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Supervisors:
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Abstract

From mesh to meshless: A generalized meshless formulation based on Rie-
mann solvers for Computational Fluid Dynamics

This thesis deals with the development of high accuracy meshless methods for the simu-
lation of compressible and incompressible flows. Meshless methods were conceived to
overcome the constraints that mesh topology impose on traditional mesh-based nume-
rical methods. Despite the fact that meshless methods have achieved a relative success
in some particular applications, the truth is that mesh-based methods are still the
preferred choice to compute flows that demand high-accuracy. Instead of assuming
that meshless and mesh-based methods are groups of methods that follow independent
development paths, in this thesis it is proposed to increase the accuracy of meshless
methods by taking guidance of some successful techniques adopted in the mesh-based
community.

The starting point for the development is inspired by the SPH-ALE scheme pro-
posed by Vila. Especially, the flexibility of the ALE framework and the introduction
of Riemann solvers are essential elements adopted. High accuracy is obtained by using
the Moving Least Squares (MLS) technique. MLS serves multiple tasks in the imple-
mented scheme: high order reconstruction of Riemann states, more accurate viscous
flux evaluation and the replacement of the limited kernel approximation by MLS ap-
proximation with polynomial degree consistency by design. The stabilization of the
scheme for compressible flows with discontinuities is based on a posteriori stabilization
technique (MOOD) that introduces a great improvement compared with the traditional
a priori flux limiters.

The MLSPH-ALE scheme is the first proposed meshless formulation that uses high
order consistent MLS approximation in a versatile ALE framework. In addition, the
procedure to obtain the semi-discrete formulation keeps track of a boundary term,
which eases the implementation of the boundary conditions.

Another important contribution is related with the general concept of the MLSPH-
ALE formulation. The MLSPH-ALE scheme is proved to be a global meshless formu-
lation that under some particular settings provides the same semi-discrete equations
that other meshless formulations published.

The MLSPH-ALE scheme has been tested for the computation of turbulent flows.
The low dissipation inherent to the Riemann solver is compatible with the implicit LES



turbulent model. The proposed formulation is able to capture the energy cascade in
the subsonic regime where traditional SPH formulations are reported to fail.



Resumen

Desde métodos con malla a métodos sin malla: Una formulación sin ma-
lla generalizada basada en solvers de Riemann para Dinámica de Fluidos
Computacional

Esta tesis aborda el desarrollo de métodos sin malla de alta precisión para la simu-
lación de flujos compresibles e incompresibles. Los métodos sin malla fueron creados
para superar las restricciones que la conectividad de la malla impone a los métodos
tradicionales. A pesar de haber alcanzado un éxito relativo en algunas aplicaciones, la
realidad es que los métodos con malla siguen siendo la opción preferida para el cálculo
de flujos que demandan alta precisión. En vez de asumir que métodos sin malla y con
malla son grupos de métodos que siguen caminos de desarrollo independientes, en esta
tesis se propone incrementar la precisión de los métodos sin malla tomando como gúıa
algunas de las técnicas más exitosas empleadas en la comunidad de los métodos con
malla.

El punto de partida para el desarrollo se inspira en el esquema SPH-ALE propuesto
por Vila. De manera especial, la flexibilidad del marco de referencia ALE y la introduc-
ción de los solvers de Riemann son elementos esenciales adoptados. La alta precisión
se obtiene con la técnica de Mı́nimos Cuadrados Móviles (MLS). MLS sirve múltiples
funciones en la implementación del esquema: alto orden de reconstrucción de los es-
tados de Riemann, evaluaciones más precisas de los flujos viscosos y reemplazo de la
aproximación limitada tipo kernel por una aproximación MLS con un grado de con-
sistencia polinómica arbitraria. La estabilización del esquema para flujos compresibles
con discontinuidades se basa en una técnica de estabilización a posteriori (MOOD) que
introduce una importante mejora con respecto a los tradicionales limitadores de flujo
a priori.

El esquema MLSPH-ALE es la primera formulación sin malla propuesta que utiliza
la aproximación MLS de alto orden en un marco de referencia ALE. Además, el proce-
dimiento dado para obtener la forma semi-discreta realiza el seguimiento de un término
en la frontera del dominio que facilita la implementación discreta de las condiciones de
contorno.

Otra importante contribución está relacionada con el concepto general de la formula-
ción MLSPH-ALE. Se ha demostrado que el esquema MLSPH-ALE es una formulación



sin malla global que con ciertas configuraciones particulares es capaz de proporcionar
las mismas formas semi-discretas que otras formulaciones publicadas.

El método MLSPH-ALE ha sido puesto a prueba frente al cálculo de flujos turbu-
lentos. La baja disipación inherente a los solver de Riemann hace que el esquema sea
apto para modelar la turbulencia en un contexto de modelos impĺıcitos LES. La for-
mulación propuesta es capaz de capturar la cascada de enerǵıa en el rango de régimen
subsónico donde los métodos tradicionales presentan fallos.



Resumo

Desde métodos con malla a métodos sen malla: Unha formulación sen ma-
lla xeneralizada baseada en solvers de Riemann para Dinámica de Fluidos
Computacional.

Esta tese trata sobre o desenvolvemento de métodos sen malla de alta precisión para a
simulación de fluxos compresibles e incompresibles. Os métodos sen malla foron crea-
dos para superar as restricións que a conectividade da malla impón sobre os métodos
tradicionais. A pesar de ter acadado un éxito relativo nalgunhas aplicacións, a reali-
dade é que os métodos con malla seguen sendo a opción preferente para o cálculo de
fluxos que demandan alta precisión. No canto de asumir que os métodos sen malla
e con malla son grupos que seguen camiños de desenvolvemento independentes, nes-
ta tese proponse incrementar a precisión dos métodos sen malla tomando como gúıa
algunha das técnicas de máis éxito empregadas na comunidade dos métodos con malla.

O punto de partida para o desenvolvemento insṕırase no esquema SPH-ALE pro-
posto por Vila. A flexibilidade do marco de referencia ALE e a introdución dos solvers
de Riemann son os elementos esenciais utilizados nesta tese. A alta precisión acádase
coa técnica de Mı́nimos Cadrados Móbiles (MLS). MLS serve para múltiples tarefas
na implementación do esquema: acadar alto orde de reconstrución nos estados de Rie-
mann, avaliacións máis precisas dos fluxos viscosos e troco da aproximación limitada
tipo kernel por unha aproximación MLS con grado de consistencia polinómica arbitra-
ria. A estabilización do esquema para fluxos compresibles con descontinuidades baséase
nunha técnica de estabilización a posteriori (MOOD) que introduce unha importante
mellora con respecto a os tradicionais limitadores de fluxo a priori.

O esquema MLSPH-ALE é a primeira formulación sen malla proposta que emprega
a técnica de aproximación MLS con alta consistencia nun marco de referencia ALE.
Ademais, o procedemento seguido para obter a forma semi-discreta realiza o seguimento
dun termo na fronteira que facilita a implementación das condicións de contorno.

Outra importante contribución relacionase co concepto xeral da formulación MLSPH-
ALE proposta. Demostrase que o esquema MLSPH-ALE é unha formulación sen malla
global que con certas configuración particulares rende as mesmas formas semi-discretas
que outras formulacións publicadas.

O método MLSPH-ALE foi posto a proba fronte o cálculo de fluxos turbulentos. A
baixa disipación impĺıcita aportada polo solver de Riemann fai que o esquema sexa apto



para acometer o modelado da turbulencia cos modelos impĺıcitos LES. A formulación
proposta captura a cascada de enerx́ıa no rango de réxime subsónico, onde os métodos
tradicionais SPH presentan deficiencias.
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Chapter1
Introduction

1.1. Introduction

Historically, advances in Fluid Dynamics have promoted great development in soci-
ety. Infrastructures for water supply and sanitation, transportation and energy produc-
tion are among the most known flow applications in engineering field. In the industrial
sector, Fluid Dynamics is paramount in the design of lubrication systems and fluid
power control, for example. But apart from the classical engineering fields, Fluid Dy-
namics drives the development of modern biomedical devices, like mechanical heart
valves, and are the base of models aimed to predict the weather or natural disasters.

Nowadays, it is recognized that Fluid Dynamics advances can be tackled by any
of these tracks: experimental, theoretical/analytical and computational. They can
be considered as the three branches of the Fluid Dynamics, but interactions between
branches are usual.

The interrelation between Fluid Dynamics branches has evolved over time. In a
first period of humankind, the only track of fluid knowledge was the experimental
approach. The governing equations of inviscid fluid motion by Euler [Euler, 1757] and
the inclusion of friction by Navier [Navier, 1823] and Stokes [Stokes, 1845] are the
great milestones of the analytical branch. In Anderson [Anderson Jr., 2010], a brief
history of the early development of theoretical and experimental parts is provided. The
Computational Fluid Dynamics branch came into the picture in the first part of 20th
century, and it is common refer to it by its acronym CFD. The growth of CFD has been
pushed by the evolution in the computing power and the great advances in numerical
methods.

In the current state-of-the-art, the three branches of Fluid Mechanics are receiv-
ing great attention by researchers. The most known relation between the theoretical
branch and CFD is the use of some known problems with analytical solution to con-
duct the verification of codes. But nowadays the reciprocal relation also holds, and
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the theoretical branch uses CFD simulations to verify hypothesis or to formulate new
ones. CFD has gained popularity among technological companies in order to reduce
the time-to-market of their products. Hydrodynamic and wind tunnels are essential to
provide the experimental performance of a product. However, CFD virtual environ-
ments can guide engineers to develop better products in less time and at a lower cost.
In Table (1.1), taken from [Basic, 2021], a list of differences for several categories is
collected

Category Physical experiment Numerical simulation
Results Flow measurements Flow prediction

Readings Equipment-limited number of points All quantities at any
Price Relatively expensive time/space
Time Slow process Relatively cheap

Scaling Smaller models Relatively quick
Setup Limited range of operating conditions Any operating conditions

Repeatable Mostly Yes
Safe Not all Yes

Error sources Measurement errors, flow Discretization, numerical
disturbances, etc. method, etc.

Table 1.1. Comparison between numerical simulations and experiments. Adapted from
[Basic, 2021]

This thesis deals with the computational branch of Fluid Dynamics. In particular,
the main contributions of this work are contained in a set of numerical methods known
as meshless methods.

1.2. Computational Fluid Dynamics. To mesh or not to mesh?

There is an extensive list of numerical methods in CFD, and each comes with its
own advantages and disadvantages. The existence of these methods is motivated by
the wide range of fluid applications that demand a numerical solution. In this section,
an outline of numerical methods for CFD is given, with the only purpose of providing
the scope of the present work.

The classical methods in Fluid Dynamics are the Finite Difference Method (FDM),
the Finite Volume Method (FVM) and the Finite Element Method (FEM). These meth-
ods have been the core of the main software engineering packages. Detailed descriptions
of the basis of these methods can be found in reference CFD textbooks [Hirsch, 2007;
Blazek, 2015; Zienkiewicz et al., 2014]. Although they are called classic, they are
continuously evolving to improve accuracy, performance or solving more complicated
flow problems. These methods share the common feature that the domain of interest
is discretized on a grid/mesh and the governing equations are approximated in each

2



1.2. Computational Fluid Dynamics. To mesh or not to mesh?

node, cell or element. Another classical method denoted as Boundary Element Method
(BEM) could be included in this category, but BEM only requires the discretization of
the domain boundary [Brebbia et al., 1984]. When the geometric domain is discretized
into nodes, volumes, or elements, information about the connectivity between these
divisions must be known so that systems of equations can be assembled. Mesh gener-
ation is a major portion of the work that must be done in order to perform accurate
CFD analysis. When moving or deforming regions in the domain appear, the evolution
of a topological mesh could deteriorate the accuracy and even cause an abrupt fail
of the numerical computation. In the practical use of Computer Aided Engineering
(CAE) software, failed simulations are frequently caused by an initial low quality mesh
or degenerated mesh. The tips and tricks to create a good mesh are so demanding that
meshing task sometimes seems an art.

Solving Navier-Stokes equations using mesh-based methods have been the most
usual choice in both scientific computations and industrial applications. Currently,
mesh-based second-order schemes are the common standard in CFD simulations. How-
ever, the effect of irregular meshes decreases the accuracy of the simulations, since using
those grids the effective order of the numerical schemes is between one and two. Thus,
in most of engineering flows, a very fine mesh is required to obtain highly accurate
solutions, and frequently it is not possible to obtain a grid-independent and reliable
solution.

There is clear evidence that current standard methods are unable to deal with a
number of important engineering and scientific problems. Following Kroll [Kroll, 2006]
the current standard simulation tools for CFD present the following problems:

• High Reynolds number aerodynamic simulations of viscous flows around complex
geometries require a high amount of computational power.

• Advanced turbulence models (Large Eddy Simulations (LES), for example) are
still only rarely used for industrial applications.

Even though these problems are particularized for the aeronautical industry, they
are shared by other disciplines where flow problems need to be addressed. It is rea-
sonable to assume that in the future, numerical methods of high accuracy will have
an increasingly important role to play. Thus, a crucial question arises: Given an er-
ror considered acceptable, what is the best way to achieve that error in terms of the
amount of memory and processing time required? Do we use a low–order method on a
fine mesh or a high–order method on a coarse mesh? Available evidence [Schwartzkopff
et al., 2002] [Schwartzkopff et al., 2004] suggests that the second option is by far the
most efficient way to reduce errors, by orders of magnitude. Thus, great research effort
is currently being devoted to the development of highly accurate numerical methods
[Kroll, 2006] [Sherwin & Peiró, 2001] [Wang et al., 2013]. Unfortunately, high-order
methods are less robust than standard methods. Moreover, curved adapted meshes are
required in order to keep the accuracy of the numerical scheme to acceptable levels,
and there are no efficient mesh generation technologies to generate these grids.
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Therefore, it is known that current state-of-art grid-based high-order methods have
the following drawbacks [Sherwin & Peiró, 2001] [Wang et al., 2013] :

• They usually require specialized and efficient implementation, since they are more
sophisticated than low-order methods from the mathematical point of view.

• They require much more memory (with implicit schemes).

• Some of them need robust high-order mesh generators that are not readily avail-
able.

• They introduce very little numerical dissipation. Therefore, shock-capturing and
time integration are more challenging than for low-order methods.

These significant limitations highlight the need to explore other alternatives that
avoid the cumbersome task of generating a high quality mesh and circumvent the
aforementioned limitations of high-order grid-based methods. Although some meshing
packages have automatized the tasks of meshing, a numerical procedure that avoids
any meshing has attracted the interest of many researchers.

Meshless methods do not require any geometric data structure with connectivity
between entities to provide a numerical solution. The computational domain for a
meshless method is simply a cloud of points. The cloud of points is more flexible than
a grid and even the generation technique is about an order of magnitude faster [Löhner
& Oñate, 1998]. However, meshless methods in Fluid Dynamics have not achieved the
same maturity state as mesh-based methods. The first attempt to solve partial differ-
ential equations with a meshless framework was attributed to Lucy [Lucy, 1977] and
Gingold and Monaghan [Gingold & Monaghan, 1977] who independently conducted
simulations in the field of Astrophysics using the Smoothed Particle Hydrodynamics
(SPH) method. Although meshless methods circumvent the problems associated with
mesh, the alternative path comes with a new set of difficulties. Some of them are the
imposition of some type of boundary conditions, more demanding shape functions and
more complex stencils. Although SPH is the most widespread meshless method used in
CFD there are other meshless methods receiving attention by researchers. In the liter-
ature it is common in a first approximation to assign to meshless methods the features
of SPH. In state-of-the-art meshless methods review, the distinction between the tra-
ditional SPH formulation, corrected versions of SPH and other meshless formulations
will be detailed.

Meshless methods are very attractive due to their low preprocessing efforts and high
postprocessing capabilities. In addition, Lagrangian meshless methods simulate free-
surface flows in a more natural way than mesh-based methods. But apart from these
favorable characteristics, meshless methods suffer from other deficiencies. Meshless
methods still have not achieved the accuracy and convergence rates of advanced mesh-
based methods, and in general the specification of some types of boundary conditions
is more cumbersome in meshless methods than in mesh-based methods.
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To sum up, this section was started by listing the weak points of mesh-based meth-
ods. Then meshless methods were introduced as an alternative that avoids the issues
associated with the mesh but this procedure comes with some deficiencies in accuracy
and convergence rates. So the question ”to mesh or not to mesh” remains inconclusive.
Maybe several decades later, one procedure will defeat the other or maybe both proce-
dures will be in use for researchers and engineers. Nowadays, meshless methods can be
considered as a promising numerical methodology with respect to the more assented
mesh-based ones. Based on that consideration, it seems reasonable to explore the po-
tential of meshless methods looking for an improvement of its accuracy and convergence
rates.

1.3. Applications of meshless methods in Fluid Dynamics

Meshless methods have attracted the attention of many researchers to model fluid
phenomena that can not be tackled easily by mesh-based methods. In general, meshless
methods are selected by researchers and engineers in applications with the presence of
interfaces and/or complex geometric domains. In order to be more specific we can
cite the following topics in fluid mechanics where meshless methods found widespread
use: free surface flows [Monaghan, 1994; Gomez-Gesteira et al., 2010], multiphase flows
[Wang et al., 2016], fluid-structure interaction [Liu & Zhang, 2019], sloshing [Colagrossi
et al., 2010], floods and tsunamis [Vacondio et al., 2013], lava flows [Bilotta et al., 2015],
casting [Cleary et al., 2014] and lubrication [Schnabel et al., 2018],among others.

The previous list is not exhaustive and is biased towards civil and industrial appli-
cations. Meshless methods are applied in these types of flows but it does not mean that
they overperform mesh-based methods. In fact, mesh-based methods have evolved to
incorporate techniques that improve the treatment of sharp interfaces or the interac-
tion with moving objects. For instance, the Arbitrary Lagrangian-Eulerian (ALE) and
the Immersed Boundary (IB) are techniques that boost the possibilities of mesh-based
methods to deal with complex moving boundaries. Similarly, multiphase techniques
like the Phase Field Model (PFM) and the Level-Set Functions (LSF) have enabled
mesh-based methods to improve the resolution of interfaces. The selection of the most
convenient formulation to solve a specific application is a controversial issue. Accuracy
and computational cost are always considered to evaluate numerical methods. How-
ever, the time to prepare a model and the availability of a robust software package are
also very important factors that have to be considered.

There is no single way to present the increasing importance of meshless methods
in Computational Fluid Dynamics. From an academic point of view, the number of
publications that use meshless methods has increased notoriously. There are journals
dedicated solely to meshless methods. There are also journals that have considered
special issues dedicated to the development of meshless methods. The growing activity
of the SPHERIC community 1 can also serve as an indicator of the increasing attention

1https://www.spheric-sph.org
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received by SPH that is considered the first and most widely used meshless method.
The increasing importance of meshless methods can also be sensed by examining the

last acquisitions done by Computational Aided Engineering (CAE) software companies.
In a short period of time, giant CAE companies with renowned mesh-based methods
have acquired companies developing particle based methods. The fact that commercial
CAE companies have incorporated meshless methods in their catalog of products is a
good indicator that meshless methods have a great potential to provide solutions for
demanding industrial problems.

With the advent of meshless methods, the possibilities in the virtual development
of products are extended. When a researcher or engineer demands a numerical solution
for a problem, incorporating a new suite of tools is always a desirable fact. There are
some applications dealing with fluids that can be solved more efficiently with mesh-
based methods than with meshless methods. For other set of applications, the meshless
methods would be preferred over mesh-based methods.

A very representative application is concerned with the design of tires to improve its
performance in wet condition. Aquaplaning in Vehicle Dynamics is a key factor in the
design for tire manufacturers. Computational simulations for analyzing aquaplaning
have only been conducted by using meshless methods like SPH [Chiron et al., 2019].
Pelton turbines [Marongiu, 2007; Vessaz, 2015], lubrication of gearboxes [Ji et al., 2018],
ditching of airplanes/helicopters in the ocean [Oger et al., 2020] are other examples in
the energy, mechanical and transport industry that are more suited to be modeled by
meshless formulations.

For some demanding problems a coupling strategy between a mesh-based and mesh-
less method could be the most efficient approach [Marrone et al., 2016; Fernandez-
Gutierrez et al., 2017]. Meshless methods can also provide a smooth transition be-
tween different meshes in a Finite Volume scheme. By taking the best of meshless and
mesh-based methods is possible to conceive hybrid methods that are meshless but in-
corporate some features of FVM. These methods are classified as meshless-FV methods
in the literature [Hopkins, 2015].

1.4. State-of-the-art of meshless methods for Fluid Dynamics

The development of meshless methods follows the path of any novel idea in science.
After the impact of first publications, some new contributions appear years later that
try to extend the method and circumvent some issues detected. Although the main
interest in this thesis is concerned with CFD, we remark that important achievements
in meshless methods were reached in the study of other fields of knowledge, especially
in Solid Mechanics.

Meshless methods for Fluid Dynamics encompass a wide range of methods. In the
literature these methods are also designated as meshfree or gridfree. Moreover, since
the calculation entities of meshless methods are usually called particles it is common to
associate meshless with a particle based concept. This is not an equivalent association
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since, for instance, the Lattice Boltzmann Method is a particle based method that it
is not a meshless method. Classifications of meshless methods according to different
criteria are given by Liu’s book [Liu & Liu, 2003] and Gu’s paper [Gu, 2005]. A visual
map containing an extensive list of meshless methods is provided in Douillet [Douillet-
Grellier, 2019]. In the family of Particle/Meshless Methods we can made a distinction
between methods aimed to solve general PDEs in the continuum scale and methods
aimed to solve discrete systems. Molecular Dynamics, Discrete Element Method and
the Lattice Boltzmann Method are representative particle methods aimed to solve
discrete systems. However, this thesis is concerned with meshless methods aimed to
solve the continuum Fluid Dynamics equations. The first and most renowned meshless
method of this type is the Smoothed Particle Hydrodynamics (SPH). Therefore, the
review given in this section outlines the developments of SPH and some other meshless
formulations that were conceived to improve the performance of SPH methods.

As already mentioned, the origin of meshless methods is usually dated with the first
papers of SPH published independently by [Lucy, 1977] and [Gingold & Monaghan,
1977] to solve gas dynamics problems in Astrophysics. SPH is a Lagrangian mesh-
less technique that discretizes the continuous domain in a set of moving particles. The
continuum is represented by convolution of particle properties with a regularizing func-
tion that is common designated as kernel. SPH enjoys some very desirable properties:
conservation of mass, momentum and energy at machine precision. The Lagrangian
motion of particles makes SPH a suitable method for solving advection-dominated dy-
namics. SPH method did not attract the interest of researchers in other fields until
the beginning of the 1990s, when the method was applied in fields such as impact
penetration in solids [Libersky et al., 1993; Randles & Libersky, 1996]. With the ap-
plication of SPH to Solid Mechanics the method was receiving much more attention
by the scientific community and some deficiencies of the method were detected. The
lack of consistency for even a constant field and the low-order accuracy are the main
deficiencies that contributed to discard SPH method when compared with mesh-based
methods.

A numerical approximation is said to be p-order consistent when it is able to repro-
duce exactly polynomial fields of order less than or equal to p. The definition is valid
for either the approximation of a field function or the approximation for its gradient.
The original kernel approximation used by SPH is unable to provide an exact approx-
imation for a uniform constant field, that using the consistency definition is expressed
by saying that kernel approximation for a field lacks of zeroth-order consistency. Simi-
larly, the original kernel approximation for the gradient is unable to provide and exact
approximation for the gradient of a constant uniform field and therefore the kernel
approximation for the gradient lacks of zeroth-order consistency.

Original SPH formulations suffer from low accuracy. The kernel approximation is
based on the identity property of the convolution of a function with the Dirac function.
The kernel approximation can be decomposed in two sequential approximations. In
the first step, the Dirac function is replaced by a regularizing kernel function and in
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a second step the integral is approximated by a summation over a set of neighbors.
Although the first approximation is second-order accurate the discretization involved
in the second step degrades the accuracy and therefore the kernel accuracy order is
lower than 2.

In order to remedy the issues of SPH, it is possible to identify three strategies in
the proposals made by researchers in 1990s decade.

A first research line, close to the original SPH procedure, is focused on improving
the kernel approximation. Liu et al. [Liu et al., 1995] suggested introducing adjusting
factors in the traditional kernel function that allows for exact reproduction of constant,
linear or higher order fields. Liu incorporated this enhanced kernel approximation in the
SPH formalism resulting in the Reproducing Kernel Particle Method (RKPM). Bonet
and Kulasegaram [Bonet & Kulasegaram, 2000] adopted this procedure for reproduc-
ing linear fields exactly, resulting in the Corrected Smoothed Particle Hydrodynamics
(CSPH). Frontiere et al. [Frontiere et al., 2017] presented the Conservative Reproduc-
ing Kernel SPH (CRKSPH) scheme. CRKSPH can be considered as a reformulation of
RKPM that assures rigorously the conservation of mass, linear momentum and energy.
Randles and Libersky [Randles & Libersky, 1996] introduced a renormalization tech-
nique to produce a consistent approximation for the gradient of linear fields. Another
more powerful technique to restore the particle consistency consist in replacing the
kernel approximation by the Moving Least Square (MLS) approximation. The use of
MLS for the approximation in SPH was first proposed by Dilts [Dilts, 1999, 2000].

A second research line considers that in order to circumvent the issues of SPH is
better to abandon the kernel approximation and adopt the same Galerkin technique
used by FEM to develop meshfree methods based on integral weak forms. Meshfree
weak form methods require a background mesh to perform the integration of the weak
form. Despite the use of this auxiliary background mesh for the integration, these
methods are still considered meshless. These methods have found more applications in
Solid Mechanics than in Fluid Mechanics. Examples of meshfree weak form methods
include: Diffuse Element Method (DEM) [Nayroles et al., 1992], Element Free Galerkin
(EFG) [Belytschko et al., 1994] and Meshless Local Petrov Galerkin (MLPG) [Atluri
& Zhu, 1998]. DEM is the first meshless method that incorporate the Moving Least
Squares approximation technique in the solution of PDEs. EFG can be considered
an improved version of DEM that uses complete expressions for the gradient of shape
functions and a better evaluation of the integral form. MLPG is a very versatile
meshless method based on a local weak form over subdomains of particles that overlap.
Both DEM and EFG require a global background mesh to perform the integration,
meanwhile MLPG only requires a local background mesh.

The third path to develop meshfree methods adopts the collocation technique (using
the strong form). Examples of these methods include: the Generalized Finite Difference
Method (GFDM) [Cheng and Liu (2002); Finite Point Method (FPM) [Oñate et al.,
1996a], Meshless Collocation Method [Kansa, 1990]. In most meshless methods based
on the strong form the points are stationary and therefore they resemble more the
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FDM than the SPH method.
Apart from being considered as one of the fathers of the method, Monaghan has

written important reviews of SPH method [Monaghan, 1992, 2005] and has conceived
a set of innovations to the original SPH formulation. A non exhaustive list reads:
artificial viscosity to model shock waves [Monaghan & Gingold, 1983], incorporation
of Riemann solvers [Monaghan, 1997], SPH modeling of free-surface flows [Monaghan,
1994], formal derivation of the method using the Lagrange equations [Monaghan, 2005]
and a new technique to update the motion of particles [Monaghan, 1989]. In addition,
Morris, a disciple of Monaghan, has introduced an improved second-order derivative
formulation to treat viscosity and study low Reynolds flows [Morris et al., 1997]. Mon-
aghan’s contributions serve as inspiration for many other researchers in the develop-
ment of SPH. The extension of SPH method to model free-surface flow is considered
an important breakthrough because it encouraged researchers to model incompress-
ible flows with meshless formulations. Thereafter, an important development of SPH
and related meshless methods are driven by researchers and engineers working in the
oceanic and coastal flows. A compressible flow problem in Astrophysics and an in-
compressible flow in coastal engineering pose very different requirements to numerical
schemes. As a consequence, SPH methods for compressible and incompressible flows
evolve improving different features.

For compressible flows the simulation of shock waves and contact discontinuities is
of vital importance. Inutsuka [Inutsuka, 2002] reformulates the SPH with Riemann
solvers in the so-called Godunov–SPH schemes(GSPH). GSPH methods based on the
Riemann solver can handle severe problems with strong shocks. In addition, GSPH
methods does not require to adjust the constants of the standard SPH with artificial
viscosity for stabilization.

Regarding incompressible flows, the first SPH attempts to model these flows adopted
a weakly compressible approach, as suggested by [Monaghan, 1994]. SPH methods
adopting the weakly compressible approach are designated with the acronym WCSPH.
The weakly compressible approach considers that the fluid density is not constant but
rather follow a barotropic law. By using a barotropic Equation Of State (EOS) the
pressure is related with the density and therefore it can be solved with the algorithm
of a density-based solver. Unfortunately, WCSPH results in noise pressure fields and
nonphysical oscillations. To circumvent these deficiencies different paths can be fol-
lowed. Some authors propose to correct WCSPH by introducing additional dissipation
terms or introducing Riemann solvers. Marrone et al. [Marrone et al., 2011] intro-
duced a diffusive term in the continuity scheme and use the name δ-SPH to refer to
this variant of WCSPH. Parshikov and Medin [Parshikov & Medin, 2002] introduced
Riemann solvers to stabilize the WCSPH. A recent paper published by Green et al.
[Green et al., 2019] shows that δ-SPH is equivalent to the adoption of a Riemann solver
in the continuity equation. There are other SPH methods that abandon the weakly
compressible approach and propose to solve the incompressible flow equations. SPH
methods that solve the incompressible flow equations are designated as ISPH and they

9



Chapter 1. Introduction

need to solve a Poisson equation for the pressure enforcing the null divergence of veloc-
ity. Cummins and Rudman [Cummins & Rudman, 1999] were the first authors that use
a projection method in an SPH formalism. Koshizuka et al. [Koshizuka & Oka, 1996]
presented the Moving Particle Semi-Implicit (MPSI) a meshless method that solve the
incompressible flow equations but using an approximation that differs from the kernel
approximation used by SPH. A comprehensive book about the MPSI method has been
published by Koshizuka et al. [Koshizuka et al., 2018].

A great landmark in the development of meshless methods was the work conducted
by Vila [Vila, 1999] and Ben Moussa and Vila [Ben Moussa & Vila, 2000]. Vila in-
corporated the ALE feature for meshless methods and provided a systematic way to
obtain the meshless solution of the weak form associated with a conservation law. In
the literature the SPH formalism used by Vila is usually referred as SPH-ALE method.
The resulting semi-discrete system obtained by Vila results in an SPH formulation
that is very close to the Finite Volume formalism based on Riemann solvers. Since
interaction between particles are interpreted as Riemann fluxes, the local conservation
property is assured and enough diffusion is provided to stabilize the method. In this
formulation the artificial viscosity is replaced by the intrinsic numerical viscosity of
the Riemann solver. The first formulation obtained by Vila formally resembles a first
order Godunov method with constant piecewise reconstruction. In the mesh-based
community is a well documented fact that Godunov method leads to very dissipative
schemes. A great advantage in the formulation proposed for Vila is the formal similar-
ity with the Finite Volume Method. We can take advantage of this analogy to improve
the accuracy and features of the meshless technique by using techniques developed in
FVM. Based on the similarity form of SPH-ALE with FVM Vila proposed in [Vila,
1999] a high order extension of SPH-ALE following the MUSCL technique introduced
by van Leer [van Leer, 1979]. The work conducted by Vila inspired the works of
other authors to develop meshless method with close similarity with the FVM. Among
these works we mention the Finite Volume Particle Method (FVPM) by Hietel [Hietel
et al., 2000] and the Gizmo-MFV by Hopkins [Hopkins, 2015]. The SPH-ALE method
was extended to solve incompressible flow problems by invoking the weakly compress-
ible approach. Several improvements were incorporated in the WCSPH-ALE method:
Marongiu [Marongiu, 2007] implemented boundary conditions based on partial Rie-
mann solvers, Oger [Oger et al., 2016] incorporated a Particle Shifting Technique in a
WCSPH-ALE formulation that can deal with free-surface flows. Colle and Vila [Collé
et al., 2019] presented the γ-SPH-ALE scheme for barotropic flows, that is based on
the combination of the SPH-ALE with a Finite Volume low-Mach scheme.

The Finite Volume Particle Method (FVPM) introduced by Hietel et al. [Hietel
et al., 2000] is a meshless method that was conceived as Finite Volume Method im-
plemented in the data structure of a particle meshless method. Particles in FVPM
move with a transport velocity field and therefore enjoys the advantages of an ALE
framework. The main novelty of FVPM is to associated a particle shape function that
automatically satisfies the partition of unity property to each particle location. Keck
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and Hietel incorporate a projection technique in FVPM for incompressible flow [Keck
& Hietel, 2005]. Quinlan and coworkers have conducted a very active research work on
the FVPM on the last decade. Some of their main contributions are the extensions to
viscous flow [Nestor et al., 2009] and free-surface flows [Quinlan, 2018]. In the exten-
sion to viscous flow, a particle shifting technique accommodated in an ALE framework
is included for the first time. Although SPH-ALE and FVPM were derived following
different concepts both meshless methods result in semi-discrete equations very similar
to the ones obtained with a FVM. Based on that, extensions developed for SPH-ALE
or FVPM can be easily transferred from one formulation to the other.

Meshless-fv methods like SPH-ALE and FVPM in their most basic configurations,
resemble to a Godunov method in FVM. Therefore, SPH-ALE and FVPM can han-
dle shocks without requiring any artificial viscosity term for stabilization. However,
Godunov method is excessively diffusive and we need to incorporate extensions in the
basic configurations of SPH-ALE and FVPM to increase the accuracy. The accuracy of
the method improves when higher-order reconstructions of the Riemann states are per-
formed. Different techniques to increase the order of the reconstruction of the Riemann
states in different meshless methods are used in the literature. Hopkins [Hopkins, 2015]
adopts a MUSCL-Hancock procedure with limiter. Avesani et al. [Avesani et al., 2014]
introduced a polynomial Weighted Essentially Non-Oscillatory (WENO) reconstruc-
tion using MLS. Nogueira et al.[Nogueira et al., 2016a] also adopt MLS to reconstruct
Riemann states but the stabilization is achieved with Multi-dimensional Optimal Order
Detection (MOOD) technique.

Despite the fact that meshless and mesh-based methods have advantages and draw-
backs derived from the different form to accomplish the discretization of the partial
differential equations, there are some physical phenomena (like turbulence) that are
very demanding computationally, for both types of approaches. The research on the
numerical simulation of turbulent flows has been mainly addressed by using mesh-based
methods. Simulation of turbulence using meshfree methods has received less attention,
and many studies deal with complex applications without providing details of their
development, diffusion rates or details about the evolution of the energy spectrum. We
refer the reader to[Monaghan, 2002, 2011; Mayrhofer et al., 2015; Hu & Adams, 2015;
Di Mascio et al., 2017] for some examples.

In the last decade it is possible to find some reviews of meshless methods focused
on particular applications. For instance, Gotoh and Khayyer [Gotoh & Khayyer, 2018]
provide a review on particle methods with applications in coastal and ocean engineer-
ing. Violeau and Rogers [Violeau & Rogers, 2016] depict about recent trends in SPH
methods focused on the modeling of free surface flows.

In order to guide researchers and engineers to improve SPH methods, the SPHERIC
organization 2 was conceived in 2005. In a recent paper [Vacondio et al., 2020],
SPHERIC members encourage researchers to focus the attention on topics where SPH

2SPHERIC is the acronym of SPH European Research Interest Community
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suffer drawbacks in comparison with mesh-based methods. These are the current (2021)
SPH Grand Challenges:

• GC1: Convergence, consistency and stability

• GC2: Boundary Conditions

• GC3: Adaptivity

• GC4: Coupling to other methods

• GC5: Applicability to industry

This work contributes to GC1, GC2 and GC4.

1.5. Research lines in the Group of Numerical Methods in
Engineering (GMNI)

Along the last decades, the GMNI3 has developed numerical methods to solve ap-
plications in several engineering fields. Concerning applications dealing with fluids,
contributions using multiple methods were accomplished. Based on that experience,
synergies between meshless and mesh-based methods were invoked to develop high-
accurate numerical methods in a wide range of flow conditions. Among others, Cueto-
Felgueroso et al. [Cueto-Felgueroso et al., 2004] developed a meshless formulation
derived on a Discrete-Galerkin approach. Nogueira et al. [Nogueira et al., 2010] pre-
sented a shock-capturing technique for unstructured grids based on MLS technique.
Ramı́rez et al. [Ramı́rez et al., 2014] achieved high order accuracy in the solution of
incompressible Navier–Stokes by incorporating the MLS approximation. Ramı́rez et al.
[Ramı́rez et al., 2017] demonstrate that MLS technique can preserve the accuracy in
moving sliding interfaces. In a more recent work, Fernández-Fidalgo et al. [Fernández-
Fidalgo et al., 2020] combined a high order FDM with MLS to prescribe solid wall
boundary conditions in curved domains.

The present work continues the research on these lines, but focusing on meshless
methods.

1.6. Motivation of this work

In the current state-of-the-art, there is agreement in the grand challenges that must
overcome meshless methods to increase its reliability. Increasing the accuracy and
convergence rates of meshless methods is considered one of the main challenges of these
kind of schemes. GMNI has introduced some improvements in mesh-based methods by
using techniques originated in meshless techniques. In this work the transfer between

3https://caminos.udc.es/gmni
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methods is in the reverse direction. Improvements in the accuracy of meshless methods
are suggested based on the guidance provided by mesh-based methods.

The present thesis is included in the GMNI research line of boosting meshless meth-
ods for Fluid Dynamics. In particular, this work is focused on the development of a
high accuracy meshless scheme to solve Euler and Navier–Stokes. The scope of this
work is only concerned with the development of meshless formulations itself, without
having in mind one specific application.

1.7. Objectives

The main objective of this thesis is to develop a new high-accuracy meshless nume-
rical method that can overcome the drawbacks of current CFD state-of-the-art grid
based high-order methods, for applications in turbulent flows and complex problems.
The new algorithms will enable the development of new and more efficient simulation
tools for CFD computations.

In order to achieve the main objective of the project, the following specific objectives
will be pursued:

• To improve the accuracy of kernel approximation in SPH-like methods: To do
that, we propose to develop a new formulation based on Moving Least Squares
for the integration of the equations instead of using kernel approximations

• To develop a high-accuracy meshless method for weakly compressible flows.

• Integrate the boundary condition treatment in the formulation.

• Unify existing meshless formulations into a more generalized framework.

• To develop a family of meshless methods which are able to compute accurately
truly turbulent flows.

1.8. Document structure

The document is organized into 7 chapters, which will be briefly described in the
following.

Chapter 1 provides a brief state-of-the-art of meshless numerical methods and a
presentation of the motivation and objectives of this PhD.

In Chapter 2 the governing equations are presented in several forms. Then the
fundamentals of the SPH are given and the derivation of the weak formulation of the
SPH-ALE method is detailed.

Chapter 3 deals with the development and verification of a high accuracy SPH-
ALE method for weakly compressible flow. Some novelty aspects incorporated in this
formulation are the use of MLS to increase the order of reconstruction of the Riemann
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states, a weakly-compressible version of the a posteriori stabilization and the treatment
of viscous terms with MLS.

In Chapter 4 we present some modifications to the method proposed in Chapter
3 in order to improve the accuracy and to increase the range of applicability of the
methods. Instead of using the kernel or normalized kernel approximations this method
lends MLS technique the task of integrating the weak form and approximating the
solution. The method is designated as MLSPH-ALE because the MLS technique is
integrated in the SPH-ALE method and not used as a complement to incorporate
additional features of the method. A detailed derivation of the method is included. A
posteriori stabilization is proposed to extend the formulation to compressible flows
with the presence of discontinuities. The method assures local conservation and enable
to prescribe boundary conditions with a boundary integral term.

In Chapter 5 it is shown that the proposed MLSPH-ALE is a general formulation
that includes most of the existing meshless methods. Although the derivation proce-
dures are different the resulting semi-discrete forms adopt a common form. MLSPH-
ALE provides a very general framework for meshless-fv formulations. By adopting
particular settings in MLSPH-ALE method, it is possible to arrive at the semi-discrete
form obtained with other formulations published in the literature.

Chapter 6 tests the MLSPH-ALE method to compute turbulent flows. By conduct-
ing some turbulent cases is proved that MLSPH-ALE method is a numerical scheme
with the potential to be used in Large Eddy Simulations (LES).

