
Geometric Reasoning for Process

Planning

Jonathan Charles Salmon

Ph.D.

The University of Edinburgh

1997

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Abstract

A Feature Oriented Detail Design System (FODDS2) is described that

allows design of 2*/2D components using machining features. The

geometric reasoning required to generate anteriority constraints for

subsequent process planning is described with accompanying problems,

experiments and proposed solutions. Many of the test components are

from other institutions, and the success of the reasoning confirms the

robustness of the approach.

The geometric algorithms currently unavailable in commercial solid

modellers, but required for the system, are described. These are

particularly the Minkowski sum and the medial axis operator. Some

implementation work is shown.

All features in the system are described in a consistent manner in terms

of a 'tool profile' and 'cutter path' allowing new features to be added

simply and easily and ensuring that geometric reasoning can still be

performed.

Novel work in the area anteriority checking and of proximity checking of

feature-based designs is presented.

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Acknowledgements

I would like to acknowledge the support of a number of individuals and groups.

Angela Noble for long-suffering support and tolerance as I slaved long into the

nights, my parents for their continuous support over the years for my studies and

Frank Mill, my supervisor over the years.

To the other members of the Manufacturing Planning Group for their help and at

times extremely frank criticism, namely Stephen Warrington, Dominique Jacquel,

Andrew Sherlock and Jane Naish and to former members of the group, Gordon

Little, and Ser Chong Chia.

To the department in particular the tolerance of the two heads of department during

the long wait for this volume, George Alder and Bill Easson (in chronological order),

as well as the staff, researchers, postgraduates, secretarial and technical staff.

To Roy Jones and Doug Clarke (and all those in the Cosmic Noodle, Wan Chai) to

whom I promised a bottle of whisky if I failed to get this in on time.

To the Djinn consortium, Sir John Leslie and the Diggers, Carsten Friedrich, Sascha

Kuessner and Uwe Holznagel.

The errors, however, are all my own.

Jonathan Salmon

Edinburgh, December 1997.

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Table of Contents

	Abstract..!

	Declaration..ii

	Acknowledgements..iii

1 Introduction..!

1.1 Background... 1

1.2 Scope and Problem.. 1

1.3 Aims and Objectives...2

1.3.1 Aims.. 2

1.3.2 Objectives... 3

1.4 Organisation of Thesis ..4

2 Literature Review...6

2.1 Shah's Summary of Feature Based Design Approaches...6

2.1.1 Human Assisted Feature Definition ... 7

2.7.2 Automatic Feature Recognition.. 7

2.1.3 Design by Features... 9

2.1.4 Parametric Geometric Modelling... 11

2.2 Wilson and Pratt.. 12

2.3 Arikan's Design Using Machining Operations ... 13

2.4 Material Removal Shape Element Volumes ... 13

2.4.1 How Does a Feature Relate to a Machining Operation?... 14

2.4.2 Relating Features to Workpiece Shape .. 14

2.4.3 Carrying Machining Information in Features.. 15

2.4.4 Fixed library vs. Define as Needed.. 15

2.4.5 Complete Definition vs. Ambiguity... 16

2.4.6 Machining Applications Supported.. 16

2.4.7 Accessibility for Machining.. 16

2.5 Gupta's Review of Manufacturability Analysis.. 16

2.6 Bidarra's Feature Interaction Detection.. 18

2.7 Vandenbrande's Spatial Reasoning... 19

2.8 PART Process Planning System.. 19

2.9 GARI: An Expert System for Process Planning.. 20

2.10 Summary... 21

3 Background... 22

3.1 Manufacturing Planning Group, Edinburgh..22

IV

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3.7.7 r^7MPP7Pwce55P/anner... 25

3.7.2 The SESAME Project ...30

3.2 Computer Integrated Manufacturing (CIM).. 32

3.3 Solid Modelling... 35

3.3.7 Spatial Occupancy Methods... 38

3.3.2 Octree modelling...39

3.3.3 Depth maps... 40

3.3.4 Constructive Solid Geometry.. 41

3.3.5 Boundary Representation... 44

3.4 Geometric Algorithms.. ... 46

3.4.7 Minkowski Sum...46

3.4.2 Medial Axis... 52

3.4.3 Definition of 2'/2D... 53

3.5 Features... 54

3.5.7 Applications.. 57

3.5.2 Feature Definitions .. 58

3.5.3 Feature Attributes ..61

3.5.4 Manufacturing Feature Justification.. 63

3.6 Summary... 64

4 Geometric Reasoning for Process Planning ... 65

4.1 Definition of a Component... 65

4.2 The Feature Library... 67

4.2.1 //o/cs .. 65

4.2.2 Slots.. 69

4.2.3 Pockets... 69

4.3 A Grounding for Manufacturing Features.................................... 69

4.3.1 Cutters with Limited Access ... 72

4.3.2 Tolerancing .. 73

4.4 Generating Feature Volumes for Manufacturability Analysis .. 74

4.5 The Geometric Reasoning Algorithms.............. .. 78

4.5.7 Void Recognition.. 80

4.5.2 Feature Presence.. 83

4.5.3 Access Problem Detection.. 84

4.5.4 Through Feature Detection.. 96

4.5.5 Proximity Detection.. 97

4.5.6 Intersection Detection.. 99

4.5.7 Hole Interference Detection... 100

4.5.8 Alternate Access Direction... 102

4.6 Summary... 102

Geometric Reasoning for Process Planning Jonathan Charles Salmon

5 Feature Oriented Detail Design System.. 104

5.1 User Requirements.. 104

5.7.7 Requirements of the 'Front-End' User... 104

5.7.2 Requirements for Downstream Applications.. 105

5.2 Shah's Feature Based Design System Characteristics... 106

5.2.7 Representation of Feature Definitions ... 706

5.2.2 Level of Support of'User-defined Features... 107

5.2.3 Type of Linkage with a Geometric Modelling System.. 108

5.2.4 Application Context.. 108

5.2.5 Support for Feature Validation.. 109

5.3 The Design Features in FODDS2.. 109

5.5.7 The Positive Workpiece Construction Features... 109

5.3.2 The Primitive Material Removal (Negative) Features. .. 770

5.3.3 Tolerancing and Surface Finish... 115

6 Experiments.. 117

6.1 Focussed Experiments... 117

6.1.1 Feature Variety Test... 117

6.1.2 Access test for Crossed Slots with Hole.. 118

6.1.3 Thin Wall Demonstration... 121

6.2 Test Components... 123

6.2.7 The HAPPI component. .. 723

6.2.2 The Edinburgh Composite Component (TECC)... 124

6.2.3 The Heriot-Watt 2 'MacTaggart Scott' Component... 126

6.2.4 The Heriot-Watt 'Teddy Bear' ... 727

6.2.5 TheHanl Component... 129

6.2.6 TheGadh2 Component... 130

6.2.7 The Regli component.. 132

6.3 Summary... 133

7 Conclusions... 134

7.1 Summary of Conclusions.. 135

7.2 Further Research ... 135

7.2.7 Addition of More Powerful Features.. 136

7.2.2 Additional Feature Validation.. 136

7.2.3 Feature Relaxation Techniques.. 136

7.2.4 Alternate Feature Views... 137

7.2.5 Agent Based Approaches to Speedup the Overall System.. 137

7.2.6 Improved Tolerancing Mechanism... 137

7.2.7 Parametric and Constraint Modelling... 137

7.2.8 Geometric Algorithms.. 137

VI

Geometric Reasoning for Process Planning Jonathan Charles Salmon

References..

Appendix A. FODDS2 Implementation Details... 150

System Architecture.. 151

The FODDS2 Graphical User Interface .. 153

FODDS2 Data Structure ... 154

Implementation of the Method/Featuretype call... 158

Tree Building, Editing and Interrogation... 161

Building Features... 162

Operator or Branch Node Generation Functions .. 163

The Requirements of a Feature Oriented Design System... 164

Appendix B. Relationship Lists... 167

Hanl Relationships... 167

Gadh2 Relationships... 171

HAPPI Relationships.. 171

VII

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Table of Figures

Figure 1 Human Interactive Feature Definition.. 7

Figure 2 Automatic Feature Recognition..7

Figure 3 Design by Features ...9

Figure 4 Pratt & Wilson's Feature Taxonomy... 13

Figure 5 Slabs and Steps... 15

Figure 6 Manufacturability Analysis According to Gupta.. 17

Figure 7 A Schematic Representation of the PART System (after Hout89)... 20

Figure 8 Summary of Feature Based Research in the MPG ... 24

Figure 9 Architecture of HAPPI Process Planner...25

Figure 10 Extract from HAPPI Component Model.. 26

Figure 11 Architecture of the Comparison Module of the HAPPI Planner .. 28

Figure 12 A HAPPI Example Component.. 29

Figure 13 Relationships in an Example HAPPI Database .. 29

Figure 14 CEW System Overview.. 30

Figure 15 Lead Times vs. Engineering Methodology... 32

Figure 16 A 2D Drafting Package (EasyCAD)... 36

Figure 17 Impossible Objects ...37

Figure 18 An Example Object and Octant Numbering...39

Figure 19 Octree Representation of Example Object ...39

Figure 20 Original and Reconstructed Golf Club Head.. 41

Figure 21 Diagram of a Planar Halfspace... 42

Figure 22 A Box and a Cylinder in terms of their Constituent Halfspaces... 42

Figure 23 A Simple CSG Tree and Model.. 43

Figure 24 A B-Rep Hierarchy (ACIS)..44

Figure 25 A Non-Manifold body ..45

Figure 26 Minkowski Sum of Two Polygons M and N..46

Figure 27 Minkowski Sum Combines the Shape Characteristics of its Arguments.............................. 47

Figure 28 Navigating an Object (R) amongst Obstacles (Ol, O2) using Interference Detection48

Figure 29 Navigating an Object (R) amongst Obstacles (O1,O2) using Minkowski Sums..................48

Figure 30 Machining Volume Generation ..49

Figure 31 Problems with Minkowski Blends (after [Midd88])...51

Figure 32 Dilation using a Minkowski Sum...51

Figure 33 An Example of an Object created using CTS... 52

Figure 34 A 2D Region and its Medial Axis... 53

VIM

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Figure 35 A Body Formed from Three Intersecting Cylinders... 55

Figure 36 Blank, Features, Component and Delta-Volume.. 67

Figure 37 Feature Volumes of Cutters with Limited Access..72

Figure 38 Tool'Profiles in FODDS2.. 75

Figure 39 Void Detection ...81

Figure 40 Void Detection Algorithm.. 83

Figure 41 Feature Presence Algorithm... 83

Figure 42 Feature Presence Detection .. 84

Figure 43 Possible Access Directions for Slot and Hole .. 85

Figure 44 Problems using Access Vectors.. 86

Figure 45 Evolution of Access Body Types ... 87

Figure 46 A Problem in Recognising an Access Problem.. 88

Figure 47 Problems with a Simple Grown Access Body on an Angled Surface................................... 88

Figure 48 Access body e) is less prone to Problems of Angle than Type d)... 89

Figure 49 Nested Pockets with a Coplanar Sidewall ..90

Figure 50 Access Problem Algorithm... 92

Figure 51 Access Bodies and Anteriority Constraints for the Triply Nested Slot93

Figure 52 The Slot and Hole case...93

Figure 53 Crossed Slots with Hole ...94

Figure 54 Improved Anteriority Algorithm..96

Figure 55 Through Feature Detection... 96

Figure 56 Thin Wall Detection ...98

Figure 57 Thin Walls Algorithm... 99

Figure 58 Intersection Detection Algorithm... 100

Figure 59 Hole Access Interaction Algorithm.. 101

Figure 60 Problems with Hole Access Interference.. 102

Figure 61 Example of Hole Types.. 113

Figure 62 The Simple Ell'Component... 116

Figure 63 The Feature Library Demonstration Part.. 117

Figure 64 Crossed Slots with a Hole... 119

Figure 65 Offset Hole in Crossed Slots .. 120

Figure 66 Four Crossed Slots with Hole... 121

Figure 67 Thin Wall Demonstration Component.. 121

Figure 68 The HAPPI Test Component.. 123

Figure 69 The HAPPI Test Component with Features and Access Bodies .. 124

Figure 70 The TECC Component... 124

Figure 71 The Heriot-Watt 2 Component... 126

Figure 72The Heriot-Watt Teddy Bear'... 127

IX

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Figure 73 Example of the 3D Geometry of a Complex Pocket... 128

Figure 74 The Hanl Test Component in the FODDS2 GUI... 129

Figure 75 The Gadh2 Test Component... 130

Figure 76 The Regli Component in FODDS2... 132

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Table of Tables

Table 1 Geometric Reasoning Body Methods and their Equations .. 78

Table 2 The Primitive Material Removal Features... 112

Table 3 The HAPPI Test Component Access List.. 123

Table 4 Results of Anteriority Checks on Hanl Component.. 130

Table5 Relationships of the Regli Component.. 133

XI

Geometric Reasoning for Process Planning Jonathan Charles Salmon

1 Introduction

1.1 Background

Traditional manufacturing techniques distinguish between the sequential processes of

designing, process planning and manufacturing. Frequently as the design proceeds

through these stages it is rejected and earlier stages must be reiterated. The earlier

mistakes can be caught the cheaper they are to remedy.

Computer Aided Process Planning systems developed in the 1980s were intended to

achieve two main goals. Firstly, to speed up the process planning task, and secondly

to improve the quality and cost of resultant process plans.

In order to ensure that a near optimal process plan has been discovered, a great many

alternative process plans must be explored. This is a drawback to both classical rule-

based approaches and even to evolutionary algorithm approaches.

To reduce the size of the search space for the process planner, it is beneficial if

clearly unmanufacturable process plans are pruned from the search space at the

earliest possible juncture.

Many CAPP systems, though receiving information from CAD systems and feeding

CAM systems, do not contain a solid modeller.

1.2 Scope and Problem

If geometric algorithms can be developed that can be performed on a design in order

to infer manufacturability problems at an early stage, this can dramatically prune the

search space of process plans. To ensure this reasoning is performed as early as

possible, it is sensible to link this manufacturability analysis stage to the design

system and perform the manufacturability analysis either immediately on finishing a

design, or concurrently with design changes.

This would allow many manufacturing problems to be identified by the system and

flagged to the designer at an early stage and thus at a near insignificant cost to the

finished product. It is not necessary to decide on particular machine/tool/setup

Geometric Reasoning for Process Planning Jonathan Charles Salmon

combinations, and by avoiding these process selections, the search space is pruned to

a greater degree and at less expense than by making the more detailed decisions.

(The tree is pruned by lopping off a few large branches rather than many small

twigs.)

Fundamental to many CAPP and CAM systems is the use of features, though

different schools differ on their definition of a feature. In order to integrate the

manufacturability analysis into the CAD system, a CAD system where components

are designed in terms of manufacturing features shall be used.

The design by manufacturing features approach is often considered a significant

drawback of feature-based design systems, but it seems reasonable that an additional

front-end with either a feature recognition or feature transformation system,

producing suitable manufacturing features as its output, would silence many of these

objections. Such a feature transformation system is briefly discussed in Chapter 3.

Perhaps the chief problem for CAPP systems, and a problem that is not readily

amenable to CAPP systems without a solid modeller, is that of machining

accessibility leading to machining precedence constraints between features. Other

manufacturability constraints are also of interest.

1.3 Aims and Objectives

1.3.1 Aims

This thesis has the following aims:

1. To show that anteriority inferencing algorithms are necessary for automated

process planning from a feature based design system

2. To develop such algorithms to satisfy Aim 1 and prove that these algorithms

indeed satisfy Aim 1.

3. To show through the development of a Feature Based Design system (FODDS2)

that with these algorithms, it is possible to design a significant proportion of

mechanical components and that the inferencing algorithms do indeed detect

anteriority errors, and that NC code can be generated to automatically produce a

selection of these components.

Geometric Reasoning for Process Planning Jonathan Charles Salmon

4. To show that the modelling of negative features as a Minkowski sum of tool and

toolpath is a powerful method of ensuring ease of extensibility of the feature set,

and provides a common robust mechanism for adding geometric algorithms for

manufacturability analysis of feature based designs.

1.3.2 Objectives

The objectives of the thesis are more extensive.

1. A geometric algorithm to elicit ordering constraints in the manufacturing of

features shall be developed.

2. In order to demonstrate these algorithms it will be necessary to build a feature

based design system that shall be known as Feature Oriented Detail Design

System version 2 (FODDS2).

3. FODDS2 shall have a sufficiently rich, powerful and flexible feature library to

allow the modelling of significant real world components.

4. In order to prove the generality and intuitiveness of the design metaphor used in

FODDS2, and in order to show that this design methodology allows real designs

to be created in reasonable timescales it will be necessary to have a system that

allows any competent user to easily create component instances with a minimum

of training. Thus, a system with a near professional user interface and operation

will be required.

5. The features meta-model and the FODDS2 system shall allow new features to be

added with relative ease. An important property of this meta-model and the

geometric reasoning algorithms is that all algorithms must still operate correctly

as new features are added. Thus, it is important that the features meta-model is

general enough to allow addition of more features, but sufficiently constrained

that reasoning algorithms can operate on any feature type generated with this

features meta-model.

6. The geometric algorithms for anteriority checking require a set of tools that

enable other useful algorithms for process planning to be developed quite easily.

This set of algorithms shall be demonstrated.

Geometric Reasoning for Process Planning Jonathan Charles Salmon

A set of components falling into two main categories shall be tested. That is, they

will be built using the FODDS2 system and the geometric algorithms run on those

components to identify machining problems and ordering constraints on feature

manufacturing. For some components, NC code shall be produced and the

components manufactured on a Bridgeportll NC mill in order to prove the system in

reality. The first set of components will be components with a limited number of

features whose purpose is directed towards illustrating a particular problem. The

second set will be consist of real and test components from companies and research

groups throughout the world in order to show the general applicability of the system.

1.4 Organisation of Thesis

Chapter 1 introduces the thesis and contents and contains the aims and objectives of

the thesis as well as a brief summary of the remainder of the thesis.

Chapter 2 contains a Literature Review of those groups and individuals throughout

the world undertaking work in the area of manufacturability analysis and related

areas. These areas include feature based design, computer aided process planning.

Additionally the chapter contains a brief review of solid modelling techniques

concluding with a review of particular useful geometric algorithms, the Minkowski

sum and the medial axis.

Chapter 3 gives the background to the thesis, in particular prior work within the

Manufacturing Planning Group of the Department of Mechanical Engineering at The

University of Edinburgh (MPG) in order to place the work in this thesis in context.

This chapter also reviews solid modelling, certain geometric algorithms and features.

Chapter 4 details the geometric reasoning algorithms in FODDS2 necessary to infer

anteriority constraints as a necessary precursor to automated process planning as well

as additional algorithms of importance in validating feature based designs for

subsequent process planning.

Chapter 5 covers aspects of the Feature Oriented Detail Design System 2, as are

relevant to the thesis.

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Chapter 6 details experiments carried out to test the system. These fall into two

groups; focussed experiments to show particular aspects of the system and more

general experiments with a selection of parts from various research groups and

industrial components to show the robustness of the system. Automatic production of

a machined part from the system is shown.

Chapter 7 concludes the thesis with a summary of the work, conclusions drawn, an

evaluation of the original content of the thesis and pointers towards further work.

Geometric Reasoning for Process Planning Jonathan Charles Salmon

2 Literature Review

This Literature Review chapter collects the work undertaken in other research groups

that is of particular relevance to this thesis. Thus it covers work in the areas of

features, feature based design and feature recognition and computer aided process

planning as well as some geometric algorithms.

In the area of features, Shah's summary of approaches to Feature Based Design is

discussed. Kramer's work on Material Removal Shape Element Volumes [Kram92]

whilst at NIST is discussed.

In the areas of manufacturability analysis, the work of Gupta [Gupt95] and Nau from

the University of Maryland, and Bidarra [Bida97] from Delft, along with

Vandenbrande [Vand93] and Requicha from the University of Rochester are

discussed.

The PART process planning system from the University of Twente [DeJo94] is

reviewed.

A review of the work of the Manufacturing Planning Group of The University of

Edinburgh including the work on the HAPPI Process Planner and the SESAME

Simultaneous Engineering System, and a background section on solid modelling and

the geometric algorithms of Minkowski Sums and medial axes can be found in

Chapter 3.

2.1 Shah's Summary of Feature Based Design

Approaches

Shah [Shah91b] surveyed CAD/feature-based process planning and NC

programming techniques in 1991. He classifies these systems into generic categories.

Shah identified four different methods of incorporating features into geometric

models

 Human assisted feature definition using geometric models.

 Automatic (machine) recognition of features from geometric models.

Geometric Reasoning for Process Planning Jonathan Charles Salmon

 Design by features

 Parametric geometric modelling

2.1.1 Human Assisted Feature Definition

designer geometric
modeller

geometric
model

feature
model

process
planner

Figure 1 Human Interactive Feature Definition

The Human Interactive Feature Definition normally involves a designer first

generating a solid model of a component and then subsequently, the process planner

(or other user requiring 'features') embellishes the solid model with feature tags (see

Figure 1). Usually the designer is required to label every surface in the solid model.

This is both demanding in time and effort, and requires the process planner to

perform mentally much of the process planning task prior to automated process

planning. In addition the feature tags tend to be attached to the surfaces and edges of

the B-rep model of the component and not to the material removal volumes. Lastly,

there is no provision for tagging intermediate features that are required during

machining but play no physical part in either the stock or the finished component

(though this disadvantage can be levelled at most of the other methods).

2.1.2 Automatic Feature Recognition

solid
modeller i k

feature
recognition

feature
extraction

*-

Figure 2 Automatic Feature Recognition

Automatic Feature Recognition attempts to automate the above process. Again a

solid model of the desired part is fed into the system and the system attempts to

automatically extract features of interest to downstream processes from the solid

model (see Figure 2). Many groups are working on automatic feature recognition

Geometric Reasoning for Process Planning Jonathan Charles Salmon

including Corney and Clark [Corn90][Tutt97], Regli [Regl95], Joneja [Yang97] and

Jared [Jare89]. Many of the disadvantages of this approach are similar to the

previous approach.

The system is trying to extract features from a solid model that has already been

designed with a particular set of design features in mind to satisfy the functional

requirements of the component. It seems reasonable that a good design system

should not immediately throw this functional information away, but retain it for

subsequent downstream processing.

Secondly, a solid model only contains information about nominal geometry, it

contains no information regarding tolerances or surface finishes. This information is

crucial for subsequent process planning.

Thirdly, current feature recognition systems can only recognise a proportion of the

features actually in existence on a component, requiring interactive definition of

certain features. Here, it should be emphasised that any system that can automatically

recognise 90% of the features on a component will certainly save a process planner a

great deal of drudgery. The process planner would be quite pleased to only have to

deal with the more complex and interesting features.

The work on Feature Recognition undertaken in PART [Hout89][DeJo94] and many

of the FR systems of the early 80s uses shape grammars to recognise features within

a (typically B-rep) solid model. This approach, whilst working adequately for

isolated features on a component, quickly falls down when features intersect. It is

frequently these interactions between features that define a component's function,

and so inability to recognise interacting features is a severe problem.

Geometric Reasoning for Process Planning Jonathan Charles Salmon

2.1.3 Design by Features

user feature
modeller

feature
model

solid
modeller

solid
model

Figure 3 Design by Features

It is possible that the reason for some features being unrecognisable is that they are

also unmanufacturable. It is equally possible that some features that are recognised

are not immediately manufacturable in the form in which they are recognised. This is

especially true of systems that recognise protrusions as features. Little [Litt97] and

others [Cham93] have worked on systems for taking feature based descriptions of

models containing positive features and turning them into a feature-based description

containing only negative features. This is but one class of feature transformation that

is frequently necessary.

Particular problems in feature recognition according to Corney and Clark

[Corn90][Tutt97] are dealing with small scale shape variation such as chamfers and

fillets, where the topology of the B-rep model is significantly more complex, but the

complexity is only due to small scale features that could be neglected. Some work

has been carried out in suppressing these small scale variations. Techniques such as

medial axis transforms can be used [Tam91][Arms94]. The Corney and Clark

approach in particular uses a graph-based method based on face-traversal rather than

the more common edge traversal. A useful abstraction that is made is identifying the

aspect vector of largely 2ViD models and using this approach direction to simplify

the quantity of information to be subsequently processed in the feature finder. This

can be done as most components, particularly in the domain Corney and Clark are

Geometric Reasoning for Process Planning Jonathan Charles Salmon

interested in are predominantly 2l/iD with minor excursions into 3D such as side

holes and pockets in the 'base' as well as the top.

2.1.3.1 Design by Features versus Feature Recognition

These two distinct approaches to features, that of Design by Features and Feature

Recognition are often perceived as being in conflict. Both approaches produce

feature based models of a component, so if either approach were widely adopted in

industry the other approach might want for support. In fact, the two areas are

complementary. Feature Recognition attempts to produce a feature-based description

of a component from its basic geometry. This has the advantage that the source

component design can (in theory) be taken from any appropriate 3D CAD package,

an appealing idea, especially given the current trend towards Open Systems.

However Feature Recognition systems working from a pure solid model will only be

able to extract geometrical features, and are unable to infer other non-geometrical

information such as tolerances and material type. Feature-Based Design Systems take

a somewhat more pragmatic approach. If the intention is to use a feature based

process planning system then the input to the CAPP system must be some sort of

feature-based design. Either the designer initially produces designs in terms of

features or an additional feature recognition step is required. As Pratt has remarked

[Prat84](taken from [Wils89]):

"Finally, the feature recognizer informs the user that it has detected the presence of

a cylindrical hole in the part. But this is information which the designer was fully

aware of when he created the model; it was lost when the system reduced all input to

low-level details of topology and geometry."

Protagonists of Feature Recognition answer this by saying that even if the design is

in terms of features, the designer will wish to use functional features, as the designer

is currently attempting to generate a functional design, and that the manufacturing

features required for feature based process planning are not suitable for this task. An

oft quoted example of this is the case where the designer requires a set of ribs for

strengthening a component, and is required to design in terms of slots or pockets, the

empty space between the ribs.

There are two responses to this argument.

10

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Firstly, the system must ultimately be capable of manufacturing a component; so by

constraining the designer to use manufacturing features, the designer is aided in this

requirement.

The second counter argument is that the input to the process planning system must

still be in terms of manufacturing features, so a system based on manufacturing

features is ultimately required. If subsequent to the introduction of a manufacturing

feature design system, a development allows transforming functional design features

into manufacturing features, there is no reason not to allow this. Indeed functional

design features can then be added to the manufacturing oriented system. The

converse, where design using functional features is used, but no transform

mechanism exists cannot lead to the goal of producing an automated design to

manufacture system. Design by manufacturing features can then be regarded as a

pragmatic sub goal on the road to automation of the design to manufacture path. The

differing views of features is a stumbling block for newcomers into the area and is

not limited just to functional versus manufacturing features. In as much as a design

passes through various departments in a traditional manufacturing environment, so

the views on what constitutes a feature change. Features differ according to the point

of view, whether it is coordinate measurement, finite element analysis, design or

manufacture.

2.1.4 Parametric Geometric Modelling

In the parametric approach, users build features with standard solid primitives

instead of features. The construction procedures and geometry parameters are

retained, and the model can be modified by changing the parameters used during the

construction. This approach whilst aiding reuse of geometry and easing the editing of

well-designed components, does not directly aid CAPP, but is a technology that

should be incorporated in the design by features approach.

Parametric design leads naturally to constraint systems. This allows in some way, the

nominal dimensions of components to be described in terms of formulae, and that

these formulae may be circular and a system of constraints must be solved before the

solid model can be generated.

11

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Not all constraint-based solid modelling is necessarily feature based. The 2D drafting

and 3D parametric modelling in Solid Edge, for instance, cannot truly be described

as feature based. True 3D constraint satisfaction and the resultant generation of valid

solids is a difficult research area.

Brunetti et al. [Brun95] propose a feature based model that allows algebraically

formulated relationships between feature entities (not just the features themselves,

but also subfeatures) to be expressed. This structure is called a FERG (Feature Entity

Relation Graph). The real features in this graph are represented as implicit algebraic

equations that build up the halfspace decomposition of the form feature.

Shapiro [Shap95] shows how in many commercial systems, parametric and

variational modelling may not be robustly supported because the meaning of a

"parametric family" is not always well-defined. Shapiro gives examples of how

small changes in parametric dimensions can result in huge changes in component

topology.

2.2 Wilson and Pratt

Wilson and Pratt in 1989 [Wils89] said:

A feature is a region of interest in a part model

Wilson and Pratt divided representations of features into two major classes:

EXPLICIT: All the geometric details of the feature are fully defined.

IMPLICIT: Sufficient information is supplied to define the feature, but the full

geometric details have to be calculated when required.

Pratt and Wilson's Feature Taxonomy can be seen in Figure 4. From their definition,

any feature-based modeller that carries a solid model representation of each feature

around with the data structure is said to be explicit, whereas any feature-based

modeller that merely carries attributes around to be reconstructed when required is an

implicit modeller. This corresponds to the ideas of an evaluated and unevaluated

modeller. This distinction is weak. Many solid modellers perform lazy evaluation,

where externally the model always appears evaluated, although internally the model

is only evaluated when necessary. Pratt [Wils89] gives examples such as chamfers as

12

Geometric Reasoning for Process Planning Jonathan Charles Salmon

examples of implicit features. This contrasts with ACIS [Mart96][Corn97] where a

chamfer can either be implicit or explicit, and whilst for compactness the chamfer

data is tagged to an edge, the chamfer can be explicitly created on demand. Pratt and

Wilson's distinction seems to be based on the practicalities of modellers in the late

eighties rather than a fundamental requirement, and the distinction has become less

important as computers and modellers become more powerful.

Figure 4 Pratt & Wilson's Feature Taxonomy

2.3 Arikan's Design Using Machining Operations

An extreme example of the design-by-features paradigm is CADP-NC (Computer

Aided Design, Process Planning and NC-Programming) of Arikan and Totuk

[Arik92]. Their paper is entitled Design by Using Machining Operations. It describes

a system that allows a feature-based design of a part to be described using detailed

machining features including centre drilling, countersinking and spot facing in

addition to some more 'traditional' features such as steps, pockets and holes. Though

functional, this is perhaps at too low a level of detail and entails the designer

knowing more about process planning than is typically the case.

2.4 Material Removal Shape Element Volumes

The work undertaken by Kramer [Kram91] [Kram92] and others [Gupt95] on

Machine Removal Shape Element Volumes (MRSEVs) is particularly relevant to the

manufacturing features standpoint taken in this thesis.

13

Geometric Reasoning for Process Planning Jonathan Charles Salmon

2.4.1 How Does a Feature Relate to a Machining Operation?

Kramer requires that the volume described by a MRSEV should have no material in

it when machining is complete and the operation associated with an MRSEV should

remove no material outside the MRSEV. This allows the MRSEV to represent the

swept volume of the tool. MRSEVs are allowed to partially machine empty air if

required.

Kramer allows disjoint volumes in an MRSEV. This is a distinction between the

MRSEV and the traditional negative feature view. It is more usual to disallow

disjoint features, but to allow collections of features, such as a pitch circle diameter

of holes.

2.4.2 Relating Features to Workpiece Shape

The case Kramer discusses here can be best explained by means of an example.

