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Abstract

The Bayesian approach to statistical inference in fundamentally probabilistic. Exploiting

the internal consistency of the probability framework, the posterior distribution extracts

the relevant information in the data, and provides a complete and coherent summary of

post data uncertainty. However, summarising the posterior distribution often requires

the calculation of awkward multidimensional integrals. A further complication with the

Bayesian approach arises when the likelihood functions is unavailable. In this respect,

promising advances have been made by theory of Approximate Bayesian Computations

(ABC).

This thesis focuses on computational methods for the approximation of posterior dis-

tributions, and it discusses six original contributions. The first contribution concerns the

approximation of marginal posterior distributions for scalar parameters. By combining

higher-order tail area approximations with the inverse transform sampling, we define

the HOTA algorithm which draws independent random samples from the approximate

marginal posterior. The second discusses the HOTA algorithm with pseudo-posterior

distributions, e.g., posterior distributions obtained by the combination of a pseudo-

likelihood with a prior within Bayes’ rule. The third contribution extends the use of

tail-area approximations to context with multidimensional parameters, and proposes a

method which gives approximate Bayesian credible regions with good sampling coverage

properties. The forth presents an improved Laplace approximation which can be used for

computing marginal likelihoods. The fifth contribution discusses a model-based proce-

dure for choosing good summary statistics for ABC, by using composite score functions.

Lastly, the sixth contribution discusses the choice of a default proposal distribution for

ABC that is based on the notion of quasi-likelihood.





Sommario

L’approccio bayesiano all’inferenza statistica è fondamentalmente probabilistico. At-

traverso il calcolo delle probabilità, la distribuzione a posteriori estrae l’informazione

rilevante offerta dai dati e produce una descrizione completa e coerente dell’incertezza

condizionatamente ai dati osservati. Tuttavia, la descrizione della distribuzione a po-

steriori spesso richiede il calcolo di integrali multivariati e complicati. Un’ulteriore dif-

ficoltà dell’approccio bayesiano è legata alla funzione di verosimiglianza e nasce quando

quest’ultima è matematicamento o computazionalmente intrattabile. In questa direzio-

ne, notevoli sviluppi sono stati ottenuti attraverso la cosiddetta teoria di computazioni

bayesiane approssimate (ABC).

Questa tesi si focalizza su metodi computazionali per l’approssimazione della distri-

buzione a posteriori e propone sei contributi originali. Il primo contributo concerne

l’approssimazione della distribuzione a posteriori marginale per un parametro scalare.

Combinando l’approssimazione di ordine superiore per aree nelle code con il metodo

della simulazione per inversione, si ottiene l’algorimo denominato HOTA, il quale può

essere usato per simulare in modo indipendente da un’approssimazione della distribu-

zione a posteriori. Il secondo contributo si propone di estendere l’uso dell’algoritmo

HOTA in contesti di distribuzioni pseudo-a posteriori, ovvero distribuzioni a posteriori

ottenute attraverso la combinazione di una opportuna pseudo-verosimiglianza con una

distribuzione a priori, tramite il teorema di Bayes. Il terzo contributo estende l’uso

dell’approssimazione per aree nelle code in contesti con parametri multidimensionali e

propone un metodo per ottenere delle regioni di credibilità con buone proprietà di coper-

tura frequentista. Il quarto contributo presenta un’approssimazione di Laplace di terzo

ordine per il calcolo della verosimiglianza marginale. Il quinto contributo si focalizza

sulla scelta delle statistiche descrittive per i metodi ABC e propone un’approccio basato

sulla funzione composita punteggio, per la scelta di tali statistiche. Infine, l’ultimo con-

tributo si focalizza sulla scelta automatica di una distribuzione di proposta per algoritmi

ABC, dove la procedura di derivazione di tale distribuzione è basata sulla nozione della

quasi-verosimiglianza.
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Chapter 1

Introduction

1.1 Overview

The Bayesian approach to statistical inference is fundamentally probabilistic. The

relationships between all the unknowns and the data are described by the likelihood

function times the prior distribution on the unknowns. Straightforward application of

Bayes’ theorem provides the conditional probability distribution of the unknowns given

the data, i.e. the posterior distribution. Beyond the specification of the likelihood and

the prior, the Bayesian approach is automatic. Exploiting the internal consistency of

the probability framework, the posterior distribution extracts the relevant information

in the data and provides a complete and coherent summary of post data uncertainty

(Bernardo & Smith, 1994). Using the posterior to solve specific inference and decision

problems is then straightforward, at least in principle.

In practice, the Bayesian approach typically faces two major challenges: the specifi-

cation of the prior and the calculation of the posterior distribution. Sometimes prior

elicitation can be performed by adopting a default approach, such as that outlined

by Jeffreys (see Kass & Wasserman, 1996). Moreover, when a probability matching

between Bayesian and frequentist procedures is of interest, matching priors can be con-

sidered (see, e.g., Ventura et al., 2009, and references therein) or when historical data

are available they can be used for constructing prior distributions in a subjective way.

Posterior computations can be performed analytically only in few instances, e.g.models

with conjugate priors, hence in general approximation methods are needed. There ex-

ist many useful posterior computation methods, which range from asymptotic methods

based on the Laplace approximation (Tierney & Kadane, 1986) to Monte Carlo methods

(see, e.g., Chen et al., 2000). Asymptotic methods, are typically computationally faster,

easier to implement, and do not require tuning. Monte Carlo methods are typically

1



Chapter 1. Introduction 2

more involved, and require more attention from the practitioner, especially Monte Carlo

methods based on Markov chains.

A further complication arises as far as the computation of the posterior normalizing

constant is concerned. The complication arises because, most of the posterior simula-

tion methods typically sidestep the normalizing constant, hence its computation needs

further efforts (see, e.g., Chen et al., 2000, Ch. 5). The normalizing constants are used

to compute posterior model probabilities, which are useful for Bayesian model selection.

Selection strategies based on posterior model probabilities can be motivated via a deci-

sion theoretic framework where the goal is to maximize the expected utility (Bernardo

& Smith, 1994, Ch. 6; Robert, 2007, Ch. 7).

Another major challenge to the Bayesian approach (as well as to all likelihood-based

inferential settings) arises when the likelihood function is analytically or computationally

intractable. This is often the case in complex models, e.g. models with complicated de-

pendence structures, with many latent variables or semi-parametric models. At present,

there are mainly two ways to deal with complex models. The first one is to use suitable

approximate likelihoods with similar properties to the full likelihood, called pseudo-

likelihoods (see, e.g., Pace & Salvan, 1997, Ch. 4; Varin et al., 2011), as a surrogate

of the full likelihood in the Bayes’ rule. Although this approach cannot always be con-

sidered orthodox in a Bayesian setting, the use of approximate likelihoods is nowadays

widely shared, and several papers are devoted to Bayesian interpretation and appli-

cations of some well known pseudo-likelihoods, such as the composite likelihood and

the partial likelihood. For the use of composite likelihoods in a Bayesian approach see

Smith & Stephenson (2009), Pauli et al. (2011) and Ribatet et al. (2012). The second

approach is to resort to techniques known as likelihood-free or Approximate Bayesian

Computations (ABC) methods (see Marin et al., 2012, for a review).

1.2 Main contributions of the thesis

This thesis focuses on computational methods for approximating posterior distribu-

tions and related quantities, and it proposes six original contributions.

1. For models in which the likelihood function is available and regular, and using

higher-order asymptotics, we develop the HOTA algorithm which gives indepen-

dent samples from the approximate marginal posterior distribution for scalar pa-

rameters. It is a combination of the higher-order tail area approximation (see, e.g.,

Reid, 2003) with the inverse transform sampling. An advantage of HOTA with
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respect to other methods, such as MCMC, is that it is typically very fast and does

not require convergence checks. An R package is currently under development,

which implements the HOTA algorithm. The method is discussed in Section 3.1.

2. In the context of models where the likelihood function is unavailable and is replaced

by a suitable pseudo-likelihood, we derive a higher-order tail area approximation

for pseudo-posterior distributions, e.g. posterior distributions obtained from the

combination of pseudo-likelihoods and priors in the Bayes’ rule. We study the

accuracy of this formula by means of practical examples and discuss its use via

the HOTA algorithm. This contribution is illustrated in Section 3.2.

3. In Section 3.3, using higher-order asymptotics for a multidimensional parameter

of interest, we derive credible sets which can be interpreted as an extension of

the Bayesian equi-tailed credible intervals to a multivariate setting. We show, by

means of practical examples, that the approximate Bayesian credible sets have

accurate posterior probability contents and good sampling properties.

4. In Section 3.4, we discuss how the Laplace approximation for marginal posterior

distributions (Tierney & Kadane, 1986) can be combined with the marginal like-

lihood approach of Chib (1995) in order to obtain posterior normalizing constants

which are accurate to O(n−3/2), where n is the sample size. The proposed method

is more accurate than the usual Laplace approximation for posterior normalizing

constants and requires only numerical integration.

5. Our first contribution to ABC theory concerns the choice of the summary statistics

which is still an open problem. In particular, we propose to use the composite

score function (see, e.g., Varin et al., 2011) evaluated at a fixed parameter value,

as a summary of the data. This gives rise to a new algorithm, called the ABC-cs

algorithm. The advantage of this method is that it automatically defines a statistic

which incorporates useful characteristics of the complex model. The method is

illustrated with several examples in Section 4.1.

6. Lastly, in Section 4.2, we use the theory of quasi-likelihoods (see, e.g., Pace &

Salvan, 1997, Ch. 4) to construct a default proposal distribution for MCMC or

importance sampling algorithms within ABC. Given an estimated binding func-

tion, e.g. a monotone regression between the summary statistics and the param-

eter, along with the related Jacobian, our proposal produces candidate values in

the space of the summary statistics which are then transformed, via the binding

function, in terms of parameter values. The method is illustrated by an example.





Chapter 2

Bayesian Approximation Methods

2.1 Preamble

The approximation or exploration of the posterior distribution is one of the fundamen-

tal difficulties with the Bayesian approach. In contexts where the likelihood is available

analytically or numerically and a prior distribution is given, we must deal with the

problem of summarizing the posterior density, which in general consists on computing

awkward multidimensional integrals. A further difficulty with both the Bayesian and

the frequentist approach arises in complex models, where the likelihood function may

be difficult or even impossible to evaluate.

This chapter gives a short overview of some of the most popular Bayesian approxi-

mation methods, useful to summarize posterior distributions and to compute posterior

normalizing constants. The chapter is structured as follows. Section 2.2 states the

problem of posterior computation, along with notation used throughout the thesis. Sec-

tion 2.3 describes asymptotic and higher-order approximation methods. Section 2.4

describes Monte Carlo methods based on Markov chains and importance sampling tech-

niques. Section 2.5 describes pseudo-likelihoods and likelihood-free techniques useful to

deal with complex models.

2.2 Context

Consider a parametric statistical model with probability density function p(y; θ), θ ∈
Θ ⊆ IRd, and let L(θ) = L(θ; y) =

n
∏

i=1
p(yi; θ) be the likelihood function of θ based on a

random sample y = (y1, . . . , yn)
T of size n.

5
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Bayesian inference on θ is carried out through the posterior density

π(θ|y) =
L(θ)π(θ)

p(y)
, (2.1)

where π(θ) is a prior distribution for θ and

p(y) =

∫

Θ
L(θ)π(θ) dθ (2.2)

is the normalizing constant, often called the marginal likelihood or model evidence,

i.e. the marginal density of the data under the assumed model and prior.

From the posterior density (2.1), and using standard probability marginalization tech-

niques we can in principle straightforwardly calculate any particular univariate, bivari-

ate, etc., summary in the form of densities, contours or moments, as required. However,

the calculation of the joint posterior density of θ, and the required marginalization and

moment summaries, rests on the ability to compute high-dimensional integrals, which

in practice may be high-dimensional and tedious.

For instance, the posterior expectation of a given function g(θ), defined as

Eπ(g) =

∫

Θ
g(θ)π(θ|y) dθ

=

∫

Θ g(θ)L(θ)π(θ) dθ
∫

Θ L(θ)π(θ) dθ
, (2.3)

involves a ratio of d-dimensional integrals. In the particular case of g(θ) = p(z; θ), with

z being a future observation, the expectation is known as posterior predictive density,

e.g. the posterior density of z given the observed data y.

Another practical scenario is when θ = (ψ, λ), where ψ is a p-dimensional parameter

of interest and λ the nuisance parameter of dimension d− p. Then, Bayesian inference

on ψ can be based on the marginal posterior density

π(ψ|y) =

∫

Λ
π(ψ, λ|y) dλ

=

∫

Λ L(ψ, λ)π(ψ, λ) dλ
∫

Θ L(θ)π(θ) dθ
, (2.4)

which is again a ratio of multivariate integrals.

A further complication arises in the computation of the posterior normalizing constant

(2.2) because most of the computational methods used to simulate from (2.1) typically

sidestep the normalizing constant. Hence, its computation needs further efforts (see,

e.g., Chen et al., 2000, Ch. 5).
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The normalizing constant is typically used for Bayesian model selection (see, e.g.,

Robert, 2007, Ch. 7). In particular, suppose it is of interest to select the “best” model

from a set of candidate models (M1, . . . ,MK). For each model Mk, let pk(y|θk) be

the associated probability density with θk ∈ Θk ⊆ IRdk , and denote by L(θk;Mk) =

L(θk;Mk, y) and π(θk|Mk) the associated likelihood and prior, respectively (k = 1, . . . ,K).

The posterior distribution of θk for model Mk is

π(θk|Mk, y) =
L(θk;Mk)π(θk|Mk)

p(y|Mk)
, (2.5)

where p(y|Mk) =
∫

Θk
L(θk;Mk)π(θk|Mk) dθk is the normalizing constant of π(θk|y,Mk)

(k = 1, . . . ,K). Statements about posterior model probabilities can based on

p(Mk|y) = π(Mk)p(y|Mk)/
K
∑

k=1

π(Mk)p(y|Mk),

where π(Mk) is the prior for model Mk (k = 1, . . . ,K). The posterior model proba-

bility distribution {p(M1|y), . . . , p(MK |y)} is a fundamental object of interest in model

selection. Insofar as the priors π(θk|Mk) and π(Mk) provide an initial representation of

model uncertainty, the posterior model probability summarizes all the relevant informa-

tion in the data y and provides a complete post-data representation of model uncertainty

(Chipman et al., 2001). By treating π(Mk|y) as a measure of the “truth” of model Mk,

a natural and simple strategy for model selection is to choose the most probable Mk,

the one for which π(Mk|y) is largest. Alternatively, one might prefer to report a set of

high posterior models along with their probabilities to convey the model uncertainty.

Selection strategies based on the posterior model probability can be motivated via a

decision theoretic framework, where the goal is to maximize the expected utility (see,

Robert, 2007, Ch. 7, and Bernardo & Smith, 1994).

Posterior normalizing constants can be used also to compare models via Bayes factors

(BFs), given by

Bij =
p(y|Mi)

p(y|Mj)
, i 6= j = 1, . . . ,K, (2.6)

which give the relative evidence that is provided by the data in favour of model Mi

compared with modelMj (see, e.g., Kass & Raftery, 1995). Notice that for the purposes

of model choice, priors π(θk|Mk) must necessarily be proper, since improper priors give

BFs which are not well determined (Kass & Raftery, 1995). This is because, for instance,

the marginal likelihood of a model with prior π(θ) ∝ c, with c > 1, is c times higher

than the marginal likelihood of the same model based on the same data but with prior

π(θ) ∝ 1. See also Lahiri (2001) for recent developments on the use of BFs for model

selection, and Lavine & Schervish (1999) for a critical view on BFs.
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In few special cases, the integrals involved in (2.2), (2.3) and (2.4) can be computed

exactly. Otherwise approximation methods must be used.

2.3 Asymptotic approximations

Posterior computations based on asymptotic arguments are perhaps the oldest com-

putational methods (see, e.g. Lindley, 1965). The overall idea of these methods is that,

for a large sample size, the likelihood will be roughly normal and dominated by a single

mode. Hence, various approximation methods can be constructed by considering suit-

able Taylor expansions and integrations over normal-type functions. This is the idea

of Laplace’s method of integration (see, e.g., Tierney & Kadane, 1986). An essential

requirement of this type of approximation is that the log-posterior or the log-likelihood

of the model must be a smooth function of θ, with a unique mode; see Kass et al. (1990)

for a detailed exposition of the regularity conditions.

Asymptotic methods give analytical approximations, e.g. manageable and fixed func-

tions of the parameters and the data, and this is both an advantage and a disadvantage.

The advantage is that the analytical expressions obtained from these asymptotic meth-

ods are easy to handle and to program. Typically, asymptotic methods require only

maximization and differentiation routines. On the other hand, the accuracy of the

approximations depends on the “degree” of the normality of the likelihood or of the

posterior, which in turn is essentially governed by the fixed sample size. Moreover the

approximation error of these asymptotic methods is guaranteed to be zero as n → ∞,

but finite sample error bounds are generally unavailable.

However, the accuracy of the asymptotic methods may be sufficiently high for many

practical applications, especially in cases when stochastic or Monte Carlo approximations

converge too slowly to be useful (see, e.g., Rue et al., 2009). Moreover, asymptotic

methods can be used in conjunction with Monte Carlo methods (see, e.g., Guihenneuc-

Jouyaux & Rousseau, 2005; Kharroubi & Sweeting, 2010).

2.3.1 Normal approximations

The normal approximation is perhaps the simplest approach among all posterior

computation methods (see, e.g., O’Hagan & Forster, 2004, Ch. 8). Let H(θ) =
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π(θ) exp{ℓ(θ)} be the posterior kernel, where ℓ(θ) = logL(θ) is the log-likelihood func-

tion. The normal approximation can be derived as follows. Consider the Taylor expan-

sion of h(θ) = logH(θ) about the posterior mode θ̃ = argmax
θ∈Θ

H(θ), i.e.

h(θ) = h(θ̃) +
1

2
(θ − θ̃)TV (θ̃)(θ − θ̃) +R,

where V (θ̃) = −∂2h(θ)/∂θ∂θT |θ=θ̃ is the posterior information matrix, e.g. the Hessian

matrix of the negative log-posterior evaluated at θ̃, and R is the remainder of order

O(n−1/2). After substituting the expanded h(θ) in (2.1), and integrating the expansion

in the denominator, we get that the posterior distribution is approximately normal,

i.e. θ|y a∼ N(θ̃,Σ(θ̃)), centred at the posterior mode with variance-covariance matrix

Σ(θ̃) = V (θ̃)−1, where the symbol “
a∼” means asymptotically distributed for n→ ∞ and

the error is of order O(n−1/2) (see, e.g. , Lindley, 1965, and Walker, 1969, for a precise

statement of this result).

The normalizing constant of the normal posterior is readily found to be

p(y) = (2π)d/2H(θ̃)|V (θ̃)|−1/2{1 +O(n−1)}

= pL(y){1 +O(n−1)} (2.7)

and any posterior summary is immediately obtained by using known results about the

multivariate normal distribution. For instance, the posterior mean is θ̃, whereas the

marginal posterior of θi is N(θ̃i,Σii(θ̃)), where Σii(θ̃) denotes the (i, i) block of the

matrix Σ(θ̃), i = 1, . . . , d.

Another asymptotically equivalent version to the normal approximation can be com-

puted by taking a Taylor expansion of the log-likelihood function around the maximum

likelihood estimate (MLE) θ̂. However, although the theoretical approximation error is

still of order O(n−1/2) (see, e.g. Reid, 1996), the approximation could be less accurate,

especially in small samples (O’Hagan & Forster, 2004, p. 214) or when the MLE and

the posterior mode are very different.

2.3.2 Higher-order approximations

The normal approximation is sufficiently accurate if the posterior distribution is ap-

proximately quadratic. Therefore, this approximation applied to asymmetric or skewed

posteriors can be severely inaccurate. A first way to improve the normal approximation

is to include higher-order derivatives of h(θ) in the Taylor expansions (see Lindley, 1961,

1980). However, this route to higher-order asymptotics for posterior approximations can
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be impracticable, because log-likelihood or log-posterior derivatives of order higher than

the second can be cumbersome to compute in practice, even numerically.

The evaluation of
∫

Θ exp{h(θ)} dθ using Taylor expansions about θ̃ and integrating

term by term is an application of Laplace’s method of integration; see, e.g. DeBruijn

(1961, Ch. 4), Barndorff-Nielsen & Cox (1989, Ch. 6), and Tierney & Kadane (1986).

A higher-order approximation to the posterior distribution, which requires only first

and second order log-posterior derivatives, can obtained by applying the Laplace ap-

proximation to the denominator of (2.1), but not expanding the numerator, namely

π(θ|y) = (2π)−d/2|V (θ̃)|1/2{h(θ)− h(θ̃)}{1 +O(n−1)}. (2.8)

Another asymptotically equivalent version of (2.8) can be obtained by expanding the

log-likelihood ℓ(θ) around the MLE θ̂ and leaving the prior unchanged, which gives (see,

e.g., Reid, 1996, 2003)

π(θ|y) = (2π)−d/2|j(θ̂)|1/2 exp{ℓ(θ)− ℓ(θ̂)}π(θ)
π(θ̂)

{1 +O(n−1)}, (2.9)

where j(θ̂) = −∂2ℓ(θ)/∂θ∂θT |θ=θ̂ is the observed Fisher information matrix.

When θ = (ψ, λ), with ψ the parameter of interest, then the Laplace approximation

to the marginal posterior (2.4) can be obtained as follows. Let θ̃ = (ψ̃, λ̃) and let

θ̃ψ = (ψ, λ̃ψ), where λ̃ψ is the posterior mode with ψ fixed, i.e. λ̃ψ = arg max
λ∈Λ

h(ψ, λ).

Expand both the numerator of (2.4) about λ̃ψ and the denominator about θ̃, up to

the quadratic term. Then, after integrating term by term both the expansions in the

numerator and the denominator, we obtain (Tierney & Kadane, 1986)

π(ψ|y) = (2π)−p/2 exp{h(θ̃ψ)− h(θ̃)}
{

|V (θ̃)|
|Vλλ(θ̃ψ)|

}1/2

{1 +O(n−3/2)}, (2.10)

where Ṽλλ(θ̃ψ) = Vλλ(θ)|θ=θ̃ψ . This approximation, after numerical renormalization,

tends to be very accurate in practice (Tierney & Kadane, 1986).

The MLE-based version of (2.10) is given Reid (2003) and is

π(ψ|y) =
|jp(ψ̂)|1/2
(2π)p/2

exp{ℓp(ψ)− ℓp(ψ̂)}
{

|jλλ(θ̂)|
|jλλ(θ̂ψ)|

}1/2
π(θ̂ψ)

π(θ̂)
{1 +O(n−3/2)}, (2.11)

where θ̂ = (ψ̂, λ̂), θ̂ψ = (ψ, λ̂ψ), with λ̂ψ the constrained MLE of λ for fixed ψ, ℓp(ψ) =

ℓ(ψ, λ̂ψ) is the profile log-likelihood, and jp(ψ) = −∂2ℓp(ψ)/∂ψT the profile information.
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Posterior moments for scalar components can be obtained by integrating the renor-

malized versions of (2.10) or (2.11), whereas an expression for posterior expectations of

the complete parameter vector can be found in Tierney & Kadane (1986).

