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Abstract

A Feature Oriented Detail Design System (FODDS2) is described that 

allows design of 2*/2D components using machining features. The 

geometric reasoning required to generate anteriority constraints for 

subsequent process planning is described with accompanying problems, 

experiments and proposed solutions. Many of the test components are 

from other institutions, and the success of the reasoning confirms the 

robustness of the approach.

The geometric algorithms currently unavailable in commercial solid 

modellers, but required for the system, are described. These are 

particularly the Minkowski sum and the medial axis operator. Some 

implementation work is shown.

All features in the system are described in a consistent manner in terms 

of a 'tool profile' and 'cutter path' allowing new features to be added 

simply and easily and ensuring that geometric reasoning can still be 

performed.

Novel work in the area anteriority checking and of proximity checking of 

feature-based designs is presented.
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1 Introduction

1.1 Background

Traditional manufacturing techniques distinguish between the sequential processes of 

designing, process planning and manufacturing. Frequently as the design proceeds 

through these stages it is rejected and earlier stages must be reiterated. The earlier 

mistakes can be caught the cheaper they are to remedy.

Computer Aided Process Planning systems developed in the 1980s were intended to 

achieve two main goals. Firstly, to speed up the process planning task, and secondly 

to improve the quality and cost of resultant process plans.

In order to ensure that a near optimal process plan has been discovered, a great many 

alternative process plans must be explored. This is a drawback to both classical rule- 

based approaches and even to evolutionary algorithm approaches.

To reduce the size of the search space for the process planner, it is beneficial if 

clearly unmanufacturable process plans are pruned from the search space at the 

earliest possible juncture.

Many CAPP systems, though receiving information from CAD systems and feeding 

CAM systems, do not contain a solid modeller.

1.2 Scope and Problem

If geometric algorithms can be developed that can be performed on a design in order 

to infer manufacturability problems at an early stage, this can dramatically prune the 

search space of process plans. To ensure this reasoning is performed as early as 

possible, it is sensible to link this manufacturability analysis stage to the design 

system and perform the manufacturability analysis either immediately on finishing a 

design, or concurrently with design changes.

This would allow many manufacturing problems to be identified by the system and 

flagged to the designer at an early stage and thus at a near insignificant cost to the 

finished product. It is not necessary to decide on particular machine/tool/setup
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combinations, and by avoiding these process selections, the search space is pruned to 

a greater degree and at less expense than by making the more detailed decisions. 

(The tree is pruned by lopping off a few large branches rather than many small 

twigs.)

Fundamental to many CAPP and CAM systems is the use of features, though 

different schools differ on their definition of a feature. In order to integrate the 

manufacturability analysis into the CAD system, a CAD system where components 

are designed in terms of manufacturing features shall be used.

The design by manufacturing features approach is often considered a significant 

drawback of feature-based design systems, but it seems reasonable that an additional 

front-end with either a feature recognition or feature transformation system, 

producing suitable manufacturing features as its output, would silence many of these 

objections. Such a feature transformation system is briefly discussed in Chapter 3.

Perhaps the chief problem for CAPP systems, and a problem that is not readily 

amenable to CAPP systems without a solid modeller, is that of machining 

accessibility leading to machining precedence constraints between features. Other 

manufacturability constraints are also of interest.

1.3 Aims and Objectives

1.3.1 Aims

This thesis has the following aims:

1. To show that anteriority inferencing algorithms are necessary for automated 

process planning from a feature based design system

2. To develop such algorithms to satisfy Aim 1 and prove that these algorithms 

indeed satisfy Aim 1.

3. To show through the development of a Feature Based Design system (FODDS2) 

that with these algorithms, it is possible to design a significant proportion of 

mechanical components and that the inferencing algorithms do indeed detect 

anteriority errors, and that NC code can be generated to automatically produce a 

selection of these components.
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4. To show that the modelling of negative features as a Minkowski sum of tool and 

toolpath is a powerful method of ensuring ease of extensibility of the feature set, 

and provides a common robust mechanism for adding geometric algorithms for 

manufacturability analysis of feature based designs.

1.3.2 Objectives

The objectives of the thesis are more extensive.

1. A geometric algorithm to elicit ordering constraints in the manufacturing of 

features shall be developed.

2. In order to demonstrate these algorithms it will be necessary to build a feature 

based design system that shall be known as Feature Oriented Detail Design 

System version 2 (FODDS2).

3. FODDS2 shall have a sufficiently rich, powerful and flexible feature library to 

allow the modelling of significant real world components.

4. In order to prove the generality and intuitiveness of the design metaphor used in 

FODDS2, and in order to show that this design methodology allows real designs 

to be created in reasonable timescales it will be necessary to have a system that 

allows any competent user to easily create component instances with a minimum 

of training. Thus, a system with a near professional user interface and operation 

will be required.

5. The features meta-model and the FODDS2 system shall allow new features to be 

added with relative ease. An important property of this meta-model and the 

geometric reasoning algorithms is that all algorithms must still operate correctly 

as new features are added. Thus, it is important that the features meta-model is 

general enough to allow addition of more features, but sufficiently constrained 

that reasoning algorithms can operate on any feature type generated with this 

features meta-model.

6. The geometric algorithms for anteriority checking require a set of tools that 

enable other useful algorithms for process planning to be developed quite easily. 

This set of algorithms shall be demonstrated.
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A set of components falling into two main categories shall be tested. That is, they 

will be built using the FODDS2 system and the geometric algorithms run on those 

components to identify machining problems and ordering constraints on feature 

manufacturing. For some components, NC code shall be produced and the 

components manufactured on a Bridgeportll NC mill in order to prove the system in 

reality. The first set of components will be components with a limited number of 

features whose purpose is directed towards illustrating a particular problem. The 

second set will be consist of real and test components from companies and research 

groups throughout the world in order to show the general applicability of the system.

1.4 Organisation of Thesis

Chapter 1 introduces the thesis and contents and contains the aims and objectives of 

the thesis as well as a brief summary of the remainder of the thesis.

Chapter 2 contains a Literature Review of those groups and individuals throughout 

the world undertaking work in the area of manufacturability analysis and related 

areas. These areas include feature based design, computer aided process planning. 

Additionally the chapter contains a brief review of solid modelling techniques 

concluding with a review of particular useful geometric algorithms, the Minkowski 

sum and the medial axis.

Chapter 3 gives the background to the thesis, in particular prior work within the 

Manufacturing Planning Group of the Department of Mechanical Engineering at The 

University of Edinburgh (MPG) in order to place the work in this thesis in context. 

This chapter also reviews solid modelling, certain geometric algorithms and features.

Chapter 4 details the geometric reasoning algorithms in FODDS2 necessary to infer 

anteriority constraints as a necessary precursor to automated process planning as well 

as additional algorithms of importance in validating feature based designs for 

subsequent process planning.

Chapter 5 covers aspects of the Feature Oriented Detail Design System 2, as are 

relevant to the thesis.
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Chapter 6 details experiments carried out to test the system. These fall into two 

groups; focussed experiments to show particular aspects of the system and more 

general experiments with a selection of parts from various research groups and 

industrial components to show the robustness of the system. Automatic production of 

a machined part from the system is shown.

Chapter 7 concludes the thesis with a summary of the work, conclusions drawn, an 

evaluation of the original content of the thesis and pointers towards further work.
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2 Literature Review

This Literature Review chapter collects the work undertaken in other research groups 

that is of particular relevance to this thesis. Thus it covers work in the areas of 

features, feature based design and feature recognition and computer aided process 

planning as well as some geometric algorithms.

In the area of features, Shah's summary of approaches to Feature Based Design is 

discussed. Kramer's work on Material Removal Shape Element Volumes [Kram92] 

whilst at NIST is discussed.

In the areas of manufacturability analysis, the work of Gupta [Gupt95] and Nau from 

the University of Maryland, and Bidarra [Bida97] from Delft, along with 

Vandenbrande [Vand93] and Requicha from the University of Rochester are 

discussed.

The PART process planning system from the University of Twente [DeJo94] is 

reviewed.

A review of the work of the Manufacturing Planning Group of The University of 

Edinburgh including the work on the HAPPI Process Planner and the SESAME 

Simultaneous Engineering System, and a background section on solid modelling and 

the geometric algorithms of Minkowski Sums and medial axes can be found in 

Chapter 3.

2.1 Shah's Summary of Feature Based Design 

Approaches

Shah [Shah91b] surveyed CAD/feature-based process planning and NC 

programming techniques in 1991. He classifies these systems into generic categories. 

Shah identified four different methods of incorporating features into geometric 

models

  Human assisted feature definition using geometric models.

  Automatic (machine) recognition of features from geometric models.



Geometric Reasoning for Process Planning Jonathan Charles Salmon

  Design by features

  Parametric geometric modelling

2.1.1 Human Assisted Feature Definition

designer geometric 
modeller

geometric 
model

feature 
model

process 
planner

Figure 1 Human Interactive Feature Definition

The Human Interactive Feature Definition normally involves a designer first 

generating a solid model of a component and then subsequently, the process planner 

(or other user requiring 'features') embellishes the solid model with feature tags (see 

Figure 1). Usually the designer is required to label every surface in the solid model. 

This is both demanding in time and effort, and requires the process planner to 

perform mentally much of the process planning task prior to automated process 

planning. In addition the feature tags tend to be attached to the surfaces and edges of 

the B-rep model of the component and not to the material removal volumes. Lastly, 

there is no provision for tagging intermediate features that are required during 

machining but play no physical part in either the stock or the finished component 

(though this disadvantage can be levelled at most of the other methods).

2.1.2 Automatic Feature Recognition

solid 
modeller i k

feature 
recognition

feature 
extraction

*-

Figure 2 Automatic Feature Recognition

Automatic Feature Recognition attempts to automate the above process. Again a 

solid model of the desired part is fed into the system and the system attempts to 

automatically extract features of interest to downstream processes from the solid 

model (see Figure 2). Many groups are working on automatic feature recognition



Geometric Reasoning for Process Planning Jonathan Charles Salmon

including Corney and Clark [Corn90][Tutt97], Regli [Regl95], Joneja [Yang97] and 

Jared [Jare89]. Many of the disadvantages of this approach are similar to the 

previous approach.

The system is trying to extract features from a solid model that has already been 

designed with a particular set of design features in mind to satisfy the functional 

requirements of the component. It seems reasonable that a good design system 

should not immediately throw this functional information away, but retain it for 

subsequent downstream processing.

Secondly, a solid model only contains information about nominal geometry, it 

contains no information regarding tolerances or surface finishes. This information is 

crucial for subsequent process planning.

Thirdly, current feature recognition systems can only recognise a proportion of the 

features actually in existence on a component, requiring interactive definition of 

certain features. Here, it should be emphasised that any system that can automatically 

recognise 90% of the features on a component will certainly save a process planner a 

great deal of drudgery. The process planner would be quite pleased to only have to 

deal with the more complex and interesting features.

The work on Feature Recognition undertaken in PART [Hout89][DeJo94] and many 

of the FR systems of the early 80s uses shape grammars to recognise features within 

a (typically B-rep) solid model. This approach, whilst working adequately for 

isolated features on a component, quickly falls down when features intersect. It is 

frequently these interactions between features that define a component's function, 

and so inability to recognise interacting features is a severe problem.
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2.1.3 Design by Features

user feature 
modeller

feature 
model

solid 
modeller

solid 
model

Figure 3 Design by Features

It is possible that the reason for some features being unrecognisable is that they are 

also unmanufacturable. It is equally possible that some features that are recognised 

are not immediately manufacturable in the form in which they are recognised. This is 

especially true of systems that recognise protrusions as features. Little [Litt97] and 

others [Cham93] have worked on systems for taking feature based descriptions of 

models containing positive features and turning them into a feature-based description 

containing only negative features. This is but one class of feature transformation that 

is frequently necessary.

Particular problems in feature recognition according to Corney and Clark 

[Corn90][Tutt97] are dealing with small scale shape variation such as chamfers and 

fillets, where the topology of the B-rep model is significantly more complex, but the 

complexity is only due to small scale features that could be neglected. Some work 

has been carried out in suppressing these small scale variations. Techniques such as 

medial axis transforms can be used [Tam91][Arms94]. The Corney and Clark 

approach in particular uses a graph-based method based on face-traversal rather than 

the more common edge traversal. A useful abstraction that is made is identifying the 

aspect vector of largely 2ViD models and using this approach direction to simplify 

the quantity of information to be subsequently processed in the feature finder. This 

can be done as most components, particularly in the domain Corney and Clark are
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interested in are predominantly 2l/iD with minor excursions into 3D such as side 

holes and pockets in the 'base' as well as the top.

2.1.3.1 Design by Features versus Feature Recognition

These two distinct approaches to features, that of Design by Features and Feature 

Recognition are often perceived as being in conflict. Both approaches produce 

feature based models of a component, so if either approach were widely adopted in 

industry the other approach might want for support. In fact, the two areas are 

complementary. Feature Recognition attempts to produce a feature-based description 

of a component from its basic geometry. This has the advantage that the source 

component design can (in theory) be taken from any appropriate 3D CAD package, 

an appealing idea, especially given the current trend towards Open Systems. 

However Feature Recognition systems working from a pure solid model will only be 

able to extract geometrical features, and are unable to infer other non-geometrical 

information such as tolerances and material type. Feature-Based Design Systems take 

a somewhat more pragmatic approach. If the intention is to use a feature based 

process planning system then the input to the CAPP system must be some sort of 

feature-based design. Either the designer initially produces designs in terms of 

features or an additional feature recognition step is required. As Pratt has remarked 

[Prat84](taken from [Wils89]):

"Finally, the feature recognizer informs the user that it has detected the presence of 

a cylindrical hole in the part. But this is information which the designer was fully 

aware of when he created the model; it was lost when the system reduced all input to 

low-level details of topology and geometry."

Protagonists of Feature Recognition answer this by saying that even if the design is 

in terms of features, the designer will wish to use functional features, as the designer 

is currently attempting to generate a functional design, and that the manufacturing 

features required for feature based process planning are not suitable for this task. An 

oft quoted example of this is the case where the designer requires a set of ribs for 

strengthening a component, and is required to design in terms of slots or pockets, the 

empty space between the ribs.

There are two responses to this argument.

10
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Firstly, the system must ultimately be capable of manufacturing a component; so by 

constraining the designer to use manufacturing features, the designer is aided in this 

requirement.

The second counter argument is that the input to the process planning system must 

still be in terms of manufacturing features, so a system based on manufacturing 

features is ultimately required. If subsequent to the introduction of a manufacturing 

feature design system, a development allows transforming functional design features 

into manufacturing features, there is no reason not to allow this. Indeed functional 

design features can then be added to the manufacturing oriented system. The 

converse, where design using functional features is used, but no transform 

mechanism exists cannot lead to the goal of producing an automated design to 

manufacture system. Design by manufacturing features can then be regarded as a 

pragmatic sub goal on the road to automation of the design to manufacture path. The 

differing views of features is a stumbling block for newcomers into the area and is 

not limited just to functional versus manufacturing features. In as much as a design 

passes through various departments in a traditional manufacturing environment, so 

the views on what constitutes a feature change. Features differ according to the point 

of view, whether it is coordinate measurement, finite element analysis, design or 

manufacture.

2.1.4 Parametric Geometric Modelling

In the parametric approach, users build features with standard solid primitives 

instead of features. The construction procedures and geometry parameters are 

retained, and the model can be modified by changing the parameters used during the 

construction. This approach whilst aiding reuse of geometry and easing the editing of 

well-designed components, does not directly aid CAPP, but is a technology that 

should be incorporated in the design by features approach.

Parametric design leads naturally to constraint systems. This allows in some way, the 

nominal dimensions of components to be described in terms of formulae, and that 

these formulae may be circular and a system of constraints must be solved before the 

solid model can be generated.

11
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Not all constraint-based solid modelling is necessarily feature based. The 2D drafting 

and 3D parametric modelling in Solid Edge, for instance, cannot truly be described 

as feature based. True 3D constraint satisfaction and the resultant generation of valid 

solids is a difficult research area.

Brunetti et al. [Brun95] propose a feature based model that allows algebraically 

formulated relationships between feature entities (not just the features themselves, 

but also subfeatures) to be expressed. This structure is called a FERG (Feature Entity 

Relation Graph). The real features in this graph are represented as implicit algebraic 

equations that build up the halfspace decomposition of the form feature.

Shapiro [Shap95] shows how in many commercial systems, parametric and 

variational modelling may not be robustly supported because the meaning of a 

"parametric family" is not always well-defined. Shapiro gives examples of how 

small changes in parametric dimensions can result in huge changes in component 

topology.

2.2 Wilson and Pratt

Wilson and Pratt in 1989 [Wils89] said:

A feature is a region of interest in a part model

Wilson and Pratt divided representations of features into two major classes:

EXPLICIT: All the geometric details of the feature are fully defined.

IMPLICIT: Sufficient information is supplied to define the feature, but the full 

geometric details have to be calculated when required.

Pratt and Wilson's Feature Taxonomy can be seen in Figure 4. From their definition, 

any feature-based modeller that carries a solid model representation of each feature 

around with the data structure is said to be explicit, whereas any feature-based 

modeller that merely carries attributes around to be reconstructed when required is an 

implicit modeller. This corresponds to the ideas of an evaluated and unevaluated 

modeller. This distinction is weak. Many solid modellers perform lazy evaluation, 

where externally the model always appears evaluated, although internally the model 

is only evaluated when necessary. Pratt [Wils89] gives examples such as chamfers as

12
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examples of implicit features. This contrasts with ACIS [Mart96][Corn97] where a 

chamfer can either be implicit or explicit, and whilst for compactness the chamfer 

data is tagged to an edge, the chamfer can be explicitly created on demand. Pratt and 

Wilson's distinction seems to be based on the practicalities of modellers in the late 

eighties rather than a fundamental requirement, and the distinction has become less 

important as computers and modellers become more powerful.

Figure 4 Pratt & Wilson's Feature Taxonomy

2.3 Arikan's Design Using Machining Operations

An extreme example of the design-by-features paradigm is CADP-NC (Computer 

Aided Design, Process Planning and NC-Programming) of Arikan and Totuk 

[Arik92]. Their paper is entitled Design by Using Machining Operations. It describes 

a system that allows a feature-based design of a part to be described using detailed 

machining features including centre drilling, countersinking and spot facing in 

addition to some more 'traditional' features such as steps, pockets and holes. Though 

functional, this is perhaps at too low a level of detail and entails the designer 

knowing more about process planning than is typically the case.

2.4 Material Removal Shape Element Volumes

The work undertaken by Kramer [Kram91] [Kram92] and others [Gupt95] on 

Machine Removal Shape Element Volumes (MRSEVs) is particularly relevant to the 

manufacturing features standpoint taken in this thesis.

13
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2.4.1 How Does a Feature Relate to a Machining Operation?

Kramer requires that the volume described by a MRSEV should have no material in 

it when machining is complete and the operation associated with an MRSEV should 

remove no material outside the MRSEV. This allows the MRSEV to represent the 

swept volume of the tool. MRSEVs are allowed to partially machine empty air if 

required.

Kramer allows disjoint volumes in an MRSEV. This is a distinction between the 

MRSEV and the traditional negative feature view. It is more usual to disallow 

disjoint features, but to allow collections of features, such as a pitch circle diameter 

of holes.

2.4.2 Relating Features to Workpiece Shape

The case Kramer discusses here can be best explained by means of an example. 

Many feature taxonomies including those of Gindy [Gind89] and Wilson and Pratt 

[Wils89], differentiate between volumetric features depending on their relationship 

with the workpiece. Notably a slot is distinct from a step. Gindy differentiates these 

using external access directions (EADs), checking the access of a feature in six 

orthonormal approach directions. Kramer does not distinguish in this way. The 

distinction is not embodied in the MRSEV (or feature) description, but in the 

machining operation used to remove the material from the workpiece.

This is illustrated in Figure 5. Figure 5a) shows a block from which a thin slab is to 

be milled from the entire top portion of the block. In each of the figures b-d, a 

volume of the same dimensions is to be machined. In b), this volume can readily be 

called a step. In c), though slab milling might be used, the cylindrical protrusion 

would have to be avoided. In d), slab milling is inappropriate. In each of these cases, 

the machining process is dependent not on the shape of the volume to be machined 

but on the accessibility of the feature. If a feature in a feature based design system 

defines a volume, but not a machining strategy then any feature with the required 

volume can be used. A single MRSEV could be used in all four cases a-d and 

subsequent accessibility checks would identify possible machining strategies.
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a) slab b) step

c) slab? d) slab? 
Figure 5 Slabs and Steps

2.4.3 Carrying Machining Information in Features

Kramer assumes that the process planner is the one defining the MRSEVs and as 

such there is no advantage to be gained by attaching machining information to them. 

Rather, it is assumed that libraries of machining operations and MRSEVs will be 

matched appropriately, but independently.

2.4.4 Fixed library vs. Define as Needed

The advantage of a fixed library (says Kramer) is that it is feasible to write computer- 

executable algorithms which will automatically generate toolpaths for cutting out the 

volumes in a fixed library. The algorithms are parametric and use feature data fairly 

directly.

Kramer argues that if a 'define as needed' approach is taken then the most 

straightforward way that will permit almost any shape to be expressed is to use a 

boundary representation (B-rep) of the model. Automatic generation of toolpaths 

from a general B-rep shape is much more difficult.
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2.4.5 Complete Definition vs. Ambiguity

Mantyla [Mant89] discusses the problem of premature commitment, where because a 

single choice of feature geometry (or indeed of feature orientation) is made at an 

early stage, a commitment has unwittingly been made to a particular manufacturing 

solution, such as enforcing a certain set up. Mantyla proposes a method of feature 

relaxation that avoids early commitment. For functional reasons, it is not possible to 

allow all features to relax. This method is complex.

2.4.6 Machining Applications Supported

The complexity of the MRSEV library increases as milling moves from 2V£D through 

3, 4 and 5 axis milling. Kramer's proposed library is intended to support 3 axis 

milling and act as the core for 4 and 5 axis milling.

2.4.7 Accessibility for Machining

Kramer discusses whether accessibility for machining is an attribute that should be 

carried with a feature and concludes that this is the domain of process planning.

2.5 Gupta's Review of Manufacturability Analysis

Gupta [Gupt97] provides a review of manufacturability analysis. Given a 

computerised representation of the design and a set of manufacturing resources, 

Gupta defines the automated manufacturability analysis problem as follows:

1. Determine whether the design attributes (e.g. shape, dimensions, tolerances, 

surface finishes) can be achieved.

2. If the design is found manufacturable, determine a manufacturability rating, to 

reflect the ease (or difficulty) with which the design can be manufactured.

3. If the design is not manufacturable, then identify the design attributes that pose 

manufacturability problems.

A flow chart showing this view of manufacturability analysis can be seen in Figure 6.
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[Modified design
Preliminary Design

All portions that need machining are 
accessible?

At least one operation plan capable o 
creating design shape and dimension?

least one operation plan capabl 
producing design tolerances and 

surface finishes?

least one operation plan capable 
meeting required cost and time 

targets?

Acceptable design

Figure 6 Manufacturability Analysis According to Gupta

[Gupt95] takes a wider view of manufacturability analysis than is taken in this 

thesis. In addition to accessibility and other geometric constraints on 

manufacturability, Gupta evaluates the design by considering all manufacturing 

processes that can manufacture any feature in a part and quantifies these to produce a 

component's manufacturability rating. Gupta explicitly produces many operation 

plans capable of machining a part in order to come up with a finished 

manufacturability rating. Models in this methodology are created using the MRSEVs 

of Kramer [Kram92]. Algorithms are presented for modifying the effective feature 

volume (that volume of a feature required to be machined) depending on a feature's 

position in a process plan.
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The algorithms are implemented in the IMACS system IMACS, A System for 

Computer-Aided Manufacturability Analysis

Gupta [Gupt95] performs automatic manufacturability analysis for machined parts. 

Gupta identifies four classes of manufacturing feature formed by different machining 

processes: drilling, end-milling (closed and open pockets) face milling and side 

milling.

Gupta searches for thin walls by first faceting the component and then finding the 

separation distance of close non-adjacent facets. This technique depends on the 

faceting being a reasonable approximation to the original surfaces.

Gupta also performs some tolerance consistency and redundancy checking.

Gupta's system identifies features using Regli's approach [Regl95]. The system 

identifies certain precedence constraints between features by reasoning about 

accessibility, datum-dependency and approachability.

Gupta then defines a machining plan as a set of machining operations and precedence 

constraints.

2.6 Bidarra's Feature Interaction Detection

Bidarra from Delft University of Technology believes a significant lack in current 

feature-based systems is the failure of the systems to maintain effective feature 

validity throughout the design process [Bida97], That is interactions between features 

can cause features to change properties, e.g. an addition of a slot might change a 

blind hole to a through hole, or to change validity, a hole might be completely 

subsumed in a larger pocket and so not contribute to the final design at all. Bidarra 

has implemented a feature interaction detection mechanism for eight interaction 

classes within the SPIFF modelling system, a prototype multiple-view feature-based 

modeller.

The classes of interaction defined are:

splitting, disconnection, boundary clearance, volume clearance, closure, absorption, 

geometric and transmutation.
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Though Bidarra looks at many feature interactions, he is not concerned directly with 

identifying machining precedence through accessibility analysis, though the tests for 

boundary clearance and volume clearance provide some of the necessary 

information.

2.7 Vandenbrande's Spatial Reasoning

Vandenbrande [Vand91][Vand93] at the University of Rochester performs automatic 

feature recognition and subsequently performs some spatial reasoning tests to test 

feature validity and accessibility. Interactions are represented by segmenting the 

feature into "required" and "optional" volumes. Feature validity tests include 

nonintrusion, presence and accessibility. Accessibility is further subdivided in to 

local, partial and semi-infinite accessibility. Vandenbrande mentions an approach for 

thin wall detection, but does not implement such an algorithm. Vandenbrande's 

system uses OPS-5 production rules and the PADL-2 solid modeller.

2.8 PART Process Planning System

Perhaps the most successful process planning system containing a solid modeller is 

PART [Hout89] [Hout91 ] [DeJo94] [Erve88].

PART is now a commercial process planning system from C3 in the Netherlands, 

though PART was previously the result of a 40 man year research project. PART and 

its successors PART-S and FROOM (Features and Relations in Object Oriented 

Modelling) address many research topics including CAPP software architectures 

[Jonk92], tool management, [Boog94], constraint satisfaction in feature-based design 

[Salo95], and process and production planning integration [Lend94]. A schematic 

representation of the PART system is shown in Figure 7.

