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Abstract 

Interaction between violent water waves and structures is of a major concern and one of 

the important issues that has not been well understood in marine engineering.  This paper 

will present first attempt to extend the Meshless Local Petrov Galerkin method with 

Rankine source solution (MLPG_R) for studying such interaction, which solves the 

Navier-stokes equations for water waves and the elastic vibration equations for structures 

under wave impact.  The MLPG_R method has been applied successfully to modeling 

various violent water waves and their interaction with rigid structures in our previous 

publications.  To make the method robust for modeling wave elastic-structure interaction 

(hydroelasticity) problems concerned here, a near-strongly coupled and partitioned 

procedure is proposed to deal with coupling between violent waves and dynamics of 

structures.  In addition, a novel approach is adopted to estimate pressure gradient when 

updating velocities and positions of fluid particles, leading to a relatively smoother 

pressure time history that is crucial for success in simulating problems about wave-

structure interaction.   The developed method is used to model several cases, covering a 

range from small wave to violent waves.  Numerical results for them are compared with 

those obtained from other methods and from experiments in literature.  Reasonable good 

agreement between them is achieved. 

Key words: Meshless method, violent waves, elastic structures, wave-structure 

interaction, MLPG_R.

1. Introduction 
 

Marine structures are widely used in ocean transportation, exploitation and 

exploration of offshore oil and gas, utilization of marine renewable energy and so on. In 

some applications, such structures are very large. Typical examples include Ultra Large 

Container ships, Floating Production Storage and Offloading (FPSOs) structures, 

Liquefied Natural Gas (LNG) carriers or terminals, breakwaters, offshore storage 

facilities and so on. All these are vulnerable to harsh weather and so to very violent 

waves. Under action of violent waves, they may suffer from serious damages.  Therefore 
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it is crucial to be able to model interaction between violent waves and structures for 

designing safe and cost-effective marine structures. 

In most of the studies related to wave–structure interaction, the structure is 

considered as rigid neglecting the effect of its elasticity. This is appropriate for stiff 

structures, wherein, its frequencies are much higher than the wave frequency.  There are 

certain situations where one needs to model it as an elastic structure.   These include the 

structural natural frequency is within the range of wave frequency, such as large floating 

structures (VLFS),  or subjected to large wave impact (e.g, breaking wave impacts on 

ship hulls, sloshing impacts on the tank walls). In these situation ‘hydroelasticity’ plays a 

major role and so wave and structural dynamics need to be considered altogether.  The 

state of the art of research on hydroelasticity has been reviewed in [1] and [2].  This 

indicated that water waves are often considered as either linear or weakly nonlinear.  

When fully nonlinear wave theory is applied, two models are broadly adopted for the 

fluid phase, one is based on fully nonlinear potential flow theory (FNPT) and other based 

on the Navier-stokes (NS) equations.  In the FNPT model, Tanizawa [3] used two-

dimensional (2D) theory based on boundary element method (BEM) to study interaction 

of the elastic body with waves. Later, the hydroelastic impact of Euler beam was 

simulated and the interaction between elastic vibration and the impact pressure are 

investigated [4]. Greco [5] also used the formulation and coupled the fully nonlinear 

potential flow with the linear Euler-beam representing a portion of the ship deck house. 

Kyoung et al. [6] developed a three-dimensional (3D) finite element method (FEM) to 

solve the hydroelastic deformation of pontoon type VLFS. The fully nonlinear potential 

flow and midline plate theory for modeling the waves and structure, respectively, have 

been employed. The equations of motions are solved through an iterative method at each 

time step. Later, they extended their work to modeling the horizontal motions of an 

elastic structure [7]. Liu and Sakai [8] investigated fully nonlinear waves and its 

interaction with elastic beam. They employed the BEM for modeling the fluid and the 

FEM for modeling the elastic beam structure. The fluid-structure interaction was dealt 

using Newmark’s iterative scheme. The response under the action of random and solitary 

waves has been compared with the experimental measurements.  Sudarsan et al. [9] 

extended the FEM formulation in [10] to wave-elastic structure interaction. The elastic 

behavior of the submerged vertical cantilever plate has been investigated by applying a 

sequential coupling procedure. Tsubogo [11] used the advanced BEM to analyze floating 

elastic plates subject to a train of plane waves. This method is based on the work of 

Ertekin and Kim [12] matching boundary-integral-equation method for the linear wave 

with a theory of thin plate. Numerical results are shown for a floating elastic disc. 

Recently, He et al. [13] investigated the influence of edge condition on the deflection of a 

vertical elastic wall subjected to a wave of impulse type. It is noted that for small or 

moderate waves without breaking, the potential-based methods work well and efficiently 

but they are not suitable for violent wave interaction with structures.  In these cases, the 

fluid must be modeled by the NS model. 

In using the NS model for studying interaction between violent waves and rigid 

bodies, many publications can be found, such as  Hu et al. [14] and Qian et al. [15], 

employing mesh-based method, Rogers et al. [16], Omidvar et al. [17] and  Vandamme et 

al. [18] adopting SPH methods.   For studying hydroelasticity problems related to violent 

water waves using NS equations, there are a number of attempts to apply mesh-based 
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methods, e.g, Kuroda and Ushijima [19] and Marti et al. [25].  In this kind of methods, 

boundary value problems about velocities and pressure need to be solved and meshes 

must be managed.  In addition to these, several researchers have also tried to use particle 

meshless methods.  Examples in this category include Antoci et al. [20] and Oger et al. 

[21] that adopted the Smooth Particle Hydrodynamics (SPH) approximations for both 

fluid and solid domains with assumption that pressure is linearly related to density (i.e., 

weakly compressible model).  This approach does not require solving any boundary value 

problem but the time step must be propositional to the inverse of a speed that is much 

larger than the maximum fluid speed, and so generally is very small.  During the impact 

of violent waves on structures, unstable pressure field and so fluctuating pressure time 

histories may be observed as indicated by Issa et al [22]. 

Differently, Rafiee and Thiagarajan [23] adopted incompressible model of SPH, i.e. 

ISPH to model the fluid and structures. In this model, the pressure is found by solving a 

Poisson’s equation using an explicit method.  The method was applied to a couple of 2D 

wave-structure interaction problems and achieved reasonable agreement with 

experimental data and results from other methods. The coupled SPH-FEM for simulating 

fluid-structure interaction was also attempted by Fourey et al. [55, 56] and Yang et al. 

