98 research outputs found

    Approximate entropy as an indicator of non-linearity in self paced voluntary finger movement EEG

    Get PDF
    This study investigates the indications of non-linear dynamic structures in electroencephalogram signals. The iterative amplitude adjusted surrogate data method along with seven non-linear test statistics namely the third order autocorrelation, asymmetry due to time reversal, delay vector variance method, correlation dimension, largest Lyapunov exponent, non-linear prediction error and approximate entropy has been used for analysing the EEG data obtained during self paced voluntary finger-movement. The results have demonstrated that there are clear indications of non-linearity in the EEG signals. However the rejection of the null hypothesis of non-linearity rate varied based on different parameter settings demonstrating significance of embedding dimension and time lag parameters for capturing underlying non-linear dynamics in the signals. Across non-linear test statistics, the highest degree of non-linearity was indicated by approximate entropy (APEN) feature regardless of the parameter settings

    Optimizing Common Spatial Pattern for a Motor Imagerybased BCI by Eigenvector Filteration

    Get PDF
    One of the fundamental criterion for the successful application of a brain-computer interface (BCI) system is to extract significant features that confine invariant characteristics specific to each brain state. Distinct features play an important role in enabling a computer to associate different electroencephalogram (EEG) signals to different brain states. To ease the workload on the feature extractor and enhance separability between different brain states, the data is often transformed or filtered to maximize separability before feature extraction. The common spatial patterns (CSP) approach can achieve this by linearly projecting the multichannel EEG data into a surrogate data space by the weighted summation of the appropriate channels. However, choosing the optimal spatial filters is very significant in the projection of the data and this has a direct impact on classification. This paper presents an optimized pattern selection method from the CSP filter for improved classification accuracy. Based on the hypothesis that values closer to zero in the CSP filter introduce noise rather than useful information, the CSP filter is modified by analyzing the CSP filter and removing/filtering the degradative or insignificant values from the filter. This hypothesis is tested by comparing the BCI results of eight subjects using the conventional CSP filters and the optimized CSP filter. In majority of the cases the latter produces better performance in terms of the overall classification accuracy

    Optimizing Common Spatial Pattern for a Motor Imagerybased BCI by Eigenvector Filteration

    Get PDF
    One of the fundamental criterion for the successful application of a brain-computer interface (BCI) system is to extract significant features that confine invariant characteristics specific to each brain state. Distinct features play an important role in enabling a computer to associate different electroencephalogram (EEG) signals to different brain states. To ease the workload on the feature extractor and enhance separability between different brain states, the data is often transformed or filtered to maximize separability before feature extraction. The common spatial patterns (CSP) approach can achieve this by linearly projecting the multichannel EEG data into a surrogate data space by the weighted summation of the appropriate channels. However, choosing the optimal spatial filters is very significant in the projection of the data and this has a direct impact on classification. This paper presents an optimized pattern selection method from the CSP filter for improved classification accuracy. Based on the hypothesis that values closer to zero in the CSP filter introduce noise rather than useful information, the CSP filter is modified by analyzing the CSP filter and removing/filtering the degradative or insignificant values from the filter. This hypothesis is tested by comparing the BCI results of eight subjects using the conventional CSP filters and the optimized CSP filter. In majority of the cases the latter produces better performance in terms of the overall classification accuracy

    Imaging the spatial-temporal neuronal dynamics using dynamic causal modelling

    Get PDF
    Oscillatory brain activity is a ubiquitous feature of neuronal dynamics and the synchronous discharge of neurons is believed to facilitate integration both within functionally segregated brain areas and between areas engaged by the same task. There is growing interest in investigating the neural oscillatory networks in vivo. The aims of this thesis are to (1) develop an advanced method, Dynamic Causal Modelling for Induced Responses (DCM for IR), for modelling the brain network functions and (2) apply it to exploit the nonlinear coupling in the motor system during hand grips and the functional asymmetries during face perception. DCM for IR models the time-varying power over a range of frequencies of coupled electromagnetic sources. The model parameters encode coupling strength among areas and allows the differentiations between linear (within frequency) and nonlinear (between-frequency) coupling. I applied DCM for IR to show that, during hand grips, the nonlinear interactions among neuronal sources in motor system are essential while intrinsic coupling (within source) is very likely to be linear. Furthermore, the normal aging process alters both the network architecture and the frequency contents in the motor network. I then use the bilinear form of DCM for IR to model the experimental manipulations as the modulatory effects. I use MEG data to demonstrate functional asymmetries between forward and backward connections during face perception: Specifically, high (gamma) frequencies in higher cortical areas suppressed low (alpha) frequencies in lower areas. This finding provides direct evidence for functional asymmetries that is consistent with anatomical and physiological evidence from animal studies. Lastly, I generalize the bilinear form of DCM for IR to dissociate the induced responses from evoked ones in terms of their functional role. The backward modulatory effect is expressed as induced, but not evoked responses