PART uses a Feature Description Language and scours the product model to find 

groups of faces that meet the shape definition of a particular feature. Taking this 

approach means PART differentiates between pockets and steps, but the features are 

more specific. The commercial system contains more than forty features, though 

these features are more restrictive than a general MRSEV.
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Figure 7 A Schematic Representation of the PART System

The PART system represents features such as manufacturing features, tolerance 

features and work holding features. The 'atomic' manufacturing features used are 

based on the CAM-I feature set [Butt86], and includes features such as holes, 

pockets, slots and corner notches.

Though PART is aware when a feature has more than one possible machining 

direction, it is not clear what accessibility checking is performed. The accessibility 

checking may be implicit in the feature recognition process. Precedence problems are 

considered from a tolerance satisfaction view rather than a geometry view.

2.9 GARI: An Expert System for Process Planning

Descotte and Latombe [DescSl] present a feature based process planning system 

known as GARI. It consisted of an expert knowledge base composed of 

manufacturing rules and a planner. GARI did not contain a solid modeller. A part is 

described to GARI as a series of features and a series of dimensions between 

features. The dimensions also carry tolerance information. This view bears 

similarities to a CSG model.
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Some features are described in terms of faces, leading to a B-rep type model. As with 

HAPPI (described in Chapter 3) the description of features with relationships such as 

"starting-from" and "opening-into" defines machining precedence relationships in 

the supplied model, so these relationships do not have to be inferred.

The expert system would cause rules to fire depending on information in the part 

model, which would provide weighted machining and planning information. Some 

hints are contradictory and the weightings would help resolve these conflicts. A 

process plan would result.

The types of part modelled in GARI are strictly orthomorphic prismatic parts.

2.10 Summary

Early process planning systems did not contain geometric modelling systems and so 

accessibility problems were implicit in the component description. Later work 

particularly has been coupled to feature recognition and subsequent 

manufacturability analysis and process planning. Some authors have concentrated on 

spatial reasoning for feature validity maintenance whilst others have tackled the 

manufacturability analysis problem. There still remains much work to be undertaken 

in this area.

The interpretation of the features concept differs greatly between researchers.

Bronsvoort and Jansen review the areas of feature modelling and conversion in their 

paper of 1993 [Bron93].

Hounsell and Case are aiming to better capture Designer's Intents in [Houn97].

Other reviews of features can be found in a number of papers [Shah91b] [Salo93] 

[Maro95] [Shah95][Case93].

Other work in this area can be found in [Ande90], [Jone93], [Case94], [Case97], 

[Chan85], [Dowl94], [Maro95a], [Maro95b], [Mant89], [Opas94], [Salo95], 

[Laak96], [Cutk91], [Requ89], [Yang97] and
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3 Background

The subjects covered in this chapter lay down the groundwork for the subsequent 

core of the thesis that is manufacturability analysis for process planning through 

geometric reasoning.

This chapter covers the following areas:

1. A review of the work undertaken in the Manufacturing Planning Group of The 

University of Edinburgh with special attention to the HAPPI process planner, in 

order to place the thesis in context.

2. An introduction to the area of concurrent engineering.

3. A review of solid modelling to set the scene for subsequent sections.

4. An overview of two geometric algorithms, those of Minkowski sums and medial 

axes that are important for the subsequent reasoning algorithms as well as a 

definition of 2ViD.

5. A review of features as a higher level of abstraction than pure geometry.

3.1 Manufacturing Planning Group, Edinburgh

Work on feature based methods began in 1985 with the start of a project entitled 

Representation, Reasoning and Decision Making in Process Planning with Complex 

Components [Husb90]. Ending in 1989, this project resulted in the development of a 

novel prototype CAPP system that was capable of generating full cutting plans for 

2V6D prismatic parts. The system, known as HAPPI, operates in two stages. The first 

stage entails the generation of all possible machining methods that can be used as a 

result of feature interactions arising from geometric tolerances or those where 

anteriority must be considered. The second stage involves setting the manufacturing 

methods to be used: an optimisation problem which is NP complete and which was 

solved by the early use of Genetic Algorithms. The success of this early work has led 

the group to consider related areas of interest, in particular the investigation of 

possible methods for automatically generating product representations that would be 

suitable for process planning purposes.
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In 1989, a second major project started entitled Feature Oriented Design [Mill93]. A 

feature based detail design system was created, capable of assisting a designer to 

model engineering components with a high level user interface. Many parts from 

several companies have been modelled using the system which accepted feature 

descriptions, dimensional and geometrical tolerances and complex blank shapes as 

would be used with cast stock material. Furthermore, the system, named FODDS, 

could perform some preliminary geometric reasoning functions which are used to 

detect intersections, proximities, (thin walls), and tool access. FODDS' output is in 

the form of a Component Description Language, (CODL), file which describes all 

the information generated and includes a full geometric part description in the form 

of an ACIS solid model.

The HAPPI CAPP planning system became the core planner in the EC funded 

SESAME (Simultaneous Engineering System for Applications in Mechanical 

Engineering) project [Mill94]. Furthermore the CODL language was adopted as a 

standard for component description transfer by the SESAME Consortium, (e.g. the 

Straessle GmbH feature based modeller, FeatureM). The SESAME research allowed 

investigation into issues such as concurrent engineering, machine tool modelling and 

NC code generation and verification.

The following figure illustrates the feature based work recently undertaken in the 

group. Highlighted are those areas central to this thesis on which work has been 

undertaken exclusively by the author. Additionally some areas have been covered by 

undergraduate and Erasmus exchange students working under the direction of the 

author.

Areas in which research is being undertaken, but have not been covered in detail in 

this thesis are tolerancing, fixture planning, and alternate feature views. Fixture 

planning is covered in Chia's PhD thesis [Chia97a][Chia97b].

The important area of multiple feature views has been undertaken by Little [Litt97]. 

His work focuses on transforming a feature based description of a component 

containing both positive and negative features (bosses and protrusions), into a feature 

based description containing only a blank and negative features.
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The tool and cutter selection work of Naish [Nais97][Nais98] generates plan spaces 

after the manufacturability analysis without knowledge of tools and machines 

described in this thesis.
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Figure 8 Summary of Feature Based Research in the MPG

The Plan Space Optimisation box in Figure 8 refers particularly to the HAPPI 

process planner developed in the 1980s. Providing correct feature based designs and 

manufacturing precedence information for this planner provided the motivation for 

the work in this thesis.
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3.1.1 The HAPPI Process Planner

In 1989, the Manufacturing Planning Group in the Department of Mechanical 

Engineering at The University of Edinburgh completed a research project on 

optimisation of process plans entitled Representation, Reasoning and Decision 

Making in Process Planning with Complex Components (SERC/ACME GR/D 

63101). This project successfully developed an automatic process planning system 

(called HAPPI) that would produce a near optimal process plan given a design of a 

component [Husb88] [Husb89] [Husb90].

The architecture of the HAPPI Process Planner is shown in Figure 9. From this, it 

can be seen that at a high level of abstraction the planner would compare the desired 

component with the blank and produce a search space of all valid process plans. 

Genetic Algorithms were then used to find a near optimal process plan in this search 

space.

Component 
Representation

Blank 
Representation

Comparison 
Process

Planning Module

Optimisation

Process Plan

Figure 9 Architecture of HAPPI Process Planner
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The component model, however, was a particularly tortuous representation 

consisting of triples of information written in PROLOG, forming a semantic net (see 

Figure 13). A specification for even a visually simple component would run to many 

hundreds of lines of code [Husb88]. Much of the geometric reasoning about the 

component was effectively performed by the 'programmer' who hand-coded the 

component. A brief extract is shown in Figure 10 describing a portion of the part in 

Figure 12.

pi isa plane.
th6 isa thru_hole.
tap carries_out tapping.
p4 positioned to p6 withtol 0.125.
h2 isa blind__hole.
p5 vexedges p6.
p7 hasfeat pkl.
el? edges p6.
si comprises plO.
p5 para p8 withtol 0.005.

Figure 10 Extract from HAPPI Component Model

For their component representation, Husbands et al., eschewed the linear approach to 

feature-based design, i.e., a list of features each with a short list of attributes, and 

instead adopted a semantic net approach allowing much richer relationships to be 

described. Husbands and Mill in [Husb89] suggest more than 40 relationship types 

between entities. Entities could include solid features, components, and surface 

features. An example of a typical representation network can be seen in

Figure 13. The richness of this data structure led in turn to its own problems. In 

particular, in the HAPPI system, component descriptions were generated by hand and 

frequently took several days to code. A combination of hand-coding and the semantic 

net approach meant a model might contain much redundant information. Major 

redundancy was a property that could be neglected in the prototype, however if the 

data structure were to be created automatically in a real-time design system, and 

were to be capable of being saved and restored in that system, issues regarding 

redundant information would become important, particularly under modification of a 

component design, where searching for all mentions of an entity that may have been 

modified becomes complex. As Sabin comments (in [Husb89]), "...redundancy 

leads to potential inconsistency". This was not a problem in the prototype HAPPI,
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but inconsistency is avoided in FODDS2 through a deliberately more limiting data 

structure. It is important to note that HAPPI did not contain a solid model of the 

component, though some experiments were performed with the NONAME modeller 

from Leeds University. To quote Mill:

"Interestingly, the feature representation used developed into a Solid Modeller, (a 

boundary representation modeller). Not a very good one though." [Husb89]

The first process undertaken by the HAPPI process planner is a comparison of the 

Blank Representation with the Component Representation (see Figure 9) in order to 

discover which features in the component require machining (in other words, do not 

exist in the required form in the blank). Chiefly, it is apparent that the component 

representation in HAPPI is a hybrid solid-surface representation and that there is 

often room for confusion between the surface and solid representation. Neither 

representation is complete, and decisions on representation have been made 

pragmatically on an ad hoc basis.

The planning module then generates (implicitly) the complete space of possible 

process plans, which is then searched for a near optimal solution during the 

optimisation stage. Though now an established technique, the use of genetic 

algorithms for process planning optimisation was novel.

The HAPPI test component is also used as a FODDS2 test component in later 

chapters. The entire HAPPI system was implemented in Edinburgh Prolog.

The comparison module (see Figure 11) is of particular interest in this thesis as it is 

here that manufacturability decisions were originally made, but as there is no 

geometric modeller in HAPPI this information is now provided by FODDS2.
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Figure 11 Architecture of the Comparison Module of the H APPl Planner

The HAPPI system chiefly represented features as being primarily attached to planes 

of the original blank, or nested within existing features. This is represented through 

use of the hasfeat (or 'has_as_child_feature') relationships. Thus, problems can be 

envisaged regarding steps (open to more than one face), or indeed slots, machined 

primarily from one direction but often intersecting with three faces of the blank. In 

the event that two crossed slots have a hole in the base of the intersection, it is 

unclear to which slot the hole belongs, and so complicates the hasfeat relationships. 

The hasfeat relationship codes the feature tree in such a way that the blank has 6 

orthogonal surfaces (Dsurfs (see Figure 11)) and volumetric material removal 

features are attached through the hasfeat relationships to one of the 6 Dsurfs. 

Subsequent material removal features may be attached to others to allow chaining of 

features such as the nested slots, or hole in a pocket of Figure 12. The Dsurfs help 

define the setup constraints for each feature. As, these also help define a setup for 

subsequent machining operations. The dependency on the surface planes can be 

clearly seen. Though the hasfeat relationship is one of the most important in HAPPI,
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other relationships define geometric and dimensional tolerance relationships. Some 

of these can be seen in the example of a HAPPI semantic network in Figure 13, 

which shows the portion of the network relating to the large hole in Figure 12. This 

diagram also shows the relationship between the component datastructure on the left 

and the machine and tool database, of which a portion is shown on the right.

Figure 12 A HAPPI Example Component

( 0.5 Vpostol

xtrav-/ 160 j

drilling Kcarr/es_out-

Component Job Shop

Figure 13 Relationships in an Example HAPPI Database
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3.1.2 The SESAME Project

Between 1990 and 1995, the Manufacturing Planning Group was involved in two 

feature based projects. Firstly, the national project SERC/ACME GR/F92312 Feature 

Oriented Design (FOD) and secondly the European Brite/EuRam project 

Simultaneous Engineering System for Applications in Mechanical Engineering. It 

was during this period that the first version of FODDS was developed by the author, 

along with the Geometric Reasoner (GR) (see Figure 14) [Mill93][Mill94].

The FODDS system itself is but one component of an entire Design for Manufacture 

System, the Concurrent Engineering Workstation (CEW). An overview of the entire 

system is shown in the figure below.

Man-Machine Interface

FODDS - Feature Oriented Detail Design System
GR - Geometric Reasoner
PSG - Plan Space Generator
OPT - Plan optimiser
NC - NC Code Generator
PCR - Process Capability Representation
CODL - component Description Language
PPDL - Process Plan Description Language

Figure 14 CEW System Overview

The system as shown above can be considered without feedback as a serial system 

allowing Feature Based Design followed by Geometric Reasoning for Process 

Planning, Plan Space Generation, Plan Optimisation and NC Generation. Feeding 

both Plan Space Generator and NC generator is the Process Capability Database. 

This system takes as its input either an existing design from a FODDL (Feature 

Oriented Detail Design Language) File or a new design via the Man-Machine
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Interface direct from the designer. The final output is one or more process plans and 

accompanying NC data. Each intervening module is briefly described below.

Feature Oriented Detail Design System (FOODS) This allows either graphical 

based design on screen or input from file. Allows additional information to be added 

to the system by the designer (Explicit Feature Information)

Geometric Reasoner (GR) This module performs geometric reasoning on a Feature 

Based Design of a Component to generate information necessary for process 

planning (Implicit Feature Interactions)

Plan Space Generator (PSG) Using the features and relationships produced by 

FODDS and a variety of data and rule bases including tool and machine databases, 

the PSG implicitly produces a space of all possible process plans for machining a 

component.

Optimiser (OPT) This plan space is enormous and finding a good plan is a non- 

trivial optimisation problem. The approach used is an Artificial Intelligence 

technique known as Genetic Algorithms, where a population of plans are bred' 

together to evolve a near optimal plan.

NC Generator (NC) From the finished process plans passed from the optimiser, all 

operations that are to be performed on an NC machine have NC data generated for 

them.

Output A process plan suitable for sending down to the machine shop. This is a text 

based process plan with accompanying diagrams and NC data.

A goal for this system is a concurrent system where any system component can be 

run at any time and contribute to a blackboard' style database of information. 

However, the prototype is a largely serial system with feedback. All these modules 

however can be run on a single workstation, and the design process can be iterative, 

giving some concurrence and a common look and feel to all modules improving 

learning curves and hence designer productivity.

The Feature Based Design System (FODDS in Figure 14) and the Geometric 

Reasoner (GR) have been combined and subsequently augmented to form the new 

system FODDS2.
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3.2 Computer Integrated Manufacturing (CIM)

The Computer Integrated Manufacturing (CM) concept emerged in the seventies as 

a response to a changing marketplace. There was a shift from the large batch sizes 

and few product lines. In the face of increased competition and more specific 

demands from clients, the move had to be made to shorter production runs, smaller 

batches and lower lead times.

Smaller batches meant that an increasing amount of manufacturing information is 

needed on the shop floor.

Design
x . , .. .. Process a) Idealistic

Prototype

Design
. , _ . . Process 
b) Typical p|an

Prototype

Design
c) Simultaneous Process 

Engineering Plan

Prototype

Design
d) Concurrent Process 

Engineering Plan
Prototype

&;

1 1 1 ! 1 1 ! 1

Figure 15 Lead Times vs. Engineering Methodology

Traditionally, engineering has split design, process planning and latterly NC 

generation. Each is performed by different people, often in different offices, and 

possibly on different sites.

Designs are drawn up as two-dimensional technical drawings and not until a design 

is complete is it passed to the process planning team (see Figure 15a). From the 

drawings a process plan is created and those elements of the process plan that require 

NC machining then have the NC programs created for them. In each of these distinct 

stages the opportunity for feedback to the previous stage is weak. If a process-
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planning problem is so great that a process plan cannot be created, then great effort 

must be expended passing the design back up the design chain (Figure 15 b). 

Redesign means that much of the process plan may have to be rewritten, which again 

may mean any NC code so far generated has to be discarded.

In the work undertaken in the Manufacturing Planning Group in Edinburgh, 

simultaneous engineering and concurrent engineering are differentiated in the 

following way.

A simultaneous engineering system allows a single engineer to work with a set of 

packages on a single workstation in order to take a product from design to NC code 

production (Figure 15 c). In simultaneous engineering the feedback is primarily 

accomplished through the brain of the engineer using a set of programs linked such 

that the output of one forms the input of the next. This view is akin to the Unix view 

of programs as filters; the output of any filter can be piped into another filter.

In concurrent engineering, the same engineer can take an integrated suite of software 

tools again at a single seat on a single platform in order to achieve the same result. 

The difference lies in the level of feedback to previous stages. In concurrent 

engineering, in addition to a feedback loop through the engineer's brain, the software 

is sufficiently integrated that automatic tools allow feedback from downstream 

activities all the way back up to design if need be. This model is more complex, and 

the system design draws on object-oriented and agent-based techniques (using 

SWARM [Burk97]) and more recently the Microsoft Object Linking and Embedding 

for Design and Manufacture (OLE for D&M). In concurrent engineering, 

'downstream' tools may start working on a design whilst the designer continues to 

modify that design, thus saving overall design time at the expense of higher CPU 

time and occasional unused partial solutions (Figure 15 d).

Again in concurrent engineering, multiple concerns are addressed (e.g. function, 

geometry and manufacturing) as a design evolves rather than waiting until the 

completion of the design geometry. Cutkosky [Cutk91] takes this approach in the 

prototype concurrent design system NextCUT (a development of FirstCUT), through 

the use of coarse-grained agents including a geometry agent, a process planning 

agent, and a fixturing agent. The open architecture model allows the relatively
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painless addition of other agents. First-Cut [Cutk88] on the other hand is a process 

oriented system enforcing design-for-manufacturability and simultaneously 

constraining process planning through the ordering of the design process. Though 

FODDS2 encourages design in terms of manufacturing features, the geometric 

reasoning allows the process planning optimisation function to be independent of 

ordering in design and relatively free of unnecessary design constraints. This 

freedom from ordering at the design stage is an important characteristic of FODDS2 

that allows the automatic process planner to make decisions based on cost and 

genuine ordering constraints rather than arbitrary user based constraints.

Design is a lengthy process of which this thesis only looks at one of the final stages, 

that of detailed design. In principle, the process planning and NC code generation 

phases of product development can be regarded as part of the design phase, in that, if 

either of these stages fails then it will necessarily lead to redesign, and so impacts the 

finished design.

The designer of a product is trying to achieve a specific function. Sometimes that 

function will require some aesthetic considerations, particularly if it is a consumer 

product. Invariably there will be financial constraints on the design, both the time 

and resources to generate the design and the eventual cost of the product. In this 

thesis only detailed design, process planning and manufacture are considered, 

however, along with these considerations, there is a continuous awareness of the 

following list of design concerns, collectively known as Design for Whole Life Cycle.

Primarily:

  Design for Function

  Design for Manufacture 

Secondarily:

Design for Assembly; Design for Maintenance; Design for Disassembly; 

Design for Recycling; Design for Machining; Design for Test

Any designer must think about all these aspects of design simultaneously. The role of 

a concurrent engineering system is to aid the designer in as many of these areas as
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possible. This enables him to concentrate on those important aspects that the system 

is unable to deal with such as specific function and aesthetics.

The design by manufacturing features approach taken as the primary form of design 

in this thesis is not capable by itself of dealing with all the approaches to design 

listed above. Developments within the Manufacturing Planning Group built upon the 

ideas developed in FODDS and FOODS 2 are being used to allow design in terms of 

alternate feature sets such as positive features [Litt97] and other aspects of Design 

for Manufacture such as fixture design [Chia97a].

Computer Integrated Manufacture is a large and complex topic. The Manufacturing 

Planning Group have addressed many issues in this area over the years, and this 

thesis focuses on the particular area of geometric reasoning for process planning 

through manufacturability analysis.

3.3 Solid Modelling

This section introduces 2D CAD, 3D solid modelling techniques of Constructive 

Solid Geometry, Boundary Representation and Spatial Decomposition techniques as 

well as mentioning some of the modellers and applications of these techniques. It 

shows how the emphasis has been on geometry and point sets. It sets the scene for 

the higher level of abstraction that is features.

Feature-based methods have emerged over the last twenty years in response to 

industry's requirements for an integrated solution to design and production, in turn 

required in order to reduce product lead time. Features enable this reduction in lead- 

time by supplying the designer with a set of tools at a higher level of abstraction than 

those of a typical computer-aided design system.
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Figure 16 A 2D Drafting Package (EasyCAD)

A typical 2D system (EasyCAD from Evolution Computing (see Figure 16) is such a 

system) is only able to design in terms of lines, arcs and circles, admittedly annotated 

with dimensions where appropriate. There is no concept of part within the system. 

There is no knowledge of the three-dimensional geometry of the system, and indeed 

there is little knowledge of the two-dimensional geometry of the system particularly 

where on the drawing represents solid material and where represents empty space. 

The closest the system comes to this is the ability to 'area fill' parts of the drawing at 

will. This can clearly be shown by the ability of these drafting packages to produce 

drawings of impossible objects such as those in Figure 17 (prepared in EasyCAD).
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Figure 17 Impossible Objects

The trend to 3D systems, with the advent of increasingly powerful computers and 

software of ever growing sophistication, is fraught with similar limitations. The first 

three-dimensional systems were so-called wire frame modellers. In much the same 

way as a drawing in 2D is constructed out of line segments, in 3D, wire frame 

modellers allowed models to be constructed of 3D line segments. Though 3D models 

could now be produced, these models are inherently ambiguous. It is not possible to 

categorically infer from a wire frame model where particular surfaces lie or indeed 

whether they exist. Perhaps the simplest example of this is that a wire frame modeller 

has the same representation for both a solid cube and an empty box.

To resolve this problem, ways of representing solids were required. Solid modellers 

can be characterised as representing a point set in Euclidean three-space. Typically 

further restrictions are placed on the point set to allow the set to be represented to 

some degree of satisfaction within a finite computer system and in such a way as to 

allow useful manipulation and interrogation of this point set. [Bowy95] gives 

background information on areas of solid modelling still requiring research. The 

currently successful solid modelling methods tend to fall into three major categories:

  Spatial Occupancy methods

  Constructive Solid Geometry

  Boundary Representation
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The work of the Djinn project [Arms97] is attempting to define an 

Application Programmer's Interface (API) that hides the underlying modeller 

and also the type of modeller from the applications developer. [Shah97] is 

also looking at a modeller independent API but is currently restricted to two 

B-Rep modellers.

3.3.1 Spatial Occupancy Methods

Spatial Occupancy Methods are often less able to model exact geometry, but can be 

more compact than other methods. This allows octrees in particular to be used in 

cases where space is at a premium, such as in fine-grained agent models [Jacq98].

Spatial Occupancy methods come in 4 main forms

  Exhaustive Enumeration

  Cellular Decomposition

  Space Subdivision

  Depth Maps

3.3.1.1 Exhaustive Enumeration

Exhaustive enumeration is little used but represents a volume as a number of volume 

cells or voxels. Exhaustive enumeration is extremely expensive in memory terms, so 

space subdivision methods such as octree methods are more frequently used as they 

can result in a huge space saving at a small increase in algorithmic complexity.

Consider the TECC component (see Figure 70, later in the thesis and [Husb91]), 

roughly 200mm long by 100mm wide by 200mm high. Modelled at an accuracy of 

only O.lmm requires 2000x1000x2000 voxels or ~4xl09 voxels. At one bit for each 

voxel and at eight (8) bits to the byte, approximately 500Mbs of memory are 

required. Exhaustive enumeration is not compact.

3.3.1.2 Cellular Decomposition

Cellular decomposition where a body is composed of a number of non-overlapping 

simple, but not necessarily regular, cells joined at common faces. Finite element 

meshes used for stress analysis and computational fluid dynamics are perhaps the
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most common uses of this technique. The other techniques (CSG and B-rep) are 

often enhanced with cellular decomposition methods, for instance, to provide fast 

raytracing.

3.3.2 Octree modelling

Octrees are used for many tasks, often in association with CSG or B-rep modellers. 

Representation methods are described by Yamaguchi [Yama84]. An example object 

along with an octant numbering system and the resultant octree are shown in Figure 

18 and Figure 19.

Figure 18 An Example Object and Octant Numbering

Legend
O Empty Cell 
O Mixed Cell 
• Full Cell

Figure 19 Octree Representation of Example Object

In this octant numbering system, octant 0 is the x,y,z>0 octant and the octants are 

numbered anticlockwise around the z axis, followed by those in the z<0 halfspace.
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The octree representation then given is equivalent to the object shown. The initial, 

top level octants are centred on the origin.

Taking the TECC component again (200mmx200mmx 100mm), modelled to an 

accuracy of 1 part in 2000 (or O.lmm), would require an octree up to 11 levels deep
1 0

(2 =2048). The size in terms of the number of nodes of the resultant octree would 

result in great space savings with all the areas that were either entirely within the 

object or entirely without the object. Each node in an octree can have one of three 

values: full, empty, or grey (i.e. mixed and requiring further decomposition).

One particular application of octrees is for pre-segmenting a B-rep model to allow 

rapid ray casting of the model by photorealistic Tenderers. An octree is made of the 

B-rep model to some suitable resolution and the nodes of the octree are tagged with 

those faces of the model that can be found in the appropriate region. This allows 

rapid ray-firing as precise intersections need only be found for those nodes the ray 

passes through containing interesting surfaces [Glas84].

3.3.3 Depth maps

A common, but limited Spatial Occupancy method that has the advantage of being 

comparatively compact is the depth-map. Depth maps can only represent components 

that are single-sided, in machining terms this means that they must be machined only 

from a single direction. Other single sided objects include terrain maps, making 

depth maps suitable for Geographic Information Systems (GISs). The output from 

3D digitisers, at least in an intermediate form, tends to be as a set of depth maps each 

from a different viewpoint. A number of 3D depth maps can be knitted together to 

form a solid 3D object (though not without difficulty and with some limitations). NC 

simulation programs dealing with purely one-sided 3-axis NC milling can also use a 

depth map as a suitable representation provided each pixel is small enough to provide 

satisfactory resolution. Representing a component of dimensions described earlier, 

but using a single sided depth map takes only 2000x1000 pixels. If each depth is 

modelled using an 8bit fixed point number, giving 256 possible depths, then 2Mb of 

storage is required, large, but a fraction of the space previously needed. The NC 

simulation program need only handle two dimensional geometrical problems, setting 

the depth of all pixels a cutter passes over to the cutter height. Simple rendering of
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depth maps is comparatively easy, as pixels in the depth map represent pre-sorted 

areas in the resultant image.

