order formula that checks whether
Player K has a winning strategy. Section 5 exhibits relationships between de-
cision problem and game. Finally, Section 6 contains concluding remarks and
raises fundamental questions for further research.

2 Preliminaries

A (database) schema is a finite set R = {(R1, K1), . . . , (Rm, Km)} where

– m ≥ 1;
– for every i ∈ {1, . . . , m}, Ri is a finite set of attributes and the primary key

Ki is a nonempty subset of Ri;
– for every i, j ∈ {1, . . . , m}, i 6= j implies Ri 6= Rj .

It is common to underline the primary key: KX is a shorthand for (KX, K).
We call R an ordered schema if the order in which the elements of R are listed
is significant.

A database over R is a set r = {r1, . . . , rm} where each ri is a relation over
Ri. The database r is consistent if for each i ∈ {1, . . . , m}, ri satisfies the key
dependency Ki → Ri. That is, in a consistent database, no two distinct tuples
agree on their primary key.

We write dbs(R) for the set of all (not necessarily consistent) databases over
R. A repair of r is a consistent database s = {s1, . . . , sm} such that for each
i ∈ {1, . . . , m},

1. si ⊆ ri; and
2. Maximality: if si ( s′i ⊆ ri, then s′i violates Ki → Ri.

We write 1 r as a shorthand for r1 1 . . . 1 rm, where 1 is the natural join
operator of the relational algebra.

For a fixed schema R, we are interested in the complexity of checking mem-
bership of the following set:

CJOINR = {r ∈ dbs(R) | for each repair s of r, 1 s 6= {}} .

That is, for a fixed database schema, decide whether all repairs of a given
database have a nonempty join. Notice that the database schema is fixed and the
complexity is measured in the number of tuples in r, also known as data com-
plexity. This formulation is fairly standard; it is a special case of the consistent

query answers problem studied in [1].
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3 Related Work

The repairs defined above are maximal consistent subsets of the original database.
In the case of primary keys, it does not matter whether maximality is expressed
relative to set inclusion (as in [3]) or cardinality (as in [4]). Inserting new tuples
is useless for restoring primary key violations. Tuple modifications, as proposed
in [5], are not considered in this article.

There is a straight relationship between CJOINR and computing consistent
query answers to conjunctive queries. For example, if r = {r1, r2} is a database
over R = {AB, BC}, then r ∈ CJOINR if and only if every repair s = {s1, s2} of r
satisfies ∃x∃y∃z(P1(x, y)∧P2(y, z)), where the predicate symbol P1 is interpreted
by the relation over AB, and P2 by the relation over BC. Fuxman and Miller [6]
have made a number of breakthroughs in consistent answering to conjunctive
queries under primary key constraints. Their work has inspired further work in
that area, for example [7, 8], including the current article. Our aim is to exhibit
a number of new ideas that may further foster this research topic.

Fuxman and Miller [9] give an algorithm for first-order rewriting of a subclass
of Boolean conjunctive queries under primary key constraints. (A query is called
Boolean if all its variables are quantified; the answer to such a query is either
“true” or “false.”) Given a query q of that subclass and a set Σ of primary key
constraints, the algorithm computes a first-order formula ϕ(q, Σ) such that for
each database DB , the following statements are equivalent:

1. Every repair of DB satisfies q.

2. DB satisfies ϕ(q, Σ).

The interest of this algorithm should be clear: to decide whether every repair
satisfies the query (statement 1), we can simply evaluate the rewritten query on
the original, not-necessarily-consistent database (statement 2), which takes only
polynomial time. Although Fuxman and Miller have extended their results to
non-Boolean queries later on [6], we will limit the discussion to Boolean queries
here.

The above equivalence holds for a subclass of conjunctive queries that is
characterized in terms of the Fuxman-Miller join graph (FM join graph). For a
query ∃∗(P1(x1) ∧ . . . ∧ Pm(xm)), each atom Pi(xi) is a vertex in the FM join
graph. There is an oriented edge from Pi(s1, . . . , sk, sk+1, . . . , sn) to a distinct
atom Pj(xj) if some sk+1, . . . , sn is a variable that also occurs in xj . In this
representation, the underlined coordinates constitute the primary key of the
relation. The query rewriting algorithm of Fuxman and Miller [9] is correct for
queries where:

– 1 ≤ i < j ≤ m implies Pi 6= Pj ;

– the FM join graph is a tree; and

– if there is an edge from Pi(s1, . . . , sk, sk+1, . . . , sn) to Pj(xj),
then {sk+1, . . . , sn} includes every variable that occurs in the primary key
of Pj(xj).

Proceedings of the first international VLDB workshop on Management of Uncertain Data

66



The latter condition was relaxed later on by Grieco et al. [7].
FM join graphs naturally apply to schemas R = {(R1, K1), . . . , (Rm, Km)}:

draw an edge from (Ri, Ki) to (Rj , Kj) if (Ri \ Ki) ∩ Rj 6= {}. In Fig. 3, for
example, there is an edge from AB to BCD because B is a non-key attribute of
AB and B also occurs in BCD. The FM join graph is not a tree, because BCD

has two incoming edges. The FM join graph of Fig. 4 is cyclic, because B occurs
in both ABC and ABD in a non-key position.

AB

EC
BCD

Fig. 3. FM join graph of {AB, EC, BCD}.

ABC ABD

Fig. 4. FM join graph of {ABC, ABD}.

4 The Consistent Join Game

We present a game-theoretic approach to database repairing.

4.1 The Game

Let r = {r1, . . . , rm} be a database over the ordered database schema R =
{(R1, K1), . . . , (Rm, Km)}. The game associated with r is played by two players
called K and S. The game consists of m successive turns numbered 1, . . . , m. At
the ith turn, Player K starts by picking a tuple ki ∈ ri, and Player S reacts by
picking a tuple ti ∈ ri such that ti[Ki] = ki[Ki]. That is, Player S picks a tuple
that has the same primary key value as the tuple chosen by Player K. Since the
database may be inconsistent, Player S may have the choice between multiple
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tuples. Player K wins the game if the tuples t1, . . . , tm, chosen by Player S, join
together (i.e. if 1

m
i=1 {ti} 6= {}). We say that Player K has a winning strategy on

r if he or she can always win any game associated with r, no matter how Player
S plays.

Note that for the tuples picked by Player K, it is only the primary key value
that matters to Player S. That is, if ki, k

′

i ∈ ri with ki[Ki] = k′

i[Ki] and Player K

picked ki, then he could as well have chosen k′

i. For this reason, we will often
indicate only the primary key value chosen by Player K. Intuitively, K stands
for Key: Player K repeatedly fixes a primary key value. S stands for Spoiler:
Player S must “spoil” the construction of a nonempty join by Player K.

For example, Player K has a winning strategy on the database r = {r1, r2}
shown in Fig. 1:

Turn 1. Player K starts by picking {A : a}. Then, Player S must pick either
{A : a, B : 1} or {A : a, B : 2} form r1.