    A Neuroergonomics Study of Brain EEG\u27s Activity During Manual Lifting Tasks

    Get PDF
    Electroencephalography (EEG) has been shown to be a reliable tool in neuroergonomics studies due to the relatively low cost of brain data collection and limited body invasion. The application of EEG frequency bands (including theta, alpha and beta), enjoyed a wide range of interest in physical and cognitive ergonomics. The psychophysical approach has been used for decades to improve safe work practices by understanding human limitations in manual materials handling. The main objective of this research project was to study the brain\u27s EEG activity expressed by the power spectral density during manual lifting tasks related to: 1) the maximum acceptable weight of lift (MAWL) and 2) isokinetic and isometric lifting strength tests measurement outcomes. The first study investigated the changes in EEG power spectral density during determination of MAWL under low, medium, and high lifting frequencies. A high-density wireless dry cell EEG device has been used to record EEG signals. Twenty healthy males participated in this study. Subjects repeated the same experiment after two weeks. Analysis of variance (ANOVA) showed significant differences in EEG power spectral density between different lifting frequencies at three main brain areas (frontal, central, and parietal). The second study revealed differences in brain activities during isokinetic and isometric strength measurements, based on the recording and analysis of EEG power spectral density. This research project is the first study of EEG activity during manual lifting tasks, including the assessment of MAWL by the psychophysical method, as well as the measurement of human isokinetic and isometric strengths. The results of this project are considered critical to our increased understanding of the neural correlates of human physical activities, and consequently should have a positive impact on workplace design that considers brain activity related to specific human capabilities and limitations in manual lifting tasks

    Fusion of virtual reality and brain-machine interfaces for the assessment and rehabilitation of patients with spinal cord injury

    Get PDF
    La presente tesis está centrada en la utilización de nuevas tecnologías (Interfaces Cerebro-Máquina y Realidad Virtual). En la primera parte de la tesis se describe la definición y la aplicación de un conjunto de métricas para evaluar el estado funcional de los pacientes con lesión medular en el contexto de un sistema de realidad virtual para la rehabilitación de los miembros superiores. El objetivo de este primer estudio es demostrar que la realidad virtual puede utilizarse, en combinación con sensores inerciales para rehabilitar y evaluar simultáneamente. 15 pacientes con lesión medular llevaron a cabo 3 sesiones con el sistema de realidad virtual Toyra y se aplicó el conjunto definido de métricas a las grabaciones obtenidas con los sensores inerciales. Se encontraron correlaciones entre algunas de las métricas definidas y algunas de las escalas clínicas utilizadas con frecuencia en el contexto de la rehabilitación. En la segunda parte de la tesis se ha combinado una retroalimentación virtual con un estimulador eléctrico funcional (en adelante FES, por sus siglas en inglés Functional Electrical Stimulator), ambos controlados por un Interfaz Cerebro-Máquina (BMI por sus siglas en inglés Brain-Machine Interface), para desarrollar un nuevo tipo de enfoque terapéutico para los pacientes. El sistema ha sido utilizado por 4 pacientes con lesión medular que intentaron mover sus manos. Esta intención desencadenó simultáneamente el FES y la retroalimentación virtual, cerrando la mano de los pacientes y mostrándoles una fuente adicional de retroalimentación para complementar la terapia. Este trabajo es, de acuerdo al estado del arte revisado, el primero que integra BMI, FES y realidad virtual como terapia para pacientes con lesión medular. Se han obtenido resultados clínicos prometedores por 4 pacientes con lesión medular después de realizar 5 sesiones de terapia con el sistema, mostrando buenos niveles de precisión en las diferentes sesiones (79,13% en promedio). En la tercera parte de la tesis se ha definido una nueva métrica para estudiar los cambios de conectividad cerebral en los pacientes con lesión medular, que incluye información de las interacciones neuronales entre diferentes áreas. El objetivo de este estudio ha sido extraer información clínicamente relevante de la actividad del EEG cuando se realizan terapias basadas en BMI