The following image is a golf club head and its digital reconstruction in ACIS (a 

solid modeller) from a digitised depth map taken from the laser digitiser of Machine 

Vision Group of the Artificial Intelligence Department at The University of 

Edinburgh. Each pixel in the depth map was about 2mm square, and due to specular 

reflections, some of the data is clearly spurious. The ACIS model reconstruction 

software constructs a series of slices from the data and unites them. No attempt has 

been made to smooth the resulting body in any way. The resulting body was then 

rendered using the LightWorks extension to ACIS to produce the image seen. The 

original head is courtesy of Ben Sayers Ltd, North Berwick.

Figure 20 Original and Reconstructed Golf Club Head 

3.3.4 Constructive Solid Geometry

Constructive Solid Geometry models (CSG) also known as set-theoretic models are 

defined as combinations of primitive sets by Boolean operators (chiefly union, 

subtraction and intersection). The most primitive sets are so-called half spaces; these 

are defined by simple functions that separate the world (or three-dimensional 

Euclidean space E3 to be more precise) into in and out. Half spaces can be defined in 

terms of any real-valued analytic function f(P), P=(x, y, z) (Certain non-analytic 

functions cause problems according to Requicha [RequSO]).

Thus for a plane passing through a point P0=(x,y,z), and with an outward surface 

normal V=(x,y,z), it is possible to determine whether any point P is inside or outside 

the halfspace by evaluating the expression

(P-Po)xV
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and noting that if the result is less than zero then the point PQ is inside the half space, 

if it equals zero it is on the planar surface, and if it is more than zero it is outside the 

half space.

(P-Po)xV < 0; inside the halfspace 

(P-Po)xV =0; on the planar surface 

(P-Po)xV < 0; outside the halfspace

V outward facing r

Outside

Inside

Figure 21 Diagram of a Planar Halfspace

Similarly, an open-ended (infinitely long) cylinder whose axis passes through a point 

P0 and is aligned with a vector V=(x,y,z) and with radius r, can be defined with the 

following equation.

(P-P0)«V - r < 0; inside the cylindrical surface

Figure 22 A Box and a Cylinder in terms of their Constituent Halfspaces
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A number of half spaces can be combined using set operators such as intersection 

(O), union (U) or subtraction (-) operators to produce more complex bodies (these

operators are also referred to as Booleans). For instance a cylinder, Q, of height h, 

and radius r, centred on the origin (as in Figure 22) can be defined in terms of three 

half spaces in the following way:

HI: (P-(0,0,h/2))x(0,0,l)<0

H2 : (P-(0,0,-h/2))x(0,0,-l) < o

H3 : (P-(0,0,0))*(0,0,l)<0

Ci = HI n H2 n H3_____________________________
Though CSG modellers may allow use of the half spaces, most modellers wrap these 

up into suitable, more user-friendly primitives, such as blocks, cylinders, spheres, 

cones and tori. Though a user may be aware that he is developing a CSG tree to 

describe his component, he may remain unaware of the primitive half spaces at the 

bottom of the tree and so a simple component may be effectively modelled as in 

Figure 23.

Figure 23 A Simple CSG Tree and Model
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3.3.5 Boundary Representation

TRANSFORM «-transform() 

-bound()-
BODY

I 1
lump() body()

k______L
-bound()- LUMP

next()

\ 1
shell() lump()

-bound()- SHELL _ subshell() 
next() '  I SUBSHELL

-bound(>

face_list() shell()first_face() fjrstjace() 
fr I I face_list()

next_face(); next_in_list()

VERTEX

FACE
-subshell(>-

- child() 
sibling() 

_parent()

loop() face()
_±____I

LOOP

-geometry( 

next()
SURFACE

start() ownerf)

partner() COEDGE
next() 

previous() 
Lgeometry()*

PCURVE

edge() coedge()

-boundQ- EDGE  geometry()> CURVE

edge()
start() end()

I

VERTEX  geometry(>> POINT

Figure 24 A B-Rep Hierarchy (ACIS)

Boundary representation modellers seem to be in the majority in industry. They are 

perceived as having a number of minor advantages over their CSG compatriots, 

namely:

A B-rep model is canonical; there is a unique representation of any solid object, 

whereas the same solid can (in general) be modelled in an infinity of ways in a CSG 

modeller. This makes similarity checking very expensive (if not impossible) in a 

CSG modeller, compared with 'just expensive' in a B-rep modeller.

B-rep modellers contain an explicit face and edge list, making visualisation routines 

cheaper for B-rep modellers than for CSG. The hierarchy of topological elements in 

ACIS, a commercial B-rep modeller is shown in Figure 24. The hierarchy for 

Parasolid, the other leading commercial solid modeller is very similar to that of 

ACIS [Shah97].
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These differences are in fact less than might at first appear, as CSG modellers tend to 

maintain a B-rep model of the object for visualisation, and B-rep modellers tend to 

allow generation of solids using CSG-like primitives and Boolean operators. 

Additionally, it is easier in B-reps to associate additional information (attributes) 

with individual faces or edges as these entities do not exist within the CSG data 

structure. However, the difference is more in the primary representation and the 

philosophy of the research/developer.

Figure 25 A Non-Manifold body

The body in Figure 25 was generated in a demonstration of an early version of 

FODDS (ACIS based) and crashed the system. It is an example of a non-manifold 

body. Non-manifold bodies are objects where, for instance, more than two surfaces 

meet at a single edge. These have been a problem for B-rep modellers for a number 

of years, as it is quite easy to try to create them. It has been difficult until recent 

years to represent them and in particular to perform subsequent operations on the 

resulting solid model. ACIS 1.3 would allow the above model to be generated, but 

subsequent Boolean modelling operations on any portion of the model would cause 

the modeller to crash. A physical interpretation of non-manifold bodies is difficult. It 

is not clear from the model whether the portion of space along the rear edge is a very 

thin wall, or a very thin crack.
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3.4 Geometric Algorithms

For the FODDS2 system to work effectively, certain geometric algorithms not 

readily available in the current generation of commercial solid modellers are 

required.

The Minkowski sum is a form of sweep operator suitable for describing the swept 

volume that a tool passes through given a model of that tool and the toolpath.

The medial axis recovers the 'skeleton' of a body from the body itself and can be 

used to form part of a thin wall detection algorithm.

3.4.1 Minkowski Sum

[Kaul92] provides a comprehensive survey of Minkowski sums. De Berg [Berg97] 

and Middleditch [Midd88] also describe suitable algorithms.

N

Figure 26 Minkowski Sum of Two Polygons M and N

Intuitively, the Minkowski sum of two closed regions can be considered as a dilation 

process where one region is expanded by the other. In more formal terms, the

Minkowski sum of two sets M and N C^d, denoted M©N, is defined as the set 

M®N= \J{p
peM 
c/eN
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Defining XH = fx : x - h EX}, allows the definition of Minkowski sums to be

rewritten as M 0 N =\Jp EmNp. This equality is obtained by changing the order of the

union in the Minkowski sum by keeping p fixed and having point q run all over N. 

An example of the Minkowski sum of two polygons is shown in Figure 26.

An operation analogous to Minkowski summation can be termed the Minkowski 

difference (0). It can be intuitively looked upon as the erosion of one set by another. 

More formally, it can be defined as:

M®N= \J{p-q}
peM 
qeN

or

MQN = M®N

where M corresponds to the complement of M.

X

B A-B
Figure 27 Minkowski Sum Combines the Shape Characteristics of its 

Arguments.

Minkowski sums have found various applications in the field of CAD/CAM. Some 

of the better known applications are robot path planning, creation of machining 

volumes, rounding and filleting and shape design.
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3.4.1.1 Robot path planning

Figure 28 Navigating an Object (R) amongst Obstacles (O1, O2) using 

Interference Detection

Figure 29 Navigating an Object (R) amongst Obstacles (O1,O2) using 

Minkowski Sums

Minkowski Sums have been used extensively in robot path planning [Berg97]. The 

problem should first be restricted to translations of the robot object among obstacles. 

A naive approach to would be to consider alternate paths by sweeping the robot 

object along a candidate path and then checking for interference between each swept 

path and the object (see Figure 28). The bottleneck in this approach is the complexity
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of repeatedly detecting interference of the swept paths with the obstacles. Generating 

swept paths is not a trivial operation either.

Figure 29 describes an alternate scheme where Minkowski sums are utilised to 

compute forbidden zones around each obstacle. The forbidden zone corresponding to 

the obstacle is that region where a translation of the robot object centred about its 

reference point would collide with the obstacle.

If the reflection of the robot object R, about its reference point is called -R. The 

forbidden zone S/, for an obstacle 0,-, is given by:

5,- = Oi®(-R)

Using this method the problem can be reduced to that of navigating a point among 

forbidden regions which is much simpler and can be solved using ray casting 

techniques. This method must be extended to cope with non-cylindrical robots that 

change orientation during a move.

3.4.1.2 Creation of Machining Volumes

In three axis machining, the machining volume can usefully be modelled as the 

Minkowski sum of the tool volume and the cutter path [Sung86]. In Figure 30 a 

wireframe model of a blank and cutter path along with a wireframe profile of a 

cylindrical tool in the home position. The Minkowski sum of the tool and tool path is 

then removed from the blank to give the finished component.

Figure 30 Machining Volume Generation
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3.4.1.3 Rounding and Filleting

Rounding and filleting are commonly used operations in geometric modelling. The 

construction of geometry in most modellers allows users to build their objects using 

primitives that generally have sharp corners although these are rarely desired in the 

final shape.

Consider a shape G generated by a solid modeller. A global rounding of radius r can 

be generated by specifying a sphere S with the same radius and computing ®=(((G

0 S) 0 2*S) 0 S). That is, first by dilating the object all over by a given thickness,

then by eroding by twice that thickness and then by dilating by the thickness again. 

The net effect is to round both convex and concave edges [Midd88].

Filleting alone can be achieved by (G 0 S) 0 S.

Whereas external rounding alone is achieved by (G © S) 0 S.

This technique of Minkowski blending does not always result in the intuitive shape, 

particularly for shapes with thin passes or causeways (see Figure 31). The result 

depends on whether dilation or erosion is performed first.

Minkowski blends, though well-defined, are of limited use in the real world. In 

particular it is difficult to know how to limit the extent over which they operate, and 

they can produce some counter-intuitive solutions in confined spaces or over small 

peninsula. The result of the global rounding operation can then depend on whether 

the filleting occurs before the rounding or vice versa. The rounding can eliminate 

object protrusions and/or small voids.
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u
a) original Polygon b) Intuitive result

c) [{Pec(d)}'ec(2d)]'ec(d) d) ((P'ec(d))'ec(2d))'ec(d)
Figure 31 Problems with Minkowski Blends

Figure 32 shows the Minkowski sum of a small sphere and a simple object resulting 

in a dilated object. This is the output of an ACIS program by the author that can 

perform the dilation of any polyhedron. Because the resulting object always has 

curved faces, the process cannot be reapplied without first facetting the model.

Figure 32 Dilation using a Minkowski Sum
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3.4.1.4 Shape Design

Figure 33 An Example of an Object created using CTS

In addition to solid modelling techniques such as CSG and B-Rep, Cumulative 

Translational Sweeps (CTS) have been proposed. Figure 33 shows an example of an 

object generated by CTS, Booleans and rounding.

3.4.1.5 Proximity or Thin Wall Detection

Minkowski Sums can be used for the detection of thin walls in feature based 

components. This particular problem is discussed in [Mill94] and in Chapter 4.

3.4.2 Medial Axis

A recent addition to the range of possible techniques for the recognition of features 

of engineering significance in geometric models is the medial-axis transform 

[Arms94]. The medial axis of a 2D region is the locus of the centre of an inscribed 

disc of maximal diameter as it rolls around the object interior. The approach has been
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extended to 3D solids using the medial surface. Medial axis has potential for thin 

wall detection, applications in meshing for finite element analysis and the lower 

dimensionality of the medial axis compared with its parent body is thought to 

simplify some feature recognition processes.

Edges in geometric proximity

medial axis

y

Figure 34 A 2D Region and its Medial Axis 

3.4.3 Definition of 2V*D

The term used by manufacturing engineers to describe components easily 

manufactured by three axis NC machine tools without the need for special tooling is 

21/2D. This informal definition is insufficient for features researchers and a more 

rigorous geometric definition is required. The following definition is due to Corney 

[Corn90].

A "strictly 2!/iD" object might be defined as having any of the following properties: 

  Contains only planar and cylindrical faces.
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  Has only step changes in height.

  Is prismatic. That is, it is one sided and when viewed from that side 

contains no undercuts or overhangs.

  Not multisided.

  Contains no small-scale shape variations such as chamfers and edge or 

fillet radii.

Mill regards a 2VfcD component as being any component that can be machined in a 

small number of setups on a 3-axis mill with standard tooling, and so would allow T- 

slots.

The author's strict definition of 2V6D is a component for which there is a (one or 

more) planar face (called the 'back face') such that the surface normal of any point 

on the surface of the component, but not on the back face makes an angle of greater 

than 90° with the surface normal of the back face. This definition can be expressed 

formally and is equivalent to saying that a 2ViD component can be fully modelled 

with a (arbitrarily exact) depth map. This definition does allow freeform surfaces 

however, something that is normally not considered 2*/2D in a manufacturing 

environment.

Any system capable of dealing with 2V6D components in a reasonably complete way 

would be of great value to manufacturing engineers. True 3D components including 

sculptured surfaces and multiple approach directions represent only a small (but 

highly lucrative) portion of the machined component market. The FODDS2 system, 

whilst allowing excursions into true 3D, has clearly evolved to primarily handle 21/zD 

components.

3.5 Features

As mentioned in section 3.3, the first generation of CAD tools were little more than 

glorified 2-dimensional drawing packages. It should be appreciated that even a 

correct set of 2D drawings of a 3-dimensional component drawn to an appropriate 

standard, (e.g. BS308), can still be an ambiguous or more often hard to interpret 

representation of the intended 3-dimensional component. Ensuring consistency
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between multiple views of a component without having some common underlying 

model is also extremely difficult to achieve on all but the simplest components.

An example of an object whose plan, elevation and side views are difficult to 

interpret is that object made by the intersection of three cylinders of equal diameters 

aligned along the x, y and z axes. This problem is shown in Figure 35 below. A 

rendered image is shown on the left, with a font, plan, side and angled view on the 

right of the same object.

Figure 35 A Body Formed from Three Intersecting Cylinders

As a result of this deficit of 2D CAD systems, and with the advent of sufficiently 

powerful computers, there has been a move towards 3D CAD systems. In the first 

instance this was in the form of limited 3D functionality added to an existing 2D 

system. Such a system is the 3D addition to FastCAD that allows generation of 

isometric images from 2D part drawings. This necessitates a fair amount of extra 

work for the user ensuring validity of the 3D drawings so produced. This approach is 

nothing more than a visualisation tool.

However, the alternate approach is for systems containing true 3D solid modellers. 

Perhaps the best known of these is AutoCAD, particularly AutoCAD Mechanical 

Desktop. Initially a 2D system and now with a true 3D husk (incidentally built on 

ACIS) and strong links back to the original 2D systems. Other 3D systems include 

and EDS Unigraphics' IDEAS and SolidEdge, Strassle's Konsys [Denz93], HP's 

SolidModeler, Parametric Technology's ProEngineer, IBM's CATIA, 

Computervision's CADDS5 and SolidWorks.
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Interestingly, these products invariably contain 2D sketchpads, as even now this is 

frequently the fastest way of getting the bare bones of a design into the system. It is 

interesting to speculate whether gradual improvement in immersive virtual reality 

systems will result in the emergence of true 3D sculpting systems, or whether 

(particularly in the mechanical design industry), the 2D abstraction is of fundamental 

importance.

The majority of 3D design tools now have a powerful underlying solid modeller, of 

which perhaps Parasolid and ACIS from Spatial Technology are the leading 

commercial modellers. Systems not containing one of these commercial modellers 

contain a closed proprietary modeller. All too frequently, however the resulting 3D 

CAD system has powerful mechanisms for describing the geometry of the 

component that is designed, but poor mechanisms for extracting suitable data from 

this geometry to manufacture the component.

This gap between raw geometry and manufacturing requirements is frequently 

known as The Great Divide [Shah95].

A fundamental technology for bridging this divide is that of features [Mill96]. This 

concept has emerged over the past decade as a central technology for a number of 

academic CEVI products notably PART [Hout91][Lend94]. It is taking longer to 

infiltrate into the commercial sector though certain systems can claim to have feature 

based modules, namely Parametric Technology's ProEngineer and Strassle's Konsys 

system.

It is useful also to consider the philosophies behind the various tasks to be merged. 

Particularly those of conceptual design, detailed design and automatic process 

planning.

Features are a natural way of thinking about a design at both the conceptual phase 

and the detailed design stage. What is considered to be a feature in these design 

phases and what is considered a feature for process planning may not (or indeed will 

not) be the same.
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3.5.1 Applications

The most popular areas for potential 'featurisation' appear to be in detail design and 

process planning. Although many British companies have been able to make use of 

CAD systems in order to help gain significant improvements in handling design data, 

relatively few have benefited from Computer-Aided Process Planning (CAPP) 

systems. Several reasons have been proposed for this, including the high cost of 

implementation (due to company specific methods), lack of basic research (e.g. 

solids modellers and expert systems do not fully support CAPP research), few 

tangible advancements made in CAPP research and slow technology transfer 

(advancements that have been made are more likely to be exploited abroad).

Consultants from several countries who have assessed the potential for 

manufacturing planning software have invariably predicted potentially very large 

markets although the performance of present CAPP systems is not sufficient to 

satisfy demand from a technical viewpoint.

The majority of those working in CAPP world-wide have adopted feature oriented 

methods and there is, in this area at least, some consensus that this is one way 

forward, even though there is little agreement on what features are and how they 

should be used. Groups at Bath, Bristol, Brunei, Cambridge, Cranfield, Edinburgh, 

Heriot-Watt, Leeds, Loughborough, Newcastle, Southampton and Sussex as well as 

others have all been active in work using 'features' in the last few years. Successes in 

research have been confined to narrow areas of industrial application. Broader based 

work has also been attempted, but its success to date has been confined to making 

contributions to the research community as a whole, usually by showing how novel 

approaches might be used (e.g. in using solid modellers, IKBS techniques, Genetic 

Algorithms etc.).

UK research in feature oriented applications has been going on for some 

considerable time [Husb90][Gind92]. Features have generally been regarded by their 

supporters as providing high level and inherently meaningful data structures 

[Ovtc92] which allow for better user interfaces, improved part model transfer, 

increased automation of design and planning tasks, easier analysis, and improved
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control over models that would encourage design for manufacture and parametric 

design.

3.5.2 Feature Definitions

An initial feature definition might be:

Any geometric or non-geometric attribute of a discrete part whose presence or 

dimensions are relevant to the product or part function, manufacturing engineering 

analysis, use, and so on, or whose availability as a primitive or operation facilitates 

the design process and manufacturing activities. [DeFa93]

There are three aspects of interest in this definition

A feature is a part of a larger entity.

The part has some properties that distinguish it from the whole.

Features can occur in all kind of entities and have a specific meaning for each 

such entity.

The shape, behaviour and engineering significance of a feature needs to be encoded 

in its definition. For this reason, and because the feature concept was initially linked 

with process planning, the feature definition originally implied form features. 

Therefore an early definition specific to geometric modelling was:

A specific geometric configuration formed on the surface, edge or corner of a 

workpiece [author unknown].

Another broader definition of a process planning related form feature was given by 

Wingard [Wing91]:

A generic shape that carries some engineering meaning.

Through such work, it has emerged that features are also relevant to other application 

domains such as engineering analysis, and that features do not necessarily relate to 

form. The pure geometric modelling definition does not include the reason for a 

feature's existence or usefulness. As features encode the engineering significance of 

the geometry, the definition must be extended to include the purpose for which a 

feature is used. The previous definitions have meaning only for manufacturing and
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not necessarily for other applications. These definitions are considered as 

manufacturing form features, or simply manufacturing features.

One of the most recent and most comprehensive definitions of manufacturing 

features is:

Form features are form elements with some function or meaning, used to model 

functional information about the way some part of the object is manufactured or 

assembled, so not only the geometric description of form features is of importance, 

but also the functional information [Bron93].

It is important to underline that a form feature is considered to be a distinctive 

characteristic of the topology, rather than the entire shape of the part.

As already mentioned the main motivation for the development of the feature 

concept has been in the area of process planning, where features have been used as a 

research tool for several years. In this field, features can identify areas in a product 

that can be manufactured in one operation with one type of machine, e.g. a hole that 

can be sunk with a particular type of drill, or a slot that can be milled with a 

particular type of milling machine.

Since applications in other areas are emerging now, it is important to discover an all 

purpose definition of a feature. Examples of these more general definitions are:

A recurring pattern of information related to a part description [Shah91a].

A semantic grouping used to describe a part and its assembly. It groups in a relevant 

manner functional, design and manufacturing information [Giac90].

An element used in generating analysing or evaluating design [Wils90]. 

A functional shape aspect for design and manufacturing [Vane90]. 

A semantic data set that can be attached to product parts [Shah91c].

In the last series of definitions, other information is mentioned in addition to the 

shape or form of parts. As Shah has defined, features represent the engineering 

meaning of the geometry of a part or assembly; thus, the requirements that a feature 

should at least fulfil are that it has:

to be a physical constituent of a part
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to be mappable to a generic shape 

to have engineering significance 

to have predictable properties

It is possible to continue listing different definitions, as there are almost as many 

definitions of features as there are researchers in features. At the moment it is 

difficult to decide which one, among all these definitions proposed, can be 

considered the most significant. However, considering the intrinsic nature of features 

in manufacturing industry, the definition of features should not focus on a particular 

process. The greatest difficulty and challenge is to define features that are 

meaningful to all life cycle issues. Furthermore, it is only recently that researchers 

have found unified definitions for any feature applications, as shown in Table 1.

Design Feature A discrete piece of information fulfilling a function on the 
component and that is made available for the designer's use.

Process Planning 
Feature

A distinctive or characteristic part of a workpiece, defining a 
geometric shape, which is either specific to machining 
processes or can be used for fixturing or measuring purpose.

Manufacturing 
Feature

A parameterised geometric object that corresponds to a 
manufacturing operation.

Machining Feature A subclass of manufacturing feature. A prismatic or 
cylindrical volume that has primitive machining operations 
associated with it.

Assembly Feature A feature that defines relationships between different parts in 
an assembly.

Feature in Solid 
Modelling

A volume whose properties include translation, rotation and 
scaling

Table 1 Feature Applications

For completeness it has also been necessary to introduce the concept of abstract 

features, defined by Shah [Shah91a] as:

Entities that cannot be evaluated or physically realised until all variables have been 

specified or derived from the model

It is necessary to introduce this idea as the complete definition of a shape requires the 

specification of all dimensions and location parameters, but not all these parameters 

are available, or even important, until the final stages in design. Artefacts evolve
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progressively, with partial or sketchy definitions of the product. Geometric 

evaluations of such features need to be postponed. Many types of reasoning, both 

automatic and manual, can be performed on incomplete or abstract feature instances.

Table 2 gives examples of some common features classified according to the 

definitions given above:

Design features Blind Hole, Through Hole, Slot, T-Slot, Curved Slot, 
Through Slot, Pocket, Rectangular Pocket, Step, Blend, Boss, 
Fillet.

Process Planning 
Features

Cylindrical Hole, Slot, Others.

Manufacturing 
Features

Hole, Slot, Shoulder, Rectangular Pocket, Chamfer, 
Undercut, Pocket, Boss, Block, Island, Fillet, Ring, Slice, 
Bearing Seat Circular Pattern, Array Pattern, Elastic Ring 
Seat, Internal Centring Surface, External Centring Surface, 
Screwhole, T-Slot, Curved Slot, Pin, Step, Others.

Assembly Features Screw Hole, Spline, Hole, Datum (Plane, Axis), Screw, Pin,
Slot.

Table 2 Common Feature Examples

Much attention has been given in the research community to the classification of 

features. Examples of these taxonomies include Wilson [Wils89], Case and Gindy 

[Case94], STEP [Shah91c], Ovtcharova [Ovtc92], Shah [Shah91a], and Dohem- 

Bronsvoort [DeKr95].

3.5.3 Feature Attributes

The complexity of design and manufacturing usually determines the number and 

types of features required to represent a part of an object. Additionally features 

should represent a set of design attributes or specifications that design attempts to 

pursue in a part or product.

Attributes associated with the features are abstract entities that provide a specific part 

or product description. The two terms, features and attributes, have often been 

regarded as synonymous, however, while a feature is something that goes to make up 

something else, an attribute is a characteristic or quality of a thing.

Attributes can be considered as a way CAE tools to transfer the non-geometric 

technical information that is needed for downstream applications in the product life
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cycle, onto the CAD model. They are used to represent a wide variety of information, 

from identifier labels to complex geometric relationships. Attributes help in reducing 

ambiguity and non uniqueness for feature manipulation methods. The same feature 

may be represented by a different set of attributes for a differing design or 

manufacturing application.

To define attributes is almost as difficult as defining the feature concept, but the 

Pratt-Devries definition is:

An attribute is a characteristic quality or property which associates meaning to an 

entity, significant to a particular stage in the life cycle of a product. [Subr95].

Examples of attributes can be considered colour of a face, type of thread or 

relationships between two faces. An attribute associates meaning to an entity or to a 

relationship between entities.

It is possible to say that attributes are characteristics of features, as well as features 

being constituents of parts that can, in turn, be constituents of assemblies. Attributes 

can be applied at any level of feature, a collection of features or to a whole part. 

Examples of attributes are given in Table 3 below.

Dimensions

Positions

Geometric 
Tolerances

Surface finish
Material 
properties
Properties

Diameter, Length, Space requirements, Depth, Width, Corner 
radii, Chamfer angle, Chamfer depth, Thread pitch, Height.
Location, Orientation/Axis, Direction, Entry/Exit, Boundaries, 
Centre, Centreline, Origin, Feed direction, Position handle.
Form: Straightness, Flatness, Roundness, Cylindricity, Profile 

of a line, Profile of a surface. 
Position: Parallelism, Perpendicularly, Angularity, 

Concentricity, Symmetry, True position, Circularity, 
Runout, Total runout. 