Many feature taxonomies including those of Gindy [Gind89] and Wilson and Pratt

[Wils89], differentiate between volumetric features depending on their relationship

with the workpiece. Notably a slot is distinct from a step. Gindy differentiates these

using external access directions (EADs), checking the access of a feature in six

orthonormal approach directions. Kramer does not distinguish in this way. The

distinction is not embodied in the MRSEV (or feature) description, but in the

machining operation used to remove the material from the workpiece.

This is illustrated in Figure 5. Figure 5a) shows a block from which a thin slab is to

be milled from the entire top portion of the block. In each of the figures b-d, a

volume of the same dimensions is to be machined. In b), this volume can readily be

called a step. In c), though slab milling might be used, the cylindrical protrusion

would have to be avoided. In d), slab milling is inappropriate. In each of these cases,

the machining process is dependent not on the shape of the volume to be machined

but on the accessibility of the feature. If a feature in a feature based design system

defines a volume, but not a machining strategy then any feature with the required

volume can be used. A single MRSEV could be used in all four cases a-d and

subsequent accessibility checks would identify possible machining strategies.

14

Geometric Reasoning for Process Planning Jonathan Charles Salmon

a) slab b) step

c) slab? d) slab?
Figure 5 Slabs and Steps

2.4.3 Carrying Machining Information in Features

Kramer assumes that the process planner is the one defining the MRSEVs and as

such there is no advantage to be gained by attaching machining information to them.

Rather, it is assumed that libraries of machining operations and MRSEVs will be

matched appropriately, but independently.

2.4.4 Fixed library vs. Define as Needed

The advantage of a fixed library (says Kramer) is that it is feasible to write computer-

executable algorithms which will automatically generate toolpaths for cutting out the

volumes in a fixed library. The algorithms are parametric and use feature data fairly

directly.

Kramer argues that if a 'define as needed' approach is taken then the most

straightforward way that will permit almost any shape to be expressed is to use a

boundary representation (B-rep) of the model. Automatic generation of toolpaths

from a general B-rep shape is much more difficult.

15

Geometric Reasoning for Process Planning Jonathan Charles Salmon

2.4.5 Complete Definition vs. Ambiguity

Mantyla [Mant89] discusses the problem of premature commitment, where because a

single choice of feature geometry (or indeed of feature orientation) is made at an

early stage, a commitment has unwittingly been made to a particular manufacturing

solution, such as enforcing a certain set up. Mantyla proposes a method of feature

relaxation that avoids early commitment. For functional reasons, it is not possible to

allow all features to relax. This method is complex.

2.4.6 Machining Applications Supported

The complexity of the MRSEV library increases as milling moves from 2V£D through

3, 4 and 5 axis milling. Kramer's proposed library is intended to support 3 axis

milling and act as the core for 4 and 5 axis milling.

2.4.7 Accessibility for Machining

Kramer discusses whether accessibility for machining is an attribute that should be

carried with a feature and concludes that this is the domain of process planning.

2.5 Gupta's Review of Manufacturability Analysis

Gupta [Gupt97] provides a review of manufacturability analysis. Given a

computerised representation of the design and a set of manufacturing resources,

Gupta defines the automated manufacturability analysis problem as follows:

1. Determine whether the design attributes (e.g. shape, dimensions, tolerances,

surface finishes) can be achieved.

2. If the design is found manufacturable, determine a manufacturability rating, to

reflect the ease (or difficulty) with which the design can be manufactured.

3. If the design is not manufacturable, then identify the design attributes that pose

manufacturability problems.

A flow chart showing this view of manufacturability analysis can be seen in Figure 6.

16

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Modified design
Preliminary Design

All portions that need machining are
accessible?

At least one operation plan capable o
creating design shape and dimension?

least one operation plan capabl
producing design tolerances and

surface finishes?

least one operation plan capable
meeting required cost and time

targets?

Acceptable design

Figure 6 Manufacturability Analysis According to Gupta

[Gupt95] takes a wider view of manufacturability analysis than is taken in this

thesis. In addition to accessibility and other geometric constraints on

manufacturability, Gupta evaluates the design by considering all manufacturing

processes that can manufacture any feature in a part and quantifies these to produce a

component's manufacturability rating. Gupta explicitly produces many operation

plans capable of machining a part in order to come up with a finished

manufacturability rating. Models in this methodology are created using the MRSEVs

of Kramer [Kram92]. Algorithms are presented for modifying the effective feature

volume (that volume of a feature required to be machined) depending on a feature's

position in a process plan.

17

Geometric Reasoning for Process Planning Jonathan Charles Salmon

The algorithms are implemented in the IMACS system IMACS, A System for

Computer-Aided Manufacturability Analysis

Gupta [Gupt95] performs automatic manufacturability analysis for machined parts.

Gupta identifies four classes of manufacturing feature formed by different machining

processes: drilling, end-milling (closed and open pockets) face milling and side

milling.

Gupta searches for thin walls by first faceting the component and then finding the

separation distance of close non-adjacent facets. This technique depends on the

faceting being a reasonable approximation to the original surfaces.

Gupta also performs some tolerance consistency and redundancy checking.

Gupta's system identifies features using Regli's approach [Regl95]. The system

identifies certain precedence constraints between features by reasoning about

accessibility, datum-dependency and approachability.

Gupta then defines a machining plan as a set of machining operations and precedence

constraints.

2.6 Bidarra's Feature Interaction Detection

Bidarra from Delft University of Technology believes a significant lack in current

feature-based systems is the failure of the systems to maintain effective feature

validity throughout the design process [Bida97], That is interactions between features

can cause features to change properties, e.g. an addition of a slot might change a

blind hole to a through hole, or to change validity, a hole might be completely

subsumed in a larger pocket and so not contribute to the final design at all. Bidarra

has implemented a feature interaction detection mechanism for eight interaction

classes within the SPIFF modelling system, a prototype multiple-view feature-based

modeller.

The classes of interaction defined are:

splitting, disconnection, boundary clearance, volume clearance, closure, absorption,

geometric and transmutation.

18

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Though Bidarra looks at many feature interactions, he is not concerned directly with

identifying machining precedence through accessibility analysis, though the tests for

boundary clearance and volume clearance provide some of the necessary

information.

2.7 Vandenbrande's Spatial Reasoning

Vandenbrande [Vand91][Vand93] at the University of Rochester performs automatic

feature recognition and subsequently performs some spatial reasoning tests to test

feature validity and accessibility. Interactions are represented by segmenting the

feature into "required" and "optional" volumes. Feature validity tests include

nonintrusion, presence and accessibility. Accessibility is further subdivided in to

local, partial and semi-infinite accessibility. Vandenbrande mentions an approach for

thin wall detection, but does not implement such an algorithm. Vandenbrande's

system uses OPS-5 production rules and the PADL-2 solid modeller.

2.8 PART Process Planning System

Perhaps the most successful process planning system containing a solid modeller is

PART [Hout89] [Hout91] [DeJo94] [Erve88].

PART is now a commercial process planning system from C3 in the Netherlands,

though PART was previously the result of a 40 man year research project. PART and

its successors PART-S and FROOM (Features and Relations in Object Oriented

Modelling) address many research topics including CAPP software architectures

[Jonk92], tool management, [Boog94], constraint satisfaction in feature-based design

[Salo95], and process and production planning integration [Lend94]. A schematic

representation of the PART system is shown in Figure 7.

PART uses a Feature Description Language and scours the product model to find

groups of faces that meet the shape definition of a particular feature. Taking this

approach means PART differentiates between pockets and steps, but the features are

more specific. The commercial system contains more than forty features, though

these features are more restrictive than a general MRSEV.

19

Geometric Reasoning for Process Planning Jonathan Charles Salmon

User

it
User interface

supervisor

CAD
Interface

Cl

Volume
Editor

VE

Feature
Recog­
nition

FR

Modeller
GPM

Machine
Tool

Selection
MTS

Jigs and
Fixtures

J&F

Machining
Methods

MM

Tool
Selection

TS

Cutting
Conditions

CC

NC Output
Compiler

NC

Planning
PL

Manufacturing Database Interface

\
Database

Figure 7 A Schematic Representation of the PART System

The PART system represents features such as manufacturing features, tolerance

features and work holding features. The 'atomic' manufacturing features used are

based on the CAM-I feature set [Butt86], and includes features such as holes,

pockets, slots and corner notches.

Though PART is aware when a feature has more than one possible machining

direction, it is not clear what accessibility checking is performed. The accessibility

checking may be implicit in the feature recognition process. Precedence problems are

considered from a tolerance satisfaction view rather than a geometry view.

2.9 GARI: An Expert System for Process Planning

Descotte and Latombe [DescSl] present a feature based process planning system

known as GARI. It consisted of an expert knowledge base composed of

manufacturing rules and a planner. GARI did not contain a solid modeller. A part is

described to GARI as a series of features and a series of dimensions between

features. The dimensions also carry tolerance information. This view bears

similarities to a CSG model.

20

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Some features are described in terms of faces, leading to a B-rep type model. As with

HAPPI (described in Chapter 3) the description of features with relationships such as

"starting-from" and "opening-into" defines machining precedence relationships in

the supplied model, so these relationships do not have to be inferred.

The expert system would cause rules to fire depending on information in the part

model, which would provide weighted machining and planning information. Some

hints are contradictory and the weightings would help resolve these conflicts. A

process plan would result.

The types of part modelled in GARI are strictly orthomorphic prismatic parts.

2.10 Summary

Early process planning systems did not contain geometric modelling systems and so

accessibility problems were implicit in the component description. Later work

particularly has been coupled to feature recognition and subsequent

manufacturability analysis and process planning. Some authors have concentrated on

spatial reasoning for feature validity maintenance whilst others have tackled the

manufacturability analysis problem. There still remains much work to be undertaken

in this area.

The interpretation of the features concept differs greatly between researchers.

Bronsvoort and Jansen review the areas of feature modelling and conversion in their

paper of 1993 [Bron93].

Hounsell and Case are aiming to better capture Designer's Intents in [Houn97].

Other reviews of features can be found in a number of papers [Shah91b] [Salo93]

[Maro95] [Shah95][Case93].

Other work in this area can be found in [Ande90], [Jone93], [Case94], [Case97],

[Chan85], [Dowl94], [Maro95a], [Maro95b], [Mant89], [Opas94], [Salo95],

[Laak96], [Cutk91], [Requ89], [Yang97] and

21

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3 Background

The subjects covered in this chapter lay down the groundwork for the subsequent

core of the thesis that is manufacturability analysis for process planning through

geometric reasoning.

This chapter covers the following areas:

1. A review of the work undertaken in the Manufacturing Planning Group of The

University of Edinburgh with special attention to the HAPPI process planner, in

order to place the thesis in context.

2. An introduction to the area of concurrent engineering.

3. A review of solid modelling to set the scene for subsequent sections.

4. An overview of two geometric algorithms, those of Minkowski sums and medial

axes that are important for the subsequent reasoning algorithms as well as a

definition of 2ViD.

5. A review of features as a higher level of abstraction than pure geometry.

3.1 Manufacturing Planning Group, Edinburgh

Work on feature based methods began in 1985 with the start of a project entitled

Representation, Reasoning and Decision Making in Process Planning with Complex

Components [Husb90]. Ending in 1989, this project resulted in the development of a

novel prototype CAPP system that was capable of generating full cutting plans for

2V6D prismatic parts. The system, known as HAPPI, operates in two stages. The first

stage entails the generation of all possible machining methods that can be used as a

result of feature interactions arising from geometric tolerances or those where

anteriority must be considered. The second stage involves setting the manufacturing

methods to be used: an optimisation problem which is NP complete and which was

solved by the early use of Genetic Algorithms. The success of this early work has led

the group to consider related areas of interest, in particular the investigation of

possible methods for automatically generating product representations that would be

suitable for process planning purposes.

22

Geometric Reasoning for Process Planning Jonathan Charles Salmon

In 1989, a second major project started entitled Feature Oriented Design [Mill93]. A

feature based detail design system was created, capable of assisting a designer to

model engineering components with a high level user interface. Many parts from

several companies have been modelled using the system which accepted feature

descriptions, dimensional and geometrical tolerances and complex blank shapes as

would be used with cast stock material. Furthermore, the system, named FODDS,

could perform some preliminary geometric reasoning functions which are used to

detect intersections, proximities, (thin walls), and tool access. FODDS' output is in

the form of a Component Description Language, (CODL), file which describes all

the information generated and includes a full geometric part description in the form

of an ACIS solid model.

The HAPPI CAPP planning system became the core planner in the EC funded

SESAME (Simultaneous Engineering System for Applications in Mechanical

Engineering) project [Mill94]. Furthermore the CODL language was adopted as a

standard for component description transfer by the SESAME Consortium, (e.g. the

Straessle GmbH feature based modeller, FeatureM). The SESAME research allowed

investigation into issues such as concurrent engineering, machine tool modelling and

NC code generation and verification.

The following figure illustrates the feature based work recently undertaken in the

group. Highlighted are those areas central to this thesis on which work has been

undertaken exclusively by the author. Additionally some areas have been covered by

undergraduate and Erasmus exchange students working under the direction of the

author.

Areas in which research is being undertaken, but have not been covered in detail in

this thesis are tolerancing, fixture planning, and alternate feature views. Fixture

planning is covered in Chia's PhD thesis [Chia97a][Chia97b].

The important area of multiple feature views has been undertaken by Little [Litt97].

His work focuses on transforming a feature based description of a component

containing both positive and negative features (bosses and protrusions), into a feature

based description containing only a blank and negative features.

23

Geometric Reasoning for Process Planning Jonathan Charles Salmon

The tool and cutter selection work of Naish [Nais97][Nais98] generates plan spaces

after the manufacturability analysis without knowledge of tools and machines

described in this thesis.

Positive Features and
Feature Recognition

(GL)

Model Creation
(JCS & SK)

Automated Design
FM&AS

SESAME Feature
Library

(JCS, HR, JCN, FM)

Feature Based Design
(JCS)

Tolerancing
(OP)

Geometric Reasoning
for Process Planning

(JCS)

Features as Agents for
Concurrent Engineering

(JCS & DJ)

Fixture Planning
(SCC)

NC Code Generation
(JCS & UH)

Plan Space Optimisation
(FM)

Tool and Machine
Selection

(JCN)

NC Code Simulation
(JCS & CF)

Rapid Prototyping LOM
(JCS & SR)

i r

Reverse Engineering
(JCS & SW)

> L

JCS Jonathan Salmon (Lecturer, Edinburgh)
FM Frank Mill (Lecturer, Edinburgh)
JCN Jane Naish (Lecturer, Abertay)
DJ Dominique Jacquel (PhD student)
SCC Ser Chong Chia (PhD student)
GL Gordon Little (PhD student)
HR Heiko Rieken (Research Associate)
SR Simeon Rowdon (Final year student)
SW Simon Wigglesworth (Final year student)
UH Uwe Holznagel (Erasmus student)
CF Carsten Friedtrich (Erasmus student)
SK Sascha Kuessner (Erasmus student)

Figure 8 Summary of Feature Based Research in the MPG

The Plan Space Optimisation box in Figure 8 refers particularly to the HAPPI

process planner developed in the 1980s. Providing correct feature based designs and

manufacturing precedence information for this planner provided the motivation for

the work in this thesis.

24

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3.1.1 The HAPPI Process Planner

In 1989, the Manufacturing Planning Group in the Department of Mechanical

Engineering at The University of Edinburgh completed a research project on

optimisation of process plans entitled Representation, Reasoning and Decision

Making in Process Planning with Complex Components (SERC/ACME GR/D

63101). This project successfully developed an automatic process planning system

(called HAPPI) that would produce a near optimal process plan given a design of a

component [Husb88] [Husb89] [Husb90].

The architecture of the HAPPI Process Planner is shown in Figure 9. From this, it

can be seen that at a high level of abstraction the planner would compare the desired

component with the blank and produce a search space of all valid process plans.

Genetic Algorithms were then used to find a near optimal process plan in this search

space.

Component
Representation

Blank
Representation

Comparison
Process

Planning Module

Optimisation

Process Plan

Figure 9 Architecture of HAPPI Process Planner

25

Geometric Reasoning for Process Planning Jonathan Charles Salmon

The component model, however, was a particularly tortuous representation

consisting of triples of information written in PROLOG, forming a semantic net (see

Figure 13). A specification for even a visually simple component would run to many

hundreds of lines of code [Husb88]. Much of the geometric reasoning about the

component was effectively performed by the 'programmer' who hand-coded the

component. A brief extract is shown in Figure 10 describing a portion of the part in

Figure 12.

pi isa plane.
th6 isa thru_hole.
tap carries_out tapping.
p4 positioned to p6 withtol 0.125.
h2 isa blind__hole.
p5 vexedges p6.
p7 hasfeat pkl.
el? edges p6.
si comprises plO.
p5 para p8 withtol 0.005.

Figure 10 Extract from HAPPI Component Model

For their component representation, Husbands et al., eschewed the linear approach to

feature-based design, i.e., a list of features each with a short list of attributes, and

instead adopted a semantic net approach allowing much richer relationships to be

described. Husbands and Mill in [Husb89] suggest more than 40 relationship types

between entities. Entities could include solid features, components, and surface

features. An example of a typical representation network can be seen in

Figure 13. The richness of this data structure led in turn to its own problems. In

particular, in the HAPPI system, component descriptions were generated by hand and

frequently took several days to code. A combination of hand-coding and the semantic

net approach meant a model might contain much redundant information. Major

redundancy was a property that could be neglected in the prototype, however if the

data structure were to be created automatically in a real-time design system, and

were to be capable of being saved and restored in that system, issues regarding

redundant information would become important, particularly under modification of a

component design, where searching for all mentions of an entity that may have been

modified becomes complex. As Sabin comments (in [Husb89]), "...redundancy

leads to potential inconsistency". This was not a problem in the prototype HAPPI,

26

Geometric Reasoning for Process Planning Jonathan Charles Salmon

but inconsistency is avoided in FODDS2 through a deliberately more limiting data

structure. It is important to note that HAPPI did not contain a solid model of the

component, though some experiments were performed with the NONAME modeller

from Leeds University. To quote Mill:

"Interestingly, the feature representation used developed into a Solid Modeller, (a

boundary representation modeller). Not a very good one though." [Husb89]

The first process undertaken by the HAPPI process planner is a comparison of the

Blank Representation with the Component Representation (see Figure 9) in order to

discover which features in the component require machining (in other words, do not

exist in the required form in the blank). Chiefly, it is apparent that the component

representation in HAPPI is a hybrid solid-surface representation and that there is

often room for confusion between the surface and solid representation. Neither

representation is complete, and decisions on representation have been made

pragmatically on an ad hoc basis.

The planning module then generates (implicitly) the complete space of possible

process plans, which is then searched for a near optimal solution during the

optimisation stage. Though now an established technique, the use of genetic

algorithms for process planning optimisation was novel.

The HAPPI test component is also used as a FODDS2 test component in later

chapters. The entire HAPPI system was implemented in Edinburgh Prolog.

The comparison module (see Figure 11) is of particular interest in this thesis as it is

here that manufacturability decisions were originally made, but as there is no

geometric modeller in HAPPI this information is now provided by FODDS2.

27

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Comparison

Build Dsurfs for each of 6
orthogonal directions for

blank component

Compare corresponding
Dsurfs

Derive features to be
machined (mc_features)

Map 'top' planes Map other common
features

Dimension match Fuzzy position match
Tight relative (to other

features) position match

Figure 11 Architecture of the Comparison Module of the H APPl Planner

The HAPPI system chiefly represented features as being primarily attached to planes

of the original blank, or nested within existing features. This is represented through

use of the hasfeat (or 'has_as_child_feature') relationships. Thus, problems can be

envisaged regarding steps (open to more than one face), or indeed slots, machined

primarily from one direction but often intersecting with three faces of the blank. In

the event that two crossed slots have a hole in the base of the intersection, it is

unclear to which slot the hole belongs, and so complicates the hasfeat relationships.

The hasfeat relationship codes the feature tree in such a way that the blank has 6

orthogonal surfaces (Dsurfs (see Figure 11)) and volumetric material removal

features are attached through the hasfeat relationships to one of the 6 Dsurfs.

Subsequent material removal features may be attached to others to allow chaining of

features such as the nested slots, or hole in a pocket of Figure 12. The Dsurfs help

define the setup constraints for each feature. As, these also help define a setup for

subsequent machining operations. The dependency on the surface planes can be

clearly seen. Though the hasfeat relationship is one of the most important in HAPPI,

28

Geometric Reasoning for Process Planning Jonathan Charles Salmon

other relationships define geometric and dimensional tolerance relationships. Some

of these can be seen in the example of a HAPPI semantic network in Figure 13,

which shows the portion of the network relating to the large hole in Figure 12. This

diagram also shows the relationship between the component datastructure on the left

and the machine and tool database, of which a portion is shown on the right.

Figure 12 A HAPPI Example Component

(0.5 Vpostol

xtrav-/ 160 j

drilling Kcarr/es_out-

Component Job Shop

Figure 13 Relationships in an Example HAPPI Database

29

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3.1.2 The SESAME Project

Between 1990 and 1995, the Manufacturing Planning Group was involved in two

feature based projects. Firstly, the national project SERC/ACME GR/F92312 Feature

Oriented Design (FOD) and secondly the European Brite/EuRam project

Simultaneous Engineering System for Applications in Mechanical Engineering. It

was during this period that the first version of FODDS was developed by the author,

along with the Geometric Reasoner (GR) (see Figure 14) [Mill93][Mill94].

The FODDS system itself is but one component of an entire Design for Manufacture

System, the Concurrent Engineering Workstation (CEW). An overview of the entire

system is shown in the figure below.

Man-Machine Interface

FODDS - Feature Oriented Detail Design System
GR - Geometric Reasoner
PSG - Plan Space Generator
OPT - Plan optimiser
NC - NC Code Generator
PCR - Process Capability Representation
CODL - component Description Language
PPDL - Process Plan Description Language

Figure 14 CEW System Overview

The system as shown above can be considered without feedback as a serial system

allowing Feature Based Design followed by Geometric Reasoning for Process

Planning, Plan Space Generation, Plan Optimisation and NC Generation. Feeding

both Plan Space Generator and NC generator is the Process Capability Database.

This system takes as its input either an existing design from a FODDL (Feature

Oriented Detail Design Language) File or a new design via the Man-Machine

30

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Interface direct from the designer. The final output is one or more process plans and

accompanying NC data. Each intervening module is briefly described below.

Feature Oriented Detail Design System (FOODS) This allows either graphical

based design on screen or input from file. Allows additional information to be added

to the system by the designer (Explicit Feature Information)

Geometric Reasoner (GR) This module performs geometric reasoning on a Feature

Based Design of a Component to generate information necessary for process

planning (Implicit Feature Interactions)

Plan Space Generator (PSG) Using the features and relationships produced by

FODDS and a variety of data and rule bases including tool and machine databases,

the PSG implicitly produces a space of all possible process plans for machining a

component.

Optimiser (OPT) This plan space is enormous and finding a good plan is a non-

trivial optimisation problem. The approach used is an Artificial Intelligence

technique known as Genetic Algorithms, where a population of plans are bred'

together to evolve a near optimal plan.

NC Generator (NC) From the finished process plans passed from the optimiser, all

operations that are to be performed on an NC machine have NC data generated for

them.

Output A process plan suitable for sending down to the machine shop. This is a text

based process plan with accompanying diagrams and NC data.

A goal for this system is a concurrent system where any system component can be

run at any time and contribute to a blackboard' style database of information.

However, the prototype is a largely serial system with feedback. All these modules

however can be run on a single workstation, and the design process can be iterative,

giving some concurrence and a common look and feel to all modules improving

learning curves and hence designer productivity.

The Feature Based Design System (FODDS in Figure 14) and the Geometric

Reasoner (GR) have been combined and subsequently augmented to form the new

system FODDS2.

31

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3.2 Computer Integrated Manufacturing (CIM)

The Computer Integrated Manufacturing (CM) concept emerged in the seventies as

a response to a changing marketplace. There was a shift from the large batch sizes

and few product lines. In the face of increased competition and more specific

demands from clients, the move had to be made to shorter production runs, smaller

batches and lower lead times.

Smaller batches meant that an increasing amount of manufacturing information is

needed on the shop floor.

Design
x . , Process a) Idealistic

Prototype

Design
. , _ . . Process
b) Typical p|an

Prototype

Design
c) Simultaneous Process

Engineering Plan

Prototype

Design
d) Concurrent Process

Engineering Plan
Prototype

&;

1 1 1 ! 1 1 ! 1

Figure 15 Lead Times vs. Engineering Methodology

Traditionally, engineering has split design, process planning and latterly NC

generation. Each is performed by different people, often in different offices, and

possibly on different sites.

Designs are drawn up as two-dimensional technical drawings and not until a design

is complete is it passed to the process planning team (see Figure 15a). From the

drawings a process plan is created and those elements of the process plan that require

NC machining then have the NC programs created for them. In each of these distinct

stages the opportunity for feedback to the previous stage is weak. If a process-

32

Geometric Reasoning for Process Planning Jonathan Charles Salmon

planning problem is so great that a process plan cannot be created, then great effort

must be expended passing the design back up the design chain (Figure 15 b).

Redesign means that much of the process plan may have to be rewritten, which again

may mean any NC code so far generated has to be discarded.

In the work undertaken in the Manufacturing Planning Group in Edinburgh,

simultaneous engineering and concurrent engineering are differentiated in the

following way.

A simultaneous engineering system allows a single engineer to work with a set of

packages on a single workstation in order to take a product from design to NC code

production (Figure 15 c). In simultaneous engineering the feedback is primarily

accomplished through the brain of the engineer using a set of programs linked such

that the output of one forms the input of the next. This view is akin to the Unix view

of programs as filters; the output of any filter can be piped into another filter.

In concurrent engineering, the same engineer can take an integrated suite of software

tools again at a single seat on a single platform in order to achieve the same result.

The difference lies in the level of feedback to previous stages. In concurrent

engineering, in addition to a feedback loop through the engineer's brain, the software

is sufficiently integrated that automatic tools allow feedback from downstream

activities all the way back up to design if need be. This model is more complex, and

the system design draws on object-oriented and agent-based techniques (using

SWARM [Burk97]) and more recently the Microsoft Object Linking and Embedding

for Design and Manufacture (OLE for D&M). In concurrent engineering,

'downstream' tools may start working on a design whilst the designer continues to

modify that design, thus saving overall design time at the expense of higher CPU

time and occasional unused partial solutions (Figure 15 d).

Again in concurrent engineering, multiple concerns are addressed (e.g. function,

geometry and manufacturing) as a design evolves rather than waiting until the

completion of the design geometry. Cutkosky [Cutk91] takes this approach in the

prototype concurrent design system NextCUT (a development of FirstCUT), through

the use of coarse-grained agents including a geometry agent, a process planning

agent, and a fixturing agent. The open architecture model allows the relatively

33

Geometric Reasoning for Process Planning Jonathan Charles Salmon

painless addition of other agents. First-Cut [Cutk88] on the other hand is a process

oriented system enforcing design-for-manufacturability and simultaneously

constraining process planning through the ordering of the design process. Though

FODDS2 encourages design in terms of manufacturing features, the geometric

reasoning allows the process planning optimisation function to be independent of

ordering in design and relatively free of unnecessary design constraints. This

freedom from ordering at the design stage is an important characteristic of FODDS2

that allows the automatic process planner to make decisions based on cost and

genuine ordering constraints rather than arbitrary user based constraints.

Design is a lengthy process of which this thesis only looks at one of the final stages,

that of detailed design. In principle, the process planning and NC code generation

phases of product development can be regarded as part of the design phase, in that, if

either of these stages fails then it will necessarily lead to redesign, and so impacts the

finished design.

The designer of a product is trying to achieve a specific function. Sometimes that

function will require some aesthetic considerations, particularly if it is a consumer

product. Invariably there will be financial constraints on the design, both the time

and resources to generate the design and the eventual cost of the product. In this

thesis only detailed design, process planning and manufacture are considered,

however, along with these considerations, there is a continuous awareness of the

following list of design concerns, collectively known as Design for Whole Life Cycle.

Primarily:

 Design for Function

 Design for Manufacture

Secondarily:

Design for Assembly; Design for Maintenance; Design for Disassembly;

Design for Recycling; Design for Machining; Design for Test

Any designer must think about all these aspects of design simultaneously. The role of

a concurrent engineering system is to aid the designer in as many of these areas as

34

Geometric Reasoning for Process Planning Jonathan Charles Salmon

possible. This enables him to concentrate on those important aspects that the system

is unable to deal with such as specific function and aesthetics.

The design by manufacturing features approach taken as the primary form of design

in this thesis is not capable by itself of dealing with all the approaches to design

listed above. Developments within the Manufacturing Planning Group built upon the

ideas developed in FODDS and FOODS 2 are being used to allow design in terms of

alternate feature sets such as positive features [Litt97] and other aspects of Design

for Manufacture such as fixture design [Chia97a].

Computer Integrated Manufacture is a large and complex topic. The Manufacturing

Planning Group have addressed many issues in this area over the years, and this

thesis focuses on the particular area of geometric reasoning for process planning

through manufacturability analysis.

3.3 Solid Modelling

This section introduces 2D CAD, 3D solid modelling techniques of Constructive

Solid Geometry, Boundary Representation and Spatial Decomposition techniques as

well as mentioning some of the modellers and applications of these techniques. It

shows how the emphasis has been on geometry and point sets. It sets the scene for

the higher level of abstraction that is features.

Feature-based methods have emerged over the last twenty years in response to

industry's requirements for an integrated solution to design and production, in turn

required in order to reduce product lead time. Features enable this reduction in lead-

time by supplying the designer with a set of tools at a higher level of abstraction than

those of a typical computer-aided design system.

35

Geometric Reasoning for Process Planning Jonathan Charles Salmon

4<EacyCAD - ICADCAMA4 ECWI

CSp V»w Draw Ed* Copy IrntA Specs Mod Wo Macros Help

SMR

I

MRS

I

Di««NSIONS (N mm

TITLE ASSEMBLY VIEW

DRAWN BY ONG CHENG CHENG DATE 6th Feb 1997

The University of Edinburgh
Department of Mechanical Engineering

iCommand: ;(-*): Grid Ortho CsrSnap Snap Unlock

Figure 16 A 2D Drafting Package (EasyCAD)

A typical 2D system (EasyCAD from Evolution Computing (see Figure 16) is such a

system) is only able to design in terms of lines, arcs and circles, admittedly annotated

with dimensions where appropriate. There is no concept of part within the system.

There is no knowledge of the three-dimensional geometry of the system, and indeed

there is little knowledge of the two-dimensional geometry of the system particularly

where on the drawing represents solid material and where represents empty space.

The closest the system comes to this is the ability to 'area fill' parts of the drawing at

will. This can clearly be shown by the ability of these drafting packages to produce

drawings of impossible objects such as those in Figure 17 (prepared in EasyCAD).

36

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Figure 17 Impossible Objects

The trend to 3D systems, with the advent of increasingly powerful computers and

software of ever growing sophistication, is fraught with similar limitations. The first

three-dimensional systems were so-called wire frame modellers. In much the same

way as a drawing in 2D is constructed out of line segments, in 3D, wire frame

modellers allowed models to be constructed of 3D line segments. Though 3D models

could now be produced, these models are inherently ambiguous. It is not possible to

categorically infer from a wire frame model where particular surfaces lie or indeed

whether they exist. Perhaps the simplest example of this is that a wire frame modeller

has the same representation for both a solid cube and an empty box.