The Laplace approximation (2.10) is also the basis for the derivation of accurate pos-

terior tail areas for scalar parameters. In particular, let ψ be a scalar parameter of

interest. Then it can be shown that (see Davison, 2003, Ch. 11)

P(ψ < ψ0|y) =

∫ ψ0

−∞
π(ψ|y) dψ

=

∫ ψ0

−∞
(2π)−1/2 exp{h(θ̃ψ)− h(θ̃)}

{

|V (θ̃)|
|Vλλ(θ̃ψ)|

}1/2

{1 +O(n−3/2)} dψ

= Φ

{

rBp (ψ0) +
1

rBp (ψ0)
log

qB(ψ0)

rBp (ψ0)

}

{1 +O(n−3/2)}

= Φ{r⋆B(ψ0)}{1 +O(n−3/2)}, (2.12)

where rBp (ψ) = sign(ψ−ψ̃){2[h(θ̃)−h(θ̃ψ)]}1/2, r⋆B(ψ) = rBp (ψ)+r
B
p (ψ)

−1 log{qB(ψ)/rBp (ψ)}
and

qB(ψ) = −hψ(θ̃ψ){|Vλλ(θ̃ψ)|/|V (θ̃)|}1/2,

with hψ(θ̃ψ) = ∂h(θ)/∂ψ|θ=θ̃ψ . An essential step in the derivation of (2.12) is the change

of variable from ψ to rBp (ψ), which has Jacobian −hψ(θ̃ψ)/rBp (ψ) (see Fraser et al., 1999;
DiCiccio & Martin, 1991, among others). See also Sweeting (1995, 1996) for alternative

derivations of posterior tail area approximations based on the Laplace formula.

Another posterior tail area approximation, equivalent to (2.12), can be obtained by

considering expansions around the MLE. In this case, the tail area approximation is

obtained by integrating (2.11) for p = 1, with the final result (see, e.g., Brazzale et al.,

2007, Ch. 8; Reid, 2003)

∫ ∞

ψ0

π(ψ|y)dψ = Φ{r⋆p(ψ0)}{1 +O(n−3/2)}, (2.13)

where r⋆p(ψ) = rp(ψ)+rp(ψ)
−1 log{qB(ψ)/rp(ψ)} is the modified likelihood root, rp(ψ) =

sign(ψ̂ − ψ)[2(ℓp(ψ̂)− ℓp(ψ))]
1/2 is the likelihood root, and

qB(ψ) = ℓ′p(ψ) jp(ψ)
−1/2 |jλλ(ψ, λ̂ψ)|1/2

|jλλ(ψ̂, λ̂)|1/2
π(ψ̂, λ̂)

π(ψ, λ̂ψ)
, (2.14)

with ℓ′p(ψ) = ∂ℓp(ψ)/∂ψ the profile score.

While the approximation (2.10), its associated tail area approximation (2.12), and the

corresponding versions based on the MLE all have the same theoretical approximation

error, the versions based on the expansion of h(θ) tend to be more accurate in practice.
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However, the MLE-based versions are easier to implement in practice because they

involve only standard likelihood quantities, e.g. the MLE, the constrained MLE and

the observed information, which are readily available from any software that performs

numerical optimizations. When π(θ) ∝ 1, expressions (2.10) and (2.12) coincide with

their respective approximations based on log-likelihood expansions.

When the class of matching priors (Tibshirani, 1989; Datta & Mukerjee, 2004) is

considered, e.g. prior distributions under which the posterior probabilities of certain

regions coincide with their coverage probabilities either exactly or approximately, in

(2.4), the marginal posterior distribution for ψ can be expressed as (Ventura et al.,

2009, 2013)

π(ψ|y) ∝ Lmp(ψ)πmp(ψ), (2.15)

where Lmp(ψ) = Lp(ψ)M(ψ) is the modified profile likelihood for a suitably defined

correction term M(ψ) (see, among others, Severini, 2000, Ch. 9 and Pace & Salvan,

2006), and the corresponding matching prior is

πmp(ψ) ∝ iψψ.λ(ψ, λ̂ψ)
1/2, (2.16)

with iψψ.λ(ψ, λ) = iψψ(ψ, λ)− iψλ(ψ, λ)iλλ(ψ, λ)
−1iψλ(ψ, λ)

T being the partial informa-

tion, and where iψψ(ψ, λ), iψλ(ψ, λ), and iλλ(ψ, λ) are blocks of the expected Fisher

information i(ψ, λ) from ℓ(ψ, λ). Starting from (2.16), it is possible to show that (see,

e.g. Ventura et al., 2013) (2.13) holds with r⋆p(ψ) given by the modified profile likelihood

root of Barndorff-Nielsen & Chamberlin (1994); see also Barndorff-Nielsen & Cox (1994)

and Severini (2000, Ch. 7). In particular, the quantity (2.14) has the form

qB(ψ) =
ℓ′p(ψ)

jp(ψ̂)1/2

iψψ.λ(ψ̂, λ̂)
1/2

iψψ.λ(ψ, λ̂ψ)1/2
1

M(ψ)
.

The posterior tail area approximations (2.12) and (2.13) and the tail area based on

the matching posterior (2.15) can be used to compute marginal posterior probabilities

or posterior quantiles. For instance, in the case of (2.12), the approximate posterior

median is found by solving r⋆B(ψ) = 0, whereas an approximate equi-tailed (1 − α)

credible interval can be obtained as

CI1−α = {ψ : |r⋆B(ψ)| ≤ z1−α/2},

where z1−α/2 is the (1− α/2)th quantile of the standard normal distribution.

As shown in formula (2.7), the Laplace approximation of the normalizing constant

p(y) has asymptotic error of order O(n−1). Higher-order approximations of p(y) can

be obtained through Bayesian Bartlett corrections. In particular, DiCiccio et al. (1997)
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proposed the Bartlett-corrected Laplace approximation

pB(y) = pL(y)

[

Eπ{w(θ)}
d

]d/2

, (2.17)

with w(θ) = 2{h(θ̃) − h(θ)}, where the expectation is typically performed via Monte

Carlo methods. This approximation has asymptotic error of order O(n−2) (see DiCiccio

et al., 1997).

In models with few parameters, e.g. d ≤ 5, numerical integration methods based on

quadrature rules can also be used. Briefly, the aim of quadrature rules is to divide the

integrand in smaller pieces, compute their areas and approximate the integral by the

sum of the areas. Quadrature rules for posterior approximations were first proposed by

Naylor & Smith (1982). They are typically very accurate, but unfortunately their use

is limited by the curse of dimensionality, since the computational complexity increases

rapidly with the number of the parameters (see, e.g., Evans & Swartz, 1995, 2000).

Posterior approximations via the Laplace expansion are generally fast, accurate and

easy to implement. However, when routinely applied, these posterior approximations

typically require new optimization and (numerical) differentiation tasks. In light of this,

posterior approximations via the Laplace expansion can be time consuming and may

encounter numerical issues, especially for models with many parameters. These issues

can be avoided if one first samples from the approximation of the posterior parametrized

on a computationally convenient scale, and numerically transforms the values in the

required scale. This idea is developed in Section 3.1, where an algorithm is proposed to

quickly simulate from the approximate marginal posterior density (2.10) by using the

posterior tail area approximation (2.12).

2.4 Monte Carlo methods

In complicated and highly multidimensional posteriors, quadrature and asymptotic

methods, such as those presented so far may be not applicable, e.g. the regularity con-

ditions may not hold. In these cases, Monte Carlo or stochastic methods are the only

alternative (Evans & Swartz, 1995). The aim of Monte Carlo methods is to approximate

difficult integrals via stochastic simulation from appropriate probability distributions

and ultimately to approximate integrals with finite sums.

A general advantage of Monte Carlo methods is that the associated approximations are

typically simulation consistent, e.g. for a large number of simulations the approximations

will converge to the true value. However, the approximation error is not always easy to

control, especially in Monte Carlo methods which produce dependent samples.
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The basic Monte Carlo approximation for integrals works as follows. Suppose it is of

interest to compute the integral Ef (g) =
∫

g(x)f(x) dx, where g(x) is a given function

and f(x) a proper probability distribution. Then, given a sample (x(1), . . . , x(m)) drawn

from f(x), the Monte Carlo approximation of Ef (g) is

ḡm =
1

m

m
∑

t=1

g(x(t)).

By the Strong Law of Large Numbers (SLLN), ḡm converges almost surely to Ef (g).

Moreover, if the square of g(x) has finite expectation, i.e. Ef (g
2) < ∞, the speed of

convergence can be assessed via the Central Limit Theorem (see, e.g., Robert & Casella,

2004, Ch. 3).

2.4.1 Monte Carlo methods for posterior computation

At heart of Monte Carlo methods is the ability to simulate from probability distribu-

tions or in Bayesian terms, the ability to simulate from the posterior. Indeed, provided

a sample from the posterior distribution is available, we can, in principle, estimate any

posterior summary. However, in practice, sampling from π(θ|y) can be cumbersome.

There exists a wide variety of posterior simulation techniques, among which Markov

chain Monte Carlo (MCMC) or importance sampling (IS) methods are the most widely

used (see, e.g., Evans & Swartz, 1995, 2000; Robert & Casella, 2004).

IS is perhaps the easiest method, at least for posteriors with moderate numbers of

parameters. Consider the posterior expectation (2.3), and suppose its computation is

impossible because of the unknown normalizing constant p(y). Let f(θ) be a probability

density, i.e., the importance density, which is straightforward to sample from and is such

that its support includes that of π(θ|y). Then, given a sample (θ(1), . . . , θ(m)) from f(θ),

the IS approximation of (2.3) is

ḡm =

∑m
t=1 g(θ

(t))w(θ(t))
∑m

t=1w(θ
(t))

,

where w(θ) = π(θ|y)/f(θ) are the importance weights. By the SLLN ḡm converges to

Eπ(g) almost surely. Provided Eπ(g
2) < ∞, the speed of convergence of ḡm can be

assessed via the Central Limit Theorem (see, e.g., Evans & Swartz, 2000, p. 173).

The IS method is the basis of the sampling/importance resampling (SIR) algorithm,

which can be used to simulate approximate samples from π(θ|y). This proceeds by gener-

ating samples (θ(1), . . . , θ(m)) from f(θ) and then resampling, with replacement from this

sample with weights wt ∝ π(θ(t)|y)/f(θ(t)), t = 1, . . . ,m, a new sample (θ(1∗), . . . , θ(m∗)),
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which can be treated as a sample from π(θ|y). However, the posterior summaries com-

puted from the sample generated with the SIR algorithm may have higher variance than

the ones obtained with IS (Evans & Swartz, 2000, p. 175).

The performance of the IS and the SIR algorithms depends on the importance density

f(θ), whose tails should be heavier than those of π(θ|y). Of course, this is very difficult

to check in practice. Typical importance densities are multivariate normals or multi-

variate t-student distributions. Variance reduction techniques can be used in order to

decrease the variability of IS. Finally, we notice that IS can be embedded in an iterative

procedure where the importance function, taken from a certain family of distributions, is

progressively improved until some criterion is reached. This procedure, called Adaptive

Importance Sampling, in general improves upon the usual IS; see Evans & Swartz (2000,

Chap. 6) for more details.

Another popular way of simulating from a general posterior distribution is by us-

ing MCMC methods. The MCMC sampling strategy sets up an irreducible, aperiodic

Markov chain whose stationary distribution equals the posterior distribution of interest.

A general way of constructing a Markov chain is by using a Metropolis-Hastings algo-

rithm. Here, we focus on two particular variants of Metropolis-Hastings algorithms, the

independence chain and the random walk chain, that are applicable to a wide variety of

Bayesian inference problems.

Suppose it is of interest to simulate from a posterior density π(θ|y). A Metropolis-

Hastings algorithm begins with an initial value θ(0) and specifies a rule for simulating

the tth value in the sequence θ(t), given the (t− 1)th value in the sequence θ(t−1). This

rule consists of a proposal density q(·|·), which simulates a candidate value θ∗, and of

the computation of an acceptance probability P , which indicates the probability that

the candidate value will be accepted as the next value in the sequence. Specifically, this
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algorithm can be described as follows:

Data: Starting values θ(0), proposal distribution q(·|·)
Result: A dependent sample (θ(1), . . . , θ(m)) from π(θ|y)
for t = 1 → m do

draw θ∗ ∼ q(θ|θ(t−1)) and compute

Rt =
π(θ∗)L(θ∗)q(θ(t−1)|θ∗)

π(θ(t−1))L(θ(t−1))q(θ∗|θ(t−1))

compute Pt = min{Rt, 1}.
Draw Wt ∼ Bernoulli(Pt)

if Wt = 1 then

acccept θ∗ and set θ(t) = θ∗

else

set θ(t) = θ(t−1)

end

end

Algorithm 1: Metropolis-Hastings

Under some regularity conditions on the proposal q(·|·), on the prior and on the likeli-

hood, the sequence of simulated values (θ(1), . . . , θ(m)) will converge to a random variable

that is distributed according to the posterior distribution π(θ|y); see, for instance, Robert
& Casella (2004, Ch. 7).

Different Metropolis-Hastings algorithms are constructed depending on the choice of

proposal density. For instance, if the proposal density is independent of the current

value in the sequence, that is if

q(θ∗|θ(t−1)) = q(θ∗),

then the resulting algorithm is called an independence chain. Other proposal densities

can be defined by letting the density have the form

q(θ∗|θ(t−1)) = s(θ∗ − θ(t−1)),

where s(·) is a symmetric density about the origin. This type of chain is a random walk

chain and the ratio Rt has the simple form

Rt =
π(θ∗)L(θ∗)

π(θ(t−1))L(θ(t−1))
.
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Which features the proposal density must have depends on the type of MCMC algo-

rithm employed. For an independence chain, we desire that the proposal density q(θ)

approximates the posterior density π(θ|y), suggesting a high acceptance rate. But, the

ratio π(θ|y)/q(θ) must be bounded, especially in the tail portion of the posterior den-

sity. For random walk chains with normal proposal densities, it has been suggested that

acceptance rates between 25% and 45% are good.

When the posterior π(θ|y) admits conditional distributions which are known densities,

apart from the normalizing constants, then Gibbs sampling is an easier alternative to

Metropolis-Hastings algorithms. Let us define the set of full conditional densities as

π(θi|θ1, . . . , θi−1, θi+1, . . . , θd, y), i = 1, . . . , d, (2.18)

where θi denotes the ith element of the parameter θ. It is assumed that the full con-

ditionals are proper and easy to sample from. The idea behind Gibbs sampling is that

we can set up a Markov chain simulation algorithm from the joint posterior distribu-

tion by successfully simulating individual parameters from the set of d full conditional

distributions, as follows:

Data: Starting values θ(0) and the full conditional distributions

Result: A dependent sample (θ(1), . . . , θ(m)) from π(θ|y)
for t = 1 → m do

1 draw θ
(t)
1 ∼ π(·|θ(t−1)

2 , . . . , θ
(t−1)
d , y)

2 draw θ
(t)
2 ∼ π(·|θ(t)1 , θ

(t−1)
3 . . . , θ

(t−1)
d , y)

.

.

. . . .

d draw θ
(t)
d ∼ π(·|θ(t)1 , . . . , θ

(t)
d−1, y)

end

Algorithm 2: Gibbs sampling

Simulating one value of each individual parameter from the full conditionals (2.18)

in turn is called one cycle of Gibbs sampling. Under general conditions, draws from

this simulation algorithm will converge to the target distribution π(θ|y). In situations

where it is not convenient to sample directly from the conditional distributions, one can

use a Metropolis-Hastings algorithm, such as the random walk, to simulate from each

distribution.

Once a posterior sample is available, the marginal posterior of a parameter of interest

ψ can be easily computed with kernel density estimation methods (see, e.g. Silverman,

1986), or via the Rao-Blackwellization method of Gelfand & Smith (1990), when the

conditional distributions are known. See also Chen (1994) for a generalization of the

Gelfand & Smith’s method.
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2.4.2 Monte Carlo methods for marginal likelihoods

There are many approaches to the computation of posterior model probabilities (see,

e.g., Chen et al., 2000, Ch. 5). Here we are mostly concerned with the calculation of

posterior normalizing constants, which are the ingredients for computing BFs as well as

posterior model probabilities.

In principle, the Monte Carlo method can be used to approximate also the normalizing

constant (2.2) via the empirical mean

p̄(y) =
1

m

m
∑

t=1

L(θ(t)), (2.19)

where (θ(1), . . . , θ(m)) is a sample from π(θ). Although this method is easy to implement,

in practice it requires an enormous number of simulations in order to obtain accurate

estimates (Lewis & Raftery, 1997), with the result of preventing its use in routine anal-

yses.

A first estimator for (2.2), which uses simulation from the posterior, is the harmonic

mean estimator (Newton & Raftery, 1994)

p̄NR(y) =

{

1

m

m
∑

t=1

1

L(θ(t))

}−1

.

Unfortunately, this estimator is not stable, since the inverse of the likelihood does not

have finite variance (Chib, 1995). Gelfand & Dey (1994) propose a generalization of the

harmonic mean estimator, given by

p̄GD(y) =

{

1

m

m
∑

t=1

g(θ(t))

L(θ(t))π(θ(t))

}−1

, (2.20)

where g(θ) is a density with tails thinner than the kernel π(θ)L(θ) of the posterior.

Clearly, in the particular case with g(θ) = π(θ), the estimator (2.20) coincides with

the harmonic mean estimator. Although (2.20) solves the problem of instability of the

harmonic mean estimator, it requires a tuning function g(θ), which can be difficult to

determine and to monitor in high-dimensional problems (Chib, 1995).

The normalizing constant can be estimated also with the usual IS method. Given an

importance density f(θ) and a sample of m values from it, the importance sampling

estimator of p(y) is

p̄IS(y) =
m
∑

t=1

w(θ(t))L(θ(t))
∑m

t=1w(θ
(t))

, (2.21)
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where w(θ) = π(θ)/f(θ). The performance of the importance sampling estimator de-

pends on the importance density. Poor choices of importance densities may give very

misleading results (see, Evans & Swartz, 2000, Ch. 6).

A popular method for computing posterior normalizing constants was proposed by

Chib (1995) and successively extended by Chib & Jeliazkov (2001). The method begins

by simply rewriting Bayes’ rule as

p(y) =
L(θ)π(θ)

π(θ|y) . (2.22)

Only the denominator or the right-hand side of (2.22) is unknown, so an estimate of the

posterior would produce an estimate of the normalizing constant. But since the identity

(2.22) holds for any θ, we require only a posterior density estimate at a single point θ∗.

So we have (Chib, 1995)

log p̂(y) = ℓ(θ∗) + log π(θ∗)− log π̂(θ∗|y), (2.23)

where the log scale is convenient for computational accuracy. Although θ∗ may be

any point of the parametric space, Chib (1995) suggests choosing it as a point of high

posterior density, to maximise accuracy in (2.23).

To show how to obtain π̂(θ∗|y), suppose the complete parameter can be decomposed

in two blocks θ = (θ1, θ2), where π(θ2|θ1, y) and π(θ1|θ2, y) are both available in closed

form. In writing

π(θ∗1, θ
∗
2|y) = π(θ∗2|θ∗1, y, )π(θ∗1|y), (2.24)

we observe that the first term on the right-hand side is available explicitly at θ∗ =

(θ∗1, θ
∗
2), while the second can be estimated via the Rao-Blackwellization method, namely

π̂(θ∗1|y) =
1

m

m
∑

i=1

π(θ∗1|θ
(i)
2 , y). (2.25)

Thus the estimated posterior normalizing constant in (2.23) becomes (see Chib, 1995)

log p̂C(y) = ℓ(θ∗1, θ
∗
2) + log π(θ∗1, θ

∗
2)− log π(θ∗2|θ∗1, y)− log π̂(θ∗1|y).

The extension to more than two parameter blocks requires additional sampling, besides

sampling from the full conditionals. Chib’s method is generally applicable when Gibbs’

sampling can be used (Chib, 1995), since in this case we can easily simulate from the con-

ditionals. A more general version, in which the sampling from intractable conditionals

is done via Metropolis-Hastings algorithms, is presented in Chib & Jeliazkov (2001).

Many other simulation-based methods for computing marginal likelihoods can be found
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in the literature (see Friel & Wyse, 2012, for an extensive review), since the topic is

currently an active area of research.

In Section 3.4 we present an original contribution to the computation of posterior nor-

malizing constants based on the combination of the Laplace approximation for marginal

posterior distributions (Tierney & Kadane, 1986) with Chib’s idea. The proposed

method has relative error of order O(n−3/2) and does not require posterior simulation.

2.5 Methods for complex models

So far it was assumed that the likelihood L(θ) is analytically or computationally

tractable. However, various modern applications which involve models with complex

dependence structures, models with many latent variables or semi-parametric models,

likelihood-based methods may encounter computational problems, due to the difficulty of

evaluating L(θ). This difficulty poses a serious obstacle to all likelihood-based inference

methods, and all the techniques presented so far are of little or no use.

Here we summarize two approaches useful for dealing with complex models. The first

is based on the use of approximate likelihoods directly in the Bayes’ rule, as if they were

proper likelihood functions, i.e., likelihoods derived from the density of the data. The

second approach uses the so called likelihood-free or Approximate Bayesian Computation

(ABC) methods, which try to approximate the likelihood, and hence the posterior, by

simulating pseudo-datasets from the model.

2.5.1 Pseudo-likelihood methods

In the Bayesian framework, complex models can be usefully handled by using a poste-

rior distribution based on the combination of a suitable pseudo-likelihood function with

a prior distribution, as indicated by the growing interest in the statistical literature.

A general pseudo-likelihood L̃(θ) = L̃(θ; y) based on the data y = (y1, . . . , yn) is a

function of the parameter θ, with properties similar to those of a genuine likelihood

function. For instance, the pseudo-score function has zero null expectation, and the

maximum pseudo-likelihood estimator (MPLE) is consistent and asymptotically nor-

mally distributed (see Pace & Salvan, 1997, Ch. 4 and Severini, 2000, Ch. 8). By

considering a pseudo-likelihood L̃(θ) and a prior π(θ), a pseudo-posterior distribution

can be defined as

π̃(θ|y) ∝ L̃(θ)π(θ). (2.26)
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Pseudo-posterior distributions of the form (2.26) have been discussed, for instance, in the

Bayesian literature for the elimination of nuisance parameters (see Chang & Mukerjee,

2006; Ventura et al., 2009; Chang et al., 2009; Racugno et al., 2010; Ventura et al., 2013,

among others). In this context the pseudo-likelihood approach has the advantage of

not requiring elicitation on the nuisance parameters, which in general may be difficult.

Since the posterior distribution, and the BFs, may be sensitive to the chosen prior,

clearly a pseudo-likelihood approach which requires priors only on the parameter of

interest is extremely useful. Other uses of pseudo-likelihoods for posterior inference

refer to robustness with respect to the presence of outliers or model misspecification

(Greco et al., 2008; Ventura et al., 2010; Agostinelli & Greco, 2013) or to relieve some

assumptions on the model (Raftery et al., 1996; Lazar, 2003; Lin, 2006; Pauli et al.,

2011; Ribatet et al., 2012; Yin, 2009, and references therein).

