We study online learnability of a wide class of problems, extending the
results of (Rakhlin, Sridharan, Tewari, 2010) to general notions of performance
measure well beyond external regret. Our framework simultaneously captures such
well-known notions as internal and general Phi-regret, learning with
non-additive global cost functions, Blackwell's approachability, calibration of
forecasters, adaptive regret, and more. We show that learnability in all these
situations is due to control of the same three quantities: a martingale
convergence term, a term describing the ability to perform well if future is
known, and a generalization of sequential Rademacher complexity, studied in
(Rakhlin, Sridharan, Tewari, 2010). Since we directly study complexity of the
problem instead of focusing on efficient algorithms, we are able to improve and
extend many known results which have been previously derived via an algorithmic
construction