827 research outputs found

    Enabling technology for non-rigid registration during image-guided neurosurgery

    Get PDF
    In the context of image processing, non-rigid registration is an operation that attempts to align two or more images using spatially varying transformations. Non-rigid registration finds application in medical image processing to account for the deformations in the soft tissues of the imaged organs. During image-guided neurosurgery, non-rigid registration has the potential to assist in locating critical brain structures and improve identification of the tumor boundary. Robust non-rigid registration methods combine estimation of tissue displacement based on image intensities with the spatial regularization using biomechanical models of brain deformation. In practice, the use of such registration methods during neurosurgery is complicated by a number of issues: construction of the biomechanical model used in the registration from the image data, high computational demands of the application, and difficulties in assessing the registration results. In this dissertation we develop methods and tools that address some of these challenges, and provide components essential for the intra-operative application of a previously validated physics-based non-rigid registration method.;First, we study the problem of image-to-mesh conversion, which is required for constructing biomechanical model of the brain used during registration. We develop and analyze a number of methods suitable for solving this problem, and evaluate them using application-specific quantitative metrics. Second, we develop a high-performance implementation of the non-rigid registration algorithm and study the use of geographically distributed Grid resources for speculative registration computations. Using the high-performance implementation running on the remote computing resources we are able to deliver the results of registration within the time constraints of the neurosurgery. Finally, we present a method that estimates local alignment error between the two images of the same subject. We assess the utility of this method using multiple sources of ground truth to evaluate its potential to support speculative computations of non-rigid registration

    Multi-Material Mesh Representation of Anatomical Structures for Deep Brain Stimulation Planning

    Get PDF
    The Dual Contouring algorithm (DC) is a grid-based process used to generate surface meshes from volumetric data. However, DC is unable to guarantee 2-manifold and watertight meshes due to the fact that it produces only one vertex for each grid cube. We present a modified Dual Contouring algorithm that is capable of overcoming this limitation. The proposed method decomposes an ambiguous grid cube into a set of tetrahedral cells and uses novel polygon generation rules that produce 2-manifold and watertight surface meshes with good-quality triangles. These meshes, being watertight and 2-manifold, are geometrically correct, and therefore can be used to initialize tetrahedral meshes. The 2-manifold DC method has been extended into the multi-material domain. Due to its multi-material nature, multi-material surface meshes will contain non-manifold elements along material interfaces or shared boundaries. The proposed multi-material DC algorithm can (1) generate multi-material surface meshes where each material sub-mesh is a 2-manifold and watertight mesh, (2) preserve the non-manifold elements along the material interfaces, and (3) ensure that the material interface or shared boundary between materials is consistent. The proposed method is used to generate multi-material surface meshes of deep brain anatomical structures from a digital atlas of the basal ganglia and thalamus. Although deep brain anatomical structures can be labeled as functionally separate, they are in fact continuous tracts of soft tissue in close proximity to each other. The multi-material meshes generated by the proposed DC algorithm can accurately represent the closely-packed deep brain structures as a single mesh consisting of multiple material sub-meshes. Each sub-mesh represents a distinct functional structure of the brain. Printed and/or digital atlases are important tools for medical research and surgical intervention. While these atlases can provide guidance in identifying anatomical structures, they do not take into account the wide variations in the shape and size of anatomical structures that occur from patient to patient. Accurate, patient-specific representations are especially important for surgical interventions like deep brain stimulation, where even small inaccuracies can result in dangerous complications. The last part of this research effort extends the discrete deformable 2-simplex mesh into the multi-material domain where geometry-based internal forces and image-based external forces are used in the deformation process. This multi-material deformable framework is used to segment anatomical structures of the deep brain region from Magnetic Resonance (MR) data

    Proceedings, MSVSCC 2018

    Get PDF
    Proceedings of the 12th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2018 at VMASC in Suffolk, Virginia. 155 pp