Chapter 7 draws the main conclusions of this work and gives future research lines.
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Chapter2
The SPH-ALE method

2.1. Introduction

The aim of this chapter is to provide a comprehensive historical review of the SPH-
ALE method from the pioneering work of Vila [Vila, 1999] to the most recent meshless
formulations.

The starting point for the chapter is the presentation of the governing equations
in a form that facilitates the derivation of the method. Then, the basic principles
of the SPH approximation are exposed. After that, the derivation of the SPH-ALE
method is accomplished. Given the great importance of Riemann problems in the
SPH-ALE method, an overview of the utilization of approximate Riemann solvers is
given. Section 2.6 presents the different strategies to implement boundary conditions.
An outline of different published works aimed to increase the accuracy of SPH-ALE is
delayed to Chapter 3.

2.2. Governing Equations

In this section the equations of motion for fluids are presented assuming a continuum
model for the fluid. To describe the motion of the fluid some definitions widely used
in Continuum Mechanics are adopted.

We explain the main definitions by referring to Figure 2.1. We designate by Ω̂ a
continuous material body and denote by P̂ a material particle. The material body
moves in the Euclidean space E and occupies different regions at different times. We
pick a point O in R3 as the origin of a fixed Cartesian Coordinate System. The motion
of the body during a time interval from an initial time t0 to the current time t can
be described as a sequence of configurations in space. There exist a correspondence
between any material particle P̂ in the material body Ω̂ and a point in space for any
configuration. The initial configuration of material body Ω̂ at the initial time t = t0
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is designated as Ω̂0 and the configuration at the current time t is designated as Ω̂t.
In the initial configuration Ω̂0, the point with vector position X is the location in
the Euclidean space that occupies the particle P̂ at the initial time t0. Similarly,
in the current configuration Ω̂t, the point with vector position x is the location in
the Euclidean space that occupies the particle P̂ at a current time t. The successive
positions occupied by particle P̂ from the initial position X to the current position at x

describes the trajectory of particle P̂ in the interval of time from t0 to t. We denote by
φ̂t the mapping between the initial configuration Ω̂0 and the current configuration Ω̂t
at time t. Scovazzi and Hughes [Scovazzi & Hughes, 2007] refer to φ̂t as the Lagrangian-
to-Eulerian map.

Material
Body

Initial
Configuration

Current
Configuration

Euclidean Space

O

P

Figure 2.1. Motion description of a material body Ω̂ in Euclidean Space E with initial
configuration Ω̂0 and current configuration Ω̂t. A material particle P̂ occupies position
X at initial time and position x at current time t.

In Figure 2.1 we depicted the initial configuration Ω̂0 and the current configura-
tion Ω̂t of a material body Ω̂. In Figure 2.2 we represent the time evolution of the
configurations. This space-time representation is useful to remark some details in the
description of the fluid motion. For the sake of clarity, configurations are assumed to
be contained in a two dimensional plane. On the left, we plot the space-time domain of
the Lagrangian framework with the material coordinates X. On the right we plot the
space-time of the material body with spatial coordinates x. The base of the space-time
element at time t = t0 are coincident but along the deformation/motion the spatial
coordinates x occupied by the material volume evolve with time.
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Figure 2.2. Description of fluid motion of a material body Ω̂ in space-time configuration.
On the left: Lagrangian framework with material coordinates X . On the right: Eulerian
framework with spatial coordinates x.

The dynamical laws of motion are stated for a material body as follows:

1. Conservation of mass (continuity): The mass of a material volume is constant.

2. Balance of linear momentum (Newton’s second law): The rate of change of a
material body momentum is equal to the sum of the surface forces (due to pressure
and viscous stresses) and body forces (such as gravity) acting upon it.

3. Balance of energy (first law of thermodynamics): The rate of change of the
material body energy (internal plus kinetic) is equal to the rate at which forces
do work upon it plus the rate at which heat is transferred to it.

The physical laws apply directly to material bodies. In order to impose the physical
laws to arbitrary regions in space, balance equations must be formulated. These regions
in space are denoted as control volume in Fluid Mechanics and attached to them the
computational domain in CFD studies are defined. To describe the motion of an
arbitrary control volume we can adopt the same ideas used to describe the motion
of a material body. Figure 2.3 describes the motion of an arbitrary control volume
Ω(t). Somehow, the control volume can be interpreted as a pseudo material body that
is comprised of fictitious material particles. The initial configuration of the control
volume Ω(t) is denoted as Ω0 and the current configuration as Ωt. A fictitious particle
P occupies position χ at initial time t0 and position x at current time t. We denote
by φt the mapping between the initial configuration Ω0 and the current configuration
Ωt at time t of the control volume Ω(t). In the space-time representation, φt is the
Referential-to-Eulerian map since it defines the transit from the Lagrangian framework
with referential coordinates χ to the Eulerian framework with spatial coordinates x.
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Initial
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Current
Configuration

Euclidean Space
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Control
volume

Figure 2.3. Motion description of a general control volume Ω in Euclidean Space E
with initial configuration Ω0 and current configuration Ωt. A computational particle P
occupies position χ at initial time and position x at current time t.

2.2.1. Governing Equations in Eulerian form

Governing equations in Eulerian form are obtained by imposing the balance equa-
tions to a fixed region in space. The resulting set of partial differential equations in
conservative form is given by

∂ρ

∂t
+ ∂ρuα

∂xα
= 0 (2.1)

∂ρuβ

∂t
+
∂
(
ρuβuα

)
∂xα

= ∂ταβ

∂xα
− ∂p

∂xβ
+ ρfβ (2.2)

∂ρE

∂t
+ ∂ (ρHuα)

∂xα
= ∂

∂xα

(
k
∂T

∂xα

)
+
∂
(
ταβuβ

)
∂xα

+ ρfβuβ + q̇h (2.3)

where Greek superscripts with summation convention are used to refer spatial directions
in a Cartesian Coordinate System with d dimensions. Greek superscripts (α, β) range
from 1 to d and are associated with the Cartesian directions in the usual form 1 ≡
x, 2 ≡ y, 3 ≡ z. The vector fluid velocity is given by u = (u1, .., ud)T . Density and
pressure are designed by ρ and p respectively. Total energy is denoted by E and its
relation with the internal energy e and the kinetic energy reads E = e+ 1

2 (uαα). Total
enthalpy definition is used to identify H = E+ p/ρ. The external force component per
unit mass in momentum equation are expressed by fα and q̇h represents a volumetric
heat source. For the diffusive terms ταβ denotes the viscous tensor component and
thermal conduction flux component is given in terms of thermal conductivity k and
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temperature gradient as qα = −k ∂T
∂xα . Assuming a Newtonian fluid, the viscous tensor

is defined as

ταβ = µ

(
∂uβ

∂xα
+ ∂uα

∂xβ

)
+
(
µv − 2

3µ
)

(∇ · u) δαβ (2.4)

where µ and µv are the dynamic and volumetric viscosity of the fluid respectively.
Eqs. (2.1), (2.2) and (2.3) can be re-written in a flux vector form by

∂U

∂t
+ ∂F α

E

∂xα
= ∂Dα

∂xα
+ S (2.5)

U =

 ρ

ρuβ

ρE

 , F α
E =

 ρuα

ρuβuα + pδβα

ρHuα


Dα =

 0
ταβ

k ∂T
∂xα + ταβuβ

 , S =

 0
ρfβ

ρfβuβ + q̇h

 (2.6)

 ρ

ρuβ

ρE


︸ ︷︷ ︸

U

 ρuα

ρuβuα + pδβα

ρHuα


︸ ︷︷ ︸

F α
E

 0
ταβ

k ∂T
∂xα + ταβuβ


︸ ︷︷ ︸

Dα

 0
ρfβ

ρfβuβ + q̇h


︸ ︷︷ ︸

S

(2.7)

where U is the vector of conservative variables, F α
E is the Eulerian flux in direction α

of the advective and pressure terms, Dα is the viscous flux in direction α and S is the
vector of source terms.

2.2.2. Governing Equations in ALE form

In order to provide compact expressions for the Arbitrary Lagrangian-Eulerian
(ALE) framework and following the usual notation in literature, the transport op-
erator is introduced here. Let’s denote with Lw(U) the transport operator with a
regular velocity field w that acts on a vector of variables U according to

Lw(U) ≡ ∂

∂t
U + ∇ · (w ⊗ U) (2.8)

In a Cartesian Coordinate System with d dimensions the transport operator reads
as

Lw(U) = ∂U

∂t
+
∑
α=1,d

∂

∂xα
(wαU) = ∂U

∂t
+ ∂

∂xα
(wαU) (2.9)

where the second equality relation relies on the implicit summation convention over
repeated index. The transport operator Lw(U) is a differential operator whose physical
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interpretation is linked to the Generalized Reynolds Transport Theorem, applied to a
arbitrary control volume whose boundary is moving with velocity w (see Appendix B).

In order to obtain the ALE form, it is very important to understand the differences
between a material volume and a control volume. The material volume is an enclosed
region in a Euclidean space composed of the same material particles. The kinematics
of a material volume is governed by the motion of their material particles with the
physical velocity u. A control volume is an enclosed region in Euclidean space whose
kinematics must be prescribed with a transport velocity w when defined. Both material
volume and control volume move in space and the kinematics of its motion can be
described by using either a Lagrangian or Eulerian approach. In order to employ the
same terminology for the control volume and for the material volume, it can be useful
to interpret the control volume as a fictitious material volume composed of fictitious
material particles.

Let Ω(t) denote an arbitrary control volume that at initial time t0 occupies the
region in the spatial domain Ω0, and in the current time t occupies the region Ωt.
Let us assume that the initial position of a fictitious material particle is given by
χ and its position at current time is given by x. Assuming that fictitious particles
belong to Ω(t) and move with velocity w, their fictitious material derivative is given
by ∂U

∂t

∣∣
χ

= ∂U
∂t + wα ∂U

∂xα .
The Generalized Reynolds Transport Theorem states that

∂

∂t

∣∣∣∣
χ

∫
Ω(t)

U dxd =
∫

Ωt

(
∂U

∂t
+ ∂(wαU)

∂xα

)
dxd =

∫
Ωt

Lw(U) dxd (2.10)

Note that the Eulerian and Lagrangian version are particular cases that correspond
to w = 0 and w = u respectively. For a material volume Ω̂(t), with material coordi-
nates X, the velocity of the boundary ∂Ω̂(t) is coincident with the physical velocity
(w = u) and thus the Reynolds Transport Theorem in the usual form is recovered

D

Dt

∫
Ω̂(t)

U dxd = ∂

∂t

∣∣∣∣
X

∫
Ω̂(t)

Udxd =
∫

Ω̂t

(
∂U

∂t
+ ∂(uαU)

∂xα

)
dxd =

∫
Ω̂t

Lu(U)dxd

(2.11)
Note that in Eq. (2.11) the common nomenclature used in Fluid Mechanics for the

material derivative D
Dt is used with the same meaning than ∂

∂t

∣∣
X

.
In order to show some properties of the transport operator let us assume that ρη

(η is any scalar variable) is a general component of the vector of conservative variables
U . Therefore, any conservative variable in Eq. (2.10) can be rewritten as

∂

∂t

∣∣∣∣
χ

∫
Ω(t)

ρηdxd =
∫

Ωt

(
∂ρη

∂t
+ ∂(wαρη)

∂xα

)
dxd =

∫
Ωt

Lw(ρη)dxd (2.12)

Expanding the partial derivatives of the products gives the following relation
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Lw(ρη) = ∂ρη

∂t
+∂(wαρη)

∂xα
= ρ

(
∂η

∂t
+ wα

∂η

∂xα

)
+η
(
∂ρ

∂t
+ ∂(ρwα)

∂xα

)
= ρ

∂η

∂t

∣∣∣∣
χ

+ηLw(ρ)

(2.13)
showing that transport operator does not satisfy the usual derivative property of the
product of two functions. If the general transport velocity w is set to the Lagrangian
fluid velocity u, Eq. (2.13) results in

Lu(ρη) = ∂ρη

∂t
+ ∂(uαρη)

∂xα
= ρ

(
∂η

∂t
+ uα

∂η

∂xα

)
+ η

(
∂ρ

∂t
+ ∂(ρuα)

∂xα

)
︸ ︷︷ ︸

=0

= ρ
∂η

∂t

∣∣∣∣
X

= ρ
Dη

Dt

(2.14)
In Eq. (2.14) continuity equation is used

(
∂ρ
∂t + ∂(ρuα)

∂xα = 0 = Lu(ρ)
)

. It is impor-
tant to remark the distinction between the Lagrangian transport operator acting on
density Lu(ρ) and the material derivative of density Dρ

Dt . Mass conservation is expressed
with the Lagrangian transport operator by Lu(ρ) = 0, meanwhile with the material
derivative it is expressed as Dρ

Dt = −ρ∂u
α

∂xα .
Now let’s go back to Eq. (2.5), and perform the addition and subtraction of term
∂(wαU)
∂xα on the left hand side. Then, we write

∂U

∂t
+ ∂(wαU)

∂xα
+ ∂F α

E

∂xα
− ∂(wαU)

∂xα
= ∂Dα

∂xα
+ S (2.15)

Using the transport operator definition given in Eq. (2.9), Eq. (2.15) becomes

Lw(U) + ∂(F α
E − wαU)
∂xα

= ∂Dα

∂xα
+ S (2.16)

Comparison of Eq. (2.5) and Eq. (2.16) summarizes the transformations needed
to jump from an Eulerian to an ALE framework. Note that the right hand side of
the equations does not suffer any change in the process. In the left hand side of the
equations changes occur in pairs. The transient term ∂U

∂t is replaced by the transport
operator Lw(U) and the Eulerian flux F α

E is replaced by an ALE flux F α
E − wαU ,

which given its dependence with the transport velocity w, is denoted as F α
w and reads

as

 ρuα

ρuβuα + pδβα

(ρE + p)uα


︸ ︷︷ ︸

F α
E

−

 ρwα

ρuβwα

ρEwα


︸ ︷︷ ︸

wαU

=

 ρ (uα − wα)
ρuβ (uα − wα) + pδβα

ρE (uα − wα) + puα


︸ ︷︷ ︸

F α
w

(2.17)

By using the ALE flux F α
w linked with the transport velocity w, Eq. (2.16) is

rewritten as
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Chapter 2. The SPH-ALE method

Lw(U) + ∂F α
w

∂xα
= ∂Dα

∂xα
+ S (2.18)

with the vector of conservative variables U , the α-component of the ALE flux F α
w, the

α-component of the diffusive flux Dα and the vector of source terms S given by

 ρ

ρuβ

ρE


︸ ︷︷ ︸

U

,

 ρ (uα − wα)
ρuβ (uα − wα) + pδβα

ρE (uα − wα) + puα


︸ ︷︷ ︸

F α
w

,

 0
ταβ

k ∂T
∂xα + ταβuβ


︸ ︷︷ ︸

Dα

,

 0
ρfβ

ρfβuβ + q̇h


︸ ︷︷ ︸

S

(2.19)
Equations (2.18) and (2.19) express in vector form the conservative form of the

Navier-Stokes equations in ALE framework. With the proper index set for the Greek
superscripts, expressions accommodate to 1D, 2D and 3D domains. When the diffusive
flux components Dα are equal to zero, Euler equations are recovered. Other choices in
flux decomposition could be done. Both Eulerian and ALE fluxes account for advective
and pressure contributions. Note that when the ALE flux adopts the Lagrangian case
(w = u) the advective terms are canceled but the pressure contribution remains.

2.3. Principles of SPH method

SPH is a pure meshless method to solve PDE equations by performing a discretiza-
tion of a continuous domain into a cloud of points.

Given a fluid problem in a continuous domain Ω(t) expressed in ALE form by


Lw(U) + ∂(F α

E−wαU)
∂xα = ∂Dα

∂xα + S, ∀x ∈ Ω ⊂ Rd,U ∈ Rp, t ∈ R+

I.C. : U(x, 0) = U0(x) ∀x ∈ Ω ⊂ Rd,U0 ∈ Rp, t = t0
B.C. : ∀x ∈ ∂Ω ⊂ Rd, t > t0

(2.20)

SPH methods look for a discrete solution U(xi(t), t) on a set of computational
points (P1, .., Pi, .., PN ) moving along the paths following a velocity field wi(xi(t), t).
Computational points are identified with an integer index i ranging from 1 to N . For
a general computational point Pi its initial position is denoted by χi and its current
position at time t is given by xi(t) = x(χi, t) = xαi (t) = (x1

i (t), ..., xdi (t))T . Time is
also discretized in a finite set of time instants t0, t1, t2, ...tfinal.

Figure 2.4 depicts for a two dimensional case the discretization of the continuous
domain Ω(t) and the path of a computational point Pi. Three instants of time t0,
t1 and t2 are plotted with t = t0 denoting the time at which initial conditions are
prescribed. The movement of points is given by the mapping between computational
points with χi coordinates and the spatial coordinates xi. The transport velocity wi

is tangent to the trajectory described by the computational point Pi.
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2.3. Principles of SPH method

ti
m
e

Trajectory 
of particle

Figure 2.4. On the left: Spatial domain Ω(t) and set of computational points at three
instants of time. On the right: Path of computational point Pi whose initial position is
given by χi and moves with transport velocity wi(t).

Computational points are also designed as particles or nodes in literature. In Eu-
lerian description with computational points fixed in space, the term node is usual.
In traditional Lagrangian SPH methods, the term particle is preferred. In SPH-ALE
methods computational points can be fixed, moving with the fluid velocity or with an-
other desired velocity. Hereafter in this work the term particle will be used in a broad
sense and the type of ALE particle is given with the prescribed transport velocity w.

A SPH solution of the continuous problem should provide the values of the variables
U i(t) = U(xi(t), t) on a set of particles (P1, ..PN ) at a given set of times t0, t1, ...tfinal.
The SPH procedure could be decomposed into a first stage of initialization and a second
stage of evolving the solution in time.

In the initialization stage the discrete set of particles is initialized with the informa-
tion contained in the initial condition of the continuous solution U0(x) = U(x, t = t0).
Although it is not strictly necessary, a mesh or other technique such as Voronoi tessella-
tion could be used to provide initial particle weights. This initial weight measurement
is associated with the quadrature used for the data points, and in this work is denoted
by Vi(t = t0). Figure 2.5 considers the flow around a circular cylinder to show the
main differences between a mesh-based and a meshless method. The top half depicts
three instants of time of the grid used by a Lagrangian mesh-based method. The bot-
tom half represents for the same three instants of time the set of points used by a
meshless method. We emphasize one cell Ti and one computational particle Pi with
filled quadrilateral and red circles. At the initial time (t = t0) the domain of fluid is
rectangular. For a Cartesian layout of the particles we assign an initial volume weight
Vi(t = t0) = dx · dy. For t = t1 the set of particles evolves to a new positions dictated
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Chapter 2. The SPH-ALE method

by the transport velocity wi. Traditional SPH Lagrangian methods use constant mass
weights meanwhile SPH-ALE methods use volume weights. This is further discussed
in the next paragraphs.
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Figure 2.5. Flow around a circular cylinder. Snapshots for three instants of time t0, t1, t2.
Discretization corresponding to a mesh-based method in the upper half and to a meshless
method on the lower half. The filled color is used to identify the tracking of the same
quadrilateral. The red dot identifies the position of particle Pi with initial vector position
χi.

In the second stage, the values of the variables are advanced in time by solving
the discretized governing equations on N computational particles. In this step the
set of particle with state U i(t = t), Vi(t = t) evolve to the next time with state
U i(t = t+ ∆t), Vi(t = t+ ∆t). In order to evolve the state of variables approximating
expressions for spatial operators are needed. SPH method requires an approximation
technique to obtain discrete versions of spatial operators (gradient, divergence), that
must be built from the information available in the particles.

Before explaining the kernel approximation used in SPH, is convenient to introduce
the quadrature formula used to estimate the integral of a function ϕ(x, t) over a contin-
uous domain Ω(t). The aim is to obtain an approximation to

∫
Ω(t) ϕ(x, t)dx with the

information available in the set of particles (P1, ..PN ). Particles are moving following
the paths of the transport velocity field w. Even though in meshless methods we do
not need a mesh, it is useful to invoke the mapping of the mesh to understand the
main assumptions used by the quadrature. Figure 2.6 shows a view of three successive
positions occupied by particle Pi that at initial time has vector position χi and its path
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2.3. Principles of SPH method

can be expressed by xi(t) = x(χi, t). In initial time t = t0 the centered square repre-
sents the cell associated with particle i that is used to assign its initial volume weight
Vi(t = t0). The deforming shape that result from the mapping of the initial square fol-
lowing the transport velocity field is drawn with dashed lines in times t = t1 and t = t2.
For a regular transport velocity field w the volume of particle i for a certain time t is
expressed in terms of the Jacobian of the mapping as Vi(t = t) = J(χi, t = t)Vi(t = t0).

Trajectory of
computational 

particle   

Trajectory of
centroid  of cell   

Figure 2.6. Evolution of the weight of a particle Pi along its computational path. On the
left: Path of a computational particle Pi moving over a cylinder wall showing its position
at three successive times t0, t1, t2 . On the right: Enlarged view showing the evolution of
the weights of the particle Pi denoted by Vi(t0), Vi(t1), Vi(t2). The evolution of the weights
of particle is compared with the evolution of the area of a quadrilateral that deforms
with the same transport velocity field w.

The use of the mapping associated to the transport velocity w allows us to refer the
integral in the current configuration Ω(t) to the configuration at initial time Ω(t = t0).
By assuming a uniform field value ϕj(t) in the volume Vj(t) associated to each particle
j, the following quadrature formula results

∫
Ω(t)

ϕ(x, t)dx =
∫

Ω(t0)
ϕ(x(χ, t))J(χ, t)dχ ≈

∑
j∈Ω(t)

ϕ (xj(t))Vj(t) (2.21)

where index j runs over j particles (P1, ..PN ) in Ω(t). Quadrature formula given by
Eq. (2.21) is linked with a particle approximation operator Π(t) defined by
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Chapter 2. The SPH-ALE method

Π(t)(ϕ)(x) =
∑
j∈Ω(t)

ϕ (xj(t))Vj(t) δ (x − xj(t)) (2.22)

where δ (x − xj(t)) is the Dirac delta function located in xj(t). Thus, using the Dirac
property

∫∞
−∞ δ (x − xj(t)) dx = 1 we recover Eq. 2.21∫

Ω(t)
ϕ(x, t)dx ≈

∫
Ω(t)

Π(t)(ϕ)(x)dx =
∑
j∈Ω(t)

ϕ (xj(t))Vj(t) (2.23)

So far we have made explicit the dependence of variables with time. Since we
are using the method of lines [Schiesser, 1991; Schiesser & Griffiths, 2009] to solve the
system of PDE, the numerical approach can be decomposed into a first step conducting
the spatial discretization and a second step addressing the temporal discretization.
Based on this two-step methodology the method of lines is also called the semi-discrete
approach [Hirsch, 2007]. Once the spatial discretization is performed a system of ODEs
results that can be integrated with a general time-integration method like explicit and
implicit Euler methods or Runge-Kutta methods. Based on the steps involved in the
method of lines we omit the time dependence during the spatial discretization process.
Eqs. (2.21) and (2.22) are rewritten as∫

Ω
ϕ(x)dx ≈

∑
j∈Ω

ϕ (xj)Vj (2.24)

Π(ϕ)(x) =
∑
j∈Ω

ϕ (xj)Vj δ (x − xj) (2.25)

The discrete particle approximation given by Eq. (2.22) or Eq. (2.25) gives some
guidelines to provide spatial operators for SPH methods, but the Dirac delta is a
degenerate function that lacks desirable derivability properties. For that reason, a
regularization process is performed by replacing the discontinuous Dirac function by
other family of functions with good differentiability properties.

2.3.1. Kernel approximation of a function

Let (P1, ., Pi, ..PN ) be a set of particles used to discretize a continuous spatial do-
main Ω. Each particle Pi with barycenter position xi is linked with a volume weight
Vi. Time dependence is omitted since the approximations are spatial operators with
fixed time. In Figure 2.7 particles positions for a two-dimensional problem are repre-
sented by full filled circles, meanwhile two locations in the continuum domain (denoted
as x and x′) are represented with hollow circles. We put the focus on two particles
with labels i and j and plot concentric circumferences that represent curves of constant
value for their kernels.
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2.3. Principles of SPH method

O

Figure 2.7. Computational domain and kernels for two interacting particles Pi and Pj .
Particles positions are represented by full filled circles meanwhile x and x′ (hollow circles)
are two locations in the continuum domain.

Let ϕ(x) be a scalar function defined ∀x ∈ Ω ⊂ Rd. The function ϕ(x) is defined
in the whole domain, however in the discrete model only the values in particle set
(P1, ., Pi, ..PN ) are known and denoted as ϕi = ϕ(xi). Here, approximation of a func-
tion ϕ in a point x means an estimation of ϕ(x) using the information available in a
set of particles ϕi ≡ ϕ(xi).

Convolution formula allows us to express the following identity using the Dirac delta
function

ϕ(x) =
∫

Ω
ϕ (x′) δ (x − x′) dx′d (2.26)

Despite being an exact expression, the Dirac function does not have convenient
properties for derivation. When the delta function δ (x − x′) is replaced by a kernel
function W (x − x′, h) an integral kernel approximation ⟨ϕ(x)⟩Ih to ϕ(x) is obtained

⟨ϕ(x)⟩Ih ≡
∫

Ω
ϕ (x′)W (x − x′, h) dx′d (2.27)

Note that the kernel function comes with a new argument h designated as the
smoothing length. In the more general case, the smoothing length could be expressed
as function of h = h(x,x′), but we first start considering that h is constant in Ω.
Approximations obtained with the integral kernel approximation are enclosed in angled
brackets, with a subscript h referring to the smoothing length and a superscript I
referring to the integral.
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Chapter 2. The SPH-ALE method

However, a second type of approximation must be introduced to evaluate the integral
using a quadrature rule. Using the quadrature rule giving in Eq. (2.24) the integral
kernel expression Eq. (2.27) becomes the summation kernel approximation

⟨ϕ(x)⟩h =
∑
j∈Ω

ϕ (xj)W (x − xj , h)Vj (2.28)

Comparison with the particle operator Π given in Eq. (2.25) shows that Eq. (2.28)
defines a regularized particle operator where the Dirac function has been replaced by
a kernel function. We define the discrete particle approximation of a function ϕ by
Πh(ϕ)(x)

Πh(ϕ)(x) ≡
∑
j∈Ω

ϕ (xj)W (x − xj , h)Vj (2.29)

Figure 2.8 plots a kernel function centered in particle j and evaluated at point
x. We denote as Dj the support domain of particle j and with ∂Dj its boundary.
The radius for the support domain Dj is given in terms of the product κhj , with κ a
parameter constant and hj the smoothing length of particle j.

Figure 2.8. Kernel function centered in particle Pj with smoothing lenght hj in a 2D
spatial domain. The support domain of Pj is a circle Dj and its boundary ∂Dj is a
circumference of radius κhj . The evaluation of the kernel centered in Pj in a general
position x is expressed by W (x − xj , hj).

The smoothing length is a characteristic distance that can be given in terms of the
average distance between particles or the weight Vj . There are different types of kernel
functions in literature [Dehnen & Aly, 2012]. Kernel functions must satisfy several
properties to give satisfactory results in SPH methods: Delta Function limit when
h → 0, continuity and derivability, normalization condition, symmetry, positiveness,
compact support and monotonous decrease [Price, 2004; Monaghan, 2005]. Liu et
al. [Liu et al., 2003a] summarized the most general requirements imposed to kernel
functions. Expression W (x − xj , hj) should be read as the value of the kernel function
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2.3. Principles of SPH method

centered in particle j with smoothing length h evaluated at position x. Kernel choice
for a meshless method has consequences in the stability, convergence, accuracy and
computational cost of the numerical scheme. A kernel function is said to be radial when
its value depends on the distance between to points. Among all the available radial
kernel functions, we choose the cubic spline proposed by Monaghan and Lattanzio
[Monaghan & Lattanzio, 1985] given by

Wx′(x, h) = W (x − x′, h) = W (q) = αd
hd
f(q) = αd

hd


1 − 3

2q
2 + 3

4q
3, q ⩽ 1

1
4 (2 − q)3, 1 < q ⩽ 2
0, q > 2

(2.30)
where q = ∥x−x′∥

h is the normalized distance and αd is a constant that depends on
the dimension d used for assuring the normalization condition of the kernel expressed
by
∫

Ω W (x − x′, h) dx′d = 1. The normalization condition for the kernel is equivalent
to the enforcement of the partition of unity for the integral kernel approximation. For
1D problems α1 = 2

3 , for 2D problems α2 = 10
7π and for 3D α3 = 1

π . Kernel given by
Eq. (2.30) satisfies the set of desirable properties for a smoothing kernel function and
it is plotted in Figure 2.9 for the 1D case.
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Figure 2.9. Kernel function of the 1D cubic spline, given by Eq. (2.30).

Since the kernel function has a compact support, it is possible to reduce the inte-
gration over the whole domain Ω to the compact support of a particle (D(x)).

⟨ϕ(x)⟩Ih =
∫

Ω
ϕ (x′)W (x − x′, h) dx′d =

∫
D(x)

ϕ (x′)W (x − x′, h) dx′d (2.31)
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Chapter 2. The SPH-ALE method

Similarly, for the discrete kernel approximation, instead of summing over all par-
ticles (P1, ., Pi, ..PN ) in the domain Ω, is enough to sum over the neighbor particles
inside the compact support D(x).

⟨ϕ(x)⟩h =
∑
j∈Ω

ϕ (xj)W (x − xj , h)Vj =
∑

j∈D(x)

ϕ (xj)W (x − xj , h)Vj (2.32)

2.3.2. Kernel approximation of the gradient of a function

In order to obtain the kernel approximation of the gradient of a function ϕ, we
replace ϕ by ∇ϕ in Eq. (2.31) to obtain

⟨∇ϕ(x)⟩Ih =
∫
D(x)

∇x′ϕ (x′)W (x − x′, h) dx′d (2.33)

where we use the compact support property of the kernel to define the integration region
as D(x) instead of Ω. We include subscript x′ in the nabla operator to emphasize that
the gradient in the convolution is taken with respect to the primed variable. Using
integration by parts we get

⟨∇ϕ(x)⟩Ih =
∫
D(x)

∇x′
(
ϕ (x′)W (x − x′, h)

)
dx′d −

∫
D(x)

ϕ (x′) ∇x′W (x − x′, h) dx′d

(2.34)
that after applying of Gauss theorem in the first integral, using the gradient relation
for symmetric kernels ∇x′W (x − x′, h) = −∇xW (x − x′, h) and reordering yields

⟨∇ϕ(x)⟩Ih =
∫
D(x)

ϕ (x′) ∇xW (x − x′, h) dx′d+
∫
∂D(x)

ϕ (x′)W (x − x′, h) n (x′) dx′d−1

(2.35)
where n stands for the unit vector pointing in the normal outward to the boundary
support ∂D. Eq. (2.35) provides the integral kernel approximation for the gradient
of a scalar function ϕ. When the support of the kernel D(x) does not intersect the
boundary of the domain ∂Ω, the boundary integral term in Eq. (2.35) is equal to zero,
due to the compact support of the kernel.

When the integral is approximated with the quadrature rule Eq. (2.24), the sum-
mation kernel gradient approximation reads:

⟨∇ϕ(x)⟩h =
∑

j∈D(x)

ϕj∇xW (x − xj , h)Vj +
∑

j∈∂D(x)

ϕjW (x − xj , h)V ∂j nj (2.36)

where V ∂j stands for the area/length of the boundary element dx′d−1

In terms of the regularized particle operator Πh, the approximation for the gradient
of a function ϕ at a point x is written as ⟨∇ϕ(x)⟩h = Πh(∇ϕ)(x)
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2.3. Principles of SPH method

When the support of the kernel D(x) is far from the boundary ∂Ω, the sum over
∂D(x) is zero and we can change the order of the approximation and gradient operator

⟨∇ϕ(x)⟩h = Πh(∇ϕ)(x) =
∑

j∈D(x)

ϕj∇xW (x − xj , h)Vj = ∇
(
Πh(ϕ)(x)

)
= ∇⟨ϕ(x)⟩h

(2.37)
The nice feature about kernel approximation of derivatives is that it only requires

the determination of the term ∇xW (x − x′, h), that can be obtained analytically. For
the case of radial kernels and assuming constant smoothing length h, we obtain

∇xW (x − x′, h) = ∂W (x − x′, h)
∂x

= ∂W (∥x − x′∥ , h)
∂x

= ∂W (q)
∂x

(2.38)

For radial kernels expressed in the form W (q) = αd

hd f(q), with q = ∥x−x′∥
h , applica-

tion of the chain rule allows us to obtain a more meaningful expression for the kernel
gradient

∂W (q)
∂x

= αd
hd

∂f(q)
∂x

= αd
hd

df(q)
dq

∂q

∂x
= αd
hd

df(q)
dq

1
h

∂ ∥x − x′∥
∂x

= αd
hd+1

df(q)
dq

(x − x′)
∥x − x′∥

(2.39)
where the fraction (x−x′)

∥x−x′∥ is the unit vector pointing from position x′ to x. As function
f(q) is decreasing, its derivative df(q)

dq is negative. These properties are important to
interpret the kernel gradient as a vector with modulus and direction. For the cubic
spline kernel, the following expression for the kernel gradient is obtained

∇xW (x − x′, h) = αd
hd+1

df

dq

x − x′

∥x − x′∥
= αd
hd+1


−3q + 9

4q
2 q ⩽ 1

− 3
4 (2 − q)2 1 < q ⩽ 2

0 q > 2

 x − x′

∥x − x′∥

(2.40)
that is plotted in Figure 2.10 for the 1D case.

2.3.3. Accuracy and consistency of kernel approximation

Integral kernel approximation

Performing a Taylor series expansion of ϕ(x′) around x and inserting it in Eq. (2.27)
gives

⟨ϕ(x)⟩Ih =
∫
D(x)

[
ϕ(x) + (x′α − xα) ∂ϕ

∂xα

+ 1
2(x′α − xα)(x′β − xβ) ∂2ϕ

∂xα∂xβ
+ O

(
(x − x′)3

)]
W (x − x′, h) dx′d (2.41)

We recall the following properties of the kernel:
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Figure 2.10. Kernel gradient of the 1D cubic spline, given by Eq. (2.40).

• normalized kernel:
∫
D(x) W (x − x′, h) dx′d = 1

• symmetric kernel: W (x − x′, h) = W (∥x − x′∥ , h) = W (x′ − x, h) and there-
fore

∫
D(x) (x′ − x)W (x − x′, h) dx′d = 0

Then, Eq. (2.41) reduces to

⟨ϕ(x)⟩Ih = ϕ(x)+ 1
2

∂2ϕ

∂xα∂xβ

∫
D(x)

(x′α−xα)(x′β−xβ)W (x − x′, h) dx′d+O
[
(x − x′)4

]
(2.42)

The integrand appearing in the second term of the right hand side can be bounded
by the squared radius of the kernel support (κh)2 and therefore it is shown that the
integral kernel interpolation is second order accurate [O(h2)]

⟨ϕ(x)⟩Ih = ϕ(x) + O
(
h2) (2.43)

The order of consistency of an approximation is defined as the highest order of a
polynomial that can be reproduced exactly. Eq. (2.43) shows that the kernel approx-
imation has first-order consistency, meaning that integral kernel approximation can
reproduce exactly constant and linear polynomials.

The errors resulting from the integral kernel approximation for the gradient may
be estimated similarly. Assuming that the point x is far away from the boundary ∂Ω
inserting the Taylor series expansion of ϕ(x′) around x in Eq. (2.35) gives
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⟨∇ϕ(x)⟩Ih =
∫
D(x)

[
ϕ(x) + (x′β − xβ) ∂ϕ

∂xβ

+ 1
2(x′β − xβ)(x′γ − xγ) ∂2ϕ

∂xβ∂xγ
+ O

(
(x − x′)3

)]
∇xW (x − x′, h) dx′d (2.44)

For symmetric kernels the integral of the first and third terms of the expansion are
zero, and noting that the integral of the O

(
(x − x′)3

)
scales with O(h2) (

∫
∇Wdx ′d

scales with 1/h) we obtain for each α component

〈
∂

∂xα
ϕ(x)

〉I
h

= ∂ϕ

∂xβ

∫
D(x)

(x′β − xβ) ∂

∂xα
W (x − x′, h) dx′d + O(h2) (2.45)

Using integration by parts, it can be proved that far from the boundary the integral
equals the identity matrix

∫
D(x)

(x′β − xβ) ∂

∂xα
W (x − x′, h) dx′d =

∫
∂D(x)

(x′β − xβ)W (x − x′, h) n′dx′d−1

−
∫
D(x)

∂

∂xα
(x′β − xβ)W (x − x′, h) dx′d = δαβ (2.46)

and the integral kernel approximation for the gradient provides approximations with
second order accuracy

⟨∇ϕ(x)⟩Ih = ∇ϕ(x) + O(h2) (2.47)

Thus, it can be concluded that far from the boundary, a symmetric kernel normal-
ized with compact support can provide approximations for regular functions and its
gradients with second order accuracy.

Summation kernel approximation

Satisfying some kernel consistency conditions does not necessarily mean that the
discretized form also satisfies the discretized consistency condition. This discrepancy
between the particle approximation and the kernel approximation is termed as par-
ticle inconsistency. The discrete counterparts of the constant and linear consistency
conditions are ∑

j∈D(x)

W (x − xj , h)Vj = 1 (2.48)

∑
j∈D(x)

(x − xj)W (x − xj , h)Vj = 0 (2.49)
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Chapter 2. The SPH-ALE method

These discretized consistency conditions are not always satisfied, even for uniform
particle distributions. For that reason, several alternatives expressions for the discrete
gradient approximations were proposed in the literature [Liu & Liu, 2006] [Magoules,
2011]. For example, restoring zero-order consistency for the approximation of the
gradient can be enforced by defining the discrete gradient operator Dh(ϕ)(x) by

Dh(ϕ)(x) ≡ Πh(∇ϕ)(x) − ϕ(x)Πh(∇1)(x) =
∑

j∈D(x)

(ϕj − ϕ(x)) ∇xW (x − xj , h)Vj

(2.50)
With this correction the zero consistency is recovered, despite the discrete condition∑
j∈D(x) ∇xW (x − xj , h)Vj = 0 is not fulfilled exactly.
Recovering first order consistency for a kernel gradient operator is also possible

although it requires a more elaborated strategy [Liu & Liu, 2006].

2.3.4. Meshless and mesh-based approximations

The need for an approximation technique for meshless methods like SPH is not
different to the need for shape functions for Finite Element Method (FEM). The dif-
ference only resides in the geometric information contained in a cloud of points and
the information contained in a mesh of elements. A brief comparison of kernel approx-
imation and meshless interpolation is useful to clarify some problematic issues with
notation in SPH.

Figure 2.11 shows a comparison between kernel function W used by SPH (left) and
the shape function N used by the FEM (right).

Figure 2.11. SPH kernel function W (x − xj) and FEM shape function N(x − xj). The
support of the kernel function of Pj is specified in terms of its smoothing length hj

meanwhile in FEM methods the support of the shape functions is given in terms of the
elements that share the node j as a vertex.

We clarify the nomenclature used for both the kernel and shape function. The
kernel function centered in xi and evaluated at point x is represented by W (x − xi, h)
and in compact form with Wi(x, h). The same is done for the basis function and we
denote N(x − xi) the base function centered in node xi and evaluated in point x.
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2.4. SPH-ALE derivation

In SPH the kernel approximation of a scalar u in a point x is given by

⟨u(x)⟩ =
n∑
j=1

u (xj)W (x − xj , h)Vj (2.51)

In the Finite Element Method a scalar function u is approximated by a given set of
functions Ni according to

û(x) =
n∑
j=1

N(x − xj)u (xj) (2.52)

By comparison of previous equations it can be shown that the weights of nodes in
FEM (Nj(x)) are expressed as W (x − xj , h)Vj in SPH nomenclature, that is

N(x − xj) ≈ W (x − xj , h)Vj (2.53)

It must be noticed that there are some remarkable differences between FEM shape
functions and kernel functions. Kernel functions use a second argument (h) to delim-
itate the support extension, whereas with shape functions meanwhile the extension is
defined implicitly with the element. Shape functions are dimensionless, meanwhile the
kernel function has the inverse units of the volume weight (Vj). For shape functions
the number of nodes n can be inferred from the element, whereas in SPH it depends
on the results of the neighbor searching algorithm.