Maximum material condition, Minimum material condition.
Roughness.
Deformation, Hardness, Elasticity, Rigidity, Stiffness.

Functional, Performance parameters
Table 3 Attribute Examples
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3.5.4 Manufacturing Feature Justification

This subsection justifies the use of manufacturing features in a feature based design 

system that is intended as the front end for a computer aided process planning 

system.

  A design feature is anything that is of interest to a designer.

• A manufacturing feature is anything that is of interest to the manufacturer.

It is a truism that anything that can be manufactured can be designed. It is not 

necessarily true, however, that everything that can be designed can be manufactured. 

It is important in order to reduce design rework and manufacturing costs that 

designers are encouraged to design manufacturable objects.

If some subset of the features that the designer is provided with are manufacturing 

features then use of those features in a design will increase the likelihood that the 

entire design is manufacturable. One way of accomplishing this is to provide the 

designer with all manufacturing features in the system, that is, manufacturing 

features are a subset of the set of possible design features.

Manufacturing Features c: Design Features

In practice, the implemented features are in fact a subset of all the design features 

that could be offered, and so not all manufacturing features may be implemented in 

the design system.

Implemented Features (^Design Features

The FODDS2 system is a front end to an automatic CAPP and CAM system. It 

would seem to be a sensible compromise to offer, in the first instance, a set of 

manufacturing features to the designer as this will help ensure that all designs are 

manufacturable.

Constraining the designer to using only manufacturing features does not guarantee 

manufacturability however; manufacturing features can be placed in a part in such a 

way that manufacture is not possible. This can be due either to an access problem, 

where the tool is unable to machine the feature volume due to a potential intersection 

of the tool or machine by the current state of the workpiece or fixtures, or due to
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more interesting feature interactions where a particular order of feature manufacture 

is required.

3.6 Summary

This chapter has reviewed a number of background areas that lay the foundation for 

the work in the remainder of the thesis.

1. The ongoing work of the Manufacturing Planning Group at The University of 

Edinburgh has been introduced to place this thesis in context. In particular, the 

HAPPI process planner has been discussed in more detail.

2. A discussion of the area of Computer Integrated Manufacture has been included 

with the definition of the concepts of concurrent and simultaneous engineering to 

place the work described in the remainder of the thesis.

3. An introduction to solid modelling, still fundamental to feature based design 

systems and now regarded as essential for CAPP systems.

4. An introduction to Minkowski sums leading in the next chapter to their use as a 

mechanism for describing both manufacturing features and related volumes. A 

brief introduction to Medial Axes, which will be discussed briefly in the next 

chapter as an alternative method for thin wall detection.

5. An introduction to features, building on the previous review of Shah's approach 

to features, and justifying a manufacturing feature view for a prototype feature 

based design system.
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4 Geometric Reasoning for Process Planning

This chapter covers the theory behind the FODDS2 Feature Based Design and 

Manufacturability Analysis System.

The chapter first defines the definition of a feature based component within the 

system. It follows this with a description of the major feature types supported within 

the system and the mechanism by which these features are generated. The particular 

mechanism allows automatic generation of the various volumes required for the 

subsequent reasoning regardless of the individual feature type, provided that feature 

type is described in the manner detailed. Though this restricts the range of features, it 

guarantees that the geometric reasoning will work for all features described in this 

way.

The second half of the chapter details the geometric algorithms that the system uses 

for manufacturability analysis prior to process planning.

4.1 Definition of a Component

Throughout this thesis a manufacturing viewpoint of components is taken, and more 

specifically a traditional and CNC machining viewpoint, so a finished component is a 

blank (or casting) from which material has been removed to result in some desired 

geometry (and tolerance conditions). The mechanism for material removal is 

normally some form of metal cutting (though there is no particular reason to rule out 

EDM or ultrasonic machining for example).

A manufacturing feature (again from the viewpoint of 2l/zD milling) is a volume of 

material that is to be removed from the blank and which can (usually) be removed by 

some standard set of machining operations. Typical examples are slots, holes and 

pockets. The way in which the geometry of these manufacturing features can be 

developed is described in the next section.

Having decided on some set of parameterised features, a particular component can be 

described in the following terms.
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If Vj is the ith volumetric feature found in a description of the component, and B is

the blank before any machining has been performed, then the finished component C 

can be described by the following equation:

That is the component is the blank from which is subtracted the regularised union 

over all i of the feature volumes V/.

The volume to be removed from the blank A (the delta-volume) can be expressed as 

A= U \<~\ B^^ i

and therefore, 

C = B-A

JJC JJC 5^

- ,n andu denote the regularised set operators for subtraction, intersection and 

union respectively [RequSO] 1 . The above equations are illustrated in the example 

shown in Figure 36 below. The delta- volume may be smaller than the union of the 

features as parts of some of the features may lie beyond the blank. This represents 

volume that would have been machined had that volume been part of the blank. 

Usually the cutter will pass through this extra volume because of tool geometry and 

motion. Issues arise here regarding fixturing and clamping. The figure is purely 

illustrative and the use of two rectangular pockets (that intersect) and a slot in this 

manner are not intended to suggest any particular component.

1 The * is dropped throughout the rest of this thesis, and unregularised Booleans will 

be mentioned specifically if needed
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a)blank b) features

c) finished component d)delta-volume

Figure 36 Blank, Features, Component and Delta-Volume

4.2 The Feature Library

Having specified how a component is produced given a list of features (and the 

blank), it is now necessary to define the features themselves. The features will 

necessarily be material removal manufacturing features for the reasons given in 

section 3.5.

Firstly, a feature definition was established. Following this, features from other 

researchers systems and other entities that might be considered features could be 

classified for inclusion in the FODDS2 system. It was established that there is a 

differentiation between design and manufacturing features. Further consideration 

resulted in the following (somewhat glib) definitions.

In the chosen domain, the principal manufacturing features can be summarised 

primarily as holes, slots and pockets. These are broken down into subtypes and 

augmented with a set of features from a particular machine tool manufacturer, 

Mandelli of Piacenza, Italy, the enduser involved in the SESAME project.
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These three classes of features embody the vast majority of geometric shapes 

involved in 2l/2D milling.

Some feature systems offer surface features, a class of feature that is not offered in 

FODDS2. This omission is sufficiently important to warrant explanation.

In a machining context, there is no such thing as a surface feature. All features are 

material removal features. Often the term feature is used in order to change the 

surface finish of a face. In the context of FODDS2, this is anathema. In order to 

change the surface finish of a face using a machining process, material must be 

removed, and so a depth of material must be specified.

If a depth is specified, then the pocket feature is available to perform this task, and a 

surface finish can be specified on the pocket. A pocket feature is used rather than 

inventing a slab feature for the reasons outlined in the discussion of Kramer's 

MRSEVs.

However, what is meant by the simple class names is not so clear. A brief discussion 

of the hole, slot and pocket classes follows:

4.2.1 Holes

No problem here surely. Everyone knows what a hole is.

hole (hoi) n. [OE. hoi] a small, dingy, squalid place. [Collin's Concise]

A first definition:

A hole is a rotationally symmetric material removal feature.

This covers many examples of holes, but fails to distinguish between a hole, a 

circular groove, and in some cases a circular boss, where a boss is machined by 

removing a ring of material from around the boss which is also rotationally 

symmetric.

An alternate definition:

Simple holes are material removal features characterised by their chief parameters of 

diameter and depth. This neglects other attributes of holes such as end geometry,
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surface finish, chamfers, counterbores and threads, but captures the essence of a 

simple hole.

Another typical property of simple holes is that they are manufactured by rotating 

tools translating only along the axis of rotation. The PART process planning system, 

for instance will take any hole that has an aspect ratio such that its diameter > 10 * 
depth and recategorise this hole as a pocket [Lend94].

Lastly an important feature of holes is that they are defined from one direction, but 

the resulting geometry must be analysed in order to discover whether the hole is a 

through or blind hole and thus whether a hole can be machined from 'below' as an 

alternative to the default approach direction. This property of multiple access 

directions is also important for other features, but is of prime importance for holes.

4.2.2 Slots

slot (slot) n. [Ofr. esclot, the hollow between the breasts]

The chief manufacturing characteristic of a slot seems to be that the slot is 

predominantly machined with a translation of the tool perpendicular to the rotational 

axis of the tool. This definition still allows all manner of straight and curved slots 

and allows the use of special slot cutters such as T-Slot and dovetail cutters.

4.2.3 Pockets

pocket (pok'it) n. [Fr. dim. ofpoque, a bag]

Pockets differ from holes and slots in their complexity. Whilst holes and slots are 

formed from a simple linear chain of movement of the cutter, pockets, at least in the 

sense used in this work are formed by a two dimensional tool path with additional 

approach and retract paths.

4.3 A Grounding for Manufacturing Features

All the design features used in the present system are based on manufacturing 

features. Consequently, a solid grounding for the geometry of these manufacturing 

features based on typical tool profiles and suitable machining techniques is required. 

The present set of features are restricted to those easily produced by a 3-axis NC
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milling machine. The resulting features support the geometry of the vast majority of 

2VzD components, and are sufficient to design many real 3D components. However, 

3D components with many distinct approach directions will lead to fixturing and 

setup problems. The chief restriction of the feature library shown is that true 

freeform surface profiles are not permitted. Design using freeform surface features is 

a current area of research, particularly in the ongoing BRITE/EuRam IMPRESS 

project [Agos97].

Sungurtekin [Sung86] lists the trajectories used in 3-axis machining as:

1. Linear in z (the spindle direction)

2. Linear in the xy plane

3. Linear in space (simultaneous movement of the three axes)

4. Circular in the xy plane

5. Circular in the xz and yz plane

Only features using trajectory types 1, 2 and 4 are considered. The reasons for this 

are now outlined.

Traditional IViD machining generally involves a rotating tool that is then driven 

along some path. The tool generally follows some approach and retract path at either 

end of its machining path. In the case of 2V£D objects, the path followed during 

machining is either parallel or perpendicular to the axis of rotation. Also, somewhat 

pragmatically, the available Bridgeportll NC mill is only capable of producing 

motions of types 1, 2 and 4.

This generally leads to components composed only of analytic surfaces and hence in
o

the more robust and reliable area of the domain of current solid modellers.

2 ANSYS, a leading finite element package, and other analysis packages, don't restrict themselves to analytic surfaces, instead 

they carry all surfaces internally as spline surfaces. In ANSYS' case, these are NURBS surfaces. Though this approach offers 

great flexibility, there are efficiency gains using analytic surfaces when dealing with objects composed predominantly of 

analytic surfaces. There are then a number of special cases of surface-surface interaction, however each can be dealt with more 

simply than the general NURBS surface - NURBS surface interaction. The tool CADfix from PEGS Ltd allows conversion 

between these differing internal formats (even when the external format such as an IGES file is the same).
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Exceptions to the above general rules can be found in various examples of slot 

cutters, fly cutters and boring bars.

The machining of freeform surfaces, though an area of interest and much present 

research is outwith the scope of this thesis.

Any rotating tool of fixed geometry can thus be represented by two profiles, that 

when swept about the tool's rotational axis give volumes and surfaces of interest. The 

first profile represents the volume of the entire tool and is used to check the access of 

the tool to the component. The second profile represents the cutting surface of the 

tool. In Sungurtekin's nomenclature, the first profile is referred to as the total tool 

profile and the second, the operational tool profile.

Let some complete cutter path consist of an approach path, a cutting path and a 

retract path. These paths all consist of straight line segments or curve segments. All 

the curve segments are restricted to circular arcs. The tool does not change 

orientation during the motion. This is all consistent with a partial process plan for a 

2l/iD feature to be machined on a three axis NC milling machine.

Boring bars provide an additional problem, their access body for the insert and 

retract phase is equivalent to the tool profile swept around the vertical axis, however, 

their 'access body1 during the machining phase requires the tool profile to be moved 

such that the tool tip is at the diameter of the required ring.

All these manufacturing features must be derived from at least one of the tools 

defined in the system, but any feature may be manufacturable in a number of 

different ways if access problems are neglected. Only when a manufacturing strategy 

is identified for a feature can valid tool classes be identified. This is accomplished 

through the construction of an access body based on the feature and the associated 

tool classes. Even this level of checking is based on the 'perfect' tool for the features 

parameters, regardless of the actual tools available. Again the geometric reasoning 

here is pre-planning, and is merely to perform some preliminary checks regarding the 

ability of the system to manufacture the feature.
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4.3.1 Cutters with Limited Access

There is a class of cutters such as T-slot cutters, dovetail cutters and boring bars that 

are capable of manufacturing features with limited access.

The cutting volume of a T-slot cutter and a dovetail cutter is shown in Figure 37. 

These cutter volumes show the volume of the feature, but fail to represent the 

approach and retract volumes, so a design could become unmanufacturable if access 

of the cutter to the feature is impossible (this is a different case to the access a cutter 

needs whilst machining a feature. A plausible solution might be to add these 

approach and retract volumes to the ends of the features, to ensure they are 

considered during design and pre-planning, but this in turn enforces the position of 

the approach and retract phase relative to the feature. If a particular component 

geometry is required that requires the approach and retract vector to be at the 

midpoint of a slot this solution would fail. Features requiring tools with limited 

access are not implemented in the current system.

Figure 37 Feature Volumes of Cutters with Limited Access

Boring bars present exceptional problems when trying to develop a sound description 

for 2VzD machining in terms of their cutter profiles and in terms of the Operational 

Swept Volumes (OSVs) of Sungurtekin. They are the only class of traditional cutter 

for which the cutter profile can change dynamically during the cut. Vandenbrande
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[Vand91] points out that in the limit, a boring bar can cut a groove feature of three 

times the radius of the hole allowing access. As with the T-slot and dovetail cutters, 

boring bars are neglected in this thesis.

4.3.2 Tolerancing

Tolerancing presents a problem. It is widely agreed that the tolerances specified on 

typical engineering drawings through standards such as BS308 map poorly on to 

tolerances that can be specified in manufacturing.

Tolerances are specified for a number of reasons:

  to ensure that parts will function properly.

  to ensure that mass produced parts will be interchangeable.

  to ensure that parts are manufacturable (at reasonable cost) and assemblable.

  to ensure that the design is robust (critical dimensions have minimum sensitivity 

to expected variations).

The first two of these reasons can be categorised as functional requirements. The 

third reason is something that may be neglected by the designer in the first case and 

require an extra iteration of design following initial process planning and is thus a 

critical reason for Concurrent Engineering.

The fourth encourages the designer to use the loosest tolerance whilst ensuring 

required functionality.

Thus, functional tolerances actually form a network of complex constraints between 

features that must be resolved into positional and orientational constraints on 

individual features in order to convert these functional tolerances into manufacturing 

tolerances.

In order to make the feature based design system both functional and to simplify the 

coding problems, the full set of geometric tolerances is not presented to the designer, 

instead the designer must specify tolerances in terms of the position and orientation 

constraints on each feature relative to its parent feature. This simplifies the problem 

of tolerance analysis to (in the case of positional tolerances) the summing of 

tolerances along the principal axes, and provided all angular tolerances are small, the

73



Geometric Reasoning for Process Planning Jonathan Charles Salmon

summing of angular tolerances about principal axes. Thus, the problem of tolerance 

constraint management is shifted. Tolerances have in fact been the subject another 

researcher in the group and research in this complex area is expected to continue in 

the future. According to Voelcker [Voel97], geometric tolerancing is insufficiently 

well formalised, and an attempt to 'mathematicise' tolerancing is under way as part 

of an ANSI initiative. Though geometric tolerancing has been in use for decades it 

seems unreasonable to attempt a full implementation whilst a suitable new 

formulation is under development in addition to being outwith the scope of this 

thesis.

4.4 Generating Feature Volumes for 

Manufacturability Analysis

Prior to presenting the algorithms, it is important to set up a framework for 

discussing the algorithms. This framework is used to describe the geometric models 

of features and various volumes related to the features and used for the geometric 

reasoning.

This model for generating the feature volumes has the important property that all 

feature volumes are generated in exactly the same way given a logical tool profile 

and logical cutter path. These tool profiles and cutter paths may not correspond to 

tools subsequently selected by the process planning system, but are representative of 

the ideal tool for that particular feature volume. This property allows more features 

to be added with comparative ease, provided they can be described in this way. In the 

FODDS2 system, ring features have been fully implemented, and pockets described 

using a polygonal tool path as an extension to the rectangular pockets have been 

partially implemented. The method by which the features are implemented from the 

designer's view in FODDS2 is given in Chapter 5.

Firstly, Figure 38 shows all the various tool profiles used to generate the necessary 

geometric reasoning and modelling bodies in FODDS2. Each solid body associated 

with the feature can then be described as the Minkowski sum of the solid of 

revolution of the tool profile and the cutter path of the associated feature type.
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0 0 0 0 0

a) drill profile b) end mill profile c) complex mill d) t-slot profile e) dovetail slot

0 0 0 0 0

f) dilated drill g) dilated endmill h) dilated complex i) dilated t-slot j) dilated dovetail

0 0

t 0

I
m) blind accessk) local access 1) access profile 

Figure 38 Tool' Profiles in FODDS2

Firstly, some terms are defined:

Let a component consist of m positive feature volumes and n negative feature 

volumes.

Here, the positive feature volumes are simply volumes such as cylinders and blocks 

that can be united to make the majority of stock workpieces found in a workshop. 

Alternately a solid model of a casting can be imported as a single entity and 

subsequently used as the stock. Uniting the m positive feature volumes merely 

produces the stock that is subsequently used.

Let any negative feature volume be specified by a tool path, 7/, and a cutter path C/ 

Where the tool path, 7), lies in the y-z plane and is entirely in the +y halfspace.

The cutter path, C,, lies entirely in the x-y plane, and can be a OD point, a ID 

arbitrary wire, or a 2D bounded surface.
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Let the maximum radii of the tool path be r,-. (n = maxrad (71/))

Let local_prof(r) be a tool profile of radius r and extent from z=0 to z=5 as in Figure 

38 k) above, where 8 is a small but finite length.

Let access _prof(r) be a tool profile of radius r and extent from z=0 to z=+oo as in 

Figure 38 1) above.

Let blind_prof(r) be a tool profile of radius r and extent from z=0 to z=-oo as in 

Figure 38 m) above.

Let dilate_prof(T, *)be the Minkowski sum of a profile T and a quarter circle in the 

(-y,-z) quadrant of radius x. In Figure 38, f)-j) are the dilated profiles of a)-e). That is 

the dilated profiles are the profiles a-e offset outwards by a distance x, and then 

trimmed to the (-y, -z) quadrant.

Let RevZ(t) be the solid of revolution created when some profile t is rotated 360° 

about the z-axis.

Then:

Let PI (i=l,m) be the list of all positive feature volumes

Let NI (i=l,w) be the set of all negative feature volumes,

Let Vi (i=l,m+ri) be the list of all feature bodies (whether positive or negative) 

Let AI be the set of access bodies for all the negative feature volumes

At =RevZ(access_prof(rj)) ©C,-

Let Dt be the set of dilated bodies for all the negative feature volumes

D, =RevZ(dilate_prof(Tj)) ©C,

Let Bi be the set of blind-access bodies for all negative feature volumes

Bi=RevZ(blind_prof(ri)) ©C,
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Let Lt be the set of local-access bodies for all negative feature volumes

Li=RevZ(local_prof(rj)) 0C,

Let Wi be the set of local-coordinate entities for all the negative feature volumes

(All Boolean operators are regularised unless explicitly mentioned)

The stock, P, is the initial state of the workpiece before any machining takes place.

p=\Jp,
i=\,m

Let N be the combined point-set of all the negative features.

N=\jN,
/=!, m

The delta-volume (A) is that volume of the stock that needs to be removed to form 

the finished component

The point-set of the finished component C is the difference between the stock and the 

delta-volume.

From the above equations, a set of methods can be generated to be implemented in 

the system. These methods produce sets of bodies depending on the method name, 

for instance the access method returns a list of all access bodies for all negative 

features in the component description. These methods are summarised in the table 

below (Table 1). Subsequent reasoning is performed using these lists as input data.

(The reader should beware of confusion between B, the blank and /?,-, the blind access 

body associated with feature i. A similar confusion may arise between C, the 

component, and C/, the cutter path associated with feature i.)
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Table 1 Geometric Reasoning Body Methods and their Equations

Method

component
'blank'

'feature'
"access"

'local-access'

'blind-access'

'dilated-feature'
"wcs"

Equation

C = P-N

Note on Table 1: u1" forms a set, but not a point-set. It forms the set of bodies of the 

type in the equation, thus the set of bodies is a set in that each body is unique, 

however the point set of uf is not necessarily a set in that features or other bodies 

may intersect. (An alternative view is that it returns a list of bodies).

4.5 The Geometric Reasoning Algorithms

This section deals with the geometric reasoning that FODDS2 performs. All of these 

algorithms can come under the heading of manufacturability analysis, but the 

algorithms have two functions. Firstly, there is the design validation function. 

Secondly, but more importantly is the geometric reasoning that is done as a 

necessary prelude to process planning in order to provide the system with specific 

suggestions regarding manufacturability problems.

The output of the algorithms are referred to as suggestions because at this stage 

before any planning has been done nothing is known about machine or tool selection 

and hence for any particular feature the validity of the suggestions provided cannot 

be immediately confirmed. On the other hand much of this reasoning has to be done 

at some point and the reasoning performed at this stage can dramatically reduce the 

search space that the planning system must explore in order to produce acceptable 

process plans. Additionally, the reasoning performed here provides a sufficient level 

of clues for the extant planner (HAPPI) to produce process plans. HAPPI does not
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contain a solid modeller and hence cannot actually perform any detailed geometric 

reasoning of its own.

The geometric reasoning assumes that a design exists, whether partial or complete, 

and each parameter of that design has been instantiated. That is, an evaluated 

geometry is available. That is, any parametric design or constraint issues have 

already been resolved.

The algorithms presented in this chapter are:

  Void recognition

  Feature presence

  Access problem detection

  Proximity detection

  Intersection detection

  Through hole detection

  Hole interference detection

  Alternate access direction

The application of the information inferred by these algorithms is discussed.

Void recognition is a validation technique applicable to components expected to be 

manufactured by 2l/2D machining. Voids within a body cannot be manufactured by 

conventional machining techniques.

Feature Presence is also a validation technique that confirms that all features do at 

least partially intersect with the blank. Features that do not can be ignored for 

manufacturing purposes as they play no part in the final geometry.

Access problem detection is fundamental to process planning and can be used to 

infer some anteriority (or ordering) constraints between features.

Proximity detection is used to detect thin walls, both between features and between 

features and the edge of the workpiece. This detection is performed in order to avoid 

wall buckling or rupturing during machining.
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Intersection detection is comparatively easy to perform, and intersections offer 

much information about potential problems, but the data obtained can be hard to 

interpret. Intersections can be used to decide on anteriority constraints, but this often 

requires intimate knowledge of the tool that is subsequently selected to machine a 

feature. Intersections can also be used to suggest alternate representations of features 

to aid process planning.

Through feature detection can apply to any type of feature and is used to detect 

whether the direction opposite the principal access direction (that specified by the 

designer) is a possible access direction for that feature. This is particularly important 

for through holes.

Hole interference detection is used to detect whether features, or indeed the blank, 

will cause problems for the machining of holes. This algorithm only applies to 

features machined solely with an approach-retract movement.

Alternate access direction is used to detect whether any direction normal to the 

principal access direction can be used as a possible machining direction.

The geometric reasoning discussed, in particular proximity detection, would benefit 

from the ability to dilate a solid body by an arbitrary amount using Minkowski sums. 

The mechanism for this has been previously discussed.

The algorithms then submit the information they have inferred to a database of 

'facts' using an assert function. A retract function exists to remove facts from the 

database. (This database is implemented as a simple list in Scheme and the concept is 

borrowed from the assert/retract functions available in Prolog).

4.5.1 Void Recognition

If a designer adds a feature to a component and that feature is wholly within the 

component, then that feature cannot be machined using traditional machining 

techniques. Other more exotic manufacturing techniques such as Laminated Object 

Manufacture (LOM) and Stereo Lithography are capable of manufacturing voids.

If a designer adds a further feature that then joins the void to the outside world (thus 

removing the void) then it may be that the first feature was not a design error.
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A question therefore arises; should the designer be warned instantly that a void has 

been created, or should the test be postponed until the designer signifies that tests 

should be made?

Consider also a case where the original workpiece from which the machining is to be 

performed already contains a void (maybe it has been welded together), uncommon 

but not beyond the bounds of reason. Here it is not desirable to flag an error because 

of the existing void, but it is desirable to flag an error if either another separate void 

is added or the feature is added to the existing void changing the geometry of the 

void (again something not possible with traditional machining techniques). An 

acceptable modification of a void, however, is if a feature penetrates into the void 

and that feature is in itself machinable.

A two stage approach is offered to this problem.

During the design stage any feature that is added that increases the number of voids 

in a component is flagged as such. This catches the majority of problems. In Figure 

39 it is clear the designer intended to put the hole in the bottom of the component (a), 

but placed it incorrectly (b). A drawback of this technique is that if there had already 

been a pocket with a similar position but in the top of the component (c), then the 

mistake would not have been detected by void detection. It would however, be 

detected by access problem detection (see 4.5.3). This facility has proved invaluable 

in the system catching a number of design errors, particularly in parts designed 

before interactive graphics and surface rendering were available in the system. It 

does not detect features that are added to a void after it has first been created, either 

by being part of the initial workpiece or after a void creating feature has been 

accepted.

a) hole entered b) misplaced hole 
creates void

c) misplaced hole 
no longer creates 
void

Figure 39 Void Detection
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The second approach is a more rigorous void detection approach that is less suitable 

during incremental design and more suitable for validation of an entire design. The 

designer could choose to invoke this routine, either at the end of the design process, 

or at some time during the course of the design when he feels it desirable to check for 

validation errors.

Again, there are two possible mechanisms. The first involves creating a positive 

volume exactly filling the void. This is achieved by taking a copy of all shells apart 

from the outer shell and reversing the sense of all the faces. This produces (with a 

little manipulation) a solid body exactly filling the void.

Each feature volume can now be intersected in turn with the void volume, and any 

intersection volumes highlight features causing the void.