[57].  Lee et al. [24] coupled the Moving Particle Semi-Implicit (MPS) method for fluid 

with a finite element method for structure dynamics of a shell. The fluid pressure in this 

model is also found by solving a Poisson’s equation, similar to that in [23].  Solving the 

pressure equation rather than using a weakly compressible model helps to increase the 

time step.  Nevertheless, both [23] and [24] approximate the Laplace operator (with 

second order derivatives) directly when discretizing the Poisson’s equation for pressure.  

Another particle method, called Meshless Local Petrov Galerkin method based on 

Rankine source (MLPG_R), has been developed and applied to model the violent waves 

and their interaction with rigid structures by Ma and Zhou [26] and Zhou and Ma [27].  In 

this method, the pressure is also found by solving Poisson’s equation.  However, the 

difference from [23] and [24] is that a weak form of the Poisson’s equation is formulated 

before discretizing the Poisson’s equation.  In the weak form, there are only unknown 

functions without any derivatives.   Therefore, there is no need to approximate the second 

order derivatives but only need to approximate the unknown functions during discretizing 

the Poisson’s equation.   As a result, the approximation of the unknown functions in this 

approach is required to be only integrated.  Clearly, this is an advantage over requiring 

the approximation of unknown functions to have second order derivatives.  The 

MLPG_R method has been employed to simulate violent sloshing waves, dam breaking 

waves and wave impact on rigid cylinders and shown that its numerical results agree 

quite well with experimental data in various cases [26, 27, 28].   

In the present paper, we will extend the MLPG_R method to dealing with violent 

wave interaction with elastic structures.  For this purpose, a near-strongly coupled and 

partitioned (NSCP) procedure is proposed to handle the coupling between violent waves 

and dynamics of structures.  In this procedure, the fluid and structure dynamics are solved 

separately while the conditions on their interface are matched by iteration.  In addition, a 

novel approach is adopted to estimate pressure gradient when updating velocities and 

positions of fluid particles, leading to a relatively smoother pressure time history that is 

crucial for success in simulating problems about wave-structure interaction.  
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The paper is organized in the following manner. A brief overview about the 

MLPG_R method and pressure gradient estimation is provided in Section 2 with some 

discussions on three different algorithms for updating fluid velocities and positions.  

After this, brief descriptions about the formulation related to the structural dynamics are 

provided. In Section 4, detail discussions will be given to the NSCP Procedure.   Then the 

proposed method will be validated by comparing its results with those available in 

literature.

2. Formulation of the problem for water waves 

2.1. Mathematical Formulation 
The two dimensional fluid motion is defined with respect to a fixed Cartesian 

coordinate system, Oxz, with the z axis positive upwards. The water depth and the length 

of the fluid domain are denoted by h and L, respectively.  The Navier-Stokes equation 

and continuity equations for incompressible fluid together with proper boundary 

conditions are given as follows: 

 

ugp
Dt

uD ��
�

21
������ �

�
       (1) 

 

0. �� u
�

          (2) 

where g is the gravitational acceleration, u
�

 is the fluid velocity vector, p is the pressure, � 

and � is the density and viscosity, respectively, of the fluid.   The Lagrangian form of the 

kinematic and dynamic conditions on the free surface are expressed as, 
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 p = 0 (atmospheric pressure taken as zero without loss of generality) (4) 

 

where r
�

is the position vector . On solid boundary surfaces including the structure 

surface, the following boundary condition should be satisfied 
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where   n
�

 is the unit normal vector of the solid boundary,  U
�

and  U
�
�  are its velocity and 

acceleration, respectively.  It is noted that we have imposed the slip condition in the 

kinematic condition and ignored the viscous shear stress in the dynamic condition on 

solid boundary surfaces.  That is because the wave dynamic force on structures is much 

more dominate than the viscous shear stress for the problems associated with interaction 

between violent waves and structures, and also because use of the nonslip condition 

needs to resolve the rapid change of tangential velocity near solid boundaries, which 

means that much more particles are required.  Adopting slip boundary condition rather 
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than nonslip one may not affect results significantly but avoid the prohibitive 

computational costs.    

 

 

2.2 Numerical procedure and formulation for fluid motion 
 

The mathematical model given by Eqs. (1) to (6) is solved using a particle method 

with a time marching procedure, which has been proposed in our previous papers [26] 

and will be just summarized below.  

Suppose that one has found the velocity, pressure and the location at n
th

 time step 

(t=tn
), then the following steps are used to calculate the values of  the variables at (n+1)

th 

time step.  

 

(1) Calculate the intermediate velocity ( *u
�

) and position ( r
�

) of particles using 

 

dtudtguu nn ���� 2* ���� �        (7) 

dturr n ** ���
��          (8) 

 

(2) Evaluate the pressure p
n+1

 using the following Poisson’s equation [26, 58] 
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with boundary conditions on the surface and solid boundaries being pn+1
=0 and 

)( 1*1 �� ����� nn Uun
dt

pn
���� �

 [26] , respectively, where � is an artificial coefficient 

between 0 and 1, and �n+1
 and �* are the fluid density at the (n+1)

th
  time step and at the 

intermediate time step, respectively.  

 

(3) Calculate the fluid velocity and update the position of the particles using 

 

1** ���� np
dt

u
�

�
        (10) 

1**1 �� ����� nn p
dt

uuuu
�

����
       (11) 

dturr nn 1*1 �� ��
���

        (12) 

 

As indicated in [26], the governing equation (Eq. 9) for the pressure may be given by 

other two forms: one corresponding to 0�� and the other to 1��  [29], and both are 

derived by applying the continuity equation for incompressible fluid.  Ma and Zhou [26] 

suggested a value of � =0.1 to 0.2 in the cases they considered. In the present paper, we 

have resorted to the original MLPG_R formulation by taking 0�� , combined with the 

numerical scheme employed in this paper. 