An example of approximate likelihoods useful for dealing with complex models is the

class of composite likelihoods, which are based on the composition of suitable lower di-

mensional densities, such as bivariate, conditional or full conditional densities (Varin,

2008; Varin et al., 2011), or even a combination of them. In particular, let y =

(y1, . . . , yn) be a random sample from Yi ∼ p(yi; θ), where yi ∈ Y ⊆ IRq, and let

{A1(yi), . . . , AK(yi)} be a set of marginal or conditional events on Y, for which the

likelihood contribution Lk(θ; yi) ∝ p(y ∈ Ak(yi); θ) can be computed. The composite

log-likelihood is defined as

cℓ(θ; y) =
n
∑

i=1

K
∑

k=1

wk logLk(θ; yi), (2.27)

where wk (k = 1, . . . ,K), are non-negative weights. When the events Ak(yi) are defined

in terms of pairs of bivariate marginal densities phk(·, ·; θ), (2.27) is called a pairwise

log-likelihood and is given by

pℓ(θ; y) =
n
∑

i=1

q
∑

h,k=1
h 6=k

whk log phk(yih, yik; θ). (2.28)

The validity of inference about θ using composite likelihoods can be assessed from the

standpoint of unbiased estimating functions or the Kullback-Leibler criterion (Lindsay,

1988; Cox & Reid, 2004; Lindsay et al., 2011; Varin et al., 2011). Under rather broad

assumptions (see, for instance, Molenberghs & Verbeke, 2005), the maximum composite

likelihood estimator (MCLE) θ̂c is the solution of the composite score equation

cℓθ(θ; y) =
∂cℓ(θ; y)

∂θ
= 0. (2.29)
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The composite score cℓθ(θ; y) is unbiased, i.e. Eθ{cℓθ(θ; y)} = 0, since it is a linear

combination of valid score functions. Moreover, θ̂c is consistent and approximately

normal, with mean θ and variance

G(θ) = K(θ)−1J(θ)K(θ)−1,

where K(θ) = Eθ{−∂cℓθ(θ; y)/∂θT } and J(θ) = varθ{cℓθ(θ; y)} are the sensitivity and

the variability matrices, respectively. The matrix G(θ)−1 is known as the Godambe

information, and the form of G(θ) is due to the failure of the information identity since,

in general, K(θ) 6= J(θ). This failure also implies that the composite likelihood is

wrongly too concentrated (see, e.g. Pauli et al., 2011).

The asymptotic distribution of the composite log-likelihood ratio cw(θ) = 2{cℓ(θ̂c; y)−
cℓ(θ; y)} is a linear combination of independent chi-square random variables, i.e. cw(θ)

d→
∑d

j=1 ωjZ
2
j , where Z1, . . . , Zd are independent standard normal variates and the coeffi-

cients ω1, . . . , ωd are the eigenvalues of the matrix K(θ)−1J(θ). In the special case of

d = 1, we have ω1 = J(θ)/K(θ), and the adjusted pairwise log likelihood ratio statistic

cw1(θ) = cw(θ)/ω1 is asymptotically χ2
1. For d > 1, first-order moment matching can

be used, which gives

cw1(θ) =
cw(θ)

ω̄
, (2.30)

with ω̄ =
∑d

j=1 ωj/d. A χ2
d approximation is used for the distribution of cw1(θ). A more

effective rescaled version of cw(θ) is given in Pace et al. (2011).

Pauli et al. (2011) suggest to combine the composite likelihood cL(θ) = exp{cℓ(θ)}
suitably calibrated, i.e.

cLc(θ) = cL(θ)1/ω̄, (2.31)

with a prior π(θ) in the Bayesian framework to obtain the calibrated composite posterior

distribution

πc(θ|y) ∝ π(θ)cLc(θ) . (2.32)

The calibration in (2.31) is necessary in order to adjust the curvature of the composite

likelihood (see also Smith & Stephenson, 2009) and allows one to approximately recover

the asymptotic properties of the full posterior. Examples of (2.32) are discussed in

Pauli et al. (2011); see also Ribatet et al. (2012). A limitation of (2.32) is that it

depends crucially on the calibration factor, whose components are typically cumbersome

to compute (see Varin et al., 2011, Section 5.1).

The class of composite likelihoods contains, and thus generalizes, the ordinary likeli-

hood, as well as many other alternatives, such as the pseudo-likelihood of Besag (1974)

and Cox’s partial likelihood (Cox, 1975).
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The partial likelihood was introduced by Cox (1975) as an inferential tool in propor-

tional hazard models (Cox, 1972) with censored observations. The proportional haz-

ard model is widely used for semi-parametric survival data modelling. In its simplest,

form the failure times T1, . . . , Tn, for n independent individuals, have hazard function

h(t;xi) = h0(t) exp{xTi β}, where β = (β1, . . . , βd) is the regression parameter, xi is a

(d × 1) vector of covariates for unit i, (i = 1 . . . , n), and h0(t) is the baseline hazard

function. Suppose that the data are n pairs (ti, δi), where ti denotes the observed life-

times for the ith individual and δi is an indicator taking value 1 if ti is uncensored and

0 otherwise (i = 1, . . . , n). The partial likelihood for β is

LPA(β) =
c
∏

i=1

ex
T
i β

∑

j∈R(t(i))
ex

T
j β
, (2.33)

where t(i) is the ordered failure time, R(t(i)) is the set of the indexes of the individuals at

risk in the instant t(i), that is R(t(i)) = {(i), (i+1) . . . , (n)}, and c = ∑

i δi (i = 1, . . . , n).

Under the Bayesian paradigm, given a prior density π(β) on the regression parameters

and the partial likelihood (2.33), we can derive the pseudo-posterior distribution

πPA(β|y) ∝ π(β)LPA(β); (2.34)

see Raftery et al. (1996), Volinsky et al. (1997), Ibrahim et al. (2001), and references

therein, for various applications of (2.34). A Bayesian justification of (2.34) is due to

Kalbfleisch (1978); see also Sinha et al. (2003), and Kim & Kim (2009).

Standard Monte Carlo methods, such as those described in Section 2.3, can be used

in order to approximate pseudo-posterior distributions. Higher-order asymptotic ap-

proximation methods can also be applied to form (2.27), (2.33) and (2.35), provided

the regularity conditions are satisfied. However, while there are some examples of the

Laplace approximation applied to pseudo-posterior distributions (see, e.g., Pauli et al.,

2011), the application of the tail area approximation is unexplored in the Bayesian lit-

erature. An application of the tail area to the context of pseudo-posteriors is discussed

in Section 3.2.

2.5.2 Likelihood-free methods

Often the simulation from complex models is easy but calculating the full likelihood

L(θ), even by using computationally intensive methods, is impractical. An alternative

approach to inference is based on simulations from p(y; θ) for different parameter values,

and on the comparison of simulated datasets with the observed data. The idea is to

estimate L(θ) at a given parameter value from the portion of datasets, simulated at that
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parameter value, that are similar to the observed data. This is an old idea which was

first advocated by Diggle & Gratton (1984).

ABC methods combine Diggle & Gratton’s idea with a prior to produce an approxi-

mate posterior, which we shall refer to as the ABC posterior (see Beaumont, 2010; Marin

et al., 2012). The primary purpose of ABC algorithms is to approximate the posterior

distribution, when usual methods, such as MCMC, Gibbs sampling, IS or Laplace ap-

proximation, cannot be used, but when the datasets can be easily simulated at specific

parameter values.

The original accept-reject ABC algorithm works by first drawing a candidate param-

eter value θ∗ from the prior. Then a new dataset y is drawn from the model at θ∗.

Finally, if the simulated data y are equal to observed yobs, θ∗ is accepted. With continu-

ous data the equality among y and yobs will happen with probability zero. Hence, in the

ABC accept-reject algorithm the exact matching is typically replaced by the condition

ρ{η(y), η(yobs)} ≤ ǫ (Algorithm 3), where η(·) is a set of suitable summary statistics

(e.g. moments, quantiles), ρ{·, ·} is a distance function (e.g. Euclidean distance, abso-

lute norm), and ǫ a tolerance threshold.

Result: A sample (θ(1), . . . , θ(m)) from π(θ|η(yobs))
for i = 1 → m do

repeat

1 draw θ∗ ∼ π(θ)

2 draw y ∼ p(y; θ∗)

until ρ{η(y), η(yobs)} ≤ ǫ;

3 set θ(i) = θ∗

end

Algorithm 3: ABC accept-reject sampler.

Algorithm 3 samples from the marginal in y of the joint distribution

πǫ(θ, y|η(yobs)) =
π(θ)p(y; θ)IA

ǫ,yobs
(y)

∫

A
ǫ,yobs

×Θ π(θ)p(y; θ) dydθ
, (2.35)

where IA
ǫ,yobs

(y) is the indicator function of the set Aǫ,yobs(y) = {y : ρ{η(y), η(yobs)} ≤
ǫ} , and it produces an approximation to the posterior distribution π(θ|yobs), given by

πǫ(θ|η(yobs)) =
∫

πǫ(θ, y|η(yobs)) dy .

If ǫ → 0, then πǫ(θ|η(yobs)) → π(θ|η(yobs)). In addition, if η(·) is sufficient, then

πǫ(θ|η(yobs)) → π(θ|yobs) (see, for instance, Marin et al., 2012). In this respect, ABC
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suffers from three sources of approximation error: ǫ, η(·), and the Monte Carlo error.

The threshold ǫ cannot be fixed to zero, as in this case the probability of accepting

a value is also zero. Instead, ǫ is generally set to the αth quantile of the distance

among the statistics, with α typically very small (see, for instance, Fearnhead & Prangle,

2012). With non-informative priors, the original accept-reject algorithm may be very

inefficient, e.g. the Monte Carlo error may be overwhelming, because simulations from

π(θ) do not account for the data at the proposal stage, and thus lead to proposed values

located in low posterior probability regions (Marin et al., 2012). Nevertheless, this issue

can be effectively addressed by using more advanced Monte Carlo algorithms, such as

MCMC methods (Marjoram et al., 2003), IS (Fearnhead & Prangle, 2012), sequential or

population Monte Carlo approaches (Sisson et al., 2007, 2009; Beaumont et al., 2009).

Hence, the most crucial point of the ABC algorithm is the choice of η(·). Indeed,

what ABC can achieve at best is π(θ|η(yobs)), since η(·) is rarely sufficient. This loss of

information seems to be a necessary price to pay for the access to computable quantities.

We illustrate two original contributions to the likelihood-free approach in Chapter 4.

The first is a contribution in the choice of a default summary statistic, through score

and composite score functions. The second contribution concerns the construction of a

default proposal distribution for MCMC or IS-type algorithms for ABC.





Chapter 3

Contributions on Asymptotic

Posterior Approximations

The approximation of the posterior distribution is one of the fundamental difficulties

with the Bayesian approach. For such an approximation MCMC methods are typically

used (see, e.g., Robert & Casella, 2004). However, MCMC methods in practice may need

to be specifically tailored to the particular model (e.g. choice of proposal, convergence

checks, etc.) and they may have poor tail behaviour, especially when the dimension of

the parameter d is large. Parallel with these simulation-based procedures has been the

development of analytical higher-order approximations for parametric inference in small

samples (see, e.g., Brazzale & Davison, 2008, and references therein). Using higher-

order asymptotics it is possible to avoid difficulties related to MCMC methods and

to obtain accurate approximations to posterior distributions, and to the related tail

area probabilities (see, e.g., Reid, 1996, 2003; Sweeting, 1996; Brazzale et al., 2007).

These methods are highly accurate in many situations, but are nevertheless underused

compared to simulation-based procedures (Brazzale & Davison, 2008).

In this chapter we present four developments on higher-order asympotics for Bayesian

computations. In particular, Section 3.1 presents the Higher-Order Tail Area (HOTA)

sampling scheme, which is useful for simulating values from the approximate posterior

distribution of a scalar parameter of interest. Section 3.2 develops an higher-order tail

area approximation for pseudo-posterior distributions for a scalar parameter of interest,

also with the HOTA sampling scheme. Section 3.3 presents an asymptotic expansion for

computing accurate Bayesian credible sets, which have also good sampling properties.

Finally, Section 3.4 presents an improved Laplace approximation for computing posterior

normalizing constants.

27
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3.1 HOTA sampling scheme

In this section we discuss an original posterior sampling scheme, which is obtained by

combining the higher-order tail area approximations (2.12) and (2.13) with the inverse

transform sampler (see, e.g., Robert & Casella, 2004, Ch. 2). The proposed method,

called HOTA, gives accurate approximations of marginal posterior distributions, and

related quantities, also in the presence of multidimensional nuisance parameters.

The HOTA sampling scheme is straightforward to implement, since it is available

at little additional computational cost over simple first-order approximations. It is

based on an asymptotic expansion of the log-posterior distribution around the posterior

mode. In principle, the whole procedure requires as an input only the log-posterior

kernel. The method can be applied to a wide variety of statistical models, with the

essential requirement of the posterior mode being unique (see Kass et al., 1990, for

precise regularity conditions). When the posterior mode is close to the MLE, then an

asymptotic expansion around the MLE can be used. The latter approximation allows

the use of standard maximum likelihood routines for Bayesian analysis.

The proposed simulation scheme gives independent samples from a third-order approx-

imation (e.g.an approximation with error O(n−3/2)) to the marginal posterior distribu-

tion at a negligible computational cost. These are distinct advantages with respect to

MCMC methods, which in general are time consuming and provide dependent samples.

Nevertheless, MCMC techniques give samples from the full posterior distribution sub-

ject only to Monte Carlo error, provided convergence has been reached. On the other

hand, HOTA has an easily bounded Monte Carlo error, while it has an asymptotic error

for the approximation to the true marginal posterior distribution, which depends on the

sample size. This approximation is typically highly accurate even for small n.

One possible use of the HOTA sampling scheme is for quick prior sensitivity analyses

(Kass et al., 1989; Reid & Sun, 2010). Indeed, it is possible to easily assess the effect of

different priors on marginal posterior distributions, given the same Monte Carlo error.

This is not generally true for MCMC or IS methods, which in general have to be tuned

for the specific model and prior.

The use of higher-order tail area approximations for posterior simulation is a novel

approach in the Bayesian literature. Other attempts to merge asymptotic approxima-

tions with Monte Carlo simulations are discussed in Kharroubi & Sweeting (2010) and

Guihenneuc-Jouyaux & Rousseau (2005). In particular, Kharroubi & Sweeting (2010)

use a multivariate signed root log-likelihood ratio to obtain a suitable importance func-

tion for obtaining posterior samples via IS. Guihenneuc-Jouyaux & Rousseau (2005)

consider a combination of the Laplace approximation with MCMC in random effects
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models where the Laplace method is used to integrate out the random effects, and pa-

rameters of interest are approximated via MCMC. However, the HOTA sampling scheme

being based on the inversion of the higher-order posterior tail area approximation, avoids

the issues related to IS and does not require convergence checks, as with MCMC samples.

3.1.1 HOTA algorithms

The posterior tail area approximations (2.12) and (2.13) give accurate approximations

of quantiles of the marginal posterior distribution, but it is not possible to use them to

obtain density-based posterior summaries, such as posterior moments or highest poste-

rior density (HPD) regions. One possibility to obtain posterior summaries could be to

integrate numerically the Laplace approximation to the marginal density (2.8) or (2.11).

However, even though ψ is scalar, numerical integration may become time consuming

since a large number of function evaluations is needed to obtain accurate estimates,

especially when d is large. In fact, a first numerical integration is needed to compute

the normalizing constant and then several numerical integrations are needed for each

required posterior summary.

To avoid these drawbacks we introduce the HOTA simulation scheme, which is based

on the combination of (2.12) or (2.13), with inverse transform sampling. Its main advan-

tage is that it gives independent samples with negligible computational time. Indeed,

its implementation only requires a few function evaluations (e.g., 50), independently

of the number of simulations. As happens in every simulation method, the posterior

summaries based on the HOTA simulation scheme are subject to Monte Carlo error of

order Op(m
−1/2), where m is the number of Monte Carlo samples. On the other hand,

since the samples are drawn independently, it is easy to control such Monte Carlo error

by taking m large enough. Finally, it is important to note that HOTA samples from

a third-order approximation of the marginal posterior distribution, whose accuracy de-

pends on the sample size. However, the approximation is typically highly accurate even

for small sample sizes.

The HOTA simulation scheme can be implemented in two version, namely HOTAπ

and HOTAℓ. The former is based on r⋆B(ψ) and simulates approximate posterior values

by inverting (2.12). The latter is based on r⋆p(ψ) and simulates by inverting (2.13) (see
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Algorithm 4 and Algorithm 5)

Result: Independent and approximate sample (ψ1, . . . , ψm) from π(ψ|y)
1 Fix m and draw z = (z1, . . . , zm) ∼ N(0, 1)

2 find ψl = ψ : r⋆B(ψ) = min(z) and ψu = ψ : r⋆B(ψ) = max(z)

3 set an equispaced grid ψ̃T = (ψl, . . . , ψ̃ − δ, ψ̃ + δ, . . . , ψu) of length T , and find the

corresponding values of r⋆B(ψ) evaluated at ψ̃T denoted by

r⋆B(ψ̃T ) = (r⋆B,1, . . . , r
⋆
B,T )

4 interpolate (r⋆B(ψ̃T ), ψ̃T ) by smoothing splines, where ψ̃T is the response

for t = 1 → m do
set ψt equal to the predicted value from the spline evaluated at zt

end

Algorithm 4: The HOTAπ

Result: Independent and approximate sample (ψ1, . . . , ψm) from π(ψ|y)
1 Fix m and draw z = (z1, . . . , zm) ∼ N(0, 1)

2 find ψl = ψ : r⋆p(ψ) = max(z) and ψu = ψ : r⋆p(ψ) = min(z)

3 set an equispaced grid ψ̂T = (ψl, . . . , ψ̂ − ǫ, ψ̂ + ǫ, . . . , ψu) of length T , and find the

corresponding values of r⋆p(ψ) evaluated at ψ̂T denoted by r⋆p(ψ̂T ) = (r⋆p,1, . . . , r
⋆
p,T )

4 interpolate (r⋆p(ψ̂T ), ψ̂T ) by smoothing splines, where ψ̂T is the response

for t = 1 → m do
set ψt equal to the predicted value from the spline evaluated at zt

end

Algorithm 5: The HOTAℓ

The function r⋆B(ψ) (r⋆p(ψ)) is monotonically increasing (decreasing) in ψ (see, e.g.,

Brazzale et al., 2007, Ch. 9). For the equispaced grid, moderate values of T are typically

sufficient, e.g., 50, and the extremes of the grid can be found numerically (e.g. by secant

or Brent’s method). Notice that r⋆B(ψ) (r
⋆
p(ψ)) has a numerical discontinuity at ψ̃ (ψ̂),

and it may be necessary to exclude values of the grid in a δ-neighbourhood of ψ̃ (ǫ-

neighbourhood of ψ̂), of the type ψ̃± δ (ψ̂± ǫ). For instance, we can set δ = εΣψψ(θ̃)
1/2

(ǫ = εjp(ψ̂)
−1/2), for some small ε, e.g., 0.3. Essentially, fixing the grid in this way, the

instabilities of r⋆B(ψ) (r
⋆
p(ψ)) are avoided by the numerical interpolation.

Constrained maximization and computation of the required Hessians are generally

straightforward to obtain numerically, whenever code for the likelihood or posterior

kernel is available. For many statistical models with diffuse priors, built-in R functions

(see R Core Team 2013) can sometimes be used to obtain full and constrained likelihood

maximization as well as the related profile quantities required for HOTAℓ. For instance,

the glm function in R can handle many generalized linear models, and it offers the offset
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option for constrained estimation. Therefore, if the model in question belongs to the

glm class, then all the quantities required in HOTAℓ can be extracted from it.

If the posterior mode and the MLE, computed with usual maximum likelihood rou-

tines, are found to be substantially different, HOTAπ is a safer choice and its use is

recommended. When using HOTAπ, maximum likelihood routines can be used to find

appropriate starting values for the posterior optimization. For instance, if the model

is in the glm class, starting values for the constrained posterior optimization can be

obtained from the glm command along with the offset used to fix the parameter of

interest. More generally, starting values for constrained optimization can be obtained

by a linear expansion around the maximum (Cox & Wermuth 1990)

λstart = λ̂+ jλλ(ψ̂, λ̂)
−1jλψ(ψ̂, λ̂)(ψ̂ − ψ). (3.1)

These are the strategies used in the following examples.

Algorithm 4 (5) approximates (2.4) by simulating independently from the higher-order

tail area approximation (2.12) ((2.13)). In this respect, it has an obvious advantage over

MCMC methods, which usually are more time consuming. Moreover, MCMC methods

typically require more attention from the practitioner (e.g. choice of the proposal, con-

vergence checks, etc.). A pitfall of HOTA is that its theoretical approximation error (i.e.

O(n−3/2)) is bounded by the sample size. Nonetheless, as it will be shown by means of

practical examples, HOTA typically gives very accurate approximations, even in small

samples.

3.1.2 Examples

The aim of this section is to illustrate the performance of the HOTA method by

three examples. In all but the first example, HOTA is compared with the random walk

Metropolis. Prior sensitivity analysis is also considered with HOTA and compared also

with MCMC. Prior sensitivity with HOTA is based on the same set of independent

random variates, thus giving a comparison of different priors, under the same Monte

Carlo error.

In general MCMC methods give autocorrelated samples and it is important to check

that the chain has converged to its ergodic distribution (see, e.g., Gelman et al., 2003).

In the examples, a multivariate normal proposal is used, suitably scaled in order to have

an acceptance rate of 30-40%. Chains of simulations are run for a very large number

of iterations, are thinned and the initial observations are discarded. In addition, the

convergence is checked by the routines of the coda package of R. In each example,
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105 final MCMC samples are considered, all with moderate autocorrelation. These

MCMC samples will be considered as the gold standard, even though they are only an

approximation of the exact posterior distribution.

Algorithm 4 and Algorithm 5 are implemented with the R software, where the spline

interpolation is performed with the command splinfun, applied to a grid of 50 values

evenly spaced with ε = 0.3. A sample of size 105 is taken from all the approximate

marginal posteriors. Required derivatives are computed numerically. This may be an-

other source of approximation error, difficult to quantify in practice. Nonetheless, we

stress that this is an issue for many statistical applications since numerical derivatives

are ubiquitous in statistics. Fortunately, there are many routines which provide accurate

numerical derivatives; for instance, the numDeriv R package (see Gilbert & Varadhan

2012). The R code used in the following examples is available at http://homes.stat.

unipd.it/ventura/?page=Software&lang=IT. An R package for running HOTA in

general regular models is under preparation.

Genetic linkage model

The following scalar parameter problem has been studied also in Kharroubi & Sweeting

(2010), among others. It concerns a genetic linkage model with n individuals multinomi-

ally distributed into four categories with cell probabilities
{

1
2 + θ

4 ,
1
4(1− θ), 14(1− θ), θ4

}

,

with θ ∈ (0, 1). There are n = 20 animals with cell counts y = (14, 0, 1, 5). Under a

uniform prior, the posterior of θ is proportional to the likelihood and is given by

π(θ|y) ∝ (2 + θ)14(1− θ)θ5, θ ∈ (0, 1).