    Paradigm free mapping: detection and characterization of single trial fMRI BOLD responses without prior stimulus information

    Get PDF
    The increased contrast to noise ratio available at Ultrahigh (7T) Magnetic Resonance Imaging (MRI) allows mapping in space and time the brain's response to single trial events with functional MRI (fMRI) based on the Blood Oxygenation Level Dependent (BOLD) contrast. This thesis primarily concerns with the development of techniques to detect and characterize single trial event-related BOLD responses without prior paradigm information, Paradigm Free Mapping, and assess variations in BOLD sensitivity across brain regions at high field fMRI. Based on a linear haemodynamic response model, Paradigm Free Mapping (PFM) techniques rely on the deconvolution of the neuronal-related signal driving the BOLD effect using regularized least squares estimators. The first approach, named PFM, builds on the ridge regression estimator and spatio-temporal t-statistics to detect statistically significant changes in the deconvolved fMRI signal. The second method, Sparse PFM, benefits from subset selection features of the LASSO and Dantzig Selector estimators that automatically detect the single trial BOLD responses by promoting a sparse deconvolution of the signal. The third technique, Multicomponent PFM, exploits further the benefits of sparse estimation to decompose the fMRI signal into a haemodynamical component and a baseline component using the morphological component analysis algorithm. These techniques were evaluated in simulations and experimental fMRI datasets, and the results were compared with well-established fMRI analysis methods. In particular, the methods developed here enabled the detection of single trial BOLD responses to visually-cued and self-paced finger tapping responses without prior information of the events. The potential application of Sparse PFM to identify interictal discharges in idiopathic generalized epilepsy was also investigated. Furthermore, Multicomponent PFM allowed us to extract cardiac and respiratory fluctuations of the signal without the need of physiological monitoring. To sum up, this work demonstrates the feasibility to do single trial fMRI analysis without prior stimulus or physiological information using PFM techniques

    Paradigm free mapping: detection and characterization of single trial fMRI BOLD responses without prior stimulus information

    Get PDF
    The increased contrast to noise ratio available at Ultrahigh (7T) Magnetic Resonance Imaging (MRI) allows mapping in space and time the brain's response to single trial events with functional MRI (fMRI) based on the Blood Oxygenation Level Dependent (BOLD) contrast. This thesis primarily concerns with the development of techniques to detect and characterize single trial event-related BOLD responses without prior paradigm information, Paradigm Free Mapping, and assess variations in BOLD sensitivity across brain regions at high field fMRI. Based on a linear haemodynamic response model, Paradigm Free Mapping (PFM) techniques rely on the deconvolution of the neuronal-related signal driving the BOLD effect using regularized least squares estimators. The first approach, named PFM, builds on the ridge regression estimator and spatio-temporal t-statistics to detect statistically significant changes in the deconvolved fMRI signal. The second method, Sparse PFM, benefits from subset selection features of the LASSO and Dantzig Selector estimators that automatically detect the single trial BOLD responses by promoting a sparse deconvolution of the signal. The third technique, Multicomponent PFM, exploits further the benefits of sparse estimation to decompose the fMRI signal into a haemodynamical component and a baseline component using the morphological component analysis algorithm. These techniques were evaluated in simulations and experimental fMRI datasets, and the results were compared with well-established fMRI analysis methods. In particular, the methods developed here enabled the detection of single trial BOLD responses to visually-cued and self-paced finger tapping responses without prior information of the events. The potential application of Sparse PFM to identify interictal discharges in idiopathic generalized epilepsy was also investigated. Furthermore, Multicomponent PFM allowed us to extract cardiac and respiratory fluctuations of the signal without the need of physiological monitoring. To sum up, this work demonstrates the feasibility to do single trial fMRI analysis without prior stimulus or physiological information using PFM techniques