 6

The boundary value problem described by Eq. (9) can be solved by any numerical 

method, such as finite difference and finite element methods.  In our work, it is solved by 

using the MLPG_R method. The details of the MLPG_R formulation and other 

techniques can be found in our previous papers, such as [26], [27] and [30].  Only basic 

idea is given here and more details can be found in the cited papers. In this method, the 

fluid domain is represented by a number of particles.  The governing equation, Eq. (9) 

with 0�� , is transferred into the following weak form by integrating it over a circular 

subdomain surrounding each node:   

��
���

�����

II

du
dt

pdspn �
�

� .).( *��
        (13) 

where n
�

 is the unit normal vector pointing outside of the subdomain, )/ln(
2

1
IRr

�
� �  is 

the solution for Rankine source in an unbounded 2D domain with r being the distance 

between a concerned point and the center  of the local subdomain I�  and with IR being 

the radius of I� . The major difference of this equation from Eq. (9) is that it does not 

include any derivative of unknown functions while Eq. (9) contains the second order 

derivatives of unknown pressure and gradient of velocity.   Approximation to the 

unknown functions in Eq. (13) does not require them to have any continuous derivatives, 

while approximation to the unknown functions in Eq. (9) requires them to have finite, or 

at least integrable second order derivatives.   Therefore, use of Eq. (13) for further 

discretisation has a great numerical advantage over use of Eq. (9) directly.  One of 

differences between our MLPG_R method and MPS (or ISPH) method (the later 

discretising Eq. (9) directly) lies in use of the different pressure governing equations for 

further discretisation, as indicated above.  

Ma and Zhou [26] has detailed the method to discretize Eq. (13), in which the 

pressure on the left hand side is interpolated by a moving least square method (MLS) and 

the integration on the right hand side is evaluated by a semi-analytical technique.  The 

similar discussion will not be repeated here but only the final equation is given below: 
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In the above equations, � �x� j

�
 the shape function which is formulated by using the 

moving least square method as described in [30,31]. 

The water particles discretizing the fluid domain are separated into two groups: those 

not on the free surface (referred as internal particles) and those on the free surface 

(referred as free-surface particles). The free surface particles are identified at the 

beginning of the calculation and kept as the same for non-breaking waves.  For breaking 

waves, they are identified at every time step by using the Mixed Particle Number Density 

and Auxiliary Function Method developed in [26].   

Once the solution for the pressure is found, the gradient of pressure needs to be 

estimated in order to update the velocity and the positions of the water particles.  The 

estimation of pressure gradient is made by using the simplified finite difference scheme 

(SFDI) [32]. According to numerical tests, this method leads to higher order of accuracy 

than those used for the MPS method, particularly in the cases where the particles are 

distributed irregularly. The formulas for 2D cases are listed as follows: 
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where  w(rj-ri) is a weight function (cubic spline weight function [30] was used for 

estimating the pressure gradient); m = 1,2 and k = 1,2, xk for k = 1,2 is x and z 

coordinates, respectively; f(r) is the unknown function, which is the pressure in the 

MLPG_R method. 

 

2.3. Algorithms  for updating velocity and coordinates of fluid 
 

Although the computational models for simulating fluid flows are based on the 

conservation of mass and momentum equations, the conservation may not automatically 

be guaranteed in numerical methods. The examples of studies related to momentum 

conservation in SPH methods can be seen in [33-35]. For the MPS method, Khayyer and 

Goto [36] studied the momentum conservation property and modified the MPS method to 

conserve the momentum equations locally. They showed that due to non-conservation of 

the momentum equations the pressure evaluated using the meshfree methods has some 
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oscillations. By treating the continuum as a Hamiltonian system of particles, Suzuki et al. 

[37] developed the Hamiltonian MPS in which the momentum and mechanical energy of 

the system are preserved. When dealing with problems associated with wave interactions 

with elastic structures, the pressure time history needs to be smooth enough for stable 

simulations.  

In order to obtain the sufficiently smoothed pressure time history, three different 

algorithms are considered and tested by Sriram and Ma [38] for water wave problems 

without interaction with structures. The first algorithm is that used in the [30], the second 

algorithm is based on [26] and finally, an improved MLPG_R method is proposed by 

taking the merits of the above two algorithms. For completeness, the three algorithms are 

briefly described as follows. 

In the first one, the pressure gradient, velocity and position of fluid particles are 

evaluated by the procedure described in Eqs. (11)-(12) and (15)-(16).  This algorithm is 

named as MLPG_R-PG (pressure gradient scheme).  Using this algorithm, the 

momentum equation is conserved in both the local subdomain and global domain if the 

number of nodes inside each subdomain is equal for Particles i and j, and so the force 

exerted on Particle i by Particle j is equal to the force exerted on Particle j by Particle i.  

Numerical tests show that the particles near moving boundaries tend to be more widely 

spaced (or more scattered) than those in other areas in violent cases.  When this happens, 

pressure history becomes spuriously fluctuating.  This problem was not only reported for 

the MLPG_R, but also for other particle methods, except for Godunov-type particle 

methods. The Godunov SPH (GSPH) was described in Inutsuka [59] and applied to 

hydrodynamics simulation by Murante et al. [60]. The equations in GSPH are solved 

using the Riemann Problem (RP) between each pair of particles, thus there is no need of 

artificial viscosity, unlike in the standard SPH. However, the solution of the RP requires 

an iterative procedure, which could increase the computational cost. Further, the GSPH 

equations derived by Inutsuka [59] hold only for a Gaussian kernel. Hence, it was quoted 

in Murante et al. [60] that it requires fairly large number of neighbors for GSPH, and 

makes the neighboring search more expensive than the standard SPH.  

The second algorithm is that the velocity and position of particles are estimated in 

the same way as above but when calculating the pressure gradient using Eqs. (15) and 

(16), the pressure at Particle i is replaced by a minimum pressure at all the particles that 

influence the pressure at Particle i. This algorithm is named as MLPG_R_MPG 

(Modified Pressure Gradient). This idea is considered in the MPS method [29] for 

stability aspects, though the formulae for the pressure gradient are more accurate here (as 

shown in Ma [32]).  Numerical tests show that the MLPG_R-MPG tends to prevent the 

particles from becoming too apart from each other and so leads to relatively more 

uniform distribution than the above algorithm. Hence it was adopted by Ma and Zhou 

[26].  Nevertheless, the force exerted on Particle i by j and Particles j by i is not the same 

and thus the momentum is not conserved even if the number of particles in their 

subdomains are the same and uniformly (irregularly) distributed. 