There are no nuisance parameters and, since π(θ) ∝ 1, the tail area approximations

(2.12) and (2.13) coincide and simplify to

∫ θ0

−∞
π(θ|y)dθ =̇ Φ{r⋆(θ0)},

where r⋆(θ) = r(θ) + r(θ)−1 log{qB(θ)/r(θ)}, qB(θ) = −ℓ′(θ)j(θ̂)−1/2, ℓ′(θ) = dℓ(θ)/dθ,

and r(θ) = sign(θ − θ̂)[2(ℓ(θ̂)− ℓ(θ))]1/2. In view of this HOTAℓ and HOTAπ coincide.

Figure 3.1 shows the posterior distribution computed with HOTA and the exact poste-

rior distribution π(θ|y). The exact posterior distribution appears to be extremely skewed

to the right, with a long left tail, and in this case one might expect the HOTA algorithm

to fail. On the contrary, it gets very close to the exact posterior, even though the sample

http://homes.stat.unipd.it/ventura/?page=Software&lang=IT
http://homes.stat.unipd.it/ventura/?page=Software&lang=IT
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Figure 3.1: Genetic linkage model. Exact and HOTA posterior distributions.

size is only n = 20. In order to further explore the accuracy of the approximation, the

two posteriors are compared also in terms of some summary statistics (mean, standard

deviation, 2.5 percentile, median, 97.5 percentile and 0.95 HPD credible set) in Table 3.1.

The HOTA results are very close to those based on the exact posterior.

Posterior Mean St. Dev. Q0.025 Median Q0.975 0.95 HPD

Exact 0.831 0.108 0.570 0.852 0.978 (0.620, 0.994)
HOTA 0.827 0.108 0.566 0.848 0.976 (0.617, 0.994)

Table 3.1: Genetic linkage model. Numerical summaries of the exact and HOTA
posterior distributions.

Censored normal regression

The data consist of temperature accelerated life tests on electrical insulation in n = 40

motorettes (Davison, 2003, Table 11.10). Ten motorettes were tested at each of four

temperatures in degrees Centigrade (150◦, 17◦, 190◦ and 220◦), the test termination

(censoring) time being different at each temperature. These data were analysed from a

Bayesian perspective by Kharroubi & Sweeting (2010), among others.

The following linear model is considered

yi = β0 + β1xi + σ εi,

where εi are independent standard normal random variables, (i = 1, . . . , n). The re-

sponse is the log10(failure time), with time in hours, and x = 1000/(temperature+273.2).

Reordering the data so that the first m observations are uncensored, with observed log-

failure times yi, and the remaining n−m are censored at times ui, the log-likelihood for
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θ = (β0, β1, σ) is

ℓ(θ) = −m log σ− 1

2σ2

m
∑

i=1

(yi−β0−β1xi)2+
n
∑

i=m+1

log

{

1− Φ

(

ui − β0 − β1xi
σ

)}

. (3.2)

For illustrative purposes several prior specifications are considered. The first the flat

prior πF (θ). The second prior is a Normal-Half Cauchy distribution πNHC(θ), given by

independent components, which are respectively N(0, k) for the components of (β0, β1)

and Half Cauchy with scale s for σ, with (k, s) = (5, 0.1). The third prior is the Zellner’s

G-prior πG(θ) (see, e.g. Marin & Robert, 2007, Ch. 3), which is the product of σ−1

and a bivariate normal density with mean vector a and covariance matrix cσ2(XTX)−1,

where X is the design matrix with the first column being a vector of ones. For simplicity

we assume a = (0, 0) and c = 100. Several proposals exist for fixing c, but we choose

100 since this result can be interpreted as giving to the prior a weight of 1% of the data

(see Marin & Robert 2007).

The posterior distributions obtained with these priors do not have a closed form so-

lution, and numerical integration is needed in order to compute π(ψ|y), and related

quantities, with ψ being a scalar component of θ.

Figure 3.2 shows a sensitivity study on the effect of the three different priors on the

posterior distributions based on HOTAπ. The same set of random variates has been

used in all cases, so what is shown are the differences between posteriors, under the

same Monte Carlo error. See also Tables 2 and 3 for some numerical summaries for β1

and σ, respectively. From these illustrations we conclude that the change of the prior

influences somehow both σ and β1.
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Figure 3.2: Censored regression model. Marginal posterior CDFs for β1 (left) and σ
(right), computed with HOTAπ.

Figure 3.3 presents a graphical comparison between MCMC, HOTAπ and HOTAℓ in

terms of the approximate posterior cumulative distribution functions (CDFs) for β1 (left
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column) and σ (right column). Results with HOTAπ are always in close agreement with

those of MCMC. On the contrary, the accuracy of HOTAℓ may not be satisfactory with

non-flat priors, as also confirmed by the summary statistics in Tables 3.2 and 3.3.

Posterior Method Mean St Dev. Q0.025 Median Q0.975 0.95 HPD

πF (β1|y)
MCMC 4.409 0.518 3.461 4.382 5.512 (3.425, 5.470)
HOTAℓ 4.401 0.521 3.459 4.370 5.521 (3.398, 5.443)
HOTAπ 4.401 0.521 3.459 4.370 5.521 (3.398, 5.443)

πNHC(β1|y)
MCMC 3.731 0.447 2.802 3.746 4.571 (2.827, 4.594)
HOTAℓ 3.739 0.437 2.823 3.755 4.549 (2.889, 4.611)

k = 5, s = 0.1 HOTAπ 3.739 0.443 2.818 3.754 4.569 (2.840, 4.589)

πG(β1|y)
MCMC 4.955 1.114 2.907 4.908 7.304 (2.906, 7.304)
HOTAℓ 5.885 3.078 1.182 5.388 13.173 (0.781, 12.389)
HOTAπ 4.955 1.099 2.939 4.897 7.285 (2.838, 7.119)

Table 3.2: Censored regression model. Numerical summaries of the marginal pos-
teriors of β1 with πF (θ), πNHC(θ) and πG(θ), computed with MCMC, HOTAℓ and

HOTAπ.

Posterior Method Mean St Dev. Q0.025 Median Q0.975 0.95 HPD

πF (σ|y)
MCMC -1.240 0.201 -1.600 -1.253 -0.811 (-1.616, -0.832)
HOTAℓ -1.240 0.202 -1.601 -1.251 -0.808 (-1.624, -0.837)
HOTAπ -1.240 0.202 -1.601 -1.251 -0.808 (-1.624, -0.837)

πNHC(σ|y)
MCMC 0.299 0.064 0.201 0.288 0.452 (0.193, 0.431)
HOTAℓ 0.277 0.052 0.196 0.270 0.398 (0.189, 0.384)

k = 5, s = 0.1 HOTAπ 0.298 0.064 0.203 0.287 0.452 (0.190, 0.426)

πG(σ|y)
MCMC 0.649 0.127 0.454 0.630 0.941 (0.434, 0.899)
HOTAℓ 1.327 0.306 0.875 1.278 2.058 (0.815, 1.936)
HOTAπ 0.647 0.125 0.456 0.628 0.941 (0.430, 0.894)

Table 3.3: Censored regression model. Numerical summaries of the marginal pos-
teriors of σ, with πF (θ), πNHC(θ) and πG(θ), computed with MCMC, HOTAℓ and

HOTAπ.

Logistic regression

In this example we consider a logistic regression model applied to the urine dataset

analysed by Brazzale et al. (2007, Ch. 4), among others. This dataset concerns calcium

oxalate crystals in samples of urine. The response is an indicator of the presence of

such crystals, and the explanatory variables are: specific gravity (gravity) (i.e. the

density of urine relative to water), pH (ph), osmolarity (osmo, mOsm), conductivity

(conduct, mMho), urea concentration (urea, millimoles per litre), and calcium concen-

tration (calc, millimoles per litre). After dropping two incomplete cases, the dataset

consists of 77 observations. Let X denote the (n × 7) design matrix composed by a

vector of ones and the six covariates, and let β = (β0, . . . , β6) be regression parameters,

where β0 is the intercept.

Different prior specifications are considered: a flat prior πF (β) ∝ 1, a multivariate

normal prior πN (β) with independent components N(a, k), with a = 0 and k = 5, as
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Figure 3.3: Censored regression model. Marginal posterior CDFs for β1 (left column)
and σ (right column). The three rows correspond to priors πF (θ), πNHC(θ) (k = 5, s =

0.1) and πG(θ), respectively. In the first line, HOTAπ coincides with HOTAℓ.

well as the Zellner’s G-prior (see Marin & Robert 2007, Chap. 4), given by

πG(β) ∝ {βT (XTX)β}−13/4.

The choice of these priors has only the aim of illustrating our method and not to

suggest their use for Bayesian data analysis.

Figure 3.4 shows a sensitivity study on the effect of different priors on the posterior

distributions based on HOTAπ. Here, we also consider the matching prior (2.16), given
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by

πmp(βr) ∝ jp(βr)
1/2, for r = 0, . . . , 6.

With this prior the marginal posterior distribution is approximated by HOTAℓ. See also

Tables 3.4 and 3.5 for some numerical summaries for β4 and β6, respectively.
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Figure 3.4: Logistic regression model. Marginal posterior CDFs for β4 (left) and β6
(right), computed with HOTAπ.

Figure 3.5 presents a graphical comparison between MCMC, HOTAπ and HOTAℓ in

terms of posterior cumulative distribution functions (CDF) for β4 (left column) and β6

(right column). The same comments about Figure 3.3 apply here, with the difference

that the accuracy of HOTAℓ is better than the previous example when non-flat priors

are used. See also Tables 3.4 and 3.5.

Posterior Method Mean St Dev. Q0.025 Median Q0.975 0.95 HPD

πmp(β4|y) HOTAℓ -0.508 0.270 -1.063 -0.497 -0.007 (-1.010, 0.033)

πF (β4|y)
MCMC -0.591 0.256 -1.116 -0.585 -0.114 (-1.089, -0.095)
HOTAℓ -0.547 0.278 -1.117 -0.537 -0.032 (-1.063, -0.009)
HOTAπ -0.547 0.278 -1.117 -0.537 -0.032 (-1.063, -0.009)

πN (β4|y)
MCMC -0.619 0.248 -1.132 -0.607 -0.163 (-1.117, -0.155)
HOTAℓ -0.645 0.214 -1.073 -0.641 -0.239 (-1.035, -0.206)

k = 5 HOTAπ -0.623 0.246 -1.127 -0.613 -0.169 (-1.079, -0.133)

πG(β4|y)
MCMC -0.335 0.227 -0.816 -0.323 0.068 (-0.793, 0.081)
HOTAℓ -0.348 0.236 -0.837 -0.336 0.081 (-0.773, 0.114)
HOTAπ -0.343 0.228 -0.819 -0.330 0.070 (-0.790, 0.102)

Table 3.4: Logistic regression model. Numerical summaries of the marginal posterior
of β4, with πmp(β4), πF (β), πN (β), and πG(β) approximated by MCMC, HOTAℓ and

HOTAπ.
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Posterior Method Mean St Dev. Q0.025 Median Q0.975 0.95 HPD

πmp(β6|y) HOTAℓ 0.859 0.255 0.424 0.839 1.417 (0.414, 1.399)

πF (β6|y)
MCMC 0.883 0.250 0.454 0.863 1.425 (0.435, 1.391)
HOTAℓ 0.924 0.264 0.472 0.903 1.500 (0.461, 1.482)
HOTAπ 0.924 0.264 0.472 0.903 1.500 (0.461, 1.482)

πN (β6|y)
MCMC 0.863 0.241 0.447 0.845 1.386 (0.419, 1.347)
HOTAℓ 0.829 0.217 0.445 0.817 1.289 (0.436, 1.277)

k = 5 HOTAπ 0.859 0.239 0.445 0.842 1.373 (0.435, 1.357)

πG(β6|y)
MCMC 0.604 0.204 0.259 0.586 1.054 (0.241, 1.024)
HOTAℓ 0.591 0.197 0.237 0.573 1.030 (0.229, 0.995)
HOTAπ 0.600 0.212 0.264 0.584 1.060 (0.235, 1.045)

Table 3.5: Logistic regression model. Numerical summaries of the marginal posterior
of β6, with πmp(β6), πF (β), πN (β), and πG(β) approximated by MCMC, HOTAℓ and

HOTAπ.

3.1.3 Remarks

The HOTA simulation method for Bayesian approximation combines higher-order tail

area approximations with the inverse transform sampler. This sampling method gives

accurate approximations of marginal posterior distributions for a scalar parameter of

interest.

The accuracy of the two versions of the HOTA algorithm may be different and, in

particular, may depend on the chosen prior. In this respect, the version based on the

expansion around the posterior mode is a safer choice, since the approximation makes

explicit use of the prior information. On the contrary, the accuracy of the version based

on the expansion around the MLE, although easier to compute, could be affected by

the difference between the likelihood and the posterior, which is indeed the effect of the

prior. Therefore, in general we would recommend the use of HOTAπ, since the effect of

the prior on the posterior depends on many aspects, such as the nature and range of the

parameter, and it is not straightforward to assess such effect in advance. On the other

hand, both approximations rely on small-sample results, in the sense that as the sample

size increases the effect of the prior vanishes, implying that the two approximations will

tend to coincide.

Bayesian robustness with respect to the prior can be easily handled with the HOTA

sampling scheme. Indeed, higher-order approximations make it straightforward to assess

the influence of the prior, and the effect of changing priors on the posterior quantities (see

also Reid & Sun, 2010). Moreover, with HOTA the effect of the prior on the posterior

distribution can be appreciated under the same Monte Carlo variation. Finally, default

priors, such as the matching prior used in Example 3, could be easily handled by the

method and could be used as a benchmark for Bayesian robustness.
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Figure 3.5: Logistic regression model. Marginal posterior CDFs for β4 (left column)
and β6 (right column). The three rows correspond to priors πF (β), πN (β), with k = 5,

and πG(β) respectively.

The proposed use of higher-order asymptotics for Bayesian simulation opens other

interesting applications. For instance, the HOTA procedure could be used in conjunction

with MCMC methods, e.g., to simulate from marginal or conditional posteriors within

the Gibbs sampling. Moreover, HOTA could be used also to estimate the marginal

likelihood (see Sect. 3.4) following the approach of Perrakis et al. (2013), where the

marginal densities involved can be estimated via kernel methods.

An R package which implements the HOTA algorithm is under preparation, and will

soon be available.



Chapter 3. Contributions on Asymptotic Posterior Approximations 40

3.2 Higher-order tail area approximations for pseudo-posterior

distributions

As stated in Section 2.4.1, a possible way to deal with complex models is by means

of pseudo-posteriors obtained from the combination of a suitable pseudo-likelihood L̃(θ)

and a prior for θ within the Bayes’ rule.

Let θ = (ψ, λ), where ψ is a scalar parameter of interest and λ is the (d−1)-dimensional

nuisance parameter (see Racugno et al., 2010, for some examples). In this situation,

Bayesian inference about ψ may be based on the marginal pseudo-posterior distribution

π̃(ψ|y) =
∫

π(ψ, λ) L̃(ψ, λ) dλ
∫ ∫

π(ψ, λ) L̃(ψ, λ) dλ dψ
. (3.3)

As for π(ψ|y), cumbersome numerical integration may be necessary in order to compute

the marginal pseudo-posterior distribution (3.3), in particular when the dimension of λ

is large.

This latter difficulty could be avoided using higher-order asymptotics for π̃(ψ|y). In

this section, paralleling the results for genuine posterior distributions (see Sec. 2.3.2),

a Laplace approximation for (3.3) is presented. Moreover, for a scalar parameter of

interest, we derive the corresponding tail area approximation, which can be used to

perform accurate Bayesian inference, even for small sample sizes. The methodology

proposed can then be used to simulate independent observations from the higher-order

approximation of (3.3), paralleling the HOTA algorithms presented in Section 3.1. The

advantages of the method are essentially the same as those of HOTA in the context of

genuine posterior distributions (see Section 3.1).

3.2.1 Higher-order approximations for π̃(ψ|y)

The basic tool for deriving higher-order pseudo-posterior tail area approximations is

again the Laplace approximation for integrals (Tierney & Kadane, 1986). Under broad

regularity conditions on L̃(θ), similar to those required for asymptotic normality of the

MLE and under mild regularity conditions on the prior, the Laplace approximation

for (3.3) can be obtained in the same way as for genuine posteriors (see Sec. 2.2.2).

In particular, assume that L̃(θ) = O(n), with a liberal interpretation of n which for

independent data is typically given by the sample size, and let h̃(θ) = log{L̃(θ)π(θ)} be

the pseudo log-posterior kernel, which has mode θ̃† = (ψ̃†, λ̃†). Moreover let θ̃†ψ = (ψ, λ̃†ψ)

be the constrained mode of h̃(θ) with ψ fixed. To approximate the numerator of (3.3),
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we expand h̃(ψ, λ) about λ̃†ψ to get

exp
{

h̃(θ̃†ψ)
}

|Ṽλλ(θ̃†ψ)|−1/2,

where Ṽλλ(θ) = −∂2h̃(ψ, λ)/∂λ∂λT . Combining this expansion with the Laplace ap-

proximation to the denominator, we get

π̃(ψ|y) =
1√
2π

exp
{

h̃(θ̃†ψ)− h̃(θ̃†)
}

{

|Ṽ (θ̃†)|
|Ṽλλ(θ̃†ψ)|

}1/2

{1 +O(n−3/2)}. (3.4)

Note that the approximation error of (3.4) is due to the assumption L̃(θ) = O(n).

Paralleling results in Section 2.2.2, for a scalar parameter ψ, formula (3.4) can be

integrated to give a tail area approximation. In particular,

∫ ψ0

−∞
π̃(ψ|y)dψ =

∫ ψ0

−∞

1√
2π

exp
{

h̃(θ̃†ψ)− h̃(θ̃†)
}

{

|Ṽ (θ̃†)|
|Ṽλλ(θ̃†ψ)|

}1/2

{1 +O(n−3/2)} dψ

=

∫ r̃Bp (ψ0)

−∞

1√
2π

exp

{

−1

2
r̃Bp (ψ)

2

}

{

r̃Bp (ψ)

q̃(ψ)

}

dr̃Bp (ψ){1 +O(n−3/2)}

= Φ

{

r̃Bp (ψ0) +
1

r̃Bp (ψ0)
log

q̃B(ψ0)

r̃Bp (ψ0)

}

{1 +O(n−3/2)}

= Φ {r̃⋆B(ψ0)} {1 +O(n−3/2)}, (3.5)

where the change of variable from ψ to r̃Bp (ψ) = sign(ψ − ψ̃†)[2(h̃(θ̃†ψ) − h̃(θ̃†))]1/2 has

Jacobian −r̃Bp (ψ)/h̃ψ(θ̃†ψ) and

q̃B(ψ) = −h̃ψ(ψ)
{

|Ṽ (θ̃†)|
|Ṽλλ(θ̃†ψ)|

}−1/2

.

We notice that an alternative version of the pseudo-posterior tail area approximation

can be obtained by expanding the logarithm of the pseudo-likelihood. In this case, the

expression for the tail area is similar to (2.13) with all the likelihood-based quantities

substituted by the corresponding pseudo-likelihood quantities. In particular, for the

Laplace approximation,

π̃(ψ|y) =
|j̃p(ψ̂)|1/2
(2π)p/2

exp{ℓ̃p(ψ)− ℓ̃p(ψ̂
†)}

{

|j̃λλ(θ̂†)|
|j̃λλ(θ̂†ψ)|

}1/2
π(θ̂†ψ)

π(θ̂†)
{1 +O(n−3/2)}, (3.6)

where θ̂† is the MPLE of θ, θ̂†ψ = (ψ, λ̂†ψ), with λ̂
†
ψ the constrained MPLE for fixed ψ,

j̃p(ψ) = −∂2ℓ̃(θ)/∂ψ∂ψT |
θ=θ̂†

ψ

is the pseudo-profile information and j̃(θ) = −∂2ℓ̃(θ)/∂θ∂θT

is the pseudo-observed information. In the case p = 1, the corresponding posterior tail
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area approximation is readily obtained by integrating (3.6), namely

∫ ∞

ψ0

π̃(ψ|y)dψ =

∫ ∞

ψ0

|j̃p(ψ̂)|1/2
(2π)1/2

exp{ℓ̃p(ψ)− ℓ̃p(ψ̂
†)}

{

|j̃λλ(θ̂†)|
|j̃λλ(θ̂†ψ)|

}1/2
π(θ̂†ψ)

π(θ̂†)
{1 +O(n−3/2)} dψ

=

∫ ∞

r̃p(ψ0)

1√
2π

exp

{

−1

2
r̃p(ψ)

2

}{

r̃p(ψ)

q̃(ψ)

}

dr̃p(ψ){1 +O(n−3/2)}

= Φ

{

r̃p(ψ0) +
1

r̃p(ψ0)
log

q̃(ψ0)

r̃p(ψ0)

}

{1 +O(n−3/2)}

= Φ
{

r̃⋆p(ψ0)
}

{1 +O(n−3/2)}, (3.7)

where r̃p(ψ0) = sign(ψ̂† − ψ)[2{ℓ̃p(ψ̂†)− ℓ̃p(ψ)}]1/2 is the pseudo-likelihood root,

q̃(ψ) = ℓ̃p(ψ)

{

|j̃λλ(θ̂†ψ)|
|j̃λλ(θ̂†)|

}1/2
π(θ̂†)

π(θ̂†ψ)
,

and ℓ̃p(ψ) = ∂ℓ̃p(ψ)/∂ψ is the pseudo-profile score. From a practical point of view, the

tail area approximation (3.5) ((3.7)) can be used to compute posterior quantiles of ψ, as

in Section 2.2.2, but not posterior moments or highest posterior density (HPD) credible

intervals. These quantities could in principle be approximated by direct numerical in-

tegration of (3.4) ((3.6)). However, for several posterior summaries repeated numerical

integrations are needed, and in practice this can be time-consuming. In this section we

propose to use the approximate posterior tail area (3.5) (or (3.7)) within the HOTA

algorithm (see Sec. 3.1), to produce fast and independent samples from the marginal

pseudo-posterior distribution.

3.2.2 Examples

To illustrate the advantages and the accuracy of (3.5) for practical use in Bayesian

analyses, we discuss two examples involving pseudo-likelihoods with nuisance parame-

ters. In the following, we consider the HOTA algorithm based on (3.5), e.g. based on

expansions of the logarithm of the pseudo-posterior. Following the results of Section

3.1, we focus only on the use of (3.5) and the corresponding HOTA algorithm based on

its inversion.

The first example focuses on the partial likelihood (see Sec. 2.4.1), usually employed

in survival data analysis when the hazard is left unspecified (Cox, 1975). The aim is to

approximate the marginal pseudo-posterior of the regression coefficients. In the second

example, the pairwise likelihood (see Sec. 2.4.1) is applied to a multivariate normal

distribution, with the correlation coefficient being the parameter of interest (Pauli et al.,

2011).
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For both examples the marginal pseudo-posterior distributions are obtained by in-

verting the tail area (3.5) via the HOTA algorithm (see Algorithm 4). The proposed

approximations are compared also with the random walk Metropolis-Hastings, treated

as a gold standard.