To resolve this problem, ways of representing solids were required. Solid modellers

can be characterised as representing a point set in Euclidean three-space. Typically

further restrictions are placed on the point set to allow the set to be represented to

some degree of satisfaction within a finite computer system and in such a way as to

allow useful manipulation and interrogation of this point set. [Bowy95] gives

background information on areas of solid modelling still requiring research. The

currently successful solid modelling methods tend to fall into three major categories:

 Spatial Occupancy methods

 Constructive Solid Geometry

 Boundary Representation

37

Geometric Reasoning for Process Planning Jonathan Charles Salmon

The work of the Djinn project [Arms97] is attempting to define an

Application Programmer's Interface (API) that hides the underlying modeller

and also the type of modeller from the applications developer. [Shah97] is

also looking at a modeller independent API but is currently restricted to two

B-Rep modellers.

3.3.1 Spatial Occupancy Methods

Spatial Occupancy Methods are often less able to model exact geometry, but can be

more compact than other methods. This allows octrees in particular to be used in

cases where space is at a premium, such as in fine-grained agent models [Jacq98].

Spatial Occupancy methods come in 4 main forms

 Exhaustive Enumeration

 Cellular Decomposition

 Space Subdivision

 Depth Maps

3.3.1.1 Exhaustive Enumeration

Exhaustive enumeration is little used but represents a volume as a number of volume

cells or voxels. Exhaustive enumeration is extremely expensive in memory terms, so

space subdivision methods such as octree methods are more frequently used as they

can result in a huge space saving at a small increase in algorithmic complexity.

Consider the TECC component (see Figure 70, later in the thesis and [Husb91]),

roughly 200mm long by 100mm wide by 200mm high. Modelled at an accuracy of

only O.lmm requires 2000x1000x2000 voxels or ~4xl09 voxels. At one bit for each

voxel and at eight (8) bits to the byte, approximately 500Mbs of memory are

required. Exhaustive enumeration is not compact.

3.3.1.2 Cellular Decomposition

Cellular decomposition where a body is composed of a number of non-overlapping

simple, but not necessarily regular, cells joined at common faces. Finite element

meshes used for stress analysis and computational fluid dynamics are perhaps the

38

Geometric Reasoning for Process Planning Jonathan Charles Salmon

most common uses of this technique. The other techniques (CSG and B-rep) are

often enhanced with cellular decomposition methods, for instance, to provide fast

raytracing.

3.3.2 Octree modelling

Octrees are used for many tasks, often in association with CSG or B-rep modellers.

Representation methods are described by Yamaguchi [Yama84]. An example object

along with an octant numbering system and the resultant octree are shown in Figure

18 and Figure 19.

Figure 18 An Example Object and Octant Numbering

Legend
O Empty Cell
O Mixed Cell
• Full Cell

Figure 19 Octree Representation of Example Object

In this octant numbering system, octant 0 is the x,y,z>0 octant and the octants are

numbered anticlockwise around the z axis, followed by those in the z<0 halfspace.

39

Geometric Reasoning for Process Planning Jonathan Charles Salmon

The octree representation then given is equivalent to the object shown. The initial,

top level octants are centred on the origin.

Taking the TECC component again (200mmx200mmx 100mm), modelled to an

accuracy of 1 part in 2000 (or O.lmm), would require an octree up to 11 levels deep
1 0

(2 =2048). The size in terms of the number of nodes of the resultant octree would

result in great space savings with all the areas that were either entirely within the

object or entirely without the object. Each node in an octree can have one of three

values: full, empty, or grey (i.e. mixed and requiring further decomposition).

One particular application of octrees is for pre-segmenting a B-rep model to allow

rapid ray casting of the model by photorealistic Tenderers. An octree is made of the

B-rep model to some suitable resolution and the nodes of the octree are tagged with

those faces of the model that can be found in the appropriate region. This allows

rapid ray-firing as precise intersections need only be found for those nodes the ray

passes through containing interesting surfaces [Glas84].

3.3.3 Depth maps

A common, but limited Spatial Occupancy method that has the advantage of being

comparatively compact is the depth-map. Depth maps can only represent components

that are single-sided, in machining terms this means that they must be machined only

from a single direction. Other single sided objects include terrain maps, making

depth maps suitable for Geographic Information Systems (GISs). The output from

3D digitisers, at least in an intermediate form, tends to be as a set of depth maps each

from a different viewpoint. A number of 3D depth maps can be knitted together to

form a solid 3D object (though not without difficulty and with some limitations). NC

simulation programs dealing with purely one-sided 3-axis NC milling can also use a

depth map as a suitable representation provided each pixel is small enough to provide

satisfactory resolution. Representing a component of dimensions described earlier,

but using a single sided depth map takes only 2000x1000 pixels. If each depth is

modelled using an 8bit fixed point number, giving 256 possible depths, then 2Mb of

storage is required, large, but a fraction of the space previously needed. The NC

simulation program need only handle two dimensional geometrical problems, setting

the depth of all pixels a cutter passes over to the cutter height. Simple rendering of

40

Geometric Reasoning for Process Planning Jonathan Charles Salmon

depth maps is comparatively easy, as pixels in the depth map represent pre-sorted

areas in the resultant image.

The following image is a golf club head and its digital reconstruction in ACIS (a

solid modeller) from a digitised depth map taken from the laser digitiser of Machine

Vision Group of the Artificial Intelligence Department at The University of

Edinburgh. Each pixel in the depth map was about 2mm square, and due to specular

reflections, some of the data is clearly spurious. The ACIS model reconstruction

software constructs a series of slices from the data and unites them. No attempt has

been made to smooth the resulting body in any way. The resulting body was then

rendered using the LightWorks extension to ACIS to produce the image seen. The

original head is courtesy of Ben Sayers Ltd, North Berwick.

Figure 20 Original and Reconstructed Golf Club Head

3.3.4 Constructive Solid Geometry

Constructive Solid Geometry models (CSG) also known as set-theoretic models are

defined as combinations of primitive sets by Boolean operators (chiefly union,

subtraction and intersection). The most primitive sets are so-called half spaces; these

are defined by simple functions that separate the world (or three-dimensional

Euclidean space E3 to be more precise) into in and out. Half spaces can be defined in

terms of any real-valued analytic function f(P), P=(x, y, z) (Certain non-analytic

functions cause problems according to Requicha [RequSO]).

Thus for a plane passing through a point P0=(x,y,z), and with an outward surface

normal V=(x,y,z), it is possible to determine whether any point P is inside or outside

the halfspace by evaluating the expression

(P-Po)xV

41

Geometric Reasoning for Process Planning Jonathan Charles Salmon

and noting that if the result is less than zero then the point PQ is inside the half space,

if it equals zero it is on the planar surface, and if it is more than zero it is outside the

half space.

(P-Po)xV < 0; inside the halfspace

(P-Po)xV =0; on the planar surface

(P-Po)xV < 0; outside the halfspace

V outward facing r

Outside

Inside

Figure 21 Diagram of a Planar Halfspace

Similarly, an open-ended (infinitely long) cylinder whose axis passes through a point

P0 and is aligned with a vector V=(x,y,z) and with radius r, can be defined with the

following equation.

(P-P0)«V - r < 0; inside the cylindrical surface

Figure 22 A Box and a Cylinder in terms of their Constituent Halfspaces

42

Geometric Reasoning for Process Planning Jonathan Charles Salmon

A number of half spaces can be combined using set operators such as intersection

(O), union (U) or subtraction (-) operators to produce more complex bodies (these

operators are also referred to as Booleans). For instance a cylinder, Q, of height h,

and radius r, centred on the origin (as in Figure 22) can be defined in terms of three

half spaces in the following way:

HI: (P-(0,0,h/2))x(0,0,l)<0

H2 : (P-(0,0,-h/2))x(0,0,-l) < o

H3 : (P-(0,0,0))*(0,0,l)<0

Ci = HI n H2 n H3_____________________________
Though CSG modellers may allow use of the half spaces, most modellers wrap these

up into suitable, more user-friendly primitives, such as blocks, cylinders, spheres,

cones and tori. Though a user may be aware that he is developing a CSG tree to

describe his component, he may remain unaware of the primitive half spaces at the

bottom of the tree and so a simple component may be effectively modelled as in

Figure 23.

Figure 23 A Simple CSG Tree and Model

43

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3.3.5 Boundary Representation

TRANSFORM «-transform()

-bound()-
BODY

I 1
lump() body()

k______L
-bound()- LUMP

next()

\ 1
shell() lump()

-bound()- SHELL _ subshell()
next() ' I SUBSHELL

-bound(>

face_list() shell()first_face() fjrstjace()
fr I I face_list()

next_face(); next_in_list()

VERTEX

FACE
-subshell(>-

- child()
sibling()

_parent()

loop() face()
_±____I

LOOP

-geometry(

next()
SURFACE

start() ownerf)

partner() COEDGE
next()

previous()
Lgeometry()*

PCURVE

edge() coedge()

-boundQ- EDGE geometry()> CURVE

edge()
start() end()

I

VERTEX geometry(>> POINT

Figure 24 A B-Rep Hierarchy (ACIS)

Boundary representation modellers seem to be in the majority in industry. They are

perceived as having a number of minor advantages over their CSG compatriots,

namely:

A B-rep model is canonical; there is a unique representation of any solid object,

whereas the same solid can (in general) be modelled in an infinity of ways in a CSG

modeller. This makes similarity checking very expensive (if not impossible) in a

CSG modeller, compared with 'just expensive' in a B-rep modeller.

B-rep modellers contain an explicit face and edge list, making visualisation routines

cheaper for B-rep modellers than for CSG. The hierarchy of topological elements in

ACIS, a commercial B-rep modeller is shown in Figure 24. The hierarchy for

Parasolid, the other leading commercial solid modeller is very similar to that of

ACIS [Shah97].

44

Geometric Reasoning for Process Planning Jonathan Charles Salmon

These differences are in fact less than might at first appear, as CSG modellers tend to

maintain a B-rep model of the object for visualisation, and B-rep modellers tend to

allow generation of solids using CSG-like primitives and Boolean operators.

Additionally, it is easier in B-reps to associate additional information (attributes)

with individual faces or edges as these entities do not exist within the CSG data

structure. However, the difference is more in the primary representation and the

philosophy of the research/developer.

Figure 25 A Non-Manifold body

The body in Figure 25 was generated in a demonstration of an early version of

FODDS (ACIS based) and crashed the system. It is an example of a non-manifold

body. Non-manifold bodies are objects where, for instance, more than two surfaces

meet at a single edge. These have been a problem for B-rep modellers for a number

of years, as it is quite easy to try to create them. It has been difficult until recent

years to represent them and in particular to perform subsequent operations on the

resulting solid model. ACIS 1.3 would allow the above model to be generated, but

subsequent Boolean modelling operations on any portion of the model would cause

the modeller to crash. A physical interpretation of non-manifold bodies is difficult. It

is not clear from the model whether the portion of space along the rear edge is a very

thin wall, or a very thin crack.

45

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3.4 Geometric Algorithms

For the FODDS2 system to work effectively, certain geometric algorithms not

readily available in the current generation of commercial solid modellers are

required.

The Minkowski sum is a form of sweep operator suitable for describing the swept

volume that a tool passes through given a model of that tool and the toolpath.

The medial axis recovers the 'skeleton' of a body from the body itself and can be

used to form part of a thin wall detection algorithm.

3.4.1 Minkowski Sum

[Kaul92] provides a comprehensive survey of Minkowski sums. De Berg [Berg97]

and Middleditch [Midd88] also describe suitable algorithms.

N

Figure 26 Minkowski Sum of Two Polygons M and N

Intuitively, the Minkowski sum of two closed regions can be considered as a dilation

process where one region is expanded by the other. In more formal terms, the

Minkowski sum of two sets M and N C^d, denoted M©N, is defined as the set

M®N= \J{p
peM
c/eN

46

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Defining XH = fx : x - h EX}, allows the definition of Minkowski sums to be

rewritten as M 0 N =\Jp EmNp. This equality is obtained by changing the order of the

union in the Minkowski sum by keeping p fixed and having point q run all over N.

An example of the Minkowski sum of two polygons is shown in Figure 26.

An operation analogous to Minkowski summation can be termed the Minkowski

difference (0). It can be intuitively looked upon as the erosion of one set by another.

More formally, it can be defined as:

M®N= \J{p-q}
peM
qeN

or

MQN = M®N

where M corresponds to the complement of M.

X

B A-B
Figure 27 Minkowski Sum Combines the Shape Characteristics of its

Arguments.

Minkowski sums have found various applications in the field of CAD/CAM. Some

of the better known applications are robot path planning, creation of machining

volumes, rounding and filleting and shape design.

47

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3.4.1.1 Robot path planning

Figure 28 Navigating an Object (R) amongst Obstacles (O1, O2) using

Interference Detection

Figure 29 Navigating an Object (R) amongst Obstacles (O1,O2) using

Minkowski Sums

Minkowski Sums have been used extensively in robot path planning [Berg97]. The

problem should first be restricted to translations of the robot object among obstacles.

A naive approach to would be to consider alternate paths by sweeping the robot

object along a candidate path and then checking for interference between each swept

path and the object (see Figure 28). The bottleneck in this approach is the complexity

48

Geometric Reasoning for Process Planning Jonathan Charles Salmon

of repeatedly detecting interference of the swept paths with the obstacles. Generating

swept paths is not a trivial operation either.

Figure 29 describes an alternate scheme where Minkowski sums are utilised to

compute forbidden zones around each obstacle. The forbidden zone corresponding to

the obstacle is that region where a translation of the robot object centred about its

reference point would collide with the obstacle.

If the reflection of the robot object R, about its reference point is called -R. The

forbidden zone S/, for an obstacle 0,-, is given by:

5,- = Oi®(-R)

Using this method the problem can be reduced to that of navigating a point among

forbidden regions which is much simpler and can be solved using ray casting

techniques. This method must be extended to cope with non-cylindrical robots that

change orientation during a move.

3.4.1.2 Creation of Machining Volumes

In three axis machining, the machining volume can usefully be modelled as the

Minkowski sum of the tool volume and the cutter path [Sung86]. In Figure 30 a

wireframe model of a blank and cutter path along with a wireframe profile of a

cylindrical tool in the home position. The Minkowski sum of the tool and tool path is

then removed from the blank to give the finished component.

Figure 30 Machining Volume Generation

49

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3.4.1.3 Rounding and Filleting

Rounding and filleting are commonly used operations in geometric modelling. The

construction of geometry in most modellers allows users to build their objects using

primitives that generally have sharp corners although these are rarely desired in the

final shape.

Consider a shape G generated by a solid modeller. A global rounding of radius r can

be generated by specifying a sphere S with the same radius and computing ®=(((G

0 S) 0 2*S) 0 S). That is, first by dilating the object all over by a given thickness,

then by eroding by twice that thickness and then by dilating by the thickness again.

The net effect is to round both convex and concave edges [Midd88].

Filleting alone can be achieved by (G 0 S) 0 S.

Whereas external rounding alone is achieved by (G © S) 0 S.

This technique of Minkowski blending does not always result in the intuitive shape,

particularly for shapes with thin passes or causeways (see Figure 31). The result

depends on whether dilation or erosion is performed first.

Minkowski blends, though well-defined, are of limited use in the real world. In

particular it is difficult to know how to limit the extent over which they operate, and

they can produce some counter-intuitive solutions in confined spaces or over small

peninsula. The result of the global rounding operation can then depend on whether

the filleting occurs before the rounding or vice versa. The rounding can eliminate

object protrusions and/or small voids.

50

Geometric Reasoning for Process Planning Jonathan Charles Salmon

u
a) original Polygon b) Intuitive result

c) [{Pec(d)}'ec(2d)]'ec(d) d) ((P'ec(d))'ec(2d))'ec(d)
Figure 31 Problems with Minkowski Blends

Figure 32 shows the Minkowski sum of a small sphere and a simple object resulting

in a dilated object. This is the output of an ACIS program by the author that can

perform the dilation of any polyhedron. Because the resulting object always has

curved faces, the process cannot be reapplied without first facetting the model.

Figure 32 Dilation using a Minkowski Sum

51

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3.4.1.4 Shape Design

Figure 33 An Example of an Object created using CTS

In addition to solid modelling techniques such as CSG and B-Rep, Cumulative

Translational Sweeps (CTS) have been proposed. Figure 33 shows an example of an

object generated by CTS, Booleans and rounding.

3.4.1.5 Proximity or Thin Wall Detection

Minkowski Sums can be used for the detection of thin walls in feature based

components. This particular problem is discussed in [Mill94] and in Chapter 4.

3.4.2 Medial Axis

A recent addition to the range of possible techniques for the recognition of features

of engineering significance in geometric models is the medial-axis transform

[Arms94]. The medial axis of a 2D region is the locus of the centre of an inscribed

disc of maximal diameter as it rolls around the object interior. The approach has been

52

Geometric Reasoning for Process Planning Jonathan Charles Salmon

extended to 3D solids using the medial surface. Medial axis has potential for thin

wall detection, applications in meshing for finite element analysis and the lower

dimensionality of the medial axis compared with its parent body is thought to

simplify some feature recognition processes.

Edges in geometric proximity

medial axis

y

Figure 34 A 2D Region and its Medial Axis

3.4.3 Definition of 2V*D

The term used by manufacturing engineers to describe components easily

manufactured by three axis NC machine tools without the need for special tooling is

21/2D. This informal definition is insufficient for features researchers and a more

rigorous geometric definition is required. The following definition is due to Corney

[Corn90].

A "strictly 2!/iD" object might be defined as having any of the following properties:

 Contains only planar and cylindrical faces.

53

Geometric Reasoning for Process Planning Jonathan Charles Salmon

 Has only step changes in height.

 Is prismatic. That is, it is one sided and when viewed from that side

contains no undercuts or overhangs.

 Not multisided.

 Contains no small-scale shape variations such as chamfers and edge or

fillet radii.

Mill regards a 2VfcD component as being any component that can be machined in a

small number of setups on a 3-axis mill with standard tooling, and so would allow T-

slots.

The author's strict definition of 2V6D is a component for which there is a (one or

more) planar face (called the 'back face') such that the surface normal of any point

on the surface of the component, but not on the back face makes an angle of greater

than 90° with the surface normal of the back face. This definition can be expressed

formally and is equivalent to saying that a 2ViD component can be fully modelled

with a (arbitrarily exact) depth map. This definition does allow freeform surfaces

however, something that is normally not considered 2*/2D in a manufacturing

environment.

Any system capable of dealing with 2V6D components in a reasonably complete way

would be of great value to manufacturing engineers. True 3D components including

sculptured surfaces and multiple approach directions represent only a small (but

highly lucrative) portion of the machined component market. The FODDS2 system,

whilst allowing excursions into true 3D, has clearly evolved to primarily handle 21/zD

components.

3.5 Features

As mentioned in section 3.3, the first generation of CAD tools were little more than

glorified 2-dimensional drawing packages. It should be appreciated that even a

correct set of 2D drawings of a 3-dimensional component drawn to an appropriate

standard, (e.g. BS308), can still be an ambiguous or more often hard to interpret

representation of the intended 3-dimensional component. Ensuring consistency

54

Geometric Reasoning for Process Planning Jonathan Charles Salmon

between multiple views of a component without having some common underlying

model is also extremely difficult to achieve on all but the simplest components.

An example of an object whose plan, elevation and side views are difficult to

interpret is that object made by the intersection of three cylinders of equal diameters

aligned along the x, y and z axes. This problem is shown in Figure 35 below. A

rendered image is shown on the left, with a font, plan, side and angled view on the

right of the same object.

Figure 35 A Body Formed from Three Intersecting Cylinders

As a result of this deficit of 2D CAD systems, and with the advent of sufficiently

powerful computers, there has been a move towards 3D CAD systems. In the first

instance this was in the form of limited 3D functionality added to an existing 2D

system. Such a system is the 3D addition to FastCAD that allows generation of

isometric images from 2D part drawings. This necessitates a fair amount of extra

work for the user ensuring validity of the 3D drawings so produced. This approach is

nothing more than a visualisation tool.

However, the alternate approach is for systems containing true 3D solid modellers.

Perhaps the best known of these is AutoCAD, particularly AutoCAD Mechanical

Desktop. Initially a 2D system and now with a true 3D husk (incidentally built on

ACIS) and strong links back to the original 2D systems. Other 3D systems include

and EDS Unigraphics' IDEAS and SolidEdge, Strassle's Konsys [Denz93], HP's

SolidModeler, Parametric Technology's ProEngineer, IBM's CATIA,

Computervision's CADDS5 and SolidWorks.

55

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Interestingly, these products invariably contain 2D sketchpads, as even now this is

frequently the fastest way of getting the bare bones of a design into the system. It is

interesting to speculate whether gradual improvement in immersive virtual reality

systems will result in the emergence of true 3D sculpting systems, or whether

(particularly in the mechanical design industry), the 2D abstraction is of fundamental

importance.

The majority of 3D design tools now have a powerful underlying solid modeller, of

which perhaps Parasolid and ACIS from Spatial Technology are the leading

commercial modellers. Systems not containing one of these commercial modellers

contain a closed proprietary modeller. All too frequently, however the resulting 3D

CAD system has powerful mechanisms for describing the geometry of the

component that is designed, but poor mechanisms for extracting suitable data from

this geometry to manufacture the component.

This gap between raw geometry and manufacturing requirements is frequently

known as The Great Divide [Shah95].

A fundamental technology for bridging this divide is that of features [Mill96]. This

concept has emerged over the past decade as a central technology for a number of

academic CEVI products notably PART [Hout91][Lend94]. It is taking longer to

infiltrate into the commercial sector though certain systems can claim to have feature

based modules, namely Parametric Technology's ProEngineer and Strassle's Konsys

system.

It is useful also to consider the philosophies behind the various tasks to be merged.

Particularly those of conceptual design, detailed design and automatic process

planning.

Features are a natural way of thinking about a design at both the conceptual phase

and the detailed design stage. What is considered to be a feature in these design

phases and what is considered a feature for process planning may not (or indeed will

not) be the same.

56

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3.5.1 Applications

The most popular areas for potential 'featurisation' appear to be in detail design and

process planning. Although many British companies have been able to make use of

CAD systems in order to help gain significant improvements in handling design data,

relatively few have benefited from Computer-Aided Process Planning (CAPP)

systems. Several reasons have been proposed for this, including the high cost of

implementation (due to company specific methods), lack of basic research (e.g.

solids modellers and expert systems do not fully support CAPP research), few

tangible advancements made in CAPP research and slow technology transfer

(advancements that have been made are more likely to be exploited abroad).

Consultants from several countries who have assessed the potential for

manufacturing planning software have invariably predicted potentially very large

markets although the performance of present CAPP systems is not sufficient to

satisfy demand from a technical viewpoint.

The majority of those working in CAPP world-wide have adopted feature oriented

methods and there is, in this area at least, some consensus that this is one way

forward, even though there is little agreement on what features are and how they

should be used. Groups at Bath, Bristol, Brunei, Cambridge, Cranfield, Edinburgh,

Heriot-Watt, Leeds, Loughborough, Newcastle, Southampton and Sussex as well as

others have all been active in work using 'features' in the last few years. Successes in

research have been confined to narrow areas of industrial application. Broader based

work has also been attempted, but its success to date has been confined to making

contributions to the research community as a whole, usually by showing how novel

approaches might be used (e.g. in using solid modellers, IKBS techniques, Genetic

Algorithms etc.).

UK research in feature oriented applications has been going on for some

considerable time [Husb90][Gind92]. Features have generally been regarded by their

supporters as providing high level and inherently meaningful data structures

[Ovtc92] which allow for better user interfaces, improved part model transfer,

increased automation of design and planning tasks, easier analysis, and improved

57

Geometric Reasoning for Process Planning Jonathan Charles Salmon

control over models that would encourage design for manufacture and parametric

design.

3.5.2 Feature Definitions

An initial feature definition might be:

Any geometric or non-geometric attribute of a discrete part whose presence or

dimensions are relevant to the product or part function, manufacturing engineering

analysis, use, and so on, or whose availability as a primitive or operation facilitates

the design process and manufacturing activities. [DeFa93]

There are three aspects of interest in this definition

A feature is a part of a larger entity.

The part has some properties that distinguish it from the whole.

Features can occur in all kind of entities and have a specific meaning for each

such entity.

The shape, behaviour and engineering significance of a feature needs to be encoded

in its definition. For this reason, and because the feature concept was initially linked

with process planning, the feature definition originally implied form features.

Therefore an early definition specific to geometric modelling was:

A specific geometric configuration formed on the surface, edge or corner of a

workpiece [author unknown].

Another broader definition of a process planning related form feature was given by

Wingard [Wing91]:

A generic shape that carries some engineering meaning.

Through such work, it has emerged that features are also relevant to other application

domains such as engineering analysis, and that features do not necessarily relate to

form. The pure geometric modelling definition does not include the reason for a

feature's existence or usefulness. As features encode the engineering significance of

the geometry, the definition must be extended to include the purpose for which a

feature is used. The previous definitions have meaning only for manufacturing and

58

Geometric Reasoning for Process Planning Jonathan Charles Salmon

not necessarily for other applications. These definitions are considered as

manufacturing form features, or simply manufacturing features.

One of the most recent and most comprehensive definitions of manufacturing

features is:

Form features are form elements with some function or meaning, used to model

functional information about the way some part of the object is manufactured or

assembled, so not only the geometric description of form features is of importance,

but also the functional information [Bron93].

It is important to underline that a form feature is considered to be a distinctive

characteristic of the topology, rather than the entire shape of the part.

As already mentioned the main motivation for the development of the feature

concept has been in the area of process planning, where features have been used as a

research tool for several years. In this field, features can identify areas in a product

that can be manufactured in one operation with one type of machine, e.g. a hole that

can be sunk with a particular type of drill, or a slot that can be milled with a

particular type of milling machine.

Since applications in other areas are emerging now, it is important to discover an all

purpose definition of a feature. Examples of these more general definitions are:

A recurring pattern of information related to a part description [Shah91a].

A semantic grouping used to describe a part and its assembly. It groups in a relevant

manner functional, design and manufacturing information [Giac90].

An element used in generating analysing or evaluating design [Wils90].

A functional shape aspect for design and manufacturing [Vane90].

A semantic data set that can be attached to product parts [Shah91c].

In the last series of definitions, other information is mentioned in addition to the

shape or form of parts. As Shah has defined, features represent the engineering

meaning of the geometry of a part or assembly; thus, the requirements that a feature

should at least fulfil are that it has:

to be a physical constituent of a part

59

Geometric Reasoning for Process Planning Jonathan Charles Salmon

to be mappable to a generic shape

to have engineering significance

to have predictable properties

It is possible to continue listing different definitions, as there are almost as many

definitions of features as there are researchers in features. At the moment it is

difficult to decide which one, among all these definitions proposed, can be

considered the most significant. However, considering the intrinsic nature of features

in manufacturing industry, the definition of features should not focus on a particular

process. The greatest difficulty and challenge is to define features that are

meaningful to all life cycle issues. Furthermore, it is only recently that researchers

have found unified definitions for any feature applications, as shown in Table 1.

Design Feature A discrete piece of information fulfilling a function on the
component and that is made available for the designer's use.

Process Planning
Feature

A distinctive or characteristic part of a workpiece, defining a
geometric shape, which is either specific to machining
processes or can be used for fixturing or measuring purpose.

Manufacturing
Feature

A parameterised geometric object that corresponds to a
manufacturing operation.

Machining Feature A subclass of manufacturing feature. A prismatic or
cylindrical volume that has primitive machining operations
associated with it.

Assembly Feature A feature that defines relationships between different parts in
an assembly.

Feature in Solid
Modelling

A volume whose properties include translation, rotation and
scaling

Table 1 Feature Applications

For completeness it has also been necessary to introduce the concept of abstract

features, defined by Shah [Shah91a] as:

Entities that cannot be evaluated or physically realised until all variables have been

specified or derived from the model

It is necessary to introduce this idea as the complete definition of a shape requires the

specification of all dimensions and location parameters, but not all these parameters

are available, or even important, until the final stages in design. Artefacts evolve

60

Geometric Reasoning for Process Planning Jonathan Charles Salmon

progressively, with partial or sketchy definitions of the product. Geometric

evaluations of such features need to be postponed. Many types of reasoning, both

automatic and manual, can be performed on incomplete or abstract feature instances.

Table 2 gives examples of some common features classified according to the

definitions given above:

Design features Blind Hole, Through Hole, Slot, T-Slot, Curved Slot,
Through Slot, Pocket, Rectangular Pocket, Step, Blend, Boss,
Fillet.

Process Planning
Features

Cylindrical Hole, Slot, Others.

Manufacturing
Features

Hole, Slot, Shoulder, Rectangular Pocket, Chamfer,
Undercut, Pocket, Boss, Block, Island, Fillet, Ring, Slice,
Bearing Seat Circular Pattern, Array Pattern, Elastic Ring
Seat, Internal Centring Surface, External Centring Surface,
Screwhole, T-Slot, Curved Slot, Pin, Step, Others.

Assembly Features Screw Hole, Spline, Hole, Datum (Plane, Axis), Screw, Pin,
Slot.

Table 2 Common Feature Examples

Much attention has been given in the research community to the classification of

features. Examples of these taxonomies include Wilson [Wils89], Case and Gindy

[Case94], STEP [Shah91c], Ovtcharova [Ovtc92], Shah [Shah91a], and Dohem-

Bronsvoort [DeKr95].

3.5.3 Feature Attributes

The complexity of design and manufacturing usually determines the number and

types of features required to represent a part of an object. Additionally features

should represent a set of design attributes or specifications that design attempts to

pursue in a part or product.

Attributes associated with the features are abstract entities that provide a specific part

or product description. The two terms, features and attributes, have often been

regarded as synonymous, however, while a feature is something that goes to make up

something else, an attribute is a characteristic or quality of a thing.

Attributes can be considered as a way CAE tools to transfer the non-geometric

technical information that is needed for downstream applications in the product life

61

Geometric Reasoning for Process Planning Jonathan Charles Salmon

cycle, onto the CAD model. They are used to represent a wide variety of information,

from identifier labels to complex geometric relationships. Attributes help in reducing

ambiguity and non uniqueness for feature manipulation methods. The same feature

may be represented by a different set of attributes for a differing design or

manufacturing application.

To define attributes is almost as difficult as defining the feature concept, but the

Pratt-Devries definition is:

An attribute is a characteristic quality or property which associates meaning to an

entity, significant to a particular stage in the life cycle of a product. [Subr95].

Examples of attributes can be considered colour of a face, type of thread or

relationships between two faces. An attribute associates meaning to an entity or to a

relationship between entities.

It is possible to say that attributes are characteristics of features, as well as features

being constituents of parts that can, in turn, be constituents of assemblies. Attributes

can be applied at any level of feature, a collection of features or to a whole part.

Examples of attributes are given in Table 3 below.

Dimensions

Positions

Geometric
Tolerances

Surface finish
Material
properties
Properties

Diameter, Length, Space requirements, Depth, Width, Corner
radii, Chamfer angle, Chamfer depth, Thread pitch, Height.
Location, Orientation/Axis, Direction, Entry/Exit, Boundaries,
Centre, Centreline, Origin, Feed direction, Position handle.
Form: Straightness, Flatness, Roundness, Cylindricity, Profile

of a line, Profile of a surface.
Position: Parallelism, Perpendicularly, Angularity,

Concentricity, Symmetry, True position, Circularity,
Runout, Total runout.

Maximum material condition, Minimum material condition.
Roughness.
Deformation, Hardness, Elasticity, Rigidity, Stiffness.