The third algorithm, named as IMLPG_R method, takes the advantages of the first 

one that the momentum is conserved if the number of particles in each subdomain is the 

same and of the second one that the distribution of particles tends to be relatively more 

uniform.  To achieve this, the pressure gradient for computing the velocity is still 

evaluated by using Eqs. (15) and (16) (the same as in the MLPG_R-PG) but the positions 
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of particles are updated in the same way as in the MLPG_R-MPG.  Specifically, in the 

IMLPG_R method, Step 3, i.e. Eq. (10)-(12) in the time-split procedure is replaced by the 

following steps:  

 

(3a) calculate the velocity at all the particles using the pressure gradient estimated by 

Eqs. (15) and (16) , 

1** ���� np
dt

u
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         (17) 
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(3b) Update the positions of inner particles using the pressure gradient given by the 

MLPG_R-MPG, 
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(3c) Update the positions of free surface and boundary particles, using 
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where ^ corresponds to the estimation based on the modified pressure gradient, i.e., the 

pressure at Particle i is replaced by a minimum pressure among all the particles that 

influence the pressure at Particle i .  It is noted that both Eqs. 17 and 19 lead to the same 

results for free surface particles, as the minimum pressure at these particles is equal to 

that at their own positions (Eq.4). Further, for other boundary nodes, we still use Eq. 17 

rather than Eq. 19.  It is also noted that since the physical velocity (Eq. 18) of a particle is 

different from the velocity (Eq. 19) with which the particles move, one should interpolate 

the physical velocity to the new position of the particle (Eq. 20a) in the next step 

computation for the inner particles.  In this paper, the same interpolation technique as 

described by Ma [30] is employed for this purpose with the weight function is given by, 
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  In the above scheme, the two separate steps (3a and 3b) can be calculated at the 

same time. Thus, the method does not need significant extra computational time for 

calculating pressure gradient as well as finding the new particle position. However, there 

is an additional cost on the interpolation, but that is not unacceptable since our algorithm 

for finding the interpolated values are relatively quicker (see Ma [32] for SFDI scheme 

computational aspects).  The interpolation technique is briefly summarized here; more 

details can be referred to [32]. 
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Behaviors of above methods are summarized below according to numerical tests 

presented later: 

1. MLPG_R-PG works well for both small waves and steep waves, but it can lead to 

spurious distribution of particles for large or violent waves, causing pressure 

fluctuation and possible breaking down when used for wave-structure interaction 

problems. 

2. MLPG_R-MPG gives highly stable particle distributions inside the domain. 

However, it does not conserve the momentum even if the number of particles in 

their subdomains are the same and uniformly (irregularly) distributed, and so can 

cause spurious change of free surface particles to inner water particles or inner 

water particles to free surface particles during the simulations, leading to the 

spurious oscillation of free surface. This has been found to result in breaking 

down of simulations for small waves and numerical damping for steep or violent 

waves in long simulations. 

3. IMLPG_R work well for both small and violent waves without unacceptable 

problems of the two schemes above.  

3. Mathematical formulation for structural dynamics 

In this paper, the structure is assumed to be an elastic plate extending along the z-

direction and to be modeled by the following linear equation: 
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where m is the mass per unit length, " is the deflection of the beam in the direction 

normal to the beam axis, F is the transverse force per unit length on the beam, E is the 

Young’s modulus and I the moment of inertia of the beam cross section. A finite element 

method (FEM) is used to solve Eq. (24), which converts the above equation into the 

following one:  

 

          (25) 

 

where M and K are the mass and stiffness matrixes,  is the discrete force vector. In the 

FEM formulation, each node has two degrees of freedom: one for the translation and the 

other for the rotation.  For the time-integration of the above method, Hilbert-Hughes-

Taylor (HHT) � method has been used with standard parameters.  Further details about 

the structural dynamics and time integration is referred elsewhere, e.g., [39]. 

 

4. Technique for dealing with the coupling between wave and structure dynamics  

It may have been seen that solving the wave equation (Eq. 14) at time t
n+1 

requires 

the normal velocity and position of structures at time t
n+1

 while solving structure equation 

(Eq. 25) needs the pressure in waves at that time instant.  The two dynamic systems are 

fully coupled.  Dealing with the coupling is not easy.  Many approaches have been 

suggested, e.g., by [40-44].  The most popular one is based on so-called partitioned 

approach (procedure).  In this approach, the fluid problem is separated from the structure 

problem but both are coupled through their interface.   In other words, the equations for 

waves and structures are solved separately but both sets of equations are matched to each 

other by the conditions on their interface.  These approaches fall into two categories: 

weakly coupled and strongly coupled.  If the two sets of equations are solved once at 

each time step, the approach is called weakly coupled approach.  In this approach, the 

variables in the conditions on the interface are evaluated, at least partially by using the 

solution in previous time steps; as such, the conditions on interface can only be satisfied 

approximately and the accuracy of results depends on the length of a time step.  In 

strongly coupled approach, the two sets of equations are solved alternatively and 

iteratively in each time step.  Therefore, the conditions on interface can be satisfied 

almost accurately as long as sufficient number of iteration is performed; that is, all fluid 

and structural variables on interface can satisfy the equations describing the conditions on 

interface to a desired degree of accuracy, independent on the length of a time step. 

The partitioned procedures are widely adopted in the aero-elasticity problems and 

literatures pertaining to this topic in the applications for the aero-elastic dynamics are 

enormous, e.g., [40-43]. It has also been applied to problems associated with water waves 

solved by using other methods, but related literature is limited as quoted above.  In this 

paper, we will combine partitioned procedures with the improved MLPG_R method to 

solve interaction between violent waves and elastic structures.  In our approach, near-

strongly coupled approach will be adopted: the velocity and pressure will be updated 

during iteration in a time step but the positions of fluid particles remain to be those at the 
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end of previous time step.  Keeping the fluid particle positions unchanged during iteration 

is justified by the fact that the displacement of the interface (determined by the 

displacement of structure) is very small in one time step and so change of particle 

positions caused by the deformation of the interface  in one step is negligible.  Our 

numerical tests indicate that solution found in this way is much more stable than those if 

the particle positions are allowed to vary during iteration.  In addition, keeping the fluid 

particle position unchanged has the following advantages:  

1. Matrix A in Eq. (14) remains unchanged.  The computational time in re-

assembling the ‘A’ matrix during iteration is not required. 

