17 research outputs found

    Hydrodynamic simulations with the Godunov SPH

    Full text link
    We present results based on an implementation of the Godunov Smoothed Particle Hydrodynamics (GSPH), originally developed by Inutsuka (2002), in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear flow test, and the "blob" test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha (2010): (i) GSPH provides a much improved description of contact discontinuities, with respect to SPH, thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin--Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the "blob" test. We also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation. The results of our tests demonstrate that GSPH is in fact a highly promising hydrodynamic scheme, also to be coupled to an N-body solver, for astrophysical and cosmological applications. [abridged]Comment: 19 pages, 13 figures, MNRAS accepted, high resolution version can be obtained at http://adlibitum.oats.inaf.it/borgani/html/papers/gsph_hydrosim.pd

    Smoothed particle magnetohydrodynamics with a Riemann solver and the method of characteristics

    Full text link
    In this paper, we develop a new method for magnetohydrodynamics (MHD) using smoothed particle hydrodynamics (SPH). To describe MHD shocks accurately, the Godunov method is applied to SPH instead of artificial dissipation terms. In the interaction between particles, we solve a nonlinear Riemann problem with magnetic pressure for compressive waves and apply the method of characteristics for Alfv{\'e}n waves. An extensive series of MHD test calculations is performed. In all test calculations, we compare the results of our SPH code with those of a finite-volume method with an approximate Riemann solver, and confirm excellent agreement.Comment: 22 pages, 20 figures, accepted for Monthly Notices of Royal Astronomical Societ

    Astrophysical Weighted Particle Magnetohydrodynamics

    Full text link
    This paper presents applications of weighted meshless scheme for conservation laws to the Euler equations and the equations of ideal magnetohydrodynamics. The divergence constraint of the latter is maintained to the truncation error by a new meshless divergence cleaning procedure. The physics of the interaction between the particles is described by an one-dimensional Riemann problem in a moving frame. As a result, necessary diffusion which is required to treat dissipative processes is added automatically. As a result, our scheme has no free parameters that controls the physics of inter-particle interaction, with the exception of the number of the interacting neighbours which control the resolution and accuracy. The resulting equations have the form similar to SPH equations, and therefore existing SPH codes can be used to implement the weighed particle scheme. The scheme is validated in several hydrodynamic and MHD test cases. In particular, we demonstrate for the first time the ability of a meshless MHD scheme to model magneto-rotational instability in accretion disks.Comment: 27 pages, 24 figures, 1 column, submitted to MNRAS, hi-res version can be obtained at http://www.strw.leidenuniv.nl/~egaburov/wpmhd.pd

    A Stable Hybrid Potential–SPH Technique to Enforce the Fluid Incompressibility

    Get PDF
    The SPH method has extensively used in fluid flow simulation. Through SPH the fluid is modelled by a particles system whose mutual interaction is weighed by a function, named kernel function, whose limits define the neighbouring of each particle. In spite of the high capabilities of SPH for simulate complex environments, it shows shortcomings specially if the fluid is subject to high changes in the pressure, the velocity and the density as occur in phenomena such as shock–tube, blast–wave or in the boundary and discontinuities where the number of neighbour particles is relatively low. In this case, the pressure gradient is inaccurate. As consequence, the simulation is instable with an erratic behaviour of particles. To avoid this problem, we propose a hybrid technique. This one consists in formulating the pressure gradient from a potential defined on each particles pair. Thus, the pressure gradient is immune to the low number of neighbour particles. Also, our proposal allows enforcing the fluid incompressibility. To show the improvements obtained we will carry out a set of simulationMinisterio de Economía y Competitividad TIN2016-76953-C3-2-

    Blended numerical schemes for the advection equation and conservation laws

    Get PDF
    In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating new schemes which inherit advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method