Turn 2. If Player S picked {A : a, B : 1} from r1, then Player K now picks
primary key value {B : 1} from r2. Player S can then choose between tuples
{B : 1, C : c} and {B : 1, C : d} in r2, each of which joins with {A : a, B : 1}.
In the other case, if Player S picked {A : a, B : 2} from r1, then Player
K now picks primary key value {B : 2} from r2. Player S must then pick
{B : 2, C : c}, which joins with {A : a, B : 2}.

In the description of the game, we assumed some order on the relations in r: r1,
r2, r3,. . . are considered in that order. It is easy to see that the existence of a
winning strategy may depend on such order. For example, in Fig. 1, Player K

would have no winning strategy if the game started with r2 in turn 1, and
continued with r1 in turn 2.

4.2 First-Order Formula for Checking Winning Strategy

We build a first-order formula that allows checking whether Player K has a
winning strategy on a given database r. For example, for the database schema
R = {AB, BC}, the formula is (using tuple-calculus style):

∃k1 ∈ r1(∀t1 ∈ r1(t1[A] = k1[A] →
∃k2 ∈ r2(∀t2 ∈ r2(t2[B] = k2[B] →

{t1} 1 {t2} 6= {}))))

The first line corresponds to turn 1: Player K chooses k1 and Player S reacts
by picking any tuple t1 such that t1[A] = k1[A]. The second line corresponds to
turn 2: Player K chooses k2 and Player S reacts by picking any tuple t2 such
that t2[B] = k2[B]. The last line tests the outcome: do the tuples selected by
Player S have a nonempty join?

Let r = {r1, . . . , rm} be a database over R = {(R1, K1), . . . , (Rm, Km)}.
Assume a first-order language, denoted LR, that associates a predicate symbol
Pi of arity |Ri| to each i ∈ {1, . . . , m}. If an LR formula is interpreted relative
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to r, then P1 is interpreted by the relation over R1, P2 by the relation over R2,
and so on. Then, the foregoing formula is:

∃x, y(P1(x, y) ∧ ∀y′(P1(x, y′) →
∃v, w(P2(v, w) ∧ (∀w′(P2(v, w′) →

y′ = v))))

The following theorem states that there exists a first-order formula that checks
the existence of a winning strategy.

Theorem 1. For each ordered database schema R, there exists a computable

LR sentence ϕ(R) with the following property:

{r ∈ dbs(R) | K has a winning strategy on r} = {r ∈ dbs(R) | r |= ϕ(R)} .

Proof. Crux. Let R = {(R1, K1), . . . , (Rm, Km)}. Abusing syntax, the formula
ϕ(R) looks as follows:

∃k1 ∈ r1, ∀t1 ∈ r1 such that t1[K1] = k1[K1],
∃k2 ∈ r2, ∀t2 ∈ r2 such that t2[K2] = k2[K2],

...
∃km ∈ rm, ∀tm ∈ rm such that tm[Km] = km[Km],
{t1} 1 {t2} 1 . . . 1 {tm} 6= {} .

Each existential quantifier corresponds to the choice of a primary key value
by Player K; the subsequent universal quantifier corresponds to the choice of
Player S, who can pick any tuple of the same relation with the same primary key
value. The last line tests whether the tuples picked by Player S join together. 2

5 Relating the Game to CJOINR

We now study the relationships between the decision problem CJOINR and our
game. The following result states that the existence of a winning strategy is a
sufficient condition for membership of CJOINR.

Lemma 1. Let r be a database over ordered database schema R. If Player K

has a winning strategy on r, then r ∈ CJOINR.

Proof. Let r = {r1, . . . , rm} and R = {(R1, K1), . . . , (Rm, Km)}. Consider the
ith turn. Each primary key value ki ∈ πKi

(ri) picked by Player K is present in
every repair. Assume tuples ti1, . . . , til ∈ ri such that ti1[Ki] = . . . = til[Ki] = ki,
violating the key dependency Ki → Ri. Player S chooses among all possible ways
to repair this violation. The desired result follows because Player K can find m

tuples that join together, no matter how the database is repaired. 2
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The opposite of Lemma 1 is generally not true. That is, the existence of
a winning strategy is not necessary for membership of CJOINR Consider the
following database r = {r1, r2} with schema R = {AC, BC}.

r1 A C

a 1 (t1)
a 2 (t2)
d 3 (t3)

r2 B C

e 1 (u1)
b 2 (u2)
b 3 (u3)

Player K has no winning strategy; consider what can happen:

1. In turn 1, if K picks {A : a}, then S picks t2. Next, in turn 2, if K picks
{B : b} (picking {B : e} would immediately lead to defeat), then S picks u3.
K does not win, because t2 and u3 do not join.

2. In turn 1, if K picks {A : d}, then S must pick t3. Next, in turn 2, if K picks
{B : b}, then S picks u2. Again, K does not win, because t3 and u2 do not
join.

On the other hand, it is easy to verify r ∈ CJOINR in this example. Consequently,
the opposite of Lemma 1 does not hold in general. Next, we study database
schemas for which the opposite of Lemma 1 is true.

Keys Comparable by Set Inclusion

We show that the inverse of Lemma 1 is true for two schemas that are not covered
by the results in [6, 7]; these schemas are {ABC, ABD} and {AB, AC, BCD}.
The FM join graph of the first schema is cyclic (see Fig. 4). The FM join graph
of the second schema is not a tree (replace E by A in Fig. 3).

Proposition 1. Let R = {ABC, ABD} or R = {AB, AC, BCD}. Let r be a

database over R. If r ∈ CJOINR, then Player K has a winning strategy on r.

Proof. We prove the case R = {ABC, ABD} (the other case is similar). Assume
the existence of r ∈ CJOINR on which Player K has no winning strategy. Assume
that a number of tuples t with t(A) = 1 join together:

r1 A B C

1 b c1

...
1 b cl

r2 A B D

1 b d1

...
1 b dn

If these are all the tuples t satisfying t(A) = 1, then Player K has an obvious
winning strategy, a contradiction. We conclude by contradiction that r1 or r2

must also contain a tuple u with u(A) = 1 and u(B) 6= b. Then, we can construct
a repair {s1, s2} such that s1 1 s2 contains no tuple t satisfying t(A) = 1.

The same reasoning can be repeated for the tuples t satisfying t(A) = 2,
t(A) = 3, and so on (we assume w.l.o.g. that the A-column contains only positive
integers). It follows that r 6∈ CJOINR, a contradiction. 2
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The result can easily be generalized to schemas where primary keys are compa-
rable by set inclusion.

Corollary 1. Let R = {ABC, ABD}. There exists a computable LR sentence

ϕ(R) such that CJOINR = {r ∈ dbs(R) | r |= ϕ(R)}. An analogous result holds

for R = {AB, AC, BCD}.

Proof. The result follows from Theorem 1, Lemma 1, and Proposition 1.

Since evaluating ϕ(R) is in polynomial time, it follows that for the two schemas
considered, CJOINR is in P.