Functional, Performance parameters
Table 3 Attribute Examples

62

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3.5.4 Manufacturing Feature Justification

This subsection justifies the use of manufacturing features in a feature based design

system that is intended as the front end for a computer aided process planning

system.

 A design feature is anything that is of interest to a designer.

• A manufacturing feature is anything that is of interest to the manufacturer.

It is a truism that anything that can be manufactured can be designed. It is not

necessarily true, however, that everything that can be designed can be manufactured.

It is important in order to reduce design rework and manufacturing costs that

designers are encouraged to design manufacturable objects.

If some subset of the features that the designer is provided with are manufacturing

features then use of those features in a design will increase the likelihood that the

entire design is manufacturable. One way of accomplishing this is to provide the

designer with all manufacturing features in the system, that is, manufacturing

features are a subset of the set of possible design features.

Manufacturing Features c: Design Features

In practice, the implemented features are in fact a subset of all the design features

that could be offered, and so not all manufacturing features may be implemented in

the design system.

Implemented Features (^Design Features

The FODDS2 system is a front end to an automatic CAPP and CAM system. It

would seem to be a sensible compromise to offer, in the first instance, a set of

manufacturing features to the designer as this will help ensure that all designs are

manufacturable.

Constraining the designer to using only manufacturing features does not guarantee

manufacturability however; manufacturing features can be placed in a part in such a

way that manufacture is not possible. This can be due either to an access problem,

where the tool is unable to machine the feature volume due to a potential intersection

of the tool or machine by the current state of the workpiece or fixtures, or due to

63

Geometric Reasoning for Process Planning Jonathan Charles Salmon

more interesting feature interactions where a particular order of feature manufacture

is required.

3.6 Summary

This chapter has reviewed a number of background areas that lay the foundation for

the work in the remainder of the thesis.

1. The ongoing work of the Manufacturing Planning Group at The University of

Edinburgh has been introduced to place this thesis in context. In particular, the

HAPPI process planner has been discussed in more detail.

2. A discussion of the area of Computer Integrated Manufacture has been included

with the definition of the concepts of concurrent and simultaneous engineering to

place the work described in the remainder of the thesis.

3. An introduction to solid modelling, still fundamental to feature based design

systems and now regarded as essential for CAPP systems.

4. An introduction to Minkowski sums leading in the next chapter to their use as a

mechanism for describing both manufacturing features and related volumes. A

brief introduction to Medial Axes, which will be discussed briefly in the next

chapter as an alternative method for thin wall detection.

5. An introduction to features, building on the previous review of Shah's approach

to features, and justifying a manufacturing feature view for a prototype feature

based design system.

64

Geometric Reasoning for Process Planning Jonathan Charles Salmon

4 Geometric Reasoning for Process Planning

This chapter covers the theory behind the FODDS2 Feature Based Design and

Manufacturability Analysis System.

The chapter first defines the definition of a feature based component within the

system. It follows this with a description of the major feature types supported within

the system and the mechanism by which these features are generated. The particular

mechanism allows automatic generation of the various volumes required for the

subsequent reasoning regardless of the individual feature type, provided that feature

type is described in the manner detailed. Though this restricts the range of features, it

guarantees that the geometric reasoning will work for all features described in this

way.

The second half of the chapter details the geometric algorithms that the system uses

for manufacturability analysis prior to process planning.

4.1 Definition of a Component

Throughout this thesis a manufacturing viewpoint of components is taken, and more

specifically a traditional and CNC machining viewpoint, so a finished component is a

blank (or casting) from which material has been removed to result in some desired

geometry (and tolerance conditions). The mechanism for material removal is

normally some form of metal cutting (though there is no particular reason to rule out

EDM or ultrasonic machining for example).

A manufacturing feature (again from the viewpoint of 2l/zD milling) is a volume of

material that is to be removed from the blank and which can (usually) be removed by

some standard set of machining operations. Typical examples are slots, holes and

pockets. The way in which the geometry of these manufacturing features can be

developed is described in the next section.

Having decided on some set of parameterised features, a particular component can be

described in the following terms.

65

Geometric Reasoning for Process Planning Jonathan Charles Salmon

If Vj is the ith volumetric feature found in a description of the component, and B is

the blank before any machining has been performed, then the finished component C

can be described by the following equation:

That is the component is the blank from which is subtracted the regularised union

over all i of the feature volumes V/.

The volume to be removed from the blank A (the delta-volume) can be expressed as

A= U \<~\ B^^ i

and therefore,

C = B-A

JJC JJC 5^

- ,n andu denote the regularised set operators for subtraction, intersection and

union respectively [RequSO] 1 . The above equations are illustrated in the example

shown in Figure 36 below. The delta- volume may be smaller than the union of the

features as parts of some of the features may lie beyond the blank. This represents

volume that would have been machined had that volume been part of the blank.

Usually the cutter will pass through this extra volume because of tool geometry and

motion. Issues arise here regarding fixturing and clamping. The figure is purely

illustrative and the use of two rectangular pockets (that intersect) and a slot in this

manner are not intended to suggest any particular component.

1 The * is dropped throughout the rest of this thesis, and unregularised Booleans will

be mentioned specifically if needed

66

Geometric Reasoning for Process Planning Jonathan Charles Salmon

a)blank b) features

c) finished component d)delta-volume

Figure 36 Blank, Features, Component and Delta-Volume

4.2 The Feature Library

Having specified how a component is produced given a list of features (and the

blank), it is now necessary to define the features themselves. The features will

necessarily be material removal manufacturing features for the reasons given in

section 3.5.

Firstly, a feature definition was established. Following this, features from other

researchers systems and other entities that might be considered features could be

classified for inclusion in the FODDS2 system. It was established that there is a

differentiation between design and manufacturing features. Further consideration

resulted in the following (somewhat glib) definitions.

In the chosen domain, the principal manufacturing features can be summarised

primarily as holes, slots and pockets. These are broken down into subtypes and

augmented with a set of features from a particular machine tool manufacturer,

Mandelli of Piacenza, Italy, the enduser involved in the SESAME project.

67

Geometric Reasoning for Process Planning Jonathan Charles Salmon

These three classes of features embody the vast majority of geometric shapes

involved in 2l/2D milling.

Some feature systems offer surface features, a class of feature that is not offered in

FODDS2. This omission is sufficiently important to warrant explanation.

In a machining context, there is no such thing as a surface feature. All features are

material removal features. Often the term feature is used in order to change the

surface finish of a face. In the context of FODDS2, this is anathema. In order to

change the surface finish of a face using a machining process, material must be

removed, and so a depth of material must be specified.

If a depth is specified, then the pocket feature is available to perform this task, and a

surface finish can be specified on the pocket. A pocket feature is used rather than

inventing a slab feature for the reasons outlined in the discussion of Kramer's

MRSEVs.

However, what is meant by the simple class names is not so clear. A brief discussion

of the hole, slot and pocket classes follows:

4.2.1 Holes

No problem here surely. Everyone knows what a hole is.

hole (hoi) n. [OE. hoi] a small, dingy, squalid place. [Collin's Concise]

A first definition:

A hole is a rotationally symmetric material removal feature.

This covers many examples of holes, but fails to distinguish between a hole, a

circular groove, and in some cases a circular boss, where a boss is machined by

removing a ring of material from around the boss which is also rotationally

symmetric.

An alternate definition:

Simple holes are material removal features characterised by their chief parameters of

diameter and depth. This neglects other attributes of holes such as end geometry,

68

Geometric Reasoning for Process Planning Jonathan Charles Salmon

surface finish, chamfers, counterbores and threads, but captures the essence of a

simple hole.

Another typical property of simple holes is that they are manufactured by rotating

tools translating only along the axis of rotation. The PART process planning system,

for instance will take any hole that has an aspect ratio such that its diameter > 10 *
depth and recategorise this hole as a pocket [Lend94].

Lastly an important feature of holes is that they are defined from one direction, but

the resulting geometry must be analysed in order to discover whether the hole is a

through or blind hole and thus whether a hole can be machined from 'below' as an

alternative to the default approach direction. This property of multiple access

directions is also important for other features, but is of prime importance for holes.

4.2.2 Slots

slot (slot) n. [Ofr. esclot, the hollow between the breasts]

The chief manufacturing characteristic of a slot seems to be that the slot is

predominantly machined with a translation of the tool perpendicular to the rotational

axis of the tool. This definition still allows all manner of straight and curved slots

and allows the use of special slot cutters such as T-Slot and dovetail cutters.

4.2.3 Pockets

pocket (pok'it) n. [Fr. dim. ofpoque, a bag]

Pockets differ from holes and slots in their complexity. Whilst holes and slots are

formed from a simple linear chain of movement of the cutter, pockets, at least in the

sense used in this work are formed by a two dimensional tool path with additional

approach and retract paths.

4.3 A Grounding for Manufacturing Features

All the design features used in the present system are based on manufacturing

features. Consequently, a solid grounding for the geometry of these manufacturing

features based on typical tool profiles and suitable machining techniques is required.

The present set of features are restricted to those easily produced by a 3-axis NC

69

Geometric Reasoning for Process Planning Jonathan Charles Salmon

milling machine. The resulting features support the geometry of the vast majority of

2VzD components, and are sufficient to design many real 3D components. However,

3D components with many distinct approach directions will lead to fixturing and

setup problems. The chief restriction of the feature library shown is that true

freeform surface profiles are not permitted. Design using freeform surface features is

a current area of research, particularly in the ongoing BRITE/EuRam IMPRESS

project [Agos97].

Sungurtekin [Sung86] lists the trajectories used in 3-axis machining as:

1. Linear in z (the spindle direction)

2. Linear in the xy plane

3. Linear in space (simultaneous movement of the three axes)

4. Circular in the xy plane

5. Circular in the xz and yz plane

Only features using trajectory types 1, 2 and 4 are considered. The reasons for this

are now outlined.

Traditional IViD machining generally involves a rotating tool that is then driven

along some path. The tool generally follows some approach and retract path at either

end of its machining path. In the case of 2V£D objects, the path followed during

machining is either parallel or perpendicular to the axis of rotation. Also, somewhat

pragmatically, the available Bridgeportll NC mill is only capable of producing

motions of types 1, 2 and 4.

This generally leads to components composed only of analytic surfaces and hence in
o

the more robust and reliable area of the domain of current solid modellers.

2 ANSYS, a leading finite element package, and other analysis packages, don't restrict themselves to analytic surfaces, instead

they carry all surfaces internally as spline surfaces. In ANSYS' case, these are NURBS surfaces. Though this approach offers

great flexibility, there are efficiency gains using analytic surfaces when dealing with objects composed predominantly of

analytic surfaces. There are then a number of special cases of surface-surface interaction, however each can be dealt with more

simply than the general NURBS surface - NURBS surface interaction. The tool CADfix from PEGS Ltd allows conversion

between these differing internal formats (even when the external format such as an IGES file is the same).

70

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Exceptions to the above general rules can be found in various examples of slot

cutters, fly cutters and boring bars.

The machining of freeform surfaces, though an area of interest and much present

research is outwith the scope of this thesis.

Any rotating tool of fixed geometry can thus be represented by two profiles, that

when swept about the tool's rotational axis give volumes and surfaces of interest. The

first profile represents the volume of the entire tool and is used to check the access of

the tool to the component. The second profile represents the cutting surface of the

tool. In Sungurtekin's nomenclature, the first profile is referred to as the total tool

profile and the second, the operational tool profile.

Let some complete cutter path consist of an approach path, a cutting path and a

retract path. These paths all consist of straight line segments or curve segments. All

the curve segments are restricted to circular arcs. The tool does not change

orientation during the motion. This is all consistent with a partial process plan for a

2l/iD feature to be machined on a three axis NC milling machine.

Boring bars provide an additional problem, their access body for the insert and

retract phase is equivalent to the tool profile swept around the vertical axis, however,

their 'access body1 during the machining phase requires the tool profile to be moved

such that the tool tip is at the diameter of the required ring.

All these manufacturing features must be derived from at least one of the tools

defined in the system, but any feature may be manufacturable in a number of

different ways if access problems are neglected. Only when a manufacturing strategy

is identified for a feature can valid tool classes be identified. This is accomplished

through the construction of an access body based on the feature and the associated

tool classes. Even this level of checking is based on the 'perfect' tool for the features

parameters, regardless of the actual tools available. Again the geometric reasoning

here is pre-planning, and is merely to perform some preliminary checks regarding the

ability of the system to manufacture the feature.

71

Geometric Reasoning for Process Planning Jonathan Charles Salmon

4.3.1 Cutters with Limited Access

There is a class of cutters such as T-slot cutters, dovetail cutters and boring bars that

are capable of manufacturing features with limited access.

The cutting volume of a T-slot cutter and a dovetail cutter is shown in Figure 37.

These cutter volumes show the volume of the feature, but fail to represent the

approach and retract volumes, so a design could become unmanufacturable if access

of the cutter to the feature is impossible (this is a different case to the access a cutter

needs whilst machining a feature. A plausible solution might be to add these

approach and retract volumes to the ends of the features, to ensure they are

considered during design and pre-planning, but this in turn enforces the position of

the approach and retract phase relative to the feature. If a particular component

geometry is required that requires the approach and retract vector to be at the

midpoint of a slot this solution would fail. Features requiring tools with limited

access are not implemented in the current system.

Figure 37 Feature Volumes of Cutters with Limited Access

Boring bars present exceptional problems when trying to develop a sound description

for 2VzD machining in terms of their cutter profiles and in terms of the Operational

Swept Volumes (OSVs) of Sungurtekin. They are the only class of traditional cutter

for which the cutter profile can change dynamically during the cut. Vandenbrande

72

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Vand91] points out that in the limit, a boring bar can cut a groove feature of three

times the radius of the hole allowing access. As with the T-slot and dovetail cutters,

boring bars are neglected in this thesis.

4.3.2 Tolerancing

Tolerancing presents a problem. It is widely agreed that the tolerances specified on

typical engineering drawings through standards such as BS308 map poorly on to

tolerances that can be specified in manufacturing.

Tolerances are specified for a number of reasons:

 to ensure that parts will function properly.

 to ensure that mass produced parts will be interchangeable.

 to ensure that parts are manufacturable (at reasonable cost) and assemblable.

 to ensure that the design is robust (critical dimensions have minimum sensitivity

to expected variations).

The first two of these reasons can be categorised as functional requirements. The

third reason is something that may be neglected by the designer in the first case and

require an extra iteration of design following initial process planning and is thus a

critical reason for Concurrent Engineering.

The fourth encourages the designer to use the loosest tolerance whilst ensuring

required functionality.

Thus, functional tolerances actually form a network of complex constraints between

features that must be resolved into positional and orientational constraints on

individual features in order to convert these functional tolerances into manufacturing

tolerances.

In order to make the feature based design system both functional and to simplify the

coding problems, the full set of geometric tolerances is not presented to the designer,

instead the designer must specify tolerances in terms of the position and orientation

constraints on each feature relative to its parent feature. This simplifies the problem

of tolerance analysis to (in the case of positional tolerances) the summing of

tolerances along the principal axes, and provided all angular tolerances are small, the

73

Geometric Reasoning for Process Planning Jonathan Charles Salmon

summing of angular tolerances about principal axes. Thus, the problem of tolerance

constraint management is shifted. Tolerances have in fact been the subject another

researcher in the group and research in this complex area is expected to continue in

the future. According to Voelcker [Voel97], geometric tolerancing is insufficiently

well formalised, and an attempt to 'mathematicise' tolerancing is under way as part

of an ANSI initiative. Though geometric tolerancing has been in use for decades it

seems unreasonable to attempt a full implementation whilst a suitable new

formulation is under development in addition to being outwith the scope of this

thesis.

4.4 Generating Feature Volumes for

Manufacturability Analysis

Prior to presenting the algorithms, it is important to set up a framework for

discussing the algorithms. This framework is used to describe the geometric models

of features and various volumes related to the features and used for the geometric

reasoning.

This model for generating the feature volumes has the important property that all

feature volumes are generated in exactly the same way given a logical tool profile

and logical cutter path. These tool profiles and cutter paths may not correspond to

tools subsequently selected by the process planning system, but are representative of

the ideal tool for that particular feature volume. This property allows more features

to be added with comparative ease, provided they can be described in this way. In the

FODDS2 system, ring features have been fully implemented, and pockets described

using a polygonal tool path as an extension to the rectangular pockets have been

partially implemented. The method by which the features are implemented from the

designer's view in FODDS2 is given in Chapter 5.

Firstly, Figure 38 shows all the various tool profiles used to generate the necessary

geometric reasoning and modelling bodies in FODDS2. Each solid body associated

with the feature can then be described as the Minkowski sum of the solid of

revolution of the tool profile and the cutter path of the associated feature type.

74

Geometric Reasoning for Process Planning Jonathan Charles Salmon

0 0 0 0 0

a) drill profile b) end mill profile c) complex mill d) t-slot profile e) dovetail slot

0 0 0 0 0

f) dilated drill g) dilated endmill h) dilated complex i) dilated t-slot j) dilated dovetail

0 0

t 0

I
m) blind accessk) local access 1) access profile

Figure 38 Tool' Profiles in FODDS2

Firstly, some terms are defined:

Let a component consist of m positive feature volumes and n negative feature

volumes.

Here, the positive feature volumes are simply volumes such as cylinders and blocks

that can be united to make the majority of stock workpieces found in a workshop.

Alternately a solid model of a casting can be imported as a single entity and

subsequently used as the stock. Uniting the m positive feature volumes merely

produces the stock that is subsequently used.

Let any negative feature volume be specified by a tool path, 7/, and a cutter path C/

Where the tool path, 7), lies in the y-z plane and is entirely in the +y halfspace.

The cutter path, C,, lies entirely in the x-y plane, and can be a OD point, a ID

arbitrary wire, or a 2D bounded surface.

75

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Let the maximum radii of the tool path be r,-. (n = maxrad (71/))

Let local_prof(r) be a tool profile of radius r and extent from z=0 to z=5 as in Figure

38 k) above, where 8 is a small but finite length.

Let access _prof(r) be a tool profile of radius r and extent from z=0 to z=+oo as in

Figure 38 1) above.

Let blind_prof(r) be a tool profile of radius r and extent from z=0 to z=-oo as in

Figure 38 m) above.

Let dilate_prof(T, *)be the Minkowski sum of a profile T and a quarter circle in the

(-y,-z) quadrant of radius x. In Figure 38, f)-j) are the dilated profiles of a)-e). That is

the dilated profiles are the profiles a-e offset outwards by a distance x, and then

trimmed to the (-y, -z) quadrant.

Let RevZ(t) be the solid of revolution created when some profile t is rotated 360°

about the z-axis.

Then:

Let PI (i=l,m) be the list of all positive feature volumes

Let NI (i=l,w) be the set of all negative feature volumes,

Let Vi (i=l,m+ri) be the list of all feature bodies (whether positive or negative)

Let AI be the set of access bodies for all the negative feature volumes

At =RevZ(access_prof(rj)) ©C,-

Let Dt be the set of dilated bodies for all the negative feature volumes

D, =RevZ(dilate_prof(Tj)) ©C,

Let Bi be the set of blind-access bodies for all negative feature volumes

Bi=RevZ(blind_prof(ri)) ©C,

76

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Let Lt be the set of local-access bodies for all negative feature volumes

Li=RevZ(local_prof(rj)) 0C,

Let Wi be the set of local-coordinate entities for all the negative feature volumes

(All Boolean operators are regularised unless explicitly mentioned)

The stock, P, is the initial state of the workpiece before any machining takes place.

p=\Jp,
i=\,m

Let N be the combined point-set of all the negative features.

N=\jN,
/=!, m

The delta-volume (A) is that volume of the stock that needs to be removed to form

the finished component

The point-set of the finished component C is the difference between the stock and the

delta-volume.

From the above equations, a set of methods can be generated to be implemented in

the system. These methods produce sets of bodies depending on the method name,

for instance the access method returns a list of all access bodies for all negative

features in the component description. These methods are summarised in the table

below (Table 1). Subsequent reasoning is performed using these lists as input data.

(The reader should beware of confusion between B, the blank and /?,-, the blind access

body associated with feature i. A similar confusion may arise between C, the

component, and C/, the cutter path associated with feature i.)

77

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Table 1 Geometric Reasoning Body Methods and their Equations

Method

component
'blank'

'feature'
"access"

'local-access'

'blind-access'

'dilated-feature'
"wcs"

Equation

C = P-N

Note on Table 1: u1" forms a set, but not a point-set. It forms the set of bodies of the

type in the equation, thus the set of bodies is a set in that each body is unique,

however the point set of uf is not necessarily a set in that features or other bodies

may intersect. (An alternative view is that it returns a list of bodies).

4.5 The Geometric Reasoning Algorithms

This section deals with the geometric reasoning that FODDS2 performs. All of these

algorithms can come under the heading of manufacturability analysis, but the

algorithms have two functions. Firstly, there is the design validation function.

Secondly, but more importantly is the geometric reasoning that is done as a

necessary prelude to process planning in order to provide the system with specific

suggestions regarding manufacturability problems.

The output of the algorithms are referred to as suggestions because at this stage

before any planning has been done nothing is known about machine or tool selection

and hence for any particular feature the validity of the suggestions provided cannot

be immediately confirmed. On the other hand much of this reasoning has to be done

at some point and the reasoning performed at this stage can dramatically reduce the

search space that the planning system must explore in order to produce acceptable

process plans. Additionally, the reasoning performed here provides a sufficient level

of clues for the extant planner (HAPPI) to produce process plans. HAPPI does not

78

Geometric Reasoning for Process Planning Jonathan Charles Salmon

contain a solid modeller and hence cannot actually perform any detailed geometric

reasoning of its own.

The geometric reasoning assumes that a design exists, whether partial or complete,

and each parameter of that design has been instantiated. That is, an evaluated

geometry is available. That is, any parametric design or constraint issues have

already been resolved.

The algorithms presented in this chapter are:

 Void recognition

 Feature presence

 Access problem detection

 Proximity detection

 Intersection detection

 Through hole detection

 Hole interference detection

 Alternate access direction

The application of the information inferred by these algorithms is discussed.

Void recognition is a validation technique applicable to components expected to be

manufactured by 2l/2D machining. Voids within a body cannot be manufactured by

conventional machining techniques.

Feature Presence is also a validation technique that confirms that all features do at

least partially intersect with the blank. Features that do not can be ignored for

manufacturing purposes as they play no part in the final geometry.

Access problem detection is fundamental to process planning and can be used to

infer some anteriority (or ordering) constraints between features.

Proximity detection is used to detect thin walls, both between features and between

features and the edge of the workpiece. This detection is performed in order to avoid

wall buckling or rupturing during machining.

79

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Intersection detection is comparatively easy to perform, and intersections offer

much information about potential problems, but the data obtained can be hard to

interpret. Intersections can be used to decide on anteriority constraints, but this often

requires intimate knowledge of the tool that is subsequently selected to machine a

feature. Intersections can also be used to suggest alternate representations of features

to aid process planning.

Through feature detection can apply to any type of feature and is used to detect

whether the direction opposite the principal access direction (that specified by the

designer) is a possible access direction for that feature. This is particularly important

for through holes.

Hole interference detection is used to detect whether features, or indeed the blank,

will cause problems for the machining of holes. This algorithm only applies to

features machined solely with an approach-retract movement.

Alternate access direction is used to detect whether any direction normal to the

principal access direction can be used as a possible machining direction.

The geometric reasoning discussed, in particular proximity detection, would benefit

from the ability to dilate a solid body by an arbitrary amount using Minkowski sums.

The mechanism for this has been previously discussed.

The algorithms then submit the information they have inferred to a database of

'facts' using an assert function. A retract function exists to remove facts from the

database. (This database is implemented as a simple list in Scheme and the concept is

borrowed from the assert/retract functions available in Prolog).

4.5.1 Void Recognition

If a designer adds a feature to a component and that feature is wholly within the

component, then that feature cannot be machined using traditional machining

techniques. Other more exotic manufacturing techniques such as Laminated Object

Manufacture (LOM) and Stereo Lithography are capable of manufacturing voids.

If a designer adds a further feature that then joins the void to the outside world (thus

removing the void) then it may be that the first feature was not a design error.

80

Geometric Reasoning for Process Planning Jonathan Charles Salmon

A question therefore arises; should the designer be warned instantly that a void has

been created, or should the test be postponed until the designer signifies that tests

should be made?

Consider also a case where the original workpiece from which the machining is to be

performed already contains a void (maybe it has been welded together), uncommon

but not beyond the bounds of reason. Here it is not desirable to flag an error because

of the existing void, but it is desirable to flag an error if either another separate void

is added or the feature is added to the existing void changing the geometry of the

void (again something not possible with traditional machining techniques). An

acceptable modification of a void, however, is if a feature penetrates into the void

and that feature is in itself machinable.

A two stage approach is offered to this problem.

During the design stage any feature that is added that increases the number of voids

in a component is flagged as such. This catches the majority of problems. In Figure

39 it is clear the designer intended to put the hole in the bottom of the component (a),

but placed it incorrectly (b). A drawback of this technique is that if there had already

been a pocket with a similar position but in the top of the component (c), then the

mistake would not have been detected by void detection. It would however, be

detected by access problem detection (see 4.5.3). This facility has proved invaluable

in the system catching a number of design errors, particularly in parts designed

before interactive graphics and surface rendering were available in the system. It

does not detect features that are added to a void after it has first been created, either

by being part of the initial workpiece or after a void creating feature has been

accepted.

a) hole entered b) misplaced hole
creates void

c) misplaced hole
no longer creates
void

Figure 39 Void Detection

81

Geometric Reasoning for Process Planning Jonathan Charles Salmon

The second approach is a more rigorous void detection approach that is less suitable

during incremental design and more suitable for validation of an entire design. The

designer could choose to invoke this routine, either at the end of the design process,

or at some time during the course of the design when he feels it desirable to check for

validation errors.

Again, there are two possible mechanisms. The first involves creating a positive

volume exactly filling the void. This is achieved by taking a copy of all shells apart

from the outer shell and reversing the sense of all the faces. This produces (with a

little manipulation) a solid body exactly filling the void.

Each feature volume can now be intersected in turn with the void volume, and any

intersection volumes highlight features causing the void.

An alternative technique relies on the fact that all faces of all features are tagged with

the feature ID (in terms of the Node ID) in the feature tree. By examining the

attributes of all the faces of shells apart from the outer shell, a list can quickly be

formed of all the features touching the shell of the void. In principal some features

not touching the shell of the void in the finished component could have been

included. By removing the list of features touching the void shell, however, and

recomputing the component and then reapplying the test all features causing voids

can be removed.

In the rare event that a feature has been included that sits inside the void of a blank

component, this would be detected in two other ways. Firstly, it would fail the

feature presence test, and secondly, it would certainly fail the component-access test.

The algorithm uses two special functions

numshells(x) returns the number of shells in a solid body x.

solidJ"rom_shell(x,n) returns a solid body made by copying shell n of solid x,

(creating a solid that is a lone void) and inverting the sense of all the faces

(creating a solid that exactly fills the void). Shell(O) of a body is the outer

shell, and all other shells are void shells.

Once the algorithm has made a pass of the body, all void features recognised must be

dealt with by the user and then the algorithm must be rerun. It is necessary that the

82

Geometric Reasoning for Process Planning Jonathan Charles Salmon

user decide what action to take for each void creating object. Were it not for this then

void creating features could be deleted from the model on each pass and the

algorithm automatically rerun until no more voids are discovered.

In practice, it is unlikely that more than one pass would be needed.

if numshells(C) > 1
then
S = solid_from_shell(C,1)
for i = 1 to n

if NI O S * 0
then assert(i " creates a void")
endif

next i
endif

Figure 40 Void Detection Algorithm

For most of these algorithms purely volume based reasoning has been used, avoiding

use of lower dimensional constructs. This has been predominantly to reflect the fact

that machining operations are in themselves 3D operations involving material

removal. In this void detection algorithm, some 2D inquiries are used.

4.5.2 Feature Presence

Looking for similar sorts of design errors to those discovered with void detection, the

accidental misplacement of a feature, Feature Presence checks that all features have

some intersection body with the initial workpiece in order to ensure that at least part

of each feature requires the component to be machined.

This is somewhat easier to detect than voids. Features that are not present in the

component should be flagged to the designer and the requirement that they be

planned should be switched off. They may exist as a consequence of the design

method in that a pattern of holes could be bored into a component even if the pattern

extends beyond the component's boundary so they should not be considered an

absolute design error. Feature presence checking is illustrated in Figure 42.

for i = 1 to n

if NiC\B=0
then assert ("Feature " i " fails presence")

next i

Figure 41 Feature Presence Algorithm

83

Geometric Reasoning for Process Planning Jonathan Charles Salmon

pockets r

I I
pattern of holes

a) pocket 3 has no presence within the blank b) failing feature presence may just be lazy
design rather than error as in this pattern

Figure 42 Feature Presence Detection

Any part of a feature that intersects with the blank qualifies that feature as present

within the blank. This is again in line with Kramer's issues regarding MRSEVs

[Kram92].

4.5.3 Access Problem Detection

In this section, some assumptions are made about features that do not hold true in the

general case. For instance, a Principal Access Direction (PAD) is assumed and

performs access checking making the assumption that the feature is to be machined

from this access direction. This is often true, for instance, most holes will be

machined from above. However, through holes could be machined from either end.

Similarly, it is assumed that a slot will be milled from above, but in certain instances,

where the placing of a slot results in a step, there may be four access directions, and

to be truly certain that all possibilities have been investigated the six othonormal

access directions must be checked. In Figure 43, there are two inaccessible directions

for the slot, into the component on the left of the slot and the base of the slot, but

there are four possible access directions including the Principal Access Direction

vertically upwards.

84

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Figure 43 Possible Access Directions for Slot and Hole

Each feature in the model has a principal access direction. This in particular is

reflected by the tool-profile and cutter-path model of the features in FODDS2,

reflecting the manufacturing feature bias. Many features, however can be accessed

from a number of independent directions as illustrated in the case of the step and hole

above. Of particular importance is the access direction antiparallel to the principal

access direction. This particularly affects through holes, and can change much about

how the hole is viewed. A through hole can be machined from two possible setups,

and, because it has a simple cylindrical profile, it has no endtype associated with it,

freeing up more yet more machining possibilities.

Gindy [Gindy89] regards features as having up to six External Access Directions

(EADs) but this is only true of components where machining need only occur along

the principal axes (whether in the positive or negative directions). In fact there is a

2D space (around the surface of a sphere) of possible approach directions and all

these are possible through different setups even when machining is restricted to

21/2D.

Examining the step in Figure 43 above, it can be seen that for two of the access

directions (+y and -y), a rotating cutter would leave a filleted radius at the juncture of

the two machined faces. A slab mill would remedy this. The feature model again

85

Geometric Reasoning for Process Planning Jonathan Charles Salmon

does not allow for slab mills, and so effectively allows only two approach directions,

from the +z or from the +x direction.

There is no general (i.e. feature independent) way of telling if machining is possible

from directions other than the principal access direction (+z local to the feature) or

the blind-access direction (-z local to the feature), all other access directions are

dependent on the individual feature geometry and its relationship between the

component. Indeed, it also depends at what point during the machining process a

particular feature is going to be machined, as it may depend on the current state of

the component. For this reason only the principal access direction (PAD) and the

blind access direction (BAD) are considered.