2.4. SPH-ALE derivation

Here we present the derivation of the SPH-ALE method according to the work con-
ducted by Vila [Vila, 1999]. The method was proposed for a general system of conserva-
tion laws with a main focus on the Euler equations. Bounded domains were considered
as extensions of the method and therefore boundary conditions were excluded in the
derivation process. Since then, the SPH-ALE method was improved and extended by
Vila et al. ([Ben Moussa & Vila, 2000], [Mancip, 2001], [Vila, 2005], [Cueille, 2005],
[Lanson & Vila, 2008a], [Collé et al., 2019]) and authors of other researching groups
([Marongiu, 2007],[Renaut, 2015],[Avesani et al., 2015], [Nogueira et al., 2016a], [Eiŕıs
et al., 2021]). In some of the works using the SPH-ALE some alternative derivations
are presented, ranging from elegant ones using the partition of unity concept [Ivanova
et al., 2013] to fast ones using the analogy with the Finite Volume Method [Oger et al.,
2016].

The set of partial differential equations considered in this section are the Euler
equations. By dropping the viscous terms in Eq. (2.18) the conservative ALE form for
the Euler equations can be compactly expressed by

Lw(U) + ∂F α
w

∂xα
= S (2.54)
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Chapter 2. The SPH-ALE method

with the transport operator Lw defined in Eq. (2.9).
The Initial Value Problem (IVP) considered by Vila is expressed by

{
Lw(U)(x, t) + ∂

∂xα F α
w(x, t) = S(x, t), ∀x ∈ Ω ⊂ Rd,U ∈ Rp, t ∈ R+

U(x, 0) = U0(x), ∀x ∈ Ω ⊂ Rd,U0 ∈ Rp, t = t0
(2.55)

For the same system of equations, it is possible to look for a strong solution or a
weak solution.

2.4.1. Strong solution

The procedure to obtain a strong solution for the IVP expressed in Eq. (2.55) can be
obtained with the tools presented in previous section. For the sake of clarify, Table (2.1)
collects the definition of Dirac particle operator Π(t), the regularized or kernel particle
operator Πh(t) and the regularized gradient operator ∇Πh(t).

Operator Definition
Π(t)(ϕ)(x)

∑
j∈Ω(t) ϕ (xj(t)) δ (x − xj(t))Vj(t)

Πh(t)(ϕ)(x)
∑
j∈Ω(t) ϕ (xj(t))W (x − xj(t), h)Vj(t)

∇Πh(t)(ϕ)(x)
∑
j∈Ω(t) ϕ (xj(t)) ∇xW (x − xj(t), h)Vj(t)

Table 2.1. Definitions of Particle Operator Π(t)(·)(x), Regularized Particle Operator
Πh(t)(·)(x) and Gradient Particle Operator ∇Πh(t)(·)(x) acting on a general scalar variable
ϕ using Vila notation [Vila, 1999].

We recall the relation of the particle quadrature with particle operator Π(t) given
in Eq. (2.23) ∫

Ω(t)
ϕ(x, t)dx ≈

∫
Ω(t)

Π(t)(ϕ)(x)dx =
∑
j∈Ω(t)

ϕ (xj(t))Vj(t) (2.56)

When the particle quadrature is applied component wise for a vector function Φ(x)
reads ∫

Ω(t)
Φ(x, t)dx ≈

∫
Ω(t)

Π(t)(Φ)(x)dx =
∑
j∈Ω(t)

Φ (xj(t))Vj(t) (2.57)

Application of the particle quadrature given by Eq. (2.57) to a vector function Φ(x)
= Lw(U)(x, t) + ∂

∂xα F α
w(x, t) − S(x, t) = 0 leads to

0 ≈
∫

Ω(t)
Π(t)(Lw(U))(x)dx+

∫
Ω(t)

Π(t)
(

∂

∂xα
F α

w

)
(x)dx−

∫
Ω(t)

Π(t)(S)(x)dx =

∑
j∈Ω(t)

Lw(U)(xj(t))Vj(t) +
∑
j∈Ω(t)

∂

∂xα
F α

w(xj(t))Vj(t) −
∑
j∈Ω(t)

S(xj(t))Vj(t) (2.58)

Since we are looking for a strong solution, we force that every particle i satisfies the
relation
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2.4. SPH-ALE derivation

Lw(U)(xi(t))Vi(t) + ∂

∂xα
F α

w(xi(t))Vi(t) − S(xi(t))Vi(t) = 0 (2.59)

that, using the compact notation ϕi(t) = ϕ(xi(t)) and dropping the time dependence,
is rewritten as

(Lw(U))i Vi +
(

∂

∂xα
F α

w

)
i

Vi − SiVi = 0 (2.60)

The use of the Generalized Reynolds Transport (See Eq. (2.10)) allows us to identify
the first term as (Lw(U))i Vi = d

dt (U iVi) yielding to

d

dt
(U iVi) +

(
∂

∂xα
F α

w

)
i

Vi = SiVi (2.61)

Once the Dirac particle approximation for the three terms has been used, the next
step requires the kernel approximation for approximating the divergence of the ALE
flux as(

∂

∂xα
F α

w

)
i

≃
〈(

∂

∂xα
F α

w

)
i

〉h
= ∂

∂xα
Πh(F α

w)i =
∑
j∈Ω(t)

(F α
w)j

∂

∂xαi
W (xi − xj , h)Vj

(2.62)
that after substitution in Eq. (2.61), gives the final expression

d

dt
(U iVi) + Vi

∑
j∈Ω(t)

(F α
w)j

∂

∂xαi
W (xi − xj , h)Vj = SiVi (2.63)

Using the compact discrete designation for the kernel ∇α
xi
W (xi − xj , h) = ∇α

i Wij ,
the following semi-discrete system of equations is obtained for the strong SPH-ALE
semi-discrete form

d

dt
(U iVi) + Vi

∑
j∈Ω(t)

(F α
w)j∇α

i WijVj = SiVi (2.64)

However, semi-discrete system given by Eq. (2.64) does not assure the local con-
servation property. The condition for local conservation demands that the sum of the
ALE flux between two neighboring particles satisfies

Vi(F α
w)i

∂

∂xαi
WijVj + Vj(F α

w)j
∂

∂xαj
WjiVj = 0 (2.65)

Using the symmetry of the kernel we have that ∂
∂xα

i
Wij = − ∂

∂xα
j
Wji but since

usually (F α
w)i ̸= (F α

w)j local conservation is violated.
It is possible to select a symmetric gradient approximation to circumvent the viola-

tion of local conservation. A kernel gradient approximation defined by ∇Πh(ϕ)(x) +
ϕ(x)∇Πh(1) would approximate the gradient as
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Chapter 2. The SPH-ALE method

(
∂

∂xα
F α

w

)
i

≃ Dα
h (F α

w)i =
∑
j∈Ω(t)

((F α
w)i + (F α

w)j)
∂

∂xαi
W (xi − xj , h)Vj (2.66)

giving the alternative semi-discrete system

d

dt
(U iVi) + Vi

∑
j∈Ω(t)

((F α
w)i + (F α

w)j)
∂

∂xαi
WijVj = SiVi (2.67)

We have presented the derivation of the strong form of the IVP given by Eq. (2.55).
The procedure does not provide an unique semi-discrete system. For instance, both
semi-discrete systems given by Eq. (2.64) and Eq. (2.67) were obtained by adopting
different kernel approximations for the gradient.

2.4.2. Weak SPH solution

In order to deal with nonlinear hyperbolic conservation laws and the computation of
discontinuous solutions, it is necessary to introduce the notion of a weak solution. Here
we seek a discrete formulation of meshless equations by starting from a weak form of
conservation equations. First, we tackle the continuous weak form of conservation law
given in Eq. (2.54) and then, we develop the discretization over the set of computational
points.

Continuous weak form

To obtain the weak form, first suppose that U(x, t) is a smooth solution of Eq. (2.54).
By expanding the transport operator, the system of PDEs for the Euler equations in
ALE form reads

∂U

∂t
+ ∂

∂xα
(wαU) + ∂

∂xα
(F α

w) − S = 0 (2.68)

We multiply Eq. (2.68) by a set of test functions φ(x, t) with compact support, and
then, we perform the integration over Rd × R+

∫
Rd×R+

(
∂U

∂t
+ ∂

∂xα
(wαU) + ∂

∂xα
(F α

w) − S

)
φ(x, t)dxddt = 0 (2.69)

We decompose the integral in order to separate the time and spatial partial deriva-
tives. The compact support of the test function allows us to change the order in the
integration over space or time, obtaining

∫
R+×Rd

∂U

∂t
φdt dxd +

∫
Rd×R+

(
∂ (wαU)
∂xα

φ+ ∂F α
w

∂xα
φ− Sφ

)
dxd dt = 0 (2.70)

using integration by parts, we develop both integrals to obtain
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2.4. SPH-ALE derivation

−
∫
Rd

φ(x, 0)U(x, 0)dxd −
∫
Rd×R+

U(x, t)∂φ
∂t

(x, t)dxddt

+
∫
Rd×R+

(
−wαU

∂φ

∂xα
+ ∂ (wαUφ)

∂xα
− F α

w

∂φ

∂xα
+ ∂ (F α

wφ)
∂xα

− Sφ

)
dxd dt = 0

(2.71)

that can be rearranged by moving the initial condition term to the right hand side and
invoking Gauss theorem to give

∫
Rd×R+

(
−U

∂φ

∂t
− wαU

∂φ

∂xα
− F α

w

∂φ

∂xα
− Sφ

)
dxd dt

+
∫
∂Rd×R+

(wαUφ+ F α
wφ)nαdxd−1 dt =

∫
Rd

φ(x, 0)U(x, 0) dxd (2.72)

The boundary term in the frontier of Rd vanishes since the test function φ(x, t) are
zero outside the domain Ω(t), and Ω(t) is a bounded region of space Rd. In the first
integral, we note the presence of the fictitious material derivative of the test function
∂φ
∂t +wα ∂φ

∂xα . This fictitious attribute is used to remark that the advective contribution
to the derivative is due to the transport velocity w, and not to the true fluid velocity
u, as it is the usual material derivative in Fluid Mechanics. Introducing the operator
L∗

w(·) ≡ ∂(·)
∂t + wα ∂(·)

∂xα , we refer to this term as L∗
w(φ). Taking into account these

considerations, the previous equation becomes

∫
Rd×R+

(
UL∗

w(φ) + F α
w

∂φ

∂xα
+ Sφ

)
dxd dt = −

∫
Rd

φ(x, 0)U(x, 0) dxd (2.73)

We have arrived to an integral equation, which is also verified for a smooth solution
of Eq. (2.68) for every test function φ with compact support. Note that there are no
derivatives of U in Eq. (2.73). Reciprocally, if we suppose that a smooth function U

satisfies Eq. (2.73) for every test function φ Eq. (2.73), integration by parts in the
reverse order shows that U is a solution of Eq. (2.68). The advantage of the weak
solution is that it accommodates discontinuous solutions that arises naturally in the
solution of the hyperbolic Euler equation system. When the weak problem is integrated
over a bounded space in x − t plane with the presence of a shock the integral weak
form reproduce the Rankine-Hugoniot conditions across the shock curve [LeVeque,
2002; Salsa, 2016; Michel-Dansac, 2016].

Vila [Vila, 1999] defined the weak formulation associated to Eq. (2.54) by

∀φ ∈ C2
0
(
Rd × R+,∗) ∫

Rd×R+

(
UL∗

w(φ) + F α
w

∂φ

∂xα
+ Sφ

)
dxd dt = 0 (2.74)

The set of test functions C2
0 (Rn ∗ R+,∗) considered by Vila, verifies φ(x, 0) = 0 and

so the term on the right hand side of Eq. (2.73) is dropped. So far we have considered
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that the test function is a scalar and therefore all the three terms appearing inside
brackets are the product of a vector ∈ Rp with a scalar. In this form the vector of
conservative variables is given by a vector but the spatial gradients and divergence term
appear with spatial index. The same result is obtained if we consider the test function
as a vector φ ∈

(
C2

0
(
Rd × R+,∗))p with all components equal to φ and replace the

product of scalar with a vector with the element-wise product of two vectors. Using
this vectorization of the test function Eq. (2.74) is rewritten as

∀φ ∈
(
C2

0
(
Rd × R+,∗))p ∫

Rd×R+

(
U .L∗

w(φ) + F α
w.

∂φ

∂xα
+ S.φ

)
dxd dt = 0 (2.75)

To summarize and remark some features we rewrite the continuous strong and weak
forms together. Comparison of these two forms are of great importance to derive the
discrete weak form and also to understand the connection with the introduction of the
skew-adjoint operators.

S.F. : ∀φ ∈
(
C2

0
(
Rd × R+,∗))p ∫

Rd×R+

(
Lw(U).φ + ∂F α

w

∂xα .φ − S.φ
)
dxddt = 0

W.F. : ∀φ ∈
(
C2

0
(
Rd × R+,∗))p ∫

Rd×R+

(
−U .L∗

w(φ) − F α
w.

∂φ
∂xα − S.φ

)
dxddt = 0

(2.76)
A comparison of the Strong Form and Weak Form given in Eq. (2.76) shows that

both the integrands are composed of three terms. Jumping between these two forms
relies on the compact support of the test functions and some continuous operators’
properties, that were used while performing integration by parts. We note that the
source term appears equal in both forms but the relation between the terms involving
the transport operator and the flux divergence in the strong form are related with their
counterparts in the weak form with opposite sign.

By comparison we can appreciate the following relations that are exact in the contin-
uous level but that require special attention when particle approximation is introduced.∫

Rd

(
Lw(U).φ

)
dxd = −

∫
Rd

(
U .L∗

w(φ)
)
dxd (2.77)

∫
Rd

(
∂F α

w

∂xα
.φ

)
dxd = −

∫
Rd

(
F α

w.
∂φ

∂xα

)
dxd (2.78)

Discrete weak form

In order to obtain a discrete version of Eq. (2.75), we start by decomposing the
integral using Fubini’s theorem, giving

∀φ ∈
(
C2

0
(
Rd × R+,∗))p ∫

R+

[∫
Rd

(
U .L∗

w(φ) + F α
w.

∂φ

∂xα
+ S.φ

)
dxd
]
dt = 0 (2.79)
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We need now to approximate the integration over the space Rd by using the particle
quadrature

∫
ϕ(x, t)dxd ≈

∑
ϕ (xj(t))Vj(t). To accommodate the quadrature rule for

the component-wise product of two vectors in Rp, we provide the space with the discrete
scalar product (., .)∆ as :∫

Rd

φ.Ψdxd −→ (φ,Ψ)∆ :=
∑
i

Viφi.Ψi =
∫
Rd

φ̄∆.Ψ̄∆
dxd (2.80)

where φ̄∆ and Ψ̄∆ are used to show that the quadrature formulae approximation would
be exact for that piecewise constant vector fields.

After application of the particle quadrature given by Eq. (2.80) inside each term of
the integrand of Eq. (2.79), we obtain

∀φ ∈
(
C2

0
(
Rd × R+,∗))p ∫

R+

[(
U , L∗

w(φ)
)

∆ +
(

F α
w,

∂φ

∂xα

)
∆

+
(
S,φ

)
∆

]
dt = 0

(2.81)
Once the quadrature has been applied, the next step demands the introduction

of an approximation operator for the derivative ∂φ
∂xα . According to Eq. (2.50) the

approximation for the gradient that assures zero consistency is defined by

∂φ

∂xα
−→ Dα

h (φ)(x) = Πh

(
∂φ

∂xα

)
(x) − φ(x)Πh

(
∂1
∂xα

)
(x) (2.82)

that far away from the boundary takes the final form

Dα
h (φ)(x) =

∑
j

(
φj − φ(x)

) ∂W
∂xα

(x − xj , h)Vj (2.83)

With incorporation of this second approximation, Eq. (2.81) becomes

∀φ ∈
(
C2

0
(
Rd × R+,∗))p ∫

R+

[(
U , L∗

w(φ)
)

∆ +
(
F α

w, D
α
h (φ)

)
∆ +

(
S,φ

)
∆

]
dt = 0

(2.84)
It seems now that the only way to proceed further is developing the scalar products

and the approximation for the derivative. But instead, we impose the relations between
the strong and weak form obtained in the continuous situation. When the particle
quadrature given by Eq. (2.80) is applied in the continuous relations of Eq. (2.77) and
Eq. (2.78), the following identities should be verified by the discrete operators:

∫
Rd

(
Lw(U).φ

)
dxd = −

∫
Rd

(
U .L∗

w(φ)
)
dxd −→

(
Lw(U),φ

)
∆ = −

(
U , L∗

w(φ)
)

∆

(2.85)

∫
Rd

(
∂F α

w

∂xα
.φ

)
dxd = −

∫
Rd

(
F α

w.
∂φ

∂xα

)
dxd −→

(
Dα
h (F α

w),φ
)

∆ = −
(
F α

w, D
∗α
h (φ)

)
∆

(2.86)
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It should be noted that in the case of Eq. (2.85), the definition of the operator L∗
w

was introduced during the continuous weak form derivation, meanwhile in Eq. (2.86)
the definition of D∗α

h (φ)(x) is introduced to force the discretized system to fulfill the
relation given by Eq. (2.86). Identities are analogue with respect to the scalar product
(., .)∆. It is noticed that −L∗

w is the adjoint operator of Lw and that −D∗
h is the

adjoint operator of Dh.
By using the relation given by Eq. (2.85) and the fact that

(
D∗α
h (F α

w),φ
)

∆ =
−
(
F α

w, D
α
h (φ)

)
∆ (which is equivalent to Eq. (2.86)), the discrete weak formulation

given by Eq. (2.84) reads as

∀φ ∈
(
C2

0
(
Rd × R+,∗))p ∫

R+

[
−
(
Lw(U),φ

)
∆ −

(
D∗α
h (F α

w),φ
)

∆ +
(
S,φ

)
∆

]
dt = 0

(2.87)
Expanding the discrete scalar products and noting that all terms are multiplied by

φi, the weak formulation can be stated as

∀φ ∈
(
C2

0
(
Rd × R+,∗))p ∫

R+

[∑
i

(
ViLw(U i) + ViD

∗α
h (F α

w)i − ViSi

)
.φi

]
dt = 0

(2.88)
Since this weak formulation must be verified for any test function with compact

support, a proper selection of the support domain implies that, for all particle i

ViLw(U i) + ViD
∗α
h (F α

w)i = ViSi (2.89)

The use of the Generalized Reynolds Transport (See Eq. (2.10)) allows us to identify
the first term as ViLw(U i) = d

dt (U iVi), and this result in the weak semi-discretized
system for the Euler equations

d

dt
(U iVi) + ViD

∗α
h (F α

w)i = ViSi (2.90)

To close the weak derivation of the SPH-ALE method we summarize now the dis-
cretized form obtained for the Euler equations

(i) d
dtxi = w (xi, t) xi(0)

(ii) d
dtVi = Dα

h (wαi )Vi Vi(0)
(iii) d

dt (U iVi) + ViD
∗α
h (F α

w)i = ViSi U i(0)
(2.91)

where (i) tracks the position of particles according to the velocity field w, (ii) updates
the weight volume of particles starting from an initial volume weight Vi and (iii)
expresses the conservation of mass, momentum and energy in ALE conservative form.

It is interesting to remark that the procedure naturally prescribes different gradient
approximations for the divergence of the velocity and for the divergence of the ALE
fluxes. This is a notorious difference with the strong form derived in Eq. (2.64). The
weak form formulation imposes a discretization of the convective fluxes that assures
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the compatibility between the continuous and discrete operators. Compatibility is
a desirable property for a meshless formulation because it forces that integration by
parts is satisfied at discrete level [Fougeron, 2018]. The concept of compatibility is not
exclusive of SPH-ALE methods and it has also been invoked to improve traditional
Lagrangian SPH methods ([Kulasegaram et al., 2004], [Mayrhofer et al., 2013]), other
meshless formulations ([Trask et al., 2017]) and even mesh-based methods ([Lipnikov
& Shashkov, 2010]).

2.5. Utilization of Riemann solvers in SPH-ALE

Some of the properties that need to be improved in SPH methods are convergence,
consistency and stability [Vacondio et al., 2020]. In this framework, the use of Riemann
solvers is a promising option to increase the stability of the numerical methods. In
particular, this work is based on the SPH-ALE method [Vila, 1999; Ben Moussa &
Vila, 2000]. In this scheme, Riemann solvers are used instead of artificial dissipation
to stabilize the method. The Riemann problem is solved between two neighboring
particles on the direction of the line connecting them. Left and right Riemann states
are defined using the values of the variables on each of the neighboring particles, and
Taylor series expansions of the variables at integration points are used to improve the
accuracy of the SPH scheme.

The SPH-ALE formulation was introduced by Vila and Ben Moussa [Ben Moussa
& Vila, 2000; Vila, 1999] to increase the accuracy and stability of SPH methods in
nonlinear systems of conservation laws. Vila and Ben Moussa applied this formulation
to the Euler equations and presented a system of equations in semidiscrete form that
has many similarities with the finite volume formalism.

In the SPH-ALE formulation, the interaction of each neighboring particle j with
the particle i admits a representation as a flux at the midpoint ij located at xij =
1
2 (xi + xj). Fluxes are computed from solutions to one-dimensional moving Riemann
problems. Thus, we can associate the particle i as the left state, particle j as the right
state and the moving interface with the midpoint ij. Figure 2.12 shows the definition
of one of the moving Riemann problems. Unit vector nij points from particle i to
particle j. We use index ij− and ij+ to denote reconstruction values at the interface
from the left and from the right. The kernel gradient can be expressed in terms of the
unit vector nij . Kernel functions which depend only on the distance between particles
can be expressed as Wij = W (xi − xj , hij) = W (qij), where qij = ∥xi−xj∥

hij
.

The gradient of the kernel function is given by ∇Wij = | ∂W∂qij
| 1
hij

nij showing that
nij and ∇Wij are vectors with the same direction.
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Figure 2.12. Accommodation of Riemann solvers in SPH-ALE. On the left: Stencil
of neighboring particles for a particle Pi. The neighboring particles inside the kernel
support of Pi are represented with blue filled circles. Dotted lines connect the position
of Pi with its interacting neighbors. On the right: An enlarged view of Pi with one of
its interacting neighbors Pj . The interaction between particles Pi and Pj is accounted as
the the flux in the midpoint interface ij of a one-dimensional moving Riemann problem.
The state of Pi and Pj are associated with the left and right states.

2.6. Implementation of boundary conditions

Implementation of boundary conditions is recognized as one of the main challenges
that SPH and meshless methods have to face. Although the free surface condition
can be easily handled by Lagrangian meshless methods, the imposition of other types
of boundary conditions is more cumbersome in meshless than in mesh-based methods.
Due to the Lagrangian nature of SPH, imposing boundary condition types in stationary
regions is not a trivial task. For instance, the simple imposition of a perfect imperme-
able wall is not easily enforced in a traditional Lagrangian SPH formulation. It should
be noted that the Lagrangian SPH formulation was conceived as a numerical method
to solve partial differential equations in an infinity domain. When the method is used
to solve problems in bounded domains it becomes necessary to impose the common
type of boundary conditions.

In traditional SPH methods, different strategies to implement boundary conditions
has been considered. In the case of wall boundary type, the different strategies adopted
in SPH community can be classified in four groups: boundary repulsive force [Mon-
aghan, 1994; Monaghan & Kajtar, 2009], the mirror particles [Morris et al., 1997; Szewc,
2013], dynamic boundary particles [Crespo et al., 2007; Marrone et al., 2011; Adami
et al., 2012a; English et al., 2021] and semi-analytical boundary conditions [Mayrhofer
et al., 2013; Ferrand et al., 2017].

The same strategies to impose boundary conditions in traditional SPH methods
can be implemented in SPH-ALE framework. However, the similarity of SPH-ALE
with Finite Volume Methods and the utilization of Riemann solvers, enable to con-
sider different techniques. Marongiu [Marongiu, 2007] applied the theory of partial
Riemann solvers [Dubois, 2001] to implement boundary conditions in a weakly com-
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pressible SPH-ALE code. Li et Marongiu [Li, 2013; Li et al., 2014] also employ the
partial Riemann technique to couple a weakly compressible SPH-ALE fluid solver with
a Total Lagrangian SPH solver for the solid. Neuhauser et al. [Neuhauser, 2014] im-
plemented boundary conditions in a SPH-ALE solver according to the Characteristic
Boundary Conditions proposed by Poinsot [Poinsot & Lele, 1992]. Werdelmann et
al. [Werdelmann et al., 2021] provided the procedure to implement the Characteristic
Boundary Conditions in SPH method expressed in ALE framework.

In this thesis the mirror technique was employed to implement boundary conditions
in the SPH-ALE method presented in Chapter 3. Details about the implementation
of this technique in SPH-ALE formulation are provided in the test cases considered.
The main contributions to the imposition of boundary conditions is associated with the
MLSPH-ALE formulation presented in Chapter 4. The MLSPH-ALE method provides
an additional boundary term that eases the implementation of boundary conditions.
The imposition of the no-slip wall in the flow around a circular cylinder was conducted
using this novel technique.

2.7. Conclusions

In this chapter the fundamentals of the kernel approximation used by SPH method
were exposed. Kernel approximation involves a two-step process. Starting with the
identity given by the convolution formula, the first step in the approximation replaces
the Dirac function by a kernel function, and the second step approximates the integral
by a summation over a set of neighbor particles. Although the integral kernel approx-
imation achieves second order accuracy, the disordered position of neighbor particles
degrades the accuracy of the discrete kernel approximation.

Different derivations of the SPH-ALE meshless formulation were detailed. SPH-
ALE method comes with some important advantages over traditional SPH formu-
lations. Apart from the flexibility given by the ALE framework another important
advantage of this meshless formulation is the interpretation of interaction between
particles as a Riemann flux. The semi-discrete system obtained by SPH-ALE method
has great similarities with the semi-discrete system obtained with mesh-based meth-
ods. This analogy between meshless and mesh-based methods suggest the possibility of
explore enhancements in one type of methods by the transfer of successful techniques
in the other type.
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Chapter3
A Weakly Compressible SPH-ALE

method

3.1. Introduction

In this chapter a high accuracy meshless method is proposed to solve liquid flows.
The method is based on the meshless framework proposed by Vila and Ben Moussa
[Vila, 1999; Ben Moussa & Vila, 2000]. Meshless methods based on Vila’s idea are
obtained by invoking a local weak Galerkin formulation over a conservation law in ALE
description using the SPH kernel as test and trial functions. Meshless methods based
on this formulation are usually labeled as SPH-ALE methods since they retain the SPH
kernel approximation, and differ from the traditional Lagrangian methods in the ALE
capability. In SPH-ALE methods the interaction between neighbor particles can be
interpreted as flux transfer terms, in the same manner that is done in mesh-based Finite
Volume Methods. Indeed, in Astrophysics community SPH-ALE methods are usually
referred by meshless finite volume methods [Ivanova et al., 2013; Hopkins, 2015]. Vila
also showed that minor realignment of terms enables SPH-ALE methods to incorporate
approximate Riemann solvers for the numerical approximation of hyperbolic flux terms.
SPH-ALE methods can overcome some of the problematic issues of Lagrangian SPH
methods like the noisy pressure field or the undesirable particle pattern positions [Oger
et al., 2016].

In this chapter, an improved SPH-ALE method to solve liquid flows is presented.
The new method recognizes the inheritance from Vila framework and appends Moving
Least Squares (MLS) and Multidimensional Optimal Order Detection (MOOD) tech-
niques to increase its accuracy and keep stability, respectively. It is now time to explain
some concepts about the different approaches to model liquid flows.

Liquids are fluids with low compressibility coefficient, but this does not imply that
compressible effects can be systematically neglected. Sonar applications, underwater
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explosions or water hammer in pipe networks are applications where the compress-
ibility effects are relevant. In liquid flow with negligible compressibility effects, the
selection of an equation of state (EOS) with constant density is appropriate. On the
contrary, for liquid flows with non-negligible compressibility, it is mandatory to use
an EOS that reflects the relationship between the thermodynamic properties. The se-
lected EOS must reproduce the real properties of the substance in order to respect its
thermodynamic equilibrium state.

We can follow an incompressible or compressible strategy to solve the governing
equations. The incompressible approach assumes that the density is constant, and
thus the continuity equation imposes a solenoidal field for the velocity field. The
compressible approach solves the full set of equations, with the EOS providing a link
between the density, pressure and temperature.

Thus, we have two types of models for the liquid properties and two types of
approaches for the numerical solution of the governing equations. According to the
physics, it seems reasonable to select the approach for the numerical solution that cor-
responds with the importance of fluid compressibility effects in a particular problem.
However, both approaches result in different character of the numerical equations to
solve, and thus different computational requirements. The incompressible approach
renders the mathematical problem into a large system of linear equations, meanwhile
the compressible approach results in an explicit scheme that only needs to evaluate
expressions to advance the solution locally in time. When numerical and computa-
tional issues are taking into account, the selection of the best approach for a certain
application is a question that generates great debate in literature. Focusing on liquid
flows with negligible compressibility effects (ρ ≈ constant), it is possible to adopt the
incompressible or compressible approach. As the compressibility effects are negligible
the compressible approach does not require to use the real EOS of the fluid and it
can use a modified version of the EOS with a reduced sound propagation speed, that
makes this approach less demanding by alleviating the CFL time constraint. Thus, the
weakly compressible approach uses the compressible approach for flows with negligible
compressibility effects.

Similar to the Finite Volume Method [Ramı́rez et al., 2014; Nogueira et al., 2016b],
in SPH there are two main approaches to model liquids. One is based on the in-
compressibility assumption of the Navier-Stokes equations. This assumption leads to
the decoupling of the equations and the continuity equation can be considered as a
constraint the velocity field has to satisfy. The methods are based on the solution
of a Poisson equation for the pressure field, using the pressure-correction idea from
grid-based methods [Cummins & Rudman, 1999; Garoosi & Shakibaeinia, 2020] . This
approach is known as Incompressible SPH (ISPH). The second approach, introduced
by Monaghan [Monaghan, 1994] is based on Weakly Compressible hypotheses (WC-
SPH). In this approach, the incompressibility is approximated by artificially allowing
a slight flow compressibility. One advantage of this approach is that it avoids the
need for solving a Poisson equation to compute the pressure field. The computation
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of pressure only requires the use of an equation of state. As the density of most liq-
uids is nearly constant, a barotropic approximation is reasonable, and a linear EOS
depending only on density is often used [Collé et al., 2019]. Both approaches have ad-
vantages and drawbacks. Thus, one advantage of weakly-compressible methods, is that
these schemes are more suited for free-surface flows as the boundary condition along
the free surface is implicitly satisfied, and do not require an explicit detection of the
free surface during the flow evolution. ISPH schemes are more difficult to parallelize
because of the need for solving an algebraic system with a sparse matrix. However,
the weakly-compressible approach requires small time steps (as it is constrained by
the speed of sound), whereas ISPH allows for larger time steps. On the other hand,
in weakly compressible approach, oscillations in density and pressure typically appear
in the solution. In order to alleviate these oscillations, several authors have proposed
two different procedures. The first one was introduced by Colagrossi et al. [Colagrossi
et al., 2012], proposing a filtering of the density field. It reduces the numerical noise
by restoring the consistency between mass, density and volume. The second procedure
is more recent, and was introduced by Marrone et al. [Marrone et al., 2011]. They
developed the δ-SPH scheme, in which a density diffusive term is added to smooth the
spurious density oscillations.

This chapter deals with SPH models based on the weakly compressible approach to
solve liquid flows. A wide set of test cases are reproduced to analyze the performance of
the proposed SPH-ALE-MOOD. The weakly compressible approach can be considered
as a particular case of the compressible approach with an EOS adjusted conveniently.
Based on that fact some compressible liquid flows were included as validation cases.

The structure of the chapter starts with the presentation of the governing equations
for compressible flows. Then the most used constitutive equations for compressible
liquids are presented. After that the traditional discrete equations of the Lagrangian
SPH and the SPH-ALE method are presented. Next subsection enumerates some works
in the literature concerning SPH-ALE scheme. Then the improved SPH-ALE-MOOD
method is presented providing details of its new novelties. In the end of the chapter
the method is applied over a set of test cases.

3.2. Governing equations

Adopting an ALE approach the Navier-Stokes system of equations can be expressed
in a differential conservative form by

Lw(U) + ∇ · (FE − w ⊗ U) − ∇ · (D) = S (3.1)

where w stands for a regular velocity field and U is the vector of conservative variables.
The operator Lw is called the transport operator linked to w. The application of this
operator over U is designated by Lw(U) and corresponds to Lw(U) = ∂tU+∇·(w⊗U).
The definition of the transport operator can be considered as the differential version
of the Reynolds Transport Theorem applied over a control volume whose boundary
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move with a velocity w (see Appendix B). We denote with FE the Eulerian flux tensor
(convective and pressure terms), D represents the viscous tensor and vector S contains
the source terms.

For two dimensional cases the vectors and tensors previous introduced are given by

U =


ρ

ρu

ρv

ρE

 , F x
E =


ρu

ρu2 + p

ρuv

ρHu

 , F y
E =


ρv

ρuv

ρv2 + p

ρHv

 (3.2)

Dx =


0
τxx

τyx

τxxu+ τxyv − qx

 , Dy =


0
τxy

τyy

τxyu+ τyyv − qy

 , (3.3)

S =


0
ρfx

ρfy

ρfxu+ ρfyv + q̇h

 (3.4)

where the vectors fluxes F x
E and F y

E are the rows of the flux tensor FE , namely
FE = (F x

E ,F
y
E)T . Similarly the viscous tensor D obeys D = (Dx,Dy)T . Equa-

tions (3.2), (3.3) and (3.4) correspond with the expressions given by Eq (2.19) in
Chapter 2 particularized for a two-dimensional domain.

The vector fluid velocity and its components in x and y direction are denoted
by u = (u, v)T . Density and pressure are designed by ρ and p. We use E for the
specific total energy defined as the sum of the internal energy (e) and the kinetic
energy (ke) according to E = e+ 1

2 (u2 + v2). The total enthalpy definition is defined
as H = E + p/ρ. For the diffusive terms ταβ denotes the viscous tensor component
and qα the thermal conduction flux component. For an incompressible Newtonian fluid
ταβ can be expressed as ταβ = µ(∂uα

∂xβ + ∂uβ

∂xα ) where µ is the dynamic fluid viscosity.
Similarly, the thermal flux is expressed in terms of temperature gradients and thermal
conductivity, according to qα = −λ( ∂T∂xα ). Finally, the vector f = (fx, fy)T represent
external force components per unit mass, and q̇h is a volumetric heat source.

3.3. Constitutive Equations for compressible liquids

Two different equations of state (EOS) for compressible liquids are chosen: Tait and
Tammann EOS but some other EOS for liquids are available in the literature [Denner,
2021; Chandran & Salih, 2019].

Tait EOS models a barotropic fluid, and the pressure only depends on the density,
that is, p = p(ρ). Tammann EOS is more general and relates pressure with both
the density and the internal energy, that is, p = p(ρ, e). Tait EOS keeps the energy
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equation decoupled from the momentum equation and can lead to computational cost
savings when energy effects on the flow are negligible. However, when shock waves are
present in the flow, the Tammann EOS is a more convenient choice.

Table 3.1 shows the expressions to evaluate pressure and acoustic sound speed for
any of the EOS adopted in this work. Caloric equations are also provided although its
inclusion is optional for a barotropic fluid. Expressions for Tait EOS were extracted
from [Saurel et al., 1999] whereas for the Tammann stiffened gas EOS were extracted
from [Paillère et al., 2003]. The last row in the table presents the whole set of constants
values required to properly set each EOS. These values are fixed case by case in the
validation section. Zero subindex in Tait equation means the constant is associated to
the reference state of the fluid.

Tait EOS [Saurel et al., 1999] Tammann EOS [Paillère et al., 2003]

p(ρ) = ρ0c
2
0

γ

((
ρ
ρ0

)γ
− 1
)

+ p0 p(ρ, e) = (γ − 1)ρe− γpc

c(ρ) = c0

(
ρ

ρ0

) γ−1
2

c(ρ, e) =
√
γ(p+ pc)

ρ

e = cv(T − T0) e = cp
γ
T + pc

γ
ρ0, c0, γ, p0, cv γ, pc, cp

Table 3.1. Constitutive equations for the barotropic Tait EOS and for the Tammann
stiffened gas EOS.

3.4. Discrete representation of the geometric domain

In this section we address the discretization of the computational domain. In this
stage of the simulation process meshless and mesh-based methods separate their paths.
In meshless methods the discretized geometry results in a cloud of points meanwhile
in mesh-based methods the discretized geometry comprises a mesh or a grid.

Figure 3.1 depicts the reduction of a continuous geometric domain into a discrete
one. The geometric domain Ω with boundary ∂Ω is discretized into a set of N com-
putational points at positions xi = (xi, yi)T expressed with respect to a Cartesian
coordinate system. Index i is used to label computational points and ranges from 1 to
N . Moreover, each particle i has ni interacting neighboring particles inside its compact
support domain Di with boundary ∂Di.

Each computational point has properties and associated values of the variables that
evolve in time. The set of data linked to computational points depends on the type of
meshless method. Traditional Lagrangian SPH and SPH-ALE methods differ in the set
of properties attached to particles. For any generic scalar variable ϕ and vector variable
ϕ the quantity carried by computational point i is denoted by ϕi and ϕi = (ϕ1

i , ..., ϕ
d
i )T

respectively.
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O

Figure 3.1. Computational domain Ω and kernel support Di of particle i.

3.5. Some improvements for the SPH-ALE method

Several authors have proposed the SPH-ALE formulation for the Navier–Stokes
equations [Chiron, 2017; Oger, 2006; Sjah, 2013]. In these works, the viscous term was
discretized using an approximation of the Laplacian based on a hybrid SPH gradient by
means of a first-order finite difference scheme [Morris, 1996]. In this work, we propose a
different discretization for the viscous term of the Navier-Stokes equations. Observation
of the Navier-Stokes in ALE form given by Eq. (3.1) suggests that the viscous terms
can be computed in the form of a diffusive flux, following a similar approach as the one
used for the convective terms.

Thus, the proposed resulting semi-discretized form of the Navier-Stokes equations
is given by

d(ViU i)
dt

= −
ni∑
j=1

ViVj2 (Gij − (F w)i) · ∇Wij

+
ni∑
j=1

ViVj2 (Dij − Di) · ∇Wij + ViSi

(3.5)

dVi
dt

=
ni∑
j=1

ViVj2 (wij − wi) · ∇Wij (3.6)

where Eq. (3.5) expresses the evolution of the conservative variables and Eq. (3.6)
describes the evolution of the effective volume associated to particle Pi. In the above
equations, Wij = W (xi − xj , hij) is a kernel function and hij = 1

2 (hi + hj) is the
averaged smoothing length. The smoothing length hi of a particle Pi is linked to its
volume Vi via equation hi = βV

1
d
i , where β is a constant and d is the dimension of the
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computational domain. Note that, as the interparticle distance dx can be estimated as
dx = V

1
d
i , we adopt the practical consideration of linking the smoothing kernel length

by a constant factor β to the interparticle distance dx.
The support radius for a kernel function is expressed as the product of a parameter

κ and the smoothing length h. For a computational particle Pi it is possible to express
the radius of its kernel support as Ri = κhi. Using the relation hi = βV

1
d
i we obtain

that the radius of the kernel support for particle Pi is given by Ri = κβV
1
d
i . For the

cubic spline kernel used in this thesis κ = 2 and the radius of the kernel is given by
Ri = 2βV

1
d
i . Since the initial volume of the particle is imposed by the initial conditions

and Eq. (3.6) gives its evolution, the parameter β lets to modify the size of the kernel
support and thus the number of interacting neighbors. Throughout this work, we have
set β = 2. This implies that, for an initial uniform distribution of particles, R = 4dx,
resulting in 9 neighbors for 1D tests and 49 neighbors for 2D problems.

Tensors Gij and Dij in Eq. (3.5) account for the inviscid and viscous fluxes in the
interface ij, respectively. The terms appearing with minus sign inside the parenthesis
((F w)i and Di) are tensors evaluated at the position of particle i that assure at least
zero order consistency at discrete level as indicated by Avesani et al. [Avesani et al.,
2014]. The origin of the term (F w)i will be further discussed in the next chapter.