An alternative technique relies on the fact that all faces of all features are tagged with 

the feature ID (in terms of the Node ID) in the feature tree. By examining the 

attributes of all the faces of shells apart from the outer shell, a list can quickly be 

formed of all the features touching the shell of the void. In principal some features 

not touching the shell of the void in the finished component could have been 

included. By removing the list of features touching the void shell, however, and 

recomputing the component and then reapplying the test all features causing voids 

can be removed.

In the rare event that a feature has been included that sits inside the void of a blank 

component, this would be detected in two other ways. Firstly, it would fail the 

feature presence test, and secondly, it would certainly fail the component-access test.

The algorithm uses two special functions

numshells(x) returns the number of shells in a solid body x.

solidJ"rom_shell(x,n) returns a solid body made by copying shell n of solid x, 

(creating a solid that is a lone void) and inverting the sense of all the faces 

(creating a solid that exactly fills the void). Shell(O) of a body is the outer 

shell, and all other shells are void shells.

Once the algorithm has made a pass of the body, all void features recognised must be 

dealt with by the user and then the algorithm must be rerun. It is necessary that the
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user decide what action to take for each void creating object. Were it not for this then 

void creating features could be deleted from the model on each pass and the 

algorithm automatically rerun until no more voids are discovered.

In practice, it is unlikely that more than one pass would be needed.

if numshells(C) > 1 
then
S = solid_from_shell(C,1) 
for i = 1 to n

if NI O S * 0
then assert( i " creates a void") 
endif 

next i 
endif

Figure 40 Void Detection Algorithm

For most of these algorithms purely volume based reasoning has been used, avoiding 

use of lower dimensional constructs. This has been predominantly to reflect the fact 

that machining operations are in themselves 3D operations involving material 

removal. In this void detection algorithm, some 2D inquiries are used.

4.5.2 Feature Presence

Looking for similar sorts of design errors to those discovered with void detection, the 

accidental misplacement of a feature, Feature Presence checks that all features have 

some intersection body with the initial workpiece in order to ensure that at least part 

of each feature requires the component to be machined.

This is somewhat easier to detect than voids. Features that are not present in the 

component should be flagged to the designer and the requirement that they be 

planned should be switched off. They may exist as a consequence of the design 

method in that a pattern of holes could be bored into a component even if the pattern 

extends beyond the component's boundary so they should not be considered an 

absolute design error. Feature presence checking is illustrated in Figure 42.

for i = 1 to n

if NiC\B=0
then assert ("Feature " i " fails presence") 

next i

Figure 41 Feature Presence Algorithm
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pockets r

I I
pattern of holes

a) pocket 3 has no presence within the blank b) failing feature presence may just be lazy
design rather than error as in this pattern

Figure 42 Feature Presence Detection

Any part of a feature that intersects with the blank qualifies that feature as present 

within the blank. This is again in line with Kramer's issues regarding MRSEVs 

[Kram92].

4.5.3 Access Problem Detection

In this section, some assumptions are made about features that do not hold true in the 

general case. For instance, a Principal Access Direction (PAD) is assumed and 

performs access checking making the assumption that the feature is to be machined 

from this access direction. This is often true, for instance, most holes will be 

machined from above. However, through holes could be machined from either end. 

Similarly, it is assumed that a slot will be milled from above, but in certain instances, 

where the placing of a slot results in a step, there may be four access directions, and 

to be truly certain that all possibilities have been investigated the six othonormal 

access directions must be checked. In Figure 43, there are two inaccessible directions 

for the slot, into the component on the left of the slot and the base of the slot, but 

there are four possible access directions including the Principal Access Direction 

vertically upwards.
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Figure 43 Possible Access Directions for Slot and Hole

Each feature in the model has a principal access direction. This in particular is 

reflected by the tool-profile and cutter-path model of the features in FODDS2, 

reflecting the manufacturing feature bias. Many features, however can be accessed 

from a number of independent directions as illustrated in the case of the step and hole 

above. Of particular importance is the access direction antiparallel to the principal 

access direction. This particularly affects through holes, and can change much about 

how the hole is viewed. A through hole can be machined from two possible setups, 

and, because it has a simple cylindrical profile, it has no endtype associated with it, 

freeing up more yet more machining possibilities.

Gindy [Gindy89] regards features as having up to six External Access Directions 

(EADs) but this is only true of components where machining need only occur along 

the principal axes (whether in the positive or negative directions). In fact there is a 

2D space (around the surface of a sphere) of possible approach directions and all 

these are possible through different setups even when machining is restricted to 

21/2D.

Examining the step in Figure 43 above, it can be seen that for two of the access 

directions (+y and -y), a rotating cutter would leave a filleted radius at the juncture of 

the two machined faces. A slab mill would remedy this. The feature model again
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does not allow for slab mills, and so effectively allows only two approach directions, 

from the +z or from the +x direction.

There is no general (i.e. feature independent) way of telling if machining is possible 

from directions other than the principal access direction (+z local to the feature) or 

the blind-access direction (-z local to the feature), all other access directions are 

dependent on the individual feature geometry and its relationship between the 

component. Indeed, it also depends at what point during the machining process a 

particular feature is going to be machined, as it may depend on the current state of 

the component. For this reason only the principal access direction (PAD) and the 

blind access direction (BAD) are considered.

Over the years, a number of different ways of detecting access problems have been 

used. Only recently, now that solid modellers are widely available and robust can 

true access checking take place. Other process planning systems have relied on 

access checking to be done manually [Husb90] or for simple vector-based testing to 

be performed (see Figure 44)[Josh87]. Simple vector based testing produces the 

correct answer in the majority of cases but cannot be relied upon to always be 

correct.

vector access checking access problem 
correctly Ider, tlfled

no access problem 
correctly Ids itlfied

access problem 
Incorrectly m ssed

Figure 44 Problems using Access Vectors

FODDS2 uses 'solid' access bodies and shows that a simple extrusion is again 

insufficient for true access testing. Figure 45 shows how access body types for a 

simple hole have evolved throughout the project.

Firstly, the vector based checking previously discussed is shown. Many of the 

problems that vector based checking introduces can be resolved using the simple 

access body of b). This and all subsequent bodies can be imagined to have a semi-
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infinite length, that is, they extend from the surface of the feature away from the 

feature to infinity. In practice, they have been modelled as bodies whose length is 

guaranteed to be substantially longer than the maximum distance across a 

component.

access bodies

hole features

a) vector based b) simple access c) simply grown 
access checking body access body

d) grown access 
body with step

e) grown access 
body with draft 
angle

Figure 45 Evolution of Access Body Types

The body in b) does run into some problems however. Consider the case in Figure 46 

below (a case similar to Figure 44 discussed previously) where there is an attempt to 

drill a hole through an existing hole of similar size. If an access body of type b) is to 

used and the hole through which it is to be drilled is of equal radius to that of the new 

hole that is to be drilled then no access problem will be detected, as there is no 

intersection of the simple access body with the simple hole (in fact, a surface of 

intersection may result however this has zero volume and regularising the result will 

dispose of it). In reality, however, this is an access problem because in any real 

situation there will be tool waver and the surface finish of the upper hole may be 

detrimentally affected.
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in this case the access problem goes 
undetected

Figure 46 A Problem in Recognising an Access Problem

In order to deal with this failure of the simple access body, a new access body was 

adopted where all access bodies are dilated by a small value as in Figure 45 c) above. 

This presents no problems in the majority of cases where both feature and blank are 

axis aligned and the blank consists of planar surfaces. If however the feature is to be 

placed at an angle into the surface then this access body produces a spurious access 

problem (Figure 47 below). There are of course other problems involved with 

machining into angled surfaces.

hole feature 
sloping surface ,„--'"''

access body

btank

spurious access problem

Figure 47 Problems with a Simple Grown Access Body on an Angled 

Surface

The problem with a sloping surface can be resolved by using the access body of the 

Figure 45 d). This form will work on slopes of up to 45°. Very few machining 

operations can exceed this slope without some secondary feature to produce a locally
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flat feature. Type e) with a sloped surface to the grown portion and a draft distance of 

twice vertically the horizontal grow distance is, if nothing else, a smoother elegant 

shape and leads to a simpler access problem shape (Figure 48 below). It also leads to 

the problems of local and global access problems.

access body 
typed)

access body 
type e)

hole feature

sloping surface

Figure 48 Access body e) is less prone to Problems of Angle than Type 

d)

The value of 8 (delta) must be identified. Delta is the clearance required between the

tool and any part of the workpiece that should not be machined. This value is a worst 

case value, erring on the side of caution, but it is also a value that would vary 

considerably if the processes and machine/tool combinations were known in 

advance. Unfortunately this is not the case.

An estimate at the radius of the tool might be obtained, knowing the corner radius of 

a pocket, the width of the slot or the radius of the hole. Then 6 can be specified to be

some small fraction of this, such as 5%. But if small holes, drilled using a simple 

bench drill, are considered then the accuracy might be larger than 5% (consider an 

M2 hole, 5% would give a required accuracy of 0.04mm, unlikely with a bench

drill). So a lower limit of 0.25mm could be introduced. This gives a value of 6 given 

a typical radius r of:

8 = 0.05 r (mm)
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if 8 <0.25, 8 =0.25 (mm)

The angle of a feature to the surface in which it lies is an important machining 

consideration, but it is not a question that can be pursued before some machining 

process has been selected.

On examination of some real components, a number of cases have been discovered 

where nested pockets would share one or more sides. With a type d) or e) access 

body this would result in an access problem. Any access body whose cross section 

exceeds the maximum cross-section of its parent feature will result in an access 

problem if the feature is intended to have a sidewall flush with the sidewall of the 

parent feature (see Figure 49). So, pragmatism has forced a return to an access body 

of type b). Performing two access checks, one with a type b) body and one with a 

type e) body would allow further reasoning to be performed in this scenario. If there 

was no access problem with a type b) body, but an access problem was discovered 

with a type e) access body, then this relationship would be added between the two 

features in question thus providing a hint the process planner to manufacture the two 

features in the same setup.

1 pocketl

pocket2

Figure 49 Nested Pockets with a Coplanar Sidewall

Having discussed the geometry of the access body, the uses to which the access body 

can be put and the information that can be obtained will now be discussed.

The access body represents the volume that the tool would have to travel through in 

the manufacture of the feature. It does not represent the chuck of the tool and it is 

assumed that the chuck and the rest of the machine would always be clear of the 

component. This again represents the path of least commitment. Which machine any 

particular feature will be machined on is still unknown, so it is unrealistic to
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constrain the choice of machine by using a more complex access body. Admittedly a 

least committed access body generated from an examination of our chosen machines 

could be used, but the disadvantages in terms of complexities of the resultant bodies 

outweighs the gain. It does however demonstrate the need for simulation of a process 

plan after a process plan has been generated to highlight particular problems that this 

early geometric reasoning cannot hope realistically to pick up.

Access problem detection is performed in three ways. For each feature the following 

tests are performed:

  Intersection of the feature's access body with the component

  Intersection of the feature's access body with the blank

  Intersection of the feature's access body with all other features 

Each of these three are discussed in turn.

4.5.3.1 Intersection of the feature's access body with the component

If the result of the intersection of a feature's access body with the component is not 

null then the feature cannot be manufactured from that direction. If this test is 

performed first and the result is not null the other two tests do not need to be 

performed. This is because the second test is guaranteed to fail as the blank 

completely encompasses the component and performing the third, most expensive 

test would be redundant.

4.5.3.2 Intersection of the feature's access body with the blank

This test is far cheaper (computationally) than the third test, and if passed cleanly 

obviates the need for performing the third test resulting in a considerable saving in 

computing time. It has been observed subjectively from examination of test 

components, that more than half of the features on any component are normally 

machined on the surface of the blank. That is nested features only constitute a 

fraction of the features to be machined, though often the most interesting fraction. If 

those parts that lie on the surface can be cheaply identified then the additional test 

involved ultimately saves processing time. It is not possible to tell whether a feature 

is on the surface of a component without performing such a test, particularly because
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the workpiece may not have simple planar geometry, and a feature is not necessarily 

aligned with any surface of the workpiece.

In this test, the access body of a feature is intersected with the blank. If the resulting 

intersection is null then that access to that feature is available regardless of its 

position in the process plan. Subject to other constraints such as tolerance relations, 

this feature can be machined at any time. If this is the case then the third test is not 

required, and substantial processing time is saved.

4.5.3.3 Intersection of the feature's access body with all other features

From the first test, it is known that there is access to the feature provided all other 

features have been machined. The second test infers that the feature is only 

accessible after certain features have been removed. The purpose of this third test is 

to identify which features must be removed prior to the machining of the feature in 

question. The access body of the feature in question is intersected in turn with all 

other features and the results of these intersections are added to the database as 

anteriority constraints. These tests are summarised in the algorithm of Figure 50 

below.

for i = 1 to n

if A± n C * 0
then assert ("feature u i " is inaccessible")
else

if A± n B =t= 0
then // more tests required

for j = 1 to n

if j*i 
then

if AI 0 (Nj 0 B) =f= 0
then assert(i"has access problem with "j) 
endif 

next j 
endif 

endif 
next i

Figure 50 Access Problem Algorithm

The simple case of a triply nested slot is considered (see Figure 51). The slot at the 

top with global access is slotl with slots 2 and 3 being machined in the bases of slots
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1 and 2 respectively (that is, machining is not to be started from the top surface of the 

component but from the base of the higher slot).
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Figure 51 Access Bodies and Anteriority Constraints for the Triply 

Nested Slot

The anteriority constraints will be successfully inferred in the above case. Consider, 

however, the case of Figure 52 below. There is a through hole running horizontally 

through two lumps' and passing through the top slot of a nested slot pair. The simple 

access problem detection algorithm gives the result that the bottom slot must be 

machined after both the top slot and the hole. This runs contrary to a quick human 

analysis of the problem where it can clearly be seen that it is only necessary to 

machine the top slot before the bottom slot, and the hole, though possibly having 

anteriority constraints of its own does not affect the bottom slot.

.access body of bottom slot 
.access problem with top slot

.access problem with hole

.through hole 

.top slot 

.bottom slot

Figure 52 The Slot and Hole case

Considering this case more carefully it is discovered that though an access problem 

between the bottom slot and the through-hole has been posted to the database, this
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access problem body is completely subsumed by the access problem body between 

the bottom slot and the top slot, so the anteriority constraint between the bottom slot 

and the hole can be neglected. Nevertheless, an algorithm to check for this sort of 

case is required. This algorithm must also produce the correct result in the earlier 

triple slot case to ensure that the two sets of requirements do not conflict.

4.5.3.4 Improved Anteriority Algorithm

A simpler case where such an anteriority check must be performed is shown in 

Figure 53 below, and indeed the above algorithm does reveal that the hole can be 

machined after either of the two slots has been machined.

Figure 53 shows two crossed slots (slotl and slot2) and a hole in the base of the 

intersection of the two slots.

Figure 53 Crossed Slots with Hole

Performing access checks gives the following information:-

holel-access intersects slotl. 
holel-access intersects slot2.

In terms of anteriority constraints this could be reinterpreted as:-

94



Geometric Reasoning for Process Planning Jonathan Charles Salmon

holel machined_after slotl. 
holel machined after slot2.

However, it is obvious by inspection that in fact the requirement is weaker than this 

and is in fact:-

holel machined_after (slotl or slot2).

The question now arises, what geometrical analysis can be performed to reveal this 

weaker piece of information. Observing the intersection of the holel access body and 

the blank, shows that this body is entirely contained within the intersection of the two 

slot features:-

holel_access n blank = 
(holel_access n blank)

(slotl n slot2) n

The question then remains how a process planning system can model the 'or' 

constraint. The HAPPI system was not capable of modelling such a constraint.

An algorithm to identify and evaluate these cases follows in Figure 54. Note the 

existing database of relationships of the type "has access problem with " is used, and 

where necessary the relationship "machined_after" is added to the database, where 

this is taken to mean, "must be machined after". Additionally, cases of 0,1 or 2 

access problems are considered. In the event of more, all pairwise combinations of 

partners must be considered. There are extreme cases where even a pairwise 

consideration is insufficient, though these are sufficiently unlikely in real 

components as to be comfortably ignored. (In the algorithm in Figure 54, x, xl and 

*2, are partners in the relationship that are only instantiated upon answering the 

numfacts query. This query will return all items in the database that match the body 

of the query with x as a wildcard. The algorithm is thus slightly simplified for 

clarity.)
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for i = 1 to n
if (numfacts(i " has access problem with " x) -1
then assert (i " machined_af ter" x)
endif
if (numfacts (i " has access problem with " x) =2

//assume partners are now features xl , x2 
then

if (A± 0 Nxl = Ai 0 NX2 )
then assert(i "machined_af ter (or " xl x2 ")")
endif

if (Ai 0 Nxl C Ai 0 Nx2 )
then assert (i "machined_af ter " x2 )
endif

if (Ai 0 NX2 C Ai 0 Nxl ) 
then assert (i "machined_af ter " xl) 
endif 

endif 
next i

Figure 54 Improved Anteriority Algorithm 

4.5.4 Through Feature Detection

Up to now, one access direction has been considered for each feature. Holes are 

frequently through-holes, and the option of two access directions can remove a large 

number of constraints on the subsequent process plan. To this end, for each feature, 

an access check is performed with a blind access body. The blind access body is that 

body which would intersect with a component in the event of a blind hole. Often this 

will reveal alternate access directions for other features, though it will not infer 

access directions in the 'ends' of slots or the 'sides' of pockets. This information is 

not currently used in conjunction with the other access checks.

for i=l to n

if B± Pi C = 0
then assert(i " is a through feature") 
endif 

next i

Figure 55 Through Feature Detection

This algorithm can be extended in much the way that the previous access algorithms 

were. Note that the blind access body extends downwards from the top of the feature. 

This is because all currently implemented features are guaranteed to have their
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maximum radius at the top of the feature and may narrow lower down. To ensure 

that features that narrow below the top of the feature it is important to check blind 

access through the feature itself.

4.5.5 Proximity Detection

An area of particular interest to the author, detecting proximity problems or thin 

walls appears trivial. Upon closer inspection, it becomes remarkably complex.

Firstly, it is necessary to define what is meant by a thin wall.

The chief reason for detecting a thin wall in this domain is the possibility of that wall 

rupturing due to machining forces during manufacture. It is sensible to assume that 

the design passed to the geometric reasoning module is functionally valid, that is the 

design will meet its 'in use'requirements.

First, a naive method for the detection of thin walls is discussed, both the problems 

and the disadvantages. A more complete method is subsequently discussed.

Let the thickness below which a wall is declared thin be 6 (not to be confused with 

the 8 used in access problem detection). If it is possible to dilate all features by the

distance 5/2 then intersections of pairs of these dilated feature bodies will indicate

thin walls. The problem of producing dilated bodies has already been covered in 

Chapter 3 and through the dilated tool profiles described in section 4.4 earlier in this 

chapter.

n   n 
As with many of the other tests, the number of intersections to try is     where n

is the number of features in the component. A routine has been written that cheaply 

tests whether the intersection of the bounding boxes of two objects exists. This 

radically reduces the number of full Booleans that have to be computed. The result of 

this test determines whether a full Boolean test is needed3 .

3 Though one would imagine ACIS already performs this test before performing a 

true Boolean, the test seems to result in a significant speed up, possibly as fewer 

entity:copy functions need to be called (both by FODDS2 and ACIS).
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Figure 56 Thin Wall Detection

This technique has been implemented and is illustrated in Figure 56. Thin walls are 

highlighted and can be seen between the large hole and its surrounding holes and 

between the various slots and pockets.

The one major drawback that can be seen of this simple technique is that thin walls 

are not detected between the features and the outside world. This can be overcome

for a range of cases if dilated feature bodies with a dilation of 6 (twice that used

previously) and check that no portion of the dilated feature lies outside the blank. 

First, though a check must be made that the original feature had no portion outside 

the blank. Any feature that already has some part of its volume lying outside the 

blank will necessarily have some portion of its dilated volume outside the blank, so a 

check for thin walls on these features will fail. More details of these problems are 

examined in the next chapter with the Thin Walls test piece.

Dilated bodies using the dilated tool profile have been dilated with a hemisphere in 

the -z halfspace. This was to prevent dilated features whose top surface lies flush
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with a face of the blank from having their dilated body protrude out of the blank 

except where they meet a thin wall criteria. This algorithm is shown in Figure 57.

Vandenbrande [Vand91] suggested a similar technique that he left unimplemented 

and the problems unresolved.

// the algorithm is in two parts 
// feature-feature thin walls 
// feature-universe thin walls 
for i=2 to n

for j=l to i-1
if (and

(Ni O Nj * 0)

(Di(8/2) n Dj(8/2) * 0) ) 
then assert (i" has a thin wall with "j) 

endif 
next j 
next i 
for i = 1 to n

if (and (B-Ni * 0)

(B - Di(8 /2) * 0) )
assert (i " has a thin wall with the blank") 
endif 

next i

Figure 57 Thin Walls Algorithm

This algorithm still has a number of drawbacks. If the insistence on volumetric 

solutions is dropped then a number of other approaches are open. Gupta's approach 

in section 2.5 [Gupt97] shows promise. Alternatively approaches using the medial 

axis of the component might be possible, though these two approaches may 

converge.

4.5.6 Intersection Detection

The detection of intersections between features is vital as almost all problems of 

interest when process planning derive from intersections between features. A 

component with a thousand distinct features is easy to process plan when compared 

with a component with two intersecting holes. Reasoning about the intersection 

between features can lead us to redefine features in order to simplify process 

planning, these are called alternate representations. The system evaluates all feature 

intersections and records them in the database for the information of downstream
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packages using the algorithm in Figure 58. With the exception of those intersections 

used for anteriority evaluation, the current system does not use this information.

Applications for this information include the possibility of simultaneous multi- 

feature machining and feature redefinition.

for i=2 to n 
for j-1 to i-1

if NI n NJ * 0
then assert (i" intersects "j) 
endif 

next j 
next i

Figure 58 Intersection Detection Algorithm 

4.5.7 Hole Interference Detection

Hole interference detection is used to detect whether features, or indeed the blank, 

will cause problems for the machining of holes.

This class of problems is normally not a significant issue with slots or pockets, so it 

is necessary first to isolate what is special about holes that causes this to be a 

problem.

This algorithm only applies to features machined solely with an approach/retract 

movement.

The problem arises when the approaching hole end contacts an incomplete or angled 

surface. To successfully machine a hole, the intersection of the entry face of the 

component and the cutter must be a complete circle of the same radius as the hole. 

This must be true if the hole exits and re-enters material during machining. In the 

limit this is true for exit faces, though not usually so critical. The problem of 

constraining the exit face is neglected here.

Firstly this condition must be checked for the hole and the blank. If it does not some 

feature must be machined before the hole in order to leave the entry surface in the 

required condition.
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Then all other features that intersect with the hole must be checked to ensure that the 

intersection body of the hole and the feature meet the requirements. An algorithm 

that handles hole interference detection is shown in Figure 59 below.

For simplicity the following functions are assumed:

hole_access_interaction(body, vec, radius) that given some solid body, will 

return true if that body has a planar face whose surface normal is parallel to 

vec and that will contain a circle of radius r. (note that a surface normal 

antiparallel to vec is not acceptable.

hole?(i) returns true if negative feature / is a hole, false otherwise

A Hole Access Interaction problem is referred to as an HAI in the interests of brevity. 

So an HAI between a hole and a feature means that the hole cannot be machined after 

the feature if that feature has been removed first (and possibly not even then).

for i = 1 to n ———• — 
if hole?(i) 
then

if hole_access_interaction(B O NI)
then assert("hole " i "has a HAI with the blank")
endif
for j = 1 to n

if (Ni n Nj) 
then

if hole_access_interaction (Ni C\ Nj) 
then assert(i "has an HAI with" j) 
else assert(i "has no HAI with" j) 
endif 

endif 
next j 

endif 
next i

Figure 59 Hole Access Interaction Algorithm

The problem with this algorithm is that it is not clear how to spot how one feature 

might resolve a HAI problem a hole has with another feature or the blank. Consider 

how a feature is often used to provide a flat spot on a blank to use as a starting 

surface for a feature. For this reason, when a feature that intersects with the hole does 

not have a problem with the hole, this fact is asserted. It is this second class of 

feature that can be used to provide flat spots to start holes. This then leaves the
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problem of analysing whether the problem with a feature lies with the top surface or 

the bottom surface. HAIs are then left as hints for the designer.

a
d

Figure 60 Problems with Hole Access Interference

From Figure 60 it can be seen that hole a) has no problem either with the blank or the 

pocket feature. Hole b) has a problem with both the blank and the feature. Hole c) 

has a problem with the pocket, but not with the blank, so can be machined first. Hole 

d) has a problem with the blank but not with the cut out, so can be machined after the 

cutout, but only because the cutout intersects with the problem area on the blank.

In general, if any feature exists that creates an HAI, then a feature not causing a HAI 

that intersects with the entire volume of the entry face of the HAI must also be 

machined before the hole is machined.

4.5.8 Alternate Access Direction

Potential Alternate Access Directions (AADs) lie normal to both the Principal 

Access Direction (PAD) and any straight edges forming the cutter path. Evaluating 

AADs requires feature redefinition and is beyond the scope of this thesis. An 

alternative approach might be to relax the geometry of features in the first place as in 

[Mant89].

4.6 Summary

This chapter has introduced a description for volumetric material removal features 

that allows all subsequent volume oriented geometric manufacturability algorithms to
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operate in a general way on all feature types. Algorithms have been presented for a 

number of important validation tests. Most importantly, novel algorithms have been 

presented to generate anteriority constraints between features and for detection of 

hole access interference problems. The algorithms do not check for any alternate 

access directions with the exception of the opposite direction for holes. This is a 

drawback of the system that should be addressed.

Subsequent chapters describe the FODDS2 system within which these algorithms 

have been implemented and then demonstrate the validity of the anteriority 

algorithms through a number of test cases.
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5 Feature Oriented Detail Design System

This chapter introduces the Feature Oriented Detail Design System 2. It starts with a 

review of the user requirements and translates those into system requirements.

The system design decisions are reviewed in light of Shah's requirements for a 

feature based design system.

It is important to realise that unlike most CAD systems, designed for ease of use of 

the designer, FOODS2 has been developed for two distinct classes of user. Firstly, 

there is the human designer, but secondarily, and arguably of more importance are 

the downstream applications, in particular the CAPP system.

5.1 User Requirements

There are two classes of user associated with the FODDS2 Feature Based Design 

System. Firstly there is the designer at the 'front-end' of the system. The majority of 

CAD systems are geared towards the user as designer.