Cox regression

To illustrate the higher-order tail approximation to the pseudo-posterior distribution

(3.5), we consider a real dataset concerning a clinical study on malignant mesothe-

lioma (MM) Fassina et al. (2011). This dataset reports survival times for 109 individu-

als, with censoring. Moreover the following covariates are provided: type of malignant

mesothelioma, i.e. type epithelioid, biphasic or sarcomatoid, gender, epithelial mark-

ers (Cytokeratin, E-cadherin), mesenchymal markers (N-cadherin, vimentin, ZEB1,

ZEB2, S100A4, MMP2, MMP9, α-SMA and S100A4). Here we focus on the relation between

the covariates and the survival time, so the hazard function has 14 unknown parameters,

i.e. β = (β1, . . . , β14).

The marginal partial posterior distributions for the Cox regression coefficients are

approximated by the higher-order asymptotic method implemented with the HOTA

algorithm and MCMC, both based on 105 final simulations. Here we focus on the
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Figure 3.6: Cox regression model. Marginal partial posterior distributions for E-
cadherin (left) and N-cadherin (right) approximated by HOTA (dot-dashed line) and

MCMC (continued).

marginal partial posterior distribution of the effect of E-cadherin (β4) and N-cadherin

(β5). A graphical comparison of the two methods in terms of the cumulative distribution

functions (CDFs) is shown in Figure 3.6 and some numerical comparisons are shown in

Table 3.6. Both Figure 3.6 and Table 3.6 highlight the good agreement between MCMC

and our method implemented with the HOTA sampling scheme.
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Regress. term Method Mean SD Q2.5 Median Q97.5 0.95 HPD

E-cadherin
MCMC -0.229 0.184 -0.595 -0.227 0.127 (-0.588, 0.131)
HOTA -0.230 0.184 -0.594 -0.228 0.125 (-0.601 , 0.117)

N-cadherin
MCMC 0.176 0.170 -0.158 0.177 0.506 (-0.157, 0.507)
HOTA 0.174 0.169 -0.154 0.173 0.506 (-0.161, 0.499)

Table 3.6: Cox regression model. Numerical comparisons of marginal partial posterior
distributions.

However, we remark that MCMC produces a dependent sample which is subject to

convergence conditions (see Sect. 2.3.1) and which Monte Carlo error may be expensive

to reduce. On the other hand, the HOTA algorithm gives an independent sample from

the higher-order tail area approximations, and its Monte Carlo error can be controlled

essentially without efforts, by simply increasing the simulated values.

Pairwise likelihood

Consider Bayesian inference based on the pairwise likelihood (2.28) obtained from

the equi-correlated multivariate normal distribution (see, e.g. Pace et al., 2011). In

particular, let Y be a q-variate normal with mean µ, covariance matrix Σ, with Σrr = σ2

and Σrs = ρσ2 for r 6= s, r, s = 1, . . . , q. In this case the pairwise log-likelihood for

θ = (µ, σ2, ρ) is given by

pℓ(θ) = −nq(q − 1)

2
log σ2 − nq(q − 1)

4
log(1− ρ2)− q − 1 + ρ

2σ2(1− ρ2)
SSW

−q(q − 1)SSB + nq(q − 1)(ȳ − µ)2

2σ2(1 + ρ)
, (3.8)

where SSW =
∑n

i=1

∑q
r=1(yir − ȳi)

2, SSB =
∑n

i=1 y
2
i•, ȳi =

∑q
r=1 yir/q, and yi• = qȳi,

i = 1, . . . , n.

Following Pauli et al. (2011), and given a prior π(θ) we consider the calibrated pairwise

posterior

π̃c(θ|y) ∝ π(θ) exp{pℓ(θ)}1/ω̄. (3.9)

The adjustment 1/ω̄ in (3.9) (see Sect. 2.4.1 for its expression) is necessary in order

to adjust the curvature of the composite likelihood (Smith & Stephenson, 2009) and

allows us to approximately recover the asymptotic properties of the full posterior. To

appreciate the relevance of the calibration factor 1/ω̄, we consider also the non calibrated

pairwise posterior distribution

π̃(θ|y) ∝ π(θ) exp{pℓ(θ)}, (3.10)
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as proposed by Smith & Stephenson (2009) in the context of spatial extremes.

In this example we focus on the correlation parameter, e.g. ψ = ρ. Since the full

likelihood is analytically available, then the pairwise posterior is compared also with

the full posterior (see Figure 3.7 and Table 3.7). A vague normal prior is assumed for
(

µ, log σ2,Φ−1
{

(q−1)ρ+1
q

})

, with independent components. A sample of size n = 10 is

considered from the standard equi-correlated q-variate normal distribution, with ρ = 0.5

and q = 20. The marginal posterior distributions for ρ are approximated by MCMC

and the HOTA algorithm, both based on 105 random draws.

Figure 3.7 compares three marginal posteriors of ρ. In particular it shows the full

marginal posterior, the marginal pairwise-posterior obtained from (3.10) and the ad-

justed marginal pairwise-posterior based on (3.9), all approximated with HOTA and

MCMC. Moreover, the boxplots give a comparison of the three posteriors computed

with HOTA. The two approximation methods give very similar results, and this is es-

sentially confirmed also by the summary statistics reported in Table 3.7.

Lastly, the boxplots highlight that Bayesian inference based on (3.10) is falsely precise

(see also Pauli et al., 2011)

Posterior Method Mean SD Q0.025 Median Q0.975 0.95 HPD

Adj. pair HOTA 0.568 0.133 0.305 0.571 0.813 (0.311, 0.818)
Adj. pair MCMC 0.570 0.135 0.299 0.574 0.814 (0.316, 0.827)

Full HOTA 0.562 0.119 0.342 0.558 0.801 (0.34, 0.798)
Full MCMC 0.564 0.119 0.342 0.562 0.803 (0.342, 0.803)

Pair HOTA 0.518 0.017 0.485 0.518 0.551 (0.486, 0.551)
pair MCMC 0.519 0.017 0.485 0.519 0.551 (0.485, 0.551)

Table 3.7: Equi-correlated normal model. Summaries of the full, pairwise and ad-
justed pairwise posterior distribution approximated by HOTA and MCMC.

3.2.3 Remarks

By paralleling results for genuine posterior distributions, we discussed higher-order

approximations for pseudo-posterior distributions, i.e. posterior distribution based on

pseudo-likelihood functions. This theory provides asymptotic formulae for tail area and

posterior quantiles, which are available at little additional cost over simple first-order

approximations.

Moreover, these approximations can be easily implemented through the HOTA sam-

pling scheme (see Sect. 3.1) to approximate marginal pseudo-posterior densities and

posterior summaries very quickly. Finally, the proposed method combined with HOTA

inherits all the advantages of the latter, hence it provides a convenient framework for

quick prior sensitivity analyses (Reid & Sun, 2010).
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Figure 3.7: Equi-correlated normal model. Full (top-left), pairwise (top-right) and
adjusted pairwise (bottom-left) marginal posteriors of ρ, approximated by HOTA and
MCMC. The boxplots (bottom-right) compare the three marginal posteriors computed

with HOTA.

3.3 Approximate credible sets via modified log-likelihood

ratios

Approximate credible intervals for a scalar a parameter of interest based on modifi-

cations of the likelihood root, such as (2.13) and (2.14), have been widely discussed in

the Bayesian literature; see, among others DiCiccio et al. (1990); Sweeting (1995, 1996,

1999); Ventura et al. (2013).

Consider the posterior distribution (2.1) with θ scalar. Then the modified likelihood

root function is (Sweeting, 1996; Ventura et al., 2013)

r⋆(θ) = r(θ) +
1

r(θ)
log

q(θ)

r(θ)
, (3.11)
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where r(θ) = sign(θ̂ − θ)[2{ℓ(θ̂) − ℓ(θ)}]1/2 and q(θ) = ℓ′(θ)π(θ̂)/{j(θ̂)1/2π(θ)}. It can

be shown that (3.11) is asymptotically standard normal with error of order O(n−3/2).

The modified likelihood root (3.11) can be obtained by following the three step pro-

cedure discussed in Skovgaard (2001); see also Davison (2003, Ch. 11) and references

therein.

Step 1: Consider the Laplace expansion of π(θ|y), given by

π(θ|y) =
1√
2π

|j(θ̂)|1/2π(θ)
π(θ̂)

exp

{

−1

2
r(θ)2

}

{1 +O(n−1)} , (3.12)

Step 2: Change the variable from θ to r = r(θ). A motivation for considering such a

transformation is that, in terms of r2, the quantity exp(−r2/2) in (3.12) is the

kernel of the standard normal density. The Jacobian is dr(θ)/dθ = −ℓ′(θ)/r(θ),
and thus

π(r|y) =
1√
2π

exp

{

−1

2
r2 + log b(r)

}

{1 +O(n−1)} ,

where the positive quantity b(r) = |j(θ̂)|1/2 π(θ)
π(θ̂)

r(θ)
ℓ′(θ) is regarded as a function of r.

Step 3: Change of variable from r to r∗ = r∗(θ) = r − r−1 log b(r), so that

−(r∗)2 = −r2 + 2 log b(r)−
(

r−1 log b(r)
)2
. (3.13)

The Jacobian of the transformation and the third term in (3.13) contribute only to the

error, and it can be shown that (see Sweeting, 1995, 1996, Severini, 2000, Ch. 2)

π(r∗|y) =
1√
2π

exp

{

−1

2
(r∗)2

}

{1 +O(n−3/2)}. (3.14)

Note that from (3.14) the following tail area approximation can be derived

∫ ∞

θ0

π(θ|y) dθ =
1√
2π

∫ ∞

r∗0

exp

{

−1

2
(r∗)2

}

dr∗{1 +O(n−3/2)}

= Φ(r∗0){1 +O(n−3/2)}, (3.15)

where r∗0 = r∗(θ0). Formula (3.15) gives an explicit expression for the posterior quantiles.

Moreover, as seen in Section 3.1, (3.15) gives rise to the HOTA simulation scheme for

approximate marginal posterior simulation.

From (3.15) an approximate credible interval for θ can be computed as CI1−α = {θ :

w∗(θ) ≤ χ2
1,1−α}, where w∗(θ) = r∗(θ)2 and χ2

1,1−α is the (1 − α)-quantile of the χ2
1
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distribution. Equivalently, CI1−α can be computed as

CI1−α =
{

θ : |r∗(θ)| ≤ z1−α/2
}

. (3.16)

Note that (3.16) defines a third-order equi-tailed credible interval for θ with accurate

sampling coverage (see Sweeting, 1999).

It is of interest to extend the theory of asymptotic expansions for a vector parameter

of interest. As is the case with the approximations for a scalar parameter, the proposed

results are based on the asymptotic theory of modified log-likelihood ratios (Skovgaard,

2001), they require only routine maximization output for their implementation, and

they are constructed for arbitrary prior distributions. Moreover, the proposed results

are analytical and do not require simulation from the posterior distribution. From a

practical point of view, the asymptotic expansions can be used to compute approximate

Bayesian credible sets with accurate posterior probability content and sampling coverage.

These credible sets can be seen as a multivariate generalization of the equi-tailed credible

interval (3.16).

3.3.1 Modified log-likelihood ratios

Suppose that θ ∈ Θ ⊆ IRd, with d > 1. It is possible to extend the three-step procedure

suggested above to posterior distributions with d parameters as follows (see Skovgaard,

2001, for a frequentist extension). Consider the following three steps:

Step 1: compute the Laplace approximation of π(θ|y), given by

π(θ|y) = (2π)−d/2|j(θ̂)|1/2 exp
{

−1

2
w(θ)

}

π(θ)

π(θ̂)
{1 +O(n−1)},

where w(θ) = 2{ℓ(θ̂)− ℓ(θ)};

Step 2: change the variable of integration from θ to rm = rm(θ), such that for the log-

likelihood ratio we have w(θ) = 2{ℓ(θ̂)− ℓ(θ)} = rm(θ)
T rm(θ);

Step 3: change the variable of integration from rm to a perturbed version of the form r∗m =

r∗m(θ) = rm − δ(rm), with δ = δ(rm) chosen to satisfy rTmδ(rm) = log g(rm) for a

suitably defined term g(rm), so that (rm−δ)T (rm−δ) = rTmrm−2 log g(rm)+O(n−2)

is asymptotically χ2
d.

In order to compute Step 2, we need a statistic rm = rm(θ) for which rTmrm = w(θ).

To this end let us consider the signed root log-likelihood ratio transformation defined

in Sweeting (1995, 1996); see also Kharroubi & Sweeting (2010). In particular, let
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θ = (θ1, . . . , θd) = (θ1:i, θ
i+1:d), where θ1:i = (θ1, . . . , θi) is the vector of the first i

components of θ and θi+1:d = (θi+1, . . . , θd). To state notation, let θ̂i+1:d
θ1:i

be the partial

MLE of θi+1:d given θ1:i, and let θ̂j,θ1:i be the jth component of (θ1:i, θ̂
i+1:d
θ1:i

), for j > i.

The signed root log-likelihood ratio transformation is thus defined as

rm(θ) = (rm1, . . . , rmd) , (3.17)

with

rmi = sign(θi − θ̂i,θ1:i−1)
[

2
{

ℓ
(

θ1:i−1, θ̂
i:d
θ1:i−1

)

− ℓ
(

θ1:i, θ̂
i+1:d
θ1:i

)}]1/2
. (3.18)

Note that (3.18) is a function of θ1:i. Moreover, rm(θ) is a one-to-one data-dependent

transformation of θ, such that exp
{

−1
2r
T
mrm

}

= L(θ)/L(θ̂). Finally, rm(θ) is asymptot-

ically multivariate standard normal to O(n−1/2) (Sweeting, 1995).

In the second step, when changing the variable of integration from θ to the statistic rm,

given in (3.17), the Jacobian matrix drm/dθ is lower triangular (Kharroubi & Sweeting,

2010)

∣

∣

∣

∣

drm
dθ

∣

∣

∣

∣

=
d
∏

i=1

∣

∣

∣

∣

∣

∣

ℓi

(

θ1:i, θ̂
i+1:d
θ1:i

)

rmi

∣

∣

∣

∣

∣

∣

,

where ℓi(θ) is the ith component of the score vector ∂ℓ(θ)/∂θ, for i = 1, . . . , d.

In the last step, following Skovgaard (2001), we perturb rm to r∗m = r∗m(θ) = rm−δ(rm),
with δ(rm) chosen to satisfy rTmδ(rm) = log g(rm), so that

−{rm − δ(rm)}T {rm − δ(rm)} = −rTmrm + 2 log g(rm) +O(n−2) . (3.19)

In order to compute (3.19), we only need the existence of δ(rm) to calculate

w∗
m = w∗

m(θ) = rm(θ)
T rm(θ)− 2 log g(rm(θ)) , (3.20)

with

g(rm(θ)) = |j(θ̂)|1/2π(θ)
π(θ̂)







d
∏

i=1

∣

∣

∣

∣

∣

∣

ℓi

(

θ1:i, θ̂
(i+1)
θ1:i

)

rmi

∣

∣

∣

∣

∣

∣







−1

. (3.21)

The asymptotic distribution of w∗
m is χ2

d with relative error O(n−1) in a large deviation

region. An asymptotically equivalent version suggested by Skovgaard (2001) is

w∗∗
m = w∗∗

m (θ) = rTmrm

(

1− log g(rm)

rTmrm

)2

. (3.22)
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From (3.22), or (3.20), an approximate credible set for θ can be computed as

CR =
{

θ : w∗∗(θ) ≤ χ2
d,1−α

}

, (3.23)

where χ2
d,1−α is the 1 − αth quantile of the χ2

d distribution with d degrees of freedom.

This credible region has 100(1− α)% coverage in repeated sampling with relative error

O(n−1) in a large deviation region, and thus improves upon the credible region based

on the normal approximation (see also Sect. 2.2.1.)

CRN =
{

θ : (θ − θ̃)T Ṽ (θ − θ̃) ≤ χ2
d,1−α

}

, (3.24)

and the likelihood-type credible region

CRL =

{

θ : −2 log
π(θ|y)
π(θ̃|y)

≤ χ2
d,1−α

}

. (3.25)

Note that, in general, the credible set (3.24) may be questionable since it is based on

the normal approximation, which forces credible sets to have an elliptical shape.

3.3.2 Examples

In this section the accuracy of (3.23) is illustrated empirically by means of three

examples. From a Bayesian perspective, we check the posterior probability content

of the credible regions by simulating values from the posterior distributions via MCMC

methods, whereas from the frequentist perspective we check the empirical coverage of the

suggested credible sets under repeated sampling from the model with a fixed parameter

value. We do not pursue the comparison with (3.20) as it gave very similar results to

(3.23).

Normal distribution

Consider a random sample y = (y1, . . . , yn) from a N(µ, σ2) distribution, with θ =

(µ, σ2) unknown. We assume two different prior distributions of θ, i.e., the improper

prior π1(θ) ∝ 1/σ2 and an informative normal-inverse gamma prior π2(θ). In this

situation, all the quantities involved in the computation of w∗ and w∗∗ are easy to

compute.

For a sample of size n = 10, Figure 3.8 shows several credible regions for θ = (µ, σ2)

with the improper prior, i.e. CRN , CRL, the CR region based on w∗∗
m and the exact 95%

HPD credible region computed by simulation. For each credibility region we compute

the posterior probability content as the proportion of simulated values laying inside the
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π1(θ) π2(θ)
1− α 0.90 0.95 0.99 0.90 0.95 0.99

n = 10 n = 10
CRN 0.7280 0.7830 0.8685 0.5905 0.6470 0.7402
CRL 0.8540 0.9130 0.9770 0.7871 0.8688 0.9578
CR 0.9075 0.9510 0.9925 0.9020 0.9517 0.9904

n = 15 n = 15
CRN 0.7615 0.8280 0.900 0.6698 0.7302 0.8189
CRL 0.8485 0.9225 0.984 0.8276 0.8992 0.9738
CR 0.8935 0.9500 0.990 0.9050 0.9544 0.9916

n = 30 n = 30
CRN 0.8275 0.889 0.9495 0.7688 0.8250 0.9031
CRL 0.8775 0.936 0.9840 0.8606 0.9242 0.9824
CR 0.8980 0.948 0.9875 0.9023 0.9533 0.9888

n = 50 n = 50
CRN 0.8630 0.9240 0.9730 0.8160 0.8761 0.9436
CRL 0.8965 0.9435 0.9890 0.8791 0.9346 0.9836
CR 0.9045 0.9525 0.9890 0.9011 0.9514 0.9897

Table 3.8: Normal distribution. Empirical coverage probabilities of credible regions.

defined region. In this example, the posterior probability content is 0.674 for CRN ,

0.881 for CRL and 0.949 CR. Only CR has the correct posterior probability.
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Figure 3.8: Normal distribution. Credible regions for (µ, σ2) with the improper prior.

To judge the sampling properties of the credible region (3.23), we check the empirical

coverage probability in a simulation study based on 104 Monte Carlo trials. Table 3.8

gives the empirical coverages for (1− α) posterior credible regions (3.23) in comparison

to the credible regions CRN and CRL. From Table 3.8 we note that, for every n, CR

clearly improves on (3.24) and (3.25). Larger sample sizes (not reported here) show, as

one would expect, rather little differences between the results of all the procedures.
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Gamma distribution

Consider a random sample y = (y1, . . . , yn) from a gamma distribution, with both the

shape κ and scale σ parameters unknown. Let us consider θ = (log σ, log κ) and for θ we

assume two prior distributions, that are π1(θ) ∝ 1 and π2(θ) = N(µ, ν)2, where (µ, ν) is

a fixed hyperparameter.

As in the previous example, to judge the coverage quality of CR, a simulation study

based on 2000 Monte Carlo trials has been performed. Table 3.9 gives the empirical

coverage probabilities for (3.23) in comparison to the first-order credible regions CRN

and CRL.

π1 π2(µ = 0, ν = 10) π2(µ = 3, ν = 10)
1− α 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

n = 5 n = 5 n = 5
CRN 0.8188 0.7991 0.8801 0.7642 0.8288 0.9040 0.6630 0.7324 0.8374
CRL 0.8405 0.9084 0.9755 0.8624 0.9265 0.9837 0.7787 0.8659 0.9594
CR 0.9018 0.9500 0.9895 0.9166 0.9612 0.9933 0.8753 0.9338 0.9864

n = 10 n = 10 n = 10
CRN 0.8188 0.8779 0.9445 0.8281 0.8868 0.9495 0.7764 0.8381 0.9215
CRL 0.8748 0.9336 0.9832 0.8826 0.9385 0.9854 0.8402 0.9115 0.9764
CR 0.9028 0.9519 0.9893 0.9084 0.9564 0.9908 0.8866 0.9424 0.9872

Table 3.9: Gamma model. Empirical coverage probabilities of credible regions.

From Table 3.9 we note that, for every n, CR improves on (3.24) and (3.25). Observe

also that for parameter values in regions of low prior density there may be, as expected,

some degradation in the coverage accuracy.

Weibull regression

Let us consider a random sample (t1, . . . , tn) from the Weibull distribution with shape

parameter κ and scale parameter λi = xTi β, where xi is a p × 1 vector of covariates,

i = 1, . . . , n, and the unknown parameters are the p × 1 vector β and κ. Note that

yi = log ti follows a regression and scale model of the form yi = xTi β+σεi, with σ = 1/κ

and εi log-Weibull or extreme-value random variables, i = 1, . . . , n.

For the parameter θ = (log σ, β) we assume two prior distributions, i.e. the nonin-

formative prior π1(θ) ∝ 1 and the proper prior π2(θ) =
∏p+1
i=1 N(µi, 20), where µ =

(µ1, . . . , µp+1) is a fixed hyperparameter.

A simulation study based on 5000 Monte Carlo trials has been performed with p = 4

and p = 9 in order to judge the coverage quality of CR in comparison to the first-order

credible regions CRN and CRL.
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p = 4 p = 9
π1 π2 π1 π2

1 − α 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
n = 10 n = 10 n = 15 n = 15

CRN 0.4292 0.5054 0.6176 0.4530 0.5282 0.6424 0.0128 0.1610 0.2332 0.1380 0.1780 0.2540
CRL 0.7322 0.8270 0.9374 0.7490 0.8432 0.9448 0.5008 0.6094 0.7992 0.5226 0.6314 0.8132
CR 0.9348 0.9700 0.9944 0.9424 0.9754 0.9962 0.9560 0.9776 0.9966 0.9634 0.9828 0.9970

n = 20 n = 20 n = 20 n = 20
CRN 0.6736 0.7444 0.8496 0.6814 0.7528 0.8550 0.2656 0.3300 0.4584 0.2758 0.3332 0.4548
CRL 0.8382 0.9114 0.9774 0.8452 0.9154 0.9792 0.6582 0.7628 0.9034 0.6592 0.7650 0.9100
CR 0.9190 0.9592 0.9920 0.9234 0.9636 0.9932 0.9472 0.9750 0.9954 0.9528 0.9796 0.9964

n = 30 n = 30 n = 30 n = 30
CRN 0.7526 0.8242 0.9114 0.7564 0.8282 0.9130 0.4332 0.5134 0.6536 0.4580 0.5378 0.6694
CRL 0.8616 0.9238 0.9794 0.8650 0.9262 0.9806 0.7562 0.8480 0.9494 0.7692 0.8516 0.9540
CR 0.9074 0.9534 0.9912 0.9104 0.9558 0.9914 0.9356 0.9686 0.9948 0.9388 0.9708 0.9954

n = 50 n = 50 n = 50 n = 50
CRN 0.8058 0.8756 0.9454 0.8088 0.8768 0.9464 0.6286 0.7090 0.8290 0.6178 0.7006 0.8254
CRL 0.8762 0.9336 0.9864 0.8784 0.9360 0.9870 0.8294 0.9044 0.9716 0.8254 0.9032 0.9756
CR 0.9052 0.9530 0.9926 0.9072 0.9534 0.9926 0.9220 0.9616 0.9928 0.9220 0.9608 0.9918

Table 3.10: Weibull regression model. Empirical coverage probabilities of cred-
ible regions; the hyperparameter µ is fixed equal to the true parameter values

(log 2,−1, 1,−1, 1) for p = 4 and to (log 2,−1, 1,−1, 1,−1, 1,−1, 1,−1) for p = 9.