    Automatic Pain Assessment by Learning from Multiple Biopotentials

    Get PDF
    Kivun täsmällinen arviointi on tärkeää kivunhallinnassa, erityisesti sairaan- hoitoa vaativille ipupotilaille. Kipu on subjektiivista, sillä se ei ole pelkästään aistituntemus, vaan siihen saattaa liittyä myös tunnekokemuksia. Tällöin itsearviointiin perustuvat kipuasteikot ovat tärkein työkalu, niin auan kun potilas pystyy kokemuksensa arvioimaan. Arviointi on kuitenkin haasteellista potilailla, jotka eivät itse pysty kertomaan kivustaan. Kliinisessä hoito- työssä kipua pyritään objektiivisesti arvioimaan esimerkiksi havainnoimalla fysiologisia muuttujia kuten sykettä ja käyttäytymistä esimerkiksi potilaan kasvonilmeiden perusteella. Tutkimuksen päätavoitteena on automatisoida arviointiprosessi hyödyntämällä koneoppimismenetelmiä yhdessä biosignaalien prosessointnin kanssa. Tavoitteen saavuttamiseksi mitattiin autonomista keskushermoston toimintaa kuvastavia biopotentiaaleja: sydänsähkökäyrää, galvaanista ihoreaktiota ja kasvolihasliikkeitä mittaavaa lihassähkökäyrää. Mittaukset tehtiin terveillä vapaaehtoisilla, joille aiheutettiin kokeellista kipuärsykettä. Järestelmän kehittämiseen tarvittavaa tietokantaa varten rakennettiin biopotentiaaleja keräävä Internet of Things -pohjainen tallennusjärjestelmä. Koostetun tietokannan avulla kehitettiin biosignaaleille prosessointimenetelmä jatku- vaan kivun arviointiin. Signaaleista eroteltiin piirteitä sekuntitasoon mukautetuilla aikaikkunoilla. Piirteet visualisoitiin ja tarkasteltiin eri luokittelijoilla kivun ja kiputason tunnistamiseksi. Parhailla luokittelumenetelmillä saavutettiin kivuntunnistukseen 90% herkkyyskyky (sensitivity) ja 84% erottelukyky (specificity) ja kivun voimakkuuden arviointiin 62,5% tarkkuus (accuracy). Tulokset vahvistavat kyseisen käsittelytavan käyttökelpoisuuden erityis- esti tunnistettaessa kipua yksittäisessä arviointi-ikkunassa. Tutkimus vahvistaa biopotentiaalien avulla kehitettävän automatisoidun kivun arvioinnin toteutettavuuden kokeellisella kivulla, rohkaisten etenemään todellisen kivun tutkimiseen samoilla menetelmillä. Menetelmää kehitettäessä suoritettiin lisäksi vertailua ja yhteenvetoa automaattiseen kivuntunnistukseen kehitettyjen eri tutkimusten välisistä samankaltaisuuksista ja eroista. Tarkastelussa löytyi signaalien eroavaisuuksien lisäksi tutkimusmuotojen aiheuttamaa eroa arviointitavoitteisiin, mikä hankaloitti tutkimusten vertailua. Lisäksi pohdit- tiin mitkä perinteisten prosessointitapojen osiot rajoittavat tai edistävät ennustekykyä ja miten, sekä tuoko optimointi läpimurtoa järjestelmän näkökulmasta.Accurate pain assessment plays an important role in proper pain management, especially among hospitalized people experience acute pain. Pain is subjective in nature which is not only a sensory feeling but could also combine affective factors. Therefore self-report pain scales are the main assessment tools as long as patients are able to self-report. However, it remains a challenge to assess the pain from the patients who cannot self-report. In clinical practice, physiological parameters like heart rate and pain behaviors including facial expressions are observed as empirical references to infer pain objectively. The main aim of this study is to automate such process by leveraging machine learning methods and biosignal processing. To achieve this goal, biopotentials reflecting autonomic nervous system activities including electrocardiogram and galvanic skin response, and facial expressions measured with facial electromyograms were recorded from healthy volunteers undergoing experimental pain stimulus. IoT-enabled biopotential acquisition systems were developed to build the database aiming at providing compact and wearable solutions. Using the database, a biosignal processing flow was developed for continuous pain estimation. Signal features were extracted with customized time window lengths and updated every second. The extracted features were visualized and fed into multiple classifiers trained to estimate the presence of pain and pain intensity separately. Among the tested classifiers, the best pain presence estimating sensitivity achieved was 90% (specificity 84%) and the best pain intensity estimation accuracy achieved was 62.5%. The results show the validity of the proposed processing flow, especially in pain presence estimation at window level. This study adds one more piece of evidence on the feasibility of developing an automatic pain assessment tool from biopotentials, thus providing the confidence to move forward to real pain cases. In addition to the method development, the similarities and differences between automatic pain assessment studies were compared and summarized. It was found that in addition to the diversity of signals, the estimation goals also differed as a result of different study designs which made cross dataset comparison challenging. We also tried to discuss which parts in the classical processing flow would limit or boost the prediction performance and whether optimization can bring a breakthrough from the system’s perspective
    corecore