    GIZMO: A New Class of Accurate, Mesh-Free Hydrodynamic Simulation Methods

    Get PDF
    We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, SPH, and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both smoothed-particle hydrodynamics (SPH) and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume 'overlap.' We implement and test a parallel, second-order version of the method with self-gravity & cosmological integration, in the code GIZMO: this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require 'artificial diffusion' terms; and allows the fluid elements to move with the flow so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages vs. SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced 'particle noise' & numerical viscosity, more accurate sub-sonic flow evolution, & sharp shock-capturing. Advantages vs. non-moving meshes include: automatic adaptivity, dramatically reduced advection errors & numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of 'grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous disks, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize 'grid noise.' These differences are important for a range of astrophysical problems.Comment: 57 pages, 33 figures. MNRAS. A public version of the GIZMO code, user's guide, test problem setups, and movies are available at http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.htm

    Blended numerical schemes for the advection equation and conservation laws

    Get PDF
    In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method

    From Mesh to Meshless : a Generalized Meshless Formulation Based on Riemann Solvers for Computational Fluid Dynamics

    Get PDF
    Programa Oficial de Doutoramento en Enxeñaría Civil . 5011V01[Abstract] From mesh to meshless: A generalized meshless formulation based on Riemann solvers for Computational Fluid Dynamics This thesis deals with the development of high accuracy meshless methods for the simulation of compressible and incompressible flows. Meshless methods were conceived to overcome the constraints that mesh topology impose on traditional mesh-based numerical methods. Despite the fact that meshless methods have achieved a relative success in some particular applications, the truth is that mesh-based methods are still the preferred choice to compute flows that demand high-accuracy. Instead of assuming that meshless and mesh-based methods are groups of methods that follow independent development paths, in this thesis it is proposed to increase the accuracy of meshless methods by taking guidance of some successful techniques adopted in the mesh-based community. The starting point for the development is inspired by the SPH-ALE scheme proposed by Vila. Especially, the flexibility of the ALE framework and the introduction of Riemann solvers are essential elements adopted. High accuracy is obtained by using the Moving Least Squares (MLS) technique. MLS serves multiple tasks in the implemented scheme: high order reconstruction of Riemann states, more accurate viscous flux evaluation and the replacement of the limited kernel approximation by MLS approximation with polynomial degree consistency by design. The stabilization of the scheme for compressible flows with discontinuities is based on a posteriori stabilization technique (MOOD) that introduces a great improvement compared with the traditional a priori flux limiters. The MLSPH-ALE scheme is the first proposed meshless formulation that uses high order consistent MLS approximation in a versatile ALE framework. In addition, the procedure to obtain the semi-discrete formulation keeps track of a boundary term, which eases the implementation of the boundary conditions. Another important contribution is related with the general concept of the MLSPHALE formulation. The MLSPH-ALE scheme is proved to be a global meshless formulation that under some particular settings provides the same semi-discrete equations that other meshless formulations published. The MLSPH-ALE scheme has been tested for the computation of turbulent flows. The low dissipation inherent to the Riemann solver is compatible with the implicit LES turbulent model. The proposed formulation is able to capture the energy cascade in the subsonic regime where traditional SPH formulations are reported to fail.