From Table 3.10 we note that, for every n and p, CR is always preferable to (3.24)

and (3.25).

3.3.3 Remarks

We have shown that modified log-likelihood ratios provide important quantities useful

to obtain approximate Bayesian credible regions for a vector parameter, with very little

computational effort and in a fraction of the time required for a full simulation approach.

Although the approximations described in this section are derived from asymptotic con-

siderations, they perform extremely well in small sample situations.

A key feature of the approximations discussed and developed in this section is that

they require only the calculation of the first and second derivative of the log-likelihood

function, as well as likelihood maximizations.

Finally, note that the signed root log-likelihood ratio transformation (3.17) in general

depends on the chosen parameter order. However, in the examples considered in the

previous section, the results of the simulation studies do not change (results not reported

here) when inverting the parameter order.

The credible regions suggested here may be used also outside the Bayesian setting,

as accurate confidence sets. Indeed, as shown by means of empirical coverages the

suggested method does produce such regions, which improve significantly over usual

likelihood-based or Wald-type regions.
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3.4 An improved Laplace approximation for marginal like-

lihoods

Bayes factors (see Sect. 2.1), which are typically used for Bayesian model selection,

are based on posterior model probabilities or marginal likelihoods. In practice the com-

putation of such marginal likelihoods may be challenging and typically it requires more

effort than the usual posterior sampling.

The Laplace approximation (2.7) may be used for this purpose, but its accuracy may

be questionable, especially in small samples. DiCiccio et al. (1997) show that the accu-

racy of the Laplace approximation may be improved via a Bayesian Bartlett correction,

which in general requires posterior simulation. Another popular method for comput-

ing marginal likelihoods is suggested by Chib (1995), where the posterior simulation is

done with the Gibbs sampling, and extended by Chib & Jeliazkov (2001) using poste-

rior simulation via Metropolis-Hastings (see also Section 2.4.2). However, implementing

both methods requires a careful partitioning of the parameter. In addition it requires a

considerable amount of bookkeeping.

In this section we show how the identity (2.22) used by Chib (1995) and Chib &

Jeliazkov (2001) can be exploited alongside the Laplace approximation for marginal

distributions (Tierney & Kadane, 1986), to obtain an improved Laplace-type approxi-

mation for p(y), called HOA-Laplace. We show, both theoretically and empirically by

means of numerical examples, that this approximation has asymptotic error of order

O(n−3/2), which is superior to the usual Laplace approximation.

Although the proposed method is theoretically less accurate than the Bartlett-corrected

version (2.17), it has the remarkable advantage of not requiring posterior simulation.

Another generalization of the Laplace approximation is proposed in Nott et al. (2009),

which attempts to find changes of variable for which the integrand becomes approxi-

mately a product of one-dimensional functions. However, as it will be shown in the

examples the method of Nott et al. (2009) is less accurate then HOA-Laplace, both

theoretically and empirically.

From a practical point of view, HOA-Laplace requires only nested posterior maximiza-

tions, evaluation of the posterior Hessian and univariate numerical integrations, all of

which can be easily obtained with software such as R (R Core Team, 2013).
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3.4.1 Background and theory

Assume that L(θ) satisfies the usual regularity conditions required for the Laplace

approximation to be valid (see Tierney & Kadane, 1986; Kass et al., 1990). The posterior

distribution can be written as

π(θ|y) = π(θ1|y)π(θ2|θ1y) · · ·π(θd|θ1, . . . , θd−1, y). (3.26)

If all the factors on the right-hand side of (3.26) are known, then, given a point θ∗,

p(y) can be readily computed from the identity (2.22) as

log p̂(y) = h(θ∗)− log π(θ∗1|y)− log π(θ∗2|θ∗1, y)− · · · − log π(θ∗d|θ∗1, . . . , θ∗d−1, y). (3.27)

However, this is not possible in general since some factors in (3.26) may not have a

closed form expression, and their computation my require awkward multidimensional

integrals.

The Laplace approximation for marginal posterior distributions (Tierney & Kadane,

1986) is a useful tool for separating the components of π(θ|y). The idea behind the

proposed HOA-Laplace method is to approximate each component in (3.26) via the

Laplace method, and then renormalize it numerically in order to gain accuracy.

In particular, let θ = (θ1:i, θ
i+1:d), i = 1, . . . , d− 1. Formula (3.26) can be rewritten as

∫

exp{h(θ)}dθ2:d
∫

exp{h(θ)}dθ

∫

exp{h(θ)}dθ3:d
∫

exp{h(θ)}dθ2:d
· · · exp{h(θ)}

∫

exp{h(θ)}dθd
. (3.28)

Let us denote by θ̃i+1:d
θ1:i

the mode of the unormalized log-posterior h(θ) with θ1:i fixed,

and let θ̃j+1:d
θ∗1:j−1θj

be the mode of h(θ) with θ∗1:j−1 = (θ∗1, . . . , θ
∗
j−1) and θj fixed.

The first ratio in (3.28), e.g. the marginal posterior of θ1, can be approximated via the

Laplace method as (2.10), i.e.

π̂L(θ1|y) ∝ exp
{

h(θ1, θ̃
2:d
θ1 )

}
∣

∣

∣
Vθ2:dθ2:d(θ1, θ̃

2:d
θ1 )

∣

∣

∣

−1/2
, (3.29)

where Vθ2:dθ2:d(θ) is the block (θ2:dθ2:d) of the posterior information matrix V (θ). Fol-

lowing Tierney & Kadane (1986) and Tierney et al. (1989), the renormalized Laplace

approximation is third-order accurate, e.g.

π(θ1|y) =
π̂L(θ1|y)

∫

π̂L(θ1|y) dθ1
{1 +O(n−3/2)}

= π̂∗L(θ1|y){1 +O(n−3/2)}, (3.30)
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where the integration in the denominator can be performed numerically, via any quadra-

ture rule. Evaluating π∗L(θ1|y) at θ∗1 gives a third-order approximation to the posterior

marginal density π(θ∗1|y).

The second ratio in (3.28), namely π(θ2|θ1, y), can be approximated by following es-

sentially the same line of reasoning, with the only difference in that θ1 is fixed to θ∗1.

In other word we seek and approximation of π(θ2|θ∗1, y), which is a univariate density.

Hence, the Laplace approximation to this conditional posterior density is

π̂L(θ2|θ∗1, y) ∝ exp
{

h(θ∗1, θ2, θ̃
3:d
θ∗1θ2

)− h(θ∗1, θ̃
2:d
θ∗1

)
}

{

|Vθ2:dθ2:d(θ∗1, θ̃2:dθ∗1 )|
|Vθ3:dθ3:d(θ∗1, θ2, θ̃3:dθ∗1θ2)|

}1/2

, (3.31)

and its renormalized version is

π(θ2|θ∗1, y)
a
=

π̂L(θ2|θ∗1, y)
∫

π̂L(θ2|θ∗1, y) dθ2
a
= π̂∗L(θ2|θ∗1, y), (3.32)

where the symbol “
a
=” means equality for n → ∞. An approximation to the required

conditional posterior density is then given by π̂∗L(θ
∗
2|θ∗1, y).

More generally, for j = 2, . . . , d − 1, the unnormalized Laplace approximation to the

conditional posterior densities is

π̂L(θj |θ∗1:j−1, y), ∝ exp
{

h(θ∗1:j−1, θj , θ̃
j+1:d
θ∗1:j−1θj

)− h(θ∗1:j−1, θ̃
j:d
θ∗1:j−1

)
}







|Vθj:dθj:d(θ∗1:j−1, θ̃
j:d
θ∗1:j−1

)|

|Vθj+1:dθj+1:d(θ∗1:j−1, θj , θ̃
j+1:d
θ∗1:j−1θj

)|







1/2

, (3.33)

and the corresponding normalized version is denoted by

π̂∗L(θj |θ∗1:j−1, y) =
π̂L(θj |θ∗1:j−1, y)

∫

π̂L(θj |θ∗1:j−1, y) dθj
, (3.34)

The last conditional posterior density is

π(θd|θ∗1:d−1, y) =
exp

{

h(θ∗1:d−1, θd)
}

∫

exp
{

h(θ∗1:d−1, θd
}

dθd
. (3.35)

and thus it can be computed exactly.

As all the integrals required for the renormalization of the suggested approximation

are univariate, they can easily be approximated via any quadrature rule, with extreme

accuracy (by, e.g. , the integrate function in R ).
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The product of the approximate marginal posterior (3.30) with the product of the

approximate conditionals
∏d−1
j=2 π̂

∗
L(θj |θ∗1:j−1, y) and (3.35), all evaluated at θ∗, gives an

approximation to the joint posterior density at θ∗. Let us denote this approximate

posterior density by

π∗L(θ
∗|y) = π̂∗L(θ

∗
1|y)π̂∗L(θ∗2|θ∗1, y) · · ·π(θ∗d|θ∗1, . . . , θ∗d−1, y), . (3.36)

The idea of HOA-Laplace approximation is to replace the posterior densities required

in (3.27) by their approximate version given by (3.36), which leads to an approximate

marginal likelihood accurate to O(n−3/2).

To see why the method has third-order accuracy, note that π(θ∗1|y) = π̂∗L(θ
∗
1|y){1 +

O(n−3/2)}; see, for instance, Tierney & Kadane (1986) and Tierney et al. (1989). More-

over, since the conditional posterior density of θj given the previous components –

fixed at θ∗1:j−1 – is just a marginal density, it is easily seen that π(θj |θ∗1:j−1, y) =

π̂∗L(θj |θ∗1:j−1){1 + O(n−3/2)}, with j = 2, . . . , d − 1. As the last conditional density

in (3.36) is computed exactly, we have that

π(θ∗|y) = π̂∗L(θ
∗
1|y)π̂∗L(θ∗2|θ∗1, y) · · ·π(θ∗d|θ∗1, . . . , θ∗d−1, y){1 +O(n−3/2)}d−1

= π̂∗L(θ
∗|y){1 +O(n−3/2)},

which implies that p(y) = p∗L(y){1 +O(n−3/2)}.

To show numerically that HOA-Laplace is third-order accurate we study the behaviour

of the approximate normalizing constants p̂∗L(y), pL(y) and the exact normalizing con-

stant p(y), as the sample size increases (see Davison et al., 2006 for a similar argument

in a frequentist likelihood setting).

As an illustration, consider data y = (y1, . . . , yn), with n = 2, . . . , 35, drawn from the

gamma distribution Γ(ea, eb), with prior (a, b) ∼ N(0, 10)2. The exact posterior normal-

izing constant p(y) is computed with a bivariate quadrature rule, which is implemented

in the function adapt of the R package fCopulae (Wuertz et al., 2013). Let c1 and c2

be positive values and suppose that

p(y) = p̂∗L(y)(1 + b1n
−c1) + o(n−c1) and p(y) = p̂L(y)(1 + b1n

−c2) + o(n−c2),

for n→ ∞. If this is true, then both the quantities log{p̂∗L(y)/p(y)} and log{pL(y)/p(y)}
would converge to zero as n increases. In addition, if HOA-Laplace is more accurate

than the Laplace approximation, then log{p̂∗L(y)/p(y)} would tend to zero at a faster rate

than log{pL(y)/p(y)}. The plot of log{p̂∗L(y)/p(y)} and log{pL(y)/p(y)} against log n, in

the case the gamma model, and shown on the left of Figure 3.9 gives a firm confirmation
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of this. Indeed, the HOA-Laplace approximation converges to zero almost immediately.

For larger sample sizes (not shown here) the two methods are indistinguishable.
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Figure 3.9: Study of the asymptotic error of the HOA-Laplace method ( , slope
-3/2; , slope -1 and · · , slope 0). Left: log-odds of p̂∗L(y) (∗) and log-odds of pL(y)
(◦) against log n. Right: log of absolute relative difference between p̂∗L(y) and p(y) (∗)

and log of absolute relative difference between pL(y) and p(y) (◦).

Moreover, if HOA-Laplace is third-order accurate, then the log-log plot of |p̂∗L(y)/p(y)−
1| against n should be linear with intercept log |b1| and slope −3/2 (c1 = 3/2). On the

other hand the log-log plot of |pL(y)/p(y) − 1| against n, should be linear with slope

log |b2| and intercept −1 (c2 = 1). As shown by the plot on the right of Figure 3.9, the

two lines (vertically shifted for improving readability) have indeed the claimed intercept.

3.4.2 Examples

To illustrate the accuracy of the HOA-Laplace approximation we consider three ex-

amples. The first is a multivariate skew-t distribution (Jones, 2002) with various degree

of skewness and with various dimensions. The second example is a probit regression

and the third is a nonlinear regression, with 10 parameters. For comparison purposes

HOA-Laplace is compared with other typical methods.

Skew-t density

Consider a toy example, where the aim is to compute the normalizing constant of

a particular class of skew-t distributions, where the normalizing constant is known.

The example was studied by Nott et al. (2009) in order to test their improved Laplace

approximation method for computing posterior normalizing constants.
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The multivariate skew-t density we consider, which is proposed by Jones (2002), is

constructed by taking a multivariate t-student density, with mean 0 and scale matrix

equal to the identity matrix I, and replacing the marginal distribution for the first

component with a suitable skew t distribution. As in Jones (2002, p. 95), we consider

the parametrization with parameters a, c and ν, where a and c > 0 determine the

distribution of the skewed marginal for the first component. The case with a = c = ν/2

leads to the ordinary multivariate t-student distribution with identity scale matrix I

and ν degrees of freedom (d.f.). The parameter ν controls the tail behaviour of the

distribution.

As an example we consider two values of ν (ν = 3, ν = 10), and consider values of a

and c corresponding to zero, moderate and extreme skewness, in 2, 5 and 10 dimensions.

Skewness

Two dimensions
None Minimal Moderate Extreme

a = c = 1.5 a = 4, c = 2.5 a = 4, c = 2 a = 4, c = 1

3 d.f.
Laplace 0.6 0.646 0.619 0.493
HOA-Laplace 1.000 1.000 1.000 1.000

a = c = 5 a = 13, c = 9 a = 13, c = 6 a = 13, c = 6

10 d.f.
Laplace 0.833 0.859 0.832 0.740
HOA-Laplace 1.000 1.000 1.000 1.000

Five dimensions
a = c = 1.5 a = 4, c = 2.5 a = 4, c = 2 a = 4, c = 1

3 d.f.
Laplace 0.211 0.211 0.193 0.126
HOA-Laplace 1.000 1.000 1.000 1.000

a = c = 5 a = 13, c = 9 a = 13, c = 6 a = 13, c = 6

10 d.f.
Laplace 0.506 0.504 0.450 0.320
HOA-Laplace 1.000 1.000 1.000 1.000

Ten dimensions
a = c = 1.5 a = 4, c = 2.5 a = 4, c = 2 a = 4, c = 1

3 d.f.
Laplace 0.027 0.027 0.024 0.013
HOA-Laplace 1.000 1.000 1.000 1.000

a = c = 5 a = 13, c = 9 a = 13, c = 6 a = 13, c = 6

10 d.f.
Laplace 0.172 0.140 0.099 0.056
HOA-Laplace 1.000 1.000 1.000 1.000

Table 3.11: HOA-Laplace and Laplace approximation of the normalizing constant of
the multivariate skew t densities in 2, 5 and 10 dimensions, with 3 and 10 degrees of
freedom and zero, minimal, moderate and extreme skewness. The true value is equal

to 1.

The results are given in Table 3.11. The required Hessians are computed numerically

with the numDeriv package (Gilbert & Varadhan, 2012), whereas the integrals are per-

formed with the function integrate (R Core Team, 2013). We see that HOA-Laplace

approximation gives almost exact results, for all the cases considered (compare these

results with those of Nott et al., 2009, p. 1399).
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Probit regression

For the second example we consider the binary probit regression applied to Nodal

Involvement data used also by Chib (1995), for illustrating his method for computing

marginal likelihoods. This dataset refers to a sample of 53 patients with cancer of the

prostate and it includes a binary response that takes the value 1 if cancer had spread

to the surrounding lumph nodes, and value zero otherwise. The objective is to explain

the binary response with five variables: age of patients in years at diagnosis (x1), level

of serum acid phosphate (x2) considered in logarithmic scale, the result of an X-ray

examination, coded 0 if small and 1 if large (x4), and the pathological grade of the

tumor, coded 0 if less serious and 1 if more serious (x5). We focus on the posterior

normalizing constant for three possible models, which correspond to the three models

with the highest marginal posterior probability considered in Chib (1995, Tab. 2). As

in Chib (1995), for the regression coefficients we assume normal independent priors with

mean 0.75 and variance 25.

We compare the HOA-Laplace method with Chib’s estimator, which in this case is very

easy to compute, and with the usual Laplace approximation. For each model, Chib’s

estimator is computed from 105 runs of the Gibbs sampler (Albert & Chib, 1993), with

103 initial values discarded.

Terms fitted Chib HOA-Laplace Laplace

C + log x2 + x4 -36.1280 -36.1291 -36.1442
C + log x2 + x3 + x4 -34.5489 -34.5481 -34.5830
C + log x2 + x3 + x4 + x5 -36.2351 -36.2353 -36.2897

Table 3.12: Probit regression with Nodal Involvement Data. Comparison of HOA-
Laplace approximation with Chib’s and Laplace’s approximation for marginal likeli-

hoods.

From the results shown in Table 3.12, and compared to Chib’s estimates, we deduce

that the Laplace approximation is accurate only to the first decimal place, while the

HOA-Laplace method gives results which are accurate to two or three decimal places.

However, from a practical point of view the three methods preforms quite similarly.

Nonlinear regression

The last example is a nonlinear regression model with 10 parameters, analyzed also by

DiCiccio et al. (1997). For this model, we consider the Lubricant data (Bates & Watts,

1988, p. 275), which concern the kinematic viscosity of a lubrificant as a function of
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temperature (x1), and pressure (x2). The model considered is

yi =
θ1

θ2 + x1,i
+ θ3x2,i + θ4x

2
2,i + θ5x

3
2,i + (θ6 + θ7x

2
2,i)x2,i exp

{

− x1,i
θ8 + θ9x22,i

}

+ ǫi,

where the ǫi’s are independent N(0, σ2) errors, yi is the response and xj,i denote the

ithe element of the jth covariate, j = 1, 2 and i = 1, . . . , n.

As in DiCiccio et al. (1997), for the complete parameter θ = (θ1, . . . , log σ) we adopt

independent normal priors centred at the MLE, with standard deviations equal to n1/2

times the standard error of the MLE of the parameters.

In this example the required Hessians are computed analytically. We compare the pro-

posed HOA-Laplace method with the usual Laplace approximation (2.8), the Bartlett-

corrected Laplace approximation (2.17) (see also DiCiccio et al., 1997), obtained with a

large MCMC sample from the posterior, the importance sampling approximation (2.21),

with a t-student importance density with 3 d.f., centred at the posterior mode and with

scale matrix Σ(θ̃), with the diagonal components of Σ(θ̃) scaled by 1.2. Finally, we

consider also numerical integration with modified Gauss-Hermite quadrature rules, as

implemented in the R package bayespack (Genz & Bornkamp, 2011). The numerical

integration is quite expensive here due to the dimensionality of the posterior. Other

methods such as (2.19) and the harmonic mean estimator produced much too variable

estimates, whereas (2.20) performed slightly worse than importance sampling and are

not reported here.

Quadrature HOA-Laplace Laplace Bartlett Importance

64.0923 64.0841 63.5968 64.1037 64.0890

Table 3.13: Nonlinear regression with Lubricant data. Comparison of the HOA-
Laplace method with a numerical integration via modified Gauss-Hermite quadrature
rule, the Laplace, the Bartlett-corrected Laplace approximation and the importance

sampling.

If we consider the quadrature and the importance sampling results as the closest to the

truth, then the HOA-Laplace approximation is the most accurate, despite the dimension

being as high as 10.

3.4.3 Remarks

By combining Chib’s idea with the Laplace approximation for marginal posterior dis-

tributions (Tierney & Kadane, 1986), we obtain a higher-order Laplace approximation

(HOA-Laplace) for posterior normalizing constants. We show, both theoretically and
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empirically, that HOA-Laplace has third-order accuracy. Moreover, in the examples

considered in this section HOA-Laplace is competitive to other state-of-art methods.

An advantage of the HOA-Laplce approximation is that it requires only nested opti-

mizations, and evaluations of the log-posterior Hessian as well as univariate numerical

integrations. In general, these quantities can be obtained from any software that per-

forms numerical calculations, such as R . Hence the method is analytic and does not

require simulations from the posterior density.



Chapter 4

Contributions on Likelihood-free

Methods

The summary of the data on a given model offered by the likelihood function is the

basis of all likelihood-based inferential methods. However, likelihood-based inference,

both frequentist and Bayesian, cannot be performed when the likelihood function is an-

alytically or computationally intractable. This usually occurs in the presence of complex

models, such as models with complicated dependence structures or models with many

latent variables.

As outlined in Section 2.4.1, and by the contribution in Section 3.2, it is possible to

deal with such complex models by means of suitable pseudo-likelihood functions. On the

other hand, ABC methods are also a valid alternative in these contexts (see Sect. 2.4.2),

as they bypass the computation of the full likelihood by simulating from the full model.

In this chapter we present two original contributions to the ABC literature, which

combine pseudo-likelihood functions with ABC. In particular, the first contribution,

presented in Section 4.1, aims at finding good summary statistics by combining ABC

with composite likelihoods. The second, discussed in Section 4.2, shows how to auto-

matically build a proposal distribution for ABC algorithms with an MCMC or IS step,

by using the theory of quasi-likelihoods (McCullagh, 1991).

63
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4.1 Approximate Bayesian computations with composite

score functions

When the full likelihood function is intractable, it is possible to resort to pseudo-

likelihood functions, which are intended as surrogates of the full likelihood. An impor-

tant class of such pseudo-likelihoods is given by composite likelihoods (see Sec. 2.4.1).

Even when the computation of the likelihood is impracticable, it is often easy to sim-

ulate from the model. Then, an alternative approach to inference may be based on

simulations from the model for different parameter values, and on the comparison of

simulated datasets with the observed data. The idea is to estimate the likelihood of

a given parameter value from the portion of datasets, simulated using that parameter

value, that are “similar” to the observed one. This idea was first advocated by Diggle

& Gratton (1984).