Over the years, a number of different ways of detecting access problems have been

used. Only recently, now that solid modellers are widely available and robust can

true access checking take place. Other process planning systems have relied on

access checking to be done manually [Husb90] or for simple vector-based testing to

be performed (see Figure 44)[Josh87]. Simple vector based testing produces the

correct answer in the majority of cases but cannot be relied upon to always be

correct.

vector access checking access problem
correctly Ider, tlfled

no access problem
correctly Ids itlfied

access problem
Incorrectly m ssed

Figure 44 Problems using Access Vectors

FODDS2 uses 'solid' access bodies and shows that a simple extrusion is again

insufficient for true access testing. Figure 45 shows how access body types for a

simple hole have evolved throughout the project.

Firstly, the vector based checking previously discussed is shown. Many of the

problems that vector based checking introduces can be resolved using the simple

access body of b). This and all subsequent bodies can be imagined to have a semi-

86

Geometric Reasoning for Process Planning Jonathan Charles Salmon

infinite length, that is, they extend from the surface of the feature away from the

feature to infinity. In practice, they have been modelled as bodies whose length is

guaranteed to be substantially longer than the maximum distance across a

component.

access bodies

hole features

a) vector based b) simple access c) simply grown
access checking body access body

d) grown access
body with step

e) grown access
body with draft
angle

Figure 45 Evolution of Access Body Types

The body in b) does run into some problems however. Consider the case in Figure 46

below (a case similar to Figure 44 discussed previously) where there is an attempt to

drill a hole through an existing hole of similar size. If an access body of type b) is to

used and the hole through which it is to be drilled is of equal radius to that of the new

hole that is to be drilled then no access problem will be detected, as there is no

intersection of the simple access body with the simple hole (in fact, a surface of

intersection may result however this has zero volume and regularising the result will

dispose of it). In reality, however, this is an access problem because in any real

situation there will be tool waver and the surface finish of the upper hole may be

detrimentally affected.

87

Geometric Reasoning for Process Planning Jonathan Charles Salmon

in this case the access problem goes
undetected

Figure 46 A Problem in Recognising an Access Problem

In order to deal with this failure of the simple access body, a new access body was

adopted where all access bodies are dilated by a small value as in Figure 45 c) above.

This presents no problems in the majority of cases where both feature and blank are

axis aligned and the blank consists of planar surfaces. If however the feature is to be

placed at an angle into the surface then this access body produces a spurious access

problem (Figure 47 below). There are of course other problems involved with

machining into angled surfaces.

hole feature
sloping surface ,„--'"''

access body

btank

spurious access problem

Figure 47 Problems with a Simple Grown Access Body on an Angled

Surface

The problem with a sloping surface can be resolved by using the access body of the

Figure 45 d). This form will work on slopes of up to 45°. Very few machining

operations can exceed this slope without some secondary feature to produce a locally

88

Geometric Reasoning for Process Planning Jonathan Charles Salmongeometric Reasoning tor Process Planning jonatnan unaries saimon

flat feature. Type e) with a sloped surface to the grown portion and a draft distance of

twice vertically the horizontal grow distance is, if nothing else, a smoother elegant

shape and leads to a simpler access problem shape (Figure 48 below). It also leads to

the problems of local and global access problems.

access body
typed)

access body
type e)

hole feature

sloping surface

Figure 48 Access body e) is less prone to Problems of Angle than Type

d)

The value of 8 (delta) must be identified. Delta is the clearance required between the

tool and any part of the workpiece that should not be machined. This value is a worst

case value, erring on the side of caution, but it is also a value that would vary

considerably if the processes and machine/tool combinations were known in

advance. Unfortunately this is not the case.

An estimate at the radius of the tool might be obtained, knowing the corner radius of

a pocket, the width of the slot or the radius of the hole. Then 6 can be specified to be

some small fraction of this, such as 5%. But if small holes, drilled using a simple

bench drill, are considered then the accuracy might be larger than 5% (consider an

M2 hole, 5% would give a required accuracy of 0.04mm, unlikely with a bench

drill). So a lower limit of 0.25mm could be introduced. This gives a value of 6 given

a typical radius r of:

8 = 0.05 r (mm)

89

Geometric Reasoning for Process Planning Jonathan Charles Salmon

if 8 <0.25, 8 =0.25 (mm)

The angle of a feature to the surface in which it lies is an important machining

consideration, but it is not a question that can be pursued before some machining

process has been selected.

On examination of some real components, a number of cases have been discovered

where nested pockets would share one or more sides. With a type d) or e) access

body this would result in an access problem. Any access body whose cross section

exceeds the maximum cross-section of its parent feature will result in an access

problem if the feature is intended to have a sidewall flush with the sidewall of the

parent feature (see Figure 49). So, pragmatism has forced a return to an access body

of type b). Performing two access checks, one with a type b) body and one with a

type e) body would allow further reasoning to be performed in this scenario. If there

was no access problem with a type b) body, but an access problem was discovered

with a type e) access body, then this relationship would be added between the two

features in question thus providing a hint the process planner to manufacture the two

features in the same setup.

1 pocketl

pocket2

Figure 49 Nested Pockets with a Coplanar Sidewall

Having discussed the geometry of the access body, the uses to which the access body

can be put and the information that can be obtained will now be discussed.

The access body represents the volume that the tool would have to travel through in

the manufacture of the feature. It does not represent the chuck of the tool and it is

assumed that the chuck and the rest of the machine would always be clear of the

component. This again represents the path of least commitment. Which machine any

particular feature will be machined on is still unknown, so it is unrealistic to

90

Geometric Reasoning for Process Planning Jonathan Charles Salmon

constrain the choice of machine by using a more complex access body. Admittedly a

least committed access body generated from an examination of our chosen machines

could be used, but the disadvantages in terms of complexities of the resultant bodies

outweighs the gain. It does however demonstrate the need for simulation of a process

plan after a process plan has been generated to highlight particular problems that this

early geometric reasoning cannot hope realistically to pick up.

Access problem detection is performed in three ways. For each feature the following

tests are performed:

 Intersection of the feature's access body with the component

 Intersection of the feature's access body with the blank

 Intersection of the feature's access body with all other features

Each of these three are discussed in turn.

4.5.3.1 Intersection of the feature's access body with the component

If the result of the intersection of a feature's access body with the component is not

null then the feature cannot be manufactured from that direction. If this test is

performed first and the result is not null the other two tests do not need to be

performed. This is because the second test is guaranteed to fail as the blank

completely encompasses the component and performing the third, most expensive

test would be redundant.

4.5.3.2 Intersection of the feature's access body with the blank

This test is far cheaper (computationally) than the third test, and if passed cleanly

obviates the need for performing the third test resulting in a considerable saving in

computing time. It has been observed subjectively from examination of test

components, that more than half of the features on any component are normally

machined on the surface of the blank. That is nested features only constitute a

fraction of the features to be machined, though often the most interesting fraction. If

those parts that lie on the surface can be cheaply identified then the additional test

involved ultimately saves processing time. It is not possible to tell whether a feature

is on the surface of a component without performing such a test, particularly because

91

Geometric Reasoning for Process Planning Jonathan Charles Salmon

the workpiece may not have simple planar geometry, and a feature is not necessarily

aligned with any surface of the workpiece.

In this test, the access body of a feature is intersected with the blank. If the resulting

intersection is null then that access to that feature is available regardless of its

position in the process plan. Subject to other constraints such as tolerance relations,

this feature can be machined at any time. If this is the case then the third test is not

required, and substantial processing time is saved.

4.5.3.3 Intersection of the feature's access body with all other features

From the first test, it is known that there is access to the feature provided all other

features have been machined. The second test infers that the feature is only

accessible after certain features have been removed. The purpose of this third test is

to identify which features must be removed prior to the machining of the feature in

question. The access body of the feature in question is intersected in turn with all

other features and the results of these intersections are added to the database as

anteriority constraints. These tests are summarised in the algorithm of Figure 50

below.

for i = 1 to n

if A± n C * 0
then assert ("feature u i " is inaccessible")
else

if A± n B =t= 0
then // more tests required

for j = 1 to n

if j*i
then

if AI 0 (Nj 0 B) =f= 0
then assert(i"has access problem with "j)
endif

next j
endif

endif
next i

Figure 50 Access Problem Algorithm

The simple case of a triply nested slot is considered (see Figure 51). The slot at the

top with global access is slotl with slots 2 and 3 being machined in the bases of slots

92

Geometric Reasoning for Process Planning Jonathan Charles Salmon

1 and 2 respectively (that is, machining is not to be started from the top surface of the

component but from the base of the higher slot).

V

1.

1
|___

—
o

JQ

i\
slotl

^

on
<D
O
Oa

slot2

o
£l
%

8
O
O

__^--"
*^

^

slot3

^^-^
~*~

*~,

— ̂

,
^

^oL

Intersection of
^slotl and

accessbodyS

intersection of
slotl and
accessbody2

intersection of
-slot2 and
accessbodyS

Figure 51 Access Bodies and Anteriority Constraints for the Triply

Nested Slot

The anteriority constraints will be successfully inferred in the above case. Consider,

however, the case of Figure 52 below. There is a through hole running horizontally

through two lumps' and passing through the top slot of a nested slot pair. The simple

access problem detection algorithm gives the result that the bottom slot must be

machined after both the top slot and the hole. This runs contrary to a quick human

analysis of the problem where it can clearly be seen that it is only necessary to

machine the top slot before the bottom slot, and the hole, though possibly having

anteriority constraints of its own does not affect the bottom slot.

.access body of bottom slot
.access problem with top slot

.access problem with hole

.through hole

.top slot

.bottom slot

Figure 52 The Slot and Hole case

Considering this case more carefully it is discovered that though an access problem

between the bottom slot and the through-hole has been posted to the database, this

93

Geometric Reasoning for Process Planning Jonathan Charles Salmon

access problem body is completely subsumed by the access problem body between

the bottom slot and the top slot, so the anteriority constraint between the bottom slot

and the hole can be neglected. Nevertheless, an algorithm to check for this sort of

case is required. This algorithm must also produce the correct result in the earlier

triple slot case to ensure that the two sets of requirements do not conflict.

4.5.3.4 Improved Anteriority Algorithm

A simpler case where such an anteriority check must be performed is shown in

Figure 53 below, and indeed the above algorithm does reveal that the hole can be

machined after either of the two slots has been machined.

Figure 53 shows two crossed slots (slotl and slot2) and a hole in the base of the

intersection of the two slots.

Figure 53 Crossed Slots with Hole

Performing access checks gives the following information:-

holel-access intersects slotl.
holel-access intersects slot2.

In terms of anteriority constraints this could be reinterpreted as:-

94

Geometric Reasoning for Process Planning Jonathan Charles Salmon

holel machined_after slotl.
holel machined after slot2.

However, it is obvious by inspection that in fact the requirement is weaker than this

and is in fact:-

holel machined_after (slotl or slot2).

The question now arises, what geometrical analysis can be performed to reveal this

weaker piece of information. Observing the intersection of the holel access body and

the blank, shows that this body is entirely contained within the intersection of the two

slot features:-

holel_access n blank =
(holel_access n blank)

(slotl n slot2) n

The question then remains how a process planning system can model the 'or'

constraint. The HAPPI system was not capable of modelling such a constraint.

An algorithm to identify and evaluate these cases follows in Figure 54. Note the

existing database of relationships of the type "has access problem with " is used, and

where necessary the relationship "machined_after" is added to the database, where

this is taken to mean, "must be machined after". Additionally, cases of 0,1 or 2

access problems are considered. In the event of more, all pairwise combinations of

partners must be considered. There are extreme cases where even a pairwise

consideration is insufficient, though these are sufficiently unlikely in real

components as to be comfortably ignored. (In the algorithm in Figure 54, x, xl and

*2, are partners in the relationship that are only instantiated upon answering the

numfacts query. This query will return all items in the database that match the body

of the query with x as a wildcard. The algorithm is thus slightly simplified for

clarity.)

95

Geometric Reasoning for Process Planning Jonathan Charles Salmon

for i = 1 to n
if (numfacts(i " has access problem with " x) -1
then assert (i " machined_af ter" x)
endif
if (numfacts (i " has access problem with " x) =2

//assume partners are now features xl , x2
then

if (A± 0 Nxl = Ai 0 NX2)
then assert(i "machined_af ter (or " xl x2 ")")
endif

if (Ai 0 Nxl C Ai 0 Nx2)
then assert (i "machined_af ter " x2)
endif

if (Ai 0 NX2 C Ai 0 Nxl)
then assert (i "machined_af ter " xl)
endif

endif
next i

Figure 54 Improved Anteriority Algorithm

4.5.4 Through Feature Detection

Up to now, one access direction has been considered for each feature. Holes are

frequently through-holes, and the option of two access directions can remove a large

number of constraints on the subsequent process plan. To this end, for each feature,

an access check is performed with a blind access body. The blind access body is that

body which would intersect with a component in the event of a blind hole. Often this

will reveal alternate access directions for other features, though it will not infer

access directions in the 'ends' of slots or the 'sides' of pockets. This information is

not currently used in conjunction with the other access checks.

for i=l to n

if B± Pi C = 0
then assert(i " is a through feature")
endif

next i

Figure 55 Through Feature Detection

This algorithm can be extended in much the way that the previous access algorithms

were. Note that the blind access body extends downwards from the top of the feature.

This is because all currently implemented features are guaranteed to have their

96

Geometric Reasoning for Process Planning Jonathan Charles Salmon

maximum radius at the top of the feature and may narrow lower down. To ensure

that features that narrow below the top of the feature it is important to check blind

access through the feature itself.

4.5.5 Proximity Detection

An area of particular interest to the author, detecting proximity problems or thin

walls appears trivial. Upon closer inspection, it becomes remarkably complex.

Firstly, it is necessary to define what is meant by a thin wall.

The chief reason for detecting a thin wall in this domain is the possibility of that wall

rupturing due to machining forces during manufacture. It is sensible to assume that

the design passed to the geometric reasoning module is functionally valid, that is the

design will meet its 'in use'requirements.

First, a naive method for the detection of thin walls is discussed, both the problems

and the disadvantages. A more complete method is subsequently discussed.

Let the thickness below which a wall is declared thin be 6 (not to be confused with

the 8 used in access problem detection). If it is possible to dilate all features by the

distance 5/2 then intersections of pairs of these dilated feature bodies will indicate

thin walls. The problem of producing dilated bodies has already been covered in

Chapter 3 and through the dilated tool profiles described in section 4.4 earlier in this

chapter.

n n
As with many of the other tests, the number of intersections to try is where n

is the number of features in the component. A routine has been written that cheaply

tests whether the intersection of the bounding boxes of two objects exists. This

radically reduces the number of full Booleans that have to be computed. The result of

this test determines whether a full Boolean test is needed3 .

3 Though one would imagine ACIS already performs this test before performing a

true Boolean, the test seems to result in a significant speed up, possibly as fewer

entity:copy functions need to be called (both by FODDS2 and ACIS).

97

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Figure 56 Thin Wall Detection

This technique has been implemented and is illustrated in Figure 56. Thin walls are

highlighted and can be seen between the large hole and its surrounding holes and

between the various slots and pockets.

The one major drawback that can be seen of this simple technique is that thin walls

are not detected between the features and the outside world. This can be overcome

for a range of cases if dilated feature bodies with a dilation of 6 (twice that used

previously) and check that no portion of the dilated feature lies outside the blank.

First, though a check must be made that the original feature had no portion outside

the blank. Any feature that already has some part of its volume lying outside the

blank will necessarily have some portion of its dilated volume outside the blank, so a

check for thin walls on these features will fail. More details of these problems are

examined in the next chapter with the Thin Walls test piece.

Dilated bodies using the dilated tool profile have been dilated with a hemisphere in

the -z halfspace. This was to prevent dilated features whose top surface lies flush

98

Geometric Reasoning for Process Planning Jonathan Charles Salmon

with a face of the blank from having their dilated body protrude out of the blank

except where they meet a thin wall criteria. This algorithm is shown in Figure 57.

Vandenbrande [Vand91] suggested a similar technique that he left unimplemented

and the problems unresolved.

// the algorithm is in two parts
// feature-feature thin walls
// feature-universe thin walls
for i=2 to n

for j=l to i-1
if (and

(Ni O Nj * 0)

(Di(8/2) n Dj(8/2) * 0))
then assert (i" has a thin wall with "j)

endif
next j
next i
for i = 1 to n

if (and (B-Ni * 0)

(B - Di(8 /2) * 0))
assert (i " has a thin wall with the blank")
endif

next i

Figure 57 Thin Walls Algorithm

This algorithm still has a number of drawbacks. If the insistence on volumetric

solutions is dropped then a number of other approaches are open. Gupta's approach

in section 2.5 [Gupt97] shows promise. Alternatively approaches using the medial

axis of the component might be possible, though these two approaches may

converge.

4.5.6 Intersection Detection

The detection of intersections between features is vital as almost all problems of

interest when process planning derive from intersections between features. A

component with a thousand distinct features is easy to process plan when compared

with a component with two intersecting holes. Reasoning about the intersection

between features can lead us to redefine features in order to simplify process

planning, these are called alternate representations. The system evaluates all feature

intersections and records them in the database for the information of downstream

99

Geometric Reasoning for Process Planning Jonathan Charles Salmon

packages using the algorithm in Figure 58. With the exception of those intersections

used for anteriority evaluation, the current system does not use this information.

Applications for this information include the possibility of simultaneous multi-

feature machining and feature redefinition.

for i=2 to n
for j-1 to i-1

if NI n NJ * 0
then assert (i" intersects "j)
endif

next j
next i

Figure 58 Intersection Detection Algorithm

4.5.7 Hole Interference Detection

Hole interference detection is used to detect whether features, or indeed the blank,

will cause problems for the machining of holes.

This class of problems is normally not a significant issue with slots or pockets, so it

is necessary first to isolate what is special about holes that causes this to be a

problem.

This algorithm only applies to features machined solely with an approach/retract

movement.

The problem arises when the approaching hole end contacts an incomplete or angled

surface. To successfully machine a hole, the intersection of the entry face of the

component and the cutter must be a complete circle of the same radius as the hole.

This must be true if the hole exits and re-enters material during machining. In the

limit this is true for exit faces, though not usually so critical. The problem of

constraining the exit face is neglected here.

Firstly this condition must be checked for the hole and the blank. If it does not some

feature must be machined before the hole in order to leave the entry surface in the

required condition.

100

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Then all other features that intersect with the hole must be checked to ensure that the

intersection body of the hole and the feature meet the requirements. An algorithm

that handles hole interference detection is shown in Figure 59 below.

For simplicity the following functions are assumed:

hole_access_interaction(body, vec, radius) that given some solid body, will

return true if that body has a planar face whose surface normal is parallel to

vec and that will contain a circle of radius r. (note that a surface normal

antiparallel to vec is not acceptable.

hole?(i) returns true if negative feature / is a hole, false otherwise

A Hole Access Interaction problem is referred to as an HAI in the interests of brevity.

So an HAI between a hole and a feature means that the hole cannot be machined after

the feature if that feature has been removed first (and possibly not even then).

for i = 1 to n ———• —
if hole?(i)
then

if hole_access_interaction(B O NI)
then assert("hole " i "has a HAI with the blank")
endif
for j = 1 to n

if (Ni n Nj)
then

if hole_access_interaction (Ni C\ Nj)
then assert(i "has an HAI with" j)
else assert(i "has no HAI with" j)
endif

endif
next j

endif
next i

Figure 59 Hole Access Interaction Algorithm

The problem with this algorithm is that it is not clear how to spot how one feature

might resolve a HAI problem a hole has with another feature or the blank. Consider

how a feature is often used to provide a flat spot on a blank to use as a starting

surface for a feature. For this reason, when a feature that intersects with the hole does

not have a problem with the hole, this fact is asserted. It is this second class of

feature that can be used to provide flat spots to start holes. This then leaves the

101

Geometric Reasoning for Process Planning Jonathan Charles Salmon

problem of analysing whether the problem with a feature lies with the top surface or

the bottom surface. HAIs are then left as hints for the designer.

a
d

Figure 60 Problems with Hole Access Interference

From Figure 60 it can be seen that hole a) has no problem either with the blank or the

pocket feature. Hole b) has a problem with both the blank and the feature. Hole c)

has a problem with the pocket, but not with the blank, so can be machined first. Hole

d) has a problem with the blank but not with the cut out, so can be machined after the

cutout, but only because the cutout intersects with the problem area on the blank.

In general, if any feature exists that creates an HAI, then a feature not causing a HAI

that intersects with the entire volume of the entry face of the HAI must also be

machined before the hole is machined.

4.5.8 Alternate Access Direction

Potential Alternate Access Directions (AADs) lie normal to both the Principal

Access Direction (PAD) and any straight edges forming the cutter path. Evaluating

AADs requires feature redefinition and is beyond the scope of this thesis. An

alternative approach might be to relax the geometry of features in the first place as in

[Mant89].

4.6 Summary

This chapter has introduced a description for volumetric material removal features

that allows all subsequent volume oriented geometric manufacturability algorithms to

102

Geometric Reasoning for Process Planning Jonathan Charles Salmon

operate in a general way on all feature types. Algorithms have been presented for a

number of important validation tests. Most importantly, novel algorithms have been

presented to generate anteriority constraints between features and for detection of

hole access interference problems. The algorithms do not check for any alternate

access directions with the exception of the opposite direction for holes. This is a

drawback of the system that should be addressed.

Subsequent chapters describe the FODDS2 system within which these algorithms

have been implemented and then demonstrate the validity of the anteriority

algorithms through a number of test cases.

103

Geometric Reasoning for Process Planning Jonathan Charles Salmon

5 Feature Oriented Detail Design System

This chapter introduces the Feature Oriented Detail Design System 2. It starts with a

review of the user requirements and translates those into system requirements.

The system design decisions are reviewed in light of Shah's requirements for a

feature based design system.

It is important to realise that unlike most CAD systems, designed for ease of use of

the designer, FOODS2 has been developed for two distinct classes of user. Firstly,

there is the human designer, but secondarily, and arguably of more importance are

the downstream applications, in particular the CAPP system.

5.1 User Requirements

There are two classes of user associated with the FODDS2 Feature Based Design

System. Firstly there is the designer at the 'front-end' of the system. The majority of

CAD systems are geared towards the user as designer.

Secondly, there are the downstream applications, in particular CAPP and CAM

systems. These also have a set of requirements, at least of equal importance with the

front-end user.

FODDS2 attempts to satisfy both classes of user.

5.1.1 Requirements of the 'Front-End' User

In order to satisfy two sets of users, some compromises may have to be made. The

system should still allow design to be a straightforward task.

The user of a Feature Based System requires a system that allows rapid design of

components and good editability, so mistakes and refinements of design can be easily

made. The user also requires that resulting designs are valid (according to some set

of rules) and of acceptable quality for downstream operations. In particular this

means to the designer that realistic tolerancing information can be added to a design

and that the designer is warned about some potential problems in downstream

processing. The user requirements can be summarised below.

104

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Must allow relatively simple component creation

Must allow straightforward editing of the component.

Should flag designer of a variety of potential CAPP and CAM problems.

5.1.2 Requirements for Downstream Applications

For process planning, and in particular for process planning without an integral solid

modeller, the following information is important for the process planning system.

Dimensions, feature type and in particular principal access direction of all

features requiring manufacture.

Feature validation. All features must play a part in the final component, and

all features must be (at some time) accessible to be machined on the

component.

Anteriority constraints between features. That is information regarding

implied ordering relationships that should hold in order for a successful

process plan to be generated.

Tolerance constraints between features. In order that, for instance, the process

planner can endeavour to have those features with tight tolerance constraints

planned in the same setups.

This set of requirements is sufficient for some process planning tasks. Without solid

models of workpiece and features it is still inadequate for certain other tasks in

particular fixturing [Chia97a].

As the feature based design system is also just the front-end to a number of

additional downstream computer aided activities, such as process planning, but

additionally Finite Element Analysis (FEA) and fixture design as well as other more

exotic analysis techniques such as Computational Fluid Dynamics (CFD) packages,

it is necessary to cater in some way for these downstream activities. In particular this

will require that the exporting of models in suitable formats be sufficiently

straightforward. With respect to CFD and FEA analysis, FODDS2 can export ACIS

'.sat' files, a de facto standard. Using external software incorporating ACIS such as

CADfix, Bentley Microstation, or SolidEdge, ACIS models can be converted to any

105

Geometric Reasoning for Process Planning Jonathan Charles Salmon

of a number of standards. Additionally, ANSYS, perhaps the leading finite-element

system, has an add-on to accept ACIS '.sat' files. FODDS2 feature models are also

saved in Access database format ('.mdb' files).

5.2 Shah's Feature Based Design System

Characteristics

[Shah95] identifies the following important characteristics of a Feature Based Design

System

 Representation of Feature Definitions

 Level of Support of User-defined features

 Type of the linkage with a Geometric Modelling System

 Application Context

 Support for Feature Validation

It is important that each of these characteristics are addressed at the design stage in

order that an appropriate solution can be incorporated into the system, or

occasionally, that the reasons are known and clearly thought out when a problem

arises.

5.2.1 Representation of Feature Definitions

There are two particular strategies with regard to the implementation of features that

must be examined.

 Procedural versus Declarative definition

 Hard coded versus interpreted feature definitions

It becomes obvious from these alternatives that Shah has already decided on the

solution he requires, however that is not to say his subsequent choice of language is

necessarily wrong.

Taking a practical point of view and comparing C++ with Scheme leads to the

following conclusions.

106

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Without writing an interpreter, C++ encourages the writing of procedural definitions

of features, Scheme naturally encourages a declarative approach. C++ however has

the advantage that object-oriented techniques are easy to implement (though difficult

to implement well and in a user-extensible way), in Scheme an object-oriented

viewpoint on any data structures can be arranged, and indeed, object-oriented

methods can be layered on top of Scheme, (see [Abel96], Chapter 12 and [Laak96]).

The argument for hard-coded versus interpreted feature definitions follows similar

lines. Interpreted feature definitions are generally preferred because the user (or more

likely the consultant installing a system in a particular company) can add feature

definitions more easily. The downside to making addition of features easy is that,

especially when the design system is the front-end to a process planning system,

there is far more to adding a feature than merely adding a function that builds the

geometry of a feature. In particular, methods to perform access checks and proximity

checks need to be added. With skill, the original system designer can make suitable

functions available to calculate these bodies from an arbitrary new feature body,

however it is foreseeable that the user may want to add a new class of feature,

appropriate to some new manufacturing technique perhaps for which the

conventional checks are not suitable. It is then necessary to either add substantial

code or allow the user to be warned that checks on this new feature class are

disabled.

However having said all this, it is also true that an interpreted feature definition also

makes it easier for the original developer, provided the evaluation time of the

interpreted code does not become critical. In the case of an ACIS Toolkit based

product, the evaluation time for a feature is dominated by the solid modelling code

rather than the time taken to interpret the function and so the build time for any

feature is almost independent of whether the code is written in C++ or Scheme,

ACIS is implemented in C++ either way. The time saving in prototyping the code

however greatly reduces the lead-time of the system programmer.

5.2.2 Level of Support of User-defined Features

The level of support for user-defined features has already been discussed in the

previous section, and the conclusion reached is that there is a greater overhead in

107

Geometric Reasoning for Process Planning Jonathan Charles Salmon

providing user-defined features in a system intended to perform geometric reasoning

for process planning than in a straight forward feature based system. However, a

trained user could add features to such a system provided the code was interpreted.

A particular advantage of the FODDS2 system in defining new features is that all

features are defined in terms of a tool-profile and a cutter-path. It is much easier to

define a machinable feature in this way than by writing volume generation routines,

and it is also easier to automatically generate the various volumes required by the

geometric reasoner in terms of the cutter-path and alternate tool-profiles.

Tool-profile and cutter-path here do not refer to any real tools necessarily, but to an

abstraction of a 3D feature into two 2D profiles. By choosing this model, it is easier

to generate real tool-sets and cutter-paths. Holznagel [Holz98] demonstrates this

functionality in the NC generator (NCgen) from FODDS2 models.

5.2.3 Type of Linkage with a Geometric Modelling System

Shah advocates a strong link with a geometric modelling system in order that

features can be validated in a number of contexts, including their geometry. The

FODDS2 system has a strong unidirectional link from GUI and database to the

modeller. The link back from the modeller to the front-end is weaker. This split

ensures that the two areas of code concentrate on their domain (either the GUI or the

geometry) and this encourages clear separation of functionality ensuring robustness

and clarity.

5.2.4 Application Context

The application context of this work is principally in the machining of 2VfcD

components (as defined in Chapter 2) and concentrates on a class of features for

which a tool can be found that spins around its vertical axis and travels either linearly

in the z direction or along linear or circular paths in the x-y plane, thus utilising a

subset of motions defined by Sungurtekin [Sung86]. Other manufacturing processes

such as those described in [Gupt97] are outwith the application context.

108

Geometric Reasoning for Process Planning Jonathan Charles Salmon

5.2.5 Support for Feature Validation

The system explicitly performs feature validation in the form of feature presence and

void detection and access problem detection. It also performs some feature validation

routines not commonly found in other feature-based systems, such as proximity

detection.

5.3 The Design Features in FODDS2

Though the mechanism by which features are built and reasoning is performed has

already been discussed in detail in Chapter 4, the view that the designer has is

slightly different, and are detailed here. The designer can also build models using

various operators that are discussed briefly.

The features are discussed in the following order.

 The positive workpiece construction features

 The primitive material removal (negative) features.

 The feature operators

5.3.1 The Positive Workpiece Construction Features

For workpiece construction two features are supplied, the cuboid and the cylinder,

matching the most common form of billets and bar. Surface finish information can be

added to these. More complex workpiece shapes can be built up through the union of

a number of these positive features.

A third form of workpiece feature proposed is the casting, where an arbitrary ACIS

'.sat' file can be loaded into the system as the blank workpiece. This allows total

flexibility of initial workpiece geometry.

The following design features from the FODDS2 Design Feature Library. Some of

the features are not solids but operators acting on other solid features. Other features

are peculiar to the Mandelli part family. Most of these specific features could also be

implemented as compound features.

109

Geometric Reasoning for Process Planning Jonathan Charles Salmon

All solid material removal features implemented in the current system are ideally

suited to 2l/2D milling and can be expressed as the solid generated when a tool

(specified by its profile) travels along a cutter-path. This simplifies the specification

of the features and also simplifies the generation of access bodies and the like for

subsequent geometric reasoning. The sweep needed to generate the feature volume

can be thought of as a restricted Minkowski sum.

5.3.2 The Primitive Material Removal (Negative) Features.

The following features are fully implemented in the current system.

 Holes

 Slots

 Pockets

 Rings

 Screwholes (as a subclass of Hole)

The following features have been considered for inclusion in the system.

T-slots, Complex pocket, Bearing seat, Pitch circle diameter, Matrix

All the volumetric material removal features can be described as the Minkowski sum

of a tool volume with a cutter path. The tool volume can always be constructed from

a rotary sweep of a tool profile through 360° as described in Chapter 4. The mapping

from design feature attributes such as length, width and depth is shown in Table 2.

For pocket features, the cutter path becomes a cutting surface and the actual cutter

path is a route along the surface such that tolerances on the surface are met.

For hole features, the cutter path is a single point.

For slots and rings, the cutter path is some curve or wire.

For all features, the cutter path can be summarised as a collection of planes or edges

(either straight line or circular arcs) in the x-y plane. The tool profile can be

represented equally as a collection of straight line or circular arc edges in the y-z

plane. All features are transformed (rotated and translated) into their final position in

110

Geometric Reasoning for Process Planning Jonathan Charles Salmon

the design after their generation at the origin. This can be likened to changing setup

prior to machining a set of features.

