523 research outputs found

    Online Learning: Beyond Regret

    Get PDF
    We study online learnability of a wide class of problems, extending the results of (Rakhlin, Sridharan, Tewari, 2010) to general notions of performance measure well beyond external regret. Our framework simultaneously captures such well-known notions as internal and general Phi-regret, learning with non-additive global cost functions, Blackwell's approachability, calibration of forecasters, adaptive regret, and more. We show that learnability in all these situations is due to control of the same three quantities: a martingale convergence term, a term describing the ability to perform well if future is known, and a generalization of sequential Rademacher complexity, studied in (Rakhlin, Sridharan, Tewari, 2010). Since we directly study complexity of the problem instead of focusing on efficient algorithms, we are able to improve and extend many known results which have been previously derived via an algorithmic construction

    Advances in Zero-Sum Dynamic Games

    Get PDF
    International audienceThe survey presents recent results in the theory of two-person zero-sum repeated games and their connections with differential and continuous-time games. The emphasis is made on the following(1) A general model allows to deal simultaneously with stochastic and informational aspects.(2) All evaluations of the stage payoffs can be covered in the same framework (and not only the usual Cesàro and Abel means).(3) The model in discrete time can be seen and analyzed as a discretization of a continuous time game. Moreover, tools and ideas from repeated games are very fruitful for continuous time games and vice versa.(4) Numerous important conjectures have been answered (some in the negative).(5) New tools and original models have been proposed. As a consequence, the field (discrete versus continuous time, stochastic versus incomplete information models) has a much more unified structure, and research is extremely active

    Examples of covering properties of boundary points of space-times

    Full text link
    The problem of classifying boundary points of space-time, for example singularities, regular points and points at infinity, is an unexpectedly subtle one. Due to the fact that whether or not two boundary points are identified or even "nearby" is dependant on the way the space-time is embedded, difficulties occur when singularities are thought of as an inherently local aspect of a space-time, as an analogy with electromagnetism would imply. The completion of a manifold with respect to a pseudo-Riemannian metric can be defined intrinsically, [SS94]. This is done via an equivalence relation, formalising which boundary sets cover other sets. This paper works through the possibilities, providing examples to show that all covering relations not immediately ruled out by the definitions are possible

    Approachability in unknown games: Online learning meets multi-objective optimization

    Full text link
    In the standard setting of approachability there are two players and a target set. The players play repeatedly a known vector-valued game where the first player wants to have the average vector-valued payoff converge to the target set which the other player tries to exclude it from this set. We revisit this setting in the spirit of online learning and do not assume that the first player knows the game structure: she receives an arbitrary vector-valued reward vector at every round. She wishes to approach the smallest ("best") possible set given the observed average payoffs in hindsight. This extension of the standard setting has implications even when the original target set is not approachable and when it is not obvious which expansion of it should be approached instead. We show that it is impossible, in general, to approach the best target set in hindsight and propose achievable though ambitious alternative goals. We further propose a concrete strategy to approach these goals. Our method does not require projection onto a target set and amounts to switching between scalar regret minimization algorithms that are performed in episodes. Applications to global cost minimization and to approachability under sample path constraints are considered
    • …
    corecore