Acyclic Database Schemas

In 1983, Beeri, Fagin, Maier, and Yannakakis [10] introduced a construct of
join graph and join tree, which are different from the join graphs introduced by
Fuxman and Miller [6]. We will use the authors’ initials to differentiate between
both constructs (BFMY and FM).

Definition 1. A BFMY join tree of schema R = {(R1, K1), . . . , (Rm, Km)} is

an undirected tree such that:1

1. the set of vertices is R;

2. each edge {(Ri, Ki), (Rj , Kj)} is labeled by Ri ∩ Rj; and

3. for every pair (Ri, Ki), (Rj , Kj) of distinct vertices, for each A ∈ Ri ∩ Rj,

each edge along the unique path between (Ri, Ki) and (Rj , Kj) includes label

A.

Note that primary keys, which were absent in [10], are not restricted in any
way by the foregoing definition. They have been added by us to ease the no-
tation in the results to follow. Fig. 5 shows a BFMY join tree for the schema
{AB, EC, BCD}. Note that the graph is undirected and that each edge is labeled
by the attributes shared by its endpoints. Compare with the FM join graph of
the same schema shown in Fig. 3

Fig. 6 shows a BFMY join tree for the schema {ABC, ABD}. Compare with
the FM join graph of the same schema shown in Fig. 4.

Definition 2. An ordered database schema R = {(R1, K1), . . . , (Rm, Km)} is

primary-key-acyclic (or PK-acyclic) if it has a BFMY join tree with root (R1, K1)
such that:

1. If (Rj , Kj) is the parent of (Ri, Ki), then j < i. Thus, the elements in R

appear in increasing depth.

2. If (Rj , Kj) is the parent of (Ri, Ki), then Rj ∩ Ri ⊆ Ki. Note that Rj ∩ Ri

is also the label of the edge between (Rj , Kj) and (Ri, Ki).

1 An undirected graph is a tree if it contains no cycles. An undirected tree becomes
directed (or oriented) by selecting one vertex as the root.
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AB

EC
BCD

B

C

Fig. 5. BFMY join tree of {AB, EC, BCD}.

ABC ABD
AB

Fig. 6. BFMY join tree of {ABC, ABD}.

For example, the schema of Fig. 5 is not PK-acyclic, because:

– If AB or BCD is chosen as the root, then BCD becomes the parent of EC,
but {B, C, D} ∩ {E, C} 6⊆ {E}.

– If EC is chosen a the root, then BCD becomes the parent of AB, but
{B, C, D} ∩ {A, B} 6⊆ {A}.

Fig. 7 shows a PK-acyclic database schema. This can be verified by choosing
either AF or ABD as the root of the tree.

AF ABD

BC DE

A

B D

Fig. 7. BFMY join tree of {AF, ABD, BC, DE}. The schema is PK-acyclic.

Lemma 2. Let R be a PK-acyclic database schema and r a database over R.

If r ∈ CJOINR, then Player K has a winning strategy on r.
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Proof. Let R = {(R1, K1), . . . , (Rm, Km)}. The tree structure on R carries over
to r: if (Rj , Kj) is the parent of (Ri, Ki), then rj is the parent of ri, where rj

and ri are the relations over Rj and Ri respectively.
We say that a tuple t joins with a tuple u if {t} 1 {u} 6= {}. For each i ∈

{1, . . . , m}, we define the spoiler tuples of ri. They are determined in decreasing
depth, i.e. if rj is the parent of ri, then the spoiler tuples of ri are determined
before those of rj .

1. If rj is a leaf node, then rj contains no spoiler tuples.
2. Assume that rj is not a leaf node and that the spoiler tuples of its children

have been determined. A tuple t ∈ rj is a spoiler tuple if for some child ri

of rj , for each u ∈ ri, if t joins with u, then there exists us ∈ ri such that
us[Ki] = u[Ki] and us is a spoiler tuple.

Notice that if rj is the parent of ri and t ∈ rj joins with no tuple of ri, then t is
a spoiler tuple. We outline the winning strategy of Player K:

Turn 1. Pick k1 ∈ πK1
(r1) such that there is no spoiler tuple t ∈ r1 satisfying

t[K1] = k1. If Player K has no such choice, then the spoiler tuples allow
constructing a repair s of r such that 1 s = {}, contradicting r ∈ CJOINR.

Turn i > 1. Let t1, . . . , ti−1 be the tuples selected by Player S in the preceding
turns. Pick ki ∈ πKi

(ri) such that t1 1 . . . 1 ti−1 1 ki 6= {} and there is no
spoiler tuple t ∈ ri satisfying t[Ki] = ki.
Player S must react by picking a tuple ti ∈ ri such that ti[Ki] = ki. Since
the attributes common to t1 1 . . . 1 ti−1 and ti are all contained in Ki, it
follows t1 1 . . . 1 ti−1 1 ti 6= {}.
Assume that Player K has no such choice, i.e. for all ki ∈ πKi

(ri) such
that t1 1 . . . 1 ti−1 1 ki 6= {}, there is a spoiler tuple t ∈ ri satisfying
t[Ki] = ki. Then, Player K has deviated from the strategy in a previous
turn, a contradiction.

This concludes the proof. 2

Corollary 2. For each PK-acyclic database schema R, there exists a com-

putable LR sentence ϕ(R) such that CJOINR = {r ∈ dbs(R) | r |= ϕ(R)}.
Hence, CJOINR is in P.

Proof. The result follows from Theorem 1, Lemma 1, and Lemma 2.

6 Conclusion

The problem CJOINR is a restricted case of the problem known as consistent

query answers [1]: decide whether every repair of a given database satisfies a
Boolean query. The restrictions in CJOINR are the following:

– the constraints are primary key constraints;
– the query is a constant-free query of the form ∃∗(P1(x1) ∧ . . . ∧ Pm(xm)),

where i 6= j implies Pi 6= Pj .
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Consistent answering to conjunctive queries under primary key constraints has
been the subject of a number of other articles [6–8]. The goal of this article was
not to identify new tractable instances of this problem. The results of Corollary 1
may not have appeared previously, but are still subject to generalization. The
results identified by Corollary 2 are covered by [7].

On the other hand, this article is the first one (to the best of our knowledge)
to look at the problem from a game-theoretic perspective. We believe that the
game-based approach is practical and intuitive. For example, it explains well
the quantifiers in first-order formulas that check membership of CJOINR; see
Theorem 1. It may lead to easier proofs of existing results (like the proof of
Lemma 2) and can be helpful in proving new results. Another, more marginal,
contribution of the current article lies in the use of BFMY join graphs as an
alternative for FM join graphs.

Finally, we raise a fundamental open question about the strength of our
games. The problem is whether the following three conditions are equivalent for
all database schemas R:

1. CJOINR = {r ∈ dbs(R) | K has a winning strategy on r}.
2. There exists a computable LR sentence ϕ(R) such that

CJOINR = {r ∈ dbs(R) | r |= ϕ(R)} .