The following table summarises the parameters needed for simple features, and the

subsequent tool profile and cutter paths needed.

It is not always clear where the origin of a feature is. This is important for knowing

how the transform will affect it. Chang's Quick Turnaround Cell (QTC) [Ande90]

uses multiple handles to which any transform can be attached. The multiple

transforms approach to features in someway obviates the need for multiple handles,

as a simple translation can be used to move the effective origin of the feature. The

first version of FODDS however had handles [Mill93].

The cutter paths for the features are not always centred on the origin, instead they are

placed to give a convenient handle or origin on the design feature.

111

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Table 2 The Primitive Material Removal Features

Name Origin Isometric Cutter path Tool profile

Hole

diameter(2r)
depth(d)
threaded?
endtype [drilllmill]
drill-angle(a)
bottom_radius(r 1)

(0,0,0)

endtype = 0 endlype = 1 endlype = 2

Ul

Slot

length(l)
width(w)
depth(d)
bottom_radius(r)

(f (0,w/2,0)
f >,

I

Pocket

length(l)
width(w)
depth(d)
corner_radius(rO)
bottom_radius(r I)

Curved Slot

Central_radius(r)
width(w)
depth(d)
finish_angle(a)
bottom_radius(r I)

Ring

central_radius(r)
width(w)
depth(d)
bottomjradius(rl)

112

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Holes

Figure 61 Example of Hole Types

Figure 61 shows examples of the different possible hole types. From left to right the

figure shows a threaded hole with a 118° (drilled) end, a drilled hole unthreaded, a

threaded hole with a radiused end, a ball-ended hole and a flat-ended hole. A flag

selects whether holes are threaded or unthreaded and standard M-types are assumed.

Hole type is 'drill' or 'mill' allowing selection of drill-angle or bottom radius. A

bottom radius of zero gives a flat ended hole, and a bottom radius equal to the hole

radius gives a ball-ended hole.

T-slots

A T-slot can be designed into the system by specifying two slots one on top of each

other. A T-slot is a contender for a primitive feature in a future incarnation of the

system, but has some problems when performing geometric reasoning. In particular,

though the access body for machining a T-slot is merely the extrusion of the top

surface of the slot, the access body for advance and retraction of the T-cutter is the

extrusion of the largest part of the T-cutter. In order to ensure safe advance and

retraction locations, either a search must be undertaken to find a suitable location, or

the T-slot volume must be redefined to incorporate a volume for advance and retract

operations.

113

Geometric Reasoning for Process Planning Jonathan Charles Salmon

The first of these two solutions is outwith the scope of this project whereas the

second solution, though used in earlier versions of FODDS precludes generation of

the T-slot in terms of a sweep of a tool-profile along a cutter-path (though an

extension of the cutter-path to include the advance and retract phase might be

possible.

It is felt that it is better at this time to enforce generation of T-slots as the

combination of two slots. This means the geometry can be used by incorporation of

compound features. An extension of the reasoning to include features with partial

accessibility can be regarded as an extension of this work.

A feature similar to the T-slot is the dovetail slot. Cutter profiles have been

developed for both the T-slot and the dovetail slot though problems regarding access

for a dovetail slot are the similar to those for the T-slot above.

Screwholes

In early versions of FODDS, complex sere wholes with chamfers, countersinks and

complex specifications of thread type and depth were allowed. Though useful to the

designer, they were somewhat specialised and did not fit the generalised model of

features used throughout the remainder of the system. Furthermore, any of these

complex screwholes can be represented as a compound feature composed of a

number of more simple holes.

The only exception to this is that the concept of a threaded hole needed adding to the

simple hole. It is now possible to add a thread to the simple hole. This addition is

reflected in the display, either in the simple display as a darker colour or in the

rendered display as an attempt to render the thread.

Given the use throughout the project of the metric system, there are only a handful of

possible normal thread specifications for any particular dimension of hole.

Specialised threads are beyond the bounds of current CAPP systems anyway. Thus,

the type of thread is recorded and passed onto downstream applications, and the

thread is rendered, but no further work uses the thread attribute of the simple hole.

114

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Pitch Circle Diameter

The Pitch Circle Diameter and the Matrix are useful design operators, providing a

useful abstraction and subsequent saving on design time. It should be noted that

passing on the information that a feature is a member of one of these groupings can

offer solutions (such as multiple tooling) that could otherwise be missed. However,

they also add some minor problems, for instance, in naming the sub-features of a

group feature. Though the system allows the user to generate these features, none of

the test examples use such a feature.

5.3.3 Tolerancing and Surface Finish

Though much work has been undertaken on tolerancing and surface finish [Voel97]

[Henz95], and though it is extremely important for process planning, only a simple

tolerancing model has been included in FODDS2. The manufacturing feature

viewpoint of design means that full tolerancing models after ANSI or BS standards

are unnecessary. Instead each material removal feature has a position, orientation and

surface finish tolerance associated with it. It is up to the process planner to ensure

that all faces of the feature will match this tolerance. A fuller tolerance model would

allow the specification of different tolerances for different faces. This model

however acknowledges the importance of tolerancing.

The default surface finishes for workpiece and features have been selected so that

drilling and milling can easily achieve the required surface finishes. The surface

finish of any feature can be tightened if required by the designer.

A limiting factor of this model is that the bottom surface and side surface of any

feature are allocated the same surface finish, which is untrue of most machining

processes. The extension to allow different surfaces of a feature to have different

surface finishes is merely a matter of adding some extra parameters.

An additional extension to add intra-feature relationships suitable for the different

feature types has been discussed, as has the ability to add inter-feature geometric

tolerance relationships. Neither of these extensions are difficult, however at present

the geometric reasoning routines cannot make use of this information. The work of

115

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Naish [Nais97] requires this information however, so these extensions may be added

in the near future.

A simple object designed in FODDS2 and its accompanying feature tree is shown in

Figure 62. In the feature tree, the '-' signs only represent where the tree may be

collapsed in the GUI. The operators in the diagram are 'Assembly', 'Component'

and 'Transform', and the features are 'Block' (the positive feature) and 'Slot' and
'Hole'.

Assembly
W^gjKl'-. ^*, fC Component

ti- Transform

ti- Transform

B ti- Transform
;---ll Hole

Figure 62 The Simple 'EH' Component

116

Geometric Reasoning for Process Planning Jonathan Charles Salmon

6 Experiments

There are two varieties of experiments that have been performed.

The first variety is a series of focussed examples designed to verify the performance

of one or more design or geometric reasoning algorithms in a controlled situation.

These experiments were initially conducted as thought experiments and were used

throughout the period of study in order to direct the research towards the ultimately

successful goals.

The second variety of test is with more complex components, either test components

from Edinburgh or from other research groups, or real components. These

components have been drawn from a variety of sources. Certain components have

been used as test components within the group for a number of years. Other

components are from the CIE97 Feature Recognition competition [Litt97b]. These

components have been modelled to a greater or lesser degree and had some of the

geometric reasoning carried out.

6.1 Focussed Experiments

6.1.1 Feature Variety Test

Figure 63 The Feature Library Demonstration Part

The Feature Variety Component is shown in Figure 63, both a rendered image and a

real NC machined component.

117

Geometric Reasoning for Process Planning Jonathan Charles Salmon

This component tests five different feature types in a simple block. There are

(deliberately) no feature intersections, access problems, through holes or thin walls,

and the object is strictly 21/zD. This test merely demonstrates that the system is

capable of creating feature based designs.

The NC code for this part has been automatically generated by a prototype NC

generation system (NCgen) [Holz98] from the feature based description output

directly from FODDS2. NCgen assumed a single end mill whose radius is smaller

than the radii in all features, and computed complete toolpaths for each feature on

this basis. The NC generator will provide valid toolpaths provided features are

supplied in a machinable order (i.e. satisfying anteriority constraints), and that no

setup changes are required (the component is strictly single sided). The NC generator

us a validation tool and not a full scale CAM package, so it also neglects speed and

feed information and the cutter paths are not always optimal.

6.1.2 Access test for Crossed Slots with Hole

There are three aspects to this test.

The first is to ensure that the system can handle the ordering problem when there is

an access problem with two features. The second shows that the test produces valid

but different results when the intersections are modified slightly.

The third test illustrates an extreme case where the code produces a valid but

suboptimal result.

118

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Figure 64 Crossed Slots with a Hole

The component in Figure 64 consists of a pair of crossed slots with a blind hole at the

crossing. The hole has been designed with its top at the base of the slot. Because no

feature modifications are made in the system this implies that the hole cannot be

machined first. It is clear by inspection that the hole can be made after either of the

slots has been machined (or indeed after both).

The analysis automatically produces the following access list

((Hole Hole Node 10 access) intersects (blank))
((Hole Hole Node 10 access) intersects (Slot Slot Node 6 feature))
((Hole Hole Node 10 access) intersects (Slot Slot Node 8 feature))

The conservative implication of the automatically generated list is that both slots

must be machined before the hole. In fact it is obvious that either slot can be

machined before the hole and so ideally a way of representing the logical operator

'or' on the graph of the anteriority constraints. More importantly the algorithm must

be improved so that this 'or' constraint can be identified. Though in the case of the

crossed slots above it is unlikely the hole would be machined after one slot but

before another, other examples show different behaviour.

The algorithms give the correct anteriority constraints.

There are no other problems with this object.

119

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Figure 65 Offset Hole in Crossed Slots

This component (in Figure 65) is to ensure that the previous case of Figure 64 is not

repeated. The hole now lies in the base of one of the slots, but only partially in the

base of the other. Here, the algorithm correctly spots that the access body of the hole

intersects with both slots, so two access problems are posted. Then further reasoning

shows that the volume of intersection with the shorter slot is completely subsumed in

the volume of intersection with the longer slot, and so only one "machined_after"

constraint is nosted. that with the longer slot, and the correct result is realised.

120

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Figure 66 Four Crossed Slots with Hole

The previous example uses pairwise analysis of access-feature intersections to

discover that only one anteriority constraint is necessary.

Th example in Figure 66 illustrates that simple pairwise analysis of these intersection

bodies is not sufficient. Preliminary constraints are posted for each of the four slots,

but there is no pairwise combination of slots for which the intersection volume with

the hole can be subsumed one in the other, so finally, the requirement emerges that

all four slots must be machined before the hole. This is infact untrue as provided

either the North-South pair are machined, or, the East-West pair then the hole can be

machined. A situation such as this where the pairwise comparison fails has never yet

been encountered in a real component, and it is not felt that generalising the current

algorithm for this case is necessary.

6.1.3 Thin Wall Demonstration

The test component in Figure 67 test shows a variety of thin wall situations on a

single component and illustrates where correct interpretations are made and where

further problems arise. All images come from the FODDS model of the part. In

Figure 67 c) the dilated volumes can be seen, and it is the intersection of these

volumes with other dilated feature volumes or with the volume outside the blank that

are identified.

a) rendered test component b) numbered cases c) dilated volumes

Figure 67 Thin Wall Demonstration Component

There are five distinct cases identified in the figure above. These are numbered in

Figure 67 b).

121

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Feature-Feature Intersections. These correctly identify thin walls between

features such as the slots and the pocket and the holes.

Feature-Blank Intersections. Case 2 shows a feature-blank intersection

where the slot already pushes into space, so the thin wall is not detected with

the existing algorithm.

Feature-Blank Intersection. Case 3 shows a successful diagnosis of a thin

wall between a feature and the blank.

1. Case 4 shows a questionable case that can arise either in a feature-feature or

feature-blank interaction. Where a solid wedge is at the junction of two features,

and the angle of the wedge is acute then it is possible that this should be

considered as a thin wall. Because the two features (or in this case the feature and

the outside world) intersect, the algorithm cannot test for this.

2. Case 5 shows a similar case, but here the question of whether we should consider

this to be a thin wall is more clear cut. Again, we cannot look for the thin wall

because of an existing intersection between feature and the outside world.

Whereas case 4 is perhaps excusable, Case 5 can always arise where features

with concavities are allowed.

It becomes clear from the analysis of this thin wall component that the model of

dilated bodies and solid intersections is not powerful enough to detect all desired thin

wall cases. It seems likely that looking for thin walls in terms of face-face

proximities [Gupt95] is also fraught with similar difficulties, particularly in the case

of acute wedges again. An alternative approach might be to use a Minkowski erosion

algorithm on the finished component and look for the difference between the medial

axis [Arms94] of the component before and after erosion. Significant changes in the

medial axis would show the disappearance of the thin wall under erosion.

122

Geometric Reasoning for Process Planning Jonathan Charles Salmon

6.2 Test Components

6.2.1 The HAPPI component

Figure 68 The HAPPi Test Component

Table 3 The HAPPI Test Component Access List

(
((Slot
((Slot
((Hole
((Slot
((Slot
((Slot
((Hole
((Hole

)

MidSlot
BtmSlot
LtlHole
MidSlot
BtmSlot
BtmSlot
LtlHole
BigHole

Node
Node
Node
Node
Node
Node
Node
Node

10
12
16
10
12
12
16
6

access) intersects (blank))
access) intersects (blank))
access) intersects (blank))
access) intersects (Slot TopSlot
access) intersects (Slot TopSlot
access) intersects (Slot MidSlot
access) intersects (Pocket Pocket

blind-access) through (component))

Node
Node
Node
Node

8 feature))
8 feature))
10 feature))
14 feature))

The list above is automatically generated from the component in Figure 68 by the

Access Checking Geometric Reasoning Algorithms. The first three relationships

identify access problems for the middle and bottom slot and the hole in the pocket.

The next three relationships identify which features must be removed before the

three problem features can be machined. The last relationship identifies the BigHole

as being a through hole, that is it has access through the component on its 'blind'

side.

The HAPPI test component is again shown in Figure 69 complete with access bodies

shown in 'transparent gold', and the negative features in chrome to illustrate the

nature of the geometric algorithms working in practice.

123

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Figure 69 The HAPPI Test Component with Features and Access

Bodies

6.2.2 The Edinburgh Composite Component (TECC)

Figure 70 The TECC Component

The TECC Component shown in Figure 70 consists of 13 features and was modelled

using 4 approach directions using compound transforms for all but the default setup.

124

Geometric Reasoning for Process Planning Jonathan Charles Salmon

This Component has a set of process planning problems on it as described by Mill et

al. in [Husb91]. The problems and the ability of FODDS2 to tackle them are

discussed.

Crossed slots

On the top surface of the TECC, a crossed slot can be seen. The issue in the TECC

paper was one of alternate representations. Were the slots two crossed slots or four

meeting slots or some other combination? Can alternate representations of the

features be used for process planning? The answer in the case of FODDS2 is that

there are no alternate representations, the only representation known in FODDS2 is

that specified by the designer on generation of the model. FODDS2 does provide the

process planning system with the knowledge that these slots intersect, so it becomes

the responsibility of the downstream applications to use an alternate representation if

required.

Crossed holes

The large diameter hole in the side of the TECC component is crossed by a smaller

diameter hole running entirely through the component from left to right. The issue

here is similar with one important addition, attempting to machine the narrow hole in

one machining operation after the wide hole has been machined is likely to result in

tool breakage. Again FODDS2 supplies the knowledge that there is an intersection

between these features, but doesn't attempt to solve the problem.

Nested Slots

FODDS2 correctly orders the machining of the nested slots.

Pocket with hole in side

Here, there would be a problem trying to machine the hole after the pocket has been

milled. Once again, FODDS2 supplies the information that there is an intersection,

but does not solve the problem.

Countersinks with access problems

FODDS2 correctly spots that machining the countersinks cannot be performed with

conventional 2V6D milling and tools.

125

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Steps

There are two steps on this component. FODDS2 does not treat a step any differently

from a slot or pocket. This means that the only access direction checked is the access

direction that was specified when the feature was entered into the design.

Through holes

There are

these.

three through holes on the component. FODDS2 correctly spots all of

Ultimately FODDS2 finds that all features with the exception of the countersunk

holes are machinable, though a number of intersection bodies are posted as hints of

possible problems for the process planner to examine when tool selection is

undertaken.

6.2.3 The Heriot-Watt 2 'MacTaggart Scott' Component

Figure 71 The Heriot-Watt 2 Component

The Heriot-Watt 2 component, originally from MacTaggart-Scott of Loanhead,

Edinburgh has been completely modelled in FODDS2 and can be modelled easily

with the standard feature library. This feature model consists of 13 holes, 4 slots and

13 pockets (30 negative features in all) and is the largest component to be

successfully analysed by the system. An unusual problem is that because of its

function the component is clearly split into two ends with a tricky angle between the

two. In FODDS2 it was easy to model this by introducing an extra transform before

the set of features at the far end. In FODDS2, the component was modelled from a

block, MacTaggart's themselves have planned the component (using the PEPS CAM

126

Geometric Reasoning for Process Planning Jonathan Charles Salmon

system from CAMTEK) using a round bar. The bar may be somewhat more efficient

in material use.

152 relationships were discovered by the reasoning algorithms, predominantly access

problems, but with 8 through holes and 3 through pockets.

6.2.4 The Heriot-Watt 'Teddy Bear'

Unfortunately, this is one of the few 'real' components to defeat the design side of

the current incarnation of FODDS2. Examination of the object (seen in Figure 72)

reveals that every pocket has opposite sides that are not parallel. FODDS2 currently

only contains a rectangular pocket, not sufficient for this feature.

Additionally, the Heriot-Watt version of this body contains some bottom edge blends

that are not machinable with conventional machining.

The 'teddy bear' is predominantly single sided however, so with the addition of the

compound pocket, running the algorithms on the component and subsequently

planning the component are not imagined to be a problem.

Figure 72The Heriot-Watt Teddy Bear'

The majority of the pockets in the real features examined have been rectangular, and

for this reason non-rectangular pockets have been neglected. A more complex pocket

can still be defined in the 'tool profile', 'cutter path' model of features, but with a

127

Geometric Reasoning for Process Planning Jonathan Charles Salmon

more complex cutter path. This ensures that all the algorithms will still work for

more complex pockets.

The plan for the next generation of pockets is that the user specifies a list of 2D

points representing the vertex of a polygon, then a separate radius can be specified

for each of convex corner radii, concave corner radii and the bottom edge blend. A

wire polygon can then be turned into the necessary surface through the use of 2D

Minkowski blending and this then passed to the feature construction functions to

produce the 3D feature. An example of the solid volume that such a compound

pocket might have is given in Figure 73. This figure shows the inverted volume to be

removed from an imaginary pocket. The different radii chosen for convex, concave

and 'bottom' radius blends can clearly be seen. The overall profile of this pocket has

been specified by six vertices of a polygon at which each adjacent pair of planar

faces intersect. Defining a polygon this way encourages manufacturability. The radii

chosen provide constraints on the tooling that the process planner can choose.

Figure 73 Example of the 3D Geometry of a Complex Pocket

128

Geometric Reasoning for Process Planning Jonathan Charles Salmon

6.2.5 The Hanl Component

I 0e 6* yew guilt* loots

D|& y EJI--
A C i6. ::: j c

'- A Assembly
;!— ^L> T ansfotm

B • SI Compo
i R- ti Tra
i E!
i & fc Tra
i •• w
1 3- fc Tra
: • ••• H

3- fc: Tra

;r} ti- Tra
i ' ' M
i a ti Tra

i 3 t£ Tra

>U|ife|8l| J§OI
DlUl v|v|aK (

Feafure
lUnquel

lert ^exlSfcl

D

yp= Hde
J Node 44
ng Ndl i

nsform JRfsChild JNult \
Block Mama

nsform : Ra*js[r
Stal (Depthl-2

nsform i
Slol j

nsform j
Slol 1

nsform j
Slol |

nsform |
Shot (SizeTol

nsform i

|Hole !
I |10 i
1 |30 i

1 !

| :

1 i

i i
i : : M Slol ISurfaceFin |3.2 i
| B Id Transform pndTypaAccMa]6 3 j

W! Slol PoundnessTd J200 '"""""i
3 L' Transform fColou | i

• li Hole j
i B ti Transform }

\ --«

i

Hole Endlype
. ___ !

J Conical =!

Subm^ |

D:\SASCHASHan1 in*

Figure 74 The Hanl Test Component in the FODDS2 GUI

The Hanl test component has been designed as a feature recognition test component.

It is single sided but contains through holes and two slots that are not orthonormal

features. The Hanl component presented no significant problems for modelling in

FODDS2. Indeed, the analysis of the component was also straightforward. The

component consists of a block, 7 slots and 2 holes. All are designed into the top

surface of the component with the exception of the small slot on the left hand side of

the image and the two holes which have been designed as low as possible.

The small slot and two holes have access problems against various slots. The two

holes are correctly identified as through holes. The results of the anteriority checks as

produced by FODDS2 on the Hanl component are shown in Table 4.

129

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Table 4 Results of Anteriority Checks on Han1 Component

'Slot"
'Hole"
'Hole"
'Slot"
'Hole"
'Hole"
'Slot"
'Hole"
'Hole"
'Slot"
'Hole"
'Hole"
'Hole"
'Hole"
'Hole"

"Slot"
"Hole"
"Hole"
"Slot"
"Hole"
"Hole"
"Slot"
"Hole"
"Hole"
"Slot"
"Hole"
"Hole"
"Hole"
"Hole"
"Hole"

"Node
"Node
"Node
"Node
"Node
"Node
"Node
"Node
"Node
"Node
"Node
"Node
"Node
"Node
"Node

36"
42"
44"
36"
42"
44"
36"
42'
44"
36"
42"
44"
44"
42"
44"

"access")
"access")
"access")
"access")
"access")
"access")
"access")
"access")
"access")
"access")
"access")
"access")
"access")

"intersects"
"intersects"
"intersects"
"intersects"
"intersects"
"intersects"
"intersects"
"intersects
"intersects"
"intersects"
"intersects"
"intersects"

("blank"))
("blank"))
("blank"))
("Slot" "Slot"
("Slot" "Slot"
("Slot" "Slot"
("Slot" "Slot"
("Slot" "Slot"
("Slot" "Slot"
("Slot" "Slot"
("Slot" "Slot"
("Slot" "Slot"
("Slot" "Slot"intersects

"blind-access") "through"("component")
"blind-access") "through" ("component"

"Node 28" "feature"))
"Node 28" "feature"))
"Node 28" "feature"))
"Node 30" "feature"))
"Node 30" "feature"))
"Node 30" "feature"))
"Node 32" "feature"))
"Node 32" "feature"))
"Node 32" "feature"))
"Node 38" "feature"))

There are no thin walls, and the component can be machined (and designed) as a

single sided component.

6.2.6 The Gadh2 Component

Figure 75 The Gadh2 Test Component

The FOODS2 was able to model the Gadh2 component except for one exceptional

area. The area on the outer left face showing a lozenge shaped protrusion with two

ring features. The original design called for 5 hemispherical protrusions here. These

130

Geometric Reasoning for Process Planning Jonathan Charles Salmon

protrusions would defeat most feature recognition systems and most manufacturing

systems. There is no convenient feature, or indeed method of manufacture of convex

spherical surfaces. The design shown in Figure 75 has started to approximate the

hemispherical bumps using ring features. These are the only complex features on the

component, and require significant external machining just to reveal the area where

the bumps should be. Despite an inaccurate model, already 6 negative features have

been used to create the remaining island.

With the exception of the protrusions on the side the remainder of the component is

strictly 2l/zD. The design shown consists of 4 slots, 24 pockets, 3 curved slots and 2

rings. Unfortunately the system suffered from combinatorial explosion on analysis

and the system crashed in the geometric algorithms having consumed over 200Mb of

swap space.

In order to design the rounded end of the T-shaped protrusion in the middle of the

component a curved slot was used in conjunction with surrounding pockets. The

intersections between these features that should have been recognised could give a

subsequent process planner opportunity to optimise the NC cutter paths to avoid

remachining empty space.

The failure has been useful in indicating that the code needs some optimisation to be

able to tackle very large components, however the success on smaller components

shows the theory to be sound.

131

Geometric Reasoning for Process Planning Jonathan Charles Salmon

6.2.7 The Regli component

i. £ile Edit Vis./., guild 1 Tool: Help
Ocfxi

^JLLiLikJ njuj jd^Lc
: ;- A Assembly
i ~ Li- Trarofwrn
1 3 J^ Component
1 T; It Tfansfomi
i : • E Slock
; :-i k.- Transform
i ; -O Pocket
i -5 It Tiansform

|j ; Q Pocket
1 r; It- Tfarslom
I '- V Hole 1
i T! It Tfansfoirf: I
i (• » Hole |
I -rj It Trandofin ?

; • M. Hole
i ~- it- Tfctnsloirn
I • if Hole

1 i i) CuivedStol
B It- Ttarsloirr

^) OjivedStol >,.
&.- It Transforrr: ^

:' B- • It- Trancfotm
i ; §3 CuivedSW

i SI- t- Traisform
; B It- Tianffomi
; : -IS CucvBdSta

trj ti- TransforfT:
B k Transloim

- iB CurvcdSlot

FeatiiieTyix: jCurvedSiol
UniquislO" j Node 33
MestSib-ling]Nuli
FiisiChiH JNuli
Warns jCuivjdSicI
Cn*alRadtre|r]j30 |
Widtrfrj J18 1
Depth(-2i J25 1
Finisl-Angle(a] J30]
BofionRadii/SiiljO %

1

1
^ i
SizeTol J0.1
AngteTol |f).1
SurJaceFin J3.2

i :
-olouf | i:

I ;
| ;

i

Submit J

;HANR?3li1,n;Ob , , , ., ,,, , :,.w,!,i,,2r4

Figure 76 The Regli Component in FODDS2

This component has 2 pockets, 4 holes and the rounded external corners have been

constructed with 5 curved slots.

The side pocket on the Regli component (see Figure 76) has a spline profile in the

original. This has been roughly approximated by a circular slot feature for modelling

in FODDS2. The problem is in specifying the spline profile in a way flexible enough

to be useful and easy enough to be practical. It is not proposed to add a spline

bounded pocket in the immediate future.

A problem with spline pockets is determining the smallest concave radius, to

determine cutter sizes, and in particular having determined a cutter size, ensuring that

there is no isthmus too narrow for the chosen cutter to pass through.

The blended corners on the left of the component have been modelled with curved

slots, suggesting access directions from the front or the back of the component. This

method of making these features is unlikely to be the choice of most process

planners. The aspect ratio of the 'curved slot' would probably reveal the problem.

The relationships discovered are given in Table 5 below.

132

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Table 5 Relationships of the Regli Component

(("Hole" "Hole
(("Hole" "Hole
(("Hole" "Hole
(("Hole" "Hole
(("Hole" "Hole
(("Hole" "Hole
(("Hole" "Hole
(("Hole" "Hole
(("Hole" "Hole"
(("Hole ""Hole"
(("Hole ""Hole"
(("Hole" "Hole"

" "Node 16" "access
" "Node 17" "access
" "Node 18" "access
" "Node 19" "access
" "Node 16" "access
11 "Node 17" "access
11 "Node 18" "access
" "Node 19" "access
"Node 16 ""access")
"Node 17 ""access")
"Node 18 ""access")
"Node 19 " "access")

) "intersects" ("blank"))
) "intersects 1
) "intersects 1
) "intersects 1
) "intersects 1
) "intersects 1
) "intersects 1
) "intersects 1
intersects" t 1
intersects" ('
intersects" ('

("blank"))
("blank"))
("blank"))
("component"))
(" component "))
("component"))
("component"))

Pocket" "Pocket"
Pocket " " Pocket "
Pocket ""Pocket"

intersects" (' Pocket" "Pocket"

"Node 11"
"Node 11"
"Node 11"
"Node 11"

1 feature"
1 feature"
1 feature"
' feature"

))
))
))
))

(("Pocket" "Pocket" "Node 11" "blind-access") "through" ("component"))
(("CurvedSlot"

gh" ("component
(("CurvedSlot"
(("CurvedSlot"
(("CurvedSlot"

"CurvedSlot" "Node 24" "blind-access") "throu
"))
"CurvedSlot" "Node 29" "blind-access") "through"
"CurvedSlot" "Node 32" "blind-access") "through"
"CurvedSlot" "Node 35" "blind-access") "through"

("component"))
("component"))
("component"))

The four holes at the bottom of the component are blind. This means they are also

inaccessible because of the overhang. This is successfully detected and is shown in

the first twelve relationships above, where the four holes have access problems with

the blank, the component and the pocket in which they have been placed.

The curved slots that have been used to make the rounded external corners are

identified as being accessible from either end, they are 'through' slots. In fact, they

have many more access directions as they are on the edge of the component. These

alternate access directions are not searched for.

6.3 Summary

The algorithms for thin walls, anteriority constraints and through hole detection have

been demonstrated. A number of real components have been tested. Design failed

entirely in one case where a more complex pocket shape was required and to a lesser

degree in two other cases where peculiar geometry had been specified, probably in

order to catch out feature recognition systems.

The analysis failed in one of the successfully designed case, but only due to the size

of the problem. The algorithms can be optimised to consume less memory.

In all other cases the algorithms have been successful, and the number and type of

relationships discovered shows the importance of these detection algorithms for

process planning.

133

Geometric Reasoning for Process Planning Jonathan Charles Salmon

7 Conclusions

This thesis has shown that for successful process planning it is necessary to generate

anteriority constraints between features.

Anteriority inferencing algorithms have been developed and in the absence of other

constraints the anteriority constraints result in valid process plans for manufacture of

components is successful.

This is confirmed through the test cases in Chapter 6.

The FODDS2 Feature Based Design System is capable of designing a significant

range of mechanical components and that the inferencing algorithms do indeed detect

anteriority errors.

NC code can be generated from the plans so produced and this has been tested

The modelling method used, that of negative features as a Minkowski sum of tool

and toolpath is a powerful method and new features can be added with a modicum of

effort. The algorithms demonstrated will all continue to work with new features so

designed.

FODDS2 is a complete CAD/CAM system focussing on Geometric Reasoning for

Process Planning. That is, there is substantial work on a Feature Based Design front-

end, allowing design of real mechanical components in a near professional

environment. There is a Geometric Reasoning Subsystem capable of inferring

additional knowledge about a design, not given explicitly by the designer but

necessary for the process planner. Lastly, there is a CAM system [Holz98] capable of

taking this knowledge and generating NC code suitable for the mill in the

department.

The process planning system itself will be strengthened by ongoing work by Mill and

Naish [Nais98].

The algorithm for proximity detection leaves much to be desired. An alternative

approach using Minkowski sums and medial axes shows more promise.

134

Geometric Reasoning for Process Planning Jonathan Charles Salmon

7.1 Summary of Conclusions

A functioning Feature Oriented Detail Design System has been developed.

The system has been proven with a set of test components from a variety of sources.

The system satisfies the criteria laid down by Shah [Shah95] for a Feature Based

System.

All features have been implemented using Minkowski sums in a manner sufficiently

general to allow easy addition of features. Treating the Swept Volumes as

Minkowski sums and the use of Minkowski sums in proximity detection is a novel

approach. The use of Swept Volumes is in line with the work of Kramer [Kram92]

and Sungurtekin [Sung86].

The mathematical specification of the geometric reasoning is for the most part new

and is an extension of the component in terms of features specification of Requicha

and extends or modifies the work of Vandenbrande, Sungurtekin and Kramer. The

specification ensures an elegant and robust method of describing the geometric

reasoning with predictable results, and allows the feature set to be easily extended

with no reduction in generality.

A drawback of this method is that alternate approach directions other than the

principal access direction, and in the case of holes, the opposite direction are not

considered. This is a significant drawback for setup planning, but would require

some dynamic feature redefinition to solve.

