424 research outputs found

    Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums

    Get PDF
    Approximation problems involving a single convex body in R^d have received a great deal of attention in the computational geometry community. In contrast, works involving multiple convex bodies are generally limited to dimensions d 0, we show how to independently preprocess two polytopes A,B subset R^d into data structures of size O(1/epsilon^{(d-1)/2}) such that we can answer in polylogarithmic time whether A and B intersect approximately. More generally, we can answer this for the images of A and B under affine transformations. Next, we show how to epsilon-approximate the Minkowski sum of two given polytopes defined as the intersection of n halfspaces in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0. Finally, we present a surprising impact of these results to a well studied problem that considers a single convex body. We show how to epsilon-approximate the width of a set of n points in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0, a major improvement over the previous bound of roughly O(n + 1/epsilon^{d-1}) time

    Minkowski Sum Construction and other Applications of Arrangements of Geodesic Arcs on the Sphere

    Full text link
    We present two exact implementations of efficient output-sensitive algorithms that compute Minkowski sums of two convex polyhedra in 3D. We do not assume general position. Namely, we handle degenerate input, and produce exact results. We provide a tight bound on the exact maximum complexity of Minkowski sums of polytopes in 3D in terms of the number of facets of the summand polytopes. The algorithms employ variants of a data structure that represents arrangements embedded on two-dimensional parametric surfaces in 3D, and they make use of many operations applied to arrangements in these representations. We have developed software components that support the arrangement data-structure variants and the operations applied to them. These software components are generic, as they can be instantiated with any number type. However, our algorithms require only (exact) rational arithmetic. These software components together with exact rational-arithmetic enable a robust, efficient, and elegant implementation of the Minkowski-sum constructions and the related applications. These software components are provided through a package of the Computational Geometry Algorithm Library (CGAL) called Arrangement_on_surface_2. We also present exact implementations of other applications that exploit arrangements of arcs of great circles embedded on the sphere. We use them as basic blocks in an exact implementation of an efficient algorithm that partitions an assembly of polyhedra in 3D with two hands using infinite translations. This application distinctly shows the importance of exact computation, as imprecise computation might result with dismissal of valid partitioning-motions.Comment: A Ph.D. thesis carried out at the Tel-Aviv university. 134 pages long. The advisor was Prof. Dan Halperi

    Elastic Geometric Shape Matching

    Get PDF

    Set-valued Data: Regression, Design and Outliers

    Get PDF
    The focus of this dissertation is to study set‐valued data from three aspects, namely regression, optimal design and outlier identification. This dissertation consists of three peer‐reviewed published articles, each of them addressing one aspect. Their titles and abstracts are listed below: 1. Local regression smoothers with set‐valued outcome data: This paper proposes a method to conduct local linear regression smoothing in the presence of set‐valued outcome data. The proposed estimator is shown to be consistent, and its mean squared error and asymptotic distribution are derived. A method to build error tubes around the estimator is provided, and a small Monte Carlo exercise is conducted to confirm the good finite sample properties of the estimator. The usefulness of the method is illustrated on a novel dataset from a clinical trial to assess the effect of certain genes’ expressions on different lung cancer treatments outcomes. 2. Optimal design for multivariate multiple linear regression with set‐identified response: We consider the partially identified regression model with set‐identified responses, where the estimator is the set of the least square estimators obtained for all possible choices of points sampled from set‐identified observations. We address the issue of determining the optimal design for this case and show that, for objective functions mimicking those for several classical optimal designs, their set‐identified analogues coincide with the optimal designs for point‐identified real‐valued responses. 3. Depth and outliers for samples of sets and random sets distributions: We suggest several constructions suitable to define the depth of set‐valued observations with respect to a sample of convex sets or with respect to the distribution of a random closed convex set. With the concept of a depth, it is possible to determine if a given convex set should be regarded an outlier with respect to a sample of convex closed sets. Some of our constructions are motivated by the known concepts of half‐space depth and band depth for function‐valued data. A novel construction derives the depth from a family of non‐linear expectations of random sets. Furthermore, we address the role of positions of sets for evaluation of their depth. Two case studies concern interval regression for Greek wine data and detection of outliers in a sample of particles

    Geometric reasoning for process planning

    Get PDF
    • 

    corecore