[Resumen] Desde métodos con malla a métodos sin malla: Una formulación sin malla generalizada basada en solvers de Riemann para Dinámica de Fluidos Computacional Esta tesis aborda el desarrollo de métodos sin malla de alta precisión para la simulación de flujos compresibles e incompresibles. Los métodos sin malla fueron creados para superar las restricciones que la conectividad de la malla impone a los métodos tradicionales. A pesar de haber alcanzado un ´éxito relativo en algunas aplicaciones, la realidad es que los métodos con malla siguen siendo la opción preferida para el cálculo de flujos que demandan alta precisión. En vez de asumir que métodos sin malla y con malla son grupos de métodos que siguen caminos de desarrollo independientes, en esta tesis se propone incrementar la precisión de los métodos sin malla tomando como guía algunas de las técnicas más exitosas empleadas en la comunidad de los métodos con malla. El punto de partida para el desarrollo se inspira en el esquema SPH-ALE propuesto por Vila. De manera especial, la flexibilidad del marco de referencia ALE y la introducción de los solvers de Riemann son elementos esenciales adoptados. La alta precisión se obtiene con la técnica de Mínimos Cuadrados Móviles (MLS). MLS sirve múltiples funciones en la implementación del esquema: alto orden de reconstrucción de los estados de Riemann, evaluaciones más precisas de los flujos viscosos y reemplazo de la aproximación limitada tipo kernel por una aproximación MLS con un grado de consistencia polinómica arbitraria. La estabilización del esquema para flujos compresibles con discontinuidades se basa en una técnica de estabilización a posteriori (MOOD) que introduce una importante mejora con respecto a los tradicionales limitadores de flujo a priori. El esquema MLSPH-ALE es la primera formulación sin malla propuesta que utiliza la aproximación MLS de alto orden en un marco de referencia ALE. Además, el procedimiento dado para obtener la forma semi-discreta realiza el seguimiento de un término en la frontera del dominio que facilita la implementación discreta de las condiciones de contorno. Otra importante contribución está relacionada con el concepto general de la formulación MLSPH-ALE. Se ha demostrado que el esquema MLSPH-ALE es una formulación sin malla global que con ciertas configuraciones particulares es capaz de proporcionar las mismas formas semi-discretas que otras formulaciones publicadas. El método MLSPH-ALE ha sido puesto a prueba frente al cálculo de flujos turbulentos. La baja disipación inherente a los solver de Riemann hace que el esquema sea apto para modelar la turbulencia en un contexto de modelos implícitos LES. La formulación propuesta es capaz de capturar la cascada de energía en el rango de régimen subsónico donde los métodos tradicionales presentan fallos.[Resumo] Desde métodos con malla a métodos sen malla: Unha formulación sen malla xeneralizada baseada en solvers de Riemann para Dinámica de Fluidos Computacional. Esta tese trata sobre o desenvolvemento de métodos sen malla de alta precisión para a simulación de fluxos compresibles e incompresibles. Os métodos sen malla foron creados para superar as restricións que a conectividade da malla impón sobre os métodos tradicionais. A pesar de ter acadado un éxito relativo nalgunhas aplicacións, a realidade é que os métodos con malla seguen sendo a opción preferente para o cálculo de fluxos que demandan alta precisión. No canto de asumir que os métodos sen malla e con malla son grupos que seguen camiños de desenvolvemento independentes, nesta tese proponse incrementar a precisión dos métodos sen malla tomando como guía algunha das técnicas de máis éxito empregadas na comunidade dos métodos con malla. O punto de partida para o desenvolvemento inspírase no esquema SPH-ALE proposto por Vila. A flexibilidade do marco de referencia ALE e a introducción dos solvers de Riemann son os elementos esenciais utilizados nesta tese. A alta precisión acádase coa técnica de Mínimos Cadrados Móbiles (MLS). MLS serve para múltiples tarefas na implementación do esquema: acadar alto orde de reconstrución nos estados de Riemann, avaliacións máis precisas dos fluxos viscosos e troco da aproximación limitada tipo kernel por unha aproximación MLS con grado de consistencia polinómica arbitraria. A estabilización do esquema para fluxos compresibles con descontinuidades baséase nunha técnica de estabilización a posteriori (MOOD) que introduce unha importante mellora con respecto a os tradicionais limitadores de fluxo a priori. O esquema MLSPH-ALE ´e a primeira formulación sen malla proposta que emprega a técnica de aproximación MLS con alta consistencia nun marco de referencia ALE. Ademais, o procedemento seguido para obter a forma semi-discreta realiza o seguimento dun termo na fronteira que facilita a implementación das condicións de contorno. Outra importante contribución relacionase co concepto xeral da formulación MLSPHALE proposta. Demostrase que o esquema MLSPH-ALE é unha formulación sen malla global que con certas configuración particulares rende as mesmas formas semi-discretas que outras formulacións publicadas. O método MLSPH-ALE foi posto a proba fronte o cálculo de fluxos turbulentos. A baixa disipación implícita aportada polo solver de Riemann fai que o esquema sexa apto para acometer o modelado da turbulencia cos modelos implícitos LES. A formulación proposta captura a cascada de enerxía no rango de réxime subsónico, onde os métodos tradicionais SPH presentan deficiencias.This work has been partially supported by the Ministerio de Ciencia, Innovación y Universidades (RTI2018-093366-B-100) of the Spanish Government and by the Consellería de Educación e Ordenación Universitaria of the Xunta de Galicia, cofinanced with FEDER funds and the Universidade da Coruña
    corecore