The set of anteriority constraints produced by the Geometric Reasoning is suitable

for input into a CAPP system such as HAPPI or its descendant.

7.2 Further Research

There are a large number of areas of further research, some of which are already

being tackled.

1. Addition of more powerful features

2. Additional feature validation.

135

Geometric Reasoning for Process Planning Jonathan Charles Salmon

3. Feature relaxation techniques.

4. Alternate feature view. Work from Little addresses some of this. An interface to a

feature recognition system would be of interest.

5. Agent based approaches to speed up the overall system.

6. Improved tolerancing mechanism

7. Parametric and constraint modelling

8. Geometric Algorithms

7.2.1 Addition of More Powerful Features

A number of form features suitable for inclusion in the system have been identified

from the list in Table 2 Chapter 3, and others have been identified from the test

objects. Particularly these include pockets with complex profiles including rounded

polygons and splines and would allow those test pieces that were not completely

realisable to be completed.

7.2.2 Additional Feature Validation

Though some feature validation methods have been included in FOODS 2 they are

not an exhaustive set. To develop the feature based design part of the system,

additional feature validation methods would aid the user in producing valid designs.

The feature validation methods in Bidarra's Spiff system [Bida97] could be

incorporated.

7.2.3 Feature Relaxation Techniques

A particular drawback of the current system is its insistence on one representation for

each feature and a restricted number of approach directions. Work in the area of

feature relaxation, to allow alternate representations of features and thus allow

alternate access directions, or to allow modification of the height or depth of the

machined volume in order to effectively modify the anteriority constraints without

changing the component geometry, could be effective.

136

Geometric Reasoning for Process Planning Jonathan Charles Salmon

7.2.4 Alternate Feature Views

Though some work by Little [Litt97a] has addressed the feasibility of allowing

design by positive features and transforming those features into the negative

manufacturing features necessary for FODDS2, it is clear more work could be done

in this area.

7.2.5 Agent Based Approaches to Speedup the Overall System.

Achieving simultaneous design and planning, in order to decrease lead time still

further, and provide immediate feedback of planning and machining problems to the

designer through the design cycle is already the subject of work by Salmon and

Jacquel [Jacq97][Jacq98], through the adoption of a fine-grained agent-based

approach. Other work in this area includes [Bala96].

7.2.6 Improved Tolerancing Mechanism

A manufacturing oriented tolerancing mechanism has been implemented without the

full rigour of a complete tolerancing mechanism. Further work in this area should be

undertaken based on the ongoing work of Voelcker [Voel97].

7.2.7 Parametric and Constraint Modelling

The design system can be described as a parametric design system, but adding a

constraint-based mechanism would greatly increase its power and flexibility whilst

leaving the geometric reasoning and downstream applications largely unaffected.

7.2.8 Geometric Algorithms

The work on computational geometry tools such as Minkowski sums, medial axes

and other algorithms such as convex hulls and Delaunay triangulation, to allow

modification of features and component geometry in a way not supported by current

generation's of commercial solid modellers is an area of great interest to the author

and is the subject of a draft grant proposal.

137

Geometric Reasoning for Process Planning Jonathan Charles Salmon

References

[Abel96] Abelson, H, Sussman, GJ, Sussman, J, Structure and Interpretation of

Computer Programs, MIT Press, 1996.

[Agos97] d'Agostino, N, Feature Based Modelling of Parts with Sculptured

Surfaces, http://www.ifw.uni-hannover.de/bereich5/forschen/ 56 le.htm.

1997.

[Ande90] Anderson, DC, Chang, TC, Geometric Reasoning in Feature-Based

Design and Process Planning, Computers & Graphics 14(2), pp225-235,

1990.

[Arik92] Arikan, MAS, Totuk, OH, Design by Using Machining Operations,

Annals of the CIRP 41(1), 1992, pp!85-188.

[Arms94] Armstrong, Cecil G, Modelling Requirements for Finite-Element

Analysis, Computer-Aided Design, Volume 26 Number 7, July 1994

pp573-578, Butterworth-Heinemann.

[Arms97] Armstrong, C, Bowyer, A, Cameron, S, Corney, J, Jared, G, Martin, R,

Middleditch, A, Sabin, M, Salmon, J, Woodwark, J, Djinn: A Geometric

Interface for Solid Modelling - Part I, Functionality Rationale, Project

Report EPSRC Grant GR/K 00841 (to be published as a book in 1999).

[Bala96] Balasubramanian, S and Norrie, DH, A, Multiagent Architecture for

Concurrent Design, Process Planning, Routing, and Scheduling,

Concurrent Engineering: Research and Applications, 4(1) pp7-16, March

1996.

[Berg97] de Berg, M, van Kreveld, M, Overmars, M, Schwarzkopg, O,

Computational Geometry: Algorithms and Applications, Springer 1997.

138

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Bida97] Bidarra, R, Dohmen, M, Bronsvoort, WF, Automatic Detection of
Interactions in Feature Models, proceedings of the 1997 ASME Design

Engineering Technical Conferences September 14-17, 1997, Sacramento

California.

[Boog94] Boogert, RM, Tool Management in Computer Aided Process Planning,
PhD thesis, University of Twente, Enschede, Netherlands, 17th June

1994.

[Bowy95] Bowyer, A, Cameron, S, Jared, G, Martin, R, Middleditch, A, Sabin, M,

Woodwark, J, Introducing Djinn: A Geometric Interface for Solid
Modelling, Information Geometers Ltd, Winchester, ISBN 1-874728-08-

9, 1995.

[Bron93] Bronsvoort, Willem F and Jansen, Frederik W, Feature Modelling and
Conversion - Key Concepts to Concurrent Engineering, Computers in

Industry 21 (1993) 61-86, Elsevier, 1993.

[Brun95] Brunetti, G, De Martino, T, Falcidieno, B, Hassinger, S, A Relational
Model for Interactive Manipulation of Form Features Based on
Algebraic Geometry, proceedings of Solid Modelling '95, Salt Lake City,

Utah, pp95-103, 1995.

[Burk97] Burkhart, R., Schedules of Activity in the Swarm Simulation System,
position paper for OOPSLA'97 workshop on Object Oriented

Behavioural Semantics, Oct 5-9, 1997, Atlanta, Georgia.

[Butt86] Butterfield, W.R. et al., Part Features for Process Planning, CAM-I

report R-85-PPP-03, 1986.

[Case93] Case, K, Gao, J, Feature Technology: An Overview, International Journal

of Computer Integrated Manufacturing, 7(2) pp77-99, 1993.

[Case94] Case, K, Gao, JX, Gindy, NNZ, The Implementation of a Feature-Based
Component Representation for CAD/CAM Integration, proceedings of

the Institute of Mechanical Engineers, Journal of Engineering

Manufacture, Vol.208 Bl, pp.71-80, 1994.

139

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Case97] Case, K, Wan Harun, W.A., A Representation of Assembly and Process
Planning Knowledge for Feature-based Design, proceedings of

Advances in Manufacturing Technology XI, NCMR13, Glasgow

Caledonian University, pp73-78, September 1997.

[Cham93] Chamberlain, MA, Joneja, A and Chang, T-C, Protrusion-Features
Handling in Design and Manufacturing Planning, Computer Aided

Design, volume 25 number 1, pp 19-28, Butterworth-Heinemann, January

1993.

[ChanSl] Chang, TC, Wysk, RA, An Integrated CAD/Automated Process Planning
System, AIIE Transactions, pp223-233, September 1981.

[Chan85] Chang, TC and Wysk, RA, An Introduction to Automated Process
Planning Systems, Prentice-Hall, 1985. (229 pages)

[Chax94] Chaxel, F, Bajic, E, and Richard, J, From STEP Product Modelling to
Product Manufacturing: an Approach using Identification Tags,
European Workshop on Integrated Manufacturing Systems Engineering,

Grenoble (France), December 12-14, 1994.

[Chia97a] Chia, SC, Mill, FG, Salmon, JC, Geometrical Approach to Fixture
Planning in a Features Defined Environment, MPGIR36, Edinburgh

University, 1997.

[Chia97b] Chia, SC, Fixture Planning in a Feature Based Environment, PhD thesis,

Edinburgh University, 1997.

[Corn90] Corney, J, Clarke, DER, A Feature Recognition Algorithm for Multiply
Connected Depressions and Protrusions in 2*/2D objects, proceedings of

International Symposium on Solid Modeling Foundations and

CAD/CAM Applications, ACM/SIGGRAPH, ACM Press, pp!71-183,

June 1991.

[Corn97] Corney, Jonathan, 3D modeling using the ACIS kernel and toolkit, Wiley

1997.

140

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Cutk88] Cutkosky, MR, Tenenbaum, JM, Muller, D, Features in Process-based

Design, proceedings of Computers in Engineering 1988, San Francisco,

CA, USA, pp557-562, 31 July - 04 August 1988.

[Cutk91] Cutkosky, MR, Tenenbaum, JM and Brown, DR, Working with Multiple

Representations in a Concurrent Design System, Galley proof, ASME

Journal of Mechanical Design, 1991.

[DeFa93] De Fazio, TL et al., A Prototype of Feature-Based Design for Assembly,

Journal of Mechanical Design, Vol.115, pp723-734, December 1993.

[DeJo94] DeJong, Mitchell T and Fuchs, Alex, PART White Paper, ICEM

Technologies, Minnesota, USA, 1994.

[DeKr95] De Kraker KJ, Dohmen M, and Bronsvoort WF (1995) Mutiple-way

Feature Conversion to Support Concurrent Engineering, proceedings of

Solid Modeling 95, Third Symposium on Solid Modeling and

Applications, 17-19 May 1995, Salt Lake City, USA, Hoffman C, and

Rossignac J (eds), ACM Press, New York, pp 105-114, 1995.

[Denz93] Denzel, H and Vosniakos, G-C, A Feature-Based Design System and its

Potential to Unify CAD and CAM, proceedings of IFIP workshop in

Interfaces in Industrial Systems for Production and Engineering, IGD,

Germany, March 15-17, 1993.

[DescSl] Descotte_Y, Latombe_JC, GARI: A Problem Solver that Plans how to

Machine Mechanical Parts, proceedings of the 7th International Joint

Conference on Artificial Intelligence, Vol.2, pp766-772, Vancouver, BC,

Can, 24-28 Aug 1981.

[Dilg93] Dilger, Werner and Kassel, Stephen, A Distributed AI System for Job

Shop Control, Proceedings of Industrial and Engineering Applications of

AI and Expert Systems 6, Edinburgh, June 1-4, 1993.

[Dowl94] Dowlatshahi, Shad, A Comparison of Approaches to Concurrent

Engineering, International Journal of Advanced Manufacturing

Technology (9) pp!06-113, Springer-Verlag, 1994.

141

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Erve88] Erve, AH van't, Generative Computer Aided Process Planning for Part
Manufacturing, PhD thesis, University of Twente, Enschede, 1988.

[Giac90] Giacometti, R, Chang, T.-C, A Model for Parts, Assemblies and
Tolerances, Proceedings, Workshop on Design for Manufacturing,

Enschede, 1990.

[Gind89] Gindy, N.N.Z., A Hierarchy of Form Features, International Journal of

Production Research, Vol 27 No. 12, pp2089-2103, 1989.

[Gind92] Gindy, NNZ, A Product Data Model for Computer-Aided Process

Planning Systems, International Conference on Manufacturing

Automation, University of Hong Kong, pp428-433, 1992.

[Glas84] Glassner, A.S., Space Subdivision for Fast Ray Tracing, IEEE Computer

Graphics and Applications, pp 15-22, October 1994,

[Giile93] Giilesin, M and Jones, RM, Stock Selection and Blank Part Modelling in
an Expert Process Planning System, proceedings of Industrial and

Engineering Applications of AI and Expert Systems 6, Edinburgh, June

1-4, 1993.

[Gupt95] Gupta, S.K., Nau, D.S., A Systematic Approach for Analyzing the
Manufacturability of Machined Parts, Computer Aided Design, 27(5)

pp343-352, 1995.

[Gupt97] Gupta, SK, Das, D, Regli, WC, and Nau, D, Automated
Manufacturability Analysis: A Survey, Research in Engineering Design,

9(3), 1997.

[Henz95] Henzold, G, Handbook of Geometrical Tolerancing - Design,
Manufacturing and Inspection, Wiley, ISBN 0-471-94816-0, 1995

[Holz98] Holznagel, U., NC Code Generation from FODDS Plans, ERASMUS

Project Report, Edinburgh University, February 1998.

[Houn97] Hounsell, M.S., Morphological and Volumetrical Feature-based
Designer's Intents, proceedings of Advances in Manufacturing

Technology XI, NCMR13, Glasgow Caledonian, pp64-68, Sept 1997.

142

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Hout89] van Houten, FJAM, van't Erve, AH, PART; a Parallel Approach to

Computer Aided Process Planning, 4th International Conference of

Computer Aided Production Engineering, pp281-288, Edinburgh 1989.

[Hout91] van Houten, FJAM, PART: A Computer Aided Process Planning System,

PhD thesis, University of Twente, Enschede, Netherlands, 2 May 1991.

[Husb88] Husbands, P., The Optimisation of Process Plans, Manufacturing

Planning Group, Internal Report No.3, Edinburgh, March 1988.

[Husb89] Husbands, P., Mill, F., Warrington, S.W., Part Representation in Process

Planning for Complex Components, Geometric Reasoning, ed.

Woodwark, Open University Press, pp203-210, ISBN 0-19-853738-7,

1989.

[Husb90] Husbands, P., Mill, F., Warrington, S.W., Generating Optimal Process

Plans from First Principles, in Expert Systems for Management and

Engineering, ed. Balagurusamy, E. and Howe, pp!30-152, J.A.M., Ellis

Horwood, ISBN 0-13-296690-5, 1990.

[Husb91] Husbands, P., Mill, F.G. Pedley, A.G., Warrington, S.W., The Edinburgh

Composite Component, proceedings of Manufacturing Technology

International Conference (Holland) (MSTF91), Enschede, 1991.

[JackSO] Jackins, CL, Tanimoto, SL, Octrees and their Use in Representing Three

Dimensional Objects, Computer Graphics and Image Processing 14,

pp249-270, 1980.

[Jacq97] Jacquel, D., Salmon, J.C., Mill, F.G., Features as Autonomous Agents:

An Alternative Paradigm for Concurrent Engineering, International

Conference for Manufacturing Automation 1997, Hong Kong, pp!087-

1092, April 1997.

[Jacq98] Jacquel, D., Salmon, J.C., Solving the 3D Localization Problem for

Feature Agents, INCOM'98 - 9th Symposium of the International

Federation of Automatic Control on INformation COntrol in

Manufacturing Systems III, pp!41-146, Nancy & Metz (FRANCE) , 24-

26 June 1998.

143

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Jare89] Jared, G., Recognizing and Using Geometric Features, Geometric

Reasoning, ed. Woodwark, pp!69-188, ISBN 0-19-853738-7, Open

University Press, 1989.

[Jone93] Jones, R, Mitchell, S and Newman, S, Feature-based systems for the

Design and Manufacture of Sculptured Products, International Journal of

Production Research, vol.31, no.6, pp!441-1452, 1993.

[Jonk92] Jonkers, Frank, A Software Architecture for CAP? systems, PhD thesis,

University of Twente, Enschede, Netherlands, 16th April 1992.

[Josh87] Joshi, S, Chang, TC, CAD Interface for Automated Process Planning,
Proc. 19th CIRP Int. Seminar on Manufacturing Systems, University

Park, Pennsylvania, June 1987.

[Kaul92] Kaul, Anil, Minkowski Sums: A Simulation Tool for CAD/CAM,
Computers in Engineering Vol.1, ASME, pp447-456, 1992

[Kram91] Kramer, TR, The Off-line Programming System (OLPS) A Prototype
STEP-Based NC-Program Generator, proceedings of Product Data

Exchange for the 1990s, New Orleans, Louisiana, NCGA, Vol. 2,

February 1991.

[Kram92] Kramer, TR, Issues Concerning Material Removal Shape Element
Volumes (MRSEVs), NIST Internal Report 4804, Gaithersburg, MD,

March 1992.

[Krip94] Kripac, Jiri, Topological ID System - A Mechanism for Persistently

Naming Topological Entities in History-Based Parametric Solid Models,

PhD Dissertation, Czech Technical University in Prague, 1994.

[Laak93] Laako, T, Mantyla, M, Feature Modelling, by Incremental Feature
Recognition, Computer Aided Design Journal, Vol.25 No.8, pp479-492,

August 1993.

[Laak96] Laakko, T., Mantyla, M., User-defined Features in EXTDesign++,
ASME Computers in Engineering Conference, 1996.

144

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Lend94] Lenderink, Albert, The Integration of Process and Production Planning
in Small Batch Part Manufacturing, PhD thesis, University of Twente, 28

April 1994.

[Litt97a] Little, G., Mill, F.G., Salmon, J.C., Transforming Positive Features

within a Feature Based Design System, MPGIR 35, Edinburgh, 1997.

[Litt97b] Little, G, Tuttle, R, Clark, DER, Corney, J, The Heriot-Watt
Featurefinder: A Graph-Based Approach to Recognition, Proc. ASME

Design Engineering Technical Conferences, Sacramento, California,

September 14-17, 1997.

[Mant88] Mantyla, M, An Introduction to Solid Modelling, Computer Science

Press, 1988.

[Mant89] Mantyla, M, Opas, J., Puhakka, J., Generative Process Planning of
Prismatic Parts by Feature Relaxation, proceedings of the 15th ASME

Design Automation Conference, Montreal, pp49-60, 1989.

[Maro95a] Maropoulos, PG, Review of Research in Tooling Technology, Process
Modelling and Process Planning Part I: Tooling and Process Modelling,
Computer Integrated Manufacturing Systems, Vol.8 No.l, pp5-12,

Elsevier, 1995.

[Maro95b] Maropoulos, PG, Review of Research in Tooling Technology, Process
Modelling and Process Planning Part II: Process Planning, Computer

Integrated Manufacturing Systems, Vol.8 No.l, pp!3-20, Elsevier, 1995.

[Mars95] Marshall, S and Griffiths, JG, A New Cutter Path Construction
Technique for Milling Machines, International Journal of Production

Research, No.6, pp!723-1736, Taylor & Francis Ltd., 1995.

[Mart96] Martin, Edward C, Getting started with ACIS using Scheme, Fort

Lauderdale: Schemers Inc., 1996.

[Meag82] Meagher, D, Geometric Modelling using Octtree Encoding, Computer

Graphics and Image Processing 19 pp 129-147, 1982.

145

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Midd88] Middleditch, The Representation and Manipulation of Convex Polygons,

Theoretical Foundations of Computer Graphics and CAD (NATO ASI

Series F, Volume 40) pp211-252, ed. Earnshaw, R., Springer Verlag,

1988.

[Midd97] Middleditch, A, Reade, C, A Kernel for Geometric Features,

proceedings of the Fourth Symposium on Solid Modelling and

Applications, Atalanta, Georgia, pp!31-140, May, 1997.

[Mill93] Mill, F.G., Pedley A.G., Salmon J.C., Representation Problems in

Feature Based Approaches to Design and Process Planning International

Journal of Computer Integrated Manufacturing, vol. 6, Nos 1 & 2, pp27-

33, Jan/April 1993.

[Mill94] Mill, FG, Naish, JC and Salmon, JC, Design for Machining with a

Simultaneous Engineering Workstation, Computer Aided Design, Vol. 26

No. 7, pp521-527, July 1994.

[Mill96] Mill, F, Naish, JC, Rieken, HR, Salmon, JC, Warrington, SW, Industry

Based Survey of Feature Oriented Engineering, (submitted to the Journal

ofthelMechE)

[Nais97] Naish, JC, Mill, FG and Salmon, JC., Implementation of Process

Capability Models to Support Computer Aided Process Planning,

Advances in Manufacturing Technology XI, Proceedings of the XHIth

National Conference on Manufacturing Research, pp375-379, Glasgow

Caledonian University, Glasgow, 9-11 September, 1997.

[Nais98] Naish, JC, Process Capability Modelling for Manufacturing Process

Selection in an Integrated Simultaneous Engineering Workstation, Ph.D

Thesis, University of Strathclyde, 1998.

[Opas94] Opas, J, Kanerva, F, Mantyla, M, Automatic Process Plan Generation in

an Operative Process Planning System, International Journal of

Production Research, 32(6), pp!347-1363, 1994.

146

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Ovtc92] Ovtcharova, J, Pahl, G, Rix, J, A Proposal for Feature Classification in

Feature-Based Design, Computing and Graphics 16(2), pp 187-195,

1992.

[Prat84] Pratt, M.J., Solid Modelling and the Interface Between Design and

Manufacture, IEEE Computer Graphics and Applications, 4(7) pp52-59,

July 1984.

[Regl95] Regli, W.C., Gupta, S.K., Naud, D.S., Extracting Alternative Machining

Features: An Algorithmic Approach, Research in Engineering Design, 7,

pp!73-192, 1995.

[Requ89] Requicha, AAG and Vandenbrande, JH, Form Features for Mechanical

Design and Manufacturing, pp47-52, Computers in Engineering 1989.

[Salm94] Salmon, J.C., Component Description Language Definition, MPGIR 13,

Edinburgh University, March 1994.

[Salo93a] Salomons, OW, van Houten, FJAM, Kals, HJJ, Review of Research in

Feature Based Design, Journal of Manufacturing Systems, 12(2), ppl IB-

132, 1993.

[Salo95] Salomons, Otto, Computer Support in the Design of Mechanical

Products, PhD thesis, University of Twente, Enschede, Netherlands, 20th

January 1995.

[Shah91a] Shah, J.J., An Assessment of Features Technology, Computer Aided

Design 23(5) pp58-66, 1991.

[Shah91b] Shah, Jami, Sreevalsan, Palat and Abraham, Matthew, Survey of

CAD/Feature-Based Process Planning and NC Programming

Techniques, Computer Aided Engineering Journal, pp25-33, Feb 1991.

[Shah91c] Shah, JJ, Matthew, A, An Experimental Investigation of the STEP Form

Features Information Model, Computer Aided Design 23(4) pp282-292,

1991.

147

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Shah95] Shah, Jami J, Mantyla, Parametric and Feature-based CAD/CAM:

concepts, techniques and applications, Wiley & Sons, NY, ISBN 0-471-

00214-3, 1995,

[Shah97] Shah, JJ, Dedhia, H, Pherwani, V, Solkhan, S Dynamic Interfacing of

Applications to Geometric Modeling Services via Modeler Neutral

Protocol, Computer Aided Design, 29(12): pp811-824, Dec 1997.

[Shap95] Shapiro, V, Vossler, DL, What is a Parametric Family of Solids?,

Proceedings of 3rd ACM/IEEE Symposium on Solid Modeling and

Applications, Salt Lake City, Utah, May 17-19, 1995.

[Subr95] Subrahamanyam, S, DeVries, W, Pratt, MJ, Feature Attributes and Their

Role in Product Modelling, Solid Modeling '95, Salt Lake City, Utah,

ppl 15-124, May 17-19, 1995.

[Sung86] Sungurtekin, Ugur A and Voelcker, Herbert B, Graphical Simulation and
Automatic Verification of NC Machining Programs, IEEE, 1986.

[Tam91] Tarn, TKH, Armstrong, CG, 2D Finite Element Mesh Generation by

Medial Axis Subdivision, Advances in Engineering Software, 13(5/6)

pp313-324, 1991.

[Tutt97] Tuttle_R, Little_G, Clark_DER, Corney_J, Feature Recognition for NC

Part Programming, International Conference on Manufacturing

Automation '97, pp797-802, Hong Kong, April 1997.

[Vand91] Vandenbrande, J.H., Automatic Recognition of Machinable Features in

Solid Models, PhD Thesis, University of Rochester, 1991.

[Vand93] Vandenbrande, JH, Requicha, AAG, Spatial Reasoning for the Automatic

Recognition of Machinable Features in Solid Models, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 15(12), pp!269-1285, Dec

1993.

[Vane90] Van Emmerik, Interactive Design of Parametrized 3D Models by Direct

Manipulation, PhD Thesis, Delft University Press, Netherlands, 1990.

148

Geometric Reasoning for Process Planning Jonathan Charles Salmon

[Voel97] Voelcker, H, The Current State of Affairs in Dimensional Tolerancing,

ICMA'97, pp33-40, Hong Kong April 1997.

[Wils89] Wilson, PR, Pratt, M.J., A Taxonomy of Features for Solid Modelling,

ACM SIGGRAPH,, Boston Massachusetts 1989.

[Wils90] Wilson, PR, Feature Modelling Overview, Dallas, TX, 1990.

[Wing91] Wingard, L, Introducing Form Features in Product Models, A Step

towards CADCAM with Engineering Terminology, Licentiate Thesis,

Dept. of Manufacturing Systems, Stockholm, 1991.

[Yama84] Yamaguchi, K, Kunii, TL, Fujimura, K, Octree-Related Data Structures

and Algorithms, IEEE Computer Graphics and Applications, pp53-59,

Jan 1984.

[Yang97] Yang, ZX, Joneja, A, Zhou, J, Backward Growing-based Geometric

Reasoning for Manufacturing Feature Recognition, International

Conference on Manufacturing Automation '97, Hong Kong, pp791-796,

1997.

149

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Appendix A. FODDS2 Implementation

Details

This Appendix contains brief details of the computer systems under which the

original FODDS and the FODDS2 systems were built.

In addition the GUI of FODDS2 is explained.

The first version of FODDS was written in C++ on a Sun (Unix) workstation with a

GUI written in X/Motif and using ACIS as the kernel modeller. FODDS2 retains

ACIS as the kernel modeller, but has moved platforms to PCs under

Windows95/NT4.0 and has been entirely rewritten using Visual Basic for the GUI,

Access for the database kernel and Scheme4 and the ACIS 3D Toolkit for solid

modelling and geometric reasoning. These can be used in a largely coherent

development environment with Scheme/ACIS code tested under the 3D Toolkit

before being incorporated in the application. The system runs happily on a P133 with

48Mb of RAM running Windows95 (minimum spec. 32Mb), but realistically needs

around 100Mb of free hard disk for the necessary applications and a minimum of

100Mb of swap space to deal with reasonable sized components.

The system uses Dynamic Data Exchange (DDE) to form the link between both

Visual Basic and Access (through a set of VB functions) and between Visual Basic

and ACIS. In particular this means that the commands used to drive ACIS are

identical to those typed at the command line of the ACIS 3D Toolkit (renamed for

ACIS version 3.0 the Scheme ACIS Interface Driver Extension). This allows code to

be developed using Scheme independently of the GUI. The enforced separation of

4 Scheme is a close relative of Lisp, and is often argued to be both a more compact

and elegant language.

150

Geometric Reasoning for Process Planning Jonathan Charles Salmon

GUI and core code improved both sets of code, as there was no mismatch of function

between the two. This is exemplified by the fact that the move from ACIS 2.1 to

ACIS 3.0 was accomplished in half a day and required no code rewriting or

recompiling. This is despite huge changes in the way ACIS is distributed (now

through DLLs rather than static libraries). Instead the new binaries were used

'straight out of the box'. The software packages used in FODDS2 are listed below.

Visual Basic Pro v5.0, Microsoft.

Access v7.0, Microsoft.

ACIS v4.2, Spatial Technology Inc.

Scheme, Schemers Inc.

Scheme ACIS Interface Driver Extension, v4.2, Spatial Technology Inc.

System Architecture

User

3D Viewing
Control

Pick Control

FODDS2
Visual Basic

ACCESS
Database

Library

weak
connection

DDE Connection

i

FODDS2
ACIS3DT
(Scheme)

3D Graphical
Display

FOODS
(ACIS)
Model

Exported files
(.ftr) Feature Tree files
(.fpl) FOODS Plan files
(.sat) ACIS model files

Figure A.1 System Architecture

FODDL
Component
Descriptions
(.mdb files)

151

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Figure A. 1 shows the system architecture in terms of the modules used. The User

interacts chiefly with the FODDS2 User Interface. This in term modifies a database

containing the component definition and informs the 3D Toolkit about the current

state of the database. The database contains no solid models of the component, but

contains sufficient information in a feature based table to rebuild the component at

any time.

The 3D Toolkit handles modelling the component and displaying the component on

the screen. The toolkit is also primarily responsible for geometric reasoning about the

component. The Toolkit can also write component descriptions to file (i.e. including

feature information), ACIS bodies of any of the generated bodies including most

importantly the final component, and writes files describing the results of the

geometric reasoning that has taken place.

Components can be displayed and rotated in real-time using a wireframe or shaded

OpenGL mode, and can be rendered.

152

Geometric Reasoning for Process Planning Jonathan Charles Salmon

The FODDS2 Graphical User Interface

Menubar

Main Toolbar -

Features Toolbar-

File Edft View Build! Tools Help

[*

ik; v -M o S)©

Component
Feature TreeView

Component
Database
Filename

El H Assembly
3' H Component

El Ik; Transform
: H Block

El- ^ Transform
I ••••U Hole

B Ik!- Transform
; j~"li Hole

B Ik; Transform
I L if Hole

El- Ik!- Transform
; ! -- |f Hole

-> Ei- Ik;- Transform
I '••••• u Hole

El Ik; Transform
; --U Slot

FeatureType JHole
jUNquelD j Node 14
jNextSibling JNull
jFirstChild JNull
JName JHole
lRadius[r) [20
|Depth[-z] 150

|BottomRadius[r2|Q
jDrillAngiela] 118

(SizeTol

ISurfaceFin J3.2
|EndTypeAccufaJ6.3
[RoundnessTol J200
iColour |

[Thread
iEndtype

Submit

C:\USR\SALM\RESEARCH\Fodds2.1 \user\holes2.mdb

Investigation
and Analysis

Toolbar

Feature
Attribute List

Feature
Submission

Button

Figure A.2 The FODDS2 Graphical User Interface

On the interface are a number of buttons in the main toolbar, with conventional icons

and usage, namely:

D 3S New File, File Open, File Save working as expected on Component database

files.

X =)lH Delete, Undo, Cut, Copy and Paste, acting on nodes in the feature tree.

The investigation and analysis toolbar however contains novel buttons.

153

Geometric Reasoning for Process Planning Jonathan Charles Salmon

• The magnifying glass zooms to cause the current component to centre and fill the

current viewscreens. Additional panning and zooming is possible using the mouse

and keyboard.

The spanner icon causes a build of the current component to take place. Because

no usage of history files exists in the prototype, a build of a complex component can

take up to a few minutes. To allow rapid design, users can enter a number of changes

(in the form of feature modification, addition or deletion) and select a suitable time to

rebuild the component.

IP The render button invokes photorealistic rendering of the current view. Most

images in this thesis have been generated this way.

The pick button once selected allows the user to pick a face of the current view

and information in a dialogue is supplied regarding that face. This makes mistakes

easier to identify, helping to close the representation gap between the Feature Tree

and the Component subsequently designed.

W Lastly the magic wand icon causes all analysis algorithms to be performed.

All these commands are also available from the menu bar. Additionally, the same

effect can be generated by typing suitable commands on the ACIS 3D Toolkit

command line interface, though the toolkit interface is normally hidden. This was

used to demonstrate individual algorithms.

FODDS2 Data Structure

The primary FODDS2 data structure is a tree and is stored primarily as a table of

nodes in an ACCESS database.

Each node represents, in general, either a primitive feature or an operator on a set of

features.