Secondly, there are the downstream applications, in particular CAPP and CAM 

systems. These also have a set of requirements, at least of equal importance with the 

front-end user.

FODDS2 attempts to satisfy both classes of user. 

5.1.1 Requirements of the 'Front-End' User

In order to satisfy two sets of users, some compromises may have to be made. The 

system should still allow design to be a straightforward task.

The user of a Feature Based System requires a system that allows rapid design of 

components and good editability, so mistakes and refinements of design can be easily 

made. The user also requires that resulting designs are valid (according to some set 

of rules) and of acceptable quality for downstream operations. In particular this 

means to the designer that realistic tolerancing information can be added to a design 

and that the designer is warned about some potential problems in downstream 

processing. The user requirements can be summarised below.
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Must allow relatively simple component creation

Must allow straightforward editing of the component.

Should flag designer of a variety of potential CAPP and CAM problems.

5.1.2 Requirements for Downstream Applications

For process planning, and in particular for process planning without an integral solid 

modeller, the following information is important for the process planning system.

Dimensions, feature type and in particular principal access direction of all 

features requiring manufacture.

Feature validation. All features must play a part in the final component, and 

all features must be (at some time) accessible to be machined on the 

component.

Anteriority constraints between features. That is information regarding 

implied ordering relationships that should hold in order for a successful 

process plan to be generated.

Tolerance constraints between features. In order that, for instance, the process 

planner can endeavour to have those features with tight tolerance constraints 

planned in the same setups.

This set of requirements is sufficient for some process planning tasks. Without solid 

models of workpiece and features it is still inadequate for certain other tasks in 

particular fixturing [Chia97a].

As the feature based design system is also just the front-end to a number of 

additional downstream computer aided activities, such as process planning, but 

additionally Finite Element Analysis (FEA) and fixture design as well as other more 

exotic analysis techniques such as Computational Fluid Dynamics (CFD) packages, 

it is necessary to cater in some way for these downstream activities. In particular this 

will require that the exporting of models in suitable formats be sufficiently 

straightforward. With respect to CFD and FEA analysis, FODDS2 can export ACIS 

'.sat' files, a de facto standard. Using external software incorporating ACIS such as 

CADfix, Bentley Microstation, or SolidEdge, ACIS models can be converted to any
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of a number of standards. Additionally, ANSYS, perhaps the leading finite-element 

system, has an add-on to accept ACIS '.sat' files. FODDS2 feature models are also 

saved in Access database format ('.mdb' files).

5.2 Shah's Feature Based Design System 

Characteristics

[Shah95] identifies the following important characteristics of a Feature Based Design 

System

  Representation of Feature Definitions

  Level of Support of User-defined features

  Type of the linkage with a Geometric Modelling System

  Application Context

  Support for Feature Validation

It is important that each of these characteristics are addressed at the design stage in 

order that an appropriate solution can be incorporated into the system, or 

occasionally, that the reasons are known and clearly thought out when a problem 

arises.

5.2.1 Representation of Feature Definitions

There are two particular strategies with regard to the implementation of features that 

must be examined.

  Procedural versus Declarative definition

  Hard coded versus interpreted feature definitions

It becomes obvious from these alternatives that Shah has already decided on the 

solution he requires, however that is not to say his subsequent choice of language is 

necessarily wrong.

Taking a practical point of view and comparing C++ with Scheme leads to the 

following conclusions.
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Without writing an interpreter, C++ encourages the writing of procedural definitions 

of features, Scheme naturally encourages a declarative approach. C++ however has 

the advantage that object-oriented techniques are easy to implement (though difficult 

to implement well and in a user-extensible way), in Scheme an object-oriented 

viewpoint on any data structures can be arranged, and indeed, object-oriented 

methods can be layered on top of Scheme, (see [Abel96], Chapter 12 and [Laak96]).

The argument for hard-coded versus interpreted feature definitions follows similar 

lines. Interpreted feature definitions are generally preferred because the user (or more 

likely the consultant installing a system in a particular company) can add feature 

definitions more easily. The downside to making addition of features easy is that, 

especially when the design system is the front-end to a process planning system, 

there is far more to adding a feature than merely adding a function that builds the 

geometry of a feature. In particular, methods to perform access checks and proximity 

checks need to be added. With skill, the original system designer can make suitable 

functions available to calculate these bodies from an arbitrary new feature body, 

however it is foreseeable that the user may want to add a new class of feature, 

appropriate to some new manufacturing technique perhaps for which the 

conventional checks are not suitable. It is then necessary to either add substantial 

code or allow the user to be warned that checks on this new feature class are 

disabled.

However having said all this, it is also true that an interpreted feature definition also 

makes it easier for the original developer, provided the evaluation time of the 

interpreted code does not become critical. In the case of an ACIS Toolkit based 

product, the evaluation time for a feature is dominated by the solid modelling code 

rather than the time taken to interpret the function and so the build time for any 

feature is almost independent of whether the code is written in C++ or Scheme, 

ACIS is implemented in C++ either way. The time saving in prototyping the code 

however greatly reduces the lead-time of the system programmer.

5.2.2 Level of Support of User-defined Features

The level of support for user-defined features has already been discussed in the 

previous section, and the conclusion reached is that there is a greater overhead in
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providing user-defined features in a system intended to perform geometric reasoning 

for process planning than in a straight forward feature based system. However, a 

trained user could add features to such a system provided the code was interpreted.

A particular advantage of the FODDS2 system in defining new features is that all 

features are defined in terms of a tool-profile and a cutter-path. It is much easier to 

define a machinable feature in this way than by writing volume generation routines, 

and it is also easier to automatically generate the various volumes required by the 

geometric reasoner in terms of the cutter-path and alternate tool-profiles.

Tool-profile and cutter-path here do not refer to any real tools necessarily, but to an 

abstraction of a 3D feature into two 2D profiles. By choosing this model, it is easier 

to generate real tool-sets and cutter-paths. Holznagel [Holz98] demonstrates this 

functionality in the NC generator (NCgen) from FODDS2 models.

5.2.3 Type of Linkage with a Geometric Modelling System

Shah advocates a strong link with a geometric modelling system in order that 

features can be validated in a number of contexts, including their geometry. The 

FODDS2 system has a strong unidirectional link from GUI and database to the 

modeller. The link back from the modeller to the front-end is weaker. This split 

ensures that the two areas of code concentrate on their domain (either the GUI or the 

geometry) and this encourages clear separation of functionality ensuring robustness 

and clarity.

5.2.4 Application Context

The application context of this work is principally in the machining of 2VfcD 

components (as defined in Chapter 2) and concentrates on a class of features for 

which a tool can be found that spins around its vertical axis and travels either linearly 

in the z direction or along linear or circular paths in the x-y plane, thus utilising a 

subset of motions defined by Sungurtekin [Sung86]. Other manufacturing processes 

such as those described in [Gupt97] are outwith the application context.
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5.2.5 Support for Feature Validation

The system explicitly performs feature validation in the form of feature presence and 

void detection and access problem detection. It also performs some feature validation 

routines not commonly found in other feature-based systems, such as proximity 

detection.

5.3 The Design Features in FODDS2

Though the mechanism by which features are built and reasoning is performed has 

already been discussed in detail in Chapter 4, the view that the designer has is 

slightly different, and are detailed here. The designer can also build models using 

various operators that are discussed briefly.

The features are discussed in the following order.

  The positive workpiece construction features

  The primitive material removal (negative) features.

  The feature operators

5.3.1 The Positive Workpiece Construction Features

For workpiece construction two features are supplied, the cuboid and the cylinder, 

matching the most common form of billets and bar. Surface finish information can be 

added to these. More complex workpiece shapes can be built up through the union of 

a number of these positive features.

A third form of workpiece feature proposed is the casting, where an arbitrary ACIS 

'.sat' file can be loaded into the system as the blank workpiece. This allows total 

flexibility of initial workpiece geometry.

The following design features from the FODDS2 Design Feature Library. Some of 

the features are not solids but operators acting on other solid features. Other features 

are peculiar to the Mandelli part family. Most of these specific features could also be 

implemented as compound features.
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All solid material removal features implemented in the current system are ideally 

suited to 2l/2D milling and can be expressed as the solid generated when a tool 

(specified by its profile) travels along a cutter-path. This simplifies the specification 

of the features and also simplifies the generation of access bodies and the like for 

subsequent geometric reasoning. The sweep needed to generate the feature volume 

can be thought of as a restricted Minkowski sum.

5.3.2 The Primitive Material Removal (Negative) Features.

The following features are fully implemented in the current system.

  Holes

  Slots

  Pockets

  Rings

  Screwholes (as a subclass of Hole)

The following features have been considered for inclusion in the system.

T-slots, Complex pocket, Bearing seat, Pitch circle diameter, Matrix

All the volumetric material removal features can be described as the Minkowski sum 

of a tool volume with a cutter path. The tool volume can always be constructed from 

a rotary sweep of a tool profile through 360° as described in Chapter 4. The mapping 

from design feature attributes such as length, width and depth is shown in Table 2.

For pocket features, the cutter path becomes a cutting surface and the actual cutter 

path is a route along the surface such that tolerances on the surface are met.

For hole features, the cutter path is a single point.

For slots and rings, the cutter path is some curve or wire.

For all features, the cutter path can be summarised as a collection of planes or edges 

(either straight line or circular arcs) in the x-y plane. The tool profile can be 

represented equally as a collection of straight line or circular arc edges in the y-z 

plane. All features are transformed (rotated and translated) into their final position in
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the design after their generation at the origin. This can be likened to changing setup 

prior to machining a set of features.

The following table summarises the parameters needed for simple features, and the 

subsequent tool profile and cutter paths needed.

It is not always clear where the origin of a feature is. This is important for knowing 

how the transform will affect it. Chang's Quick Turnaround Cell (QTC) [Ande90] 

uses multiple handles to which any transform can be attached. The multiple 

transforms approach to features in someway obviates the need for multiple handles, 

as a simple translation can be used to move the effective origin of the feature. The 

first version of FODDS however had handles [Mill93].

The cutter paths for the features are not always centred on the origin, instead they are 

placed to give a convenient handle or origin on the design feature.
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Table 2 The Primitive Material Removal Features

Name Origin Isometric Cutter path Tool profile

Hole

diameter(2r) 
depth(d) 
threaded? 
endtype [drilllmill] 
drill-angle(a) 
bottom_radius(r 1)

(0,0,0)

endtype = 0 endlype = 1 endlype = 2

Ul

Slot

length(l) 
width(w) 
depth(d) 
bottom_radius(r)

(f (0,w/2,0)
f >, 

I

Pocket

length(l) 
width(w) 
depth(d)
corner_radius(rO) 
bottom_radius(r I)

Curved Slot

Central_radius(r) 
width(w) 
depth(d) 
finish_angle(a) 
bottom_radius(r I)

Ring

central_radius(r) 
width(w) 
depth(d) 
bottomjradius(rl)
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Holes

Figure 61 Example of Hole Types

Figure 61 shows examples of the different possible hole types. From left to right the 

figure shows a threaded hole with a 118° (drilled) end, a drilled hole unthreaded, a 

threaded hole with a radiused end, a ball-ended hole and a flat-ended hole. A flag 

selects whether holes are threaded or unthreaded and standard M-types are assumed. 

Hole type is 'drill' or 'mill' allowing selection of drill-angle or bottom radius. A 

bottom radius of zero gives a flat ended hole, and a bottom radius equal to the hole 

radius gives a ball-ended hole.

T-slots

A T-slot can be designed into the system by specifying two slots one on top of each 

other. A T-slot is a contender for a primitive feature in a future incarnation of the 

system, but has some problems when performing geometric reasoning. In particular, 

though the access body for machining a T-slot is merely the extrusion of the top 

surface of the slot, the access body for advance and retraction of the T-cutter is the 

extrusion of the largest part of the T-cutter. In order to ensure safe advance and 

retraction locations, either a search must be undertaken to find a suitable location, or 

the T-slot volume must be redefined to incorporate a volume for advance and retract 

operations.
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The first of these two solutions is outwith the scope of this project whereas the 

second solution, though used in earlier versions of FODDS precludes generation of 

the T-slot in terms of a sweep of a tool-profile along a cutter-path (though an 

extension of the cutter-path to include the advance and retract phase might be 

possible.

It is felt that it is better at this time to enforce generation of T-slots as the 

combination of two slots. This means the geometry can be used by incorporation of 

compound features. An extension of the reasoning to include features with partial 

accessibility can be regarded as an extension of this work.

A feature similar to the T-slot is the dovetail slot. Cutter profiles have been 

developed for both the T-slot and the dovetail slot though problems regarding access 

for a dovetail slot are the similar to those for the T-slot above.

Screwholes

In early versions of FODDS, complex sere wholes with chamfers, countersinks and 

complex specifications of thread type and depth were allowed. Though useful to the 

designer, they were somewhat specialised and did not fit the generalised model of 

features used throughout the remainder of the system. Furthermore, any of these 

complex screwholes can be represented as a compound feature composed of a 

number of more simple holes.

The only exception to this is that the concept of a threaded hole needed adding to the 

simple hole. It is now possible to add a thread to the simple hole. This addition is 

reflected in the display, either in the simple display as a darker colour or in the 

rendered display as an attempt to render the thread.

Given the use throughout the project of the metric system, there are only a handful of 

possible normal thread specifications for any particular dimension of hole. 

Specialised threads are beyond the bounds of current CAPP systems anyway. Thus, 

the type of thread is recorded and passed onto downstream applications, and the 

thread is rendered, but no further work uses the thread attribute of the simple hole.
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Pitch Circle Diameter

The Pitch Circle Diameter and the Matrix are useful design operators, providing a 

useful abstraction and subsequent saving on design time. It should be noted that 

passing on the information that a feature is a member of one of these groupings can 

offer solutions (such as multiple tooling) that could otherwise be missed. However, 

they also add some minor problems, for instance, in naming the sub-features of a 

group feature. Though the system allows the user to generate these features, none of 

the test examples use such a feature.

5.3.3 Tolerancing and Surface Finish

Though much work has been undertaken on tolerancing and surface finish [Voel97] 

[Henz95], and though it is extremely important for process planning, only a simple 

tolerancing model has been included in FODDS2. The manufacturing feature 

viewpoint of design means that full tolerancing models after ANSI or BS standards 

are unnecessary. Instead each material removal feature has a position, orientation and 

surface finish tolerance associated with it. It is up to the process planner to ensure 

that all faces of the feature will match this tolerance. A fuller tolerance model would 

allow the specification of different tolerances for different faces. This model 

however acknowledges the importance of tolerancing.

The default surface finishes for workpiece and features have been selected so that 

drilling and milling can easily achieve the required surface finishes. The surface 

finish of any feature can be tightened if required by the designer.

A limiting factor of this model is that the bottom surface and side surface of any 

feature are allocated the same surface finish, which is untrue of most machining 

processes. The extension to allow different surfaces of a feature to have different 

surface finishes is merely a matter of adding some extra parameters.

An additional extension to add intra-feature relationships suitable for the different 

feature types has been discussed, as has the ability to add inter-feature geometric 

tolerance relationships. Neither of these extensions are difficult, however at present 

the geometric reasoning routines cannot make use of this information. The work of
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Naish [Nais97] requires this information however, so these extensions may be added 

in the near future.

A simple object designed in FODDS2 and its accompanying feature tree is shown in 

Figure 62. In the feature tree, the '-' signs only represent where the tree may be 

collapsed in the GUI. The operators in the diagram are 'Assembly', 'Component' 

and 'Transform', and the features are 'Block' (the positive feature) and 'Slot' and 
'Hole'.

Assembly
W^gjKl'-. ^*, fC Component 

ti- Transform

ti- Transform

B ti- Transform
;---ll Hole

Figure 62 The Simple 'EH' Component
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6 Experiments

There are two varieties of experiments that have been performed.

The first variety is a series of focussed examples designed to verify the performance 

of one or more design or geometric reasoning algorithms in a controlled situation. 

These experiments were initially conducted as thought experiments and were used 

throughout the period of study in order to direct the research towards the ultimately 

successful goals.

The second variety of test is with more complex components, either test components 

from Edinburgh or from other research groups, or real components. These 

components have been drawn from a variety of sources. Certain components have 

been used as test components within the group for a number of years. Other 

components are from the CIE97 Feature Recognition competition [Litt97b]. These 

components have been modelled to a greater or lesser degree and had some of the 

geometric reasoning carried out.

6.1 Focussed Experiments

6.1.1 Feature Variety Test

Figure 63 The Feature Library Demonstration Part

The Feature Variety Component is shown in Figure 63, both a rendered image and a 

real NC machined component.

117



Geometric Reasoning for Process Planning Jonathan Charles Salmon

This component tests five different feature types in a simple block. There are 

(deliberately) no feature intersections, access problems, through holes or thin walls, 

and the object is strictly 21/zD. This test merely demonstrates that the system is 

capable of creating feature based designs.

The NC code for this part has been automatically generated by a prototype NC 

generation system (NCgen) [Holz98] from the feature based description output 

directly from FODDS2. NCgen assumed a single end mill whose radius is smaller 

than the radii in all features, and computed complete toolpaths for each feature on 

this basis. The NC generator will provide valid toolpaths provided features are 

supplied in a machinable order (i.e. satisfying anteriority constraints), and that no 

setup changes are required (the component is strictly single sided). The NC generator 

us a validation tool and not a full scale CAM package, so it also neglects speed and 

feed information and the cutter paths are not always optimal.

6.1.2 Access test for Crossed Slots with Hole

There are three aspects to this test.

The first is to ensure that the system can handle the ordering problem when there is 

an access problem with two features. The second shows that the test produces valid 

but different results when the intersections are modified slightly.

The third test illustrates an extreme case where the code produces a valid but 

suboptimal result.
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Figure 64 Crossed Slots with a Hole

The component in Figure 64 consists of a pair of crossed slots with a blind hole at the 

crossing. The hole has been designed with its top at the base of the slot. Because no 

feature modifications are made in the system this implies that the hole cannot be 

machined first. It is clear by inspection that the hole can be made after either of the 

slots has been machined (or indeed after both).

The analysis automatically produces the following access list

((Hole Hole Node 10 access) intersects (blank))
((Hole Hole Node 10 access) intersects (Slot Slot Node 6 feature))
((Hole Hole Node 10 access) intersects (Slot Slot Node 8 feature))

The conservative implication of the automatically generated list is that both slots 

must be machined before the hole. In fact it is obvious that either slot can be 

machined before the hole and so ideally a way of representing the logical operator 

'or' on the graph of the anteriority constraints. More importantly the algorithm must 

be improved so that this 'or' constraint can be identified. Though in the case of the 

crossed slots above it is unlikely the hole would be machined after one slot but 

before another, other examples show different behaviour.

The algorithms give the correct anteriority constraints. 

There are no other problems with this object.
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Figure 65 Offset Hole in Crossed Slots

This component (in Figure 65) is to ensure that the previous case of Figure 64 is not 

repeated. The hole now lies in the base of one of the slots, but only partially in the 

base of the other. Here, the algorithm correctly spots that the access body of the hole 

intersects with both slots, so two access problems are posted. Then further reasoning 

shows that the volume of intersection with the shorter slot is completely subsumed in 

the volume of intersection with the longer slot, and so only one "machined_after" 

constraint is nosted. that with the longer slot, and the correct result is realised.
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Figure 66 Four Crossed Slots with Hole

The previous example uses pairwise analysis of access-feature intersections to 

discover that only one anteriority constraint is necessary.

Th example in Figure 66 illustrates that simple pairwise analysis of these intersection 

bodies is not sufficient. Preliminary constraints are posted for each of the four slots, 

but there is no pairwise combination of slots for which the intersection volume with 

the hole can be subsumed one in the other, so finally, the requirement emerges that 

all four slots must be machined before the hole. This is infact untrue as provided 

either the North-South pair are machined, or, the East-West pair then the hole can be 

machined. A situation such as this where the pairwise comparison fails has never yet 

been encountered in a real component, and it is not felt that generalising the current 

algorithm for this case is necessary.

6.1.3 Thin Wall Demonstration

The test component in Figure 67 test shows a variety of thin wall situations on a 

single component and illustrates where correct interpretations are made and where 

further problems arise. All images come from the FODDS model of the part. In 

Figure 67 c) the dilated volumes can be seen, and it is the intersection of these 

volumes with other dilated feature volumes or with the volume outside the blank that 

are identified.

a) rendered test component b) numbered cases c) dilated volumes

Figure 67 Thin Wall Demonstration Component

There are five distinct cases identified in the figure above. These are numbered in 

Figure 67 b).

121



Geometric Reasoning for Process Planning Jonathan Charles Salmon

Feature-Feature Intersections. These correctly identify thin walls between 

features such as the slots and the pocket and the holes.

Feature-Blank Intersections. Case 2 shows a feature-blank intersection 

where the slot already pushes into space, so the thin wall is not detected with 

the existing algorithm.

Feature-Blank Intersection. Case 3 shows a successful diagnosis of a thin 

wall between a feature and the blank.

1. Case 4 shows a questionable case that can arise either in a feature-feature or 

feature-blank interaction. Where a solid wedge is at the junction of two features, 

and the angle of the wedge is acute then it is possible that this should be 

considered as a thin wall. Because the two features (or in this case the feature and 

the outside world) intersect, the algorithm cannot test for this.

2. Case 5 shows a similar case, but here the question of whether we should consider 

this to be a thin wall is more clear cut. Again, we cannot look for the thin wall 

because of an existing intersection between feature and the outside world. 

Whereas case 4 is perhaps excusable, Case 5 can always arise where features 

with concavities are allowed.

It becomes clear from the analysis of this thin wall component that the model of 

dilated bodies and solid intersections is not powerful enough to detect all desired thin 

wall cases. It seems likely that looking for thin walls in terms of face-face 

proximities [Gupt95] is also fraught with similar difficulties, particularly in the case 

of acute wedges again. An alternative approach might be to use a Minkowski erosion 

algorithm on the finished component and look for the difference between the medial 

axis [Arms94] of the component before and after erosion. Significant changes in the 

medial axis would show the disappearance of the thin wall under erosion.
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6.2 Test Components

6.2.1 The HAPPI component

Figure 68 The HAPPi Test Component

Table 3 The HAPPI Test Component Access List

(
( (Slot 
( (Slot 
( (Hole 
( (Slot 
( (Slot 
( (Slot 
( (Hole 
( (Hole 

)

MidSlot 
BtmSlot 
LtlHole 
MidSlot 
BtmSlot 
BtmSlot 
LtlHole 
BigHole

Node 
Node 
Node 
Node 
Node 
Node 
Node 
Node

10 
12 
16 
10 
12 
12 
16 
6

access) intersects (blank)) 
access) intersects (blank)) 
access) intersects (blank)) 
access) intersects (Slot TopSlot 
access) intersects (Slot TopSlot 
access) intersects (Slot MidSlot 
access) intersects (Pocket Pocket 

blind-access) through (component))

Node 
Node 
Node 
Node

8 feature)) 
8 feature) ) 
10 feature) ) 
14 feature) )

The list above is automatically generated from the component in Figure 68 by the 

Access Checking Geometric Reasoning Algorithms. The first three relationships 

identify access problems for the middle and bottom slot and the hole in the pocket. 

The next three relationships identify which features must be removed before the 

three problem features can be machined. The last relationship identifies the BigHole 

as being a through hole, that is it has access through the component on its 'blind' 

side.

The HAPPI test component is again shown in Figure 69 complete with access bodies 

shown in 'transparent gold', and the negative features in chrome to illustrate the 

nature of the geometric algorithms working in practice.
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Figure 69 The HAPPI Test Component with Features and Access 

Bodies

6.2.2 The Edinburgh Composite Component (TECC)

Figure 70 The TECC Component

The TECC Component shown in Figure 70 consists of 13 features and was modelled 

using 4 approach directions using compound transforms for all but the default setup.
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This Component has a set of process planning problems on it as described by Mill et 

al. in [Husb91]. The problems and the ability of FODDS2 to tackle them are 

discussed.

Crossed slots

On the top surface of the TECC, a crossed slot can be seen. The issue in the TECC 

paper was one of alternate representations. Were the slots two crossed slots or four 

meeting slots or some other combination? Can alternate representations of the 

features be used for process planning? The answer in the case of FODDS2 is that 

there are no alternate representations, the only representation known in FODDS2 is 

that specified by the designer on generation of the model. FODDS2 does provide the 

process planning system with the knowledge that these slots intersect, so it becomes 

the responsibility of the downstream applications to use an alternate representation if 

required.

Crossed holes

The large diameter hole in the side of the TECC component is crossed by a smaller 

diameter hole running entirely through the component from left to right. The issue 

here is similar with one important addition, attempting to machine the narrow hole in 

one machining operation after the wide hole has been machined is likely to result in 

tool breakage. Again FODDS2 supplies the knowledge that there is an intersection 

between these features, but doesn't attempt to solve the problem.

Nested Slots

FODDS2 correctly orders the machining of the nested slots. 

Pocket with hole in side

Here, there would be a problem trying to machine the hole after the pocket has been 

milled. Once again, FODDS2 supplies the information that there is an intersection, 

but does not solve the problem.

Countersinks with access problems

FODDS2 correctly spots that machining the countersinks cannot be performed with 

conventional 2V6D milling and tools.
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Steps

There are two steps on this component. FODDS2 does not treat a step any differently 

from a slot or pocket. This means that the only access direction checked is the access 

direction that was specified when the feature was entered into the design.

Through holes

There are 

these.

three through holes on the component. FODDS2 correctly spots all of

Ultimately FODDS2 finds that all features with the exception of the countersunk 

holes are machinable, though a number of intersection bodies are posted as hints of 

possible problems for the process planner to examine when tool selection is 

undertaken.

6.2.3 The Heriot-Watt 2 'MacTaggart Scott' Component

Figure 71 The Heriot-Watt 2 Component

The Heriot-Watt 2 component, originally from MacTaggart-Scott of Loanhead, 

Edinburgh has been completely modelled in FODDS2 and can be modelled easily 

with the standard feature library. This feature model consists of 13 holes, 4 slots and 

13 pockets (30 negative features in all) and is the largest component to be 

successfully analysed by the system. An unusual problem is that because of its 

function the component is clearly split into two ends with a tricky angle between the 

two. In FODDS2 it was easy to model this by introducing an extra transform before 

the set of features at the far end. In FODDS2, the component was modelled from a 

block, MacTaggart's themselves have planned the component (using the PEPS CAM
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system from CAMTEK) using a round bar. The bar may be somewhat more efficient 

in material use.

