185 research outputs found

    Recent Advances in Approximate Bayesian Computation Methods

    Get PDF
    The Bayesian approach to statistical inference in fundamentally probabilistic. Exploiting the internal consistency of the probability framework, the posterior distribution extracts the relevant information in the data, and provides a complete and coherent summary of post data uncertainty. However, summarising the posterior distribution often requires the calculation of awkward multidimensional integrals. A further complication with the Bayesian approach arises when the likelihood functions is unavailable. In this respect, promising advances have been made by theory of Approximate Bayesian Computations (ABC). This thesis focuses on computational methods for the approximation of posterior distributions, and it discusses six original contributions. The first contribution concerns the approximation of marginal posterior distributions for scalar parameters. By combining higher-order tail area approximation with the inverse transform sampling, we define the HOTA algorithm which draws independent random sample from the approximate marginal posterior. The second discusses the HOTA algorithm with pseudo-posterior distributions, \eg, posterior distributions obtained by the combination of a pseudo-likelihood with a prior within Bayes' rule. The third contribution extends the use of tail-area approximations to contexts with multidimensional parameters, and proposes a method which gives approximate Bayesian credible regions with good sampling coverage properties. The forth presents an improved Laplace approximation which can be used for computing marginal likelihoods. The fifth contribution discusses a model-based procedure for choosing good summary statistics for ABC, by using composite score functions. Lastly, the sixth contribution discusses the choice of a default proposal distribution for ABC that is based on the notion of quasi-likelihood

    Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems

    Full text link
    Approximate Bayesian computation methods can be used to evaluate posterior distributions without having to calculate likelihoods. In this paper we discuss and apply an approximate Bayesian computation (ABC) method based on sequential Monte Carlo (SMC) to estimate parameters of dynamical models. We show that ABC SMC gives information about the inferability of parameters and model sensitivity to changes in parameters, and tends to perform better than other ABC approaches. The algorithm is applied to several well known biological systems, for which parameters and their credible intervals are inferred. Moreover, we develop ABC SMC as a tool for model selection; given a range of different mathematical descriptions, ABC SMC is able to choose the best model using the standard Bayesian model selection apparatus.Comment: 26 pages, 9 figure

    Forward simulation MCMC with applications to stochastic epidemic models

    Get PDF
    For many stochastic models, it is difficult to make inference about the model parameters because it is impossible to write down a tractable likelihood given the observed data. A common solution is data augmentation in a Markov chain Monte Carlo (MCMC) framework. However, there are statistical problems where this approach has proved infeasible but where simulation from the model is straightforward leading to the popularity of the approximate Bayesian computation algorithm. We introduce a forward simulation MCMC (fsMCMC) algorithm, which is primarily based upon simulation from the model. The fsMCMC algorithm formulates the simulation of the process explicitly as a data augmentation problem. By exploiting non-centred parameterizations, an efficient MCMC updating schema for the parameters and augmented data is introduced, whilst maintaining straightforward simulation from the model. The fsMCMC algorithm is successfully applied to two distinct epidemic models including a birth–death–mutation model that has only previously been analysed using approximate Bayesian computation methods

    When virulence originates from non-agricultural hosts: New insights into plant breeding

    Get PDF
    Monogenic plant resistance breakdown is a model for testing evolution in action in pathogens. As a rule, plant pathologists argue that virulence – the allele that allows pathogens to overcome resistance – is due to a new mutation at the avirulence locus within the native/endemic population that infects susceptible crops. In this article, we develop an alternative and neglected scenario where a given virulence pre-exists in a non-agricultural host and might be accidentally released or introduced on the matching resistant cultivar in the field. The main difference between the two scenarios is the divergence time expected between the avirulent and the virulent populations. As a consequence, population genetic approaches such as genome scans and Approximate Bayesian Computation methods allow explicit testing of the two scenarios by timing the divergence. This review then explores the fundamental implications of this alternative scenario for plant breeding, including the invasion of virulence or the evolution of more aggressive hybrids, and proposes concrete solutions to achieve a sustainable resistance
    • …
    corecore