In the SPH-ALE formulation, each particle i is associated with a velocity frame wi

and a material velocity ui. The velocity frame wi can be freely chosen and determines
the evolution of particle positions. For the Eulerian approach of the method we set
wi = 0 and particles are fixed in space. For the Lagrangian version, we set wi = ui
and perform a weighted average interpolation of the velocity [Bonet & Lok, 1999] to
update particle positions. Therefore, the evolution of the particle position must satisfy
for Eulerian/Lagrangian frame Eq. (3.7).

dxi
dt

= 0 or
dxi
dt

=

ni∑
j=1

VjwjWij

ni∑
j=1

VjWij

(3.7)

3.6. High-order discretization of the numerical fluxes

3.6.1. Moving Least Squares Approximation

Moving Least Squares is an approximation technique widely used in meshless meth-
ods with different purposes. In standard SPH methodology MLS is used as an auxiliary
tool for boundary treatment [Marrone et al., 2011], field refreshing to remedy the noisy
pressure field [Chen et al., 2013], reordering SPH methods or simply as an approxima-
tion technique in the post-processing stage. In SPH-ALE methods [Avesani et al., 2014;
Nogueira et al., 2016a] MLS technique is used to increase the accuracy of convective
fluxes.
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First, we give a brief overview of the Moving Least Squares (MLS) technique for
introducing the notations. We refer the reader to [Lancaster & Salkauskas, 1981] for
a complete description of the technique and to [Chen et al., 2017] for their application
in the context of meshless methods.

The MLS approximation of a function u at point x = (x, y, z)T is approximated in
the neighborhood around a particle i by a set of ni values, uj , and it is defined as

û(x) =
ni∑
j=1

Nj(x)uj (3.8)

where the associated shape functions, gathered in vector N = (N1, N2, ..., Nni) ∈ Rni ,
are computed by

NT (x) = pT (x)M−1(x)P (x)WMLS(x) (3.9)

where pT (x) = (1, x, y, z, x2, y2, z2, xy, xz, yz...) ∈ Rm is a m-dimensional basis func-
tions vector, P (x) is a m× ni matrix where the basis functions are evaluated at each
point of the stencil of the particle i (namely P = [pT (xj)]i) and M(x) is the m × m

moment matrix given by

M(x) = P (x)WMLS(x)P T (x) (3.10)

Diagonal matrix WMLS(x) is derived from the kernel function evaluated at xj −xi
for the ni neighboring particles [Cueto-Felgueroso et al., 2007].

Note that the general MLS technique allows that x can take any value in the
domain Ω resulting in a continuous approximation. Therefore, the approximation of
the variables or its derivatives can be obtained at any point of the domain. In Figure 3.2
a schematic representation of the MLS reconstruction is shown.

In the following sections we address the discretization of the convective and diffusive
fluxes.

3.6.2. Discretization of the non-viscous flux

The numerical flux tensor Gij is computed using the Rusanov flux in the co-moving
frame according to

Gij = 1
2
[
(F w)+

ij + (F w)−
ij

]
− 1

2S
+
ij∆U ij · n

where (F w)−
ij = F w(U−

ij ,wij) and (F w)+
ij = F w(U+

ij ,wij) denote the approximations
of the Lagrangian flux tensor F w = FE(U) − w ⊗ U on the left and right sides of the
interface ij.

The term S+
ij is the maximum eigenvalue of the Jacobian matrix which in the

Arbitrarian Lagrangian–Eulerian (ALE) framework reads

S+
ij = max

[
(u+

ij − wij) · nij + c+
ij , (u−

ij − wij) · nij − c−
ij

]
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Figure 3.2. Schematic representation of MLS approximations. The blue solid line rep-
resents the MLS reconstruction associated to particle i, built from information of its
neighboring particles. The blue dashed line represents the weight function. The same is
plotted in red for another particle j. Di and Dj are the supports of particles i and j.

where ∆U ij = U+
ij − U−

ij is the jump of the reconstructed conservative variables.
Moreover, the term wij is the velocity of the reference frame at the interface ij. On an
Eulerian frame, wij = 0, whereas on a Lagrangian frame wij = uij = (u+

ij + u−
ij)/2.

We note that, despite the known diffusive behavior of the Rusanov flux [Gallouët
et al., 2002], it can be easily used with different EOS, so it is a convenient choice for
the problems addressed here.

Tensor (F w)i = F w(U i,wi) is the Lagrangian flux computed as a function of the
state of the i−th particle (F w)i = FE(U i) − wi ⊗ U i.

One way to increase the accuracy of the resulting scheme is to compute the recon-
struction of the variables at each integration point ij using a high-order approximation.
For a given variable ϕ, which is known on each particle, we can compute the recon-
structed variable at integration point, ϕij , by means of Taylor series as

ϕ+
ij = ϕi + ∇ϕi · (xij − xi) + 1

2 (xij − xi)T ∇2ϕi (xij − xi) (3.11)

where the first and successive derivatives are computed, following the previous work of
Nogueira et al. [2016a], using MLS approximations.

3.6.3. A posteriori stabilization using the Multidimensional
Optimal Order Detection (MOOD)

The a posteriori MOOD paradigm, introduced by Clain et al. [Clain et al., 2011], is
used in this work to determine the optimal order of the polynomial reconstruction. This
is determined iteratively by building a candidate solution U∗ for time tn+1 based on
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the tn solution. The candidate solution is then tested through a series of detectors that
check if the solution has a certain set of desirable properties. If any of the particles is
flagged as invalid, the candidate solution at that particle is discarded and recomputed
from the original solution at tn but using a more dissipative scheme by lowering the
polynomial reconstruction degree.

MOOD Loop The MOOD approach is composed of a Particle Polynomial Degree
(PPD) and a chain of detectors. The PPD is associated to each particle i, and it
refers to the actual polynomial degree used to compute the candidate solution U∗ at
particle i. We evaluate the flux at the midpoint ij between particles i and j, taking
the minimum of the respective PPDs for the polynomial reconstruction as PPDij =
min (PPD(i),PPD(j)). The chain of detectors controls the validity of the resulting
solution, and the PPD is decremented where any of the detectors flag the solution as
invalid.

The MOOD loop iterates through the PPD map, initialized with maximal order ( in
this case, dmax = 3), decreasing the order of the particles that present a non-physical or
invalid solution (that is, a solution that was flagged as invalid by the chain of detectors).
In this work only third and first order schemes are used. The first order scheme is called
theparachute scheme that, by definition, fulfills all the detectors requirements.

Chain Detectors In order to obtain a stable solution within the SPH formulation,
a chain of detectors is used to assess whether the solution is admissible or not. In this
work, we employ two detectors:

Physical Admissibility Detector (PAD): it checks that all the particles in
the solution have positive density and pressure at all times. It also accounts for
NaN (Not a Number) values that arise in the candidate solution.

Numerical Admissible Detector (NAD) [Dumbser et al., 2014]: relaxed
version of the Discrete Maximum Principle (DMP)[Clain et al., 2011]. It checks
that the solution is monotonic and thus, no new extrema are created. It compares
the candidate solution with the solution obtained in the previous Runge-Kutta
step.

min
y∈Vi

(
URK (y)

)
− δ ⩽ U∗(x) ⩽ max

y∈Vi

(
URK (y)

)
+ δ (3.12)

where Vi is the set of closest particles and the tolerance δ is defined following [Dumbser
et al., 2014] as

δ = max
(

10−4, 10−3 ·
(

max
y∈Vi

(
URK (y)

)
− min

y∈Vi

(
URK (y)

)))
(3.13)

56



3.7. Validations cases

3.6.4. Discretization of the viscous flux

In this work we propose to extend the same discretization that is typically performed
in the Finite Volume method to SPH-ALE discretizations. Tensor Di = D(U i,∇Ûi)
is the viscous tensor computed as a function of the state of the i−th particle and the
gradient at the integration point ij is computed as

Dij = 1
2 (Di + Dj) (3.14)

where the derivatives required to evaluate the viscous tensor are computed with MLS
reconstruction. Note that since the MLS reconstruction is early performed for the
convective terms, it does not require any additional reconstruction procedure to obtain
a highly accurate discretization of the fluxes.

3.7. Validations cases

We present the numerical tests selected to assess the ability of the SPH-ALE-MOOD
scheme to produce accurate and robust approximations. All the numerical examples
have been computed using a third-order Runge-Kutta scheme for time integration.

3.7.1. 1D Riemann Problems

The first test cases are devoted to assess the stability and diffusive properties of the
SPH-ALE-MOOD scheme. Here, we consider several one-dimensional tests.

The first test case is the 1D Riemann problem (R1) which is one of the four test
cases proposed by Marongiu in [Marongiu, 2007]. In the context of SPH, the works
presented in [Koukouvinis et al., 2013; Collé et al., 2019] also simulate this 1D Riemann
problems with Tait EOS. The fluid is water modeled with Tait EOS (ρ0 = 1000 kg/m3,
c0 = 1466.0m/s, γ = 7 and p0 = 0Pa). The domain is [0, 0.1]m and the initial
condition is defined as

(R1) (ρ, u) =
{

(1100 kg/m3, 0m/s), if x ≤ 0.05m
(1000 kg/m3, 0m/s), otherwise

A discretization of 100 particles is used and the solution is advanced up to time
tfinal = 10−5 s. The exact solution consists of a rarefaction wave traveling to the left
and a shock wave traveling to the right. As a reference solution, we use the exact
solution obtained with the algorithm given in [Toro, 2009] applied to the Tait EOS as
indicated in [Ivings et al., 1998].

Figure 3.3 plots the pressure and velocity profiles obtained with the base scheme
(first-order SPH-ALE scheme) [Vila, 1999] and with the SPH-ALE-MOOD model. The
SPH-ALE base scheme smears the solution in the shock and rarefaction wave. As ex-
pected, for the same number of particles the SPH-ALE-MOOD provides a better repre-
sentation of the shock front. The front and tail of the rarefaction wave provided for the
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SPH-ALE-MOOD are also accurately captured and are free of overshoots near discon-
tinuities. Both Eulerian and Lagrangian versions of the scheme produce very similar
results, so we only plot here the results obtained with the Lagrangian description.
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Figure 3.3. 1D shock tube problem (R1): Pressure and velocity at at time tfinal = 10−5 s
using 100 particles in the domain [0, 0.1] m. Results obtained using the SPH base scheme
(empty squares) and the SPH-ALE-MOOD method (filled circles).

We consider a second one-dimensional Riemann problem (R2). In this case, the
liquid is assumed to follow the Tammann EOS (γ = 7.15 and pc = 3 ·108 Pa). This test
was proposed by Ivings and Toro in [Ivings et al., 1998] and has been also presented
in [Pineda et al., 2019] with a SPH-ALE code with MUSCL reconstruction using a
minmod limiter and a finer particle resolution.

The initial conditions for this problem are

(R2) (ρ, u, p) =
{

(1100 kg/m3, 500m/s, 5 · 109 Pa), if x ≤ 0.5m
(1000 kg/m3, 0, 1 · 105 Pa), otherwise

The exact solution to this problem comprises a left-going rarefaction wave, a con-
tact discontinuity and a right-going shock wave. The computational domain [0, 1] is
discretized with 200 particles.

In Figure 3.4 we plot the results for pressure, velocity, density, and internal energy at
the final time tfinal = 7 ·10−5 s obtained with the SPH base scheme and the SPH-ALE-
MOOD using a Lagrangian description. The SPH-ALE-MOOD improves the results of
the SPH base scheme in all the salient features present in the flow. In the density and
internal energy plots, it is observed that the resolution of the contact discontinuity is
not as sharp as the one obtained for the shock front. We note that the smearing in
the contact discontinuity is inherent to the approximations made in the derivation of
the Rusanov flux as reported in previous works [Avesani et al., 2014; Nogueira et al.,
2016a].
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Figure 3.4. 1D Sod shock tube problem (T2): Simulations results at tfinal = 7 · 10−5 s
using 200 particles in the domain [0, 1] m. We plot velocity (top-left), pressure (top-right),
density (bottom-left), and internal energy (bottom-right). Results obtained using the
SPH base scheme (empty squares) and the SPH-ALE-MOOD (filled circles).

3.7.2. 2D Blast Explosion

The first two-dimensional test considered here is an extension of the one-dimensional
shock tube R1 assuming cylindrical symmetry. The fluid is water modeled with Tait
EOS(ρ0 = 1000 kg/m3, c0 = 1466.0m/s, γ = 7 and p0 = 0Pa). The computational
domain is a circle of radius R = 0.1m centered at the origin and the initial conditions
are given by

(ρ, u, v) =
{

(1100 kg/m3, 0m/s, 0m/s), if r ≤ 0.05m
(1000 kg/m3, 0m/s, 0m/s), otherwise

The configuration mimics an explosion with a shockwave traveling outwards and a
rarefaction moving towards the origin. The reference solution is obtained by using a
one dimensional finite volume code with a very fine mesh as explained in [Toro, 2009].

The evolution of the flow is simulated until tfinal = 10−5 s with the SPH-ALE-
MOOD scheme.
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We consider three different particle initializations to evaluate the effects of the
initial positions of the particles on the quality of the numerical results. A radial distri-
bution disposing particles in rings, a Delaunay distribution, which places particles in
barycenters of triangles and finally, the third initial layout of particles is the result of
applying a random displacement to the Delaunay distribution. The number of particles
of the radial distribution (∼90,000) is slightly higher than the one of the Delaunay and
Random distribution (∼75,000). Figure 3.5 shows the initial distributions considered.
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Figure 3.5. 2D Blast Explosion: Particle initializations. Radial distribution (left), De-
launay distribution (center), Random distribution (right).

Figure 3.6 shows the density at final time for the three initial particle layouts. The
reference solution is represented with a black solid line. It is observed that the results
preserve the radial symmetry of the physical problem.

Figure 3.6. 2D Blast Explosion: Density plot in xy domain at time tfinal = 10−5 s. Radial
distribution (left), Delaunay distribution (center), Random distribution (right).

Figure 3.7 plots the density profiles along the radial coordinate. All the particles
of the computational domain are represented and it can be noticed more clearly the
ability of the model to preserve the radial symmetry. We note that the dispersion of
the particles is really small for all particle distributions.
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Figure 3.7. 2D Blast Explosion: Density profile along radial coordinate at time
tfinal = 10−5 s. Radial distribution (top left), Delaunay distribution (top right), Ran-
dom distribution (bottom).

3.7.3. Taylor–Green Flow

The Taylor–Green flow is a classical test for numerical methods for the simulation
of viscous flows. It provides an exact solution of the incompressible Navier-Stokes
equations in a periodic domain. See [Kundu et al., 2015; Taylor & Green, 1937] for
details. The flow involves the decay of four counter-rotating vortices within the periodic
region of size L× L as shown in Figure 3.8.

Figure 3.8. Taylor–Green vortex: Schematic representation of the computational domain
and streamlines.

The exact solution is given in [Vittoz et al., 2019] and reads

u

U0
= sin

(
2πx
L

)
cos
(

2πy
L

)
exp

(
−8π2

Re

U0

L
t

)
(3.15)

v

U0
= − cos

(
2πx
L

)
sin
(

2πy
L

)
exp

(
−8π2

Re

U0

L
t

)
(3.16)

p
1
2ρ0U2

0
= 1

2

[
cos
(

4πx
L

)
+ cos

(
4πy
L

)]
exp

(
−16π2

Re

U0

L
t

)
(3.17)
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where Re is the Reynolds number of the flow, defined as Re = ρ0U0L
µ0

. U0 is a reference
velocity magnitude, and ρ0 and µ are constant values for the density and viscosity of
the fluid, respectively.

A global decay kinetic energy factor, denoted by r(t), is defined as the ratio of the
overall kinetic energy at time t (Ek) and the corresponding one to initial time Ek0

r(t) = Ek
Ek0

=
∫∫
D

1
2 [u2(x, y, t) + v2(x, y, t)] dx dy∫∫

D
1
2 [u2(x, y, 0) + v2(x, y, 0)] dx dy

(3.18)

Evaluation of Eq. (3.18) with the velocity field given by Eq. (3.15) and Eq. (3.16)
results in an exponential decay according to

r(t) = Ek
Ek0

= exp
(

−16π2

Re

U0

L
t

)
(3.19)

and by integration in the domain it can be derived that the initial kinetic energy is
Ek0 = 1

4U
2
0L

2.
For the simulations presented in this test, we consider a Taylor-Green flow with

L = 1m ,U0 = 1m/s and ρ0 = 1kg/m3. According to the weakly compressible
approach, we assume that the fluid obeys the Tait equation with parameters ρ0 =
1 kg/m3, c0 = 10m/s, γ = 7 and p0 = 0Pa. The case is simulated for Re = 10,
Re = 100 and Re = 1000 with the Eulerian version of the SPH-ALE-MOOD scheme.
Fluid particles are disposed inside the square domain on a Cartesian arrangement with
dx = dy = L/100 as shown in Figure 3.9.

Figure 3.9. Taylor–Green flow: Layout of the particles. Hollow red circles: ghost periodic
particles. Solid blue circles: fluid particles.
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The initial conditions are computed using Eq. (3.15), Eq. (3.16) and Eq. (3.17) with
the value of the density obtained from the Tait EOS for the analytical pressure.

Figure 3.10 shows the velocity components and pressure at non-dimensional time
t∗ = tU0/L = 1. Velocity and pressure are smooth, similar to the analytical solution
and no degradation of the vortical pattern is observed.

Figure 3.10. Taylor–Green flow: Results for Re = 100 at t∗ = 1. Left: u-velocity field;
center: v-velocity field: right: pressure field.

Figure 3.11 shows the time evolution of global decay of the kinetic energy, r(t),
and the maximum velocity modulus obtained using the SPH-ALE method and the
corresponding reference incompressible solution for three different Reynolds numbers:
Re = 10, Re = 100, and Re = 1000. The numerical results are in close agreement with
the analytical solution, showing that the high-order reconstruction of the proposed
scheme allows achieving a low dissipation scheme which is accurate for a wide range of
Re numbers.
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Figure 3.11. Taylor–Green flow: Comparison of the numerical and theoretical decay of
the kinetic energy factor defined in Eq. (3.18) (left) and the maximum velocity (right)
for Re = 10, Re = 100 and Re = 1000.
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Following the work of Sun et al. [Sun et al., 2019], we have measured the time
evolution of the pressure at the center of the domain for Re = 100 and Re = 1000
cases. The results are compared in Figure 3.12 with the theoretical solution and the
solutions obtained with the δ-SPH and δ+-SPH presented by Sun et al. [Sun et al., 2017,
2019]. We note that the proposed scheme shows better agreement with the reference
solution for all particle resolutions. Moreover, it is remarkable the reduced amount of
pressure oscillations, even for coarse discretizations.
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Figure 3.12. Taylor–Green flow: Comparison of the time evolution of the pressure at
the center of the domain for Re = 100 (left) and Re = 1000 (right).

In Figure 3.13, the pressure field along y = 0.5L is shown at t∗ = 6 for Re = 1000.
The results closely follow the theoretical solution even for the coarser discretization.
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Figure 3.13. Taylor–Green flow: Comparison of the pressure field along y = 0.5L for
Re = 1000.
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Concerning the computational cost of the proposed scheme, Figure 3.14 plots the
CPU time consumed for different particle discretizations for a simulation until a final
time of t∗ = 2 for Re = 100. As expected, the Eulerian scheme is faster than the
Lagrangian method. Then, a possible way for improving the efficiency of the proposed
method is to combine Eulerian and Lagrangian particles. This idea has been explored
previously in the context of ISPH [Fourtakas et al., 2018] and fits very naturally in the
proposed formulation.
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Figure 3.14. Taylor–Green flow:Computational costs for different particle discretization.

3.7.4. Couette and Poiseuille Flows

Couette and Poiseuille flows are special configurations of the incompressible Navier-
Stokes equations that have analytical solution [Buresti, 2012]. In both cases, a Newto-
nian fluid moves between two infinite parallel plates. The Couette flow is driven by the
movement of one of the plates whereas the Poiseuille flow is driven by a pressure gra-
dient. As velocity does not vary along the flow direction, a finite length of the plates is
considered with periodic boundary condition in left and right sides. Figure 3.15 shows
the geometry model and boundary conditions considered for the simulations. In both
configurations the fluid is initially at rest.

In the Couette flow, the time-dependent exact solution for the fluid velocity in the
x-direction can be expressed as [Buresti, 2012; Morris et al., 1997]

u(y, t) = up
L
y +

∞∑
n=1

2up
nπ

(−1)n sin
(nπ
L
y
)

exp
(

−ν n
2π2

L2 t

)
(3.20)

where up is the horizontal velocity of the upper plate and ν is the kinematic viscosity
of the fluid.
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Figure 3.15. Couette and Poiseuille Flows: Schematic representation of the problems.

Similarly, for the Poiseuille flow the transient exact solution is given by [Buresti,
2012; Morris et al., 1997]

u(y, t) = fx
2ν y(y − L) +

∞∑
n=0

4fxL2

νπ3(2n+ 1)3 sin
(πy
L

(2n+ 1)
)

exp
(

− (2n+ 1)2π2ν

L2 t

)
(3.21)

where fx denotes a force source term in the x-momentum equation and, as such, it
must be included in the source term S of the system of equations defined in Eq. (3.4).
The force source term fx and the steady peak velocity in the midplane of the channel
upeak are related by expression upeak = 1

8ν fxL
2.

For both problems, the Reynolds number is defined as Re = umaxL
ν considering the

distance between plates L and the maximum velocity umax as the reference length and
velocity scales.

In this work, we conduct Couette and Poiseuille simulations for Re = 10. The same
value was adopted in the works of Chiron [Chiron, 2017], Ferrand [Ferrand et al., 2013],
and Fourtakas [Fourtakas et al., 2019]. The fluid is modeled using the Tait equation
with ρ0 = 1 kg/m3, γ = 7, c0 = 10m/s, and p0 = 0Pa. The kinematic viscosity
considered for the fluid is ν = 0.1m2/s. The distance between plates is set to L = 1m
and half of this distance is considered for the periodic length in the flow direction.

In the Couette flow, up is set to 1m/s, which leads to Re = 10. For the Poiseuille
flow, the force source term is imposed as fx = 0.8m/s2 to produce the same Re number.

Figure 3.16 shows the arrangement of the particles employed for both the Couette
and Poiseuille tests. The number of fluid particles between walls and periodic zones
is 40 and 20, respectively, resulting in a squared arrangement with distance between
particles dx = L/40.
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In addition to the fluid particles, we need to incorporate ghost particles for im-
plementing the periodic and wall boundary conditions. For the wall ghost particles,
we follow the technique used in [Marrone et al., 2011]. A schematic representation of
this technique is shown on the right of Figure 3.16. Dirichlet boundary conditions for
velocity on the wall require that ghost particles update their velocity uG = (uG, vG)T
following the vector equation.

uG = 2uW − uF (3.22)

where uF = (uF , vF )T is the velocity of the mirroring fluid particle and uW =
(uW , vW )T is the velocity vector of the wall. In case of fixed walls uW = (0, 0)T
and for the top moving wall in Couette flow uW = (up, 0)T .

Figure 3.16. Couette and Poiseuille Flows: Particle layout (left). Schematic representa-
tion of the antisymmetric technique for wall ghost particles (right).

As we already have commented, one of the main advantages of the SPH-ALE method
is the ability to use either Eulerian or Lagrangian description, and both configurations
are able to obtain accurate solutions for this test case. Figure 3.17 shows the velocity
profiles obtained with the SPH-ALE-MOOD scheme for Poiseuille flow at Re = 10
for the Eulerian and Lagrangian description. The exact solution is computed using
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Eq. (3.21). For t = 20 s the flow is practically in the steady state condition and the
obtained numerical solutions agree almost perfectly with the exact solution.
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Figure 3.17. Time evolution of the velocity profile for the Poiseuille flow Re = 10 with
Eulerian (left) and Lagrangian description (right). The numerical solution is compared
with the exact solution presented in Eq. (3.21).

Figure 3.18 shows the velocity profiles obtained with the SPH-ALE-MOOD scheme
for the Couette flow at Re = 1, 10, 100, 1000. The exact solution is computed using
Eq. (3.20). At t = 0, the velocity of the moving plate changes abruptly from rest to
an horizontal velocity up forming a sharp discontinuity in the velocity field. A short
time after that event, the obtained numerical results slightly deviates over the exact
solution. This effect increases with the Reynolds number. For the last time instant,
displayed for each Reynolds in Figure 3.18, the flow has practically reached the steady
state, and the velocity profile is linear. The obtained results in the steady state are in
close agreement with the exact solution for all the Reynolds numbers computed in this
test case.

In Figure 3.18, the deviation from the reference solution observed in the first time
instants of the simulations for Re = 100 and Re = 1000, are due to a lack of particles.
For these Reynolds numbers, the spatial discretization is not able to capture the abrupt
change in the velocity. To verify this, we plot in Figure 3.19 the results obtained for
Re = 100 at t = 0.2 (left) and Re = 1000 at t = 2 (right) for different particle
resolutions. It is seen that as the particle resolution increases the deviation is reduced,
as expected.
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Figure 3.18. Time evolution of the velocity profile for the Couette flow Re = 1 (top left),
Re = 10 (top right), Re = 100 (bottom left), and Re = 1000 (bottom right). The numerical
solution is compared with the exact solution presented in Eq. (3.20).
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Figure 3.19. Convergence analysis for the Couette flow Re = 100 at t = 0.2 (left) and
Re = 1000 at t = 2 (right).

3.7.5. 2D Lid-Driven Cavity Flow

The final test presented to assess the behavior of the proposed method is the 2D
flow inside a square lid-driven cavity of length L. A schematic setup of the geometry is
shown in Figure 3.20. The lateral and bottom walls are stationary, while the top wall
moves horizontally to the right at speed uw.

Figure 3.20. 2D Lid-driven cavity flow: Schematic representation of the geometry and
boundary conditions.

Different Reynolds numbers, namely, Re = 100, Re = 400, and Re = 1000, are
studied and results are compared to Ghia [Ghia et al., 1982]. As in the previous case,
the velocity of the frame is set to zero adopting the Eulerian version of the SPH-ALE-
MOOD scheme.
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Figure 3.21 shows the layout and the type of particles. A Cartesian layout is adopted
using a discretization of 100 particles on each side. Lid-driven cavity does not introduce
any new type of boundary conditions, but the wall corners need to be taken into account
to properly update ghost particle information, as schematically presented in Figure 3.21
on the top right corner.

Figure 3.21. 2D Lid-driven cavity flow: Layout of the particles and treatment of ghost
particles in corners.

In order to set the velocity for the corner particle uGC , we use a similar technique
to the one proposed by Szewc et al. [Szewc et al., 2012]. Focusing on the top-right
wall corner and considering the nearest four particles. We have one fluid particle with
velocity uF , a ghost particle attached to the moving wall with velocity uGM , a ghost
particle attached to the fixed wall with velocity uGF , and a ghost particle in the corner
with velocity uGC . uF evolves with the governing equations, and that uGM and uGF

are updated according to Eq. (3.22). In order to set the velocity for the corner ghost
particle uGC we impose the velocity in the vertex of the corner as the average of the
four particles.

Figure 3.22 shows the horizontal and vertical velocity profiles along the vertical
and horizontal center line for Re = 100, Re = 400, and Re = 1000. Simulations were
run for a tfinal = 500 s, clearly a time much longer than the one needed to reach the
steady-state condition. Results are in good agreement with the reference solution [Ghia
et al., 1982] for all the Reynolds number considered. Moreover, the obtained solutions
are compared with the ones obtained by Lee et al. [Lee et al., 2008]. We note that the
two schemes use the same number of particles for Re = 400. For Re = 1000, the ISPH
scheme from [Lee et al., 2008] uses a finer discretization (1602 particles).

The contours of the velocity magnitude superposed with the streamlines after 500 s
are shown in Figure 3.23. It is seen that the scheme is able to reproduce the primary
and secondary vortices of the flow.
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Figure 3.22. 2D Lid-driven cavity flow: On the left, horizontal velocity component u
along x = 0.5L for Re = 100, Re = 400, and Re = 1000. On the right, vertical velocity
component v along y = 0.5L for Re = 100, Re = 400, and Re = 1000.

Figure 3.23. Contours of velocity and streamlines for lid driven cavity at different Re
numbers. Re = 100 (top left), Re = 400 (top right), and Re = 1000 (bottom).
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3.8. Conclusions

A high-accuracy SPH-ALE method for weakly compressible flow was implemented.
The proposed method can deal with discontinuities. A new approach to compute the
viscous flows terms is presented, where Moving Least Squares approximations are used
to increase the accuracy and compute the derivatives needed for viscous fluxes. The
performance of the proposed scheme is validated with a series of 1D and 2D benchmark
problems, and compared with other WCSPH and ISPH schemes from the literature.
The proposed method alleviates some of the known drawbacks of weakly compressible
schemes. Thus, pressure oscillations are reduced compared with the δ−SPH scheme,
and there is no need for an special initialization of the particles. The proposed scheme
obtains accurate solutions for any initial distribution of the particles. Moreover, the
proposed formulation simplifies the coupling with grid-based methods (such as the
FVM) or the combination of Eulerian and Lagrangian particles.
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Chapter4
The MLSPH-ALE method

4.1. Introduction

In this chapter a new meshless formulation is proposed to circumvent particle in-
consistency issues of SPH-ALE. Instead of correcting the kernel particle approximation
to restore zero and first order consistency we derived a meshless formulation that re-
lies entirely on MLS approximation. The computational cost of creating MLS shape
functions is similar to the cost of conducting a renormalization of the kernel gradi-
ent. Moreover, MLS approximation satisfies some desirable properties that can be
conveniently exploited. The aim of this chapter is to develop a meshless method for
the Navier-Stokes equations that keeps the advantages of the SPH-ALE method while
circumventing particle consistency issues with MLS approximations, instead of modi-
fying the kernel gradient. We named this new formulation as MLSPH-ALE method.
A derivation of the model is provided starting from the Navier-Stokes equations given
in conservative ALE form. Once the semidiscrete-system is derived, details are pro-
vided to recover the SPH-ALE formulation, showing the relationship between the two
formulations. The introduction of MLS approximation brings also some additional ad-
vantages for the discretization of viscous fluxes and also for the reconstruction of the
states to extend the MUSCL method [van Leer, 1979].

Meshless and mesh-based discretizations are usually considered as two competitive
strategies to solve partial differential equations. In fact, if we consider the Finite Vol-
ume Method (FVM) and Smoothed Particle Hydrodynamics (SPH) as representative
of these two approaches, both methodologies are far apart from each other. Vila [Vila,
1999] linked these methodologies by devising a weak version of a SPH method in an
ALE framework where the interaction between particles is accounted by solving a Rie-
mann problem. Junk [Junk, 2003] outlined that the FVM can be considered as a special
case of meshless method satisfying the partition of unity property and posed the ques-
tion if finite volume method really needs a topology for its implementation. Schaller et
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al.[Schaller et al., 2013] analyzed three particle methods in decreasing similitude with
the FVM and in terms of computational cost. The particle method with more simil-
itude with the FVM is the one based on Voronoi tessellation, followed by the FVPM
[Hietel et al., 2000] and the SPH-ALE proposed by Vila [Vila, 1999]. So, this two
apparent different approaches actually have many features in common [Ivanova et al.,
2013] suggesting that some successful techniques used in FVM can be incorporated in
SPH and viceversa. In the last chapter of this dissertation, we will address this subject.

Despite the fact that meshless and mesh-based methods have advantages and draw-
backs derived from the different form to accomplish the discretization of the partial
differential equations, there are some physical phenomena (like turbulence) that are
very computational demanding for both types of approaches. The research on the
numerical simulation of turbulent flows has been mainly addressed by using mesh-
based methods. Simulation of turbulence using meshfree methods has received less
attention, and many studies deal with complex applications without providing details
of their development, diffusion rates or details about the evolution of the energy spec-
trum. We refer the reader to [Monaghan, 2002, 2011; Mayrhofer et al., 2015; Hu &
Adams, 2015; Di Mascio et al., 2017] for some examples.

In [Ramı́rez et al., 2018] the authors presented a new meshless approach (SPH-MLS)
based on a Galerkin discretization of a set of conservation equations on an Arbitrary
Lagrangian Eulerian approach, applied to the resolution of the Linearized Euler Equa-
tions. Instead of using kernel approximations, Moving Least Squares (MLS) [Lancaster
& Salkauskas, 1981; Liu et al., 1997] were used as weight functions for the Galerkin
discretization. The numerical method proposed was high-order and very accurate, and
it was shown that it was able to be applied in the context of Computational Aeroa-
coustics. It can be seen as a general formulation which includes some well-known
meshfree methods as a particular case, such as SPH-ALE [Vila, 1999; Avesani et al.,
2014; Nogueira et al., 2016a] and Finite Point Method [Oñate et al., 1996b; Oñate,
1998; Ortega et al., 2009]. This formulation has several advantages over standard SPH
methods. First, MLS functions form a partition of unity even in regions close to the
boundaries. Moreover, shape function derivatives form a partition of nullity. These
properties allow avoiding problems related with the initial position of particles which
are found in other SPH methods [Colagrossi et al., 2012] and also lead to a higher accu-
racy than kernel usual approximations. Moreover, the number of neighbors required by
the proposed formulation is smaller than that required when the kernel approximation
is used [Ramı́rez et al., 2018], so the numerical scheme is more compact. In addition,
the ALE behavior of the method proposed in this work makes possible the natural ac-
commodation of Particle Shifting Techniques (PST). PST defines a drift velocity that
moves the computational points to positions that produce more regular distributions
and thus more accurate results [Nestor et al., 2009]. Dilts [Dilts, 1999, 2000] proposed
different procedures to introduce MLS approximations to derive discrete meshless meth-
ods applied to a system of equations expressed in Lagrangian form. We note that the
novelty of the present work is the use of the MLS approximation technique in a weak
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form of the Navier-Stokes equations in ALE form.
In this chapter, we present several modifications to the method proposed in [Ramı́rez

et al., 2018] and also the extension of this method to the resolution of compressible
viscous flows. Thus, there are two main novelties in the formulation. First, we intro-
duce a novel approach for the high-order reconstruction of the Riemann states. The
usual Taylor polynomial reconstruction of the Riemann states is substituted by direct
MLS approximations. This avoids the need of computing high-order derivatives for
the Taylor reconstruction, but at the same time keeps the high-order accuracy of the
reconstruction. The second novelty is related to the discretization of viscous terms. In
the literature, there are different approaches to model the viscous part of the Navier-
Stokes equations [Morris, 1996; Eiŕıs et al., 2021]. The traditional approach in SPH
methods is based on the definition of a number of discrete operators for approximating
second derivatives. In this work we follow a different approach and approximate the
viscous flux term with a formulation similar to that used for mesh-based methods in
unstructured grids. Our approach is based on the use of MLS approximations of the
Riemann states at both sides of the integration point. This approach fits perfectly in
the SPH-MLS approach, since the MLS reconstruction is already computed.

This new discretization leads to a robust and very accurate meshless method, which
is able to obtain results at least as accurate as grid-based methods of the same order
of accuracy.

The structure of this chapter is as follows: firstly, we present the Navier-Stokes in
conservative ALE form. Next, the proposed numerical method is introduced, including
the novel discretization of viscous terms. Some numerical examples are presented to
show the accuracy and robustness of the proposed formulation.

4.2. Governing equations

We define a transport operator Lw(U) with a regular velocity field w that operates
on a vector of variables U giving

Lw(U) ≡ ∂

∂t
U + ∇ · (w ⊗ U) (4.1)

The conservative form of the Navier-Stokes equations can be compactly expressed
using the transport operator Lw as

Lw(U) + ∇ · (F w − D) = S (4.2)

where the fluxes are split into a ALE hyperbolic-like part, F w = (F x
w,F

y
w,F

z
w)T , and

an diffusive elliptic-like part, D = (Dx,Dy,Dz)T . The right hand side contains the
vector of source terms S.
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In 3D the vector of conservative variables reads as

U =


ρ

ρux

ρuy

ρuz

ρE

 , (4.3)

where ρ is the density, u = (ux, uy, uz)T is the velocity vector, and E is the total
energy.

The hyperbolic-like fluxes, also known as convective fluxes read in 3D as

F x
w =


ρ(ux − wx)

ρux(ux − wx) + p

ρuy(ux − wx)
ρuz(ux − wx)

ρE(ux − wx) + pux

 , F y
w =


ρ(uy − wy)
ρux(uy − wy)

ρuy(uy − wy) + p

ρuz(uy − wy)
ρE(uy − wy) + puy

 ,

F z
w =


ρ(uz − wz)
ρux(uz − wz)
ρuy(uz − wz)

ρuz(uz − wz) + p

ρE(uz − wz) + puz


(4.4)

where p is the pressure. The elliptic or viscous fluxes read

Dx =


0
τxx

τxy

τxz

τx · u − qx

 , Dy =


0
τyx

τyy

τyz

τ y · u − qy

 , Dz =


0
τzx

τzy

τzz

τ z · u − qz

 , (4.5)

where τx = (τxx, τxy, τxz), τ y = (τyx, τyy, τyz) and τ z = (τzx, τzy, τzz) represent the
viscous stresses and q = (qx, qy, qz)T is the heat flux vector.

The viscous stress tensor is defined as

τ = µ(∇(u) + ∇(u)T ) − 2
3µ∇ · (u)I (4.6)

where µ is the dynamic viscosity. These equations are completed with an equation of
state (EOS), which in this chapter is the ideal gas EOS.

Once the governing equations have been presented we can remark some details.
The hyperbolic flux tensor F w is not only dependent on the vector of conservative
variables U but also on the transport velocity field w, stated mathematically as F w =
F w(U ,w). The elliptic flux tensor D is a diffusive flux that does not depend on w

velocity and it takes the form D = D(U ,∇(u)). The transport velocity w is a field
variable that is independent of the flow solution and can be prescribed at different
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points of the domain according to different criteria. The transport velocity can be
prescribed to move particles avoiding some pitfalls of pure Lagrangian methods by
using some Particle Shifting Technique [Nestor et al., 2009]. Particles in the vicinity of
a free surface can be moved in a Lagrangian fashion meanwhile particles in the vicinity
of a wall can adopt an Eulerian framework to ease the implementation of boundary
conditions.

4.3. Derivation of the MLSPH-ALE method

4.3.1. Partition of Unity

A set of shape functions verifies the Partition of Unity (PU) when the following
property holds for any point x in the domain Ω

∑
j

N(x − xj , h) =
nx∑
j=1

N(x − xj , h) = 1 (4.7)

where nx denotes the number of neighbors in a compact support centered in x and
extension related with length h. PU property provides a subdivision of the domain Ω
into a set of subdomains Ωi. Each subdomain Ωi is associated with a particle i and a
shape function N(x − xi, h) that is non-zero only in that subdomain.

Figure 4.1. Isoline representation of particle shape functions Ni and Nj for two interact-
ing particles i and j. Positions of particles i and j are represented by blue and red filled
circles respectively. Other particles positions are represented by black filled circles.

Figure 4.1 provides a schematic representation of two particle shape functions Ni =
N(x − xi, h) and Nj = N(x − xj , h). Some isoline values are represented to remark
that shape functions do not have the symmetry property. Since the shape functions
are usually associated with a kernel o weighted function we also depict the support
domain D and its border ∂D.
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The PU property assures the zeroth-order consistency meaning that any constant
function c can be reproduced exactly

û(x) =
∑
j

Nj(x)uj =
nx∑
j=1

N(x − xj) c = c

nx∑
j=1

N(x − xj) = c (4.8)

By taking the gradient operator at both sides of
∑nx

j=1 N(x−xj) = 1 and noting that
∇ is a linear operator it can be concluded that the derivatives of the shape functions
verify also the Partition of Nullity

∇
nx∑
j=1

N(x − xj) = ∇1

nx∑
j=1

∇N(x − xj) = 0
(4.9)

It is possible to take advantage of the PU property when it is necessary to conduct
integrals over the global domain Ω or over any subdomain Ωi.

4.3.2. Volume integrals

PU property provides a subdivision of the domain Ω. The volume V of the global
domain Ω can be expressed as the sum of the volume subdomains Vi as given by

V =
∫

Ω
dxd =

∫
Ω

∑
i

N(x − xi)dxd =
∑
i

∫
Ω
Ni(x)dxd =

∑
i

Vi (4.10)

The previous relation suggests to assign a volume weight Vi for i particle as the
integral of the shape function N(x−xi) over the whole domain. Noting that the shape
function takes non-zero values only in its compact support Di

Vi =
∫

Ω
N(x − xi)dxd =

∫
Di

N(x − xi)dxd (4.11)

It is important to remark that the volume weight of the particle Vi is smaller than
the volume of the particle support Di. Despite the overlapping between the support of
the particles, the sum of the volume particle weights equals the volume of the global
domain.