152 relationships were discovered by the reasoning algorithms, predominantly access 

problems, but with 8 through holes and 3 through pockets.

6.2.4 The Heriot-Watt 'Teddy Bear'

Unfortunately, this is one of the few 'real' components to defeat the design side of 

the current incarnation of FODDS2. Examination of the object (seen in Figure 72) 

reveals that every pocket has opposite sides that are not parallel. FODDS2 currently 

only contains a rectangular pocket, not sufficient for this feature.

Additionally, the Heriot-Watt version of this body contains some bottom edge blends 

that are not machinable with conventional machining.

The 'teddy bear' is predominantly single sided however, so with the addition of the 

compound pocket, running the algorithms on the component and subsequently 

planning the component are not imagined to be a problem.

Figure 72The Heriot-Watt Teddy Bear'

The majority of the pockets in the real features examined have been rectangular, and 

for this reason non-rectangular pockets have been neglected. A more complex pocket 

can still be defined in the 'tool profile', 'cutter path' model of features, but with a
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more complex cutter path. This ensures that all the algorithms will still work for 

more complex pockets.

The plan for the next generation of pockets is that the user specifies a list of 2D 

points representing the vertex of a polygon, then a separate radius can be specified 

for each of convex corner radii, concave corner radii and the bottom edge blend. A 

wire polygon can then be turned into the necessary surface through the use of 2D 

Minkowski blending and this then passed to the feature construction functions to 

produce the 3D feature. An example of the solid volume that such a compound 

pocket might have is given in Figure 73. This figure shows the inverted volume to be 

removed from an imaginary pocket. The different radii chosen for convex, concave 

and 'bottom' radius blends can clearly be seen. The overall profile of this pocket has 

been specified by six vertices of a polygon at which each adjacent pair of planar 

faces intersect. Defining a polygon this way encourages manufacturability. The radii 

chosen provide constraints on the tooling that the process planner can choose.

Figure 73 Example of the 3D Geometry of a Complex Pocket
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6.2.5 The Hanl Component
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Figure 74 The Hanl Test Component in the FODDS2 GUI

The Hanl test component has been designed as a feature recognition test component. 

It is single sided but contains through holes and two slots that are not orthonormal 

features. The Hanl component presented no significant problems for modelling in 

FODDS2. Indeed, the analysis of the component was also straightforward. The 

component consists of a block, 7 slots and 2 holes. All are designed into the top 

surface of the component with the exception of the small slot on the left hand side of 

the image and the two holes which have been designed as low as possible.

The small slot and two holes have access problems against various slots. The two 

holes are correctly identified as through holes. The results of the anteriority checks as 

produced by FODDS2 on the Hanl component are shown in Table 4.
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Table 4 Results of Anteriority Checks on Han1 Component

'Slot" 
'Hole" 
'Hole" 
'Slot" 
'Hole" 
'Hole" 
'Slot" 
'Hole" 
'Hole" 
'Slot" 
'Hole" 
'Hole" 
'Hole" 
'Hole" 
'Hole"

"Slot" 
"Hole" 
"Hole" 
"Slot" 
"Hole" 
"Hole" 
"Slot" 
"Hole" 
"Hole" 
"Slot" 
"Hole" 
"Hole" 
"Hole" 
"Hole" 
"Hole"

"Node 
"Node 
"Node 
"Node 
"Node 
"Node 
"Node 
"Node 
"Node 
"Node 
"Node 
"Node 
"Node 
"Node 
"Node

36" 
42" 
44" 
36" 
42" 
44" 
36" 
42' 
44" 
36" 
42" 
44" 
44" 
42" 
44"

"access") 
"access") 
"access") 
"access") 
"access") 
"access") 
"access") 
"access") 
"access") 
"access") 
"access") 
"access") 
"access")

"intersects" 
"intersects" 
"intersects" 
"intersects" 
"intersects" 
"intersects" 
"intersects" 
"intersects 
"intersects" 
"intersects" 
"intersects" 
"intersects"

("blank")) 
("blank")) 
("blank")) 
("Slot" "Slot" 
("Slot" "Slot" 
("Slot" "Slot" 
("Slot" "Slot" 
("Slot" "Slot" 
("Slot" "Slot" 
("Slot" "Slot" 
("Slot" "Slot" 
("Slot" "Slot" 
("Slot" "Slot"intersects 

"blind-access") "through"("component") 
"blind-access") "through" ("component"

"Node 28" "feature")) 
"Node 28" "feature")) 
"Node 28" "feature")) 
"Node 30" "feature")) 
"Node 30" "feature")) 
"Node 30" "feature")) 
"Node 32" "feature")) 
"Node 32" "feature")) 
"Node 32" "feature")) 
"Node 38" "feature"))

There are no thin walls, and the component can be machined (and designed) as a 

single sided component.

6.2.6 The Gadh2 Component

Figure 75 The Gadh2 Test Component

The FOODS2 was able to model the Gadh2 component except for one exceptional 

area. The area on the outer left face showing a lozenge shaped protrusion with two 

ring features. The original design called for 5 hemispherical protrusions here. These
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protrusions would defeat most feature recognition systems and most manufacturing 

systems. There is no convenient feature, or indeed method of manufacture of convex 

spherical surfaces. The design shown in Figure 75 has started to approximate the 

hemispherical bumps using ring features. These are the only complex features on the 

component, and require significant external machining just to reveal the area where 

the bumps should be. Despite an inaccurate model, already 6 negative features have 

been used to create the remaining island.

With the exception of the protrusions on the side the remainder of the component is 

strictly 2l/zD. The design shown consists of 4 slots, 24 pockets, 3 curved slots and 2 

rings. Unfortunately the system suffered from combinatorial explosion on analysis 

and the system crashed in the geometric algorithms having consumed over 200Mb of 

swap space.

In order to design the rounded end of the T-shaped protrusion in the middle of the 

component a curved slot was used in conjunction with surrounding pockets. The 

intersections between these features that should have been recognised could give a 

subsequent process planner opportunity to optimise the NC cutter paths to avoid 

remachining empty space.

The failure has been useful in indicating that the code needs some optimisation to be 

able to tackle very large components, however the success on smaller components 

shows the theory to be sound.
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6.2.7 The Regli component
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Figure 76 The Regli Component in FODDS2

This component has 2 pockets, 4 holes and the rounded external corners have been 

constructed with 5 curved slots.

The side pocket on the Regli component (see Figure 76) has a spline profile in the 

original. This has been roughly approximated by a circular slot feature for modelling 

in FODDS2. The problem is in specifying the spline profile in a way flexible enough 

to be useful and easy enough to be practical. It is not proposed to add a spline 

bounded pocket in the immediate future.

A problem with spline pockets is determining the smallest concave radius, to 

determine cutter sizes, and in particular having determined a cutter size, ensuring that 

there is no isthmus too narrow for the chosen cutter to pass through.

The blended corners on the left of the component have been modelled with curved 

slots, suggesting access directions from the front or the back of the component. This 

method of making these features is unlikely to be the choice of most process 

planners. The aspect ratio of the 'curved slot' would probably reveal the problem.

The relationships discovered are given in Table 5 below.
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Table 5 Relationships of the Regli Component

(("Hole" "Hole
(("Hole" "Hole
( ( "Hole" "Hole
(("Hole" "Hole
(("Hole" "Hole
(("Hole" "Hole
(("Hole" "Hole
(("Hole" "Hole
( ("Hole" "Hole"
( ("Hole ""Hole"
( ("Hole ""Hole"
( ("Hole" "Hole"

" "Node 16" "access
" "Node 17" "access
" "Node 18" "access
" "Node 19" "access
" "Node 16" "access
11 "Node 17" "access
11 "Node 18" "access
" "Node 19" "access
"Node 16 ""access")
"Node 17 ""access")
"Node 18 ""access")
"Node 19 " "access" )

) "intersects" ("blank"))
) "intersects 1
) "intersects 1
) "intersects 1
) "intersects 1
) "intersects 1
) "intersects 1
) "intersects 1
intersects" t 1
intersects" ('
intersects" ( '

("blank") )
("blank") )
("blank") )
( "component" ) )
( " component " ) )
( "component" ) )
( "component" ) )

Pocket" "Pocket"
Pocket " " Pocket "
Pocket ""Pocket"

intersects" ( ' Pocket" "Pocket"

"Node 11"
"Node 11"
"Node 11"
"Node 11"

1 feature"
1 feature"
1 feature"
' feature"

) )
) )
) )
) )

(("Pocket" "Pocket" "Node 11" "blind-access") "through" ("component"))
( ( "CurvedSlot"

gh" ("component
( ("CurvedSlot"
( ( "CurvedSlot"
( ( "CurvedSlot"

"CurvedSlot" "Node 24" "blind-access") "throu
" ) )
"CurvedSlot" "Node 29" "blind-access") "through"
"CurvedSlot" "Node 32" "blind-access") "through"
"CurvedSlot" "Node 35" "blind-access") "through"

( "component" ) )
( "component" ) )
( "component" ) )

The four holes at the bottom of the component are blind. This means they are also 

inaccessible because of the overhang. This is successfully detected and is shown in 

the first twelve relationships above, where the four holes have access problems with 

the blank, the component and the pocket in which they have been placed.

The curved slots that have been used to make the rounded external corners are 

identified as being accessible from either end, they are 'through' slots. In fact, they 

have many more access directions as they are on the edge of the component. These 

alternate access directions are not searched for.

6.3 Summary

The algorithms for thin walls, anteriority constraints and through hole detection have 

been demonstrated. A number of real components have been tested. Design failed 

entirely in one case where a more complex pocket shape was required and to a lesser 

degree in two other cases where peculiar geometry had been specified, probably in 

order to catch out feature recognition systems.

The analysis failed in one of the successfully designed case, but only due to the size 

of the problem. The algorithms can be optimised to consume less memory.

In all other cases the algorithms have been successful, and the number and type of 

relationships discovered shows the importance of these detection algorithms for 

process planning.
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7 Conclusions

This thesis has shown that for successful process planning it is necessary to generate 

anteriority constraints between features.

Anteriority inferencing algorithms have been developed and in the absence of other 

constraints the anteriority constraints result in valid process plans for manufacture of 

components is successful.

This is confirmed through the test cases in Chapter 6.

The FODDS2 Feature Based Design System is capable of designing a significant 

range of mechanical components and that the inferencing algorithms do indeed detect 

anteriority errors.

NC code can be generated from the plans so produced and this has been tested

The modelling method used, that of negative features as a Minkowski sum of tool 

and toolpath is a powerful method and new features can be added with a modicum of 

effort. The algorithms demonstrated will all continue to work with new features so 

designed.

FODDS2 is a complete CAD/CAM system focussing on Geometric Reasoning for 

Process Planning. That is, there is substantial work on a Feature Based Design front- 

end, allowing design of real mechanical components in a near professional 

environment. There is a Geometric Reasoning Subsystem capable of inferring 

additional knowledge about a design, not given explicitly by the designer but 

necessary for the process planner. Lastly, there is a CAM system [Holz98] capable of 

taking this knowledge and generating NC code suitable for the mill in the 

department.

The process planning system itself will be strengthened by ongoing work by Mill and 

Naish [Nais98].

The algorithm for proximity detection leaves much to be desired. An alternative 

approach using Minkowski sums and medial axes shows more promise.
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7.1 Summary of Conclusions

A functioning Feature Oriented Detail Design System has been developed.

The system has been proven with a set of test components from a variety of sources.

The system satisfies the criteria laid down by Shah [Shah95] for a Feature Based 

System.

All features have been implemented using Minkowski sums in a manner sufficiently 

general to allow easy addition of features. Treating the Swept Volumes as 

Minkowski sums and the use of Minkowski sums in proximity detection is a novel 

approach. The use of Swept Volumes is in line with the work of Kramer [Kram92] 

and Sungurtekin [Sung86].

The mathematical specification of the geometric reasoning is for the most part new 

and is an extension of the component in terms of features specification of Requicha 

and extends or modifies the work of Vandenbrande, Sungurtekin and Kramer. The 

specification ensures an elegant and robust method of describing the geometric 

reasoning with predictable results, and allows the feature set to be easily extended 

with no reduction in generality.

A drawback of this method is that alternate approach directions other than the 

principal access direction, and in the case of holes, the opposite direction are not 

considered. This is a significant drawback for setup planning, but would require 

some dynamic feature redefinition to solve.

The set of anteriority constraints produced by the Geometric Reasoning is suitable 

for input into a CAPP system such as HAPPI or its descendant.

7.2 Further Research

There are a large number of areas of further research, some of which are already 

being tackled.

1. Addition of more powerful features

2. Additional feature validation.
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3. Feature relaxation techniques.

4. Alternate feature view. Work from Little addresses some of this. An interface to a 

feature recognition system would be of interest.

5. Agent based approaches to speed up the overall system.

6. Improved tolerancing mechanism

7. Parametric and constraint modelling

8. Geometric Algorithms

7.2.1 Addition of More Powerful Features

A number of form features suitable for inclusion in the system have been identified 

from the list in Table 2 Chapter 3, and others have been identified from the test 

objects. Particularly these include pockets with complex profiles including rounded 

polygons and splines and would allow those test pieces that were not completely 

realisable to be completed.

7.2.2 Additional Feature Validation

Though some feature validation methods have been included in FOODS 2 they are 

not an exhaustive set. To develop the feature based design part of the system, 

additional feature validation methods would aid the user in producing valid designs. 

The feature validation methods in Bidarra's Spiff system [Bida97] could be 

incorporated.

7.2.3 Feature Relaxation Techniques

A particular drawback of the current system is its insistence on one representation for 

each feature and a restricted number of approach directions. Work in the area of 

feature relaxation, to allow alternate representations of features and thus allow 

alternate access directions, or to allow modification of the height or depth of the 

machined volume in order to effectively modify the anteriority constraints without 

changing the component geometry, could be effective.
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7.2.4 Alternate Feature Views

Though some work by Little [Litt97a] has addressed the feasibility of allowing 

design by positive features and transforming those features into the negative 

manufacturing features necessary for FODDS2, it is clear more work could be done 

in this area.

7.2.5 Agent Based Approaches to Speedup the Overall System.

Achieving simultaneous design and planning, in order to decrease lead time still 

further, and provide immediate feedback of planning and machining problems to the 

designer through the design cycle is already the subject of work by Salmon and 

Jacquel [Jacq97][Jacq98], through the adoption of a fine-grained agent-based 

approach. Other work in this area includes [Bala96].

7.2.6 Improved Tolerancing Mechanism

A manufacturing oriented tolerancing mechanism has been implemented without the 

full rigour of a complete tolerancing mechanism. Further work in this area should be 

undertaken based on the ongoing work of Voelcker [Voel97].

7.2.7 Parametric and Constraint Modelling

The design system can be described as a parametric design system, but adding a 

constraint-based mechanism would greatly increase its power and flexibility whilst 

leaving the geometric reasoning and downstream applications largely unaffected.

7.2.8 Geometric Algorithms

The work on computational geometry tools such as Minkowski sums, medial axes 

and other algorithms such as convex hulls and Delaunay triangulation, to allow 

modification of features and component geometry in a way not supported by current 

generation's of commercial solid modellers is an area of great interest to the author 

and is the subject of a draft grant proposal.
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Appendix A. FODDS2 Implementation

Details

This Appendix contains brief details of the computer systems under which the 

original FODDS and the FODDS2 systems were built.

In addition the GUI of FODDS2 is explained.

The first version of FODDS was written in C++ on a Sun (Unix) workstation with a 

GUI written in X/Motif and using ACIS as the kernel modeller. FODDS2 retains 

ACIS as the kernel modeller, but has moved platforms to PCs under 

Windows95/NT4.0 and has been entirely rewritten using Visual Basic for the GUI, 

Access for the database kernel and Scheme4 and the ACIS 3D Toolkit for solid 

modelling and geometric reasoning. These can be used in a largely coherent 

development environment with Scheme/ACIS code tested under the 3D Toolkit 

before being incorporated in the application. The system runs happily on a P133 with 

48Mb of RAM running Windows95 (minimum spec. 32Mb), but realistically needs 

around 100Mb of free hard disk for the necessary applications and a minimum of 

100Mb of swap space to deal with reasonable sized components.

The system uses Dynamic Data Exchange (DDE) to form the link between both 

Visual Basic and Access (through a set of VB functions) and between Visual Basic 

and ACIS. In particular this means that the commands used to drive ACIS are 

identical to those typed at the command line of the ACIS 3D Toolkit (renamed for 

ACIS version 3.0 the Scheme ACIS Interface Driver Extension). This allows code to 

be developed using Scheme independently of the GUI. The enforced separation of

4 Scheme is a close relative of Lisp, and is often argued to be both a more compact 

and elegant language.
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GUI and core code improved both sets of code, as there was no mismatch of function 

between the two. This is exemplified by the fact that the move from ACIS 2.1 to 

ACIS 3.0 was accomplished in half a day and required no code rewriting or 

recompiling. This is despite huge changes in the way ACIS is distributed (now 

through DLLs rather than static libraries). Instead the new binaries were used 

'straight out of the box'. The software packages used in FODDS2 are listed below.

Visual Basic Pro v5.0, Microsoft.

Access v7.0, Microsoft.

ACIS v4.2, Spatial Technology Inc.

Scheme, Schemers Inc.

Scheme ACIS Interface Driver Extension, v4.2, Spatial Technology Inc.

System Architecture

User

3D Viewing
Control 

Pick Control

FODDS2
Visual Basic

ACCESS
Database

Library

weak 
connection

DDE Connection 

i

FODDS2
ACIS3DT 
(Scheme)

3D Graphical 
Display

FOODS 
(ACIS) 
Model

Exported files 
(.ftr) Feature Tree files 
(.fpl) FOODS Plan files 
(.sat) ACIS model files

Figure A.1 System Architecture

FODDL 
Component 
Descriptions 
(.mdb files)
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Figure A. 1 shows the system architecture in terms of the modules used. The User 

interacts chiefly with the FODDS2 User Interface. This in term modifies a database 

containing the component definition and informs the 3D Toolkit about the current 

state of the database. The database contains no solid models of the component, but 

contains sufficient information in a feature based table to rebuild the component at 

any time.

The 3D Toolkit handles modelling the component and displaying the component on 

the screen. The toolkit is also primarily responsible for geometric reasoning about the 

component. The Toolkit can also write component descriptions to file (i.e. including 

feature information), ACIS bodies of any of the generated bodies including most 

importantly the final component, and writes files describing the results of the 

geometric reasoning that has taken place.

Components can be displayed and rotated in real-time using a wireframe or shaded 

OpenGL mode, and can be rendered.
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The FODDS2 Graphical User Interface
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Figure A.2 The FODDS2 Graphical User Interface

On the interface are a number of buttons in the main toolbar, with conventional icons 

and usage, namely:

D 3S New File, File Open, File Save working as expected on Component database 

files.

X =)lH Delete, Undo, Cut, Copy and Paste, acting on nodes in the feature tree.

The investigation and analysis toolbar however contains novel buttons.
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• The magnifying glass zooms to cause the current component to centre and fill the 

current viewscreens. Additional panning and zooming is possible using the mouse 

and keyboard.

The spanner icon causes a build of the current component to take place. Because 

no usage of history files exists in the prototype, a build of a complex component can 

take up to a few minutes. To allow rapid design, users can enter a number of changes 

(in the form of feature modification, addition or deletion) and select a suitable time to 

rebuild the component.

IP The render button invokes photorealistic rendering of the current view. Most 

images in this thesis have been generated this way.

The pick button once selected allows the user to pick a face of the current view 

and information in a dialogue is supplied regarding that face. This makes mistakes 

easier to identify, helping to close the representation gap between the Feature Tree 

and the Component subsequently designed.

W Lastly the magic wand icon causes all analysis algorithms to be performed.

All these commands are also available from the menu bar. Additionally, the same 

effect can be generated by typing suitable commands on the ACIS 3D Toolkit 

command line interface, though the toolkit interface is normally hidden. This was 

used to demonstrate individual algorithms.

FODDS2 Data Structure

The primary FODDS2 data structure is a tree and is stored primarily as a table of 

nodes in an ACCESS database.

Each node represents, in general, either a primitive feature or an operator on a set of

features.

Each node contains three data items specifying its position in the tree.

• A Unique Node ID (UNID) (must be present and unique to the tree)

• The UNID of the Next Sibling of that node in the tree (this is set to a 

NULL value if there is no Next Sibling)
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• The UNID of the First Child of that node (this is set to a NULL value if 

there is no First Child)

This is sufficient information to model a tree, and is compatible with the Tree View 

Widget in Visual Basic (4.0 and later), which thus allows easy on-screen 

representation of the feature hierarchy of any component.

In addition, each node contains some domain specific information, in particular 

identifying the type of node.

Lastly, each node contains a fixed number of attributes. These are used to carry data 

depending on the node type.

The specification for each type of node is held in one table in the database known as 
the CODLSpec Table. This is so called as it embodies the historical Component 

Description Language [Salm94] [Mill93]. Tables A.I and A.2 show the specification 
of the Feature Operators and Primitives respectively.

In Table A. 1 the specifications for operators unite, intersect and subtract can be seen, 
the set operators. These can be seen only in the table, but not in the GUI. At the 
present time, the Scheme code supports these operators, but they would allow the 
user to break the Feature Based Design model if they were made available. A 
development of the system would allow design of the initial workpiece with these 
operators, or the addition of a feature recognition module would allow use of these 

CSG operators.
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Table A.1 The FODDS2 Feature Operators

Key
UriqueD
FeatureType
SuperType
NexiStfrig
FtsDId
Name
NodeAttOI
NodeAiCe
NodaflttOS
NodeAttW
NodeAWE
NocteftttOG
NodeA»i07
NcxteAiKB
NocteAMB
Noda%10
NodeAitll
Nod6AHr12
Nodo6ft13
NodeAtM4
Node%15
Noda%16
Node%17
hkxteWS

/sssemby
UriquelD
FeetieType
Opersfcr
NedSbfcig
RstOid
Name
OODLve-

Aulhor
THIe
Date
Ofrierlrfo

Compcnat
UriquelD
FeetieType
Opet*r
NexiSbiTg
RrsOld
Name

AiJhor
Trte
Date
Oherlnfo

Ttansfcim
UriquelD
FeetLieType
Operafcr
NextSttTg
RtslQiJd
Name
>3ranslalicn
Ytranstefon
aranslalicn
VecX
VecY
VecZ
Ande(deg)

F3DafcnTd
AndeTd

PCD
UriqueJD
FeatLieType
Operator
NextSUig
RrstChH
Name
Radusfl
AngJafPter(^
Ndtems

SizeTd
AndeTd

Matrix
UriquelD
FeatLieType
Operator
NextSttig
FtstChta1
Name
Xpith
Ypfch
NoHansX
NotemsY
Ftecf?

SizeTd

Hasect
UriqueiD
FeatLieType
Operator
NextStt^
FirstChid
Name

Urte
UriqudD
FeariieType
Operator
NextSfcfcig
FtstOtJ
Name

SO*act
UriquelD
FeatureType
Operator
NextSbfc^
FtsOld
Name
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Table A.2 The FODDS2 Primitives

Key

UriquelD

FeetieType

SuperT^pe
NexiSbfrg

RsCMd

Name

NodQ^ttOI
Nodo%02

NodeAftOS
NodeAtt04

NodaOttOB
NodeAJKB

Node>aa07
Node^SOe
NodeAflrOQ
NodaflflrlO
Nodaflftll
Node%12

Moderns
NodeM14
Node/%15

NodeAfrie
Noda%17
NodaAtH8

CuvedStt
UriquelD

FeatureType
NegFeaiLie
NexlSttTg

FtstOld

Name

CataFfedusH
WdhM

DeptH

FhshAr^efa]
Bo(fcmRedus[r1]

SizeTd
AndeTd
SufaoeFr

Odor

Pocket

UriquelD

FeatieT^pe

NegFeatue
NexCSttig
FistOid

Name

benglrtx]

WidtT^

Deptrt-z]

ComerRadusfi]
BotemFtedus[r1]

SizeTd

SufaoeFn

Cdcxr

Stt
UriquelD

FeetreType
NegFeatLie
NextSbng

RtsOld

Name

Lenglh[x5
WriBn^

Deplr(-z3

BotemRedus[r1]

SizeTd

SufeceFh

Cdou-

Hde

UriquelD

FeetiieTyce
NegFealue

NexSttig
FtsOrti

Name

Redusft]

Deplr(-z]
ThreadType

ThreadDepft

SizeTd

SufaDeFh

Cdou-

Endype

f^g
UriquelD

FeatueType
NegFedLie

NextSttig
FistOid

Name
Inrerfl6dus[iq
OuterRadusfrl]
DepH-zj

BotemRadL£[r2]

SizeTd
AngeTd
SufeceFh

Cdcxr

Bbck

UriquelD

FeetieType
PosFeelue

NextStfng
FistOid

Name
Lengt«
WJdrfy]
Hecftz]

SizeTd

SufeoeFn

Cdor

Cyfrxter

UriquelD
FeatureType

PosFeetie
NextSfcfrrg
FistChfci

Name
Radusfr]
Heicttz]

SizeTd

SufeceFh

Cckxr

In addition to those features listed in the table above, a number of features have been 
acquired from other sources, particularly Mandelli. Though the Mandelli features 
have not been included in the current system, they show how the system might be 
expanded to take into account application and company specific features. It was felt 
important to ensure that the generic features were fully understood before going on to 
include more specific features with more complex geometry. In particular many of 
the Mandelli features are examples of compound features and can be integrated using 
the compound feature mechanism rather than generating new feature primitives.

Display of the component can take one of three forms depending on user preference:

• a wireframe view - supporting fast real-time rotation

• an OpenGL view - supporting slightly slower real-time rotation but with 

colour-coded surfaces
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a rendered view - using a number of light sources and material and 

transparency effects this produces realistic component views for both 

clarity and product demonstration5 . Generation of a large rendered view 

can take a few minutes.

' PC I* ¥*« fiuid loots Hdp

ch^FoddsZ 2Xusef\holes2.mdb

Figure A.3 The Pick Operation

The user can also pick any feature on the screen and its identity and other 
information is relayed to the user, allowing easy editing of obviously misplaced 

features (see Figure A.3).

