102 research outputs found

    Generating Representative ISP Technologies From First-Principles

    Full text link
    Understanding and modeling the factors that underlie the growth and evolution of network topologies are basic questions that impact capacity planning, forecasting, and protocol research. Early topology generation work focused on generating network-wide connectivity maps, either at the AS-level or the router-level, typically with an eye towards reproducing abstract properties of observed topologies. But recently, advocates of an alternative "first-principles" approach question the feasibility of realizing representative topologies with simple generative models that do not explicitly incorporate real-world constraints, such as the relative costs of router configurations, into the model. Our work synthesizes these two lines by designing a topology generation mechanism that incorporates first-principles constraints. Our goal is more modest than that of constructing an Internet-wide topology: we aim to generate representative topologies for single ISPs. However, our methods also go well beyond previous work, as we annotate these topologies with representative capacity and latency information. Taking only demand for network services over a given region as input, we propose a natural cost model for building and interconnecting PoPs and formulate the resulting optimization problem faced by an ISP. We devise hill-climbing heuristics for this problem and demonstrate that the solutions we obtain are quantitatively similar to those in measured router-level ISP topologies, with respect to both topological properties and fault-tolerance

    Simulator Networking Handbook: Distributed Interactive Simulation Testbed

    Get PDF
    Report is an attempt to collect and organize a large body of knowledge regarding the design and development of simulation networks, particularly distributed interactive simulation

    Design of a Scalable Path Service for the Internet

    Get PDF
    Despite the world-changing success of the Internet, shortcomings in its routing and forwarding system have become increasingly apparent. One symptom is an escalating tension between users and providers over the control of routing and forwarding of packets: providers understandably want to control use of their infrastructure, and users understandably want paths with sufficient quality-of-service (QoS) to improve the performance of their applications. As a result, users resort to various “hacks” such as sending traffic through intermediate end-systems, and the providers fight back with mechanisms to inspect and block such traffic. To enable users and providers to jointly control routing and forwarding policies, recent research has considered various architectural approaches in which provider- level route determination occurs separately from forwarding. With this separation, provider-level path computation and selection can be provided as a centralized service: users (or their applications) send path queries to a path service to obtain provider- level paths that meet their application-specific QoS requirements. At the same time, providers can control the use of their infrastructure by dictating how packets are forwarded across their network. The separation of routing and forwarding offers many advantages, but also brings a number of challenges such as scalability. In particular, the path service must respond to path queries in a timely manner and periodically collect topology information containing load-dependent (i.e., performance) routing information. We present a new design for a path service that makes use of expensive pre- computations, parallel on-demand computations on performance information, and caching of recently computed paths to achieve scalability. We demonstrate that, us- ing commodity hardware with a modest amount of resources, the path service can respond to path queries with acceptable latency under a realistic workload. The ser- vice can scale to arbitrarily large topologies through parallelism. Finally, we describe how to utilize the path service in the current Internet with existing Internet applica- tions

    Earth and environmental science in the 1980's: Part 1: Environmental data systems, supercomputer facilities and networks

    Get PDF
    Overview descriptions of on-line environmental data systems, supercomputer facilities, and networks are presented. Each description addresses the concepts of content, capability, and user access relevant to the point of view of potential utilization by the Earth and environmental science community. The information on similar systems or facilities is presented in parallel fashion to encourage and facilitate intercomparison. In addition, summary sheets are given for each description, and a summary table precedes each section

    Optimization based methods for solving some problems in telecommunications and the internet

    Get PDF
    The purpose of this thesis is to develop some new algorithms based on optimization techniques for solving some problems in some areas of telecommunications and the Internet. There are two main parts to this thesis. In the first part we discuss optimization based stochastic and queueing models in telecommunications network corrective maintenance. In the second part we develop optimization based clustering (OBC) algorithms for network evolution and multicast routing. The most typical scenario encountered during mathematical optimization modelling in telecommunications, for example, is to minimize the cost of establishment and maintenance of the networks subject to the performance constraints of the networks and the reliability constraints of the networks as well. Most of these optimization problems are global optimization, that is, they have many local minima and most of these local minima do not provide any useful information for solving these problems. Therefore, the development of effective methods for solving such global optimization problems is important. To run the telecommunications networks with cost-effective network maintenance,we need to establish a practical maintenance model and optimize it. In the first part of the thesis, we solve a known stochastic programming maintenance optimization model with a direct method and then develop some new models. After that we introduce queue programming models in telecommunications network maintenance optimization. The ideas of profit, loss, and penalty will help telecommunications companies have a good view of their maintenance policies and help them improve their service. In the second part of this thesis we propose the use of optimization based clustering (OBC) algorithms to determine level-constrained hierarchical trees for network evolution and multicast routing. This problem is formulated as an optimization problem with a non-smooth, non-convex objective function. Different algorithms are examined for solving this problem. Results of numerical experiments using some artifiicial and real-world databases are reported.Doctor of Philosoph