    Interfaces for Modular Surgical Planning and Assistance Systems

    Get PDF
    Modern surgery of the 21st century relies in many aspects on computers or, in a wider sense, digital data processing. Department administration, OR scheduling, billing, and - with increasing pervasion - patient data management are performed with the aid of so called Surgical Information Systems (SIS) or, more general, Hospital Information Systems (HIS). Computer Assisted Surgery (CAS) summarizes techniques which assist a surgeon in the preparation and conduction of surgical interventions. Today still predominantly based on radiology images, these techniques include the preoperative determination of an optimal surgical strategy and intraoperative systems which aim at increasing the accuracy of surgical manipulations. CAS is a relatively young field of computer science. One of the unsolved "teething troubles" of CAS is the absence of technical standards for the interconnectivity of CAS system. Current CAS systems are usually "islands of information" with no connection to other devices within the operating room or hospital-wide information systems. Several workshop reports and individual publications point out that this situation leads to ergonomic, logistic, and economic limitations in hospital work. Perioperative processes are prolonged by the manual installation and configuration of an increasing amount of technical devices. Intraoperatively, a large amount of the surgeons'' attention is absorbed by the requirement to monitor and operate systems. The need for open infrastructures which enable the integration of CAS devices from different vendors in order to exchange information as well as commands among these devices through a network has been identified by numerous experts with backgrounds in medicine as well as engineering. This thesis contains two approaches to the integration of CAS systems: - For perioperative data exchange, the specification of new data structures as an amendment to the existing DICOM standard for radiology image management is presented. The extension of DICOM towards surgical application allows for the seamless integration of surgical planning and reporting systems into DICOM-based Picture Archiving and Communication Systems (PACS) as they are installed in most hospitals for the exchange and long-term archival of patient images and image-related patient data. - For the integration of intraoperatively used CAS devices, such as, e.g., navigation systems, video image sources, or biosensors, the concept of a surgical middleware is presented. A c++ class library, the TiCoLi, is presented which facilitates the configuration of ad-hoc networks among the modules of a distributed CAS system as well as the exchange of data streams, singular data objects, and commands between these modules. The TiCoLi is the first software library for a surgical field of application to implement all of these services. To demonstrate the suitability of the presented specifications and their implementation, two modular CAS applications are presented which utilize the proposed DICOM extensions for perioperative exchange of surgical planning data as well as the TiCoLi for establishing an intraoperative network of autonomous, yet not independent, CAS modules.Die moderne Hochleistungschirurgie des 21. Jahrhunderts ist auf vielerlei Weise abhängig von Computern oder, im weiteren Sinne, der digitalen Datenverarbeitung. Administrative Abläufe, wie die Erstellung von Nutzungsplänen für die verfügbaren technischen, räumlichen und personellen Ressourcen, die Rechnungsstellung und - in zunehmendem Maße - die Verwaltung und Archivierung von Patientendaten werden mit Hilfe von digitalen Informationssystemen rationell und effizient durchgeführt. Innerhalb der Krankenhausinformationssysteme (KIS, oder englisch HIS) stehen für die speziellen Bedürfnisse der einzelnen Fachabteilungen oft spezifische Informationssysteme zur Verfügung. Chirurgieinformationssysteme (CIS, oder englisch SIS) decken hierbei vor allen Dingen die Bereiche Operationsplanung sowie Materialwirtschaft für spezifisch chirurgische Verbrauchsmaterialien ab. Während die genannten HIS und SIS vornehmlich der Optimierung administrativer Aufgaben dienen, stehen die Systeme der Computerassistierten Chirugie (CAS) wesentlich direkter im Dienste der eigentlichen chirugischen Behandlungsplanung und Therapie. Die CAS verwendet Methoden der Robotik, digitalen Bild- und Signalverarbeitung, künstlichen Intelligenz, numerischen Simulation, um nur einige zu nennen, zur patientenspezifischen Behandlungsplanung und zur intraoperativen Unterstützung des OP-Teams, allen voran des Chirurgen. Vor allen Dingen Fortschritte in der räumlichen Verfolgung von Werkzeugen und Patienten ("Tracking"), die Verfügbarkeit dreidimensionaler radiologischer Aufnahmen (CT, MRT, ...) und der Einsatz verschiedener Robotersysteme haben in den vergangenen Jahrzehnten den Einzug des Computers in den Operationssaal - medienwirksam - ermöglicht. Weniger prominent, jedoch keinesfalls von untergeordnetem praktischen Nutzen, sind Beispiele zur automatisierten Überwachung klinischer Messwerte, wie etwa Blutdruck oder Sauerstoffsättigung. Im Gegensatz zu den meist hochgradig verteilten und gut miteinander verwobenen Informationssystemen für die Krankenhausadministration und Patientendatenverwaltung, sind die Systeme der CAS heutzutage meist wenig oder überhaupt nicht miteinander und mit Hintergrundsdatenspeichern vernetzt. Eine Reihe wissenschaftlicher Publikationen und interdisziplinärer Workshops hat sich in den vergangen ein bis zwei Jahrzehnten mit den Problemen des Alltagseinsatzes von CAS Systemen befasst. Mit steigender Intensität wurde hierbei auf den Mangel an infrastrukturiellen Grundlagen für die Vernetzung intraoperativ eingesetzter CAS Systeme miteinander und mit den perioperativ eingesetzten Planungs-, Dokumentations- und Archivierungssystemen hingewiesen. Die sich daraus ergebenden negativen Einflüsse auf die Effizienz perioperativer Abläufe - jedes Gerät muss manuell in Betrieb genommen und mit den spezifischen Daten des nächsten Patienten gefüttert werden - sowie die zunehmende Aufmerksamkeit, welche der Operateur und sein Team auf die Überwachung und dem Betrieb der einzelnen Geräte verwenden muss, werden als eine der "Kinderkrankheiten" dieser relativ jungen Technologie betrachtet und stehen einer Verbreitung über die Grenzen einer engagierten technophilen Nutzergruppe hinaus im Wege. Die vorliegende Arbeit zeigt zwei parallel von einander (jedoch, im Sinne der Schnittstellenkompatibilität, nicht gänzlich unabhängig voneinander) zu betreibende Ansätze zur Integration von CAS Systemen. - Für den perioperativen Datenaustausch wird die Spezifikation zusätzlicher Datenstrukturen zum Transfer chirurgischer Planungsdaten im Rahmen des in radiologischen Bildverarbeitungssystemen weit verbreiteten DICOM Standards vorgeschlagen und an zwei Beispielen vorgeführt. Die Erweiterung des DICOM Standards für den perioperativen Einsatz ermöglicht hierbei die nahtlose Integration chirurgischer Planungssysteme in existierende "Picture Archiving and Communication Systems" (PACS), welche in den meisten Fällen auf dem DICOM Standard basieren oder zumindest damit kompatibel sind. Dadurch ist einerseits der Tatsache Rechnung getragen, dass die patientenspezifische OP-Planung in hohem Masse auf radiologischen Bildern basiert und andererseits sicher gestellt, dass die Planungsergebnisse entsprechend der geltenden Bestimmungen langfristig archiviert und gegen unbefugten Zugriff geschützt sind - PACS Server liefern hier bereits wohlerprobte Lösungen. - Für die integration intraoperativer CAS Systeme, wie etwa Navigationssysteme, Videobildquellen oder Sensoren zur Überwachung der Vitalparameter, wird das Konzept einer "chirurgischen Middleware" vorgestellt. Unter dem Namen TiCoLi wurde eine c++ Klassenbibliothek entwickelt, auf deren Grundlage die Konfiguration von ad-hoc Netzwerken während der OP-Vorbereitung mittels plug-and-play Mechanismen erleichtert wird. Nach erfolgter Konfiguration ermöglicht die TiCoLi den Austausch kontinuierlicher Datenströme sowie einzelner Datenpakete und Kommandos zwischen den Modulen einer verteilten CAS Anwendung durch ein Ethernet-basiertes Netzwerk. Die TiCoLi ist die erste frei verfügbare Klassenbibliothek welche diese Funktionalitäten dediziert für einen Einsatz im chirurgischen Umfeld vereinigt. Zum Nachweis der Tauglichkeit der gezeigten Spezifikationen und deren Implementierungen, werden zwei modulare CAS Anwendungen präsentiert, welche die vorgeschlagenen DICOM Erweiterungen zum perioperativen Austausch von Planungsergebnissen sowie die TiCoLi zum intraoperativen Datenaustausch von Messdaten unter echzeitnahen Anforderungen verwenden

