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ABSTRACT 

 

MULTI-MATERIAL MESH REPRESENTATION OF ANATOMICAL STRUCTURES FOR 

DEEP BRAIN STIMULATION PLANNING 

 

 Tanweer Rashid 

Old Dominion University, 2017 

Director: Michel A. Audette 

 

The Dual Contouring algorithm (DC) is a grid-based process used to generate surface 

meshes from volumetric data. However, DC is unable to guarantee 2-manifold and watertight 

meshes due to the fact that it produces only one vertex for each grid cube. We present a modified 

Dual Contouring algorithm that is capable of overcoming this limitation. The proposed method 

decomposes an ambiguous grid cube into a set of tetrahedral cells and uses novel polygon 

generation rules that produce 2-manifold and watertight surface meshes with good-quality 

triangles. These meshes, being watertight and 2-manifold, are geometrically correct, and 

therefore can be used to initialize tetrahedral meshes.  

The 2-manifold DC method has been extended into the multi-material domain. Due to its 

multi-material nature, multi-material surface meshes will contain non-manifold elements along 

material interfaces or shared boundaries. The proposed multi-material DC algorithm can (1) 

generate multi-material surface meshes where each material sub-mesh is a 2-manifold and 

watertight mesh, (2) preserve the non-manifold elements along the material interfaces, and (3) 

ensure that the material interface or shared boundary between materials is consistent. The 

proposed method is used to generate multi-material surface meshes of deep brain anatomical 

structures from a digital atlas of the basal ganglia and thalamus. Although deep brain anatomical 

structures can be labeled as functionally separate, they are in fact continuous tracts of soft tissue 

in close proximity to each other. The multi-material meshes generated by the proposed DC 



   

 

algorithm can accurately represent the closely-packed deep brain structures as a single mesh 

consisting of multiple material sub-meshes. Each sub-mesh represents a distinct functional 

structure of the brain.  

Printed and/or digital atlases are important tools for medical research and surgical 

intervention. While these atlases can provide guidance in identifying anatomical structures, they 

do not take into account the wide variations in the shape and size of anatomical structures that 

occur from patient to patient. Accurate, patient-specific representations are especially important 

for surgical interventions like deep brain stimulation, where even small inaccuracies can result in 

dangerous complications. The last part of this research effort extends the discrete deformable 2-

simplex mesh into the multi-material domain where geometry-based internal forces and image-

based external forces are used in the deformation process. This multi-material deformable 

framework is used to segment anatomical structures of the deep brain region from Magnetic 

Resonance (MR) data.  
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CHAPTER 1 

INTRODUCTION 

Deep brain stimulation (DBS) is a treatment where electrodes are surgically implanted 

into the brain, which are then used to apply electrical impulses into targeted anatomical 

structures. DBS is used for treating neurological disorders such as Parkinson's Disease (PD), 

Dystonia, Tourette syndrome and epilepsy, and psychological disorders such as treatment-

resistant depression (TRD), and obsessive-compulsive disorders (OCD) [1].  The targets for 

implantation depend on the disorder being treated: the thalamus and the globus pallidus for 

dystonia [2-5], the centromedian-parafascicular complex of the thalamus, the internal segment of 

the globus pallidus (GPi), and the anterior limb of the internal capsule for Tourette syndrome [6-

9]. In the case of Parkinson’s disease, there has been numerous studies with respect to deep brain 

stimulation, but the most promising implantation targets are the subthalamic nucleus (STN) [10] 

and GPi [11]1.  

A DBS system consists of three components: the lead or electrode, the extension, and the 

neurostimulator (Fig. 1). The lead is surgically implanted into the targeted deep brain regions. 

Surgeons identify the target region using Magnetic Resonance Imaging (MRI) or Computed 

Tomography (CT) in conjunction with printed and/or digital atlases. The neurostimulator is a 

small battery powered device that is placed under the skin near the collarbone, lower chest, or 

abdomen. The extension connects the electrodes to the neurostimulator. The neurostimulator 

transmits electrical pulses to the electrode, and can be calibrated/programmed by a trained 

technician or nurse.  