    Doctor of Philosophy

    Get PDF
    dissertationNetwork emulation has become an indispensable tool for the conduct of research in networking and distributed systems. It offers more realism than simulation and more control and repeatability than experimentation on a live network. However, emulation testbeds face a number of challenges, most prominently realism and scale. Because emulation allows the creation of arbitrary networks exhibiting a wide range of conditions, there is no guarantee that emulated topologies reflect real networks; the burden of selecting parameters to create a realistic environment is on the experimenter. While there are a number of techniques for measuring the end-to-end properties of real networks, directly importing such properties into an emulation has been a challenge. Similarly, while there exist numerous models for creating realistic network topologies, the lack of addresses on these generated topologies has been a barrier to using them in emulators. Once an experimenter obtains a suitable topology, that topology must be mapped onto the physical resources of the testbed so that it can be instantiated. A number of restrictions make this an interesting problem: testbeds typically have heterogeneous hardware, scarce resources which must be conserved, and bottlenecks that must not be overused. User requests for particular types of nodes or links must also be met. In light of these constraints, the network testbed mapping problem is NP-hard. Though the complexity of the problem increases rapidly with the size of the experimenter's topology and the size of the physical network, the runtime of the mapper must not; long mapping times can hinder the usability of the testbed. This dissertation makes three contributions towards improving realism and scale in emulation testbeds. First, it meets the need for realistic network conditions by creating Flexlab, a hybrid environment that couples an emulation testbed with a live-network testbed, inheriting strengths from each. Second, it attends to the need for realistic topologies by presenting a set of algorithms for automatically annotating generated topologies with realistic IP addresses. Third, it presents a mapper, assign, that is capable of assigning experimenters' requested topologies to testbeds' physical resources in a manner that scales well enough to handle large environments

    A metaheuristic and simheuristic approach for the p-Hub median problem from a telecommunication perspective