3. CJOINR is known to be in P.

From Theorem 1, it follows 1 ⇒ 2. Next, it is easy to see that 2 ⇒ 3. This is
because the first-order formula ϕ(R) does not depend on data (i.e. its compu-
tation has constant time data complexity) and can be evaluated in polynomial

time data complexity. The opposite implications (3
?
⇒ 2 and 2

?
⇒ 1) are open:

3
?
⇒ 2. If CJOINR is known to be in P, is there always a first-order formula for

checking membership of CJOINR?

2
?
⇒ 1. If there is a first-order formula for checking membership of CJOINR, is

there always such a formula that is the encoding of a winning strategy (as
in Theorem 1)?

Note incidentally that for the schema R = {AC, BC}, statement 1 is false
(see the paragraph following Lemma 1), statement 2 is false (we have a proof
using Ehrenfeucht-Fräıssé games), and since CJOINR is known to be coNP-
complete, it is not known to be in P. It follows that for this schema, the three
statements are equivalent (they are all false). For PK-acyclic database schemas,
on the other hand, the three statements are each true.
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Abstract. We describe how aggregation is handled in the Trio system for uncer-
tain and probabilistic data. Because “exact” aggregation in uncertain databases
can produce exponentially-sized results, we provide three alternatives: a low bound
on the aggregate value, a high bound on the value, and the expected value. These
variants return a single result instead of a set of possible results, and they are
generally very efficient to compute for both full-table and grouped aggregation
queries. We provide formal definitions and semantics, a description of our imple-
mentation, and some preliminary analytical and experimental results for the one
aggregate (expected-average) for which we compute an approximation.

1 Introduction

Trio is a prototype database management system under development at Stanford, de-
signed specifically for storing and querying data with uncertainty and lineage [13, 23].
Trio’s query language, TriQL, is an adaptation and extension of SQL [21]. Previous pa-
pers and the Trio system have focused so far on select-project-join queries and some set
operations [2, 13]. In this paper we begin tackling the problem of TriQL queries with
aggregation [11].

In a typical semantics for uncertain or probabilistic data based on possible-instances
(also called possible-worlds), it is well known that the result size for a query with ag-
gregation can grow exponentially with data size [3, 6, 15]: there can be an exponential
number of possible-instances, with potentially different aggregation results in each one.
For example, if an uncertain relation has 10 tuples, each of which exists with proba-
bility 0.9, then an aggregate function like SUM returns 210 values in its result (modulo
duplicates). It has been shown that aggregation in this setting is a #P-hard problem [8].

To make computation feasible, and for general usability, in Trio we decided to offer
several variants to exhaustive aggregation. Specifically, we support variants for each
aggregation function that return a single value over uncertain data, instead of a set of
possible values: a function returning the lowest possible value of the aggregate result
(low), the highest possible value (high), or the expected value (expected), the latter of
which takes confidences or probabilities into account. It turns out that almost all of
these functions can be computed efficiently in the Trio system, and the one exception
(expected-average) can be approximated effectively.
? This work was supported by the National Science Foundation under grants IIS-0324431 and

IIS-0414762, and by grants from the Boeing and Hewlett-Packard Corporations. We also thank
Jeff Ullman and the rest of the Trio group for many useful discussions.
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The paper proceeds as follows. In Section 2 we review the Trio data model and
query semantics, and we introduce a running example. Then we cover the paper’s main
contributions:

– We provide formal definitions for our aggregate function variants low, high, and
expected. Their semantics is defined in terms of exhaustive aggregation, which itself
follows TriQL’s formal query semantics (Section 3).

– We briefly review our implementation of Trio’s data model and query language,
which is built on top of a conventional DBMS [13]. We then show how Trio’s
data encoding scheme made it easy for us to implement nearly all of our aggregate
function variants (Section 4).

– Our one difficult function, expected-average, is implemented using the approxima-
tion of expected-sum divided by expected-count. We explore the error introduced
by this approximation, and we identify an interesting special case where we obtain
the correct expected-average (Section 5).

Related work is discussed in Section 6. In this paper we focus on aggregation queries
posed over a single base table, and we do not consider lineage. Extending our techniques
to Trio’s full ULDB model including derived tables with lineage [2], and to the full
TriQL query language [21], is the subject of future work; see Section 7.

2 Data Model and Running Example

In this section we review Trio’s model for uncertain data, which subsumes typical prob-
abilistic databases. Our overview is brief, and it does not include aspects of Trio’s ULDB
data model (notably lineage) not relevant to this paper. For a full treatment see [2].

An uncertain relation is a multiset of x-tuples. Each x-tuple is comprised of one
or more mutually-exclusive alternatives. Each alternative is a regular tuple and has an
associated probabilistic confidence value in [0, 1]. In a single x-tuple, if Σ is the sum
of the confidence values of all alternatives, then 0 ≤ Σ ≤ 1. If Σ < 1, then the entire
x-tuple may not exist; we represent this case as an additional special alternative denoted
φ, whose confidence is (1−Σ).1 Trio also supports uncertain relations with alternatives
but no confidence values [2]; restricting the definitions and algorithms in this paper to
ignore confidence values is straightforward and not further discussed.

As is typical, an uncertain relation in Trio represents a set of possible-instances.
The following observations have been developed formally in [2] and elsewhere:

– Each possible-instance is a regular relation selecting one alternative tuple from
each x-tuple, or no tuple if alternative φ is selected. The total number of possible-
instances is the product of the number of alternatives in the x-tuples.

– Each possible-instance has an associated probability, which is the product of the
confidence values for the selected alternatives in the instance. The possible-instance
probabilities sum to 1.

1 We are using a slightly different notation from [2], for presentation purposes only. In [2],
maybe-tuples denoted by “?” annotations represented x-tuples that may not exist, instead of φ
alternatives as we use here. The two representations are isomorphic.
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time (color, length)
1 (gray, 20) .5 || (black, 20) .4 || φ .1
2 (black, 18) .8 || (brown, 16) .2
2 (brown, 20) 1.0

Fig. 1. Relation Sightings(time,color,length)

– Each alternative a is selected in some subset of the possible-instances. The proba-
bilities of these instances sum to the confidence of alternative a. As a special case, if
an alternative has confidence 1 (and therefore is the only alternative in its x-tuple),
then it appears in all possible-instances.

– If a possible-instance has only φ alternatives, then it is empty, denoted {}. There
can be at most one such instance.

2.1 Running Example: Squirrel Sightings

We present a fabricated, highly-simplified eco-monitoring application for examples
throughout the paper. (This application was inspired partially by the Christmas Bird
Count [5], an original motivating example for Trio [23].) Human volunteers observe
squirrels on the Stanford campus and record their observations. Volunteers record the
color (species) and approximate length (rounded to the nearest centimeter) of each
squirrel sighting, along with the time of the observation.