                                                 
1 IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references. 
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There are two approaches to DBS: the awake procedure and asleep procedure. In the 

awake procedure, fiducials are attached to the patient’s head using a stereotactic frame to set up a 

reference system for imaging. Patients are kept awake so that they are able to provide feedback 

to the surgeon. Typically, MR images are the modality of choice because MR imaging offers 

better visualization of the brain’s soft tissue structures. The stereotactic MR images of the brain 

are obtained before the surgical procedure and are often augmented by coregistering with 

stereotactic CT images. The insertion trajectory can be based on either the MR/CT data alone, or 

by superimposing anatomical atlases on the MR/CT images. The skin of the skull is anesthetized 

using local anesthetic and a patch of hair on the skull is shaved and cleaned. A hole is drilled in 

the skull and the electrodes are implanted into the deep brain regions (see Fig. 1 inset). On the 

other hand, in the asleep procedure the patient is given a general anesthetic, and remains 

unconscious throughout the procedure. The asleep procedure can also make use of a stereotactic 

frame and stereotactic imaging for trajectory planning, and does not require the patient to 

provide feedback to the surgeon. 

 

 

 

 

 

 

 

Fig. 1.  Components of deep brain stimulation. Picture source: http://vnstherapy-

herb.blogspot.com/2013/07/deep-brain-stimulation-bleeding-edge-of.html. 
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1.1 Motivation 

For many neurological afflictions, such as Parkinson’s disease (PD), dystonia, and 

epilepsy, DBS is the prescribed treatment. DBS has also been used for treating severe cases of 

psychological disorders like treatment-resistant depression (TRD) and obsessive-compulsive 

disorder (OCD). As many as 1 million Americans are living with PD, and nearly 60,000 

Americans are diagnosed with PD each year [12]. Epilepsy is considered the fourth most 

common neurological problem and affects nearly 3 million Americans [13]. Major depression 

has a lifetime prevalence of 15%-20%, and it is one of the leading causes of disability 

worldwide. TRD affects up to 50%-60% of patients [14]. OCD has an estimated lifetime 

prevalence of 2%, and if left untreated, it can destroy a person’s capacity to function at work, at 

home, and socially [15]. 

The traditional DBS procedure first involves a preoperative MR imaging of the patient’s 

brain. A stereotactic frame is then affixed to the patient’s head and fiducials are attached for 

referencing. This is followed by CT scans of the patient’s head with the attached stereotactic 

frame. The traditional insertion strategy is based on the registered MR and CT images, along 

with a brain atlas in digital or printed form [16]. This framework of DBS limits the choice of 

approach, and surgical planning requires considerable mental computation by the surgeon. 

Modern DBS practice relies on microelectrode recordings (MER) for the confirmation of a 

successful implantation, but the use of MER comes at a cost of extended operating times and 

increases the potential for complications [17]. Intraoperative MRI (ioMRI)-guided DBS was 

proposed in [18] with the use of a MRI-compatible frame. However, this technique relies on 

difficult manual adjustment of trajectory guides in the scanner. Moreover, this adjustment 
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appears to be implemented by the user rather than computed through registration-based brain 

shift estimation.    

Traditional and currently available image-guided approaches to DBS do not take into 

account the brain shift that occurs during implantation. This neglect increases the risk for 

complications. Under certain conditions, brain shift maybe negligible [19], but other studies such 

as in [20-22] suggest that shifts averaging 2 mm and reaching 4 mm can occur anterior-

posteriorly and laterally in targeting the STN. According to [23], the worst case is a 

cerebrovascular complication with significant rates of “morbidities and moralities resulting from 

the multiple trajectories used during physiological exploration of the brain target”. In one study 

[24], there were 16 out of 81 patients whose ventricular walls had been penetrated, making this 

type of risk an important consideration. According to [25], there is also a risk of electric current 

being delivered outside the target location to nearby structures, and this can lead to neurological 

sequelae. Because of brain shift and subsequent incorrect targeting, there would be a need for 

multiple needle insertion to target a specific structure, and this can lead to corticospinal fluid loss 

and further shift.  