4.3.3. Volume integrals of functions

In the case of the integral of a general function f(x) over the whole domain Ω, we
use the MLS approximation given by f̂(x) =

∑nx

i=1 N(x − xi)fi to obtain

∫
Ω
f(x)dxd ≈

∫
Ω

∑
i

N(x − xi)fidxd =
∑
i

fi

∫
Ω
Ni(x)dxd =

∑
i

fiVi (4.12)
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In the following, we also assume that for any smooth function f(x), we can apply
a one-point quadrature approximation at the particle i∫

Ω
f(x)N(x − xi) dxd ≈

∫
Ω
f(xi)N(x − xi) dxd = fi Vi (4.13)

4.3.4. Derivation of the MLSPH-ALE method

In order to develop the formulation for the Navier-Stokes equations is convenient
to group the ALE flux tensor F w and the diffuse tensor D in total flux tensor given
F ≡ F w − D. Then, Eq. (4.2) is rewritten as

Lw(U) + ∇ · F = S (4.14)

We start the derivation process by multiplying Eq. (4.14) by the MLS shape function
Ni = N(x − xi, hi) centered at particle i. Then, we take the volumetric integral over
the domain Ω ∫

Ω
Ni Lw(U)dxd +

∫
Ω
Ni ∇ · F dxd =

∫
Ω
Ni S dxd (4.15)

The divergence of the flux can be approximated using MLS as∫
Ω
Ni Lw(U)dxd +

∫
Ω
Ni

n∑
j=1

(F )j · ∇Nj dxd =
∫

Ω
Ni S dxd (4.16)

Using a one point quadrature approximation (see Eq. (4.13)) Eq. (4.16) reads

Vi Lw(U i) +
∫

Ω
Ni

ni∑
j=1

(F )j · ∇Nj dxd = Vi Si (4.17)

By using the Generalized RTT (see Eq. (2.10)) the term Vi Lw(U i) can be expressed
as a time derivative following the particle giving

d(ViU i)
dt

+
∫

Ω
Ni

ni∑
j=1

(F )j · ∇Nj dxd = Vi Si (4.18)

Assuming that (F )j are point values

d(ViU i)
dt

+
ni∑
j=1

(F )j
∫

Ω
Ni · ∇Nj dxd = Vi Si (4.19)

Integrating by parts and applying the divergence theorem, we obtain

d(ViU i)
dt

+
ni∑
j=1

(F )j
(∫

∂Ω
NiNj · n dxd−1 −

∫
Ω
Nj · ∇Ni dxd

)
= Vi Si (4.20)

81



Chapter 4. The MLSPH-ALE method

where n is the unitary surface normal and ∂Ω is the boundary of the domain Ω.
If we add Eq. (4.19) and Eq. (4.20) and divide by two, we obtain

d(ViU i)
dt

+
ni∑
j=1

1
2 (F )j

(∫
∂Ω
NiNj · n dxd−1

−
∫

Ω
Nj · ∇Ni dxd +

∫
Ω
Ni · ∇Nj dxd

)
= Vi Si (4.21)

Now, we add 1
2 F i and subtract F i to the fluxes in Eq. (4.21) yielding to

d(ViU i)
dt

+
ni∑
j=1

[
1
2 (F j + F i) − F i

](∫
∂Ω
NiNj · n dxd−1

−
∫

Ω
Nj · ∇Ni dxd +

∫
Ω
Ni · ∇Nj dxd

)
= Vi Si (4.22)

Note that the operations involved in the transition from Eq. (4.21) to Eq. (4.22)
have no effect at the continuum level, since, using Eq. (4.9) it can be proved that

ni∑
j=1

(F )i
∫

Ω
Ni ∇Nj dxd = (F )i

∫
Ω
Ni

ni∑
j=1

∇Nj dxd = 0 (4.23)

Using a one-point quadrature for the volume integrals we arrive to

d(ViU i)
dt

+
ni∑
j=1

[
1
2 (F j + F i) − F i

](∫
∂Ω
NiNj · n dxd−1 − Vj ∇Nij + Vi ∇Nji

)
= Vi Si

(4.24)
where Nij = N(xj − xi, hi) and Nji = N(xi − xj , hj).

The semidiscrete-system of Eq. (4.24) contains a boundary term that enable us to
impose boundary conditions without requiring any external technique. The discretiza-
tion of the boundary integral is detailed during the setup of the numerical problems
solved in this chapter.

Note also that Eq. (4.22) and Eq. (4.24) were obtained for the discretization of the
Navier-Stokes equations. For the particular case of the Euler equations the total flux
tensor given by F ≡ F w − D is coincident to the ALE flux tensor F w.

In order to establish some fast comparisons with standard SPH methodology let us
assume there is no rigid boundary, so the boundary integral is equal to zero, and the
discretization obtained by MLSPH-ALE for the Euler equations read as

d(ViU i)
dt

+
ni∑
j=1

[
1
2

(
(F w)j + (F w)i

)
− (F w)i

]
(−Vj ∇Nij + Vi ∇Nji) = Vi Si (4.25)
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Now, we define the numerical flux as Gij ≈ 1
2
(
(F w)j + (F w)i

)
(the difference in

the two terms is the numerical dissipation). Therefore, the system of conservation laws
can be discretized as

d(ViU i)
dt

+
ni∑
j=1

[Gij − (F w)i] (−Vj ∇Nij + Vi ∇Nji) = Vi Si (4.26)

If an Eulerian configuration is chosen for a set of particles distributed with equally
weights Vi, Eq. (4.26) is very close to that obtained in [Bajko, 2013] using the Finite
Point Method (FPM) for the discretization of the LEE. However, there are some dif-
ferences, such as the symmetrization of the gradient of the shape functions, which is
not performed in the FPM.

It is also interesting to remark that, if we use a kernel approximation instead of
MLS shape functions we arrive to

d(ViU i)
dt

= −
ni∑
j=1

ViVj2 [Gij − (F w)i] · ∇Wij (4.27)

due to the anti-symmetry property of the kernel gradient i.e: ∇Wij = −∇Wji. This is
the SPH-ALE formulation presented in [Vila, 1999] in the form proposed in [Avesani
et al., 2014]. We note that using the presented formulation, the origin and the necessity
of the term (F w)i is clearly explained.

To complete the ALE formulation is necessary to provide an equation for the move-
ment of the particles and an equation for evolving the weights of the particles.

The equation of the particles motion reads as

dxi
dt

=
ni∑
j=1

Nijwj (4.28)

As in the traditional SPH, the equation of evolution of the particles volumes follows
a similar rationale. For a generic function f(x, t) the generalization of the Leibniz rule
gives

d

dt

∫
Ω
f dxd =

∫
Ω

∂f

∂t
dxd +

∫
∂Ω
fw · n dxd−1 (4.29)

If we consider the constant function, f(x, t) = 1, a control volume Ω equal to Vi and
the velocity at the boundary equal to w we obtain

d

dt

∫
Vi

dxd =
∫
∂Vi

w · n dxd−1 =
∫
Vi

∇ · w dxd (4.30)

Introducing the MLS approximation,

d

dt

∫
Vi

dxd =
ni∑
j=1

∫
Vi

wj∇ ·Nji dxd (4.31)

Following the same procedure as in the system of conservation laws we obtain
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d Vi
dt

=
ni∑
j=1

[wij − wi] (−Vj ∇Nij + Vi ∇Nji) (4.32)

It is important to remark that the numerical scheme is formally second-order, even
though the reconstruction of Riemann states is higher-order [Hopkins, 2015].

4.4. Numerical Discretization

In this section the numerical discretization of the system given by Eq. (4.2) is
presented. The first step in the discretization process is the reduction of the continuum
domain into a cloud of points. Figure 4.2 shows a discretized geometry corresponding
to a continuous domain Ω with boundary ∂Ω.

Figure 4.2. Computational domain Ω and kernel support Di and Dj of particle i and j.
Shape functions associated to particle i and j are represented by isocontour curves.

Each particle is labeled with an index i and we define its current position by means
of its vector position xi with respect to a Cartesian coordinate system. We denote by
Di the spherical support domain and by Ni the shape function associated to particle i.
We use lowercase ni for the number of particles inside the support domain of i particle.
Note that each shape function Ni has a spherical compact support (a circle for 2D)
but, in general, the shape function is not a centered radial function.
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In Figure 4.2 two pairs of interacting particles are represented. One pair of inter-
acting particles keeps their boundary support ∂Di and ∂Dj inside the global domain
Ω. The term

∫
∂Ω NiNj · n dxd−1 appearing in Eq. (4.24) is zero. On contrary, the

boundary support of the other set of particles intersect the boundary of the global
domain ∂Ω and the boundary term needs to be evaluated.

Figure 4.3. Shape functions associated to particle i and j are represented by isocontour
curves.

Figure 4.3 depicts two neighboring particles in a two-dimensional domain. The
bottom of the figure corresponds to a plan view meanwhile the top view shows the
profile of the shape functions in a normal plane passing through the line that connects
both particles. Note that we show the continuous version of the shape functions Ni(x)
and Nj(x) although only the values in the locations of particles are required (Ni(xj)
and Nj(xi)).

Contrary to traditional SPH methods, where each particle is assigned with a con-
stant mass value, in the proposed method the mass and volume for each particle are

85



Chapter 4. The MLSPH-ALE method

variables that evolve with time.
The procedure to obtain the MLSPH-ALE semi-discrete system for the the Navier-

Stokes equations was detailed in the previous section. Here, we start with the semi-
discrete form valid for any interior particle i whose support does not intersect ∂Ω
(see Figure 4.2). We recover Eq. (4.25), where the hyperbolic and elliptic fluxes were
grouped in a total flux F exploiting the balance law form of the Navier-Stokes equa-
tions.

d(ViU i)
dt

+
ni∑
j=1

[
1
2 (F j + F i) − F i

]
(−Vj ∇Nij + Vi ∇Nji) = ViSi (4.33)

The first term in the left side of the equation is the temporal derivative of the
quantity carried by a general particle i. For a fixed particle with wi = 0 the temporal
derivative term is equivalent to ∂(ViU i)

∂t
. For a particle with wi = ui the temporal

derivative represents a material derivative D(ViU i)
Dt

. The second term is a sum over all
neighbors of particle i and accounts for the hyperbolic and elliptic fluxes of particle i.
We note that the usual kernel approximation has been substituted by a discretization
based in MLS approximations.

In Eq. (4.33), we define Nij = N(xj − xi, hi) and Nji = N(xi − xj , hj). Note
that these terms are required to obtain an anti-symmetric discretization of the ef-
fective area of the particle. By comparison with finite volume methods, the term
(−Vj ∇Nij + Vi ∇Nji) plays the same role as the geometric interaction area between
cells i and j.

The notation Ni = N(x − xi, hi) stands for the MLS shape function evaluated
at point x and centered at the position of particle i (xi). MLS shape functions also
depend on a weighted function (see [Ramı́rez et al., 2017]), and the smoothing length
hi which is a measure of the compact support of the kernel function. The smoothing
length associated to the particle i is variable for each particle and is computed as

hi = βV
1
d
i (4.34)

where d is the space dimensions number, Vi is the effective volume of the particle i
and β is a constant parameter. The number of neighbors is variable and it depends on
the value of β. In this work, we use β = 1.5 in the numerical applications. Note that
this value differs from the one typically used in SPH-kernel approaches (β = 2). This
implies that the number of particles involved in the approximation is reduced, which
reduces the computational cost and also increases the accuracy of the method.

For the discretization of the Navier-Stokes equations we need to the decompose F

flux into the ALE convective and the diffusive parts F = F w − D. The ALE flux at
the midpoint between two particles i and j is denoted as (F w)ij = 1

2 (F w)j + 1
2 (F w)i.

Similarly the diffusive flux at the midpoint is denoted as Dij = 1
2 (Dj + Di). Then,

we can write
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d(ViU i)
dt

+
ni∑
j=1

[
(F w)ij − (F w)i − (Dij − Di)

]
(−Vj ∇Nij + Vi ∇Nji) = ViSi (4.35)

Following [Ramı́rez et al., 2018] we introduce the numerical flux for the convective
terms as an approximation of the flux at the midpoint between particles Gij ≈ (F w)ij ,
and we obtain the final discretized form

d(ViU i)
dt

+
ni∑
j=1

[
Gij − (F w)i − (Dij − Di)

]
(−Vj ∇Nij + Vi ∇Nji) = ViSi (4.36)

Moving Least Squares approximations are used also to provide high accuracy dis-
cretization of the convective and diffusive fluxes. We provide a brief exposition to
introduce the nomenclature and remark some important points.

4.4.1. Convective Flux Discretization

In this work we have computed the convective flux, Gij , using the Rusanov nume-
rical flux [Rusanov, 1962].

Gij = 1
2
[
(F w)+

ij + (F w)−
ij

]
− 1

2S
∗
ij∆U ij · n (4.37)

where S∗
ij is the maximum eigenvalue of the Jacobian matrix

S∗
ij = max

[
(u − w) · n + cij , (u − w) · n − cij , (u − w) · n

]
(4.38)

In Eq. (4.38), cij is the local speed of sound at the integration point. (F w)−
ij

and (F w)+
ij denote the flux approximations of F w on the left and right sides of the

integration point (the two different Riemann states), and nij is the normal vector. The
jump of the conservative vector is defined as ∆U ij = Û

+
ij − Û

−
ij .

In order to achieve a high-order reconstruction of the Riemann states, the usual
approach is to use a Taylor polynomial. Instead, we propose here the use of MLS
approximations. Note that the MLS shape functions required for the reconstruction are
already computed since they are used in the discretization of the governing equations, as
indicated in Eq. (4.36). Thus, the cost of the evaluation of the reconstructed Riemann
states is highly reduced, compared with the use of a Taylor polynomial (which requires
an additional computation of high-order derivatives). Thus the reconstructed variables
are computed as

Û
−
ij =

ni∑
k=1

N(xij − xi, hi)Uk Û
+
ij =

nj∑
k=1

N(xij − xj , hj)Uk (4.39)
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Figure 4.4. Schematic representation of the high-order Riemann states reconstruction
at the integration point located in the midpoint between particles i and j.

4.4.2. Diffusive Flux Discretization

In this work, we use a novel formulation for the discretization of the diffusive fluxes,
which is also based on the use of MLS approximations. MLS shape functions allows
us to obtain high-accurate reconstructions of the variables on each stencil. Thus,
it is possible to obtain two high-order approximations of the diffusive fluxes at the
integration point using the two different states, and then compute the diffusive fluxes
directly at each integration point (which is located at the midpoint between particles i
and j), as the arithmetic mean of the diffusive fluxes of each Riemann state. A different
approach is to center the MLS approximation on each integration point and perform a
reconstruction for every integration as it was already proposed in the context of Finite
Volume methods [Cueto-Felgueroso et al., 2007; Ramı́rez et al., 2014]. However, this
approach will lead to higher computational cost due the large number of integration
points and the need for computing the reconstructions on each time step. Thus, in this
work, the diffusive fluxes are computed as

Dij = 1
2(D+

ij + D−
ij) (4.40)

4.5. Numerical Results

This section presents the numerical results for several benchmark problems aimed
at assessing the accuracy and efficiency of the proposed method for both steady and
unsteady problems.
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4.5.1. 2D viscous Taylor Green Vortex

The first test case is the 2D Taylor–Green Vortex. This test case is an exact time-
dependent solution to the incompressible Navier-Stokes equations in 2D [Taylor &
Green, 1937] and it is widely used to validate SPH methods [Hu & Adams, 2007; Sun
et al., 2019]. The flow decays in time at a rate which is controlled by the viscosity.
The analytical solution for the velocity and pressure fields corresponding to this flow
in the domain Ω = [0, 2π] × [0, 2π] is

ux(x, y) = e
−2t
Re cos (y) sin (x) (4.41)

uy(x, y) = −e
−2t
Re cos (x) sin (y)

p(x, y) = 1
4e

−4t
Re (cos (2x) + cos (2y))

For Lagrangian particle methods this is a very challenging problem, since errors in
the updating of the position of particles may lead the numerical scheme to reach a
wrong solution. This fact will break the stationary closed trajectories which are ob-
tained for the analytical solution. In this test case, the Reynolds number is set to 100.
The computational domain Ω is discretized with 2500 particles disposed in a Cartesian
distribution and periodic boundary conditions are imposed in all the boundaries. The
initial configuration of particles and the initial velocity field are represented in Fig-
ure 4.5 a). In this problem, a Lagrangian configuration is adopted and particle shifting
is used as described in [Nestor et al., 2009]. It is important to note that with the pro-
posed methodology it is not required the use of procedures such as the particle packing
method [Colagrossi et al., 2012] to obtain a suitable initial distribution of the particles,
which is required in SPH methods based on kernel approximations [Colagrossi et al.,
2012; Eiŕıs et al., 2021].

In Figure 4.5, we plot the velocity magnitude at t = 0, t = 1 and t = 2. The
symmetry of the solution is kept and the stationary closed trajectories are conserved.

a) b) c)
Figure 4.5. 2D Taylor–Green flow for Re = 100. Figures a), b) and c) represents velocity
magnitude at t = 0, t = 1 and t = 2.
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In Figure 4.6 the decay of the maximum velocity and the kinetic energy compared
with the theoretical decay and with the results obtained with the δ+−SPH method
[Krimi et al., 2020; Sun et al., 2019] are presented. The results obtained by the proposed
method show a perfect match with the theoretical curve. Note also that both, the
Eulerian and the Lagrangian configurations, obtains similar results.
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Figure 4.6. 2D Taylor Green flow for Re = 100. a) Time evolution of the maximum
velocity magnitude over time compared with the exact solution and the δ+−SPH results
from [Krimi et al., 2020] and b) time evolution of the kinetic energy compared with the
analytical solution and the δ+−SPH results from [Sun et al., 2019]

4.5.2. Steady flow around a 2D cylinder Re = 40

In this test case, we consider the flow around a circular cylinder as a validation case
of the proposed method for viscous flows with curved walls. The setup of this test case
is as follows: The radius of the cylinder is R = 0.5, the Reynolds number is Re = 40
and the free-stream Mach number is M∞ = 0.1.

The computational domain is discretized with a total number of 10800 particles
and 120 particles around the cylinder. Figure 4.7 shows a close view of the particle
distribution around the cylinder.

Free-stream variables are fixed at the outer boundary and we impose the no-slip
and adiabatic boundary conditions at the cylinder solid wall. We solve the problem in
an Eulerian configuration until the steady state is obtained. In Figure 4.8 the velocity
field and the streamlines are plotted near the cylinder. It is observed that the solution
obtained using the proposed numerical method is able to obtain good symmetry of the
vortices created downstream the cylinder.

In Figure 4.9 the pressure coefficient distribution Cp around the cylinder is plotted
at the steady state. The solution is compared with a reference solution obtained on a
3rd-order finite volume scheme using a grid with the same spatial resolution than the
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Figure 4.7. Steady Re = 40 flow around a 2D cylinder. Particle distribution around the
cylinder.

Figure 4.8. Steady Re = 40 flow around a 2D cylinder. Velocity field and streamlines
around the cylinder.

present particle discretization [Ramı́rez et al., 2017]. It is observed that the proposed
approach results are in excellent agreement with the reference solution.

The drag coefficient CD and the front and back pressure coefficients (Cp(0) and
Cp(π)) are compared in Table 4.1 with reference values from the literature. It is
observed that the proposed approach obtains results comparable to those obtained in
the literature. In particular, they are in excellent agreement with the ones obtained
with finite on a 3rd-order finite volume scheme using a grid with the same spatial
resolution [Ramı́rez et al., 2017].

91



Chapter 4. The MLSPH-ALE method
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Figure 4.9. Steady Re = 40 flow around a 2D cylinder. Comparison of the pressure
coefficient (Cp) distribution around the cylinder obtained using the proposed method
and a 3rd-order finite volume with the same spatial resolution [Ramı́rez et al., 2017].

Method CD Cp(0) Cp(π)

Present Method 1.570 −0.505 1.195
Ramirez et al. [Ramı́rez et al., 2017] 1.568 −0.512 1.180
Chassaing et al. [Chassaing et al., 2013] 1.565 −0.516 1.205
Niu et al. [Niu et al., 2003] 1.574 −0.555 1.147
He and Doolen [He & Doolen, 1997] 1.499 −0.487 1.133
Marrone et al. [Marrone et al., 2013] 1.6 − −

Table 4.1. Steady Re = 40 flow around a 2D cylinder. Comparison of the drag coefficient
CD, front and back pressure coefficients (Cp(0) and Cp(π)) obtained using the SPH-MLS
scheme and other computations using grid methods [Ramı́rez et al., 2017; Chassaing
et al., 2013], lattice Boltzmann methods [Niu et al., 2003; He & Doolen, 1997] and SPH
methods [Marrone et al., 2013].

4.5.3. Unsteady flow around a 2D cylinder Re = 100 and Re = 185

In this test case, we address the simulation of a non-steady viscous flow past a two-
dimensional cylinder. The domain and the particle distribution is the same than the
used in the previous case. Now, two different Reynolds number are addressed, namely
Re = 100 and Re = 185. This configuration leads to a flow with a periodic pattern of
swirling vortices originated at cylinder wall.

Figures 4.10 and 4.11 show the temporal evolution of the drag and lift coefficients
and the vorticity field respectively for the two different Reynolds numbers addressed. It
is clearly observed the periodic pattern of vortices appearing downstream the cylinder.

Table 4.2 compares the drag and lift coefficients and the Strouhal number obtained
using the proposed method with the results obtained by several authors. It is observed
that the results obtained are comparable to those obtained using other methods.
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Figure 4.10. Unsteady flow around a 2D cylinder Re = 100 and Re = 185. Temporal
evolution of the drag and lift coefficients, a) Re = 100 and b) Re = 185.

a)

b)
Figure 4.11. Unsteady flow around a 2D cylinder Re = 100 and Re = 185. Vorticity field,
a) Re = 100 and b) Re = 185.

Conclusions

In this chapter we have proposed a high-accurate meshless discretization to solve
the compressible Navier-Stokes equations. The standard kernel approximation is com-
pletely substituted by MLS approximations. In addition, the MLS approximations are
also used to obtain a high-order reconstruction of the Riemann states instead of Taylor
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Re = 100 Re = 185
Method CD CL St CD CL,rms St

Present Method 1.3587 ±0.3325 0.1653 1.3398 0.4447 0.1937
[Liu et al., 1998] 1.350 ±0.339 0.165 − − −
[Rajani et al., 2009] 1.3353 − 0.1569 − − −
[Marrone et al., 2013] 1.36 ±0.24 0.168 − − −
[Ng et al., 2009] 1.368 ±0.360 − − − −
[Constant et al., 2017] 1.37 − 0.165 1.379 0.427 0.198
[Vanella & Balaras, 2009] − − − 1.377 0.461 −
[Guilminearu & Queutey, 2002] − − − 1.287 0.443 0.195
[Lu & Dalton, 1996] − − − 1.31 0.422 0.195
[Liu et al., 2018] − − − 1.372 0.427 −
[Sun et al., 2019] − − − 1.363 − 0.196
[Liu & Hu, 2014] − − − 1.289 0.451 0.197

Table 4.2. Unsteady flow around a 2D cylinder Re = 100 and Re = 185. Comparison of
mean drag coefficient C̄D, mean and rms lift coefficients ( CL and CL,rms) obtained using
the SPH-MLS scheme and other computations using grid-based [Liu et al., 1998; Rajani
et al., 2009; Guilminearu & Queutey, 2002; Lu & Dalton, 1996], immersed boundary [Ng
et al., 2009; Constant et al., 2017; Vanella & Balaras, 2009; Liu & Hu, 2014], ALE [Sun
et al., 2012] and SPH methods [Marrone et al., 2013; Liu et al., 2018].

polynomials. The proposed method presents several advantages compared with stan-
dard kernel approximations. Thus, the proposed formulation ensures the verification of
the partition of unity even in regions close to the boundaries. Moreover, shape function
derivatives form a partition of nullity, which avoids problems related with the initial
configuration of particles. The use of MLS functions also leads to meshless schemes
with greater accuracy than kernel approximations and with smaller stencils. We have
shown that the proposed method is able to obtain comparable results to those obtained
with grid-based methods in different regimes of viscous flow problems.

94



Chapter5
MLSPH-ALE method and its

relationship with some
particle-based formulations

5.1. Introduction

In Chapter 4 MLSPH-ALE method was presented as a general method that con-
tains other meshless formulations. The main purpose of this chapter is to place on
the map the MLSPH-ALE method and to show its relationship with other widespread
mesh-based and meshless methods. By adopting some particular settings, it is proved
that MLSPH-ALE arrives at the same discretized equations obtained by other mesh-
less methods. The study is restricted to the analysis of the Euler equations for a
compressible fluid.

5.2. Types of numerical methods for Fluid Dynamics

As the first and the most widely used meshless method, there is some tendency in
categorize as SPH to any particle based method that adopts a Lagrangian description.
In the last decades, an extensive list of meshless formulations were published in the
literature in order to circumvent some deficiencies or improve the performance of the
original SPH formulation. Some of these new methods are Lagrangian particle-based
methods using the kernel approximation, but there are others formulated in an Eulerian
frame using other approximation techniques. Instead of organizing methods adopting
the traditional SPH as a reference, we define three groups of numerical methods based
on a more general concept. Following the ideas of Hopkins [Hopkins, 2015], an attrac-
tive distinction to organize numerical methods for simulating fluids consist in observing
how the partition of the domain is accomplished.
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In Figure 5.1, adapted from Hopkins [Hopkins, 2015], three different forms of subdi-
viding the domain are represented by using a color palette code. For an irregularly set
of particles, we focus the attention on three particles for which we have assigned red,
green and blue color in their locations (black circles). The subdivision of the domain
is represented visually by the color resulting from the addition of the primary colors
RGB. Each color (Red,Green and Blue) represents the fraction of the volume at each
point of the domain associated with each particle. In the first group of methods (on
the left), the subdomain associated with each particle is represented by a plain-colored
polygonal zone. This subdivision is associated with either a mesh or a Voronoi tes-
sellation. In the third group of methods plotted (on the right), the subdivision of the
domain is the result of each color decaying centered on each particle location. This
is the type of geometric subdivision performed by traditional SPH methods based on
the kernel approximation. The second group of methods is plotted in the center of
the figure. In this group, the limits of each subdomain appear as blurry lines. The
subdomains associated with each particle do not follow a centered pattern on particle
location, as it occurs in methods of the third group. The subdivision of the domain
corresponding with Group II is associated with meshless finite volume methods, that
is, a class of meshless methods that share common features with FVM. Based on this
hybrid nature, these methods will be referred hereafter as meshless-fv methods.

In each family we are ignoring the description of the flow (Lagrangian, Eulerian or
ALE) and the formulation used to solve the equations (Compressible or Incompress-
ible). For the reader interested in more complete classifications we refer to [Chen et al.,
2017] and [Huerta et al., 2017].

Group I Group II Group III 

Figure 5.1. Groups of methods for Fluid Dynamics according to the partition of the
domain. Left: Mesh-based methods with plain-colored polygonal subdomains. Middle:
Meshless-fv methods with blurred polygonal subdomains. Right: SPH Methods with
blurred subdomains centered at particle locations. Black circles denote the particle
locations.

The classification provided considers an intermediate group that bridges the gap
between mesh-based and SPH methods. For instance, particle disordering techniques
used in Lagrangian SPH methods [Monaghan, 1989; Adami et al., 2013] have some
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similarities with the use of the ALE framework to avoid degenerated cells in mesh-
based methods. By using a meshless-fv method, Oger et al. [Oger et al., 2016] showed
that particle disordering/shifting techniques need to be implemented within an ALE
framework in order to avoid interpolation errors. Based on that findings, Antuono et
al. [Antuono et al., 2021] incorporated the ALE framework into the δ-SPH, that was
conceived originally as a pure Lagrangian SPH method. Another important transfer
between different group of methods is related with the stabilization of the scheme.
For instance, the stabilization terms in δ-SPH can be interpreted as diffusive terms
of Riemann solvers in [Cercos-Pita et al., 2016]. As an example of the transfer of
techniques from methods of third group to the first group we cite the scatter data
approximation techniques that have been used in Finite Volume Methods to extend
the order of reconstructions in high order Godunov methods [Ramı́rez et al., 2014].

Following we show the main features of the different groups. We remark that the
MLSPH-ALE method developed in this thesis belongs to Group II and for that reason
we will describe more succinctly methods in Group I and Group III.

5.2.1. Group I: Mesh-based methods

In the first group we include mesh-based methods like the Finite Volume Method,
Finite Element Method and Particle Methods that use a Voronoi tessellation. In mesh-
based methods the subdomain partition is the one that correspond with the mesh topol-
ogy. In Voronoi methods the information is stored in a cloud of points. A tessellation
algorithm is run to associate each particle with a subdomain whose geometry is clearly
defined, and there is no overlapped zone between particle subdomains. In cell-centered
Finite Volume methods the particle location is the barycenter of the cell meanwhile
in the Voronoi tessellation the particle location is not coincident with the barycenter.
In this group of methods each particle has a volume and area of the boundary that
can be calculated with geometric formulae. Clear exposition of the FDM, FVM and
FEM methods is given in Computational Fluid Dynamics textbooks [Hirsch, 2007],
[Blazek, 2015], [Zienkiewicz et al., 2014]. For a further insight into Voronoi Tessel-
lation Methods we recommend the publications associated with the AREPO project
[Springel, 2010],[Muñoz et al., 2012].

5.2.2. Group II: Meshless-fv methods

In the second group of methods, we include particle methods in which the subdo-
main associated with each particle is calculated by means of functions that involve
information contained in the neighborhood of the particle. Numerical methods in this
group are meshless methods that share some characteristics with the FVM. In these
methods the subdomain associated with each particle is not a geometrical entity. We
can compute the volume associated with a particle but this is obtained by integration
of a function which is not associated to the geometry of a cell. To remark this feature
we use the term effective volume instead of the geometric volume used by mesh-based
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methods. The same idea is used to define the interaction area associated with two
neighboring particles. Most of the methods in this category are derived from the Euler
equations expressed in conservative form. Among all the methods of this group, we
can cite the following (non-exhaustive) list:

• Meshless Finite Volume Method (MFVM) [Ivanova et al., 2013]

• SPH-ALE [Vila, 1999]

• Renormalized SPH-ALE method [Lanson & Vila, 2008a,b]

• Finite Volume Particle Method (FVPM) [Hietel et al., 2000]

• Meshless Finite Volume (Gizmo-MFV) [Gaburov & Nitadori, 2011], [Hopkins,
2015]1

• MLSPH-ALE [Ramı́rez et al., 2018]

• Moving Least Squares SPH (MLSPH) [Dilts, 1999, 2000]

The method proposed in this thesis lies in this group.

5.2.3. Group III: SPH methods

In the third group we include particle methods that approximate the continuum
without requiring a geometric subdivision of the domain. The most representative
method of this group is the SPH method. SPH is a Lagrangian method that assigns
a fixed mass to each particle. As the numerical model updates the solution, particle
density evolves and it is used to compute the volume associated to the particle. We
note that this is a fictitious volume because SPH methods only require mass weights.
In this group we include the original SPH method and some other formulations, like
the δ-SPH and Riemann-SPH. Discretized equations for methods in this group are
derived by replacing the continuous operators in the differential equations by discrete
operators expressed in terms of the kernel function. We also include in this group
particle methods like the Finite Point Method and the Finite Poinset Method. These
methods do not use the kernel approximation and the cloud of points does not require
mass weights. Among all the methods of this group, we can cite the following (non-
exhaustive) list:

• Traditional SPH [Monaghan, 1988],[Monaghan, 2005]

• δ-SPH [Colagrossi & Landrini, 2003]

• Riemann-SPH [Inutsuka, 2002] ,[Parshikov & Medin, 2002]
1The MFV developed by Hopkins was implemented in the Gizmo project, see

http://www.tapir.caltech.edu/ phopkins/Site/GIZMO.html. The Gizmo-MFV has also great
similarities with the MFV proposed by Gaburov and Nitadori.
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• Finite Point Method [Oñate et al., 1996b]

• Finite Pointset Method [Kuhnert, 2003], [Suchde et al., 2017]

5.2.4. Comparisons between methods

In the literature, comparisons between methods are usually done by conducting
benchmarking studies over test cases [Few et al., 2016]. This chapter follows a different
approach. We focus on the derivation process to highlight the existing connections
among the different formulations. A similar strategy was adopted in the study con-
ducted by Schaller et al. [Schaller et al., 2013].

The rest of the chapter is structured in the following manner. In a first step the
attention is focused on showing the relations between the three groups. Then, in a
second step, we show how the methods included in the second group can be derived by
defining some particular settings in the MLSPH-ALE method.

5.3. Relations between groups of numerical methods

5.3.1. Mesh-based discretized equations

We derive the discretized equations of the FVM as a representative method of
the mesh-based group. The conservative formulation of Euler equations with ALE
description is written in integral form

d

dt

∫
T

UdV +
∮
∂T

Fw · dΣ =
∫
T

SdV (5.1)

where T is the region of space associated with a cell and ∂T its boundary. U is the
vector of conservative variables, Fw is the ALE tensor flux and S the vector of source
terms.

In Figure 5.2 we plot the centroids (filled points) of a group of cells. The cell
boundary is given by a polygon when a bidimensional domain is considered. We note
that the cell labeled with the index i has a finite number of neighboring cells ni, that for
the particular set depicted is ni = 6. By focusing the attention on one of its neighbors,
labeled with the index j, an enlarged view of cells Ti and Tj is shown on the right. We
designate with Aij the surface shared by neighboring cells i and j. We note that Aij is
a vector with a module equal to the area of the shared face and the direction given by
the outward normal for cell i. It can be noticed that the direction of Aij is in general
not parallel with the line connecting the position of the centroids. As we are using
the ALE flux tensor the expression is valid for fixed, moving and deforming cells. We
could also use the same nomenclature for particle methods that employ a tessellation
but in that case the full circles represent the generators and not the barycenter of the
cells [Gaburro et al., 2020].

On an arbitrary cell Ti, Euler equation has a simple spatial discretization given by

99



Chapter 5. MLSPH-ALE method and its relationship with some particle-based
formulations

d

dt

(
Ū iVi

)
+
∑
j∈∂Ti

(Fw · A)ij = S̄iVi (5.2)

Figure 5.2. Discretization of the domain by the Finite Volume Method

Here Ū i and S̄i are the mean values of U and S inside a mesh cell Ti which has
volume Vi 2. Note tat the sum is carried over the boundaries of the cell Ti designated
as ∂Ti. For convenience we introduce a compact notation for the surface integral of a
single face separating cell i and j

(Fw · A)ij =
∫
∂Ti,j

Fw · dΣ (5.3)

This simple derivation used by FVM can be accomplished because the volume and
boundaries of cell are geometric entities associated with the mesh. Unfortunately this
fast procedure can not be followed in meshless methods, since in those methods parti-
cles represent a region of the continuous domain, but that region lacks any boundary
definition to accomplish the integrals as expressed in Eq. (5.1). Thus, meshless meth-
ods must follow a different procedure to discretize the governing equations. Two of
these procedures will be outlined in the following sections.

5.3.2. Meshless-fv discretized equations

As a representative example for meshles-fv methods we select the method proposed
by Ivanova et al. [Ivanova et al., 2013]. In their work, an appendix is provided with
title ”On a spatially-discrete formalism for mesh-less finite-volume-methods”. We use
the acronym MFVM (Meshless Finite Volume Method) to refer to the method pro-
posed in the appendix of their publication. The paper reviews hydrodynamic codes
for cosmological applications where Lagrangian SPH and Cartesian Eulerian methods

2For 2D domains consider that Vi ≡ Ai · 1
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were conceived as two totally different approaches. Authors proved that Lagrangian
particle-based methods are a subset of more general meshless-fv schemes. The publi-
cation encourages to take a flexible approach in the development of numerical methods
and opens the path for developing hybrid codes that exploit the advantages of both
types of methods. A sentence given in the introduction is very elucidating stating
that ”Lagrangian methods can be implemented on unstructured Voronoi meshes and
Eulerian schemes can be successfully formulated in entirely meshless form”.

In [Ivanova et al., 2013], authors presented a generic formalism that leads to spatially
discrete meshless finite volume equations, although the formalism is not implemented
in a code and therefore no results are provided in the article. Procedure begins with
the continuous weak form of Euler equations in the form given by Eq. (2.74)

∀φ ∈ C2
0
(
Rd × R+,∗) ∫

Rd×R+

(
UL∗

w(φ) + F α
w

∂φ

∂xα
+ Sφ

)
dxd dt = 0 (5.4)

where the integral is taken over all the space-time domain. In order to ease the notation,
the adjoint transport operator L∗

w(φ) is recognized as the advective derivative in the
particle velocity field w and denoted more compactly as φ̇ = ∂φ/∂t+ w · ∇φ. We also
change from index notation to vector notation to write

∀φ ∈ C2
0
(
Rd × R+,∗) ∫

Rd×R+
(U φ̇+ ∇φ · Fw + Sφ) dxd dt = 0 (5.5)

To get a particle approximation of this ALE weak problem, a set of moving particles
given by paths xi(t) is considered (with index i varying from i = 1 to i = N). There
are several techniques to integrate the weak form in meshless methods [Huang et al.,
2019], for example, nodal integration is used in SPH methods.

Instead of accomplishing the discretization process directly by using the definition
of a discrete scalar product, Ivanova et al. introduce a set of functions ψi linked to
each particle i that verifies the Partition of Unity property (PU). Satisfying the PU
property means that for any point x in the domain Ω at any instant time t the following
identity holds exactly∑

i

ψ (x − xi(t)) = 1 or
∑
i

ψi (x) = 1 (5.6)

By invoking the Fubini’s Theorem, the weak form given by Eq. (5.5) is rewritten as

∀φ ∈ C2
0
(
Rd × R+,∗) ∫

R+

∫
Rd

(U φ̇+ ∇φ · Fw + Sφ) dxd dt = 0 (5.7)

Leaving the time integral temporally out of the derivation, attention is set on con-
ducting the spatial discretization of the spatial integral∫

Rd

(U φ̇+ ∇φ · Fw + Sφ) dxd (5.8)
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Using the Partition of Unity property (Eq. (5.6)) in Eq. (5.8) allows us to write

∫
Rd

1(U φ̇+ ∇φ · Fw + Sφ) dxd =
∫
Rd

∑
i

ψi (x)
(
U φ̇+ ∇φ · Fw + Sφ

)
dxd (5.9)

where we have decided to emphasize only the argument dependence for the particle
functions ψi (x). After expanding the products, we note that each integral demands a
different approximation, and for that reason we identify each integral term with Roman
numbers

∫
Rd

∑
i

ψi (x) U φ̇ dxd︸ ︷︷ ︸
I

+
∫
Rd

∑
i

ψi (x) ∇φ · Fw dxd︸ ︷︷ ︸
II

+
∫
Rd

∑
i

ψi (x) Sφdxd︸ ︷︷ ︸
III

(5.10)

Before starting the approximation of each term, we expose some properties asso-
ciated with the PU. The insertion of the PU property in the integral that gives the
volume of the domain yields

V =
∫

Ω
dxd =

∫
Ω

1 dxd =
∫

Ω

∑
i

ψi (x) dxd =
∑
i

∫
Ω
ψi (x) dxd =

∑
i

Vi (5.11)

that provides a partition of the domain Ω, by assigning to a generic particle i the
volume Vi given by

Vi =
∫

Ω
ψi (x) dxd (5.12)

This property is of great importance. It shows that an effective volume associated
with a particle i is expressed as the integral of the corresponding particle function
ψi(x) over the whole domain. Particles have a compact support associated with the
kernel function, but there is overlapping between the support domain of neighboring
particles. The overlapping prevents to evaluate the integral over the domain as the sum
of the integrals over the support of each particle. Eq. (5.11) and Eq. (5.12) show that
by inserting the PU inside the integral, it is possible to express the integral over the
domain as the sum of the contributions of the particles. We also remark that Eq. (5.12)
is obtained without using a cell or invoking a tessellation procedure. Particle functions
ψi (x) are null outside the boundary domain, and therefore the region of integration
Rd of Eq. (5.10) is replaced by Ω.

Coming back to the development of Eq. (5.8), the term I can be approximated as

I =
∑
i

∫
Ω
ψi (x) U(x)φ̇(x) dxd ≈

∑
i

∫
Ω
ψi (x) U (xi) φ̇ (xi) dxd

=
∑
i

U (xi) φ̇ (xi)
∫

Ω
ψi(x) dxd =

∑
i

U (xi) φ̇ (xi)Vi =
∑
i

U iφ̇iVi (5.13)
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where the dependence of the spatial variable is included to show clearly the one point
quadrature rule used for the approximation.