Figure 1 shows a Trio table Sightings(time,color,length). Each x-tuple in
Sightings represents one observation. We follow the new Trio convention of denoting
the certain attributes separately from the alternatives: An attribute is certain if, in each
x-tuple, it contains the same value in all alternatives. In Sightings, attribute time is
certain, i.e., we assume the time of each observation (denoted as an integer) is accurate.
In an observation, a volunteer may be uncertain about either the color or the length of the
squirrel, or both, and may assign relative confidence values to the different possibilities.
The symbol || separates the alternatives. For example, in the first listed observation,
the volunteer was not sure if the 20-centimeter squirrel was black (confidence 0.5) or
gray (confidence 0.4). Furthermore, he has only 0.9 confidence that the animal was
a squirrel at all, resulting in a φ alternative with confidence 0.1. In the second listed
observation, the volunteer saw either an 18-centimeter black squirrel (confidence 0.8)
or a 16-centimeter brown squirrel (confidence 0.2). In the third listed observation, the
volunteer was certain that he saw a 20-centimeter brown squirrel (confidence 1.0).

Relation Sightings has six possible-instances, labeled I1 through I6 and shown
in Figure 2. Each instance Ii has a probability Pi associated with it, as described above
and formalized in [2]. Note that we do not explicitly represent φ alternatives in the
instances.

3 Aggregation

In this section, we first discuss aggregate functions applied to the entire table, which
we refer to as full-table aggregation. We extend in Sections 3.2–3.3 to grouped aggre-
gation, i.e., queries with a GROUP BY clause. Recall that we are restricting ourselves to
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I1 =

time color length
1 gray 20
2 black 18
2 brown 20

P1 = 0.4

I2 =

time color length
1 gray 20
2 brown 16
2 brown 20

P2 = 0.1

I3 =

time color length
1 black 20
2 black 18
2 brown 20

P3 = 0.32

I4 =

time color length
1 black 20
2 brown 16
2 brown 20

P4 = 0.08

I5 =

time color length
2 black 18
2 brown 20

P5 = 0.08

I6 =

time color length
2 brown 16
2 brown 20

P6 = 0.02

Fig. 2. Possible-Instances of Sightings relation

aggregation queries over a single base table. Filtering predicates in the WHERE clause
are permitted—they are applied before aggregation and do not affect our definitions or
techniques. Likewise, HAVING predicates can be incorporated easily into our definitions
and techniques.

Recall the semantics of relational queries over uncertain databases as described in,
e.g., [2]. Consider an uncertain relation U representing n possible-instances I1, . . . , In.
A query Q on U produces a result relation R that represents the set of n possible
answers: Q(I1), . . . , Q(In). Aggregation follows the same semantics: An aggregation
query on an uncertain relation produces a result whose possible-instances are the result
of the aggregation applied to the possible-instances of the input relation.

More concretely, consider an aggregation query A with COUNT, SUM, AVG, MIN, or
MAX applied to an uncertain relation U . (DISTINCT aggregates are not covered in this
paper; they will be incorporated as future work.) The result contains exactly one x-
tuple, which has one alternative aj corresponding to each possible-instance Ij of U .
Alternative aj contains the result of aggregation query A over instance Ij . Note that
over an empty relation (i.e., over the empty possible-instance, if it exists for U ), SQL
semantics dictates that the result of COUNT is 0, while the result of SUM, AVG, MIN, or MAX
is NULL. The confidence associated with alternative aj is the probability of instance Ij .
Although we are not addressing lineage in this paper, here we can easily see that lineage
of each alternative is the set of alternatives in its corresponding possible-instance.

In our running example, the TriQL query to find the average length of obverved
squirrels looks just like its SQL counterpart:

SELECT AVG(length) as avgLength FROM Sightings

The answer returned is:

(19.33) .4 || (18.67) .1 || (19.33) .32 || (18.67) .08 || (19) .08 || (18) .02

This query result has one alternative for each of the six possible-instances in Figure 2.
As can be seen from the example, the result of this exhaustive aggregation is exponential
in the size of the input relation. Even if we merge duplicates (using Trio’s MERGED

option [21]), reference [8] shows that the aggregation computation is #P-hard. Hence,
we define a set of practical variants for aggregation over uncertain data.
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3.1 Practical Variants to Exhaustive Aggregation
We provide three variants for each of the five aggregate functions. (Thus, including
exhaustive aggregation, Trio supports a total of 20 aggregate functions.) We define the
variants in terms of the result of the corresponding exhaustive aggregate function, which
we denote A.

Let us begin with the low variant. A low aggregate returns one x-tuple having one
alternative that is the lowest non-NULL alternative in A. Note that there can be at most
one NULL in A, corresponding to the empty possible-instance, and it can only occur for
aggregates SUM, AVG, MIN, and MAX; on the empty possible-instance COUNT returns 0.
If the only alternative in A is NULL, then low returns NULL as well. TriQL supports five
low aggregate functions: LCOUNT, LSUM, LAVG, LMIN, and LMAX. For example, we can
retrieve the lowest possible average squirrel length with the TriQL query:

SELECT LAVG(length) FROM Sightings

The result is a single x-tuple having one alternative with value 18.
Similarly, TriQL supports high aggregate functions HCOUNT, HSUM, HAVG, HMIN,

and HMAX, returning the highest possible aggregate value. In our running example, if we
replace LAVG in the query above with HAVG, we get one x-tuple having one alternative
with value 19.33.

The third and most interesting variant is the set of expected aggregate functions:
ECOUNT, ESUM, EAVG, EMIN, and EMAX. An expected aggregate is the weighted average
of all the non-NULL alternatives in the corresponding exhaustive result A, where the
weights are based on the alternative’s confidence values as defined earlier. (Recall that
confidences on result alternatives correspond to probabilities on possible-instances.)
One subtlety is that we ignore the empty possible-instance for all expected aggregates,
except for ECOUNT. For example, for ESUM we compute the weighted average of all
possible sums, whenever a sum exists. (To do so, we must scale the confidence values of
the non-NULL alternatives in A so they add up to 1, but implementing this computation
turns out to be easy; see Section 4.) On the other hand, for ECOUNT we do consider the
empty possible-instance, since it contributes a count of 0 to the expected result. Note
that expected aggregate functions typically return values that are not an alternative of
the exhaustive result A.

Considering our running example once again, the expected average length of ob-
served squirrels can be computed from the exhaustive avgLength result shown earlier.
We get:

19.33·0.4+18.67·0.1+19.33·0.32+18.67·0.08+19·0.08+18·0.02 = 19.16

Thus, the query:

SELECT EAVG(length) FROM Sightings

returns one x-tuple having one alternative with value 19.16. Note the following two
points about our new aggregate functions:

– In all of the variants, the result has exactly one alternative. We set the confidence
of that alternative to 1.0.

– For all five aggregate functions applied to any data, the variants satisfy the desirable
constraint low ≤ expected ≤ high.
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3.2 Grouped Aggregation

Now consider queries with GROUP BY clauses. We first briefly review grouped aggrega-
tion queries in SQL [11]. Then we define their meaning over uncertain relations, again
following TriQL semantics. Finally we extend our low, high, and expected variants for
grouped aggregation.