The STN is a very small structure, averaging 5.9 mm in antero-posterior, 3.7 mm in 

mediolateral and 5 mm in dorsoventral dimensions [26]. The STN consists of a sensorimotor, 

associative, and limbic components where only the sensorimotor is targeted for PD. It is well 

within the realm of possibility for an electrode array to overlap most, or even the full length, of 

the STN. The risk of delivering current to nearby the associative and limbic components, which 

is exacerbated by brain shift, is consistent with behavioral changes seen after stimulation of the 

STN. Behavioral changes include cognitive problems seen in 41%, depression in 8% and 

hypomania in 4% of patients, according to [27]. Similar findings are also discussed recently in 
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[28]: “Cognitive and behavioural disturbances in patients with Parkinson’s disease seem to be 

relatively more frequent after deep brain stimulation of the subthalamic nucleus... electrode 

misplacements or current spreading to non-motor circuits involving the subthalamic nucleus 

may give rise to cognitive and behavioural disturbances after subthalamic implants.”  

In conclusion, it is fair to say that current DBS techniques do not take into account the 

amount of brain shift that can occur during implantation. This increases the risk of inaccurate 

targeting of the anatomical structures thereby causing behavioral changes in the patient. Current 

research studies show that brain shift is a dire problem in DBS. In order to alleviate the risks 

involved in targeting, it is necessary to first obtain an accurate representation of a patient’s deep 

brain regions, and then have a mechanism by which brain shifts can be tracked, preferably in 

real-time.  

 

1.2 Contributions 

This section will briefly discuss the anticipated contributions that will result from the 

proposed research. 

 

1.2.1 Watertight and 2-Manifold Dual Contouring Algorithm 

Dual contouring (DC) [29] is a surface meshing algorithm similar to Marching Cubes 

(MC) [30], but with the added benefit of being fast and able to reproduce sharp features. 

However, one limitation of DC is that it is incapable of producing 2-manifold meshes, especially 

for complex surfaces and topologies. To date, there are few variations or enhancements of the 

DC algorithm that can reproduce sharp features while ensuring watertightness and 2-

manifoldness of the surface meshes.  
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The main contribution of this chapter is a modified Dual Contouring algorithm that is 

capable to producing 2-manifold and watertight surface meshes. Furthermore, the proposed DC 

algorithm is topology-preserving, as well as capable of reproducing sharp features. Ambiguous 

grid cubes are decomposed into a set of tetrahedral cells, whose centroids are used as vertices of 

the output surface mesh. Novel polygon generation rules are devised which ensure error-free, 2-

manifold and watertight triangular surface meshes. 

 

1.2.2 Multi-material and 2-Manifold Dual Contouring Algorithm 

Although deep brain anatomical structures can be labeled as functionally separate, they 

are in fact continuous tracts of soft tissue in close proximity to each other. It is therefore 

important to treat such structures as a whole, rather than separate. Surface mesh representations 

of these structures should, likewise, reflect on the continuity between such structures; failure to 

do so risks interfaces with small distances between and disparities in the deformation 

computation between neighboring surfaces.  

The main contribution in this chapter is an extension of the above mentioned modified 

DC algorithm that is capable of generating multi-material and 2-manifold surface meshes where 

material sub-meshes have shared boundaries. Material information is implemented as pair-wise 

integers assigned to triangles of the surface mesh. Ordinarily, surface meshes containing non-

manifold elements would be considered ‘defective’. However due to their multi-material nature, 

multi-material surface meshes will inherently contain non-manifold elements. In the proposed 

method, the multi-material surface meshes are defined as being 2-manifold in the sense that the 

sub-meshes of each material are, by themselves, completely 2-manifold and watertight. The 

proposed method is used to generate multi-material surface meshes of deep brain anatomical 
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structures from a digital atlas of the basal ganglia and thalamus. These meshes can accurately 

represent the closely-packed deep brain structures as a single mesh consisting of multiple 

material sub-meshes. Each sub-mesh represents a distinct functional structure of the brain.  