2. In our IMLPG_R method, the pressure equations are solved using an iteration 

solvers like GMRES and Gauss-Seidel. Hence, with an unchanged matrix A, the 

number of iterations required for solving the pressure equations will be 

minimized. 

In order to accelerate the convergence, a relaxation parameter is adopted in our 

approach, which is similar to what was employed in aero-elastic dynamic problems [44]. 

The near-strongly coupled approach is summarized in the following table. 

 

Table 1. Near-Strongly Coupled and Partitioned (NSCP) Procedure. 

 

Suppose computation until t=t
n
 has been completed and so fluid particle velocity and 

position, and the velocity/displacement of the plate are all available.  These parameters at 

the next time step are found by the following procedure: 

 

1. Compute the predictors for displacement and velocity of the plate using:  
nnnn uuDD #
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0, , ,  on #fsi, where#fsi corresponds to the fluid particles 

on the wetted plate surface, which  shares the corresponding elastic 

structure surface. 

2. Compute the left-hand side matrix (A) in Eq. (14) based on water particle co-

ordinates. 

3. Compute the mass matrix (M) of the structure in Eq. (25). 

4.  Loop for iterations; Set i = 1. 

5. Compute the right hand side B matrix in Eq. (14) using the predicted plate 

velocities. 

6.  Solve Eq. (14) and find the new pressure field at water particles.  

7.  Transfer the pressure at the #fsi particles to structure field, then compute the force 

vector in Eq. (25). 

8. Compute the stiffness matrix (K) of the structure in Eq. (25) and Solve it for the 

new displacements, 1

1

n
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9.  Compute the relaxation parameter $i (Aitken acceleration [45]).  
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10.  Compute structure position by : 1
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11.  Find the predicted velocities of the plate based on the displacement evaluated in 

Step 10. 

12.  Transfer the velocity of the plate to the wall particle in the fluid domain. 

13.  Check for convergence of displacement, if converged go to step 14, else go to 5 

with i+1. 

14.  Update the fluid particle velocity and position in the whole fluid domain to the 

new time step t
n+1

, then go to Step 1 to continue the computation for the next time 

step if required. 

      ________________________________________________________________ 

5. Numerical tests and discussion 

    

5.1. Propagation of solitary waves in a tank with a flat bed  
  

In order to verify the methods, the simulation of solitary wave propagation in a flat bed is 

considered first. The solitary wave is generated by a piston-type wavemaker according to 

the theory given by Goring [46], in which the motion of the wavemaker is defined by 

� �' (hkt
k

H
xp /tanh)(tanh)( )*+ �� , where H is the wave height (taken as 0.3m here) 

above the rest water level, hHk 4/3� , ' ( hxctk p /)()( )++* ���  and the celerity 

)/1( hHghc �� , h is the water depth (taken as 1 m) over the flat bed of the tank 

spanning 40m from the wavemaker. A relatively long simulation has been carried out to 

examine whether there is any unacceptable diffusion due to the interpolation of the 

velocity for the inner nodes using the IMLPG_R method. The above equation for the 

motion of the wavemaker is implicit; hence Newton-Raphson iteration is used to solve it 

as suggested by Goring [46]. The wave time histories at 10m, 20m and 30m away from 

the wavemaker are shown and compared with the results from fully nonlinear potential 

theory (FNPT) [51] in Fig. 1. From Figs. 1a and 1b, one can see that the results from the 

IMLPG_R and MLPG_R-PG are almost same as those from the FNPT model, which may 

demonstrate that the diffusion caused by the interpolation in the IMLPG_R method is 

negligible.  The slight decrease in the wave height at 20m (0.295m) and 30m (0.29m) for 

all three models are due to the amplitude dispersion of the nonlinear waves (Yan [50], 

Sriram [52]). On the other hand, the wave heights and wave profiles from the MLPG_R-

MPG (Fig. 1c) are considerably different from others, clearly showing the spurious 

energy loss of this method. Further, there is a visible, though small, oscillation on the free 

surface obtained by using the MLPG_R-MPG even before the wave reaches the locations 

where the time histories are recorded.  These oscillations are caused due to the non-

conservation of the momentum for the particles as indicated before.  

The computational time per step using the IMLPG_R method is 8.53s for this 

simulation, whereas for the MLPG_R-PG it was 8.11s. The additional cost for finding the 

new coordinates [Eq.19 and 20a] along with the interpolation for the interior nodes in the 

IMLPG_R method is 0.42s per time step. Thus, the additional cost is about 5% compared 
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with the MLPG_R-PG that does not require the interpolation.  The total number of nodes 

used for this simulation is 16,856. These simulations are run on DELL Latitude E4200 

with 3GB RAM and 1.2GHz processors. 

 

 In order to investigate the relative errors in the numerical scheme discussed in 

Section 2.3, an error analysis has been performed in the way similar to [30]. The relative 

error is defined as, 

r

rc

rE
,

,, �
�  

where ��
rA

rr dA2,, with Ar being the area over which the error is estimated; c,  is the 

computed results from the numerical method; r,  is the reference solution. The reference 

solution in the present case is taken from the FNPT model [51]. The relative errors for 

these methods obtained by integration over the whole tanks at each of time steps are 

shown in Fig. 2. It can be observed that the errors of the MLPG_R-MPG are generally 

larger than those for other two methods, whereas the MLPG_R-PG and IMLPG_R are in 

the same order of accuracy in this case.  

These test cases clearly show that there is a little numerical diffusion caused due to 

the interpolation of the velocity to the new coordinates in the IMLPG_R method during a 

reasonable long simulation.  In order to know the effect of time step and number of 

nodes, the numerical investigation for the convergent property of the IMLPG_R is carried 

out.  The effect of time steps is presented by the ratio of dx/dt with dx fixed as in our 

previous paper [26].  Fig. 3 shows the comparison of the free surface profile for different 

time step using the constant spacing of nodes for the same case as in the above figures, 

from which one can see that the convergent results can be obtained for the ratio dx/dt 

equal to 5 and 8 (the corresponding time step is 0.01s and 0.0063s, respectively).  