Each node contains three data items specifying its position in the tree.

• A Unique Node ID (UNID) (must be present and unique to the tree)

• The UNID of the Next Sibling of that node in the tree (this is set to a

NULL value if there is no Next Sibling)

154

Geometric Reasoning for Process Planning Jonathan Charles Salmon

• The UNID of the First Child of that node (this is set to a NULL value if

there is no First Child)

This is sufficient information to model a tree, and is compatible with the Tree View

Widget in Visual Basic (4.0 and later), which thus allows easy on-screen

representation of the feature hierarchy of any component.

In addition, each node contains some domain specific information, in particular

identifying the type of node.

Lastly, each node contains a fixed number of attributes. These are used to carry data

depending on the node type.

The specification for each type of node is held in one table in the database known as
the CODLSpec Table. This is so called as it embodies the historical Component

Description Language [Salm94] [Mill93]. Tables A.I and A.2 show the specification
of the Feature Operators and Primitives respectively.

In Table A. 1 the specifications for operators unite, intersect and subtract can be seen,
the set operators. These can be seen only in the table, but not in the GUI. At the
present time, the Scheme code supports these operators, but they would allow the
user to break the Feature Based Design model if they were made available. A
development of the system would allow design of the initial workpiece with these
operators, or the addition of a feature recognition module would allow use of these

CSG operators.

155

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Table A.1 The FODDS2 Feature Operators

Key
UriqueD
FeatureType
SuperType
NexiStfrig
FtsDId
Name
NodeAttOI
NodeAiCe
NodaflttOS
NodeAttW
NodeAWE
NocteftttOG
NodeA»i07
NcxteAiKB
NocteAMB
Noda%10
NodeAitll
Nod6AHr12
Nodo6ft13
NodeAtM4
Node%15
Noda%16
Node%17
hkxteWS

/sssemby
UriquelD
FeetieType
Opersfcr
NedSbfcig
RstOid
Name
OODLve-

Aulhor
THIe
Date
Ofrierlrfo

Compcnat
UriquelD
FeetieType
Opet*r
NexiSbiTg
RrsOld
Name

AiJhor
Trte
Date
Oherlnfo

Ttansfcim
UriquelD
FeetLieType
Operafcr
NextSttTg
RtslQiJd
Name
>3ranslalicn
Ytranstefon
aranslalicn
VecX
VecY
VecZ
Ande(deg)

F3DafcnTd
AndeTd

PCD
UriqueJD
FeatLieType
Operator
NextSUig
RrstChH
Name
Radusfl
AngJafPter(^
Ndtems

SizeTd
AndeTd

Matrix
UriquelD
FeatLieType
Operator
NextSttig
FtstChta1
Name
Xpith
Ypfch
NoHansX
NotemsY
Ftecf?

SizeTd

Hasect
UriqueiD
FeatLieType
Operator
NextStt^
FirstChid
Name

Urte
UriqudD
FeariieType
Operator
NextSfcfcig
FtstOtJ
Name

SO*act
UriquelD
FeatureType
Operator
NextSbfc^
FtsOld
Name

156

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Table A.2 The FODDS2 Primitives

Key

UriquelD

FeetieType

SuperT^pe
NexiSbfrg

RsCMd

Name

NodQ^ttOI
Nodo%02

NodeAftOS
NodeAtt04

NodaOttOB
NodeAJKB

Node>aa07
Node^SOe
NodeAflrOQ
NodaflflrlO
Nodaflftll
Node%12

Moderns
NodeM14
Node/%15

NodeAfrie
Noda%17
NodaAtH8

CuvedStt
UriquelD

FeatureType
NegFeaiLie
NexlSttTg

FtstOld

Name

CataFfedusH
WdhM

DeptH

FhshAr^efa]
Bo(fcmRedus[r1]

SizeTd
AndeTd
SufaoeFr

Odor

Pocket

UriquelD

FeatieT^pe

NegFeatue
NexCSttig
FistOid

Name

benglrtx]

WidtT^

Deptrt-z]

ComerRadusfi]
BotemFtedus[r1]

SizeTd

SufaoeFn

Cdcxr

Stt
UriquelD

FeetreType
NegFeatLie
NextSbng

RtsOld

Name

Lenglh[x5
WriBn^

Deplr(-z3

BotemRedus[r1]

SizeTd

SufeceFh

Cdou-

Hde

UriquelD

FeetiieTyce
NegFealue

NexSttig
FtsOrti

Name

Redusft]

Deplr(-z]
ThreadType

ThreadDepft

SizeTd

SufaDeFh

Cdou-

Endype

f^g
UriquelD

FeatueType
NegFedLie

NextSttig
FistOid

Name
Inrerfl6dus[iq
OuterRadusfrl]
DepH-zj

BotemRadL£[r2]

SizeTd
AngeTd
SufeceFh

Cdcxr

Bbck

UriquelD

FeetieType
PosFeelue

NextStfng
FistOid

Name
Lengt«
WJdrfy]
Hecftz]

SizeTd

SufeoeFn

Cdor

Cyfrxter

UriquelD
FeatureType

PosFeetie
NextSfcfrrg
FistChfci

Name
Radusfr]
Heicttz]

SizeTd

SufeceFh

Cckxr

In addition to those features listed in the table above, a number of features have been
acquired from other sources, particularly Mandelli. Though the Mandelli features
have not been included in the current system, they show how the system might be
expanded to take into account application and company specific features. It was felt
important to ensure that the generic features were fully understood before going on to
include more specific features with more complex geometry. In particular many of
the Mandelli features are examples of compound features and can be integrated using
the compound feature mechanism rather than generating new feature primitives.

Display of the component can take one of three forms depending on user preference:

• a wireframe view - supporting fast real-time rotation

• an OpenGL view - supporting slightly slower real-time rotation but with

colour-coded surfaces

Geometric Reasoning for Process Planning Jonathan Charles Salmon

a rendered view - using a number of light sources and material and

transparency effects this produces realistic component views for both

clarity and product demonstration5 . Generation of a large rendered view

can take a few minutes.

' PC I* ¥*« fiuid loots Hdp

ch^FoddsZ 2Xusef\holes2.mdb

Figure A.3 The Pick Operation

The user can also pick any feature on the screen and its identity and other
information is relayed to the user, allowing easy editing of obviously misplaced

features (see Figure A.3).

Implementation of the Method/Featuretype call

For each of the methods that produce volumes for the geometric algorithms it is
possible to call the method with a feature type as mentioned in the table below. The
behaviour of the method/featuretype combination is described in the accompanying
notes. The note is given by the number in the method/featuretype matrix of Table

A.3.

Table A.3 The Featuretype/Method Matrix

5 Most of the rendered images in this thesis have been generated directly from the

software.

158

Geometric Reasoning for Process Planning Jonathan Charles Salmon

| method

component
blank
feature
access
local-access
blind-access
dilated-feature
wcs

feature ty

assembly

1
1
2
2
2
2
2

componen

3
4
5
5
5
5
5

transform

6
6
6
6
6
6
6

O1

o
0

7
7
8
8
8
8
8

cylinder

7
7
8
8
8
8
8

o
(D

7
8
7
9
9
9
9

pe

a
7
8
7
9
9
9
9

•o
o
0

7
8
7
9
9
9
9

curved-slo

7
8
7
9
9
9
9

(O
7
8
7
9
9
9
9

1. produces a list of its children's bodies
2. produces a flattened list of the lists generated by its children
3. to make a component this must unite all blank features to give P, unite all negative features to

give N and subtract N from P to give the component C=P-N.
4. this is merely the union of the blank features P.
5. this is an entlist (entity list) of all the negative features or feature body (not united)
6. a transform can only have one child, but that child may return either a single entity or an entlist.

Fortunately, transforms operate transparently on these two types.
7. returns bodies as expected
8. returns an empty list

9. returns a single body appropriate to feature type and method._____________________

159

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Table A.4 Features and Nodes in FODDS2

Name

Reserved
Hole
Slot
Rectangular Pocket
Curved Slot
Ring
Complex pocket
2D point
Block
Cylinder
Sphere
Cone
Torus
Sculptured Surface
Reserved
Component op
Compound Feature op
Subtract
Unite
Intersect
Coordinate transform
Matrix
pitch circle diameter

Icon

0
T£

w
pm©
-Pi-

4"1

!
_ m ___n

0
an—
u
n
ik:-
•••
•••
••• •••

#
subnodes
0
0
0
0
0
0
n
0
0
0
0
0
0
n
n
1
1
n
n
n
n
1
1

Comment

Reserved
Negative Design Feature
Negative Design Feature
Negative Design Feature
Negative Design Feature
Negative Design Feature
Negative Design Feature
2D Point Definition
Geometric Primitive
Geometric Primitive
Geometric Primitive
Geometric Primitive
Geometric Primitive (not imp.)
Unimplemented
Reserved
This is the root of any component
For a user-defined features
CSG Boolean
CSG Boolean
CSG Boolean
Geometric Op
Manufacturing Design Op
Manufacturing Design Op

An important question is "what impact does this tree structure have on subsequent
downstream tasks such as process planning?". The answer is that the structure here is
of little impact. The tree structure can be envisaged as merely a design data structure
in which case the tree structure can be reinterpreted as a flat structure. This can be
done by writing the design structure into another tree structure with the same
underlying properties, but where the tree is flattened by evaluating some of the nodes
between the top level and the leaf nodes, particularly multiple transforms. This is

done at present when producing the '.fpl' process plan structure.

The impact of this tree structure on the subsequent process planning is an important
consideration, but is found to be slight. The process planning system will
predominantly plan single features and then perform some (global) optimisation in

order to produce the optimal process plan. Whereas this optimal process plan may
contain some of the structure of the design, there should be no constraint that this is

the case. Indeed process planning systems that generate process plans for

160

Geometric Reasoning for Process Planning Jonathan Charles Salmon

manufacturing features in the order in which they are designed are likely to be

seriously sub optimal, and frequently no valid process plan can be generated in this

manner. However, because much previous work has been carried out on a flat feature

structure [Mill93] there exists a function that takes one feature tree and produces a

flat feature tree that evaluates to the same component.

Tree Building, Editing and Interrogation

Just allowing the existence of a tree structure is not sufficient. Tools are required to
manipulate this tree structure. Fortunately, by adopting the use of Access to hold the

tree nodes, and by making use of the built in functionality of the Tree Widget to
handle trees, much of the tree handling functionality can be handled by Visual Basic

and Access. All that must be ensured is that the FirstChild and NextSibling attributes
in the Tree View widget are kept synchronised with the nodes in the database, and

that any time any node is modified in the database, the entire contents of the node are
passed through the DDE to the mirror of the data structure held in Scheme.

The Scheme Mirror

Using Visual Basic and Access is fine, but a mechanism is needed to hold the same
datastructure in Scheme, though the tools to edit this datastructure need not be so
sophisticated as entire nodes of the tree can be modified at once.

The data structure found in Scheme therefore is a list of nodes (in Scheme as in Lisp,

almost everything is a list).

The definition for one particular node, that of the hole in the 'elF example discussed

previously, is given in Figure A.4 below.

The node contains a string with the Unique Node Identifier, and then a list of the
attributes associated with that node. Unlike the format held in the Access database
(with a fixed number of nodes in a fixed position) this version of the tree can handle
any number of attributes, and consists of key-value pairs. All values are held as
strings whether they are strings or numbers so the possibility of adding parametric

functions instead of single values is available for the future.

161

Geometric Reasoning for Process Planning Jonathan Charles Salmon

"Node 8"
("UniquelD" . "Node 8")
("FeatureType" . "Hole")
("NegFeature" . "UNIDDefault")
("NextSibling" . "Null")
("FirstChild" . "Null")
("Name" . "Hole")
("Radius[r]" . "10")
("Depth[-z]" . "40")
("BottomRadius[r2]" . "")
("DrillAngle[a]" . "118")
("SizeTol" . "0.1")
("SurfaceFin" . "3.2")
("EndTypeAccuracy" . "6.3")
("RoundnessTol" . "200")
("Colour" . "")
("Thread" . "")

("Endtype" . "Drill")

Figure A.4 Representation of a FODDS2 Node in Scheme

A deliberate consequence of this structure is that no explicit information is held in a

node as to whom its parent node is. This is chiefly to avoid redundant information, as

when a tree is evaluated we rarely need to climb up in the tree. When the possibility

of functions attached to attributes is added the ability to browse around the tree in a

more flexible manner is required, but this is still possible without the knowledge of

parents via a search from the root node downwards for any particular node. The time

taken to browse a tree this way is still likely to be small compared with the time

taken to execute the solid modelling functions, so the gain of no redundancy and with

it consistency, makes this worthwhile.

If run-time speed of FODDS2 is to be improved the lazy-evaluation schemes and a

history (or subtree preservation) mechanism need to be investigated rather than re-

evaluating the entire tree every time a modification is made.

Building Features

In order to build the tree, the root object has its build method called. In order to do

this, it must first build its children and so on down the tree. The tree can be built in a

number of different ways depending on the method called. This gives the nodes in

162

Geometric Reasoning for Process Planning Jonathan Charles Salmon

the tree and object-oriented feel to them. Though a full object-oriented layer has not

been used in FODDS2, such layers exist [Abel96] and could have been used. As it is

only a small number of methods are required for the tree. Here the action of the

"component" method is investigated. Building any node requires a call to the

function flbuild with only two arguments, the method and the nodename. From this

first calls are made in order to build the children of a node, and a list of the results of

building the children is obtained. Then a call is made to the function flnodebuild

with four arguments, method nodename featuretype and children. Children is now a

list of the results of building all the children. Knowing the featuretype, the correct

function can be called to build a node of that subclass. Information regarding

different node subclasses is localised in a single file f2feats.scm, thus aiding the

information hiding idea central to object-oriented design.

For each of the five primitive feature so far implemented, the list of attributes that

have to be recovered from the node and the specification of the geometry of the

feature so built is shown previously in Error! Reference source not found..

Operator or Branch Node Generation Functions

All these operator nodes take lists of subnodes. This must be a list of nodes, though it

can be an empty list. Where the description says subnode, the function still takes a

list of nodes, but for these functions to be evaluated properly this must be a singleton

list. Though it is legal to give these functions empty lists, all require non-empty lists

to function properly, though all are guaranteed not to fail on empty lists. Similarly

those expecting lists of two or more items will return sensible results for singleton

lists.

Assembly Merely combines the output of all the Components into one list

Component If the method is component then this operator subtracts the feature list

from the blank list, otherwise it returns the list of the objects below it.

Subtract This performs a regularised Boolean subtract from the first subnode of

all subsequent subnodes. This implies that subnodes are ordered in the

tree.

163

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Unite

Intersect

Transform

Matrix

This performs a regularised Boolean unite of its subnodes

This performs a regularised Boolean intersect of its subnodes.

This generates a coordinate transform node composed of a translation
by some vector consisting of 3 cartesian components, and a rotation
about an arbitratry axis defined by 3 cartesian components by an
arbitrary number of degrees. Effectively, the rotation is performed first
about the global origin and the translation is then performed relative to
the global axes, (or the origin and axes of the transform higher up in
the tree)

Creates a matrix of the child feature given an x and y spacing, number
of items along the x and y axis, and a flag to indicate whether the
matrix is filled or empty.

Pitch Circle Creates a repeated feature around the boundary of a circle. The radius
is specified along with the number of copies and the angular spacing
between copies.

The Requirements of a Feature Oriented Design System

The following is a list of desirable features of a Feature Oriented Design System and
a mechanism by which such a system can be built. This list has been derived from a
study performed by the Manufacturing Planning Group entitled Feature Oriented
Engineering - An Assessment [Mill96]

• User Defined Features - No set of predefined features will be complete

for any domain.

• Compound Features - Provides a simple mechanism for many user

defined features

• Parametric Design/Constraints

• Opportunities for Lazy Evaluation

It can be shown that the tree structure provides a simple structure through which all

the above requirements can be satisfied.

164

Geometric Reasoning for Process Planning Jonathan Charles Salmon

We can split the tree structure into two main components

• Leaf nodes consisting only of primitive features or geometric building

blocks

• Non-terminal nodes consisting of operators

The operators include the traditional regularised Booleans of unite, intersect and

subtract, so it could be argued that we have generated a CSG tree via the back door.

This may be true, in which case when editing the tree some restrictions must be

imposed such as not being able to add subtractive features.

Other operators are also included. These include operators for transforming objects

(restricted to translation and orientation transforms)

Other operators allow generation of multiple features, such as a matrix of holes or a

pitch-circle of holes.

Editing facilities allow cut, copy and pasting of subtrees throughout the overall

component tree. This introduces questions of identification. Each node in the tree is

allocated a unique integer to allow pointers to nodes to function properly. As nodes

are added and deleted, and particularly as subtrees are imported, maintaining these

unique nodes becomes problematic.

A solution involves a two part naming scheme. Each node has two identifiers, either

of which can be empty. One identifier identifies the type as the user sees it and the

other a unique name for that particular instance of the type. Problems that arise are

similar to that of handling a disk directory structure, often requiring unique file

names in each directory, but also requiring that the operating system has some

unique way of referring to the location of a file or directory.

Even when this problem is solved, there remains the problem of ensuring consistency

of relationships, i.e. geometric tolerances between features and anteriority constraints

between features. The current system does not attempt to retain these relationships

after editing of the feature tree. For anteriority constraints these can always be rebuilt

when required. Geometric tolerancing that has been specified by the user is harder to

rebuild and some consistency control is needed.

165

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Every Tree starts with an A Assembly icon, so any tree can be an assembly of any
number of components (though this is limited to a simple component in the current

implementation. At the next level in the tree is a list of c components (again, just

one currently). The Ell component consists of three features, a D block, x~r slot and

Q hole, each attached to the tree via a ^ transform. This allows each feature to have
its position and orientation modified without having to modify the node containing
the individual feature parameters.

In fact a transform operator can be placed at almost any position in a feature tree, and
multiple transforms can be chained and affect one or more features. This allows the
common functionality associated with a transform to be separated from the features,
and so avoid unnecessary code replication. In addition, allowing multiple transforms
means that a complex transform can be decomposed into simpler transforms. This is
particularly useful if a set of features have an unusual approach direction for
instance, where a transform can set up a new working coordinate system, and
subsequent transforms can be defined relative to this. This approach became
particularly useful when building the Heriot-Watt 2 component (see Chapter 4).

Geometric Reasoning for Process Planning Jonathan Charles Salmon

Appendix B. Relationship Lists

This appendix contains some of the sets of relationships discovered for the test

components in Chapter 6, particularly when those lists do not warrant inclusion in

the main thesis.

Hanl Relationships

(
(("Pocket 1
(("Pocket 1
(("Slot" '
(("Slot" '
(("Slot" '
(("Hole" '
(("Slot" "
(("Hole" "
(("Hole" "
(("Pocket"
(("Hole" '
(("Pocket 1
(("Pocket 1
(("Hole" "
(("Hole" "
(("Hole" "
(("Hole" "
(("Hole" "
(("Pocket"
(("Pocket"
(("Slot" "
(("Pocket"

"feature"))
(("Hole"

"feature"))
(("Hole"

"feature"))
(("Pocket"

11 feature"))
(("Pocket"

" feature"))
(("Pocket"

"feature"))
(("Hole"

11 feature"))
(("Pocket"

" feature"))
(("Slot"

" feature"))
(("Slot"

"feature"))
(("Slot"

"feature"))
(("Hole"

"feature"))
(("Pocket"

11 feature"))
(("Slot"

" feature"))

"Pocket" "Node 12" "access") "intersects" ("blank"))
"Pocket" "Node 18" "access") "intersects" ("blank"))

Slot" "Node 26" "access") "intersects" ("blank"))
Slot" "Node 28" "access") "intersects" ("blank"))
Slot" "Node 30" "access") "intersects" ("blank"))
Hole" "Node 41" "access") "intersects" ("blank"))
Slot" "Node 43" "access") "intersects" ("blank"))
Hole" "Node 53" "access") "intersects" ("blank"))
Hole" "Node 55" "access") "intersects" ("blank"))
"Pocket" "Node 57" "access") "intersects" ("blank"))

Hole" "Node 59" "access") "intersects" ("blank"))
"Pocket" "Node 62" "access") "intersects" ("blank"))
"Pocket" "Node 64" "access") "intersects" ("blank"))

Hole" "Node 66" "access") "intersects" ("blank"))
Hole" "Node 68" "access") "intersects" ("blank"))
Hole" "Node 70" "access") "intersects" ("blank"))
Hole" "Node 72" "access") "intersects" ("blank"))
Hole" "Node 74" "access") "intersects" ("blank"))
"Pocket" "Node 77" "access") "intersects" ("blank"))
"Pocket" "Node 12" "access") "intersects" ("component 1

Slot" "Node 43" "access") "intersects" ("component"))
"Pocket" "Node 45" "access") "intersects" ("Pocket"

"Holel"

"Hole"

"Pocket

"Pocket

"Pocket

"Hole"

"Pocket

"Slot"

"Slot" "

"Slot" "

"Hole" "

"Pocket

"Slot"

"Node 47"

Node 49"

" "Node 57

" "Node 64

11 "Node 77

Node 16"

11 "Node 18

Node 28"

Node 3 0 "

Node 43"

Node 59"

" "Node 62

"Node 30"

"access ")

"access")

" "access ")

"access")

"access")

"access ")

11 "access")

"access")

"access")

"access")

"access")

"access")

"access ")

" intersects"

' intersects "

" intersects'

" intersects'

"intersects'

' intersects "

" intersects '

1 intersects"

1 intersects"

' intersects "

1 intersects"

" intersects 1

" intersects

("Pocket"

("Pocket"

("Pocket"

("Pocket"

("Pocket"

("Pocket"

("Pocket"

("Pocket"

("Pocket"

("Pocket"

("Pocket"

("Pocket"

("Hole"

))

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Pocket "

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Pocket"

"Hole"

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

12"

12"

12"

12"

12"

12"

14"

14"

14"

14"

14"

14"

14"

16"

167

Geometric Reasoning for Process Planning Jonathan Charles Salmon

:"Hole" "Hole"

("Hole" "Hole'

(("Slot" "Slot" "Node 43" "access") "intersects"
"feature"))
(("Pocket" "Pocket" "Node 62" "access") "intersects 1

"feature"))
(("Hole" "Hole" "Node 20" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 26" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 28" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Hole" "Hole" "Node 53" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Hole" "Hole" "Node 55" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 77" "access") "intersects" ("Pocket" "Pocket 1

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 51" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 77" "access") "intersects" ("Hole" "Hole"

11 feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Hole" "Hole" "Node 16" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 30" "access") "intersects" ("Pocket" "Pocket"

" feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 62" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Hole" "Hole" "Node 70" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Hole" "Hole" "Node 72" "access") "intersects" ("Pocket" "Pocket"

11 feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Slot" "Slot"

"feature"))
(("Hole" "Hole" "Node 20" "access") "intersects" ("Slot" "Slot"

"feature"))
(("Hole" "Holel" "Node 47" "access") "intersects" ("Slot" "Slot"

"feature"))
(("Pocket" "Pocket" "Node 51" "access") "intersects" ("Slot" "Slot"

"feature"))
(("Pocket" "Pocket" "Node 57" "access") "intersects" ("Slot" "Slot"

11 feature"))
(("Pocket" "Pocket" "Node 64" "access") "intersects" ("Slot" "Slot"

"feature"))
(("Pocket" "Pocket" "1

"feature"))
(("Pocket" "Pocket" "Node 18" "access") "intersects"

"feature"))
(("Hole" "Hole" "Node 16" "access") "intersects" ("Slot 1

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Slot" "Slot"

11 feature"))
(("Pocket" "Pocket" "Node 62" "access") "intersects" ("Slot" "Slot"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 22" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 34" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Hole" "Hole" "Node 66" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Hole" "Hole" "Node 68" "access") "intersects" ("Pocket" "Pocket"

"feature")) ,,,„,,
(("Hole" "Hole" "Node 70" "access") "intersects" ("Pocket" "Pocket"

"feature")) , , ,„ ,
(("Hole" "Hole" "Node 72" "access") "intersects" ("Pocket" "Pocket"

"feature")) ____________________——_————————————————

"Node 77" "access") "intersects" ("Slot" "Slot"

'Slot" "Slot"

"Slot"

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

16"

16"

18"

18"

IS­

IS"

18"

18"

20"

20"

20"

22"

22"

22"

22"

22"

22"

22"

26"

26"

26"

26"

26"

26"

26"

28"

30"

30"

30"

32"

32"

32"

32"

32"

32"

32"

32"

168

Geometric Reasoning for Process Planning Jonathan Charles Salmon

(("Hole" "Hole" "Node 74" "access") "intersects" ("Pocket" "Pocket"
"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Hole" "Hole" "Node 16" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 30" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 32" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Hole" "Hole" "Node 41" "access") "intersects" ("Pocket" "Pocket"

11 feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 62" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 39" "access") "intersects" ("Slot" "Slot"

"feature"))
(("Hole" "Hole" "Node 41" "access") "intersects" ("Slot" "Slot"

"feature"))
(("Pocket" "Pocket" "Node 77" "access") "intersects" ("Slot" "Slot"

"feature"))
(("Hole" "Hole" "Node 41" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 39" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Slot" "Slot"

"feature"))
(("Hole" "Hole" "Node 41" "access") "intersects" ("Slot" "Slot"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Holel"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 18" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 26" "access") "intersects" ("Pocket"

"feature"))
(("Slot" "Slot 1

"feature"))
(("Hole" "Hole 1

"feature"))
(("Hole" "Hole 1

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 14" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 18" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 26" "access") "intersects" ("Pocket" "Pocket"

11 feature")) ,
(("Slot" "Slot" "Node 30" "access") "intersects" ("Pocket" "Pocket 1

(("Slot" "Slot" "Node 37" "access") "intersects" ("Pocket" "Pocket"

" feature")) „ „
(("Pocket" "Pocket" "Node 39" "access") "intersects" ('Pocket Pocket

"feature")) , _ . „_ . , „
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket 1 'Pocket

" f G3.tu.irc")) {("Pocket" "Pocket" "Node 77" "access") "intersects" ("Pocket" "Pocket"

"feature")) ___________._____.——————————————————————

'Node 28" "access") "intersects" ("Pocket"

'Pocket"

'Pocket"

"Node 53" "access") "intersects" ("Pocket" "Pocket"

"Node 55" "access") "intersects" ("Pocket" "Pocket"

"Node 32"

"Node 34"

"Node 34"

"Node 34"

"Node 34"

"Node 34"

"Node 34"

"Node 34"

"Node 37"

"Node 37"

"Node 37"

"Node 39"

"Node 41"

"Node 41"

"Node 41"

"Node 43"

"Node 43"

"Node 45"

"Node 47"

"Node 49"

"Node 51"

"Node 51"

"Node 51"

"Node 51"

"Node 51"

"Node 51"

"Node 53"

"Node 55"

"Node 57"

"Node 57"

"Node 57"

"Node 57"

"Node 57"

"Node 57"

"Node 57"

"Node 57"

"Node 57"

Geometric Reasoning for Process Planning Jonathan Charles Salmon

(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"
"feature"))
(("Pocket" "Pocket" "Node 18" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Slot" "Slot" "Node 28" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket"

11 feature"))
(("Pocket" "Pocket" "Node 22" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 32" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 34" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Hole" "Hole" "Node 41" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 18" "access") "intersects" ("Pocket" "Pocket"

11 feature"))
(("Slot" "Slot" "Node 26" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 37" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 39" "access") "intersects" ("Pocket" "Pocket"

11 feature"))
(("Pocket" "Pocket" "Node 77" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature"))
"Node 43 "access" "intersects" ("Hole" "Hole"(("Slot" "Slot 1

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Hole" "Hole"

"feature"))
(("Pocket" "Pocket" "Node 12" "access") "intersects" ("Pocket" "Pocket 1

"feature"))
(("Pocket" "Pocket" "Node 18" "access") "intersects" ("Pocket" "Pocket 1

"feature"))
(("Slot" "Slot" "Node 26" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 30" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Slot" "Slot" "Node 37" "access") "intersects" ("Pocket" "Pocket"

"feature"))
(("Pocket" "Pocket" "Node 39" "access") "intersects" ("Pocket" "Pocket 1

11 feature"))
(("Slot" "Slot" "Node 43" "access") "intersects" ("Pocket" "Pocket"

" feature"))
(("Pocket" "Pocket" "Node 12" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 16" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 20" "blind-access") "through" ("component"))
(("Pocket" "Pocket" "Node 34" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 41" "blind-access") "through" ("component"))
(("Slot" "Slot" "Node 43" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 49" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 53" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 55" "blind-access") "through" ("component"))
(("Hole" "Hole" "Node 59" "blind-access") "through" ("component"))______

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

"Node

59"

59"

59"

62"

62"

62"

62"

62"

62"

64"

64"

64"

64"

64"

64"

66"

66"

68"

68"

70"

70"

72"

72"

74"

74"

77"

77"

77"

77"

77"

77"

77"

170

Geometric Reasoning for Process Planning Jonathan Charles Salmon

(("Pocket" "Pocket" "Node 62" "blind-access") "throuah" ("comoonent"))

Gadh2 Relationships

'Hole" "Hole" "Node 16" "access"
'Hole" "Hole" "Node 17" "access"
"Hole" "Hole" "Node 18" '

"Node 19" '
"Node 16" '
"Node 17" '
"Node 18" '
"Node 19" '
"Node 16

"Hole"
"Hole"
"Hole"
"Hole"
"Hole"
"Hole 1

access") '
access") '
access") '
access") '
access") '
access") '
" "access

(("Hole
(("Hole
(("Hole
(("Hole
(("Hole
(("Hole

"feature"))
(("Hole" "Hole" "Node 17" "access

"feature"))
(("Hole" "Hole" "Node 18" "access

"feature"))
(("Hole" "Hole" "Node 19" "access

"feature"))
(("Pocket" "Pocket" "Node 11" "blind-
(("CurvedSlot" "CurvedSlot" "Node 24'

gh" ("component"))
({"CurvedSlot" "CurvedSlot" "Node 29'
(("CurvedSlot" "CurvedSlot" "Node 32'
(("CurvedSlot" "CurvedSlot" "Node 35'

"intersects" ("blank"))
"intersects" ("blank"))
"intersects" ("blank"))
"intersects" ("blank"))
"intersects" ("component"))
"intersects" ("component"))
"intersects" ("component"))
"intersects" ("component"))
") "intersects" ("Pocket" "Pocket" "Node 11'

") "intersects" ("Pocket" "Pocket" "Node 11'

") "intersects" ("Pocket" "Pocket" "Node 11'

") "intersects" ("Pocket" "Pocket" "Node 11'

-access") "through" ("component"))
1 "blind-access") "throu

' "blind-access") "through" ("component"))
' "blind-access") "through" ("component"))
' "blind-access") "through" ("component"))

HAPPI Relationships

((Slot
((Slot
((Hole
((Slot
((Slot
((Slot
((Hole
((Hole

MidSlot
BtmSlot
LtlHole
MidSlot
BtmSlot
BtmSlot
LtlHole
BigHole

Node
Node
Node
Node
Node
Node
Node
Node

10
12
16
10
12
12
16
6

access) intersects (blank))
access) intersects (blank))
access) intersects (blank))
access) intersects (Slot TopSlot
access) intersects (Slot TopSlot
access) intersects (Slot MidSlot
access) intersects (Pocket Pocket

blind-access) through (component))

Node
Node
Node
Node

8 feature))
8 feature))
10 feature))
14 feature))