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2018.Avanços recentes no setor das telecomunicações oferecem grandes oportunidades para cidadãos e organizações em um mundo globalmente conectado, ao mesmo tempo em que surge um vasto número de desafios complexos que os engenheiros devem enfrentar. Alguns desses desafios podem ser modelados como problemas de otimização. Alguns exemplos incluem o problema de alocação de recursos em redes de comunicações, desenho de topologias de rede que satisfaça determinadas propriedades associadas a requisitos de qualidade de serviço, sobreposição de redes multicast e outros recursos importantes para comunicação de origem a destino. O primeiro objetivo desta tese é fornecer uma revisão sobre como as metaheurísticas têm sido usadas até agora para lidar com os problemas de otimização associados aos sistemas de telecomunicações, detectando as principais tendências e desafios. Particularmente, a análise enfoca os problemas de desenho, roteamento e alocação de recursos. Além disso, devido á natureza desses desafios, o presente trabalho discute como a hibridização de metaheurísticas com metodologias como simulação pode ser empregada para ampliar as capacidades das metaheurísticas na resolução de problemas de otimização estocásticos na indústria de telecomunicações. Logo, é analisado um problema de otimização com aplicações práticas para redes de telecomunica ções: o problema das p medianas não capacitado em que um número fixo de hubs tem capacidade ilimitada, cada nó não-hub é alocado para um único hub e o número de hubs é conhecido de antemão, sendo analisado em cenários determinísticos e estocásticos. Dada a sua variedade e importância prática, o problema das p medianas vem sendo aplicado e estudado em vários contextos. Seguidamente, propõem-se dois algoritmos imune-inspirados e uma metaheurística de dois estágios, que se baseia na combinação de técnicas tendenciosas e aleatórias com uma estrutura de busca local iterada, além de sua integração com a técnica de simulação de Monte Carlo para resolver o problema das p medianas. Para demonstrar a eficiência dos algoritmos, uma série de testes computacionais é realizada, utilizando instâncias de grande porte da literatura. Estes resultados contribuem para uma compreensão mais profunda da eficácia das metaheurísticas empregadas para resolver o problema das p medianas em redes pequenas e grandes. Por último, uma aplicaçã o ilustrativa do problema das p medianas é apresentada, bem como alguns insights sobre novas possibilidades para ele, estendendo a metodologia proposta para ambientes da vida real.Recent advances in the telecommunication industry o er great opportunities to citizens and organizations in a globally-connected world, but they also arise a vast number of complex challenges that decision makers must face. Some of these challenges can be modeled as optimization problems. Examples include the framework of network utility maximization for resource allocation in communication networks, nding a network topology that satis es certain properties associated with quality of service requirements, overlay multicast networks, and other important features for source to destination communication. First, this thesis provides a review on how metaheuristics have been used so far to deal with optimization problems associated with telecommunication systems, detecting the main trends and challenges. Particularly the analysis focuses on the network design, routing, and allocation problems. In addition, due to the nature of these challenges, this work discusses how the hybridization of metaheuristics with methodologies such as simulation can be employed to extend the capabilities of metaheuristics when solving stochastic optimization problems. Then, a popular optimization problem with practical applications to the design of telecommunication networks: the Uncapacitated Single Allocation p-Hub Median Problem (USApHMP) where a xed number of hubs have unlimited capacity, each non-hub node is allocated to a single hub and the number of hubs is known in advance is analyzed in deterministic and stochastic scenarios. p-hub median problems are concerned with optimality of telecommunication and transshipment networks, and seek to minimize the cost of transportation or establishing. Next, two immune inspired metaheuristics are proposed to solve the USApHMP, besides that, a two-stage metaheuristic which relies on the combination of biased-randomized techniques with an iterated local search framework and its integration with simulation Monte Carlo technique for solving the same problem is proposed. In order to show their e ciency, a series of computational tests are carried out using small and large size instances from the literature. These results contribute to a deeper understanding of the e ectiveness of the employed metaheuristics for solving the USApHMP in small and large networks. Finally, an illustrative application of the USApHMP is presented as well as some insights about some new possibilities for it, extending the proposed methodology to real-life environments.Els últims avenços en la industria de les telecomunicacions ofereixen grans oportunitats per ciutadans i organitzacions en un món globalment connectat, però a la vegada, presenten reptes als que s'enfronten tècnics i enginyers que prenen decisions. Alguns d'aquests reptes es poden modelitzar com problemes d'optimització. Exemples inclouen l'assignació de recursos a les xarxes de comunicació, trobant una topologia de xarxa que satisfà certes propietats associades a requisits de qualitat de servei, xarxes multicast superposades i altres funcions importants per a la comunicació origen a destinació. El primer objectiu d'aquest treball és proporcionar un revisió de la literatura sobre com s'han utilitzat aquestes tècniques, tradicionalment, per tractar els problemes d'optimització associats a sistemes de telecomunicació, detectant les principals tendències i desa aments. Particularment, l'estudi es centra en els problemes de disseny de xarxes, enrutament i problemes d'assignació de recursos. Degut a la naturalesa d'aquests problemes, aquest treball també analitza com es poden combinar les tècniques metaheurístiques amb metodologies de simulació per ampliar les capacitats de resoldre problemes d'optimització estocàstics. A més, es tracta un popular problema d'optimització amb aplicacions pràctiques per xarxes de telecomunicació, el problema de la p mediana no capacitat, analitzant-lo des d'escenaris deterministes i estocàstics. Aquest problema consisteix en determinar el nombre d'instal lacions (medianes) en una xarxa, minimitzant la suma de tots els costs o distàncies des d'un punt de demanda a la instal lació més propera. En general, el problema de la p mediana està lligat amb l'optimització de xarxes de telecomunicacions i de transport, i busquen minimitzar el cost de transport o establiment de la xarxa. Es proposa dos algoritmes immunològics i un algoritme metaheurístic de dues etapes basat en la combinació de tècniques aleatòries amb simulacions Monte Carlo. L'e ciència de les algoritmes es posa a prova mitjançant alguns dels test computacionals més utilitzats a la literatura, obtenint uns resultats molt satisfactoris, ja que es capaç de resoldre casos petits i grans en qüestió de segons i amb un baix cost computacional. Finalment, es presenta una aplicació il lustrativa del problema de la p mediana, així com algunes noves idees sobre aquest, que estenen la metodologia proposta a problemes de la vida real

    Assuring virtual network reliability and resilience

    Full text link
    A framework developed that uses reliability block diagrams and continuous-time Markov chains to model and analyse the reliability and availability of a Virtual Network Environment (VNE). In addition, to minimize the unpredicted failures and reduce the impact of failure on a virtual network, a dynamic solution proposed for detecting a failure before it occurs in the VNE. Moreover, to predict failure and establish a tolerable maintenance plan before failure occurs in the VNE, a failure prediction method for VNE can be used to minimise the unpredicted failures, reduce backup redundancy and maximise system performance
    corecore