ABC methods combine Diggle & Gratton’s idea with a prior to produce an approxi-

mate posterior, which we shall refer to as the ABC posterior (see Sec. 2.4.2). In most

applications, the probability of an exact match of the simulated data with the observed

data is negligible, or zero. The most popular approach is to consider an approximate

matching of some summary statistics, evaluated at the observed and simulated data,

by means of suitable distances. This method leads to the true posterior distribution

as the distance tends to zero, provided the statistics are sufficient for the parameters

of the model. However, in many applications sufficient statistics are not available and

the practitioner must resort to a careful selection of data summaries, which could be

demanding.

We show that composite likelihoods and ABC can be fruitfully integrated in order

to obtain accurate approximations to the posterior distribution of the parameter of

interest, without having to specify ad hoc summary statistics. In particular, we discuss

an approach based on composite likelihood score functions for automatically choosing

informative summary statistics. This is formally motivated by the use of score function

in a full likelihood, and is then extended to the use of unbiased estimating functions

in complex models. We discuss three examples in which the estimating function is the

composite score function. We show empirically that this choice of summary statistic

for ABC can significantly improve upon usual ABC methods based on ordinary data

summaries.

The proposed ABC algorithm based on composite score functions (ABC-cs) searches

for parameter values of the model of interest that produce simulated data which lead to

composite score values at the observed maximum composite likelihood estimate close to

those based on the original data. This approach has several advantages. First of all, there
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are as many summary statistics as the number of parameters, and all of them inherit,

by construction, useful characteristics of the full model. Moreover, the composite score

function is generally easy to compute and often it is available analytically. Although

composite likelihoods typically do not satisfy the information identity, which leads to

overly concentrated posterior distributions (Sec. 2.4.1), the proposed ABC-cs is proved

to automatically give correctly adjusted posterior approximations.

There have been other attempts to merge composite likelihoods with the ABC frame-

work. For instance, Erhardt & Smith (2012), in the context of spatial extremes, combine

composite likelihoods with ABC and show that this approach tends to work better than

other existing methods. Mengersen et al. (2013) use the composite score function with

the empirical likelihood to produce an approximate and weighted posterior sample. How-

ever, their approach is not in the framework of typical ABC, as it does not simulate from

the full model. Finally, Barthelmé & Chopin (2011, Sec. 7.1) mention the use of com-

posite likelihoods within their ABC approach, based on the Expectation Propagation

technique (Minka, 2001), to reduce the computational complexity, although not using

the composite score as a summary statistic.

Our approach is similar in spirit with the indirect inference framework (see Heggland

& Frigessi, 2004; Gourieroux et al., 1993), as the ABC-cs method in some sense also

relies on an auxiliary model likelihood, that is, the composite likelihood. As happens in

indirect inference, the closer the auxiliary model is to the true model, the more accurate

the parameter estimates will be. However, the ABC-cs approach is less computationally

demanding than indirect inference methods since it does not require repeated maximiza-

tion for each simulated dataset. The indirect inference method within ABC has been

discussed by Drovandi et al. (2011).

4.1.1 ABC with unbiased estimating functions

In the ABC context the similarity of simulated and observed data is typically measured

by means of a distance between some summary statistics (see Sect. 2.5.2), which are in

general not sufficient. On the other hand, in order to control the Monte Carlo error,

the summary statistics should be as low-dimensional as possible (Fearnhead & Prangle,

2012). In general, the choice of the summary statistics is not straightforward, especially

with high-dimensional data and complex model structures.

The approach suggested here uses the composite score function cℓθ(θ; y) (see Sect. 2.5.1

for discussion on composite likelihoods), evaluated at θ̂c computed from the observed

data yobs, as a summary of the data. We justify this choice by starting from a full
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computable likelihood function, and then we extend the proposed ABC-cs algorithm to

general likelihood functions.

ABC with score functions

Let us assume that the model belongs to a full exponential family with density p(y;ϕ) =

h(y) exp{ϕT s(y) − k(ϕ)}, where h(y) > 0, ϕ is the canonical parameter, s(y) is the d-

dimensional sufficient statistic, and k(ϕ) is the cumulant generating function of s(y).

In this case, the best summary statistic for ABC is the minimal sufficient statistic

s(y), which gives the exact posterior for ǫ → 0 (see, e.g., Rubio & Johansen, 2013).

On the other hand, let us consider the score function ℓϕ(ϕ0; y) = ∂ℓ(ϕ; y)/∂ϕ|ϕ=ϕ0 =

s(y)−∂k(ϕ)/∂ϕ|ϕ=ϕ0 as a summary statistic in ABC. Considering as distance any norm-

p, the distance among the scores is exactly the distance among the sufficient statistics,

regardless of the fixed value ϕ0. Therefore, the ABC posterior with the score function is

exact for ǫ→ 0. When the model is reparametrized using θ = θ(ϕ), the ABC algorithm

would be obviously still based on the sufficient statistic s(y).

Consider now a generic model p(y; θ). At least in principle, we could use an alternative

representation of y, or equivalently the minimal sufficient statistic based on y, given by

(θ̂, a), where θ̂ is the maximum likelihood estimate and a is an ancillary statistic, which

means that its distribution does not depend on θ. Hence, we could replace p(y; θ) with

p(θ̂, a; θ), and the latter can be factorized as

p(θ̂, a; θ) = p(θ̂|a; θ)p(a) .

This means that the likelihood for θ can be based equivalently on p(y; θ) or p(θ̂|a; θ).
Unfortunately, it may not be easy in general to find p(θ̂|a; θ). On the other hand, it

is possible to approximate such a density through a tangent exponential model at (and

near) the fixed value yobs (Fraser & Reid, 1995; Reid, 2003, Sect. 3.2). Denoting by

ℓ(θ; yobs) the observed log-likelihood, the approximation to the log-likelihood based on

the tangent exponential model is

ℓTE(θ; y) = ℓ(θ; yobs)− ℓ(θ̂obs; yobs) + {ϕ(θ)− ϕ(θ̂obs)}T s(y) , (4.1)

where θ̂obs is the maximum likelihood estimate at the observed data point yobs, s(y) =

∂ℓ(θ; y)/∂θ|θ=θ̂obs = ℓθ(θ̂
obs; y), and ϕ(θ) = ϕ(θ; yobs) is a one-to-one reparameterization

dependent on the observed data yobs (see Brazzale et al., 2007, Sect. 8.4.2). The tangent

exponential model is a local exponential family model with sufficient statistic s(y) and

canonical parameter ϕ. It has the same log-likelihood function as the original model at

the fixed point yobs, where it also has the same first derivative with respect to y.
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As in a full exponential family, the best summary statistic for ABC with the tangent

exponential model (4.1) would be the sufficient statistic s(y), which is the score function

of the original model evaluated at θ̂obs. Note that s(yobs) = 0. This motivates the use

of the score function evaluated at θ̂obs as an approximate optimal summary statistic in

ABC for a general model.

Example. Normal parabola. Let y = (y1, . . . , yn) be a random sample from the normal

distribution N(θ, θ2), with θ > 0. The log-likelihood is

ℓ(θ; y) =
1

θ

n
∑

i=1

yi −
1

2θ2

n
∑

i=1

y2i − n log θ ,

where t(y) = (
∑n

i=1 yi,
∑n

i=1 y
2
i ) is the two-dimensional minimal sufficient statistic. The

score function is ℓθ(θ; y) = −θ−2
∑n

i=1 yi + θ−3
∑n

i=1 y
2
i − n/θ, which implies that θ̂ is

the positive solution of a quadratic equation. The sufficient statistic for the tangent

exponential model has the same dimension as the parameter and is given by s(y) =

ℓθ(θ̂
obs; y).

As an illustration we use a sample of size n = 50 generated from the model with θ = 5,

and with a uniform prior in (0, 15). We apply the ABC algorithm 3 (Sec. 2.4.2), with

distance ρ(v, w) = ||v − w||1 and with summary statistics given respectively by t(y),

s(y), and a one-to-one transformation of the minimal sufficient statistic t(y), that is

t1(y) = (ȳ,
√
s2), i.e. the sample mean and standard deviation. In all three cases we

used the same sample of 107 values generated from the prior and in each case we chose

the threshold ǫ as the quantile of level 0.1% of the observed distances, thus accepting

104 values. These ǫ values are respectively 31.264, 0.052 and 0.237.
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Figure 4.1: Normal parabola. In all panels the solid line corresponds to the exact
posterior, while the dashed lines correspond to ABC approximations using t(y) (left

panel), t1(y) (central panel), s(y) (right panel).

Figure 4.1 shows the three approximations compared with the exact posterior. The

two versions of the ABC with the minimal sufficient statistics gave quite different results,
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with the one with t(y) leading to the worst accuracy. This is likely due to the large value

of ǫ (31.264). Only three of the 107 proposed values of θ would have been accepted with

ǫ = 1, thus making the ABC algorithm with t(y) impractical. On the other hand, the

ABC with the one-dimensional summary statistic s(y), which is not sufficient for this

model, gives an approximation to the posterior with accuracy comparable with ABC

with the minimal sufficient statistic t1(y).

From the point of view of the likelihood principle the different performances of the

ABC algorithm with the two versions of the minimal sufficient statistic in the previous

example is unpleasant. Indeed, t(y) and t1(y) lead to the same likelihood and posterior

functions but the two ABC approximations could be remarkably different, as in the

example above. On the contrary, since the likelihood and the score functions are not

affected by one-to-one transformations of the data, or of the minimal sufficient statistic,

ABC with s(y) is invariant with respect to such transformations.

An apparent drawback of the ABC algorithm with s(y) is the dependence on the pa-

rameterization θ. However, one-to-one reparameterizations of the model only rescale the

summary statistic s(y). Indeed, let ω = ω(θ) be a reparameterization with corresponding

log-likelihood ℓ̄(ω; y) = ℓ(θ(ω); y), and score function ℓ̄ω(ω; y) = {∂θ(ω)/∂ω}ℓθ(θ(ω); y).
The summary statistic becomes s̄(y) = ℓ̄ω(ω̂

obs; y) = {∂θ(ω)/∂ω}|ω=ω̂obs s(y). Let us

assume that ρ(v, w) = ||v−w||1, although the following result will hold for any p-norm.

Then, by standard properties of norms (see Noble & Daniel, 1988, Sect. 5.3), we have

that

||s̄(yobs)− s̄(y)||1 = ||{∂θ(ω)/∂ω}|ω=ω̂obs{s(yobs)− s(y)}||1
≤ k ||s(yobs)− s(y)||1 ,

where k is a suitable positive constant depending on ω̂obs. In view of this, ||s(yobs) −
s(y)||1 ≤ ǫ implies that ||s̄(yobs) − s̄(y)||1 ≤ ǫ∗ = k ǫ. Therefore, ǫ → 0 implies ǫ∗ → 0

as well. This shows that the validity of the ABC algorithm with the score function is

invarinat to reparameterizations.

Despite the good properties of ABC with the score function, unfortunately in typical

applications of the ABC method the likelihood function, as well the score function, are

of course unavailable. This motivates the extension to composite likelihoods.

ABC with composite score function

When dealing with complex models, possible surrogates of the unavailable full likeli-

hood are given by composite likelihoods. Analogously to what was seen in the previous
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section for a full likelihood, we propose the composite score function as a summary statis-

tic in ABC. This defines an algorithm, called ABC-cs. In terms of the ABC accept-reject

Algorithm 3, ABC-cs replaces the matching condition

ρ{η(yobs), η(y)} ≤ ǫ,

with

ρ{cℓθ(θ̂obsc ; yobs), cℓθ(θ̂
obs
c ; y)} ≤ ǫ ,

where θ̂obsc is the MCLE computed from yobs. This choice is computationally convenient

since cℓθ(θ̂
obs
c ; yobs) = 0 and we only need to evaluate cℓθ(θ̂

obs
c ; y).

An advantage of ABC-cs is that the composite score statistic has the same dimension

as θ, so the complexity of the method is linear in the number of parameters. Moreover,

since the score statistic is obtained from the composite log-likelihood by just taking the

first derivative, it is easily computed, especially when it is analytically available.

The proposed ABC-cs algorithm gives a valid approximation to the posterior distribu-

tion even if the composite score function does not satisfies the information identity, as a

full score function. In order to recover the information identity, the rescaled composite

score function (see, e.g., Pace & Salvan, 1997, Chap. 4)

g(θ; y) = K(θ)J(θ)−1cℓθ(θ; y) = A(θ)cℓθ(θ; y)

should be considered, where recall that K(θ) = Eθ{−∂cℓθ(θ; y)/∂θT } and J(θ) =

varθ{cℓθ(θ; y)}. Indeed, for g(θ; y), we have

Jg(θ) = varθ{g(θ;Y )} = A(θ)varθ{cℓθ(θ;Y )}A(θ)T = G(θ)

and

Kg(θ) = Eθ

{

− ∂

∂θT
g(θ;Y )

}

= −
{

∂

∂θT
A(θ)

}

Eθ{cℓθ(θ;Y )} −A(θ)Eθ

{

∂

∂θT
cℓθ(θ;Y )

}

= G(θ) .

SinceKg(θ) = Jg(θ) = G(θ), the rescaled composite score g(θ; y) satisfies the information

identity as the full score function. Moreover, since A(θ) 6= 0 and A(θ)−1 is finite, the

estimating equation g(θ; y) = 0 gives the same estimator θ̂c of cℓθ(θ; y) = 0. The use

of g(θ̂obsc ; y) as a summary statistic for ABC leads to an approximate posterior with the

correct curvature (see Pauli et al., 2011). Nevertheless, this rescaling turns out to be

irrelevant in the ABC-cs algorithm. Indeed, with an argument similar to the one used
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for the invariance to reparameterizations of ABC with the score function in the previous

section, we have that

||g(θ̂obsc ; yobs)− g(θ̂obsc ; y)||1 = ||A(θ̂obsc ){cℓθ(θ̂obsc ; yobs)− cℓθ(θ̂
obs
c ; y)}||1

≤ h ||cℓθ(θ̂obsc ; yobs)− cℓθ(θ̂
obs
c ; y)||1 ,

where h is a suitable positive constant. Again, ||cℓθ(θ̂obsc ; yobs) − cℓθ(θ̂
obs
c ; y)||1 → 0 im-

plies that ||g(θ̂obsc ; yobs) − g(θ̂obsc ; y)||1 → 0. Therefore, ABC with cℓθ(θ̂
obs
c ; y) gives an

approximation to the posterior distribution with the correct curvature, without requiring

the rescaling factor K(θ)J(θ)−1, which can be cumbersome to evaluate. On the other

hand, the use of the calibrated composite likelihood cLc(θ) to obtain the posterior dis-

tribution (2.32) requires the computation of the adjustment factor 1/ω̄, which explicitly

needs the evaluation of J(θ) and K(θ).

4.1.2 Examples

In the examples discussed in this section we use composite marginal likelihood func-

tions, although different model structures might lead to different choices of suitable

composite likelihoods.

Whenever possible, ABC and ABC-cs posteriors are compared also with the “exact”

Bayesian posterior, e.g. the posterior based on the full likelihood, possibly approximated

using MCMC methods. The distance used in all examples is the absolute norm.

Equi-correlated normal model

This example, considered in Cox & Reid (2004) and in Pauli et al. (2011) among

others, focuses on Bayesian inference based on the pairwise log-likelihood (2.28) for the

correlation coefficient ρ of an equi-correlated multivariate normal distribution.

Let Yi be independent realizations of a q-variate normal random variable with standard

margins, and let cor(Yir, Yis) = ρ, for r, s = 1, . . . , q, r 6= s (i = 1, . . . , n), with ρ ∈
(−1/(q − 1), 1). The pairwise log-likelihood (2.28) is

pℓ(ρ; y) = −nq(q − 1)

4
log(1− ρ2)− q − 1 + ρ

2(1− ρ2)
SSW − (q − 1)(1− ρ)

2(1− ρ2)

SSB
q

, (4.2)

where SSW =
∑n

i=1

∑q
r=1(yir − ȳi)

2, SSB = q2
∑n

i=1 ȳ
2
i , ȳi =

∑q
r=1 yir/q, and the

associated score function is

pℓρ(ρ; y) =
nq(q − 1)ρ

2(1− ρ2)
− 1 + ρ2 + 2(q − 1)ρ

2(1− ρ2)2
SSW +

(q − 1)(1− ρ)2

2(1− ρ2)2
SSB
q

. (4.3)
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We reparameterize in terms of θ = logit{(ρ(q−1)+1)/q}, i.e. the logistic transformation,

and for θ we assume a N(0, 5) prior.

The ABC-cs uses the pairwise score function (4.3) evaluated at the maximum pairwise

likelihood estimate (MPLE), whereas the usual ABC algorithm is implemented using the

two-dimensional sufficient statistic (SSB, SSW ). As an example, a sample of n = 50 is

drawn from the model with q = 50 and ρ = 0.5. Both algorithms are run for 106 proposal

values from the prior and ǫ is fixed to the 0.1% quantile of the absolute distances between

the statistics. Results are compared also with the pairwise posterior

πpl(θ|y) ∝ π(θ) exp{pℓ(θ; y)} , (4.4)

and with the pairwise posterior (2.32) based on the calibrated pairwise likelihood.

The left panel of Figure 4.2 compares the ABC-cs posterior for θ, with the exact, the

pairwise (4.4) and the calibrated pairwise (2.32) posteriors. The right panel of Figure 4.2

compares ABC-cs and ABC with the full posterior.
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Figure 4.2: Equi-correlated normal model. (Left) ABC-cs posterior (histogram),
compared with π(θ|y) (continuous line), πpl(θ|y) (dashed) and πc

pl(θ|y) (dot-dashed).
(Right) ABC-cs posterior (dashed) compared with the ABC (dot-dashed) and the full

posterior π(θ|y) (continuous).

Figure 4.2 highlights several interesting features. As is well known, the posterior

(4.4) can be wrongly too concentrated (see also Pauli et al., 2011; Smith & Stephenson,

2009; Ribatet et al., 2012), whereas the calibrated pairwise posterior (2.32) may be the

opposite. On the other hand, the ABC-cs posterior follows the full posterior very closely.

The ABC posterior based on the sufficient statistics is slightly worse than ABC-cs. This

may be due to the particular form of sufficient statistic used in the ABC algorithm (see

Section 3.1).

We now assume that the model has mean vector µ and covariance matrix Σrs = ρσ2, for

r 6= s and Σrr = σ2 (r, s = 1, . . . , q). In this case θ̂c is fully efficient, the sufficient statistic

is three-dimensional and is the same for both the full and pairwise likelihoods (Pace
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et al., 2011). The pairwise log-likelihood is given in (3.8). We assume the components

of the parameter θ = (µ, τ, κ), with τ = log σ2 and κ = logit{(ρ(q − 1) + 1)/q}, a priori

independent with N(0, 5) marginal distributions.

A sample with n = 50 is drawn from the model with q = 50, µ = 0, σ2 = 1 and ρ = 0.5.

For ABC, the summary statistic is the sufficient statistic, while for ABC-cs the summary

is the pairwise score function evaluated at the MPLE. The simulation from the ABC

and ABC-cs posterior is obtained by importance sampling. The importance function is a

t-student density with 5 degrees of freedom centred at the maximum likelihood estimate

(MLE), with scale matrix equal to 3 times the inverse of the negative log-posterior

Hessian. We consider 103 final samples obtained after fixing ǫ to the 0.1% quantile of

the observed distances.

The various marginal posterior approximations are shown in Figure 4.3 by means

of box-plots. Also in this case, the non-calibrated pairwise posterior is too narrow,
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Figure 4.3: Equi-correlated normal model (continued). ABC-cs posterior compared
with the full (MCMC), the pairwise (Pair), the calibrated pairwise (Adj. Pair) and the

ABC posterior.

whereas the calibrated pairwise posterior, the ABC-cs and ABC are all quite similar

to the full posterior (MCMC), approximated via a random walk Metropolis-Hastings

algorithm. This is not surprising, since the model is a full exponential family of order

three and ABC uses exactly the sufficient statistic as summary statistic. Moreover, even

the pairwise likelihood has exponential form, with the same sufficient statistic. This

implies that the pairwise score function is proportional to the score function of the full

model (Kenne Pagui, 2013, Theorem 1, pag. 14) and the latter would lead again to the

sufficient statistic (see Sect. 4.1.1).

We also compare the posterior mean of the ABC and ABC-cs posteriors in a simulation

study over 100 Monte Carlo trials. The data are generated from the model with µ = 0,

σ2 = 1, ρ = (0.2, 0.5, 0.9), n = 30, and q = 20. At each simulated dataset, the ABC, the

ABC-cs and the exact posteriors are approximated as in the example above. From the
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simulations (see Figure 4.4), we notice that ABC and ABC-cs posterior means perform

quite similarly to the full posterior mean, as expected from the comments above.
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(b) ρ = 0.5 (κ ≈ 0.1)
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(c) ρ = 0.9 (κ ≈ 2.25)

Figure 4.4: Equi-correlated normal model (continued). Simulation study based on
100 Monte Carlo trials, with µ = 0, σ = 1 (τ = 0).

Multilevel probit

The pairwise likelihood is particularly useful for modelling correlated binary outcomes,

as discussed in Le Cessie & van Houwelingen (1994). This kind of data arise, e.g. in

the context of repeated measurements on the same individual. Maximum likelihood
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analysis in this contexts may be difficult because it involves multivariate integrals whose

dimension equals the cluster sizes.

Let us focus on a multilevel probit model with constant cluster sizes. In particular,

let Si be a latent q-variate normal with mean γi = Xiβ/σ, with β a vector of unknown

regression coefficient, σ a known scale parameter and Xi the design matrix for unit i,

and covariance matrix Σ, with Σhh = σ2, Σhk = σ2ρ, h 6= k (i = 1, . . . , n). Then, the

observed Yih is equal to 1 if Sih > 0, and 0 otherwise (h = 1, . . . , q).

The full likelihood is cumbersome since it entails calculation of multiple integrals of a q-

variate multivariate normal distribution. On the other hand, the pairwise log-likelihood

is

pℓ(β, ρ; y) =
n
∑

i=1

q−1
∑

h=1

q
∑

k=h+1

log Pr(Yih = yih, Yik = yik;β, ρ), yih, yik ∈ {0, 1} ,

where, for instance, Pr(Yih = 1, Yik = 1;β, ρ) = Φ2(γih, γik; ρ) is the standard bivariate

normal distribution with correlation ρ, and γih = xihβ/σ is the h component of γi

(i = 1, . . . , n, h, k = 1, . . . , q).

As an example, we consider data generated with β0 = ρ = 0.5, β1 = σ = 1, n = 50

and q = 7, where β0 is the intercept and β1 the coefficient of a covariate, which has

been generated from U(−1, 1). For the parameter θ = (β0, β1, κ) with κ = logit((ρ(q −
1) + 1)/q) a trivariate normal prior with independent components N(0, 5) is assumed.