For the term II, the following gradient approximation is introduced ∇φ(x, t) ≈
∇̂φ(x) =

∑
j ∇ψj (x)φ (xj) =

∑
j ∇ψj (x)φj yielding

II =
∫

Ω

∑
i

ψi (x) ∇φ(x) · Fw(x) dxd ≈
∫

Ω

∑
i

ψi (x) ∇̂φ(x) · Fw(x) dxd

=
∫

Ω

∑
i

ψi(x)
∑
j

φj∇ψj(x) · Fw(x) dxd (5.14)

At this moment it is possible to take advantage of other particle function property
to obtain a more convenient expression for the term II. By taking the gradient of
the PU identity, it can be probed that the gradient of particle functions satisfy the
Partition of Nullity (PN) ∑

j

ψj (x) = 1︸ ︷︷ ︸
PU

∑
j

∇ψj(x) = 0︸ ︷︷ ︸
PN

(5.15)

By using the PN property we add a term with null contribution to Eq. (5.14)
obtaining

II ≈
∫

Ω

∑
i

ψi(x)
∑
j

(φj − φi) ∇ψj(x) · Fw(x) dxd (5.16)

By expanding the terms in brackets and moving the particle functions ψi(x) inside
the summation over index j, the term II reads as

II ≈
∫

Ω

∑
i

∑
j

φjψi(x)∇ψj(x) · Fw(x) −
∑
i

∑
j

φiψi(x)∇ψj(x) · Fw(x)

 dxd

(5.17)
The integrand is composed of two double sums over all particles of the domain. It

is possible to interchange index i and j in the first term, obtaining

II ≈
∫

Ω

∑
j

∑
i

φiψj(x)∇ψi(x) · Fw(x) −
∑
i

∑
j

φiψi(x)∇ψj(x) · Fw(x)

 dxd

(5.18)
By rearranging terms and using the additive property of the integral, the II term

is given by

II ≈ −
∑
i

∑
j

φi

∫
Ω

Fw(x) · (ψi(x)∇ψj(x) − ψj(x)∇ψi(x)) dxd (5.19)
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In order to perform the integration of term III , we proceed in the same manner
as for term I, to obtain

III =
∑
i

∫
Ω
ψi (x) S(x)φ(x) dxd ≈

∑
i

SiφiVi (5.20)

Introducing the approximations obtained in Eq. (5.13), Eq. (5.19) and Eq. (5.20)
into Eq. (5.7) yields

∫
R+

∑
i

U iφ̇iVi −
∑
i

∑
j

φi

∫
Ω

Fw(x) ·
(
ψi(x)∇ψj(x) − ψj(x)∇ψi(x)

)
dxd

+
∑
i

SiφiVi

)
dt ≈ 0 (5.21)

The overdot operator was used as abbreviation for the advective derivative according
to L∗

w(φ) = φ̇ = ∂φ/∂t+ w · ∇φ. Application of integration by parts and noting that
the tests functions have compact support (in space and time) the transient term in
Eq. (5.21) can be expressed by

∑
i

∫
R+

U i
dφi
dt

Vi dt =
∑
i

∫
R+

d (U iφiVi)
dt

dt−
∑
i

∫
R+
φi
d (U iVi)

dt
dt =

−
∫
R+

(∑
i

φi
d (U iVi)

dt

)
dt (5.22)

Substitution of Eq. (5.22) into Eq. (5.21) gives

∫
R+

(
−
∑
i

φi
d (U iVi)

dt
−
∑
i

∑
j

φi

∫
Ω

Fw(x) ·
(
ψi(x)∇ψj(x) − ψj(x)∇ψi(x)

)
dxd

+
∑
i

SiφiVi

)
dt ≈ 0 (5.23)

As the integral must approach zero for any time, the integrand should approach
zero

∑
i

φi

d (U iVi)
dt

+
∑
j

∫
Ω

Fw(x) ·
(
ψi(x)∇ψj(x) − ψj(x)∇ψi(x)

)
dxd − SiVi

 ≈ 0

(5.24)
As this relation must hold for any test function, it demands that
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d (U iVi)
dt

+
∑
j

∫
Ω

Fw(x) ·
(
ψi(x)∇ψj(x) − ψj(x)∇ψi(x)

)
dxd ≈ SiVi (5.25)

Now, we note that the second term takes the form of a sum of integrals involving the
active particle i with its neighbor particles. The term collects the action of neighbor
particles j over the active particle i. We focus the attention on one individual neighbor
and we note that particle functions are dimensionless and the gradient of the particle
functions have dimensions of [L]−1. Moreover, particle functions are scalar and the
gradient of particle functions are vectors. The integral obeys the typical expression of
a flux crossing a surface. Based on this analogy we represent the interaction flux of
particle j over particle i as (Fw · A)ij∫

Ω
Fw(x) ·

(
ψi(x)∇ψj(x) − ψj(x)∇ψi(x)

)
dxd ≡ (Fw · A)ij (5.26)

It is very important to remark that the area A used to denote the term (Fw · A)ij
in Eq. (5.26) is not associated to any geometry entity. Some authors use the term
effective area to emphasize the differences with a real area associated with the face of
a cell. Using this compact nomenclature Eq. (5.25) can be rewritten as

d (U iVi)
dt

+
∑
j

(Fw · A)ij ≈ SiVi (5.27)

The meshless formulation presented does not provide a full discretization, because
the tensor flux has not been discretized and the effective area Aij requires a quadra-
ture rule to obtain a discrete approximation. Moreover, the set of particle functions
satisfying the PU and PN are key in the process, but in [Ivanova et al., 2013] nothing is
said about its definition. At this point, the discretization is not applicable in practice
since it is incomplete. However, it has the advantage of offering a meshless formulation
that allows easy comparison with the FVM and traditional SPH method.

5.3.3. SPH discretized equations

The first thing to be clarified is that there is not a unique set of discretized equations
for the Euler equations using SPH. In the literature different strategies to discretize the
Euler equations have been explored. The simplest procedure starts with the choice of a
set of Euler equations in non-conservative form, and then the continuous spatial deriva-
tives are replaced by their discrete kernel approximations. A more elegant procedure to
derive the discretized equations adopts the Lagrangian Dynamics. Using the variational
principle avoids some ad hoc choices introduced by the simple procedure. Excellent
reviews of the SPH procedure are given in the publications by Monaghan [Monaghan,
2005], Price [Price, 2012], Rosswog [Rosswog, 2009], and Springel [Springel, 2010] and
Violeau’s book [Violeau, 2012].
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As SPH is a pure Lagrangian method, the more convenient presentation for the Euler
equations is the non-conservative form since material derivatives appear explicitly on
the left hand side of the governing equations. For the energy equation we can use the
internal energy (e) or the total energy (E) as variable.

dρ

dt
= −ρ∇ · u (5.28)

du

dt
= −∇p

ρ
+ f (5.29)

de

dt
= −p

ρ
∇ · u

dE

dt
= −1

ρ
∇ · (pu) + f · u (5.30)

Eq. (5.28), Eq. (5.29) and Eq. (5.30) express the non-conservative form for the mass,
momentum and energy respectively. In the right hand side of Eq. (5.28) the divergence
of the velocity appears meanwhile in Eq. (5.29) the gradient of the pressure is involved.
Omitting the discretization of the energy equation we note that the main discretizations
invoked for SPH are conducted by one of the two forms presented hereafter.

The traditional SPH discretization was adopted by Monaghan and its the usual set
of SPH equations used in Astrophysics. The expressions assume a constant smoothing
length for the particles and the semi-discrete corresponding to Eq. (5.28), Eq. (5.29)
read as

Dρi
Dt

=
∑
j

mj (ui − uj) ∇iWij (5.31)

Dui
Dt

= −
∑
j

mj

(
pi
ρ2
i

+ pj
ρ2
j

)
∇iWij + f i (5.32)

An alternative SPH discretization was proposed by Colagrossi and Landrini [Cola-
grossi & Landrini, 2003]. This alternative SPH derivation is the base for the δ− SPH

method and is widely used in ocean engineering.

Dρi
Dt

= ρi
∑
j

mj

ρj
(ui − uj) ∇iWij (5.33)

Dui
Dt

= −
∑
j

mj

(
pi + pj
ρiρj

)
∇iWij + f i (5.34)

Both forms of the SPH equations are self-consistent because they were derived
invoking the variational principle.
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5.3.4. Connections between FVM and MFVM

The similarities between the MFVM and the FVM can be clearly seen by comparison
of Eq. (5.2) and Eq. (5.27). The main difference between the formulations resides in
the evaluation of the fluxes given by Eq. (5.3) and Eq. (5.26). In FVM fluxes are
calculated over a face of a geometric cell meanwhile in the MFVM fluxes are defined
over an effective area expressed in terms of particle functions.

The MFVM proposed by Ivanova et al. [Ivanova et al., 2013] does not provide a
full discretization of the Euler equations. The set of particle functions are not defined
and the flux term expressed by (Fw · A)ij needs to be evaluated numerically with the
information carried by the particles. However, the lack of an approximation for the
flux and the effective area allows us to appreciate more clearly the similarity of MFVM
with FVM.

5.3.5. Connections between MFVM and SPH

In this subsection, we outline the derivation of the traditional SPH equations and
we show how to recover these equations starting from the MFVM given by Eq. (5.27)
and Eq. (5.26).

Particle functions ψi(x) satisfying the PU property plays a key role in the MFVM.
On the contrary, the traditional SPH equations are derived in terms of the kernel
function Wi(x). Although the derivations seem different we show the path to recover
the traditional Lagrangian SPH equations starting with the MFVM. The key factor for
the analysis is based on the identification of a hidden PU associated with the kernel
approximation.

SPH is based on the smoothing of the mass assigned to a set of discrete points.
Based on that we define the density spread in an arbitrary point x by the presence
of the mass mi located in point xi by ρi(x) = miW (x − xi, h(x)). The density at
point x is obtained by summation over the neighboring particles (nx) inside the kernel
support, which is expressed mathematically by ρ(x) =

∑nx

j W (x − xj , h(x))mj . The
following partition of unity associated with SPH can be inferred

ψSPHi (x) = miW (x − xi, h(x))∑nx

j W (x − xj , h(x))mj
= ρi(x)

ρ(x) (5.35)

Before paying attention to the conservative equations, it is illustrative to examine
the expression of the effective volume associated with a particle in MFVM

Vi =
∫

Ω
ψSPHi (x) dxd =

∫
Ω

mi

ρ(x)W (x − xi, h(x)) dxd (5.36)

It is possible to proceed further after approximating the kernel by the delta function,
namely W (x − xi, h(x)) ≈ δ (x − xi). By means of the integral identity of the delta
function the following relation is derived

107



Chapter 5. MLSPH-ALE method and its relationship with some particle-based
formulations

Vi =
∫

Ω

mi

ρ(x)W (x − xi, h(x)) dxd ≈
∫

Ω

mi

ρ(x)δ (x − xi) dxd = mi

ρi
(5.37)

In traditional SPH the mass of the particle is kept fixed, and the density is derived
by using the kernel approximation. It is possible to obtain a volume associated with the
particle through the density definition, but it is not required for solving the governing
equations. On the contrary, in the MFVM the mass of the particle is evolved from
the mass conservation (Eq. (5.27) with U1 = ρ) and the particle volume is defined by
Eq. (5.11). To obtain a numerical value of the volume we need a quadrature rule to
approximate the previous integral. There is also the alternative choice of evolving the
volume of the particle using the generalization of the Leibniz rule (see Eq. (4.32)).

For the momentum equation, we start with the general equation of the meshless
finite volume formulation given by Eq. (5.27) and we set the particular settings cor-
responding to SPH. Particles move with the fluid velocity (w = u), and the vector of
conservative variables U i and source terms Si takes the particular form U i = ρiui and
Si = ρif i thus giving

d

dt

∣∣∣∣
u

ρiuiVi +
∑
j

(Fu · A)ij = ρif iVi (5.38)

We then proceed by computing the flux terms (Fu · A)ij . Because SPH is a La-
grangian method, the flux of the momentum is a diagonal tensor Fu = pI involving only
the pressure term. With these considerations, the general expression for the meshless
flux given by Eq. (5.26) reads as

(Fu · A)ij =
∫

Ω
[ψi(x)p(x)∇ψj(x) − ψj(x)p(x)∇ψi(x)] dxd (5.39)

Now, we insert in Eq. (5.39) the expressions for ψi(x) and ∇ψi(x) that correspond
to the SPH kernel approximation, that is

ψSPHi (x) = mi

ρ(x)W (x − xi, h(x)) ∇ψSPHi (x) ≈ mi

ρ(x)∇W (x − xi, h(x)) (5.40)

resulting in the following expression for the momentum flux (Fu · A)ij

(Fu · A)ij ≈
∫

Ω

[
mi

ρ(x)W (x − xi, h(x)) p(x) mj

ρ(x)∇W (x − xj , h(x))

− mj

ρ(x)W (x − xi, h(x)) p(x) mi

ρ(x)∇W (x − xi, h(x))
]
dxd (5.41)

The momentum flux (Fu · A)ij given by Eq. (5.41) involves a complex integration
including the kernel and gradient kernel for particles i and j. However, by shrinking
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the kernel in the delta function we can use the properties of the delta function to obtain
the approximation

(Fu · A)ij ≈ mimj

ρ2
i

pi∇iW (xi − xj , hi) − mimj

ρ2
j

pj∇jW (xj − xi, hj) (5.42)

Replacing Eq. (5.42) into Eq. (5.38) yields

d

dt

∣∣∣∣
u

miui +
∑
j

[
mimj

ρ2
i

pi∇iW (xi − xj , hi) − mimj

ρ2
j

pj∇jW (xj − xi, hj)
]

= ρif iVi

(5.43)
For a uniform smoothing length h = hi = hj , we could use the symmetric property

of the kernel function

∇iW (xi − xj , h) = −∇jW (xj − xi, j) ∇iWij = −∇jWji (5.44)

and after dividing by the constant mass mi of the particle we arrive at the final ex-
pression for the momentum equation given by

d

dt

∣∣∣∣
u

ui = −
∑
j

mj

(
pi
ρ2
i

+ pj
ρ2
j

)
∇iWij + f i (5.45)

The discrete momentum equation given by Eq. (5.45) is coincident with Eq. (5.32)
obtained with the traditional SPH formulation by Monaghan. Thus, it can be con-
cluded that the SPH method can be considered as a particular configuration of the
Meshless Finite Volume Method.

In the beginning of the chapter we introduced the idea that MFVM methods were
the bridge between mesh-based and meshless methods. Once the discretized equations
are analyzed it can be asserted now that it is more appropriate to consider that FVM
and SPH are particular methods contained in the MFVM class of methods.

5.4. MLSPH-ALE. A common framework for meshless-fv
methods

In the previous section we outlined the relations between mesh-based methods and
SPH methods. The hybrid features of meshless-fv methods have attracted the attention
of many researchers to develop meshless methods that over-perform the mesh-based
and SPH methods in solving a wide variety of applications. As a consequence, several
meshless-fv methods were conceived in the last decade. Some of them were developed
to solve astrophysical problems ([Hopkins, 2015], [Gaburov & Nitadori, 2011], [Hinz,
2020], [Alonso-Asensio, 2019]) meanwhile other methods were aimed to solve the flow
in hydraulic turbomachines ([Marongiu, 2007], [Vessaz, 2015]). Some other meshless-fv
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methods like the Finite Volume Particle Method (FVPM) and the SPH-ALE of Vila
were conceived as a general method to solve hyperbolic conservation laws.

Meshless-fv methods have not achieved the same degree of maturity as the FEM
and FVM, so it seems reasonable that in the current state of development several of
the meshless-fv methods cited will evolve and some new meshless formulations appear
in a near future. Thus, the list is not exhaustive but it is representative of the different
communities that use meshless-fv methods. In the next sections we will prove that the
MLSPH-ALE is a general meshless-fv formulation. After a selection of representative
meshless-fv in the literature, it is shown that adopting some particular settings in
MLSPH-ALE leads to equivalent semi-discrete equations

5.4.1. The Finite Volume Particle Method (FVPM)

The Finite Volume Particle Method (FVPM) was first developed by Hietel, Steiner
and Struckmeier in [Hietel et al., 2000] for a system of conservation laws in the spatial
domain Ω = Rd. Then, Junk and Struckmeier [Junk & Struckmeier, 2000] proposed
a more stable discretization in a bounded domain Ω ⊂ Rd. Keck and Hietel incorpo-
rate a projection technique for incompressible flow [Keck & Hietel, 2005]. Lamichanne
[Lamichhane, 2001] and Teleaga and Struckmeier [Teleaga, 2005; Teleaga & Struck-
meier, 2008] extended the method to moving domains. Quinlan and coworkers have
conducted a very active research work on the FVPM on the last decade. Some of their
main contributions are the extension of the FVPM to viscous flow [Nestor et al., 2009]
and free-surface flows [Quinlan, 2018].

The FVPM is a method that was developed to be a hybrid method with the flex-
ibility of a particle method and the assurance of conservativeness inherent to FVM.
The FVPM assigns a particle function to each particle that automatically satisfies the
Partition of Unity property. This function is denoted as ψi (x, t)

ψi (x, t) ≡ W (x − xi, t)
N∑
j=1

W (x − xj , t)
= Wi (x, t)

σ(x, t) (5.46)

where the summation over all domain particle functions at point x for an instant time

t is designated more compactly as σ(x, t) ≡
N∑
j=1

W (x − xj , t). It can be observed that

the particle function ψi takes the form of a field variable expressed in Eulerian descrip-
tion. Note that x and t are the independent arguments of a variable ψi. Therefore,
the time derivative of the particle function can be inferred by using the concept of the
derivative following a particle as

d

dt
ψi (x, t) = ∂

∂t
ψi (x, t) + w · ∇ψi (x, t) (5.47)

The expression for the derivative of the particle function is a key element in the pro-
cedure to obtain the semi-discrete equations of the FVPM. At this point it is important
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to remark some differences between the tasks conducted by ψi(x) in the MFVM and in
the FVPM. Both particle functions are used to conduct the subdivision of the domain.
In the FVPM, the ψi (x, t) functions are also used as the test functions to define the
weak form. Meanwhile, in the MFVM the particle functions ψi(x) were introduced
to facilitate the integration of the weak form. The FVPM is aimed to solve general
conservation laws, written in the form

∂

∂t
U + ∇ · FE(U) = S ∀x ∈ Ω(t) ⊂ Rd, t > 0 (5.48)

with initial conditions U(x, 0) = U0(x),∀x ∈ Ω(t = 0) and with suitable boundary
conditions. In Eq. (5.48), Ω(t) ⊂ Rd is a bounded domain in Rd, U(x, t) ∈ Rm, m > 0
is the vector of conservative variables, and FE(U(x, t)) is the Eulerian Flux tensor.

The procedure to derive the semi-discrete equations of FVPM, starts by testing the
conservation law given by Eq. (5.48) against the particle functions ψi (x, t) given by
Eq. (5.46), resulting in the weak form given by∫

Ω(t)

(
∂

∂t
U + ∇ · FE(U)

)
ψi(x, t) dxd =

∫
Ω(t)

S ψi(x, t) dxd, i = 1, . . . , N (5.49)

For the volume integral containing the source term, we can associate a local average
to each particle i

Si(t) = 1
Vi(t)

∫
Ω(t)

S(x, t)ψi(x, t) dxd (5.50)

By performing integration by parts in the transient and flux term and using Eq. (5.50)
we obtain∫

Ω(t)

∂(Uψi)
∂t

dxd+
∫

Ω(t)
∇·(FE ψi) dxd =

∫
Ω(t)

(
U
∂ψi
∂t

+ FE · ∇ψi
)
dxd+SiVi (5.51)

The Leibniz rule of integration enable us to write the following relation

d

dt

∫
Ω(t)

Uψi dx
d =

∫
Ω(t)

∂(Uψi)
∂t

dxd +
∫
∂Ω(t)

(Uψi ⊗ b) · n dxd−1 (5.52)

with b(x, t) denoting the velocity of the boundary ∂Ω(t). After application of Leibniz
rule, Eq. (5.51) becomes

d

dt

∫
Ω(t)

Uψi dx
d +

∫
∂Ω(t)

ψi (FE − U ⊗ b) · n dxd−1

︸ ︷︷ ︸
Bi(x,t)

=

∫
Ω(t)

(
U
∂ψi
∂t

+ FE · ∇ψi
)
dxd + SiVi (5.53)
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We rename the integral boundary term as Bi(x, t). This boundary term appears
only for particles i which are close to the boundary, i.e. Di ∩ ∂Ω ̸= 0. In the follow-
ing derivation, we neglect this boundary term and we restrict the analysis to interior
particles far from the boundary of the domain. To proceed further, we need to obtain
a more convenient expression for the transient term on the left hand side and also for
the two terms on the right hand side of Eq. (5.53).

In a very similar form to FVM, we can associate a local average to each particle i,
through the equation

U i(t) = 1
Vi(t)

∫
Ω(t)

U(x, t)ψi(x, t) dxd (5.54)

where Vi(t) is the time-dependent volume of the particle i given by

Vi(t) =
∫

Ω(t)
ψi(x, t) dxd (5.55)

Eq. (5.54) is denoted as the discrete particle property associated with the FVPM.
The discrete particle property relation assigns the cell averaged values to each cell. It
can be noticed that Eq. (5.55) derives from the discrete particle property associated
with a constant unit function. In classical FVM the test functions are taken as the
characteristic functions IΩi

(x) of the control volume Ωi. A characteristic function
is a piecewise constant function that values 1 in the corresponding cell and values 0
otherwise.

By taking the time rate of Eq. (5.54) we obtain the relation

d

dt

∫
Ω(t)

Uψi dx
d = d (U iVi)

dt
(5.56)

where the time rate of a continuous integral over the domain is given in terms of a time
rate of a discrete product of particle properties. By using Eq. (5.56) and dropping the
boundary term Bi(x, t), Eq. (5.53) gives

d (U iVi)
dt

=
∫

Ω(t)

(
U
∂ψi
∂t

+ FE · ∇ψi
)
dxd + SiVi (5.57)

which is valid for particles far away for the boundary ∂Ω(t). For the particle function
ψi(x, t) defined in Eq. (5.46) it can be proved that (see [Hietel et al., 2000] 3)

∂ψi(x, t)
∂t

=
N∑
j=1

(wj(t)Γij(x, t) − wi(t)Γji(x, t)) (5.58)

∇ψi(x, t) =
N∑
j=1

(Γji(x, t) − Γij(x, t)) (5.59)

3Hietel et al. denote the transport velocity of the particles w(t) by ẋ(t)
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where Γij(x, t) and Γji(x, t) are vector functions localized on the intersection of the
supports of particle i and particle j, and are defined by

Γij(x, t) ≡ ψi(x, t)
∇Wj(x, t)
σ(x, t) Γji(x, t) ≡ ψj(x, t)

∇Wi(x, t)
σ(x, t) (5.60)

Inserting Eq. (5.58) and Eq. (5.59) into Eq. (5.57) and after rearranging terms we
arrive at Eq. (5.61). In this manipulation the property a(b · c) = (a ⊗ b)c was used.

d (U iVi)
dt

=
N∑
j=1

∫
Ω(t)

[(
FE −U ⊗wi(t)

)
Γji(x, t)−

(
FE −U ⊗wj(t)

)
Γij(x, t)

]
dxd+SiVi

(5.61)
At this moment, it is convenient to focus the attention on the flux expressions

appearing inside the brackets of Eq. (5.61). To evaluate the interaction of particle i with
particle j we need to evaluate the fluxes

(
FE − U ⊗ wi(t)

)
and

(
FE − U ⊗ wj(t)

)
. The

Eulerian flux tensor FE(U) = FE(x, t) and the vector of conservative variables U(x, t)
are continuous functions of space and time. On the other hand, particle velocities
wi(t) and wj(t) are functions of time. To evaluate the integral of Eq. (5.61), an
approximation of U at the overlap of particles i and j is required.

Figure 5.3. Different degree of overlap between particles i and j. Left: Low overlap.
Right: High overlap

The approximation invoked to proceed assumes that U(x, t) varies little within
the overlap of particles i and j, and can be represented by a single value denoted
U ij . Figure 5.3 depicts two different degrees of overlap between particles i and j.
The approximation invoked is valid for the situation plotted on the left. The same
approximation is adopted for the arbitrary transport velocity. Thus, we denote by wij

to the single value transport velocity in the overlap region of particles i and j. The
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approximations done renders that both modified fluxes inside brackets of Eq. (5.61)
are approximately equal and uniform in each overlap region. Noting that Γij(x, t) and
Γji(x, t) are zero outside the overlap region the flux can be taken out of the integral
giving

d (U iVi)
dt

≈
N∑
j=1

(
FE
(
U ij

)
− U ij ⊗ wij

)︸ ︷︷ ︸
I

∫
Ω(t)

[
Γji(x, t) − Γij(x, t)

]
dxd︸ ︷︷ ︸

II

+SiVi (5.62)

Inspection of Eq. (5.62) shows that after performing the approximations each con-
tributing term of the sum can be expressed as the product of two factors with different
nature. The factor inside brackets (I) represents a flux meanwhile the integral (II)
contains geometrical information of the neighborhood of particle i.

Once the approximations were introduced, it is observed that flux inside brackets(I)
is an advective ALE flux

Fw

(
U ij ,wij

)
≡ FE

(
U ij

)
− U ij ⊗ wij (5.63)

Looking for a handier notation for the integral factor the following geometrical
coefficients are defined

γij(t) ≡
∫

Ω(t)
Γij(x, t) dxd γji(t) ≡

∫
Ω(t)

Γji(x, t) dxd (5.64)

Aij(t) ≡ γij(t) − γji(t) (5.65)

Substitution of Eq. (5.63), Eq. (5.64) and Eq. (5.65)) into Eq. (5.62) gives the
compact semi-discrete form obtained by FVPM

d (U iVi)
dt

+
N∑
j=1

Fw

(
U ij ,wij

)
Aij(t) ≈ SiVi (5.66)

Since we are interested in the unknowns U i, an additional equation for the volumes
Vi(t) is needed. We could either evaluate Vi(t) using Eq. (5.55), or update its value
by evaluations of its time rate V̇i(t). By following this second approach, we note that
(5.52) express a balance law for a vector of conservative variables U . For the particular
case of one-component vector, U degenerates in a scalar field U . By setting U = 1 the
time rate V̇i(t) obeys

V̇i(t) =
N∑
j=1

(
γijwj − γjiwi

)
+
∫
∂Ω(t)

ψib · n dxd−1 (5.67)

Eq. (5.66) and Eq. (5.67) supplemented with the initial conditions give the semi-
discrete form of the FVPM. This is the most convenient form to compare with other
meshless formulations.
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The final semi-discrete form given by Eq. (5.66) demands the flux tensor Fw

(
U ij ,wij

)
to be given in terms of the data stored in the particles. The ALE flux Fw is defined
in terms of an uniform representative state at the overlap region of particles i and
j. This ALE flux Fw

(
U ij ,wij

)
is approximated with a numerical ALE flux function

Gw (U i,U j ,wi,wj), as follows

Fw

(
U ij ,wij

)
≡ FE

(
U ij

)
−U ij⊗wij ≈ Gw (U i,U j ,wi,wj) = G (U i,U j)−U ij⊗wij

(5.68)
where the Eulerian flux FE

(
U ij

)
is approximated with a numerical flux function

G (U i,U j)

FE
(
U ij

)
≈ G (U i,U j) (5.69)

Relations between FVPM and MLSPH-ALE

There are differences in the derivation procedures to obtain the semi-discrete form of
the FVPM and MLSPH-ALE. The derivation of the FVPM was started from the strong
form of the conservation law in Eulerian form (Eq. (5.48)) meanwhile the MLSPH-
ALE started from the conservation law in ALE form (Eq. (4.14)). The FVPM and
the MLSPH-ALE also introduce their approximations at different stages in the pro-
cedure. FVPM uses particle functions ψi(x, t) meanwhile MLSPH-ALE uses particle
functions based on MLS Ni(x, t). When the base selected for MLS comprises only
the constant term MLS shape functions are identical to the particle functions ψi(x, t)
used by FVPM. Both formulations share in common that both set of particle functions
satisfy the PU property. The FVPM defines an effective surface interaction area Aij(t)
that can be integrated using different quadrature rules [Quinlan et al., 2014]. However,
it is possible to obtain some relations between these two methods by analysis of their
respective semi-discrete forms.

The semi-discrete form for the FVPM was given in Eq. (5.66). The effective inter-
action area Aij(t) between particle i and j can be expressed using definitions given in
Eq. (5.65), Eq. (5.64) and Eq. (5.60) by

Aij(t) =
∫

Ω(t)

(
ψi(x, t)

∇Wj(x, t)
σ(x, t) − ψj(x, t)

∇Wi(x, t)
σ(x, t)

)
dxd (5.70)

where the particle function ψi (x, t) was defined in Eq. (5.46).
The area Aij(t) in Eq. (5.70) is given in terms of particle functions ψ(x, t) and kernel

gradients ∇W (x, t) of the interacting particles. In order to compare with MLSPH-ALE
formulation we look for an alternative expression for Eq. (5.70) that is given in terms of
particle functions ψ(x, t) and the gradient of particle functions ∇ψ(x, t). By taking the
gradient of Eq. (5.46) which defines the particle function ψi(x, t) associated to particle
i we obtain
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∇ψi(x, t) = ∇Wi (x, t)
σ(x, t) +Wi(x, t)∇

(
1

σ(x, t)

)
= ∇Wi (x, t)

σ(x, t) − ψi(x, t)
∇σ(x, t)
σ(x, t)

(5.71)
where ∇Wi(x, t) can be isolated to obtain

∇Wi(x, t) = ∇ψi(x, t)σ(x, t) + ψi(x, t)∇σ(x, t) (5.72)

Similarly, repeating the operations involved in Eq. (5.71) and Eq. (5.72) for a particle
j we obtain an equivalent expression for ∇Wj(x, t)

∇Wj(x, t) = ∇ψj(x, t)σ(x, t) + ψj(x, t)∇σ(x, t) (5.73)

By inserting expressions Eq. (5.72) and Eq. (5.73) into Eq. (5.70) the terms involving
products ψi(x, t)ψj(x, t) are canceled, obtaining an expression for Aij(t) in terms of
particle functions, that reads as

Aij(t) =
∫

Ω(t)

(
ψi(x, t)∇ψj(x, t) − ψj(x, t)∇ψi(x, t)

)
dxd (5.74)

Eq. (5.74) provides an alternative presentation for the interaction area Aij of FVPM
that has a great similarity with the interaction area for MFVM given in Eq. (5.26).

Now, we recall Eq. (4.22) obtained during the MLSPH-ALE derivation process.
Since MLSPH-ALE was derived for the Navier-Stokes equations, the ALE flux tensor
Fw and the diffuse tensor D were grouped in a flux tensor F defined by F ≡ Fw − D.
Thus, for the Euler equations F = Fw, and the MLSPH-ALE method provides the
following discretization

d(ViU i)
dt

+
ni∑
j=1

[
1
2
(
(Fw)j + (Fw)i

)
− (Fw)i

](∫
∂Ω
NiNj · n dxd−1

−
∫

Ω
Nj · ∇Ni dxd +

∫
Ω
Ni · ∇Nj dxd

)
= Vi Si (5.75)

Dropping the boundary term
(∫

∂Ω
NiNj · n dxd−1

)
we note that the MLSPH-ALE

method uses an interparticle area given by

Aij =
∫

Ω
Ni · ∇Nj dxd −

∫
Ω
Nj · ∇Ni dxd (5.76)

By comparison of Eq. (5.74) and Eq. (5.76) it can be observed that the effective areas
resulting from both methods adopt the same structure. The only difference is that Aij

for FVPM (Eq. (5.74) ) is given in terms of ψi(x, t), meanwhile Aij for MLSPH-ALE
(Eq. (5.76)) is given in terms of Ni(x, t). Since Ni(x, t) can be obtained with MLS
approximation using any set of polynomial basis functions and ψi(x, t) correspond to a
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particular MLS approximation with constant basis, it can be stated that the expression
for Aij obtained with the MLSPH-ALE method is more general than the expression
obtained with the FVPM method.

FVPM and MLSPH-ALE method use different numerical approximations to com-
pute their effective areas. MLSPH-ALE method approximates the effective area Eq. (5.76)
by using a one point quadrature in the overlap region, resulting in an numerical ap-
proximation for Aij

Aij ≈ (Vi∇Nji − Vj∇Nij) (5.77)

Publications dealing with FVPM in the literature have used different quadrature
rules to perform the integration of the effective area Aij . Numerical approximation
of this integral has received great attention by researchers using this method [Quinlan
et al., 2014]. Some algorithms build the particle shape functions using kernel with
either circular [Jahanbakhsh et al., 2017] or squared support [Jahanbakhsh et al., 2016].
Quinlan et al. [Quinlan & Lobovský, 2018] have shown some preference for hat-shaped
kernel functions over the more traditional Gaussian like kernel functions.

5.4.2. SPH-ALE method

The exposition is introduced by recalling the SPH-ALE method of Vila described
in Chapter 2. The semi-discrete form of the SPH-ALE method is given by Eq. (2.90),
and read as

d

dt
(U iVi) + Vi

ni∑
j=1

Vj

(
(F α

w)i + (F α
w)j
) ∂

∂xαi
Wij = SiVi (5.78)

where the fluxes in ALE form were introduced as vectors Fαw with the subindex w

remarking the ALE character of the flux with respect a transport velocity field. To
ease the comparison with other meshless formulations the ALE flux will be expressed
as a tensor, reading as

d

dt
(U iVi) + Vi

ni∑
j=1

Vj

(
(Fw)i + (Fw)j

)
∇iWij = SiVi (5.79)

Obtaining the SPH-ALE formulation from MLSPH-ALE discretization

Recovering the SPH-ALE method from the MLSPH-ALE requires to relate the
gradient of the particle shape function ∇N with the gradient of the kernel ∇W .

The semi-discrete-form obtained with MLSPH-ALE method for the Euler equations
far from the boundary was given in Eq. (4.25) and it is recalled here

d(ViU i)
dt

+
ni∑
j=1

[
1
2

(
(Fw)j + (Fw)i

)
− (Fw)i

]
(−Vj ∇Nij + Vi ∇Nji) = Vi Si (5.80)
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In Table 5.1 the expressions for the kernel and MLS approximations for the function
and the gradient of a scalar function u are given

Kernel approximation MLS approximation
⟨u(x)⟩ =

∑
j u (xj)W (x − xj , h)Vj û(x) =

∑
j N (x − xj , h)u (xj)

⟨∇u(x)⟩ =
∑
j u (xj) ∇W (x − xj , h)Vj ∇̂u(x) =

∑
j ∇N (x − xj , h)u (xj)

Table 5.1. Kernel and MLS approximations for a scalar function and its gradient

Introducing the approximation ⟨∇u(x)⟩ ≈ ∇̂u(x), we obtain the following relation

∇W (x − xj , h)ωj ≈ ∇N (x − xj , h) (5.81)

where the kernel and particle shape functions are both centered at xj , and the gradients
are taken with respect to the variable x. If now the gradients are evaluated at point
xi, we obtain the relation

∇iWij Vj ≡ ∇iW (xi − xj , h)Vj ≈ ∇N (xi − xj , h) ≡ ∇Nji (5.82)

In Eq. (5.82) we have introduced the concise nomenclature that is used for the SPH
kernel gradient and for particle shape functions. Note that the common nomenclature
for the kernel gradient introduces a particle subindex in the nabla operator remarking
that the gradient is taken with respect to the spatial coordinates of that particle.
Similarly, if the kernel/shape function is centered in particle i and evaluate its gradient
in the position of particle j we obtain

∇jWji Vi ≡ ∇jW (xj − xi, h)Vj ≈ ∇N (xj − xi, h) ≡ ∇Nij (5.83)

We can insert Eq. (5.82) and Eq. (5.83) in Eq. (5.80) to obtain

d(ViU i)
dt

+Vi

ni∑
j=1

Vj

[
1
2

(
(Fw)j + (Fw)i

)
− (Fw)i

]
(−∇jWji + ∇iWij) = Vi Si (5.84)

Finally, the symmetry property of the kernel ∇jWji = −∇iWij enable us to write

d(ViU i)
dt

+ Vi

ni∑
j=1

2Vj
[

1
2

(
(Fw)j + (Fw)i

)
− (Fw)i

]
∇iWij = Vi Si (5.85)

Comparison of Eq. (5.85) with Eq. (5.79) shows that the MLSPH-ALE method
can provide the same semi-discrete form of SPH-ALE method if the interaction flux
is given by

[
1
2

(
(Fw)j + (Fw)i

)]
instead of

[
1
2

(
(Fw)j + (Fw)i

)
− (Fw)i

]
. Since this

self-contribution of particle i could be incorporated or suppressed in the MLSPH-ALE
procedure it has been proved that the SPH-ALE method is contained in the MLSPH-
ALE method.

118



5.4. MLSPH-ALE. A common framework for meshless-fv methods

An interesting analysis is related with the computational cost and accuracy associ-
ated with both formulations. MLSPH-ALE demands the calculation of gradients ∇Nji,
meanwhile SPH-ALE requires the calculation of the terms ∇iWijVj . The calculation
of ∇Nji depends on the number of points considered for the support domain of the
particle and the dimension of the base of polynomials considered for the MLS approx-
imation. Evaluation of Vj∇iWij only involves the data associated with particle i and
j. However, in terms of accuracy, the SPH-ALE method can not provide a correct
gradient approximation for a linear field. In order to circumvent this flaw, SPH-ALE
needs a renormalization correction, which also demands the solution of a linear system
of equations for each particle, as the MLS approximation does.

5.4.3. The Meshless Finite Volume Method (MFVM)

The semi-discrete form of the MFVM proposed by Ivanova et al. [Ivanova et al.,
2013] is given by Eq. (5.27)

d (U iVi)
dt

+
∑
j

(Fw · A)ij ≈ SiVi

where the interaction term of particle i over j, denoted as (Fw · A)ij , is defined by
Eq. (5.26)

(Fw · A)ij ≡
∫

Ω
Fw(x) ·

(
ψi(x)∇ψj(x) − ψj(x)∇ψi(x)

)
dxd

The MFVM does not provide a full discretization for the flux between particles
and for the effective area because neither of them are given in terms of data contained
in the set of particles. This incomplete discretization has several implications. On
one hand, without additional discretization the method is unable to run simulations.
On the other hand, the method enjoys general features that are useful to appreciate
approximations invoked by other meshless-fv methods.

Relations between the MFVM and the MLSPH-ALE method

The semi-discrete system obtained with MFVM for the Euler equations is given by
Eq. (5.25), reading as

d (U iVi)
dt

+
∑
j

∫
Ω

Fw(x) ·
(
ψi(x)∇ψj(x) − ψj(x)∇ψi(x)

)
dxd ≈ SiVi

The semi-discrete system obtained with MLSPH-ALE method for the Navier Stokes
equations is given by Eq. (4.22). Particularized for the Euler equations (F = F w) and
omitting the boundary term we obtain
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d(ViU i)
dt

+
ni∑
j=1

[
1
2

(
(Fw)j + (Fw)i

)
− (Fw)i

](∫
Ω
Ni · ∇Nj dxd

−
∫

Ω
Nj · ∇Ni dxd

)
= Vi Si

Noting that MFVM and MLSPH-ALE semi-discrete forms only differ in their ex-
pressions for the interacting term between particles, we equalize them to establish
relations between both methods.

∫
Ω

Fw(x) ·
(
ψi(x)∇ψj(x) − ψj(x)∇ψi(x)

)
dxd︸ ︷︷ ︸

MFVM

≈

[
1
2

(
(Fw)j + (Fw)i

)
− (Fw)i

](∫
Ω
Ni · ∇Nj dxd −

∫
Ω
Nj · ∇Ni dxd

)
︸ ︷︷ ︸

MLSPH−ALE

(5.86)

Eq. (5.86) shows that the MLSPH-ALE method assumes a constant flux tensor in
the overlap region, which can be taken out of the integral. Both formulations share
the same form for the effective interaction area with the only exception that MFVM is
given in terms of ψ(x) and MLSPH-ALE uses Ni(x) obtained with MLS. In MLSPH-
ALE, a full discretization of the flux is provided since the tensor flux is given in terms
of particle data.