In SQL, the GROUP BY clause contains a list of grouping attributes. Call this list G,
and without loss of generality assume it is a single attribute. The result of a query with
grouped aggregation has one tuple for each value g of G appearing in the query result
prior to aggregation. Let F be the query’s aggregate function. (Again without loss of
generality, assume there is only one aggregate function in the SELECT clause, along
with the grouping attribute.) The tuple in the query result for value G = g contains the
result of aggregate function F applied to σG=g(R).

Now consider an uncertain relation U with possible-instances I1, . . . In. The result
of a grouped aggregation query Q, as usual, represents the possible answers Q(I1),
. . . , Q(In). Trio implements this semantics by producing one x-tuple for each value g
of G that appears in at least one possible-instance. Logically, this x-tuple contains the
result of full-table aggregation on the uncertain relation σG=g(U), followed by a correc-
tion for the empty possible-instance. As noted earlier, full-table aggregation produces a
0 alternative (for COUNT) or a NULL alternative (for the other aggregate functions) if the
input relation has {} as one of its possible-instances. In grouped aggregation, when this
alternative would be produced by full-table aggregation over σG=g(U), it is replaced
by the special φ alternative, representing the fact that a group for G = g does not ap-
pear in all possible-instances. The confidence for an alternative, as usual, represents the
probability of the corresponding possible-instance(s).

In our running example, to find the average length for each squirrel color, we write:

SELECT color, AVG(length) AS avgLength FROM Sightings
GROUP BY color

The result follows. Notice that in the result color is a certain attribute.
color avgLength
black (18) .4 || (19) .32 || (20) .08 || (20) .08 || φ .12
brown (20) .4 || (18) .1 || (20) .32 || (18) .08 || (20) .08 || (18) .02
gray (20) .4 || (20) .1 || φ .5

For each group, there is one alternative for each possible-instance in which the group
exists. For example, “black” has 4 alternatives since it appears in 4 of the 6 possible-
instances, while “brown” has 6 alternatives since it appears in all 6 of the possible-
instances. When a group does not appear in all possible-instances, it also has a φ alter-
native.

Note that with Trio’s MERGED option [21], where we merge duplicate alternative
values, we get:

color avgLength
black (18) .4 || (19) .32 || (20) .16 || φ .12
brown (20) .8 || (18) .2
gray (20) .5 || φ .5
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3.3 Variants for Grouped Aggregation
The low and high aggregates in a grouped aggregation are the obvious extension of the
full-table case: low returns the lowest value of the aggregate for every group appearing
in the exhaustive answer, and high returns the highest possible value. Suppose we want
low and high bounds for average squirrel lengths based on color. The TriQL query is:

SELECT color, LAVG(length) AS lowAvgLength,
HAVG(length) as highAvgLength FROM Sightings GROUP BY color

The result is:
color lowAvgLength highAvgLength
black 18 20

brown 18 20

gray 20 20

Grouped aggregation queries with expected aggregates are also an extension of the
full-table case: For every group, expected returns the weighted-by-confidences average
of the non-φ alternatives in its corresponding exhaustive answer, after scaling the con-
fidences of the non-φ alternatives so that they add up to 1. Note that here, unlike in
the full-table case, for ECOUNT we do not factor in a count of 0 for possible-instances in
which a group does not exist. As with the other aggregate functions and to correctly fol-
low TriQL possible-instance semantics, a φ alternative appears in the exhaustive COUNT
result, not a 0, when a group does not appear in some possible-instances.

In our running example, the expected average length of squirrels based on color is
given by:

SELECT color, EAVG(length) AS expectedAvgLength FROM Sightings

and the result is:
color expectedAvgLength
black 18.73

brown 19.6

gray 20

4 Implementation

We have implemented all 20 aggregate functions in the Trio system: exhaustive, low,
high, and expected for each of COUNT, SUM, AVG, MIN, and MAX. Each function is sup-
ported in both full-table and grouped form—typically the implementation for grouped
is a fairly direct extension of the full-table version. We first briefly review how the Trio
system is built on top of a conventional relational DBMS; for details see [13]. We then
describe how the encoding we use for uncertain relations facilitates simple query trans-
lation and stored procedures to efficiently compute all but one (EAVG) of the aggregate
functions.

Consider a Trio relation T(A1, . . . , An). Relation T is stored in a conventional rela-
tional table with four additional attributes: T enc(xid, aid, conf, certain, A1, . . . , An).
Each alternative of each x-tuple in T is stored as its own tuple in T enc. The additional
attributes in T enc are as follows:
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– xid identifies the x-tuple
– aid identifies an alternative within the x-tuple
– conf contains the confidence of the alternative
– certain is a flag to indicate whether the x-tuple has a φ alternative

For example, the Trio relation Sightings(time,color,length) from Figure 1 is
encoded in the regular relational table Sightings enc shown in Figure 3.

xid aid conf certain time color length
101 1 0.5 0 1 gray 20
101 2 0.4 0 1 black 20
102 3 0.8 1 2 black 18
102 4 0.2 1 2 brown 16
103 5 1.0 1 2 brown 20

Fig. 3. Sightings enc is the Trio encoding for the table in Figure 1

In reality, Trio implements the table in Figure 3 as a virtual view over two tables,
Sightings c and Sightings u, joined on xid: Table Sightings c has one row
per x-tuple, containing the certain attributes and the special column certain. Table
Sightings u has one row per alternative, containing the uncertain attributes and the
special column conf.

Note that φ alternatives are not explicitly represented. They are encoded in the
certain attribute of each tuple: certain = 0 if there is a φ alternative and certain = 1
if not. Implicitly, if there is a φ alternative, its confidence is 1−Σ, where Σ is the sum of
the confidences of the other alternatives. For example, x-tuple 101, which corresponds
to the first observation in the Sightings table, has two tuples in Sightings enc, one
for each non-φ alternative, and certain is 0.

Table 1 summarizes the methods we used to implement the 20 different aggregate
functions. In the table we have combined low and high, as well as MIN and MAX, since
they are always symmetric. Recall that we are considering aggregation queries over
one base table, possibly with filtering predicates. A “translation” entry in Table 1 indi-
cates that we are able to implement that aggregate by a simple translation from TriQL
queries to queries on the encoded table; this approach works for 10 of the 20 cases. Ex-
cept for EAVG, which is approximated, the remaining 9 are implemented using efficient
stored procedures. (Since Trio is currently built on top of the Postgres DBMS, we use
PL/pgSQL [14] and SPI [19] for stored procedures.)

For all 20 aggregate functions, the full-table and grouped versions are implemented
in a similar fashion. In general we focus our discussion on the full-table version, al-
though we do illustrate some grouped cases. Note that in no cases do we actually per-
form the σG=g(R) selections used in the definition of grouped aggregation.