For ABC we take as summary statistic the counts over individuals at each time point

h (h = 1, . . . , q), as q-dimensional summary statistic. This choice does encounter the

curse of dimentsionality as the number of time points q increases. The absolute norm

among the statistics for ABC is
∑q

h=1 |
∑n

i=1(yih−zih)|, whereas for ABC-cs we consider
the absolute norm of the difference among pairwise scores computed numerically and

evaluated at the observed MPLE. We consider 103 final samples drawn form the ABC

and ABC-cs posteriors after fixing ǫ to the 0.1% quantile of the observed distances. The

sampling is done via importance sampling, with a t-student importance density, with 5

degrees of freedom, centred at the MPLE and with scale matrix equal to 13 times the

inverse Hessian of negative pairwise log-posterior.

The various marginal posteriors are shown in Figure 4.5. For comparison we report

also an expensive MCMC approximation of the posterior based on the full likelihood

evaluated by available fortran code from Alan Genz’s website (http://www.math.wsu.

edu/faculty/genz/homepage), which for moderate to large values of q tend to be too

slow or unstable. We notice that, in this example, occasional likelihood evaluations

gave negative values, which within MCMC were treated as unacceptable, and therefore

http://www.math.wsu.edu/faculty/genz/homepage
http://www.math.wsu.edu/faculty/genz/homepage
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rejected. Clearly, the ABC posterior is quite different from the target (MCMC), whereas

ABC-cs posterior gives a more accurate approximation to the true posterior.
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Figure 4.5: Correlated binary data. ABC-cs posterior compared with the ABC, the
pairwise (Pair), the exact posterior (MCMC) for a simulated dataset with n = 50 and

q = 7.

A simulation study is conducted over 100 Monte Carlo samples, where the covariate xih

are simulated as previously, with β0 = 0.5, β1 = 1, n = 50, q = 7 and ρ = {0.2, 0.5, 0.9}.
For each simulated dataset, we consider the mean of 103 final samples drawn from

ABC and ABC-cs posteriors, respectively, via the importance sampling with ǫ = 1%.

The simulation algorithm is the same as above. Since for some datasets, occasional

evaluations of the likelihood gave negative values, results based on the full posterior are

not reported.

From the simulations shown in Figure 4.6, it is evident that the ABC mean can perform

very poorly, especially for extreme correlation values. On the other hand, the ABC-cs

mean is less biased and more precise.

MA(2) process

Consider an MA(p) process, defined as

Yt = ut +

p
∑

i=1

θiut−i,

where ut (t = 1, . . . , q), is an independent sequence of normals N(µ, σ2), and θi (i =

1, . . . , p), must satisfy the identifiability conditions, namely that the roots of the poly-

nomial

Q(x) = 1−
p

∑

i=1

θix
i

are all outside of the unit circle in the complex plane. This stochastic process is typically

used for time series analyses.
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(b) ρ = 0.5 (κ = 0.29)
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(c) ρ = 0.9 (κ = 2.37)

Figure 4.6: Correlated binary data. Simulations based on 100 Monte Carlo trials,
with β0 = 0.5, β1 = 1.

The likelihood of the MA(p) model, obtained by integrating out the random compo-

nents ut (see, e.g., Hamilton, 1994), involves inversions of q × q covariance matrices,

which for large p and q may be computationally challenging owning to the matrix inver-

sions. A better approach is to resort to the Kalman filter (see Hamilton, 1994, Ch. 13).

However, as shown by Marin et al. (2012), the ABC algorithm works well in this example

so it is instructive to compare it with ABC-cs based on the composite likelihood.
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We focus on the MA(2) model. As in Marin et al. (2012), we assume µ = 0, σ2 = 1,

and the prior for θ = (θ1, θ2) is assumed uniform in the parameter space, i.e. the triangle

−2 < θ1 < 2, θ1 + θ2 > −1, θ1 − θ2 < 1 ,

and use as summary statistics for ABC the first three autocovariances

τj =

q
∑

t=j+1

ytyt−j , j = 0, 1, 2.

In this example, given the model structure (see e.g. Hamilton, 1994, p. 130), we use a

triplewise log-likelihood (Hjort & Varin, 2008; Varin, 2008) of the form

cℓ(θ; y) =

q−2
∑

t=1

log p(yt, yt+1, yt+2; θ) .

As in Marin et al. (2012), we draw n = 100 values from the MA(2) model, with param-

eters (θ1, θ2) = (0.6, 0.2). For the ABC-cs posterior the triplewise score is evaluated at

the observed MCLE. A sample of 103 final values is drawn from the ABC and ABC-cs

posteriors. These samples are obtained generating from the prior and ǫ is fixed to the

0.1% quantile of the observed distances. For illustration purposes the ABC and ABC-cs

posteriors are compared also with the “exact” posterior approximated with a random

walk Metropolis-Hastings algorithm. From the posteriors, shown in Figure 4.7, we notice

that ABC approximation tends to be slightly worse than than ABC-cs.

A simulation study is performed, with 100 Monte Carlo samples drawn from the true

model with the parameter (θ1, θ2) = (0.6, 0.2). For each simulated dataset, we run ABC

and ABC-cs with 103 final samples and ǫ fixed to the 0.1% quantile of the observed

distances. Over this final draws the average is taken and it is compared also with the

mode of the exact posterior. The simulation results are plotted in Figure 4.8. Both

ABC methods give reasonable results when compared to exact posterior, with ABC-cs

being overall preferable to ordinary ABC.

4.1.3 Remarks

A new procedure for constructing summary statistics for ABC is proposed, which is

based on score or composite score functions. An advantage of the proposed method is

that, by construction, the summary statistics automatically incorporate relevant features

of the complex model, and its dimension is the same as the number of parameters.

Moreover, no post processing is, or pilot runs or ad hoc summaries of the data. The
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Figure 4.7: MA(2) model. Top panel: comparison of the level sets (in black) of the
posterior distribution against simulated values with ABC (black dots) and ABC-cs (red
dots), with box-plots of the ABC posterior (black) against ABC-cs (red). Bottom-left
(bottom-right) panel: histogram of the marginal posterior of θ1 (θ2), compared with

ABC (continued) and ABC-cs (dashed red coloured).
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Figure 4.8: MA(2) model. Comparisons of the exact posterior mode, ABC and ABC-
cs posterior mean in 100 Monte Carlo trials, with (θ1, θ2) = (0.6, 0.2) (horizontal lines).

proposed approach can be fruitfully used within more elaborate Monte Carlo algorithms,

such as MCMC, or sequential Monte Carlo methods, although this possibility has not
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been explored yet.

The success of the ABC-cs procedure depends on how good is the composite likelihood

as a surrogate for the full model likelihood, given the observed data. In complex models,

composite likelihoods are ideal inferential tools for deriving useful parameter estimates.

Although in the examples we focused mainly on composite marginal likelihoods, this is

only a special case of the general class of composite likelihoods. Indeed, there exists a

wide range of possibilities for constructing composite likelihoods, and the choice depends

on the structure and complexity of the model at hand. There is a rich and growing

literature on this topic, which we believe may be fruitfully used in ABC applications.

Finally, we note that we used the composite likelihood as a natural basis to construct a

suitable unbiased estimating function in complex models. However, the proposed ABC

algorithm works with any unbiased estimating function, such as for instance those used

in the robust literature (see, e.g., Huber & Roncetti, 2009).
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4.2 A quasi-likelihood proposal for ABC

ABC is a set of approximation methods useful for Bayesian inference when the likeli-

hood function L(θ) is analytically or computationally intractable. However, as outlined

in Section 2.5.2 (see also Sec. 4.1), ABC has several issues. Among these, we note the

choice of the summary statistic, on which an original contribution was shown in Section

4.1. The second issue is related to the inefficiency of the original ABC accept-reject

algorithm (see Algorithm 3) when the prior and the bulk of the likelihood are noticeably

different. For instance, with flat or improper priors, i.e.
∫

π(θ)dθ = ∞, Algorithm 3

cannot be used.

Assume that a suitable summary statistic η(·) is available, with the same dimension

as θ, and consider instances where the original ABC accept-reject algorithm is compu-

tationally too expensive because the prior is vague. To simplify notation, let η = η(y)

and ηobs = η(yobs). At present, there are two ABC algorithms to deal with this: the

ABC-MCMC proposed by Marjoram et al. (2003) and the ABC-IS algorithm based on IS

(see, e.g., Fearnhead & Prangle, 2012). The former bypasses prior simulation by drawing

candidate values from a suitable proposal distribution q(·), and then the proposed val-

ues are evaluated in a Metropolis-Hastings-like acceptance step. As in the usual MCMC

setting, the proposal distribution can be an independent kernel or a Markov kernel.

The ABC-MCMC algorithm with an independent proposal distribution q(·) is given in

Algorithm 6 (see Algorithm 3 of Marin et al., 2012, for ABC-MCMC with a Markov

kernel).

Result: A dependent sample (θ(1), . . . , θ(m)) from π(θ|ηobs)
Data: ǫ, η(·), initial value θ(0) and q(·)
for t = 1 → m do

repeat

1 draw θ∗ ∼ q(·)
2 draw y ∼ f(y; θ∗) and set η = η(y)

3 draw u ∼ U(0, 1)

4 compute R = π(θ∗)q(θ(t−1))

π(θ(t−1))q(θ∗)

until ρ(η, ηobs) ≤ ǫ and u ≤ R;

5 set θ(t) = θ∗

end

Algorithm 6: ABC-MCMC sampler.

Algorithm 6 needs suitable starting values θ(0), as well as a threshold ǫ. While θ(0) can

be found by an initial run of the original accept-reject algorithm or by trial-and-error,
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the threshold can be fixed to some lower quantile of the distances among the summary

statistics.

The ABC-IS method, given in Algorithm 7 (see also Fearnhead & Prangle, 2012, for an-

other version), uses the importance density f(θ) to draw suitable candidate values, which

are then weighted according to the prior and the distance among the summary statistics.

Result: A weighted sample (θ(1), . . . , θ(m)) from π(θ|ηobs)
Data: ǫ, η(·), and importance density f(θ)

for t = 1 → m do

repeat

1 draw θ∗ ∼ f(·)
2 draw y ∼ f(y; θ∗) and set η = η(y)

3 compute ω∗ = π(θt)

f(θ(t))

until ρ(η, ηobs) ≤ ǫ;

4 set (θ(t), ω(t)) = (θ∗, ω∗)

end

Algorithm 7: ABC-MCMC sampler.

Also Algorithm 7 must deal with ǫ, which can be fixed as for ABC-MCMC.

The crucial point with ABC-MCMC (ABC-IS) is how to choose a good q(θ) (f(θ)).

Indeed, the efficiency of the ABC-MCMC (ABC-IS) algorithm relies on q(θ) (f(θ)), and

a poor choice may lead to misleading results. Intuition suggests that q(θ) (f(θ)) should

be as similar as possible to the posterior distribution. However, as the likelihood function

is unavailable, so is the posterior distribution, and this makes the determination of q(θ)

(f(θ)) difficult. Notice that ABC algorithms based on Sequential Monte Carlo (SMC)

methods, such as those proposed by Sisson et al. (2007, 2009), and by Beaumont et al.

(2009) can be seen as a generalization of ABC-IS, where a perturbing kernel is used in

order to bring the simulated values as close as possible to the target, by progressively

reducing the threshold ǫ. The choice of the perturbing kernel plays a crucial role in the

performance of these algorithms.

In this section we discuss a default proposal distribution, which can be used as an

independent kernel for ABC-MCMC or like an importance density for ABC-IS. Given

a summary statistic η(·), which is assumed to be informative, although not necessarily

sufficient for θ, the relation between η and θ is considered. In the scalar parameter

case, by treating this relation as an unbiased estimating function and using the theory

of quasi-likelihoods (McCullagh, 1991), we derive a normal distribution – with suitable

parameters depending on the observed summary statistics – on the space of η. Finally,

using the aforementioned relation between η and θ, which is assumed to be one-to-one,
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we transform the proposed values drawn from the normal distribution, to θ, leading to

proposed parameter values θ∗. For vector-valued parameters, quasi-likelihoods are diffi-

cult to find, and in such cases we present an extension based on asymptotic arguments.

This proposal, which we call the QL proposal, can be used as an independent kernel

for ABC-MCMC or as importance density for ABC-IS. The QL proposal has the obvious

advantage, over other type of proposals, in that it is built upon the relation between η

and θ and takes the observed data into account. Hence, QL produces candidate values

which are in the bulk of the likelihood. However, QL is effective if η(·) is informative for

θ, as is the case for every ABC algorithm. Moreover, it is assumed there exists a one-

to-one relation between them. In practice, this function may be unknown, and in the

following we show how it can be to estimated by means of usual regression techniques.

4.2.1 The quasi-likelihood proposal

The theory and the use of estimating equations and of the related quasi- and quasi-

profile likelihood functions has received much attention in recent years; see among others,

Liang & Zeger (1995); Barndorff-Nielsen (1995); Desmond (1997); Heyde (1997); Adimari

& Ventura (2002); Severini (2002); Wang & Hanfelt (2003); Bellio et al. (2008). See,

in addition, Ventura et al. (2010); Lin (2006); Greco et al. (2008) discuss the use of

quasi-likelihood functions in the Bayesian setting.

Let η ∈ IR, let y be a realization of Y ∼ p(y; θ) with θ ∈ IRd. Moreover, let s(θ; η) be

an unbiased estimating function, based on the data η, i.e. Eθ{s(θ; η)} = 0.

The quasi-likelihood for θ, based on s(θ; η) is given by (McCullagh, 1991)

LQ(θ) = exp

{
∫ θ

c0

A(x)s(x; η) dx

}

, (4.5)

where A(θ) = Ks(θ)/Js(θ), Js(θ) = varθ{s(θ; η)}, Ks(θ) = Eθ{−ds(θ; η)/dθ}, and c0 is

an arbitrary constant.

For a scalar parameter (4.5) is easy to compute. The aim of this section is to use (4.5)

to derive a proposal distribution, as shown by the following proposition.

Proposition 4.1. Let ψ(θ) = Eθ(η; θ) be a bounded regression function under the full

model p(y; θ), for which |ψ′(θ)| <∞, where ψ′(θ) = dψ(θ)/dθ. Moreover, let the variance

σ2ψ = varθ(η; θ) be constant with respect to θ.

Consider the estimating function s(θ; η) = η − ψ(θ). Then

LQ(θ) = φ

{

ψ(θ)− η

σψ

}

,
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where φ(·) is the the standard normal density function.

Proof. The estimating function s(θ; η) is unbiased since by definition E{η − ψ(θ)} =

ψ(θ)− ψ(θ) = 0. In this case Js(θ) = ψ′(θ), Ks(θ) = σ2ψ, so A(θ) = ψ′(θ)/σ2ψ and from

(4.5) we have that

LQ(θ) = exp

[

∫ θ

c0

ψ′(θ)

σ2ψ
{η − ψ(θ)}

]

∝ 1

σψ
exp

[

−{ψ(θ)− η}2
2σ2ψ

]

, (4.6)

which is the kernel of the normal distribution centred at η with variance σ2ψ.

Following Proposition 4.1, we suggest to use the quasi-likelihood (4.6), with η = ηyobs,

as a proposal distribution for θ, which is given by

q(θ) = LQ(θ)|ψ′(θ)| = φ

{

ψ(θ)− ηobs

σψ

}

|ψ′(θ)|. (4.7)

The distribution (4.7) can be used as an independent kernel within the ABC-MCMC

algorithm, as shown for instance by Algorithm 8. Similarly, (4.7) can by used as an

importance density in Algorithm 7. However, in the following we focus on the use of

(4.7) as a proposal distributions for ABC-MCMC algorithms.

Result: A dependent sample (θ(1), . . . , θ(m)) from π(θ|ηobs)
Data: ǫ, η(·)

1 set θ(0) = ψ−1(ηobs)

for t = 1 → m do

repeat

2 draw ψ∗ ∼ N(ηobs, σ2ψ)

3 set θ∗ = {θ : ψ−1(ψ∗) = θ∗}
4 draw y ∼ p(y; θ∗) and set η = η(y)

5 draw u ∼ U(0, 1)

6 compute R =
π(θ∗)LQ(θ(t−1))|ψ′(θ(t−1))|

π(θ(t−1))LQ(θ∗)|ψ′(θ∗)|

until ρ(η, ηobs) ≤ ǫ and u ≤ R;

7 set θ(t) = θ∗

end

Algorithm 8: ABC-MCMC with the quasi-likelihood proposal.

Essentially, the regression function ψ(θ) acts as a suitable reparametrization of θ, which

requires s and θ to be stochastically related. Except in some situations (see for instance
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Sect. 4.1), ψ(θ) as well as σψ are generally unknown. Hence, we suggest to replace them

by their estimated versions ψ̂(θ) and σ̂ψ, obtained as follows.

Estimation of ψ(θ)

The estimation of ψ(θ) and σψ can be performed in a pilot-run simulation. In this pilot-

run study, we set an equispaced grid ofM values of θ denoted with θp = (θ
(1)
p , . . . , θ

(M)
p ),

suitably taken in some large subset of Θ. We simulate a dataset for each parameter

value form the full model p(y; θ), and end up with an M -dimensional vector of simu-

lated summary statistics ηp = (η
(1)
p , . . . , η

(M)
p ). Next, ηp is regressed on θp, and set the

estimated regression function equal to ψ̂(θ) and σ2ψ is estimated by the residual variance

σ̂2ψ =M−1
∑M

i=1{ψ̂(θ
(i)
p )− η

(i)
p }.

The regression estimator ψ̂(θ) can be any method which provides smoothed functions,

which are at least once differentiable. In the example shown in the next section, we

consider smoothing splines, for which the required first derivative, e.g. the Jacobian of

the transformation, can be readily obtained. The inverse ψ̂−1(ψ∗), at point ψ∗, can be

computed by usual numerical methods, such as the bisection method.

The range of the grid θp must be wide enough to include values of ηp which are

compatible with the observed one ηobs. Lastly, the hypothesis of constant regression

variance σ2ψ = varθ(η; θ), can be inspected by usual regression diagnostics, and if not

satisfied can be achieved by suitable transformations.

Generalization for d > 1

Now let d > 1, and let ηobs be the d-dimensional vector of suitable summary statistics.

In this case the theory of quasi-likelihoods is not very helpful. Indeed, when d > 1

it is known that LQ(θ) exists if and only if the matrix B(θ) is symmetric (see, e.g.,

McCullagh, 1991).

We propose to take the quadratic form

LmQ(θ) = |Σψ|−1/2 exp

[

−1

2
{ψ(θ)− ηobs}TΣ−1

ψ {ψ(θ)− ηobs}
]

(4.8)

as a quasi-likelihood for vector-valued parameters. In (4.8), ψ(θ) = (ψ1(θ), . . . , ψd(θ))

is a bounded and monotone vector-valued regression function and Σψ is the conditional

covariance matrix assumed to be independent of θ.
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Therefore, the proposal distribution for ABC-MCMC is

q(θ) = LmQ(θ)|ψ′(θ)| = φd(ψ(θ); η
obs,Σψ)|ψ′(θ)|. (4.9)

The functions ψ(θ) and the matrix Σr are generally unknown. To estimate them, we

suggest to consider a pilot-run simulation study as before. In particular, let θpd be an

Md × d matrix given by the Cartesian product of d regular grids θp1, . . . θpd, each made

of M equispaced values, in some suitable subspace of Θ. For each value of θpd, we take

the associated η simulated from the model, and consider the matrix of simulated values

ηpd. The next step is to regress ηpi on θ and take as ri(θ) the estimated regression

function r̂i(θ) (i = 1, . . . , d). Moreover, given e = (e1, . . . , ed), the M
d × d matrix of

regression residuals, we approximate Σψ by Σ̂ψ =M−1eT e.

Many of the observations made previously apply also here, suitably adapted. In order

to guarantee enough flexibility, and since we are mainly interested in predicting η, r(θ)

can be considered in the class of generalized additive regression models (Stone, 1985), in

which each of the d components of θ enters the linear predictor by means of a smooth-

ing spline as discussed, for instance, in Faraway (2006, Ch. 12). While the proposed

approach limits the number of statistics to be equal to the number of parameters, this

is in line with the general recommendation in the ABC literature.

4.2.2 An example: the coalescent model

Given a set of n DNA sequences, the aim of the coalescent model (Tavaré et al.,

1997) is to estimate the effective mutation rate θ > 0, under the infinitely-many-sites

assumption. In this model the mutations occur at rate θ at DNA sites that have not been

hit by mutation before. If a site is affected by a mutation, then it is said to be segregating

in the sample. In this example, the summary statistic is the number of segregating sites,

e.g. η = y (see also Blum & François, 2010) The generating mechanism for y is the

following:

(1) generate the length of the genealogical tree of n sequences, given by Tn =
∑n

j=2Wj ,

where Wj are exponential random variables with mean 2/j(j − 1);

(2) generate Y ∼ Poi(θTn/2), from the Poisson distribution with mean θTn/2.

The likelihood of the coalescent model is the marginal density of Y |θ with Tn integrated

out. This likelihood has a closed form only for n = 2. However, an approximation of

the likelihood for every n, can be obtained by simply integrating out Tn via standard

Monte Carlo integration.
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Figure 4.9: Coalescent model. Comparisons of MSEs calculated for different values of
θ over 100 replications, for the mean of the parametric posterior, the ABC and ABCql.

In this example, the prior is assumed to be an exponential random variable with

unit mean, the parameter is taken in logarithmic scale, and the summary statistic is

η = log(y + 1). The function ψ(θ) is estimated with a smoothing spline in a grid of

m = 1000 values, and the related Jacobian is computed numerically. The required

inversions are performed with the bisection method.

In Figure 4.9 we compare the ABC-MCMC method with the proposed kernel based

on the quasi-likelihood, called ABCql, with the standard ABC accept/reject algorithm,

as well as the parametric posterior, where the likelihood is obtained via Monte Carlo

integration. As an example, we take a sample of n = 100 sequences and consider the

MSE over 100 replications from the model and with different parameter values. At each

replication, the ABC abd ABCql posteriors are approximated by a simulated sample

of size 1000 obtained by setting ǫ to 0.1%th quantile of the absolute distances of the

summary statistics.

By treating the parametric approximation as the gold standard, we compare the quan-

tiles of ABC and ABCql, respectively with those of the parametric approximation Q0
p,

by the relative difference (Qp−Q0
p)/Q

0
p, where Qp is the pth quantile of ABC or ABCql

(see also Blum & François, 2010), for p ∈ (0, 1). Figure 4.10 shows such relative dif-

ferences, where we can see that these differences are more robust with respect to θ for

ABCql rather than for the ABC, which can be explained by the impact of the prior in

the standard ABC algorithm.
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4.2.3 Remarks

We discussed a new proposal distribution for ABC-MCMC algorithms. Given a sum-

mary statistic and provided it is informative for θ, the proposal distribution in the scalar

parameter case is obtained by using the theory of quasi-likelihood. The idea of the quasi-

likelihood proposal is readily extended for dealing with multidimensional parameters and

its application to real examples is under development.

A crucial point to the success of the method is the existence of a stochastic relation

between η and θ, which we assume to be invertible. This relation is typically unknown,

and we proposed an estimated version obtained by means of smoothing splines.

As a final comment, we remark that the proposed kernel can be used also as an

importance density for ABC-IS algorithms, although we did not pursue this use here.
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