5.4.4. The Gizmo-MFV method

We outline here the Meshless Finite Volume (MFV) method in the form given by
Hopkins [Hopkins, 2015]. The publication is associated with the open source project
Gizmo, and therefore we use the name Gizmo-MFV to refer to this method. In [Hop-
kins, 2015], the author declares that the derivation of the method it is inspired in the
work by Gaburov and Nitadori [Gaburov & Nitadori, 2011]. The derivation procedure
by Gaburov and Nitadori was presented for a scalar conservation law meanwhile the
procedure presented by Hopkins is presented for the Euler equations. Gaburov and
Nitadori consider that their derivation is heuristic. Apart from the main publication
linked to the Gizmo-MFV we cite two master thesis that provide a concise introduction
and details of the code implementation ([Hinz, 2020], [Alonso-Asensio, 2019]).

The derivation of the Gizmo-MFV method is based on the weak form of the Euler
equations presented in the form given by Eq. (2.74). We recall that this weak form
was also the base for the MFVM (see 5.3.2). Gizmo-MFV and MFVM methods exploit
the PU property of particle shape functions and for that reason, it is illustrative to
understand the point at which both formulations separate from each other. In the first
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steps of the MFVM derivation, the weak form after application of the Fubini theorem
was given by Eq. (5.5) and recalled here, reading as

∀φ ∈ C2
0
(
Rd × R+,∗) ∫

R+

∫
Rd

(U φ̇+ ∇φ · Fw + Sφ) dxddt = 0

Then, the PU property is invoked to facilitate the integration in the spatial domain.
Since

∑
i ψi (x) = 1 the following identity holds

∫
Rd

1(U φ̇+ ∇φ · Fw + Sφ) dxd =
∫
Rd

∑
i

ψi (x) (U φ̇+ ∇φ · Fw + Sφ) dxd (5.87)

Arrived at this point, the MFVM and the Gizmo-MFV follow different paths. In
MFVM the integral containing the flux term ∇φ·Fw is approximated in a different form
that integrals containing the transient term U φ̇ and source term Sφ. In the Gizmo-
MFV the three integral terms are approximated identically. The integral approximation
adopted for a arbitrary scalar function f(x) is given by∫

Rd

∑
i

ψi (x) f(x) dxd =
∑
i

∫
Ω
ψi (x) f(x) dxd ≈

∑
i

∫
Ω
ψi (x) f (xi) dxd =

∑
i

f (xi)
∫

Ω
ψi(x) dxd =

∑
i

f(xi)Vi =
∑
i

fiVi (5.88)

where the definition of the volume associated to particle Vi =
∫

Ω ψi (x) dxd was used.
Application of the discretization given by Eq. (5.88) to Eq. (5.87) leads to∫

R+

[∑
i

(ViU iφ̇i + Vi(∇φ)i · (Fw)i + ViSiφi)
]
dt ≈ 0 (5.89)

To proceed further, the gradient (∇φ)i needs to be replaced by a discrete version
(Dhφ)i. Gizmo-MFV estimates this gradient using the renormalized gradient approx-
imation following the recommendations given by Lanson and Vila [Lanson & Vila,
2008a]. The renormalization process assures that the discrete approximation repro-
duces exactly a linear field function. Hopkins [Hopkins, 2015] and Gaburov and Nita-
dori [Gaburov & Nitadori, 2011] use index notation to express the discrete renormalized
gradient approximation by

(∇φ)αi ≈ (Dα
hφ)i =

∑
j

(φj − φi) ψ̃αj (xi) (5.90)

where ψ̃αj (xi) are defined in terms of the renormalization matrix (Bα,βH )i, particle
positions and particle function ψj (xi) by

ψ̃αj (xi) ≡
(
Bα,βH

)
i

(
xβj − xβi

)
ψj (xi) (5.91)
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The renormalization matrix (Bα,βH )i is required to satisfy condition

δα,γ =
∑
j

(
Bα,βH

)
i

(
xβj − xβi

) (
xγj − xγi

)
ψj (xi) (5.92)

where δα,γ is the Kronecker delta function. Since the definition of the renormalization
matrix (Bα,βH )i given by Eq. (5.92) is taken from Hopkins [Hopkins, 2015] we append
the subindex H in the designation of the matrix.

After introducing Eq. (5.90) into Eq. (5.89) we arrive at

∫
R+

∑
i

ViU iφ̇i + Vi
∑
j

(φj − φi) ψ̃j (xi) · (Fw)i + ViSiφi

 dt ≈ 0 (5.93)

We note that discrete values of the test function (φ) appear in Eq. (5.93) in the
form of a time derivative φ̇i in the first term, as a difference (φj − φi) in second term
and as φi in the third term. Since the aim of this procedure is to obtain a discrete
solution of the weak form, we need to rearrange terms in order to verify Eq. (5.93) for
any values of (φ).

Application of integration by parts (See Eq. (5.22)) provides an alternative expres-
sion for the first term in Eq. (5.93).∫

R+

(∑
i

U i
dφi
dt

Vi dt

)
dt = −

∫
R+

(∑
i

φi
d (U iVi)

dt

)
dt (5.94)

For the difference term in Eq. (5.93), the factorization is based on the fact that a
double sum is not affected by the renumeration of index∑

i

Vi
∑
j

(φj − φi) ψ̃αj (xi) (F α
w)i =

∑
i

∑
j

Viφjψ̃
α
j (xi) (F α

w)i︸ ︷︷ ︸
i⇄ j

−
∑
i

∑
j

Viφiψ̃
α
j (xi) (F α

w)i =

−
∑
i

φi
∑
j

[
Vi(F α

w)iψ̃αj (xi) − Vj(F α
w)jψ̃αi (xj)

]
(5.95)

Replacing Eq. (5.94) and Eq. (5.95) into Eq. (5.93) yields

∫
R+

−
∑
i

φi

d (U iVi)
dt

+
∑
j

[
Vi(F α

w)iψ̃αj (xi) − Vj(F α
w)jψ̃αi (xj)

]
− ViSi

 dt ≈ 0

(5.96)
This must hold for an arbitrary test function φi with i = 1, ..N ; therefore, the

expression inside the parenthesis must vanish, i.e.
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d (U iVi)
dt

+
∑
j

[
Vi(F α

w)iψ̃αj (xi) − Vj(F α
w)jψ̃αi (xj)

]
= ViSi (5.97)

At this step in the derivation, Gizmo-MFV replaces the particle fluxes (F α
w)i and

(F α
w)i with the numerical flux solution of the moving Riemann problem defined by

the states of particles/cells i and j. Defining such a flux as (Gα
w)ij , Eq. (5.97) is

reinterpreted as

d (U iVi)
dt

+
∑
j

(Gw)ij ·
[
Viψ̃j (xi) − Vjψ̃i (xj)

]
= ViSi (5.98)

where we have changed from the index notation for the spatial components to the more
compact vector notation.

Transition from Eq. (5.97) to Eq. (5.98) is not supported by mathematical opera-
tions. The formal pass from Eq. (5.97) to Eq. (5.98) demands that (F α

w)i = (F α
w)j =

(F α
w)ij and this condition is only verified for uniform flows. [Hopkins, 2015; Gaburov

& Nitadori, 2011] explain that the introduction of the solution of the Riemann problem
is invoked to automatically include the dissipation terms to stabilize a central scheme.

The semi-discrete form of the Gizmo-MFV method is given by Eq. (5.98). Com-
paring this equation with Eq.(5.27) it can be inferred the definition of an effective
interaction area Aij(t), between particles i and j, which is given by

Aij ≡ Viψ̃j (xi) − Vjψ̃i (xj) (5.99)

Obtaining Gizmo-MFV from MLSPH-ALE

Gizmo-MFV discretization is given by Eq. (5.98)

d (U iVi)
dt

+
∑
j

(Gw)ij ·
[
Viψ̃j (xi) − Vjψ̃i (xj)

]
= ViSi

whereas the discretization of the MLSPH-ALE method, particularized for the Euler
equations (F = F w) is given in Eq. (4.25)

d(ViU i)
dt

+
ni∑
j=1

[
1
2

(
(Fw)j + (Fw)i

)
− (Fw)i

]
(−Vj ∇Nij + Vi ∇Nji) = Vi Si (5.100)

By identification of the effective fluxes and interaction areas we can obtain the
particular settings of the MLSPH-ALE formulation to recover the Gizmo-MFV.

The effective flux of Gizmo-MFV is given by (Gw)ij meanwhile in MLSPH-ALE
reads

[
1
2

(
(Fw)j + (Fw)i

)
− (Fw)i

]
. Hopkins introduced the solution of a Riemann

problem expressed by (Gw)ij . In MLSPH-ALE the derivation procedure yields a cen-
tral flux expression 1

2

(
(Fw)j+(Fw)i

)
. For stability reasons the central flux is replaced

by the solution of the Riemann problem 1
2

(
(Fw)j + (Fw)i

)
≈ (Gw)ij . Therefore, the
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only difference in the flux expression resides in the subtraction of flux of particle (Fw)i
and this term can optionally be incorporated or suppressed in the MLSPH-ALE pro-
cedure.

The condition for equivalent effective interaction areas demands a particular setting
in the MLS approximation giving

∇N (xi − xj , h) = ∇Nji = ψ̃αj (xi) (5.101)

The ψ̃αj (xi) were defined in Eq (5.91) to provide a compact expression for the
renormalized approximation for the gradient of a field (see Eq. (5.90)).

We now look for the corresponding approximation for the gradient of a field but
using MLS approximation technique. We start by expressing the MLS approximation
of scalar field φ as

φ̂(x) =
∑
j

N (x − xj , h)φ (xj) (5.102)

Then we take the gradient to previous expression to provide the MLS gradient
approximation as

∇
(
φ̂(x)

)
= ∇φ̂(x) =

∑
j

∇N (x − xj , h)φ (xj) (5.103)

Using the partition of nullity property, the previous approximation for the gradient
can also be rewritten as

∇φ̂(x) =
∑
j

∇N (x − xj , h) (φ (xj) − φ (x)) (5.104)

that evaluated in the particular point x = xi yields

∇φ̂(xi) =
∑
j

∇N (xi − xj , h) (φ (xj) − φ (xi)) (5.105)

By comparing Eq. (5.90) and Eq. (5.105), it can be inferred that ∇Nji and ψ̃j (xi)
play the same role as approximations of the gradient of a scalar field. Eq. (5.90) read
as

(∇φ)i ≈ (Dhφ)i =
∑
j

(φj − φi) ψ̃j (xi) (5.106)

And using Eq. (5.105), we can write

(∇φ)i ≈ ∇φ̂(xi) =
∑
j

∇N (xi − xj , h) (φ (xj) − φ (xi)) =
∑
j

∇Nji (φj − φi)

(5.107)
However, we have not proved yet that ψ̃j (xi) = ∇Nji. In the particular case of

linear fields, the renormalized gradient derivative and the MLS approximations (with
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at least a linear basis) reproduce exactly a linear field and therefore (Dhφ)i = ∇φ̂(xi)
and we can conclude that ∇Nji and ψ̃αj (xi) for this particular field.

In order to ease the comparison with other formulations it is convenient to provide
an alternative expression for ψ̃i (xj). Gizmo-MFV defines ψ̃i (xj) in Eq. (5.90) in terms
of a renormalization matrix Bα,βH satisfying condition given by Eq. (5.92). The matrix
Bα,βH is not the common renormalization matrix used in the SPH community. For
instance, Lanson and Vila [Lanson & Vila, 2008a] define other renormalization matrix
(Bα,βV )i forcing the fulfillment of condition

δα,γ =
∑
j∈

(
Bα,βV

)
i

∂W (xi − xj , h)
∂xβi

(
xγj − xγi

)
Vj (5.108)

The matrix used by Gizmo-MFV Bα,βH is different from the matrix used in renor-
malized SPH-ALE Bα,βV . Even more, Bα,βV is dimensionless but Bα,βH has dimensions of
[L]−2. The renormalization matrix Bα,βH has the computational advantage of operating
over symmetric matrices.

Since the Kronecker function δα,γ appears on both left hand side of Eq. (5.92) and
Eq. (5.108), the following relation between matrices is obtained(

Bα,βH

)
i

(
xβj − xβi

)
ψj (xi)︸ ︷︷ ︸

ψ̃α
j

(xi)

=
(
Bα,βV

)
i

∂W (xi − xj , h)
∂xβi

Vj (5.109)

where the left hand side of Eq. (5.109) correspond with the definition of ψ̃αj (xi) in
Eq. (5.91). Therefore we have obtained and alternative definition of ψ̃αj (xi) in terms
of the kernel gradient ∇iWij

ψ̃αj (xi) =
(
Bα,βV

)
i

∂W (xi − xj , h)
∂xβi

Vj ψ̃j (xi) = (BV )i ∇iWijVj (5.110)

Introduction of Eq. (5.110) into the semi-discrete form obtained by the Gizmo-MFV
given by Eq. (5.98) gives

d (U iVi)
dt

+
∑
j

(Gw)ij ·
[
Vi (BV )i ∇iWijVj − Vj (BV )j ∇jWjiVi

]
= ViSi (5.111)

Omitting the renormalization process is equivalent to consider that renormalization
matrix is the identity matrix, that is to say, (BV )i = (BV )j = I. For that particular
case the Gizmo-MFV formulation becomes the SPH-ALE formulation of Vila.

5.4.5. The Finite Point Method (FPM)

The Finite Point Method (FPM) is a meshless technique that was originally pre-
sented by Oñate et al. [Oñate et al., 1996b], [Oñate et al., 1996a] and [Oñate, 1998].
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The solution of compressible Euler equations with FPM have been considered in detail
in [Löhner et al., 2001], [Ortega et al., 2009] and [Ortega, 2014]. Bajko [Bajko et al.,
2014], [Bajko, 2013] presented an accuracy improvement of the FPM that was applied
for computational aeroacoustics.

FPM is based on the strong solution of PDE over a stationary cloud of points.
It is a method that does not assign/calculate any weight to the points of the cloud
(neither volume nor mass). These kinds of meshless methods resemble the FDM in
the collocation approach and are usually designated as Generalized Finite Difference
Methods (GFDM), because the grid layout can be considered a special case of a point
cloud. Both the strong form and the stationary position of the points are important
differences with other meshless formulations considered in the present section. The
FPM approximates flow variables and their derivatives by means of a Weighted Least-
Square procedure that is known as Fixed Least Squares (FLS). The MLSPH-ALE
method uses an approximation based on Moving Least Squares, but the ALE capability
allow us to set the frame velocity w = 0, and with fixed point position MLS and FLS
provide the same approximations. In the literature there are other GFDMs that share
many features with the FPM, but differ in the technique used to approximate the
partial derivatives on scattered data. Instead of using Least Squares with a polynomial
basis, Jameson and Katz [Katz, 2009] have proposed the use of a Least Squares based
on Taylor series.

In the same manner that FDM formulation can be derived from the perspective
of FVM we propose to obtain the FPM formulation starting from the MLSPH-ALE
method. The acronym FPM may be a bit confusing because it is also used for other
meshless methods like the Finite Pointset Method [Kuhnert, 2003], [Suchde, 2018] and
the Finite Particle Method [Liu et al., 2005] but we recall that in this work it is used
for the Finite Point Method. In these two formulations particles can either be fixed in
an Eulerian frame as interpolation points or can move in a Lagrangian frame.

We outline the derivation of the FPM following the works of [Löhner et al., 2001]
and [Ortega et al., 2009].

We start the derivation from the Euler equations, written in differential conservative
form:

∂U(x, t)
∂t

+ ∂F α
E(x, t)
∂xα

= S(x, t) (5.112)

In order to obtain the semi-discrete form, the collocation method is adopted. The
following expression should be satisfied in each point of the cloud[

∂Û(x, t)
∂t

+ ∂F̂
α

E(x, t)
∂xα

]
x=xi

=
[
Ŝ(x, t)

]
x=xi

(5.113)

where hats are used to denote the FLS approximations. We note that FLS shape func-
tions do not interpolate point data, but assuming the approximation for the gradient
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and source term Eq. (5.113) becomes

∂U(xi, t)
∂t

+
[
∂F̂

α

E(x, t)
∂xα

]
x=xi

= S(xi, t) (5.114)

In order to proceed further, Eq. (5.114) demands to evaluate the divergence of
the flux. Noting that FLS corresponds with a particular case of MLS with fixed point
position, the FLS approximation for the Eulerian flux is expressed in terms of N(x−xj)
by

F̂
α

E(x, t) =
∑
j

N(x − xj)F α
E(xj , t) (5.115)

By taking the divergence of the previous flux expression we obtain

∂F̂
α

E(x, t)
∂xα

=
∑
j

∂N(x − xj)
∂xα

F α
E(xj , t) =

∑
j

∇N(x − xj)FE(xj , t) (5.116)

At this moment the Partition of Nullity property
∑
j ∇N(x − xj) = 0 is invoked

and a null term in the flux divergence is subtracted

∂F̂
α

E(x, t)
∂xα

=
∑
j

∇N(x − xj) (FE(xj , t) − FE(x, t)) (5.117)

We can now evaluate in the position of point i giving[
∂F̂

α

E(x, t)
∂xα

]
x=xi

=
∑
j

∇N(xi − xj) (FE(xj , t) − FE(xi, t)) (5.118)

By using the compact nomenclature ∇N(xi−xj) ≡ ∇Nj(xi) ≡ ∇Nji and inserting
Eq. (5.118) into Eq. (5.114) the following semi-discrete expression is obtained

∂U(xi, t)
∂t

+
∑
j

∇Nji (FE(xj , t) − FE(xi, t)) = S(xi, t) (5.119)

This semi-discrete form is not stable. In order to stabilize the scheme, the following
approximation is used

FE(xj , t) − FE(xi, t) ≈ 2
(

FE

(
xi + xj

2 , t

)
− FE(xi, t)

)
(FE)j − (FE)i ≈ 2

(
(FE)ij − (FE)i

)
(5.120)

Since (FE)ij is the flux in the midpoint of the segment connecting points i and j, it
could be numerically evaluated with an approximate Riemann solver introducing the
required dissipation , that is, (FE)ij ≈ (GE)ij . Inserting the approximation given by
Eq. (5.120) into Eq. (5.119) the final semi-discrete equation for the FPM read as
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∂U i

∂t
+ 2

∑
j

∇Nji
(
(GE)ij − (FE)i

)
= Si (5.121)

where it can be observed that neither mass nor volume associated with the point appear
in the semi-discrete form.

Obtaining FPM formulation from MLSPH-ALE

Starting with the MLSPH-ALE, the semi-discrete form for the Euler equations is
given by Eq. (4.25), that we recall here for convenience

d(ViU i)
dt

+
ni∑
j=1

[
1
2

(
(Fw)j + (Fw)i

)
− (Fw)i

]
(−Vj ∇Nij + Vi ∇Nji) = Vi Si

For MLSPH-ALE method running in Eulerian mode the transport velocity w = 0
and therefore Fw = FE − w ⊗ U = FE. In Eulerian framework the time deriva-
tive d (ViU i)

dt
is identical to ∂ (ViU i)

∂t
and since particles volumes do not vary in time

∂ (ViU i)
∂t

= Vi
∂U i

∂t
. Taking into account these considerations the final semi-discrete

system obtained with MLSPH-ALE method for the Euler equations in Eulerian frame-
work read as

Vi
∂(U i)
∂t

+
ni∑
j=1

[
1
2

(
(FE)j + (FE)i

)
− (FE)i

]
(−Vj ∇Nij + Vi ∇Nji) = Vi Si (5.122)

By comparison of Eq. (5.121) and Eq. (5.122) it is inferred that we need to introduce
particular settings in the MLSPH-ALE method that allow us to cancel the volume
contributions. In order to factorize the volume Vi in the expression for the flux we can
invoke several simplifications.

The simplest case considers that nodes are disposed in a uniform Cartesian grid.
In that case Vi = Vj and by symmetry ∇Nij = −∇Nji. Inserting these relations in
Eq. (5.122) the semi-discrete form becomes

∂U i

∂t
+

ni∑
j=1

[
1
2

(
(FE)j + (FE)i

)
− (FE)i

]
(2∇Nji) = Si (5.123)

that provides the same expression than that obtained for the FPM in Eq. (5.121)
once the central flux 1

2

(
(FE)j + (FE)i

)
is approximated by a numerical flux (GE)ij .

However, this particular case is not very interesting since a meshless formulation with
points disposed in a regular grid does not provide any advantage over mesh-based
methods.
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We consider now a more general case with a fixed cloud of points with irregular
distribution. In that scenario the volumes do not evolve in time and the volumes asso-
ciated to particles may vary from one particle to another. Returning to Eq. (5.122) we
focus the attention on the term inside brackets (−Vj ∇Nij + Vi ∇Nji). The gradients
of the shape functions Nji and Nji can be expressed in terms of the kernel gradient,
according to the approximations given in Eq. (5.82) and Eq. (5.83)

∇iWij Vj ≈ ∇Nji ∇jWji Vi ≈ ∇Nij (5.124)

Inserting the approximations given by Eq. (5.124) into Eq. (5.122) enables us to
cancel the term Vi leading to

∂(U i)
∂t

+
ni∑
j=1

[
1
2

(
(FE)j + (FE)i

)
− (FE)i

]
(−Vj ∇jWji + ∇iWji Vj) = Si (5.125)

since the kernel gradient is symmetric we can express the expression inside brackets of
Eq. (5.125) as 2∇iWij Vj . Using the approximation ∇Nji ≈ ∇iWijVj given in the left
side of Eq. (5.124) we arrive at the same semi-discrete system given by Eq. (5.123),
but for a general cloud of points that does not need to fulfill the conditions Vi = Vj
and symmetry ∇Nij = −∇Nji.

5.5. Conclusions

In this chapter we have highlighted the existing connections between mesh-based
and meshless methods for solving the Euler equations. The consideration of a third
group that fills the gap between mesh-based and meshless methods can contribute to
provide a coupling methodology between them. The MFVM method was used to show
the connections with mesh-based methods and SPH formulations. The particle shape
functions used by meshless-fv methods provide a versatile concept that can be related
either with the cells/elements of mesh-based methods and with the kernel functions of
SPH methods.

Meshless methods still have not achieved the development state of mesh-based meth-
ods. However, meshless methods are receiving great attention in different researching
communities. These conditions gave rise to a myriad of meshless methods derived
by different groups. Comparison between different formulations reveals that although
procedures could vary in great extent the final semi-discrete equations have great simi-
larities. In this section we have revisited the derivation of a set of meshless formulations
and we have shown the examined methods can be obtained from particular settings
of the MLSPH-ALE discretization. We exclude the boundary condition treatment in
the comparison. However, in the derivation procedure we can clearly see that some
methods ease the implementation of the boundary conditions with a boundary flux
term. We have also shown that MLSPH-ALE is a general formulation that includes
many of the examined methods.
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The MLSPH-ALE method enjoys the advantages of a very flexible selection of par-
ticle shape functions. The FVPM was derived by exploding the derivation properties
of the simplest shape function satisfying the partition of unity property. The shape
functions used by the FVPM correspond with the MLS shape functions using a poly-
nomial basis with a constant term. Moreover, The FVPM is the procedure that gives
the clearest interpretation of the interaction flux in the overlap region of particles. In
the MLSPH-ALE method the procedure to define this effective flux is not unique.

On the other hand, the MFVM provides a semi-discrete form where the interaction
flux is not fully discretized in the particle positions. By assuming a constant interaction
flux in the MFVM we obtain the same continuous effective area that the one obtained
in MLSPH-ALE method.

SPH-ALE and Gizmo-MFV obtain a discrete effective area in terms of the gradient
of the kernel and the volume associated to particles. In the MLSPH-ALE method the
effective area is a symmetric expression given in terms of the gradient of the particle
shape functions and the volume of the particles. In general, we can not provide an
analytical expression that relates the kernel gradient with the gradient of a particle
shape function obtained with MLS. MLS shape functions are calculated by means of a
weighted least squares approach. When the weighted function used by MLS is exactly
the kernel function we can obtain an analytical expression relating the kernel gradient
with the shape function gradient. By comparison of the kernel and MLS approximations
of the gradient of a function we manage to make some term identifications to prove
that MLSPH-ALE can be particularized to arrive at the semi-discrete equations derived
with SPH-ALE and Gizmo-MFV methods.

The last part of the chapter was devoted to trace a path relating the MLSPH-ALE
method with the Finite Point Method. This is a very interesting fact because it is
proved that the Eulerian version of the formulation contains a fixed meshless method
formulation that have been extensively tested in subsonic and transonic flow.
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Chapter6
The MLSPH-ALE method as a

candidate for implicit LES

6.1. Introduction

Turbulence is very computationally demanding due to the wide range of spatial
and temporal scales involved. Turbulence is such a complex phenomenon that even
in the literature there is not available a precise definition. However, turbulent flows
are ubiquitous in nature and there is an agreement in the following features: Appar-
ently random and chaotic behavior; dependence on initial conditions; a wide range
of length and time scales; three-dimensional, time-dependent and rotational character
represented by eddies; time and space intermittency; increase diffusion and dissipation
rates [Pope, 2000; Tennekes, 1972; Kundu et al., 2015].

The intention here is to present the common approaches to compute turbulent
flows in meshless methods. The different approaches to deal with turbulence flows
are based on the selection of a subrange of scales to be captured and another one
to be modeled. Representative scales of the eddies and the energy cascade concept
introduced by Richardson and Kolmogorov are depicted in Figure (6.1). The smallest
scale of the eddies associated with the dissipation process is denoted with ν meanwhile
the eddies in the largest size range are characterized by the length scale ℓ0 which is
comparable to the flow scale L.

131



Chapter 6. The MLSPH-ALE method as a candidate for implicit LES188 6 The scales of turbulent motion

η �DI �EI �0 L

�������

�

Production PDissipation ε

T (�)
Transfer of energy to

successively smaller scales

Dissipation
range

Inertial subrange Energy-containing
range

Fig. 6.2. A schematic diagram of the energy cascade at very high Reynolds number.

we have

TEI ≡ T (�EI) = T (�) = TDI ≡ T (�DI) = ε, (6.13)

(for �EI > � > �DI). That is, the rate of energy transfer from the large scales,

TEI, determines the constant rate of energy transfer through the inertial

subrange, T (�); hence the rate at which energy leaves the inertial subrange

and enters the dissipation range TDI; and hence the dissipation rate ε. This

picture is sketched in Fig. 6.2.

6.1.3 The energy spectrum

It remains to be determined how the turbulent kinetic energy is distributed

among the eddies of different sizes. This is most easily done for homogeneous

turbulence by considering the energy spectrum function E(κ) introduced in

Chapter 3 (Eq. (3.166)).

Recall from Section 3.7 that motions of lengthscale � correspond to

wavenumber κ = 2π/�, and that the energy in the wavenumber range

(κa, κb) is

k(κa ,κb) =

∫ κb

κa

E(κ) dκ. (6.14)

In Section 6.5, E(κ) is considered in some detail, and one result of interest

here is that the contribution to the dissipation rate ε from motions in the

range (κa, κb) is

ε(κa ,κb) =

∫ κb

κa

2νκ2E(κ) dκ. (6.15)

It follows from Kolmogorov’s first similarity hypothesis that, in the univer-

sal equilibrium range (κ > κEI ≡ 2π/�EI) the spectrum is a universal function

Figure 6.1. Energy cascade with the characteristic length scales for turbulent flows.
Adapted from [Pope, 2000]

In the same manner that in mesh-based methods the most common approaches
to compute turbulent flows with meshless methods are: Direct Numerical Simulation
(DNS), Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes(RANS).
However, meshless methods were predominantly expressed in a Lagrangian framework
and therefore some turbulence models for meshless methods differ from their counter-
parts in mesh-based methods. Following, an outline of the development of turbulence
models in meshless methods is provided.

Monaghan conducted the first attempt to introduce a turbulence model in a SPH
formulation. The proposed formulation was labeled as α-SPH [Monaghan, 2002] and is
based on the Lagrangian-Averaged Navier-Stokes turbulence model proposed by Holm
[Holm, 1999]. In a later publication Monaghan [Monaghan, 2012] adopt the same pro-
cedure but using a more efficient smoothing algorithm for the velocity. The enhanced
model was called as SPH-ϵ model. Assuming a weakly compressible approach and using
the SPH-ϵ model Robinson and Monaghan [Robinson & Monaghan, 2011] performed
computations of decaying turbulence in a two-dimensional no-slip wall-bounded do-
main. Adami et al. [Adami et al., 2012b] proposed a turbulence model that is based
on the transport velocity concept introduced by [Monaghan, 2002] with the novelty of
incorporating of a constant background pressure that regularizes the particle motion.
Authors test the model with three-dimensional Taylor-Green vortex flow and achieve
satisfactory dissipation rates in the range of Re from 100 to 3000 when compared with
DNS data of Brachet [Brachet et al., 1983].

A great number of publications dealing with compressible turbulence in meshless
methods were developed with astrophysical applications in mind. Bauer and Springel
[Bauer & Springel, 2012] compared the accuracy of SPH and Moving-Mesh simulation
codes dealing with subsonic, transonic and supersonic turbulence. Authors reported
that traditional SPH formulations yields problematic results in the subsonic regime.
There is some controversy in the causes of failure. According to Price [Price, 2011], the
inability of SPH methods to capture a Kolmogorov-like spectrum in subsonic regime
is caused by the excessive artificial viscosity. Price has shown that the use of viscosity
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switches can remedy some issues of traditional SPH methods with subsonic turbulence.
Hopkins [Hopkins, 2015] confirmed the limitations of traditional SPH methods in sub-
sonic turbulence and also reported that Meshless Finite Volume Methods (MFVM)
using Riemann solvers offer a significant improvement. Hopkins also detected that
MFVM methods lose accuracy relative to stationary grid codes for highly subsonic
problems once the Mach numbers fall in the range of ≈ 0.01. Exploding the advantage
that MFVM can be run in Eulerian mode Hopkins demonstrated that the loss of
accuracy in MFVM in highly subsonic problems is caused by the Lagrangian movement
of particles.

Another front of development of turbulence models in meshless methods is pushed
by researchers dealing with open channel flows and wave hydrodynamics in coastal and
oceanic flows. The two approaches predominantly used by researching in these fields
to compute turbulent flows are RANS models and sub-particle scale (SPS) models
embedded in LES framework. The first publication that implements a k− ϵ turbulence
RANS model into a particle method was conducted by Violeau et al. [Violeau et al.,
2002]. Shao et al. [Shao, 2006] implemented the k−ϵ in an incompressible SPH method
to simulate wave breaking and overtopping on a sloping sea wall. Gotoh et al. [Gotoh
et al., 2001] implemented the first LES turbulence model in a particle method. Shao
and Gotoh [Shao & Gotoh, 2005] adapted the particle LES model to an incompressible
SPH formulation meanwhile Dalrymple et al. [Dalrymple & Rogers, 2006] conducted
the extension of particle LES in a weakly compressible SPH formulation. Di Mascio
et al. [Di Mascio et al., 2017] rewrote the δ-SPH method to accommodate the LES
turbulence model resulting in the δ-LES-SPH scheme. Parameters associated with
stabilization dissipative terms are computed with a Smagorinsky subgrid scale model.
Krimi et al. [Krimi et al., 2020] proposed to use the Automatic Dissipation Method
(ADA) [Li & Tsubokura, 2017] in the family of δ-SPH methods. The results show that
the proposed numerical method is able to simulate complex flows. It alleviates the
parameter dependency of δ-SPH methods and it is generally less dissipative than the
δ-LES-SPH model.

In this chapter we will test the ability of the MLSPH method to perform implicit
Large Eddy Simulations (iLES) of isotropic turbulence. This is a first step towards
the final goal of developing a very accurate meshless method for the computation of
turbulent flows.

6.2. Application of MLSPH-ALE to isotropic turbulence

6.2.1. Decay of compressible isotropic turbulence

In this numerical example, we extend the proposed formulation to 3D to analyze the
decay of compressible isotropic turbulence. This test case is commonly used to verify
the ability of the numerical method to simulate turbulent flow. Many authors have
used this numerical test to develop new subgrid scale models and to analyze numerical
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methods [Lee et al., 1991; Rizzetta et al., 1999; Spyropoulos & Blaisdell, 1996; Hickel
et al., 2014; Kotov et al., 2016].

Setup of the problem

A periodic 2π × 2π × 2π cube is considered for the computational domain and
it is discretized using an homogeneous distribution of particles. Periodic boundary
conditions are considered for all the boundaries. As it is usual in this problem, the
flow is defined by the turbulent Mach number (Mt) and Taylor’s micro-scale Reynolds
number (Reλ)

Mt =
√

⟨u′
iu

′
i⟩

⟨c⟩
(6.1)

Reλ = ⟨ρ⟩u′
rmsλ

µ
(6.2)

where the notation ⟨⟩ refers to mean value and primes denote fluctuating variables.
The root mean square of the velocity (urms) is defined as

urms =
√

⟨u′
iu

′
i⟩

3 (6.3)

The initial conditions are defined following a given initial three-dimensional kinetic
energy spectrum as

E3D ∼ k4exp
[

−2
(
k

k0

)2
]

(6.4)

where k is the magnitude of the wave number vector, and k0 = 4 is the wavenumber
at the peak of the spectrum.

In this case, the initial velocity fluctuations are parametrized by the turbulent
Mach number and also by the fraction of energy in the dilatational part of the velocity,
χ = 0.2 [Sarkar et al., 1991]. The initial turbulent Mach number is taken as Mt,0 =
0.4 and the initial Taylor’s microscale Reynolds number is chosen as Reλ,0 = 2157,
which corresponds with a Reynolds number Re = 536.9. The setup presented here
corresponds to the case 6 of [Spyropoulos & Blaisdell, 1996].

With this configuration, the initial density and temperature fields are given by

(ρ′
rms)

2
/ ⟨ρ⟩2 = 0.032 (6.5)

(T ′
rms)

2
/ ⟨T ⟩2 = 0.005

The evolution of the flow with this initial conditions leads to a nonlinear subsonic
regime [Garnier et al., 2009] and weak shocklets develop spontaneously from the tur-
bulent motion. Three different particle discretizations are used in this test case: 323,
643 and 1283 particles.
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6.2. Application of MLSPH-ALE to isotropic turbulence

We run this test case using a time step of ∆t = 0.05 with the 323 particle distribu-
tion. This corresponds to 250 time-steps per eddy turnover time τ , that is τ = 12.5 for
this configuration. For the 643 and 1283 particle distributions we keep the CFL con-
stant. In figure 6.2 we show the results obtained with the present approach in terms of
the time evolution of the kinetic energy and the mean square density fluctuations. The
results are compared with a reference solution computed with a sixth-order compact
finite difference scheme, with explicit filtering using a tenth-order Padé filter [Visbal &
Rizzetta, 2002]. This solution follows closely the results of a DNS.

The decay of kinetic energy is plotted in Figure 6.2 a). The coarser discretization
shows excessive dissipation. However, it can be seen that as the number of particles
is increased, the results converge to the reference solution, and the results obtained
for 1283 particles are in excellent agreement with those of the reference solution. The
results obtained for the density fluctuations follow the same trend, as shown in Figure
6.2 b). Figure 6.3 a) shows that the proposed scheme is able to reproduce the thermo-
dynamic variables of the flow. This is a remarkable result, since some methods are not
able to simultaneously predict the correct scaling and decay rates of thermodynamic
variables [Honein & Moin, 2004].
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Figure 6.2. Decay of homogeneous isotropic turbulence. Time evolution of kinetic energy
(left) and mean square density fluctuations (right). The reference solution was computed
following [Visbal & Rizzetta, 2002].

The instantaneous three-dimensional energy spectra (E(k) = ρ((ux)2 + (uy)2 +
(uz)2)) at t/τ = 0.3 is plotted in Figure 6.3 b). The results reproduce correctly the
reference spectrum, although some overdissipation is found for the coarser grid. It is
also observed that the proposed scheme is able to reproduce the two different slopes
appearing in the energy spectrum, which agrees with the Eddy-Damped Quasi-Normal
Markovian Theory (EDQNM) [Hussaini, 1998]. As the number of particles is increased,
the spectrum converges to the reference. It is important to note that no piling-up of
energy is detected.

In Figure 6.4 the Q-criterion iso-surface with a value of 0.25 is compared at t = 10
for the different particle resolutions. It can be noted the effect of the particle resolution.
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Figure 6.3. Decay of homogeneous isotropic turbulence. Time evolution of normalized
temperature fluctuations (left) and instantaneous three-dimensional energy spectra at
t/τ = 0.3 (right). The reference solution was computed following [Visbal & Rizzetta,
2002].

a) b) c)
Figure 6.4. Decay of homogeneous isotropic turbulence. Iso-surfaces of Q-Criterion= 0.25
at t = 10, where a) is obtained with 323 particles, b) with 643 particles and c) with 1283

particles.

6.2.2. 3D Taylor–Green Vortex

The 3D Taylor–Green vortex (TGV) test case is commonly used to test the accuracy
and performance of numerical methods on the direct numerical simulation of a three-
dimensional periodic and transitional flow. The computational domain is the cube
defined as [0, 2π] × [0, 2π] × [0, 2π] with periodic boundary conditions.

Two different test cases are analyzed here. The inviscid TGV and a viscous TGV
with a Reynolds number Re = 1600. These test cases are solved using three different
particle distributions with 323, 643, 1283 and 2563 particles, until a final time of t = 10.
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6.2. Application of MLSPH-ALE to isotropic turbulence

TGV: Inviscid test case

The initial condition of the inviscid TGV is defined as

ux(x, y, z, 0) = sin(x) cos(y) cos(z)
uy(x, y, z, 0) = − cos(x) sin(y) cos(z)
uz(x, y, z, 0) = 0 (6.6)
ρ(x, y, z, 0) = 1

p(x, y, z, 0) = 100 + 1
16 [(cos(2x) + cos(2y))(2 + cos(2z)) − 2]

In this test case, the ratio of specific heat is γ = 5/3. The inviscid case is equivalent
to an infinite Reynolds number. Ideally, in this test case, there is no decay of the
kinetic energy. However, since the numerical method introduces some dissipation, all
the dissipation comes from the numerical scheme. When the flow scales are smaller
enough, the solution becomes under-resolved, and dissipation (and also dispersion)
errors are introduced by the numerical scheme. The numerical dissipation introduced
by the numerical scheme starts a decay process which ideally should follow the (-5/3)
decay Kolmogorov’s law. The evolution of the kinetic energy and enstrophy obtained
by the proposed scheme are plotted in Figure 6.5 a), and compared with the results
obtained by the WENO5 scheme on a FD framework [Shu et al., 2005], with a reference
solution obtained by [Brachet et al., 1983] with a very fine grid (81923) and the semi-
analytic results of [Fehn et al., 2022].
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Figure 6.5. 3D inviscid Taylor–Green: Time evolution of the kinetic energy a) and the
enstrophy b).

It can be seen that the proposed meshless method converges to the Reference solu-
tion as the number of particles is increased. Moreover, it obtains more accurate results
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than the WENO5 scheme. An important result is that the slope of the kinetic energy
decay is similar to that of the reference solution. The enstrophy levels are also larger
than those obtained by the WENO5 scheme, indicating the presence of more energetic
vortices in the solution obtained by the SPH-MLS scheme.

TGV: Viscous case with Re = 1600

Finally, we present the results for the viscous TGV. The initial condition for this
test case is a slight variation of that of the inviscid case to match the case description
provided in [Garmann & Visbal, 2015].

ux(x, y, z, 0) = sin(x) cos(y) cos(z)
uy(x, y, z, 0) = − cos(x) sin(y) cos(z)
uz(x, y, z, 0) = 0 (6.7)

p(x, y, z, 0) = 1
γM2

0
+ 1

16 [(cos(2x) + cos(2y))(2 + cos(2z)) − 2]

ρ(x, y, z, 0) = γM2
0 p(x, y, z, 0)

A uniform dimensionless temperature field of unity has been assumed along with
the perfect gas relation. The reference Mach number is chosen as M0 = 0.1 to mini-
mize compressibility effects. A constant Prandtl number of Pr = 0.71, γ = 1.4 and a
Reynolds number of Re = 1600 are used. With this setup, the flow evolves and smaller
scales progressively appear, until the flow transitions to turbulence and decays in a
similar way to decaying homogeneous turbulence.

The evolution of the kinetic energy and enstrophy obtained by the proposed scheme
are plotted in Figure 6.6, and compared with the results obtained by the WENO5
scheme [Shu et al., 2005] and the DNS solution presented in [Garmann & Visbal,
2015].