Furthermore, even for relatively large time step, i.e. 0.025s (dx/dt=2), the differences 

between the results are almost invisible. The comparison of free surface profile for 

various particle distances (dx) using the constant time step of 0.01 is shown in Fig. 4. It 

shows that the use of the distance dx=0.05m does not lead to significant difference from 

using dx=0.03m (the maximum relative error in the time history between dx = 0.05 and 

0.03m are 7.22e-4 at 10m, 7.24e-4 at 20m and 5.25e-4 at 30m, respectively). 
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Fig.1. Comparison of the free surface time history recorded at x=10m, 20m and 30m from the wavemaker 

for solitary wave propagation. 
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Fig.2. Relative Error for the three numerical schemes for solitary wave propagation. 
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Fig.3. Comparison of free surface profile for different time steps using constant spacing of dx = 0.05, 

recorded at x= 10m, 20m and 30m, respectively. 
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Fig.4. Comparison of free surface profile for different spacings of nodes using constant time step of 0.01s, 

recorded at x= 10m, 20m and 30m, respectively. 
 

5.2 Breaking wave over a slope beach 
 

 In this section, the simulation of overturning wave is presented to show the nodal 

distributions  obtained  using the three methods  and to compare results with  

experimental data.  The case considered for this purpose is the propagation of solitary 

waves over a beach with a slope of 1:15.  The solitary wave is generated by a piston-type 

wavemaker according to the theory given by Goring [46] as described above but the wave 

height is taken as 0.45m above the rest water level with the water depth being 1m over 

the flat bed spanning 10m from the wavemaker to the toe of the slope beach.  The 

example is similar to that used in Sriram and Ma [38].  In the simulation, the initial 

distances between the particles are selected as 0.025m and the time step is taken as 

0.0032s, giving dx/dt=7.8 m/s.  Sriram and Ma [38] and Ma and Zhou [26] have shown 

that these parameters are appropriate to give convergent results. The snapshots of the free 

surface profiles and the configuration of water particles at t=3.30s obtained by using three 

algorithms are shown in Fig. 5, 6 and 7 respectively, together with the experimental data 

from Li and Raichlen [47]. It can be seen from the figure that in the MLPG_R-PG 

simulations particles at some places are severely scattered (shown by the black circles in 

the figure). In contrast, the particles are distributed more regularly and uniformly when 

one uses the MLPG_R-MPG. The distribution of particles in the IMLPG_R simulations 

is better than that of the MLPG_R-PG but not as good as that in the MLPG_R-MPG.  

However, on the other hand, the free-surface profile from the MLPG_R-PG and 

IMLPG_R are nearer to the experimental results compared with those from the 

MLPG_R-MPG simulation perhaps due to the energy loss caused by the method. The 

corresponding pressure time histories recorded at points x = 10.5m and 12.5m are 

depicted in Fig. 8 for all the three algorithms.  It can be observed that there are big spikes 

in the result obtained by using the MLPG_R-PG while they are not so evident in the 

results from the MLPG_R MPG and the IMLPG_R.  The reason for the sharp peaks in 

the MLPG_R-PG is likely due to the scattering of particles and so causing lack of 
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particles in the neighboring region (gaps). In summary, the IMLPG_R results for this 

case are better than those from the MLPG_R-MPG and the MLPG_R-PG algorithms in 

terms of both surface elevations and pressure time histories. 

  

Fig.5. Comparison of the free surface profile from the MLPG_R-PG (black dots)  

at the overturning position with experimental results (red line). The areas circled show that the particles are 

significantly scattered. 

 

 
Fig.6. Comparison of the free surface profile from the MLPG_R MPG (black dots)  

at the overturning position with experimental results (red line) 

 

 
 

Fig.7. Comparison of the free surface profile from the IMLPG_R (black dots)  

at the overturning position with experimental results (red line) 
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Fig.8. Comparisons of the pressure time history at two points on the slope bottom.  

5.3. Interaction between a fixed rigid plate and a wave generated by an initial elevation 
 

The interaction between a small wave and a fixed rigid plate is reported in this 

section. The surface wave is generated by an impulse-type elevation on the free surface 

profile at initial time given by 
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     (23) 

where x0 =0.7m is the peak position of the initial profile relative to the elastic plate,  a= 

0.05m is its amplitude and d1 = 0.5m is the points at which the elevation becomes zero.  

The length of the tank is taken as 10m and water depth of 1m. The domain configuration 

is shown in Fig. 9 with the left end shown in the figure being considered as a rigid plate. 

The free surface time history at x = 0.7m for all the three methods along with the FNPT 

results are shown in Fig. 10. The initial distance between the number of particles is 0.05m 

and the time step is chosen as dt=0.0064s, which gives dx/dt=7.8 m/s, in the range that 

gave convergent results in Section 5.1. From Fig.10, one would clearly identify that the 

MLPG_R-PG and IMLPG_R gives very close results to that of the FNPT. However, the 

MLPG_R-MPG breaks down in a short period of simulation due to spurious oscillations 

at the free surface. Further, the relative errors of these methods with respect to the FNPT 

(estimated in the same method as reported in Section.5.1) are shown in Fig.11. One can 

see that the relative errors for the IMLPG_R and MLPG_R-PG are of the same order in 

this case.  
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Fig.9. Illustration of Computational domain. 
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Fig.10. Comparison of the free surface time histories at x=0.7m from three schemes. 
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Fig.11. Relative Error for the three schemes with respect to FNPT solution. 
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5.4. Interaction between an elastic plate and a wave generated by an initial elevation  
The configuration of this case is very similar to that in Section 5.3 but the left end of the 

tank is replaced by an elastic plate that is free at its top end and fixed to the tank bed,  as 

has been seen in Fig. 9.  The elastic parameters of the plate is EI/�gh4 
=0.01 and the 

product of its density (�s) and thickness (�s) is assumed to be �s �s/ �h = 0.1.  The 

deflection of the plate in horizontal direction is denoted by �(z,t), where z is the 

coordinate in the vertical direction measure from the bed.   The surface wave is generated 

in the same way as in Section 5.3. The setup of this example is the same as one presented 

by He et al [13], whose results will be used to validate results of the present method. 