The remainder of this section first discusses exhaustive aggregation (Section 4.1).
We then cover the aggregates implemented through translation (Section 4.2), and finally
the remaining aggregates implemented as stored procedures (Section 4.3). Aggregate
EAVG is an important special case—an efficient algorithm to compute the exact EAVG
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COUNT SUM AVG MIN/MAX
exhaustive stored procedure stored procedure stored procedure stored procedure
low/high translation translation stored procedure translation
expected translation translation approximation stored procedure

Table 1. Summary of different implementation methods for the 20 aggregate functions

remains an open problem. There have been several proposals for computing approxi-
mate answers, e.g., [3, 10]. In Trio, we approximate EAVG as ESUM divided by ECOUNT,
with compensation for the empty possible-instance. Section 5 discusses this approxi-
mation, and presents some analytical and experimental results for the error.

4.1 Exhaustive Aggregates

In this section we describe our implementation of the exhaustive aggregates. As seen in
the first row of Table 1, all of them are implemented using stored procedures. As shown
in [6], SUM and AVG can have different values in each possible instance and therefore
have an exponentially-sized result. Aggregates COUNT, MIN, and MAX have a polynomial
number of different values, although the number may still be too high to be usable in
practice.

We use algorithms similar to the ones described in [6] to implement COUNT, MIN,
and MAX, and will not describe them further. We did implement the exponential algo-
rithms for SUM and AVG, primarily for experimental purposes—they usually cannot be
used except for very small relations. Our “user-friendly” query processor first counts
the number of possible-instances, which can be done very efficiently. If the number of
possible-instances is too high (say > 215), we return an error message and do not permit
exhaustive SUM and AVG in these cases.

When the possible-instances are few enough that we permit exhaustive SUM and
AVG, our algorithm first computes and materializes, into a temporary table, all possi-
ble combinations of the alternatives in the input relation (identified by their aid’s),
i.e., it enumerates all possible-instances. This table is then joined back with the in-
put table to fetch and aggregate the actual data. For example, the stored procedure
to compute exhaustive full-table AVG on Sightings first populates temporary table
tmp combos Sightings with the possible combinations of alternatives (each with a
combo id), then computes the following query:2

SELECT AVG(length) AS avgLength, PRODUCT(trio_conf) AS conf
FROM Sightings S INNER JOIN tmp_combos_Sightings T USING (aid)
GROUP BY combo_id

This query returns AVG values for all possible-instances along with their corresponding
confidences. Simple post-processing generates the single x-tuple comprising the final
result. The grouped version (by color for example) is similar to the query above, ex-
cept the GROUP BY also includes the grouping attributes, and there is a final ORDER BY
on the grouping attributes:

2 Aggregate function PRODUCT is similar to SUM, except it multiplies instead of adds.
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SELECT color, AVG(length) AS avgLength, PRODUCT(trio_conf) AS conf
FROM Sightings S INNER JOIN tmp_combos_Sightings T USING (aid)
GROUP BY combo_id, color ORDER BY color

Post-processing on the result of this query generates one x-tuple for each group.

4.2 Translation-Based Aggregates

For the aggregates implemented by translation, we automatically rewrite the TriQL
query with aggregation into a SQL aggregation query over our encoded data. For these
aggregates, the computation is about as efficient as aggregating over a conventional
relation. We show a few translations here that demonstrate the principle techniques;
additional translations are included in the extended technical report version of this pa-
per [12]. Note that WHERE predicates could be added easily to our example queries.

For each translation, we show the example TriQL query over Sightings and the
corresponding translation to a SQL query, along with a brief explanation. Clearly, these
translations are much more efficient than computing the corresponding exhaustive ag-
gregate, as are the translation-based aggregates not included, which are very similar.
The most expensive translations perform a GROUP BY on xid, but none of the transla-
tions have complexity more than O(nlog n) for n tuples in the relation.
LCOUNT

TriQL: SELECT LCOUNT(*) FROM Sightings
Description: Get the count of all certain x-tuples.
SQL: SELECT COUNT(DISTINCT xid) FROM Sightings enc WHERE

certain = 1

ESUM
TriQL: SELECT ESUM(length) FROM Sightings
Description: Get the weighted average of all the lengths and compensate for the
empty possible-instance. Recall PRODUCT is analogous to SUM but multiplies in-
stead of adds. 1-PRODUCT(qconf) yields the probability of the non-empty possible-
instances.
SQL: SELECT SUM(weightedlength)/(1-PRODUCT(qconf)) AS ESUM
FROM (SELECT SUM(length*conf) AS weightedlength, 1-SUM(conf)
AS qconf FROM Sightings enc GROUP BY xid) qconfs

ECOUNT

TriQL: SELECT ECOUNT(*) FROM Sightings
Description: Get the weighted average of all non-φ alternatives.
SQL: SELECT SUM(conf) AS ECOUNT FROM Sightings enc

Grouped HSUM

TriQL: SELECT color,HSUM(length) FROM Sightings GROUP BY color
Description: Get the high sum of the lengths by color.
SQL: SELECT color, SUM(CASE certain = 1 or maxlength > 0 THEN

maxlength ELSE 0 END) AS HSUM FROM (SELECT color, certain,

MAX(length) AS maxlength FROM Sightings enc GROUP BY color,

certain, xid) maxlengths GROUP BY color
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4.3 Stored-Procedure Aggregates

From Table 1 we see that the remaining implementations to discuss, aside from EAVG

covered in the next section, are the stored procedures for LAVG, HAVG, EMIN, and EMAX,
in their full-table and grouped versions. Here we describe intuitively what the stored
procedures do. Complete pseudocode is provided in the extended technical report [12].

Full-table LAVG (and HAVG):

We first compute the “certain” average, i.e., the average of all x-tuples with exactly
one alternative with confidence 1.0. This value provides an upper bound on the
low average. Then, from the rest of the x-tuples, we identify alternatives that can
decrease the average by considering the minimum alternative from each x-tuple.
We consider these values in ascending order so we can stop when the average stops
decreasing. The procedure for HAVG is nearly identical—it looks for alternatives
that increase the average, in descending order.

Full-table EMIN (and EMAX):

We consider all alternative values for the aggregated attribute, in ascending order,
until we have “covered” at least one x-tuple that does not have a φ alternative,
or we have considered all values. This stopping condition guarantees that at least
one of the considered values exists in every possible-instance. For each considered
value v, we compute the total probability of the possible-instances that contain any
alternative with value v, but no lower value. We compute the weighted average of
the considered values to get our expected MIN. This algorithm can be implemented
with a linear scan over the result of an ORDER BY query, with extra space required to
accumulate confidences until a “covering” x-tuple is found. Note that in the worst
case, we require O(n) extra space. The procedure for EMAX is nearly identical—it
enumerates the alternative values in descending instead of ascending order.

Grouped aggregation queries with LAVG, HAVG, EMIN, and EMAX are implemented us-
ing very similar algorithms, except the computation is performed per-group instead of
across the entire table.

5 Expected-Average

The only aggregate remaining to be discussed is expected-average (EAVG). Expected-
average over uncertain data is known to be difficult to compute; [3] and [10] provide
approximate algorithms. Like [3], we decided to use the simple approximation based on
ESUM/ECOUNT, because it is efficient to compute and, as we will see, the error is usually
low and in an interesting special case, zero. However, unlike [10], we have not been
able to provide a theoretical bound for the error in the general case.