As in the previous case, the solution converges to the DNS solution as the particle
distribution is increased, and it obtains consistently more accurate results than the
WENO5 scheme for both, the decay of kinetic energy and the enstrophy evolution. In
Figure 6.7 we show the time evolution of the Q-Criterion from t = 0 to t = 10 with
the finer particle resolution. It can be observed the flow transition from laminar with
vortex-tubes into small-scale turbulence.

6.3. Conclusions

In this chapter MLSPH-ALE method was tested to compute turbulent flows. An
asset of this formulation is the ability to reproduce the Kolmogorov cascade in homo-
geneous turbulence with an under-resolved discretization.

MLSPH-ALE method was able to capture the energy spectrum in decaying turbu-
lent compressible flow. As the resolution is increased, the energy spectra approaches to
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Figure 6.6. 3D viscous Taylor–Green: Time evolution of the kinetic energy a) and the
enstrophy b).

a) b) c)

d) e)
Figure 6.7. 3D viscous Taylor–Green: Iso-surfaces of Q-Criterion with a value of 0.5: a)
at t = 0, b) at t = 2.5, c) at t = 5, d) at t = 7.5 and e) at t = 10 with 1283 particles.

the reference solution obtained with DNS. Additionally, the model predict the reference
decay of the thermodynamic variables involved.

Simulations of the three-dimensional Taylor—Green vortex probe that MLSPH-
ALE method can capture with an adequate resolution the transition from laminar
to turbulent flow. Results show that the temporal evolution of kinetic energy and
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dissipation rates converge to DNS profiles when the spatial resolution is increased.
The results obtained in the turbulent cases considered are promising. However, fur-

ther steps need to be given to implement a high accuracy meshless method to compute
general turbulent flows. Since the model has only been tested in a Cartesian layout
in Eulerian framework the effect of the irregular placement and movement of parti-
cles was not studied. Another desirable extension is to consider near-wall turbulent
flows. Finally, the use of a method for adaptive dissipation in an iLES framework could
improve the accuracy of the results.
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Chapter7
Conclusions

7.1. Conclusions

This thesis has developed and analyzed a generalized meshless formulation that
overcomes some of the drawbacks of current CFD state-of-the-art methods. The mesh-
less formulation adopts an ALE framework, it is based on Riemann solvers, uses MLS
as approximation technique over scattered data and includes a boundary term that
eases the introduction of boundary conditions. Moreover, the accuracy of the proposed
method is comparable to that of standard grid-based methods.

• In Chapter 3, a high-accurate meshless formulation for solving the incompressible
Navier-Stokes equations with the weakly compressible approach is developed.
The formulation presented in this chapter is an enhanced formulation of the
SPH-ALE scheme proposed by Vila. The novelties of the formulation rely on
use of the MLS-based technique for two different purposes. The first task of
MLS reconstruction is to conduct a high order reconstruction of the Riemann
states at the interface between interacting particles. The second task of MLS
is to estimate the viscous stress in the interface between interacting particles.
In order to provide stabilization, the a-posteriori MOOD procedure is adopted.
For compressible liquid flows with the presence of discontinuities the presented
method improves the results obtained with other SPH-ALE methods using a
MUSCL strategy with flux limiters. Underwater explosions [Liu et al., 2003b],
cavitating flows [Pineda et al., 2019] and laser-induced shocks for liquid metal
droplets [Koukouvinis et al., 2018] are some examples of applications that can
take advantage of the improvements introduced in the proposed formulation.

• In Chapter 4, a high-accurate meshless formulation (MLSPH-ALE) was derived
for solving Navier-Stokes equations.
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The method was derived starting from the differential equation of a conservation
law expressed in ALE form. This new formulation uses MLS as approximation
technique circumventing consistency deficiencies of kernel approximation. The
derivation of the semi-discrete form invokes properties of MLS functions that ease
the integration of the weak form and assure the local conservativeness. The new
method provides a boundary term that enable imposing wall boundary conditions
without requiring ghost particles. The results obtained with this method are in
close agreement with the results obtained in the bibliography with mesh-based
methods.

• In Chapter 5, the MLSPH-ALE method is stated as a generalized meshless finite
volume formulation.
Under some particular settings the new method yields the same semi-discrete
equations that other meshless methods published in the literature. The SPH-
ALE method proposed by Vila [Vila, 1999] and the FVPM proposed by Hietel
et al. [Hietel et al., 2000] are renown meshless formulations that can be derived
starting from the MLSPH-ALE method.

• In Chapter 6, the MLSPH-ALE method is applied to solve turbulent flow prob-
lems.
It is shown that the use or Riemann solvers in the formulation of the MLSPH-ALE
method allows to solve problems in an iLES framework. The decay of compress-
ible isotropic turbulence and the Taylor–Green vortex test cases are used to test
the ability of the method to deal with turbulent and transitional flows.

7.2. Future research lines

Although the high-accurate meshless framework proposed in this thesis solves some
of the problems of current meshless formulations, there are still open paths to continue
the research: add extensions, improve the performance of the algorithm, application
the formulation to a particular industrial problem. Some of the possibilities to extend
this research activity in the future are summarized below:

• Implement a projection technique to solve incompressible flows.
In Chapter 3 we solve incompressible flows by adopting a weakly compressible
approach. Weakly compressible codes are usually tested against analytical solu-
tions of incompressible flow such as Poiseuille or Taylor–Green flows. A projec-
tion scheme avoids the time step restriction that must fulfill explicit formulations.
Moreover, incompressible flows avoid the use of preconditioners and fixes that re-
quire compressible formulations when they are applied in low Mach flows. On the
other hand, they are not able to deal with discontinuities and the implementation
is more complex.
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• As expected, the Eulerian scheme is faster than the Lagrangian method. Then,
a possible way for improving the efficiency of the proposed method is to combine
Eulerian and Lagrangian particles. This idea has been explored previously in the
context of ISPH [Fourtakas et al., 2018] and fits very naturally in the proposed
formulation.

• Implementation of a local Voronoi tessellation.
MLSPH-ALE method has the same stencil for calculating the MLS shape func-
tions that for evaluating the fluxes in the sum over neighbors. A local Voronoi
tessellation for each particle could be very useful to calculate the flux over a re-
duced number of neighbors and could also enable to define a more precise stencil
for implementing the MOOD stabilization technique.

• Treatment of shocks in presence of walls.
In Chapter 3 the MOOD procedure was applied for shock wave propagation in
liquids in 1D and 2D configurations without boundaries. In Chapter 4 the wall
boundary condition was applied on the walls of a 2D cylinder in an ideal flow.
However, we have not considered any test problem where a shock wave interacts
with a wall, in complex geometries.

• Coupling of FVM-MLS and MLSPH-ALE.
In this thesis the MLSPH-ALE method is shown to have a close similarity with
FVM. This feature could be explored to implement a coupling strategy between
the meshless MLSPH-ALE and the FVM-MLS. This could be advantageous in
boundary layer flows.

• Free Surface Flows and Fluid-Structure Interaction
There is a myriad of applications that demands further extensions of meshless
methods to deal with Free Surface Flows (FSF) and Fluid-Structure Interac-
tion (FSI) phenomena. For instance, nowadays Offshore Wind Power is a very
competitive sector that demands efficient designs to cope with FSI phenomena
induced by violent FSF. The damages caused by natural disasters like floods,
tsunamis and lava flows could be reduced if high risk zones could be improved
by conducting simulations anticipating the catastrophic events. In the current
state-of-the-art it is noticed that most open-source projects developing meshless
methods are more focused on improving the computational aspects of the algo-
rithm than in improving the numerical method itself. Some interesting problems
considered in the literature to test FSF and FSI is the dam-break flow through
an elastic gate [Antoci et al., 2007; Li, 2013] and the dam-break on elastic wall
[Walhorn et al., 2005].
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AppendixA
The Cubic Spline Kernel

A.1. Introduction

The idea behind smoothed particle hydrodynamics is to imagine that each compu-
tational particle j of mass mj in position xj represents a distribution of density and
not a localized mass point. The contribution to the density at point x arising from a
particle j at xj can be expressed by

ρj(x) = mjW (|x − xj | , h)

where W (|x − xj | ;h) is the smoothing kernel that describes the form of the den-
sity distribution of the computational particle centered in xj . When thinking about
smoothed particle hydrodynamics, it helps to use the example of a Gaussian (spheri-
cally symmetric) kernel.

W (|x − xj | ;h) = σ

hd
exp

[
− (|x − xj | /h)2

]
where d refers to the number of spatial dimensions and σ is a normalization factor
given by σ =

[
1√
π
, 1
π ,

1
π

√
π

]
in [1, 2, 3] dimensions. By comparison with the probability

density function of a Gaussian distribution it can be noticed that xj acts as the mean
and the smoothing length h is related to the standard deviation σ of the distribution
by the expression h =

√
2σ.

The physical density at a given point is obtained by summing the overlapping
contribution from all of the particles j.

ρ(x) =
N∑
j=1

ρj(x) =
N∑
j=1

mjW (|x − xj | ;h)
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Appendix A. The Cubic Spline Kernel

Next, details about the determination of the normalization constants required by
the cubic spline kernel are provided.

A.1.1. Cubic Spline Kernel

The cubic spline kernel is given by

W (q, h) = αd
hd
f(q) = αd

hd


1 − 3

2q
2 + 3

4q
3, q ⩽ 1

1
4 (2 − q)3, 1 < q ⩽ 2
0, q > 2

with q = |x−x′|
h the normalized distance and h the smoothing length. Its derivative

with respect to the normalized distance reads as

∂W (q, h)
∂q

= αd
hd


−3q + 9

4q
2 q ⩽ 1

− 3
4 (2 − q)2 1 < q ⩽ 2

0 q > 2

Normalization constant in a 1-D Domain

0 ≤ q ≤ 1 : ∫ h

0

(
1 − 3

2q
2 + 3

4q
3
)
dx = 11h

16
1 < q ≤ 2 : ∫ 2h

h

1
4(2 − q)3dx = 1h

16
In the whole support of the kernel (left and right):∫

Ω
WdΩ = α1

h

[
2
(

11h
16 + 1h

16

)]
= 1

resulting
α1 = 2

3

Normalization constant in a 2-D Domain

0 ≤ q ≤ 1 : ∫ 2π

0

∫ h

0

(
1 − 3

2q
2 + 3

4q
3
)
rdrdθ = 11πh2

20
1 < q ≤ 2 : ∫ 2π

0

∫ 2h

h

1
4(2 − q)3rdrdθ = 3πh2

20
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In the whole support of the kernel:∫
Ω
WdΩ = α2

h2

(
11πh2

20 + 3πh2

20

)
= 1

resulting
α2 = 10

7π

Normalization constants in a 3-D Domain

Integrating in the first octant:
0 ≤ q ≤ 1 : ∫ π

2

0

∫ π
2

0

∫ h

0

(
1 − 3

2q
2 + 3

4q
3
)
r2 sin θdrdθdϕ = 19πh3

240
1 < q ≤ 2 : ∫ π

2

0

∫ π
2

0

∫ 2h

h

1
4(2 − q)3r2 sin θdrdθdϕ = 11πh3

240
In the whole domain support of the kernel (8 octants):∫

Ω
WdΩ = α3

h3

[
8
(

19πh3

240 + 11πh3

240

)]
= 1

resulting
α3 = 1

π
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AppendixB
Time derivative of an integral

B.1. Introduction

B.1.1. Reynolds Transport Theorem (RTT)

Let f be any scalar, vector or tensor function and Ω̂(t) a material volume in time
t. We denote with F (t) the total amount of f that carries the material volume Ω̂(t)

F (t) =
∫

Ω̂(t)
fdxd (B.1)

In Continuum Mechanics a material volume is a system that contains the same par-
ticles. The governing equations in Continuum Mechanics are obtained by application of
physical laws to material volumes and thus is very important to analyze the temporal
derivative F (t) given by

D

Dt
F (t) = D

Dt

∫
Ω̂(t)

fdxd = ∂

∂t

∣∣∣∣
X

∫
Ω̂(t)

fdxd (B.2)

In the two first expressions we use the convention of denoting material time deriva-
tive with capital letters and on the last we use a partial time derivative keeping fixed
the material coordinates X.

According to the definition of the derivative

D

Dt

∫
Ω̂(t)

fdxd = ∂

∂t

∣∣∣∣
X

∫
Ω̂(t)

fdxd = lim
∆t→0

1
∆t

(∫
Ω̂t+∆t

f(x, t+ ∆t)dxd −
∫

Ω̂t

f(x, t)dxd
)

(B.3)
where Ω̂(t) is the material volume in time t and Ω̂t denotes the spatial domain occupied
by the material system at time t and Ω̂t+∆t the spatial domain occupied by the same
material system at time t + ∆t. By transforming both integrals of the RHS to the
material domain in time t0
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D

Dt

∫
Ω̂(t)

fdxd = lim
∆t→0

1
∆t

(∫
Ω̂0

f(X, t+ ∆t)J(X, t+ ∆t)dXd −
∫

Ω̂0

f(X, t)J(X, t)dXd

)
(B.4)

With this change in the domain of integration, f becomes a function of the material
coordinates and the domain of integration is independent of time

D

Dt

∫
Ω̂(t)

fdxd =
∫

Ω̂0

∂

∂t

∣∣∣∣
X

(f(X, t)J(X, t)) dXd (B.5)

Using the product rule for derivatives and expression for temporal derivative of the
determinant of the Jacobian DJ

Dt = J ∂ui

∂xi

D

Dt

∫
Ω̂(t)

fdxd =
∫

Ω̂0

(
∂f

∂t

∣∣∣∣
X

J + f
∂J

∂t

∣∣∣∣
X

)
dXd =

∫
Ω̂0

(
Df

Dt
J + fJ

∂ui
∂xi

)
dXd (B.6)

We can now transform back the RHS integral to the current spatial domain

D

Dt

∫
Ω̂(t)

fdxd =
∫

Ω̂0

(
Df

Dt
+ f

∂ui
∂xi

)
JdXd =

∫
Ω̂t

(
Df

Dt
+ f

∂ui
∂xi

)
dxd (B.7)

Expanding the material derivative

D

Dt

∫
Ω̂(t)

fdxd =
∫

Ω̂t

(
∂f

∂t
+ ui

∂f

∂xi
+ f

∂ui
∂xi

)
dxd =

∫
Ω̂t

(
∂f

∂t
+ ∂(uif)

∂xi

)
dxd (B.8)

By using Gauss theorem

D

Dt

∫
Ω̂(t)

fdxd = ∂

∂t

∣∣∣∣
X

∫
Ω̂(t)

fdxd =
∫

Ω̂t

∂f

∂t
dxd +

∫
∂Ω̂t

fuinidx
d−1 (B.9)

Reynolds Transport Theorem, which in the above has been given for a scalar, applies
to a tensor of any order. Thus to apply it to a first order tensor (vector gk) replace f
by gk

D

Dt

∫
Ω̂(t)

fdxd = ∂

∂t

∣∣∣∣
X

∫
Ω̂(t)

fdxd =
∫

Ω̂t

(
∂f

∂t
+ ∂(uif)

∂xi

)
dxd (B.10)

D

Dt

∫
Ω̂(t)

gkdx
d = ∂

∂t

∣∣∣∣
X

∫
Ω̂(t)

gkdx
d =

∫
Ω̂t

(
∂gk
∂t

+ ∂(uigk)
∂xi

)
dxd (B.11)
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B.1.2. Generalized Reynolds Transport Theorem (GRTT)

The transport theorem can be extended to an arbitrary control volume that it is
not necessarily a material volume. The movement of the control volume is given by
a mapping between fictitious material particles with material coordinates chi and the
spatial coordinates x. We denote as Ω(t) the arbitrary control volume that in time t
occupies the region in the spatial domain Ωt and in time t + ∆t occupies Ωt+∆t. We
assume that fictitious particles of the arbitrary volume control move with velocity w

and we define a fictitious material derivative by ∂f
∂t

∣∣∣
χ

= ∂f
∂t + wi

∂f
∂xi

.
Following a similar procedure, we will arrive to a generalized transport theorem

given by

∂

∂t

∣∣∣∣
χ

∫
Ω(t)

fdxd =
∫

Ωt

(
∂f

∂t
+ ∂(wif)

∂xi

)
dxd (B.12)

A generalized transport theorem for a volume control or a reference system can be
obtained if we make the following replacements

• derivatives with respect to time following material particles D
Dt = ∂

∂t

∣∣
X

by deriva-
tives with respect to time following the reference system ∂

∂t

∣∣
χ

• the velocity vector for a material particle v by the velocity vector for a fictitious
material particle of the reference system w

B.1.3. Transport Theorem ALE

In previous sections we apply the transport theorem to a material system Ω̂(t) and
to a virtual material system Ω(t) or control volume

D

Dt

∫
Ω̂(t)

fdxd = ∂

∂t

∣∣∣∣
X

∫
Ω̂(t)

fdxd =
∫

Ω̂t

∂f

∂t
dxd +

∫
∂Ω̂t

fuinidx
d−1 (B.13)

∂

∂t

∣∣∣∣
χ

∫
Ω(t)

fdxd =
∫

Ωt

∂f

∂t
dxd +

∫
∂Ωt

fwinidx
d−1 (B.14)

We can consider the particular situation when the material system Ω̂(t) and the
referential system Ω(t) occupy in a time t the same region in the spatial domain.
When this happens Ω̂t and Ωt are coincident. Subtraction of the two expressions leads
to

D

Dt

∫
Ω̂(t)

fdxd = ∂

∂t

∣∣∣∣
X

∫
Ω̂(t)

fdxd = ∂

∂t

∣∣∣∣
χ

∫
Ω(t)

fdΩ +
∫
∂Ωt

f(ui − wi)nidxd−1 (B.15)
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AppendixC
Resumen extendido en español

C.1. Introducción

En la actualidad los avances en la rama de la Mecánica de Fluidos pueden producirse
por una de las tres v́ıas de conocimiento: experimental, teórico-anaĺıtico y computa-
cional. Las interacciones entre las distintas v́ıas de conocimiento han evolucionado a lo
largo del tiempo. La rama computacional de la Dinámica de Fluidos (denominada CFD
por sus siglas en inglés) se inició en la primera mitad del siglo XX. El crecimiento del
CFD y su repercusión en el desarrollo virtual de proyectos se ha visto fuertemente im-
pulsado por la evolución en la potencia de cálculo disponible y por los grandes avances
en el desarrollo de los métodos numéricos que los respaldan. Esta tesis está encuadrada
en la v́ıa computacional de estudio de la Dinámica de Fluidos y dentro de ella en el
desarrollo de un tipo de métodos conocidos como métodos sin malla.

Los métodos numéricos sin malla han captado la atención de investigadores e inge-
nieros para modelar flujos de fluidos que no son fácilmente modelables con los métodos
tradicionales con malla. De manera general, los métodos sin malla son actualmente se-
leccionados para cubrir aplicaciones donde concurren interfases entre fluidos y dominios
geométricos complejos. Siendo más espećıficos pueden citarse los siguientes campos de
aplicación: flujos de superficie libre, interacción fluido-estructura, fenómenos de slosh-
ing en tanques, inundaciones y tsunamis, flujos volcánicos de lava, procesos de moldeo
por fundición y lubricación entre otros.

En el estado actual de desarrollo de los métodos numéricos sin malla, existe un
cierto consenso en señalar los grandes desaf́ıos a resolver para incrementar su fiabilidad.
Incrementar la precisión y mejorar la convergencia constituyen uno de los grandes
desaf́ıos de este tipo de esquemas numéricos. El grupo GMNI ha introducido mejoras
en métodos con malla utilizando técnicas que fueron concebidas para el uso de métodos
sin malla. En este trabajo la transferencia entre los dos grandes grupos de métodos
numéricos se realiza en la dirección opuesta. La idea de este trabajo se basa en el
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desarrollo de un método sin malla al que le sean fácilmente implementadas técnicas
que se han probado exitosas en métodos de volúmenes finitos de alto orden. De entre
estas técnicas destacamos la incorporación de solvers de Riemann aproximados, la
aproximación ALE, técnicas de estabilización a posteriori y los modelos de turbulencia
impĺıcitos.

C.1.1. Objetivos

El objetivo principal de esta tesis es el desarrollo de nuevas formulaciones sin malla
de alta precisión que superen los inconvenientes de los métodos sin malla de alto orden y
aumenten las prestaciones de las formulaciones sin malla existentes. El nuevo algoritmo
ha de servir para el desarrollo de nuevas y más eficientes herramientas de simulación
para cálculos CFD.

El objetivo principal se concreta en varios logros parciales que se detallan en la
siguiente lista añadiendo algunos detalles sobre la estrategia a seguir.

• Mejora de la precisión de la aproximación kernel: Para superar esta carencia de
la aproximación kernel se propone el desarrollo de una formulación basada en la
técnica de Mı́nimos Cuadrados Móviles (MLS por sus siglas en inglés)

• Técnica de estabilización en presencia de discontinuidades: Como técnica de
estabilización se implementa una técnica de estabilización a posteriori MOOD
adaptada a formulaciones sin malla.

• Implementación de condiciones de contorno: La formulación de alta precisión
propuesta admite la consideración de un término de contorno que facilita la im-
plementación de las condiciones de contorno.

• Generalización y comparación con otras formulaciones: La formulación sin malla
propuesta en esta tesis fue derivada partiendo de las ecuaciones de gobierno en
forma ALE y explotando las propiedades de la técnica MLS para realizar aproxi-
maciones y conducir la integración de la forma débil. Como resultado se obtiene
una forma semi-discretizada muy amplia. Asumiendo configuraciones particu-
lares en la formulación propuesta se llega a la forma semi-discretizada de otras
formulaciones publicadas en la bibliograf́ıa.

• Tratamiento de la turbulencia: Como primeros pasos hacia la consecución de una
formulación sin malla de alta precisión apta para resolver flujos turbulentos, se
analiza la idoneidad de la formulación propuesta para simular turbulencia con la
técnica impĺıcita de grandes remolinos (iLES, por sus siglas en inglés).

C.2. Un método SPH-ALE débilmente compresible

La simulación numérica de flujos incompresibles con métodos sin malla resulta muy
atractiva para multitud de aplicaciones en la ingenieŕıa civil, mecánica y naval. La
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imposición de la condición de incompresibilidad en un código de simulación numérica
puede hacerse de forma estricta o de una forma aproximada. La elección de una u
otra estrategia impone grandes diferencias en el algoritmo del código. La aproximación
débilmente compresible hace uso de una ecuación de estado que acopla la presión y la
densidad. La densidad no asume un valor constante exacto, pero en cambio el débil
acoplamiento entre la ecuación de conservación de la masa y cantidad de movimiento
permiten que pueda utilizarse los esquemas de resolución numérico de flujo compresible.
La aproximación débilmente compresible presenta ventajas en cuanto a la facilidad de
implementación cuando se dispone de un solver compresible y su mayor punto débil se
encuentra en la restricción del paso de tiempo temporal de una formulación expĺıcita.
En esta tesis se ha optado por la aproximación débilmente compresible para abordar
el estudio de los flujos de ĺıquidos.

Se propone un método SPH-ALE de alta precisión para resolver flujos de ĺıquidos
mediante la aproximación débilmente compresible. Tomando como punto de partida
el método SPH-ALE con reconstrucción constante se implementa la aproximación
débilmente compresible y se incrementa la precisión mediante la introducción de la
técnica MLS y la estabilización a posteriori MOOD. Se han considerado dos ecuaciones
de estado: la ecuación de estado de Tait y la ecuación de Tammann. La primera de ellas
es una ecuación barotrópica que liga la presión con la densidad mientras la segunda es
una ecuación de estado que relaciona presión, densidad y enerǵıa interna. La ecuación
de Tait es la ecuación de estado mayoritariamente usada en métodos SPH débilmente
compresibles mientras que la ecuación de Tammann permite el acoplamiento adicional
de la ecuación de la enerǵıa con la conservación de la cantidad de movimiento.

El método ha sido validado en una colección de problemas amplia. En primer
lugar, se han considerado problemas de Riemann en dominios 1D y 2D. La ganancia de
precisión obtenida con la incorporación de la reconstrucción de alto orden es notoria.
Dichos casos con presencia de discontinuidades han servido para mostrar las mejoras
que conlleva la estabilización a posteriori MOOD. La estabilización a posteriori se
activa donde se requiere su actuación. La formulación propuesta ha sido probada
con distintas posiciones iniciales de las part́ıculas y tanto en la versión Lagrangiana
como Euleriana. La técnica MOOD ha sido implementada por primera vez en un
código Lagrangiano sin malla para aproximación débilmente compresible. Entre los
resultados obtenidos destaca la capacidad de la formulación de respetar la simetŕıa
radial de problemas aun cuando la técnica de estabilización sólo emplea la información
de vecindad entre part́ıculas.

Además de problemas de Riemann la formulación ha sido puesta a prueba con
problemas teóricos como el Taylor-Green bidimensional. Los resultados obtenidos han
permitido constatar como la formulación débilmente compresible reproduce la solución
teórica incompresible. Los múltiples ensayos del problema de Taylor-Green con varios
números de Reynolds han permitido confirmar el buen desempeño de la implementación
de los términos viscosos con gradientes de velocidad aproximados por MLS.

Los siguientes problemas test introducen la presencia de paredes. Se ha realizado la
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simulación de problemas unidireccionales con solución anaĺıtica (Couette, Poiuseuille)
y bidimensionales como la cavidad de pared móvil. Con una implementación de paredes
basado en part́ıculas fantasma se ha podido comprobar como la formulación propuesta
rinde alta precisión.

C.3. El método MLSPH-ALE

La incorporación de la técnica MLS en la formulación SPH-ALE fue utilizada para
incrementar la reconstrucción de variables requerida por un esquema Godunov de alta
precisión y también para el cálculo de los flujos viscosos. Sin embargo, la formulación
base para las ecuaciones de Euler (sin reconstrucción y sin flujos viscosos) no requiere de
la técnica MLS y equivale a otras formulaciones sin malla empleadas en la bibliograf́ıa.

En la formulación MLSPH-ALE en cambio la utilización de la técnica MLS desbanca
a la formulación kernel y asume un papel central tanto en la aproximación de las
derivadas espaciales como en la integración de la forma débil. La función kernel se
mantiene en la aproximación MLS tan sólo como función de peso. La aproximación
MLS tiene garantizada la consistencia polinómica hasta un cierto orden que depende
de la base de polinomios considerada.

La formulación MLSPH-ALE propuesta ha sido obtenida partiendo de la ecuación
diferencial en forma ALE, utilizando propiedades de la aproximación MLS y finalmente
introduciendo aproximaciones de cuadratura puntual en las part́ıculas para integrar la
forma débil.

Entre las ventajas obtenidas con la formulación MLSPH-ALE con respecto a las
formulaciones SPH-ALE se destacan las siguientes. La aproximación MLS tiene con-
sistencia asegurada y además no requiere un número tan elevado de vecinos como la
formulación kernel para reducir el error de cuadratura. La demanda computational
del cálculo MLS por part́ıcula es del orden del cálculo de la técnica de renormal-
ización utilizada en la aproximación kernel para recuperar la consistencia polinómica
de primer orden. Otra ventaja importante de la formulación MLSPH-ALE es que
la propia derivación de la formulación considera un término adicional que facilita la
integración de las condiciones de contorno sin requerir de las técnicas de part́ıculas
fantasma.

Para la validación del modelo MLSPH-ALE se han considerado el problema de
Taylor-Green dimensional y el problema de flujo alrededor de un cilindro. Los dos
problemas han sido calculados en versión ALE y añadiendo una técnica de reorgani-
zación de part́ıculas. Tanto para flujo viscoso como para flujo laminar los resultados
están en concordancia próxima con los obtenidos con métodos con malla de alta pre-
cisión.

156



C.4. El método MLSPH-ALE y sus relaciones con otras formulaciones de part́ıculas

C.4. El método MLSPH-ALE y sus relaciones con otras
formulaciones de part́ıculas

El método MLSPH-ALE implementado en esta tesis es un desarrollo que está in-
spirado en ideas de otras formulaciones sin malla y hace uso de diferentes técnicas
desarrolladas con diversos fines en la comunidad cient́ıfica. En vez de remarcar las
particularidades del método para diferenciarlo de formulaciones existentes se realiza
un estudio para poner de manifiesto las relaciones con otros métodos numéricos que
comparten el mismo objetivo de resolver numéricamente las ecuaciones de la Dinámica
de Fluidos en la forma más eficiente posible.

Contrariamente a la separación compartimentada entre métodos basados en malla
y métodos sin malla, se sigue una aproximación que considera tres grupos de métodos
numéricos según el tipo de subdivisión realizado del dominio geométrico. Atendiendo
a ese criterio se aprecian tres grupos: los métodos que realizan una descomposición
precisa del dominio, los métodos que realizan una descomposición difusa y los métodos
que ponderan el peso de una part́ıcula en un punto sólo según su distancia sin importar
su distribución. Según este criterio podemos tomar como métodos representativos de
cada uno de estos grupos el método de los volúmenes finitos, los métodos sin malla
basados en volúmenes finitos y los métodos SPH respectivamente. La creación de un
grupo intermedio facilita la portabilidad de técnicas entre métodos que en una primera
aproximación parece que no tienen nada en común. Esta distinción en tres grupos
apareció por primera vez en la comunidad dedicada a la astrof́ısica en donde se tienen
acérrimos defensores de los métodos de malla Cartesiana adaptativa por un lado y
métodos Lagrangianos SPH por otro.

Con la irrupción de los métodos SPH-ALE se fue abriendo camino la idea de que
hay un extenso campo de desarrollo a medio camino entre los métodos con malla y los
métodos SPH Lagrangianos. En las dos últimas décadas han ido apareciendo multitud
de métodos sin malla que pueden ser situados en esta categoŕıa intermedia. La formu-
lación MLSPH-ALE propuesta en esta tesis pertenece claramente a este grupo interme-
dio. Dada la generalidad asumida en la derivación de la formulación MLSPH-ALE se
ha realizado un estudio buscando obtener las formas semi-discretizadas de modelos ex-
istentes partiendo desde configuraciones particulares de la formulación MLSPH-ALE.
Se han analizado los v́ınculos existentes con las formulaciones Finite Volume Particle
Method, el método SPH-ALE de Vila, la formulación sin malla de Ivanova, la formu-
lación sin malla de Hopkins y el método FPM de Oñate.

C.5. El método MLSPH-ALE como candidato para LES
impĺıcito

Dada la abundancia de flujos turbulentos de interés en la ingenieŕıa se han realizado
pruebas test para comprobar la idoneidad del esquema MLSPH-ALE para hacer uso de
modelos de turbulencia impĺıcitos. Una de las fortalezas del esquema es la capacidad
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de captar el rango subinercial de la cascada de enerǵıa de Kolmogorov con una dis-
cretización moderada. Además, la formulación propuesta no requiere de un mecanismo
controlador del grado de disipación artificial ni tampoco de un modelo Smagorinsky
para la subescala de las part́ıculas. Se han considerado dos problemas test siendo el
primero para flujo turbulento compresible y el segundo para flujo turbulento incom-
presible.

El esquema MLSPH-ALE fue capaz de capturar el espectro de enerǵıa en el prob-
lema de decaimiento turbulento para flujo compresible. A medida que la resolución
espacial se incrementa el espectro de enerǵıa se aproxima más al espectro de referen-
cia obtenido con DNS publicado en la bibliograf́ıa. Adicionalmente el modelo predice
correctamente la evolución de las variables termodinámicas implicadas.

Para el análisis de decaimiento turbulento en flujo incompresible se recurre al prob-
lema de Taylor-Green tridimensional tanto en régimen no viscoso como para números
de Reynolds moderados. Los resultados obtenidos prueban que el esquema MLSPH-
ALE es capaz de capturar con una adecuada resolución la transición desde el régimen
laminar inicial al desencadenamiento del flujo turbulento. La simulación con difer-
entes resoluciones permite observar como la evolución de la enerǵıa cinética y tasa de
disipación convergen hacia los perfiles de referencia obtenidos con DNS.

Los resultados obtenidos para los casos turbulentos considerados son prometedores,
ya que se comparan favorablemente a resultados obtenidos con esquemas de alto orden
de diferencias finitas como el WENO5. Sin embargo, se requieren pasos adicionales
para alcanzar un esquema sin malla de alta precisión que permite el cálculo de flujos
turbulentos generales. Dado que el modelo sólo ha sido puesto a prueba con disposición
Cartesiana fija de las part́ıculas, el efecto de la disposición irregular o el movimiento
de las part́ıculas no se ha tenido en consideración. Otra importante extensión del
tratamiento de la turbulencia debiera atender a la turbulencia en presencia de paredes.

C.6. Conclusiones

Durante la presente tesis se ha implementado y analizado una formulación sin malla
que soluciona algunos de los inconvenientes de los métodos actuales de simulación CFD.
La formulación propuesta está expresada en un marco de referencia ALE, se apoya en
los solvers de Riemann para el cálculo de interacciones entre part́ıculas y hace uso
de la técnica de Mı́nimos Cuadrados Móviles (MLS). Además, durante la derivación
de la formulación se mantiene un término de contorno que facilita la imposición de
las condiciones de contorno en el modelo discreto. Además, los resultados obtenidos
para casos de validación rinden grados de precisión comparables a métodos CFD de
simulación con malla.

Las conclusiones generales extráıdas de la realización de este trabajo son:

• Se ha implementado una formulación sin malla de alta precisión con aproximación
débilmente compresible extendiendo la formulación SPH-ALE existente con la
técnica de Mı́nimos Cuadrados Móviles (MLS) y la técnica de estabilización a
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posteriori (MOOD). La técnica de estabilización propuesta mejora los resultados
obtenidos con otras formulaciones sin malla que hacen uso de limitadores.

• La formulación MLSPH-ALE representa un paso adelante en la formulación de
los métodos ALE sin malla existentes. El reemplazo de la aproximación MLS por
la aproximación kernel garantiza la consistencia polinómica con orden determi-
nado y proporciona ventajas adicionales para la integración de la forma débil y
tratamiento de los términos viscosos.

• La formulación MLSPH-ALE es una formulación sin malla generalista que bajo
configuraciones particulares contiene otras formulaciones publicadas en la bibli-
ograf́ıa.

• La formulación MLSPH-ALE es idónea para acometer el cálculo de flujos turbu-
lentos con modelación impĺıcita de grandes remolinos. El uso de solvers de Rie-
mann en la formulación MLSPH-ALE permite resolver problemas turbulentos con
una estrategia ILES. Los resultados obtenidos en problemas de decaimiento para
turbulencia compresible y turbulencia incompresible se comparan favorablemente
con los resultados obtenidos con alguno de los modelos de diferencias finitas de
alto orden publicados en la literatura.

C.6.1. Ĺıneas de investigación futuras

Aunque el esquema sin malla propuesta aporta soluciones a algunos de los puntos
débiles de las formulaciones actuales, hay todav́ıa múltiples ĺıneas de desarrollo de las
formulaciones sin malla que non sido abordadas en esta tesis, como por ejemplo: mode-
los adicionales (multifase, turbulencia de pared, condiciones de contorno no-reflejantes,
etc), eficiencia computacional, acometer la aplicación práctica a problemas particulares
en la industria. Como ĺıneas de extensión continuistas con el trabajo iniciado en esta
tesis se destacan las siguientes:

• Implementación de una técnica de proyección para resolver flujos incompresibles:
En el Caṕıtulo 3 se acometió la resolución de flujos incompresibles con la aprox-
imación débilmente compresible. Un esquema de proyección evita la restricción
del paso de tiempo y también evita el precondicionamiento y algunas correcciones
necesarias para flujos a muy bajos números de Mach. Como inconveniente, no
pueden tratar discontinuidades y la implementación es más compleja.

• Implementación de una teselación local de Voronoi: El esquema MLSPH-ALE
utiliza la misma molécula de vecinos para el cálculo de las funciones de forma
MLS que para el sumatorio de flujos sobre los vecinos. Una teselación local para
cada part́ıcula podŕıa ser de utilidad para el cálculo de flujos sobre un número
reducido de vecinos y podŕıa ser de ayuda para implementar una técnica de
estabilización MOOD más próxima a la utilizada en métodos con malla.
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Appendix C. Resumen extendido en español

• Tratamiento de choques en presencia de paredes: En el Caṕıtulo 3 la técnica
MOOD fue aplicada en la propagación de ondas de choque de pequeña amplitud
en ĺıquidos en dominios 1D y 2D sin presencia de paredes. En el Caṕıtulo 4 la
condición de contorno de pared fue impuesta sobre un cilindro. Sin embargo, no
se ha considerado ningún problema donde la onda de choque interactúe con una
pared en geometŕıas complejas.

• Acoplamiento de FVM-MLS y MLSPH-ALE: En la Tesis se ha resaltado la simil-
itud del método sin malla MLSPH-ALE con el método de malla de volúmenes
finitos FVM. Esta caracteŕıstica sugiere la idea de implementar una estrategia de
acoplamiento entre ambas formulaciones. Los flujos de capa ĺımite podŕıan ser
resueltos muy convenientemente con esta estrategia de acoplamiento.

• Flujos de Superficie Libre (FSF) e Interacción Fluido-Estructura (FSI): Existen
multitud de aplicaciones que demandan la extensión de métodos sin malla para
abordar fenómenos con FSF y FSI. Por ejemplo, la generación de electricidad con
Enerǵıa Eólica Marina es un sector altamente competitivo que demanda diseños
eficientes capaces de hacer frente a los fenómenos FSI inducidos por violentos
FSL. Inundaciones, tsunamis y volcanes son ejemplos de desastres naturales cuyos
daños podŕıan reducirse si las zonas de riesgo disponen de modelos virtuales que
permitan realizar actuaciones anticipándose a los acontecimientos.
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170



Li, Z., Leduc, J., Combescure, A., & Leboeuf, F. (2014). Coupling of SPH-ALE method
and finite element method for transient fluid–structure interaction. Computers &
Fluids, 103, 6–17. ↑45

Libersky, L. D., Petschek, A. G., Carney, T. C., Hipp, J. R., & Allahdadi, F. A.
(1993). High Strain Lagrangian Hydrodynamics: A Three-Dimensional SPH Code
for Dynamic Material Response. Journal of Computational Physics, 109(1), 67–75.
↑7

Lipnikov, K. & Shashkov, M. (2010). A framework for developing a mimetic tensor
artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes. Journal
of Computational Physics, 229(20), 7911–7941. ↑43

Liu, C. & Hu, C. (2014). An efficient immersed boundary treatment for complex moving
object. Journal of Computational Physics, 274, 654–680. ↑XI , ↑94

Liu, C., Zheng, X., & Sung, C. H. (1998). Preconditioned Multigrid Methods for
Unsteady Incompressible Flows. Journal of Computational Physics, 139(1), 35–57.
↑XI , ↑94

Liu, G. R. & Liu, M. B. (2003). Smoothed Particle Hydrodynamics. World Scientific.
↑7

Liu, M. & Zhang, Z. (2019). Smoothed particle hydrodynamics (SPH) for modeling
fluid-structure interactions. Science China Physics, Mechanics & Astronomy, 62(8).
↑5

Liu, M. B. & Liu, G. R. (2006). Restoring particle consistency in smoothed particle
hydrodynamics. Applied Numerical Mathematics, 56(1), 19–36. ↑34

Liu, M. B., Liu, G. R., & Lam, K. Y. (2003a). Constructing smoothing functions in
smoothed particle hydrodynamics with applications. Journal of Computational and
Applied Mathematics, 155(2), 263–284. ↑28

Liu, M. B., Liu, G. R., Lam, K. Y., & Zong, Z. (2003b). Smoothed particle hydrody-
namics for numerical simulation of underwater explosion. Computational Mechanics,
30(2), 106–118. ↑141

Liu, M. B., Xie, W. P., & Liu, G. R. (2005). Modeling incompressible flows using a
finite particle method. Applied Mathematical Modelling, 29(12), 1252–1270. ↑126

Liu, W. K., Hao, W., Chen, Y., Jun, S., & Gosz, J. (1997). Multiresolution reproducing
kernel particle methods. Computational Mechanics, 20(4), 295–309. ↑76

Liu, W. K., Jun, S., & Zhang, Y. F. (1995). Reproducing kernel particle methods.
International Journal for Numerical Methods in Fluids, 20(8-9), 1081–1106. ↑8

171



Liu, W. T., Sun, P. N., Ming, F. R., & Zhang, A. M. (2018). Application of par-
ticle splitting method for both hydrostatic and hydrodynamic cases in SPH. Acta
Mechanica Sinica, 34(4), 601–613. ↑XI , ↑94
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