To simulate this case, the particles in fluid domain are distributed with initial 

distance of dx=0.05m; the elements of the plate have a similar size and the time step is 

chosen as dt=0.0088s, which gives dx/dt=5.68 m/s. The deflection at the centre of the 

plate and the free surface time history at x=0.7m for the three methods are compared with 

the numerical results of He et al [13] in Fig. 12 and 13.  The figure shows that the 

simulation using the MLPG_R-MPG breaks down as reported in Section 5.3, and also 

that a reasonably good agreement between the results from the MLPG_R-PG and 

IMLPG_R with that of numerical results in [13], in particular up to the time t =2s is 

achieved.  After this time, difference between results of the MLPG_R-PG /IMLPG_R and 

those of He et al [13] is visible, though is still acceptable.  One of reasons for the 

difference would be because the model we use here is different from that used in [13].  

They adopted the Eigen function expansion for the structure equation and the potential 

theory for the water waves while we solved the structures equations by numerically 

integrating Eq. (22) and the Navier–Stokes equations for water waves.   
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Fig. 12. Deflection at the centre of the elastic plate (free on its top with EI/�gh

4 
=0.01; �s �s/ �h = 0.1). 
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Fig.13. Comparison of the free surface time history at x=0.7m (the elastic plate is free on its top with 

EI/�gh4 
=0.01; �s �s/ �h = 0.1). 

 

 

The other reason for visible difference may be due to the number of particles is not 

sufficient large and/or the time step is not sufficient small.  In order to look at the effects 

of the number of particles and time step in this case, we have further investigated the 

convergent properties in this case for the IMLPG_R method. The comparison of the 

deflection at the centre of the plate for the above case obtained by using different values 

of dx/dt with dx=0.05m is shown in Fig.14. The figure shows that the numerical results 

are almost the same and that dx/dt = 5.68 used in the above case are appropriate.  The 

similar investigation is also carried out by varying the initial distance between fluid 

particles, keeping the element size for the plate similar to the particle distance.  The 

results for dx=0.05, 0.04 and 0,033 are depicted in Fig. 15 and agree well with each other, 

demonstrating the dx=0.05 employed in Figs. 12-13 are appropriate as well.  

Further, by comparing Fig. 10 and Fig. 13, one could clearly see the difference in 

wave time history near to the fixed and flexible plate. The Fig. 13 shows a rapid decrease 

in wave energy compared to fixed plate (Fig. 10). It is mentioned in Table 1 for the Near-

Strongly Coupled and Partitioned procedure that the varying relaxation (Aitken’s 

acceleration) plays an important role to accelerate the iteration process.  Here, its 

effectiveness is shown by Fig. 16 that depicts the number of iterations in a step observed 

when simulating the case in Fig. 12-13.  From the Figure, it can be seen that using a 

constant relaxation parameter generally doubles the number of the iteration required by 

using the varying relaxation (Aitken’s acceleration) given in Table 1.   
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Fig.14. Comparison of the plate central deflections for different time steps having constant grid spacing 

(dx=0.05m, elastic plate is free on its top with EI/�gh
4 

=0.01; �s �s/ �h = 0.1). 
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Fig.15 Comparison of the plate central deflections for different grid spacing having constant time step (dt= 

0.0088s, elastic plate is free on its top with EI/�gh
4 

=0.01; �s �s/ �h = 0.1) 
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Fig. 16 Comparisons of the number of iteration corresponding to different relaxation parameters (elastic 

plate is free on its top with EI/�gh4 
=0.01; �s �s/ �h = 0.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.17a. Illustration of experimental setup similar to that used in [48]. 
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Fig. 17b Details of the plate configurations in experiments [48] (not to the scale). 

 

 

5.4. Violent Breaking wave interaction with an elastic plate 
As reported earlier in the literature, numerical modelling of violent breaking wave 

interaction with elastic structures is limited. There are some numerical studies for the 

dam breaking interaction with elastic solids [23, 24, 25] and experimental studies for dam 

breaking interaction with the elastic gate [20]. In this section, our numerical model will 

be applied to simulate violent wave interactions with an elastic plate, which is similar to 

that in experimental studies of [48].  This can further validate the present method.  The 

experiments [48] are carried out in a wave flume with a flap wave maker installed on the 

left side to generate waves as shown in Fig. 17a.  An elastic plate with a height of 1 m 

and a width of 0.65m is mounted at the right end, fixed at the bottom and simply 

supported at 0.88m from the bottom, as shown in Fig. 17b. The length of the flume 

between the wave maker and plate is 14.5m with a bottom slope of 1:14.85 starting at 

3.95m from the wave maker. The density and Youngs modulus of the plate are 

1190Kg/m
3
 and 3250MPa, respectively. 

During the experiments reported in [48], a solitary wave was generated using the 

theory given by Guizien and Barthelemy [54], which specified the angle of the paddle as 

a function of time.  Further details can be found in [49, 50].   In our numerical simulation, 

the case with the water depth (h) of 0.7185m, the wave amplitude (H) of 0.08m on the 

flat bottom part and plate thickness of 4mm is considered and discussed in this section. 

This corresponds to a ratio of the amplitude to the water depth (H/h) of 0.11.  Based on 

the tests in the previous section and our tests on this specific case, 86,670 particles are 

employed in the fluid domain, giving the initial distance between water particles is about 

dx=0.0089 m.  The element size for discretising the plate is similar to dx; and the time 

step (dt) is chosen as 0.0018s (corresponding to dx/dt = 4.95m/s).  The experiment [48] 
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has shown that an overturning wave is formed and impacts on the plate, leading to violent 

wave interaction with the plate. 

 

Fig. 18. Experimental plate deflection at 0.3623m from the bottom of the plate and the corresponding 

spatial wave profile images taken in the experiment[48]. Circled one showing a small leakage of water 

through the side gap of the plate. 

 

The experimental and numerical deflections of the plate at 0.3623m from the bottom 

are shown in Fig.18 and Fig. 19a along with several spatial wave profiles at some time 

instants. The two figures are largely similar, though there is inevitable discrepancy.  

Specifically, both curves have two peaks, with the largest one being about 2.5cm and 

occurring at about 0.43s in the experimental results, compared to 2.4cm and 0.42s 

respectively in the numerical result. In addition, the wave profiles near the structure 

shown at some corresponding time instants are also very similar. Further, it is noted that 

there is a negative deflection before the wave impacts on the plate observed in the 

experiment. This is unclear to us, as the plate should not be influenced before it is 

impacted, as the supports are fixed at the bottom upto 30 mm and simply supported at the 

top (Fig. 17b). 