 

1.2.3 Multi-Material 2-Simplex Mesh with Shared Boundaries  

The proposed system will utilize a multi-material 2-simplex mesh having shared 

boundaries. This 2-simplex mesh will be initialized using multi-material triangular meshes 

created using the previously mentioned multi-material 2-manifold Dual Contouring algorithm. 

The use of this type of simplex mesh is preferred over a triangular mesh because the simplex 

mesh has well-defined geometry-based internal forces and image-based external forces [31, 32]. 

Further, the multi-material 2-simplex will be used to accurately represent closely packed 

anatomical structures in a manner not done before. In existing implementations, such as in [31, 

33], the simplex meshes used were either of one single material, or consisted of several surfaces 

with boundaries independent of each other’s. In the case of multiple simplex meshes [33], 

overlap amongst meshes was prevented using collision detection and handling. This collision 

detection entailed that overlapping surfaces would push each other away, but had no way of 

ensuring that shared boundaries were perfectly flush with each other, as this multi-surface 

approach could result in small spaces between surfaces. The main contribution here is a multi-

material 2-simplex mesh with shared boundaries between materials.  

In this research, an especial emphasis on the shared boundary is placed because firstly, 

deep brain anatomical structures, despite being labeled as functionally separate, are continuous 

tracts of soft tissue and a shared boundary more accurately reflects this physical aspect of deep 

brain structures. Secondly, a shared boundary negates the need for potential computationally 
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expensive collision detection algorithms to avoid mesh overlap. It is also important to mention 

high-fidelity multi-surface mesh surfaces of the anatomy has broad applicability in biomedical 

engineering, for example in orthopedics, given that a spine model can better simulate how a load 

propagates if surfaces are flush with each other than in the absence of this characteristic. 

 

1.3 Organization 

This dissertation is divided into the following sections: Chapter 2 discusses some of the 

foundational concepts and methodologies used throughout this thesis. Chapter 3 provides details 

about the proposed watertight and 2-manifold Dual Contouring algorithm. Chapter 4 presents the 

multi-material version of the watertight and 2-manifold Dual Contouring algorithm. Section 5 

introduces the concept of the multi-material 2-simplex deformable surface mesh. Chapter 6 

concludes with a discussion on how the current limitations of the proposed methods might be 

addressed and on the future directions of the work presented here.  
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CHAPTER 2 

FOUNDATIONAL CONCEPTS 

This section will discuss relevant foundational concepts and methods that have been used 

throughout this research effort.  

 

2.1 Dual Contouring 

Dual Contouring (DC) [29] is a method used for extracting the surface of an implicit 

volume. The method is dual in the sense that vertices generated by DC are topologically dual to 

faces generated by the Marching Cubes [30] (MC) algorithm, as shown in Fig. 2. The DC 

algorithm is a hybrid of grid-based and tree-based (octrees for 3D, and quadtrees for 2D) 

methods. A labeled input volume is first subdivided using a uniform grid of an appropriate size. 

Fig. 3 (a) shows a multi-labeled 2D surface divided using a uniform grid of squares. An 

octree/quadtree is then used to represent and parse through the grid cubes. Fig. 3 depicts a 2D 

surface divided into grid squares, and its corresponding quadtree representation.  

 

 

 

Fig. 2.  An illustration of the duality, in 2D, between Marching Cubes algorithm (left) and Dual 

Contouring algorithm (right).  