We first explain how we compute EAVG, and then discuss the error. A small issue
arises because of the way we treat empty possible-instances for the different aggregates
in their all-table and grouped forms. Table 2 summarizes this treatment, based on the
definitions and justification in Section 3.2. Specifically, since ESUM and ECOUNT are
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COUNT SUM, AVG, MIN, MAX ECOUNT other expected aggs
empty empty incorporates do not incorporate

all-table possible-instance possible-instance 0 alternative NULL alternative
creates 0 alternative creates NULL alternative from exhaustive from exhaustive

grouped uncertain group has do not incorporate
φ alternative φ alternative from exhaustive

Table 2. Treatment of empty possible-instance and uncertain groups

R

(2) 1.0
(100) .01 || φ .99

S

(2) .01 || φ .99
(100) 1.0

ESUM ECOUNT EAVG(exact) EAVG(approx) absolute error relative error
R 3 1.01 2.49 2.97 .48 .19
S 100.02 1.01 99.51 99.03 .48 .0048

Fig. 4. Extreme example for error due to varying confidence/value distributions

treated the same way for grouped aggregates, we can simply use ESUM / ECOUNT as
our approximation. However, for all-table aggregates, ECOUNT incorporates the empty
possible-instance, while ESUM does not. Fortunately we can easily compensate by fur-
ther dividing ECOUNT by the probability of the non-empty possible-instances, which
recall from Section 4 can be computed efficiently. In the remainder of this section we
discuss all-table aggregation; the generalization to grouped is straightforward.

Let us consider the error in our approximation. We consider the relative error be-
tween the exact expected-average, denoted eavg, and our approximation, denoted ap-
prox: error =

∣∣∣ eavg−approx
eavg

∣∣∣. We first identify a special case in which there is no error.

Theorem 1. Let U be any uncertain relation such that the confidences of all non-φ
alternatives in each x-tuple sum to the same value. In this case our approximation of
eavg based on ESUM divided by ECOUNT produces the correct value. ut

A proof appears in the extended technical report [12]. Note that as a special case of the
theorem, there is no error when all x-tuples have confidences summing to 1.0, i.e., there
are no φ alternatives in U .

When Theorem 1 doesn’t apply, intuitively the error in the approximation is caused
by the varying combinations of confidences and values contributing to the average. Con-
sider the extreme example in Figure 4. We show two uncertain relations, and analyze
how our EAVG approximation behaves on them. We see that the relative error in S is
only 0.0048 whereas the relative error in R is 0.19 even though the absolute error is the
same in both cases (0.48). Intuitively, the relative error increases when the higher-valued
alternative has lower confidence and the lower-valued alternative has higher confidence.

We ran an experiment to further explore this effect. In our experiment, to com-
pute the relative error in the approximation we needed to compute the exact expected-
average by enumerating all possible-instances. Thus, we were restricted to very small
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Fig. 5. Relative error for combinations of confidences and alternative values

data sizes. Nevertheless, the effect we were looking for is visible. We fixed a set of N
distinct alternative values and a set of N distinct confidence values, and considered all
N ! combinations of alternative-confidence pairings. Each combination is a new Trio
table over which we aggregate to obtain one set of data points – expected-sum, ex-
act expected-average, approximate expected-average, absolute error, and relative error.
Figure 5 shows the results for N = 5. On the x-axis we enumerate the combinations,
ordered by increasing expected-sum (topmost line) and therefore also increasing exact
expected-average (second-to-top) since the count is fixed. Thus, on the left end we have
the highest confidence assigned to the lowest value, the second-highest confidence to
the second-lowest value, and so on. The right end is the converse. The relative error in
our expected-average approximation is plotted on the bottom line. Note that the y-axis
is logarithmic. We did not see any correlation between expected-average and absolute
error (not shown in the graph). However, we do see a clear trend where the relative
error decreases with increased expected-average, but the curve is not smooth. The lack
of a smooth curve may be due in part to the small data size required for error compu-
tation, however completely understanding the relationship between our approximation
and data/confidence characteristics remains an open problem.

6 Related Work

Non-aggregation queries on probabilistic and uncertain databases have been studied ex-
tensively for several years, e.g., [1, 2, 4, 7–9, 20]. Aggregation queries have been studied
more recently, e.g., [3, 6, 10, 15–17, 22]. Reference [3] considers computing expected
aggregates for hierarchical domains, using an approximation similar to the one we have
chosen for EAVG. Reference [6] gives algorithms for exhaustive aggregation over uncer-
tain data without confidences. It also shows that COUNT, MIN, and MAX have polynomial-
sized results whereas SUM and AVG have exponentially-sized results. The work is ex-
tended in [22] to uncertain data with probabilities. We use similar techniques for ex-
haustive aggregation, while providing more practical variants of aggregate functions.
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The most recent work in the area of approximate algorithms for expected aggre-
gates [10] improves upon previous algorithms for expected-average. It uses a proba-
bilistic stream model and provides a generating-function based algorithm to compute
very close approximations. However, it requires multiple passes over the data, and may
not improve much upon the error of our approximation in practical applications. Ref-
erence [17] applies aggregation queries to resolve inconsistencies in the data, but does
not focus on the aggregate computation itself. Reference [15] uses a linear program-
ming approach to define aggregations, and reference [16] uses a fuzzy sets approach.

None of the previous work we are aware of considers a full suite of aggregate vari-
ants for uncertain and probabilistic databases, including low, high, and expected for
all five aggregate functions in their full-table and grouped forms. In addition, we have
implemented all of our algorithms as part of a complete prototype for managing and
querying uncertain data.

7 Conclusions and Future Work

We introduced aggregate function variants for uncertain data that are much more effi-
cient to compute than exact (exhaustive) aggregates, and are likely to be more practical
from a usability perspective. Based on the data encoding scheme in the Trio system, we
were able to implement many of the aggregate variants, in their full-table and grouped
forms, through simple query translation. The remaining aggregates are implemented as
stored procedures, but they are still quite efficient—generally relying on one or two ag-
gregate queries over regular relations, with an additional order-by in the worst case. For
the one problematic aggregate, expected-average, we compute an approximation based
on expected-sum over expected-count. We have found that the error is low in general,
and is guaranteed to be zero in certain cases.

This paper reports our initial progress in making aggregation work in the Trio sys-
tem. There are many important avenues of future work:

– DISTINCT aggregates are nontrivial to add, although we do not expect major ob-
stacles.

– Much more challenging is handling queries that include joins, as well as queries in-
volving Trio tables with lineage. In both cases, the data values to be aggregated may
be nonindependent, which complicates several of our aggregates but the expected
ones in particular. Ideas from [18] on dealing with correlated tuples in uncertain
relations may be helpful.

– We have not yet characterized the error in our expected-average approximation. We
expect similar approximations may have been used in statistics, where we hope to
find some insights.

– Finally, we have performed only preliminary experiments, and they used very small
data sets so that exhaustive aggregates could be computed for comparison purposes.
A more thorough experimental study can be conducted that considers performance
as well as error characteristics.
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