    Tetrahedral Image-to-Mesh Conversion Software for Anatomic Modeling of Arteriovenous Malformations

    Get PDF
    We describe a new implementation of an adaptive multi-tissue tetrahedral mesh generator targeting anatomic modeling of Arteriovenous Malformation (AVM) for surgical simulations. Our method, initially constructs an adaptive Body-Centered Cubic (BCC) mesh of high quality elements. Then, it deforms the mesh surfaces to their corresponding physical image boundaries, hence, improving the mesh fidelity and smoothness. Our deformation scheme, which builds upon the ITK toolkit, is based on the concept of energy minimization, and relies on a multi-material point-based registration. It uses non-connectivity patterns to implicitly control the number of the extracted feature points needed for the registration, and thus, adjusts the trade-off between the achieved mesh fidelity and the deformation speed. While many medical imaging applications require robust mesh generation, there are few codes available to the public. We compare our implementation with two similar open-source image-to-mesh conversion codes: (1) Cleaver from US, and (2) CGAL from EU. Our evaluation is based on five isotropic/anisotropic segmented images, and relies on metrics like geometric & topologic fidelity, mesh quality, gradation and smoothness. The implementation we describe is open- source and it will be available within: (i) the 3D Slicer package for visualization and image analysis from Harvard Medical School, and (ii) an interactive simulator for neurosurgical procedures involving vasculature using SOFA, a framework for real-time medical simulation developed by INRIA

    Construction of Physics-based brain atlas and its application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Diffusion MRI tractography for oncological neurosurgery planning:Clinical research prototype

    Get PDF

    Diffusion MRI tractography for oncological neurosurgery planning:Clinical research prototype

    Get PDF

    Crepuscular Rays for Tumor Accessibility Planning

    Get PDF
    corecore