Implementation of the Method/Featuretype call

For each of the methods that produce volumes for the geometric algorithms it is 
possible to call the method with a feature type as mentioned in the table below. The 
behaviour of the method/featuretype combination is described in the accompanying 
notes. The note is given by the number in the method/featuretype matrix of Table 

A.3.

Table A.3 The Featuretype/Method Matrix

5 Most of the rendered images in this thesis have been generated directly from the 

software.
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| method

component
blank
feature
access
local-access
blind-access
dilated-feature
wcs

feature ty

assembly

1
1
2
2
2
2
2

componen

3
4
5
5
5
5
5

transform

6
6
6
6
6
6
6

O1

o
0

7
7
8
8
8
8
8

cylinder

7
7
8
8
8
8
8

o
(D

7
8
7
9
9
9
9

pe

a
7
8
7
9
9
9
9

•o 
o
0

7
8
7
9
9
9
9

curved-slo

7
8
7
9
9
9
9

(O
7
8
7
9
9
9
9

1. produces a list of its children's bodies
2. produces a flattened list of the lists generated by its children
3. to make a component this must unite all blank features to give P, unite all negative features to 

give N and subtract N from P to give the component C=P-N.
4. this is merely the union of the blank features P.
5. this is an entlist (entity list) of all the negative features or feature body (not united)
6. a transform can only have one child, but that child may return either a single entity or an entlist. 

Fortunately, transforms operate transparently on these two types.
7. returns bodies as expected
8. returns an empty list

9. returns a single body appropriate to feature type and method._____________________
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Table A.4 Features and Nodes in FODDS2

Name

Reserved
Hole
Slot
Rectangular Pocket
Curved Slot
Ring
Complex pocket
2D point
Block
Cylinder
Sphere
Cone
Torus
Sculptured Surface
Reserved
Component op
Compound Feature op
Subtract
Unite
Intersect
Coordinate transform
Matrix
pitch circle diameter

Icon

0
T£

w
pm©
-Pi-

4"1

!
_ m ___n

0
an—
u
n
ik:-
••• 
•••
••• •••

#
subnodes
0
0
0
0
0
0
n
0
0
0
0
0
0
n
n
1
1
n
n
n
n
1
1

Comment

Reserved
Negative Design Feature
Negative Design Feature
Negative Design Feature
Negative Design Feature
Negative Design Feature
Negative Design Feature
2D Point Definition
Geometric Primitive
Geometric Primitive
Geometric Primitive
Geometric Primitive
Geometric Primitive (not imp.)
Unimplemented
Reserved
This is the root of any component
For a user-defined features
CSG Boolean
CSG Boolean
CSG Boolean
Geometric Op
Manufacturing Design Op
Manufacturing Design Op

An important question is "what impact does this tree structure have on subsequent 
downstream tasks such as process planning?". The answer is that the structure here is 
of little impact. The tree structure can be envisaged as merely a design data structure 
in which case the tree structure can be reinterpreted as a flat structure. This can be 
done by writing the design structure into another tree structure with the same 
underlying properties, but where the tree is flattened by evaluating some of the nodes 
between the top level and the leaf nodes, particularly multiple transforms. This is 

done at present when producing the '.fpl' process plan structure.

The impact of this tree structure on the subsequent process planning is an important 
consideration, but is found to be slight. The process planning system will 
predominantly plan single features and then perform some (global) optimisation in 

order to produce the optimal process plan. Whereas this optimal process plan may 
contain some of the structure of the design, there should be no constraint that this is 

the case. Indeed process planning systems that generate process plans for

160



Geometric Reasoning for Process Planning Jonathan Charles Salmon

manufacturing features in the order in which they are designed are likely to be 

seriously sub optimal, and frequently no valid process plan can be generated in this 

manner. However, because much previous work has been carried out on a flat feature 

structure [Mill93] there exists a function that takes one feature tree and produces a 

flat feature tree that evaluates to the same component.

Tree Building, Editing and Interrogation

Just allowing the existence of a tree structure is not sufficient. Tools are required to 
manipulate this tree structure. Fortunately, by adopting the use of Access to hold the 

tree nodes, and by making use of the built in functionality of the Tree Widget to 
handle trees, much of the tree handling functionality can be handled by Visual Basic 

and Access. All that must be ensured is that the FirstChild and NextSibling attributes 
in the Tree View widget are kept synchronised with the nodes in the database, and 

that any time any node is modified in the database, the entire contents of the node are 
passed through the DDE to the mirror of the data structure held in Scheme.

The Scheme Mirror

Using Visual Basic and Access is fine, but a mechanism is needed to hold the same 
datastructure in Scheme, though the tools to edit this datastructure need not be so 
sophisticated as entire nodes of the tree can be modified at once.

The data structure found in Scheme therefore is a list of nodes (in Scheme as in Lisp, 

almost everything is a list).

The definition for one particular node, that of the hole in the 'elF example discussed 

previously, is given in Figure A.4 below.

The node contains a string with the Unique Node Identifier, and then a list of the 
attributes associated with that node. Unlike the format held in the Access database 
(with a fixed number of nodes in a fixed position) this version of the tree can handle 
any number of attributes, and consists of key-value pairs. All values are held as 
strings whether they are strings or numbers so the possibility of adding parametric 

functions instead of single values is available for the future.
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"Node 8"
("UniquelD" . "Node 8")
("FeatureType" . "Hole")
("NegFeature" . "UNIDDefault")
("NextSibling" . "Null")
("FirstChild" . "Null")
("Name" . "Hole")
("Radius[r]" . "10")
("Depth[-z]" . "40")
("BottomRadius[r2]" . "")
("DrillAngle[a]" . "118")
("SizeTol" . "0.1")
("SurfaceFin" . "3.2")
("EndTypeAccuracy" . "6.3")
("RoundnessTol" . "200")
("Colour" . "")
("Thread" . "")

("Endtype" . "Drill")

Figure A.4 Representation of a FODDS2 Node in Scheme

A deliberate consequence of this structure is that no explicit information is held in a 

node as to whom its parent node is. This is chiefly to avoid redundant information, as 

when a tree is evaluated we rarely need to climb up in the tree. When the possibility 

of functions attached to attributes is added the ability to browse around the tree in a 

more flexible manner is required, but this is still possible without the knowledge of 

parents via a search from the root node downwards for any particular node. The time 

taken to browse a tree this way is still likely to be small compared with the time 

taken to execute the solid modelling functions, so the gain of no redundancy and with 

it consistency, makes this worthwhile.

If run-time speed of FODDS2 is to be improved the lazy-evaluation schemes and a 

history (or subtree preservation) mechanism need to be investigated rather than re- 

evaluating the entire tree every time a modification is made.

Building Features

In order to build the tree, the root object has its build method called. In order to do 

this, it must first build its children and so on down the tree. The tree can be built in a 

number of different ways depending on the method called. This gives the nodes in
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the tree and object-oriented feel to them. Though a full object-oriented layer has not 

been used in FODDS2, such layers exist [Abel96] and could have been used. As it is 

only a small number of methods are required for the tree. Here the action of the 

"component" method is investigated. Building any node requires a call to the 

function flbuild with only two arguments, the method and the nodename. From this 

first calls are made in order to build the children of a node, and a list of the results of 

building the children is obtained. Then a call is made to the function flnodebuild 

with four arguments, method nodename featuretype and children. Children is now a 

list of the results of building all the children. Knowing the featuretype, the correct 

function can be called to build a node of that subclass. Information regarding 

different node subclasses is localised in a single file f2feats.scm, thus aiding the 

information hiding idea central to object-oriented design.

For each of the five primitive feature so far implemented, the list of attributes that 

have to be recovered from the node and the specification of the geometry of the 

feature so built is shown previously in Error! Reference source not found..

Operator or Branch Node Generation Functions

All these operator nodes take lists of subnodes. This must be a list of nodes, though it 

can be an empty list. Where the description says subnode, the function still takes a 

list of nodes, but for these functions to be evaluated properly this must be a singleton 

list. Though it is legal to give these functions empty lists, all require non-empty lists 

to function properly, though all are guaranteed not to fail on empty lists. Similarly 

those expecting lists of two or more items will return sensible results for singleton 

lists. 

Assembly Merely combines the output of all the Components into one list

Component If the method is component then this operator subtracts the feature list 

from the blank list, otherwise it returns the list of the objects below it.

Subtract This performs a regularised Boolean subtract from the first subnode of 

all subsequent subnodes. This implies that subnodes are ordered in the 

tree.
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Unite

Intersect

Transform

Matrix

This performs a regularised Boolean unite of its subnodes 

This performs a regularised Boolean intersect of its subnodes.

This generates a coordinate transform node composed of a translation 
by some vector consisting of 3 cartesian components, and a rotation 
about an arbitratry axis defined by 3 cartesian components by an 
arbitrary number of degrees. Effectively, the rotation is performed first 
about the global origin and the translation is then performed relative to 
the global axes, (or the origin and axes of the transform higher up in 
the tree)

Creates a matrix of the child feature given an x and y spacing, number 
of items along the x and y axis, and a flag to indicate whether the 
matrix is filled or empty.

Pitch Circle Creates a repeated feature around the boundary of a circle. The radius 
is specified along with the number of copies and the angular spacing 
between copies.

The Requirements of a Feature Oriented Design System

The following is a list of desirable features of a Feature Oriented Design System and 
a mechanism by which such a system can be built. This list has been derived from a 
study performed by the Manufacturing Planning Group entitled Feature Oriented 
Engineering - An Assessment [Mill96]

• User Defined Features - No set of predefined features will be complete 

for any domain.

• Compound Features - Provides a simple mechanism for many user 

defined features

• Parametric Design/Constraints

• Opportunities for Lazy Evaluation

It can be shown that the tree structure provides a simple structure through which all

the above requirements can be satisfied.
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We can split the tree structure into two main components

• Leaf nodes consisting only of primitive features or geometric building 

blocks

• Non-terminal nodes consisting of operators

The operators include the traditional regularised Booleans of unite, intersect and 

subtract, so it could be argued that we have generated a CSG tree via the back door. 

This may be true, in which case when editing the tree some restrictions must be 

imposed such as not being able to add subtractive features.

Other operators are also included. These include operators for transforming objects 

(restricted to translation and orientation transforms)

Other operators allow generation of multiple features, such as a matrix of holes or a 

pitch-circle of holes.

Editing facilities allow cut, copy and pasting of subtrees throughout the overall 

component tree. This introduces questions of identification. Each node in the tree is 

allocated a unique integer to allow pointers to nodes to function properly. As nodes 

are added and deleted, and particularly as subtrees are imported, maintaining these 

unique nodes becomes problematic.

A solution involves a two part naming scheme. Each node has two identifiers, either 

of which can be empty. One identifier identifies the type as the user sees it and the 

other a unique name for that particular instance of the type. Problems that arise are 

similar to that of handling a disk directory structure, often requiring unique file 

names in each directory, but also requiring that the operating system has some 

unique way of referring to the location of a file or directory.

Even when this problem is solved, there remains the problem of ensuring consistency 

of relationships, i.e. geometric tolerances between features and anteriority constraints 

between features. The current system does not attempt to retain these relationships 

after editing of the feature tree. For anteriority constraints these can always be rebuilt 

when required. Geometric tolerancing that has been specified by the user is harder to 

rebuild and some consistency control is needed.
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Every Tree starts with an A Assembly icon, so any tree can be an assembly of any 
number of components (though this is limited to a simple component in the current 

implementation. At the next level in the tree is a list of c components (again, just 

one currently). The Ell component consists of three features, a D block, x~r slot and 

Q hole, each attached to the tree via a ^ transform. This allows each feature to have 
its position and orientation modified without having to modify the node containing 
the individual feature parameters.

In fact a transform operator can be placed at almost any position in a feature tree, and 
multiple transforms can be chained and affect one or more features. This allows the 
common functionality associated with a transform to be separated from the features, 
and so avoid unnecessary code replication. In addition, allowing multiple transforms 
means that a complex transform can be decomposed into simpler transforms. This is 
particularly useful if a set of features have an unusual approach direction for 
instance, where a transform can set up a new working coordinate system, and 
subsequent transforms can be defined relative to this. This approach became 
particularly useful when building the Heriot-Watt 2 component (see Chapter 4).
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Appendix B. Relationship Lists

This appendix contains some of the sets of relationships discovered for the test 

components in Chapter 6, particularly when those lists do not warrant inclusion in 

the main thesis.

Hanl Relationships

(
( ("Pocket 1 
( ( "Pocket 1 
(("Slot" ' 
(("Slot" ' 
(("Slot" ' 
(("Hole" ' 
(("Slot" " 
(("Hole" " 
(("Hole" " 
( ("Pocket" 
(("Hole" ' 
( ("Pocket 1 
( ( "Pocket 1 
(("Hole" " 
(("Hole" " 
(("Hole" " 
( ("Hole" " 
(("Hole" " 
( ( "Pocket" 
( ("Pocket" 
(("Slot" " 
( ( "Pocket"

"feature") )
( ("Hole"

"feature" ) )
( ("Hole"

"feature") )
( ( "Pocket"

11 feature" ) )
( ( "Pocket"

" feature" ) )
( ("Pocket"

"feature") )
( ("Hole"

11 feature" ) )
( ( "Pocket"

" feature" ) )
( ("Slot"

" feature" ) )
( ("Slot"

"feature" ) )
( ("Slot"

"feature" ) )
( ("Hole"

"feature") )
( ( "Pocket"

11 feature" ) )
( ("Slot"

" feature" ) )

"Pocket" "Node 12" "access") "intersects" ("blank")) 
"Pocket" "Node 18" "access") "intersects" ("blank")) 

Slot" "Node 26" "access") "intersects" ("blank")) 
Slot" "Node 28" "access") "intersects" ("blank")) 
Slot" "Node 30" "access") "intersects" ("blank")) 
Hole" "Node 41" "access") "intersects" ("blank")) 
Slot" "Node 43" "access") "intersects" ("blank")) 
Hole" "Node 53" "access") "intersects" ("blank")) 
Hole" "Node 55" "access") "intersects" ("blank")) 
"Pocket" "Node 57" "access") "intersects" ("blank")) 

Hole" "Node 59" "access") "intersects" ("blank")) 
"Pocket" "Node 62" "access") "intersects" ("blank")) 
"Pocket" "Node 64" "access") "intersects" ("blank")) 

Hole" "Node 66" "access") "intersects" ("blank")) 
Hole" "Node 68" "access") "intersects" ("blank")) 
Hole" "Node 70" "access") "intersects" ("blank")) 
Hole" "Node 72" "access") "intersects" ("blank")) 
Hole" "Node 74" "access") "intersects" ("blank")) 
"Pocket" "Node 77" "access") "intersects" ("blank")) 
"Pocket" "Node 12" "access") "intersects" ("component 1 

Slot" "Node 43" "access") "intersects" ("component")) 
"Pocket" "Node 45" "access") "intersects" ("Pocket"

"Holel"

"Hole"

"Pocket

"Pocket

"Pocket

"Hole"

"Pocket

"Slot"

"Slot" "

"Slot" "

"Hole" "

"Pocket

"Slot"

"Node 47"

Node 49"

" "Node 57

" "Node 64

11 "Node 77

Node 16"

11 "Node 18

Node 28"

Node 3 0 "

Node 43"

Node 59"

" "Node 62

"Node 30"

"access " )

"access" )

" "access " )

"access" )

"access" )

"access " )

11 "access" )

"access" )

"access" )

"access" )

"access" )

"access" )

"access " )

" intersects"

' intersects "

" intersects'

" intersects'

"intersects'

' intersects "

" intersects '

1 intersects"

1 intersects"

' intersects "

1 intersects"

" intersects 1

" intersects

("Pocket"

( "Pocket"

( "Pocket"

("Pocket"

( "Pocket"

( "Pocket"

( "Pocket"

( "Pocket"

( "Pocket"

( "Pocket"

( "Pocket"

("Pocket"

("Hole"

) ) 

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Pocket "

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Hole"

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

12"

12"

12"

12"

12"

12"

14"

14"

14"

14"

14"

14"

14"

16"
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:"Hole" "Hole" 

("Hole" "Hole'

(("Slot" "Slot" "Node 43" "access") "intersects"
"feature")) 
(("Pocket" "Pocket" "Node 62" "access") "intersects 1

"feature"))
(("Hole" "Hole" "Node 20" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Slot" "Slot" "Node 26" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Slot" "Slot" "Node 28" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Hole" "Hole" "Node 53" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Hole" "Hole" "Node 55" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 77" "access") "intersects" ("Pocket" "Pocket 1 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Pocket" "Pocket" "Node 51" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Pocket" "Pocket" "Node 77" "access") "intersects" ("Hole" "Hole" 

11 feature") )
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket" 

"feature") )
(("Hole" "Hole" "Node 16" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Slot" "Slot" "Node 30" "access") "intersects" ("Pocket" "Pocket" 

" feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 62" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Hole" "Hole" "Node 70" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Hole" "Hole" "Node 72" "access") "intersects" ("Pocket" "Pocket" 

11 feature") )
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Slot" "Slot" 

"feature"))
(("Hole" "Hole" "Node 20" "access") "intersects" ("Slot" "Slot" 

"feature"))
(("Hole" "Holel" "Node 47" "access") "intersects" ("Slot" "Slot" 

"feature"))
(("Pocket" "Pocket" "Node 51" "access") "intersects" ("Slot" "Slot" 

"feature"))
(("Pocket" "Pocket" "Node 57" "access") "intersects" ("Slot" "Slot" 

11 feature") )
(("Pocket" "Pocket" "Node 64" "access") "intersects" ("Slot" "Slot" 

"feature"))
(("Pocket" "Pocket" "1 

"feature"))
(("Pocket" "Pocket" "Node 18" "access") "intersects" 

"feature"))
(("Hole" "Hole" "Node 16" "access") "intersects" ("Slot 1 

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Slot" "Slot"

11 feature") ) 
(("Pocket" "Pocket" "Node 62" "access") "intersects" ("Slot" "Slot"

"feature")) 
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket"

"feature")) 
(("Pocket" "Pocket" "Node 22" "access") "intersects" ("Pocket" "Pocket"

"feature")) 
(("Pocket" "Pocket" "Node 34" "access") "intersects" ("Pocket" "Pocket"

"feature")) 
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket" "Pocket"

"feature")) 
(("Hole" "Hole" "Node 66" "access") "intersects" ("Pocket" "Pocket"

"feature")) 
(("Hole" "Hole" "Node 68" "access") "intersects" ("Pocket" "Pocket"

"feature")) ,,,„,, 
(("Hole" "Hole" "Node 70" "access") "intersects" ("Pocket" "Pocket"

"feature")) , , ,„ , 
(("Hole" "Hole" "Node 72" "access") "intersects" ("Pocket" "Pocket"

"feature")) ____________________——_————————————————

"Node 77" "access") "intersects" ("Slot" "Slot"

'Slot" "Slot" 

"Slot"

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node

16" 

16" 

18" 

18" 

IS­ 

IS" 

18" 

18" 

20" 

20" 

20" 

22" 

22" 

22" 

22" 

22" 

22" 

22" 

26" 

26" 

26" 

26" 

26" 

26" 

26" 

28" 

30" 

30" 

30" 

32" 

32" 

32" 

32" 

32" 

32" 

32" 

32"
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(("Hole" "Hole" "Node 74" "access") "intersects" ("Pocket" "Pocket"
"feature")) 
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Hole" "Hole" "Node 16" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Slot" "Slot" "Node 30" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 32" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Hole" "Hole" "Node 41" "access") "intersects" ("Pocket" "Pocket" 

11 feature") )
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 62" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 39" "access") "intersects" ("Slot" "Slot" 

"feature"))
(("Hole" "Hole" "Node 41" "access") "intersects" ("Slot" "Slot" 

"feature"))
(("Pocket" "Pocket" "Node 77" "access") "intersects" ("Slot" "Slot" 

"feature"))
(("Hole" "Hole" "Node 41" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Pocket" "Pocket" "Node 39" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Slot" "Slot" 

"feature"))
(("Hole" "Hole" "Node 41" "access") "intersects" ("Slot" "Slot" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Holel" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 18" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Slot" "Slot" "Node 26" "access") "intersects" ("Pocket" 

"feature"))
(("Slot" "Slot 1 

"feature"))
(("Hole" "Hole 1 

"feature"))
(("Hole" "Hole 1 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature")) 
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature")) 
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket"

"feature")) 
(("Pocket" "Pocket" "Node 14" "access") "intersects" ("Pocket" "Pocket"

"feature")) 
(("Pocket" "Pocket" "Node 18" "access") "intersects" ("Pocket" "Pocket"

"feature")) 
(("Slot" "Slot" "Node 26" "access") "intersects" ("Pocket" "Pocket"

11 feature") ) , 
(("Slot" "Slot" "Node 30" "access") "intersects" ("Pocket" "Pocket 1

(("Slot" "Slot" "Node 37" "access") "intersects" ("Pocket" "Pocket"

" feature")) „ „ 
(("Pocket" "Pocket" "Node 39" "access") "intersects" ('Pocket Pocket

"feature")) , _ . „_ . , „ 
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket 1 'Pocket

" f G3.tu.irc") ) {("Pocket" "Pocket" "Node 77" "access") "intersects" ("Pocket" "Pocket"

"feature")) ___________._____.——————————————————————

'Node 28" "access") "intersects" ("Pocket"

'Pocket" 

'Pocket"

"Node 53" "access") "intersects" ("Pocket" "Pocket" 

"Node 55" "access") "intersects" ("Pocket" "Pocket"

"Node 32"

"Node 34"

"Node 34"

"Node 34"

"Node 34"

"Node 34"

"Node 34"

"Node 34"

"Node 37"

"Node 37"

"Node 37"

"Node 39"

"Node 41"

"Node 41"

"Node 41"

"Node 43"

"Node 43"

"Node 45"

"Node 47"

"Node 49"

"Node 51"

"Node 51"

"Node 51"

"Node 51"

"Node 51"

"Node 51"

"Node 53"

"Node 55"

"Node 57"

"Node 57"

"Node 57"

"Node 57"

"Node 57"

"Node 57"

"Node 57"

"Node 57"

"Node 57"
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(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole" 
"feature"))
(("Pocket" "Pocket" "Node 18" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Slot" "Slot" "Node 28" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket" 

11 feature") )
(("Pocket" "Pocket" "Node 22" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 32" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 34" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Hole" "Hole" "Node 41" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 18" "access") "intersects" ("Pocket" "Pocket" 

11 feature") )
(("Slot" "Slot" "Node 26" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Slot" "Slot" "Node 37" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 39" "access") "intersects" ("Pocket" "Pocket" 

11 feature") )
(("Pocket" "Pocket" "Node 77" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole" 

"feature"))
"Node 43 "access" "intersects" ("Hole" "Hole"(("Slot" "Slot 1 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Hole" "Hole" 

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket 1 

"feature"))
(("Pocket" "Pocket" "Node 18" "access") "intersects" ("Pocket" "Pocket 1 

"feature"))
(("Slot" "Slot" "Node 26" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 30" "access") "intersects" ("Pocket" "Pocket" 

"feature"))
(("Slot" "Slot" "Node 37" "access") "intersects" ("Pocket" "Pocket"

"feature")) 
(("Pocket" "Pocket" "Node 39" "access") "intersects" ("Pocket" "Pocket 1

11 feature" ) ) 
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket" "Pocket"

" feature"))
(("Pocket" "Pocket" "Node 12" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 16" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 20" "blind-access") "through" ("component"))
(("Pocket" "Pocket" "Node 34" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 41" "blind-access") "through" ("component"))
(("Slot" "Slot" "Node 43" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 49" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 53" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 55" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 59" "blind-access") "through" ("component"))______

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node 

"Node

59" 

59"

59"

62"

62"

62"

62"

62"

62"

64"

64"

64"

64"

64"

64"

66"

66"

68"

68"

70"

70"

72"

72"

74"

74"

77"

77"

77"

77"

77"

77"

77"
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(("Pocket" "Pocket" "Node 62" "blind-access") "throuah" ("comoonent"))

Gadh2 Relationships

'Hole" "Hole" "Node 16" "access"
'Hole" "Hole" "Node 17" "access"
"Hole" "Hole" "Node 18" '

"Node 19" '
"Node 16" '
"Node 17" '
"Node 18" '
"Node 19" ' 
"Node 16

"Hole" 
"Hole" 
"Hole" 
"Hole" 
"Hole" 
"Hole 1

access") '
access") '
access") '
access") '
access") '
access") ' 
" "access

(("Hole
(("Hole
(("Hole
(("Hole
(("Hole
(("Hole 

"feature"))
(("Hole" "Hole" "Node 17" "access 

"feature"))
(("Hole" "Hole" "Node 18" "access 

"feature"))
(("Hole" "Hole" "Node 19" "access 

"feature"))
(("Pocket" "Pocket" "Node 11" "blind-
(("CurvedSlot" "CurvedSlot" "Node 24' 

gh" ("component"))
({"CurvedSlot" "CurvedSlot" "Node 29'
(("CurvedSlot" "CurvedSlot" "Node 32'
(("CurvedSlot" "CurvedSlot" "Node 35'

"intersects" ("blank"))
"intersects" ("blank"))
"intersects" ("blank"))
"intersects" ("blank"))
"intersects" ("component"))
"intersects" ("component"))
"intersects" ("component"))
"intersects" ("component"))
") "intersects" ("Pocket" "Pocket" "Node 11'

") "intersects" ("Pocket" "Pocket" "Node 11'

") "intersects" ("Pocket" "Pocket" "Node 11'

") "intersects" ("Pocket" "Pocket" "Node 11'

-access") "through" ("component")) 
1 "blind-access") "throu

' "blind-access") "through" ("component"))
' "blind-access") "through" ("component"))
' "blind-access") "through" ("component"))

HAPPI Relationships

( (Slot 
( (Slot 
( (Hole 
( (Slot 
( (Slot 
( (Slot 
( (Hole 
( (Hole

MidSlot 
BtmSlot 
LtlHole 
MidSlot 
BtmSlot 
BtmSlot 
LtlHole 
BigHole

Node 
Node 
Node 
Node 
Node 
Node 
Node 
Node

10 
12 
16 
10 
12 
12 
16 
6

access) intersects (blank)) 
access) intersects (blank)) 
access) intersects (blank)) 
access) intersects (Slot TopSlot 
access) intersects (Slot TopSlot 
access) intersects (Slot MidSlot 
access) intersects (Pocket Pocket 

blind-access) through (component))

Node 
Node 
Node 
Node

8 feature) ) 
8 feature) ) 
10 feature) ) 
14 feature) )