The modal frequency of the plate is evaluated using hammer impact test by 

Kimmoun et al. [48] and is about 4.37Hz. Our numerical deflections of the plate after the 

wave impact obtained by the three methods discussed are shown in Fig. 19b, which 

indicated that the frequency of the plate vibration after impact is about 4.9Hz in the 

results of IMLPG_R, close to the one obtained using hammer test. Further, the MLPG_R-

MPG result suffers numerical damping with its peak deflection being considerably less 

than the experimental one. Specifically, the peak deflection is reduced by 12.5%. In 

contrast, the simulation using the MLPG_R-PG method breaks down in this case. 

There would be many reasons for visible discrepancies with the experimental results.  

One of them discussed here would be related to water leakage on both sides of the wave 

maker and the plate observed during the experiments as discussed in [49, 51, 52].  This 

leakage is known to yield significant effects on the waves to be targeted and could not be 

taken into account in numerical simulations as lack of relevant information.  This is a 
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problem not only with our simulation but also with BEM modeling as reported in [49].   

Another reason related only to the discrepancy in the natural frequency is perhaps due to 

the added mass and restoring force of the plate in the hammer impact test (carried out in 

the absence of water) being likely different from that when wave impacts on the plate. 

 

 
 

Fig. 19a. Deflection of the plate at 0.3623 m from the bottom of the plate obatined using numerical 

simulation (IMLPG_R), and the corresponding spatial wave profiles. 

    

The pressure time history on the plate at a point 0.045m from the bottom is shown in 

Fig. 20. The figure also shows the corresponding results for a rigid plate with the same 

size and configuration.  It can be observed that in the case for elastic plate, the pressure 

reaches a maximum value of about 16KN/m
2
 at 0.01s.  After that it fluctuates at around 

2KN/m
2
. Whereas, the impact pressure for the rigid wall is about 18KN/m

2
 at 0.01s.  

After that it has a mean value of about 2KN/m
2
 before the second impact occurs. Thus, 

the ratio of maximum pressure of rigid plate to that of elastic plate is about 1.125.  It is 

noted that pressure time histories due to violent breaking simulated by other meshless 

methods (such as discussed by Khayyer and Gotoh [52]) often contain spurious high 

frequency fluctuations but this figure shows that the pressure time history produced by 

the present meshless method is quite smooth.  It is also noted that it would be desired to 

compare numerical pressure results with experiment data.  Unfortunately the 

experimental pressure was not measured for this test case, owing to the experimental 

difficulties as reported in [48].  However, the pressure from the MLPG_R method has 

been compared with the experimental data in the case for waves impacting on rigid 

objects, showing a reasonable agreement in other publication [27]. 
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The comparison of the pressure time histories from three methods is depicted in Fig. 

21a. The figure shows that the IMLPG_R pressure impact is higher than those from other 

two methods. Further, there are two distinct peaks within a short time is noticed in the 

simulation using the MLPG_R-MPG.  This small pressure from the MLPG_R-MPG is 

likely related to the spurious damping as indicated above. In addition, the simulation 

using MLPG_R-PG gives some negative pressures at 0.21s, which is unreasonable.  This 

is due perhaps to spuriously scattered particle distribution as shown in Fig. 21b, which 

eventually leads the breaking down of the MLPG_R-PG simulation. 
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Fig.19b. Comparison of the structure deflection at 0.3623 m of the plate obtained by different methods. The 

excitation of the first natural frequency of the plate is also depicted.  The first mode frequency of 4.37 Hz is 

obtained by hammer test [48] 

 

6. Conclusion 

This is a first paper to extend the MLPG_R (Meshless local Petrov Galerkin method 

based on Rankine source solution) method to numerically simulate interaction between 

violent breaking waves and elastic structures.   One novel point of this paper is that the 

water wave is simulated using a robust improved MLPG_R (IMPG_R) algorithm that 

uses newly developed technique to update the velocity and position of fluid particles.  In 

this technique, the pressure gradient used for updating particle velocities is evaluated 

directly by the simplified finite difference scheme (SFDI) while the pressure gradient 

used for updating particle position is estimated by the modified SFDI in which the 

pressure at the point concerned is replaced by a minimum pressure.  This technique can 

well conserve momentum of fluid whereas keeping the fluid particle motion relative 

f= 4.9 Hz (1
st
 Mode = 4.37Hz in 

hammer test) 
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stable.  The numerical testes show that it works well.  The second novel point of this 

paper is that a Near-Strongly Coupled and Partitioned (NSCP) procedure is proposed.  In 

this procedure, the equations for fluid and structure are solved iteratively and so solution 

at the end of each step can satisfy the equations and conditions on the interface between 

fluid and structure to the level specified.  During the iteration in each time step, the 

matrix for fluid equation is kept unchanged, enhancing the computational efficiency.  In 

order to reduce the number of iteration in each time step, varying relaxation parameter is 

introduced into the NSCP procedure, which is very effective based on our numerical 

tests. 

The method and techniques are validated by using experimental and other numerical 

data.  This includes the comparison between our results and those in literature for the 

several cases, such as (1) overturning waves over a slope; (2) interaction between an 

elastic plate and a wave generated by specifying initial elevation; and (3) interaction 

between an elastic plate and violent breaking waves.  In all cases considered, reasonably 

good agreement is achieved. 

Some results are presented to show the convergent property of the method. They 

demonstrate that convergent numerical results can be achieved if the initial distance of 

particles (dx) and the length of time steps (dt) are appropriately chosen.  The range of the 

ratio of dx/dt may be selected as 4-7 m/s for the waves considered in this paper, similar to 

what we have found for wave only problems.  

Limited numerical tests show that the proposed meshless method in this paper can 

produce relatively smooth pressure time history due to violent breaking waves, which is 

important for successfully modeling wave-structure problems. The method has been 

applied to 2D problems but will be extended to dealing with 3D cases in our future work. 
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Fig. 20. Pressure time history at 0.045m from the bottom of the plate. 
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Fig. 21a. Pressure time history at 0.045m from the bottom of the plate.

`
  Fig.21b. Example of node distribution at an instant using MLPG_R-PG. 
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