Grid points 

outside 

Grid points 
inside 
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Once the volume is divided using the uniform grid, the values of the corners of each cube 

are noted and stored. In standard, single-material DC, the corners are labeled as inside or outside 

the volume. This results in a single material mesh. In multi-material DC, each corner of the cube 

is assigned an integer value, where each integer represents a particular material of the labeled 

volume. The leaves of the tree represent the grid cubes at their finest level of division, as shown 

in Fig. 3(b). A cube or leaf whose 8 corners all have the same material value implies that the 

cube is fully inside that particular material. The tree can therefore be further simplified by 

removing such leaves. This is demonstrated in Fig. 3(c), where the leaves numbered 2 and 4 are 

removed from the quadtree because all four of their corners have the same value, i.e. the cubes 

lie outside the volume.  

 

 

Fig. 3. Tree representation of an image. (a) A multi-labeled surface divided into grid squares, (b) 

its quadtree representation, and (c) the quadtree after simplification. 

 

Root 

 4  1  2  3 

1 2 

4 3 

(a)                                                     (b)                                                               (c)  

Root 
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Fig. 4. Difference in vertex computation between MC and DC. (left) Formulation of Quadratic 

Error Functions. The blue region represents the surface/volume. (Middle) Edges as well as a sharp 

feature generated with DC, (right) Edges generated with MC. 

 

For each cube that intersects the volume, dual vertices or minimizers are computed using 

Quadratic Error Functions (QEFs). The general formulation of a QEF is given in Equation (1). 

Fig. 4 (left) depicts a 2D visualization of QEFs. In this figure, the bounding surface of the 

volume shown in light blue color intersects the lower left corner of a cube. The lower left corner 

of the cube is marked with a “+” sign indicating that it lies inside the volume while the remaining 

corners of the cube are marked with a “-” sign indicating that they lie outside the volume. 

Furthermore, the surface intersects the left and bottom edges of the cube at points 𝑝0 and 𝑝1 

(green points), respectively. If a tangent were drawn from points 𝑝0 and 𝑝1 and extended inside 

the cube, they would intersect each other somewhere inside the cube at x (red point). This point 

would be a vertex of the isosurface. Typically, one minimizer is computed for each grid cube that 

intersects the volume of interest. This minimizer can theoretically be anywhere inside the grid 

𝐸[𝑥] =  ∑((𝑥 −  𝑝𝑖) ∙  𝑁𝑖)
2

𝑛

𝑖=1

 (1) 

 –  

 +  –  

 –  

x 
p0 

p
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N
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 –  

 +  –  

 –  
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 +  –  
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cube, rather than being restricted to the edges of the cube as in MC. This feature allows DC to 

produce meshes with sharp features, as shown in Fig. 4 (middle), whereas MC cannot, as shown 

in Fig. 4 (right). 

As can be seen from Equation (1) and Fig. 4 (left), the QEF depends on the intersection 

points and the normal at those intersection points. The function 𝐸[𝑥] can be expressed as the 

inner product (𝐴𝑥 − 𝑏)𝑇(𝐴𝑥 − 𝑏) where A is a matrix whose rows are the normal 𝑁𝑖 and b is a 

vector whose entries are (𝑁𝑖 ∙ 𝑝𝑖). The function 𝐸[𝑥] can then be expanded into the following: 

In Equation (2) 𝐴𝑇𝐴 is a symmetric 3x3 matrix, 𝐴𝑇𝑏 is a column vector of length three 

and 𝑏𝑇𝑏 is a scalar. This representation of a QEF can be solved using the QR decomposition 

method of Golub and Van Loan [34], or by computing the pseudoinverse of the matrix 𝐴𝑇𝐴 

using Singular Value Decomposition (SVD) [35, 36].  

Once the octree is generated and simplified, and all the minimizers for leaf cells are 

computed, the recursive functions EdgeProc(), CellProc() and FaceProc() as defined in [29] are 

used to locate the common minimal edge shared by four neighboring octree cells. The minimal 

edge is defined as the smallest edge shared by 4 neighboring octree cells. The concept of a 

minimal edge is necessary due to the fact that some octrees used in DC are adaptive octrees, 

meaning that the leaves of octree are not all at the same level. In such a case, it may be that the 

four-neighboring octree cells are not always the same size. Fig. 5 depicts the concept of a 

minimal edge. 

𝐸[𝑥] =  𝑥𝑇𝐴𝑇𝐴𝑥 − 2𝑥𝑇𝐴𝑇𝑏 + 𝑏𝑇𝑏. (2) 
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Fig. 5. The minimal edge in an adaptive octree. AB and BC are minimal edges because they do 

not contain any edge smaller than themselves. AC is not a minimal edge because it contains AB 

and BC. 

 

The function CellProc receives an octree cell c as parameter, the function FaceProc 

receives two face adjacent cells, and the function EdgeProc receives four adjacent cells. 

CellProc recursively calls itself for each leaf of c, i.e. eight times. It then makes twelve calls to 

FaceProc with every pair of face adjacent leaf-cells. Lastly, CellProc makes six calls to 

EdgeProc with four leaf-cells sharing a minimal edge. FaceProc receives two cells sharing a 

common face f, and calls itself four times with every pair of leaf-cells contained in f. FaceProc 

then makes four calls to EdgeProc with every four leaf-cells that share an edge contained in f. 

EdgeProc receives four edge adjacent leaf-cells and makes two recursive calls to itself.  

 

2.2 Simplex Meshes 

A simplex mesh is a discrete deformable model introduced by Delingette [31, 32], and 

used for 3D shape representation and segmentation. A vertex in a k-simplex mesh is connected to 

(k + 1) neighboring vertices by edges. This ensures constant vertex connectivity of the mesh. 

A 

B 

C 
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Depending on k, a simplex mesh can be used to represent curves (k = 1), surfaces (k = 2) or 

volumes (k = 3), as shown in Fig. 6.  

2.2.1 Mesh Geometry 

According to [31, 32], a 2-simplex mesh M of ℝ3 is defined as the pair (𝑉(𝑀), 𝑁(𝑀)) 

where: 

𝑉(𝑀) = {𝑃𝑖}, {𝑖 = 1, … , 𝑛}, 𝑃𝑖 ∈ ℝ3 (3) 

𝑁(𝑀): {1, … , 𝑛} → {1, … , 𝑛}𝑘+1, 

𝑖 → (𝑁1(𝑖), 𝑁2(𝑖), … , 𝑁𝑘+1(𝑖)), 
(4) 

∀𝑖 ∈ {1, … , 𝑛}, ∀𝑗 ∈ {1, … , 𝑘 + 1}, ∀𝑙 ∈ {1, … , 𝑘 + 1}, 𝑙 ≠ 𝑗  

𝑁𝑗(𝑖) ≠ 𝑖 (5) 

𝑁𝑙(𝑖) ≠ 𝑁𝑗(𝑖). (6) 

𝑉(𝑀) is the set of vertices of the simplex mesh, and 𝑁(𝑀) is the associated connectivity 

function that represents the neighboring vertices connected to each vertex. Equations (5) and (6) 

are responsible for preventing loops.  

 

 

Fig. 6.  Examples of Simplex meshes. (left) 1-simplex and (right) 2-simplex.  
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Fig. 7.  Geometric representation of a vertex P and its relation to its three neighboring vertices P1, 

P2 and P3 in a 2-simplex mesh.  

 

Geometrically, a vertex P of a 2-simplex mesh can be defined with respect to its three 

neighboring vertices P1, P2 and P3, as shown in Fig. 7. The sphere S, with its center at O and 

radius of R, is the circumscribed sphere containing P, P1, P2 and P3. C is the circumscribing 

circle, with its center at c and radius of r, containing P1, P2 and P3.  

The simplex angle φ of the vertex P can be defined [31, 32] by the following equation:  

𝜑 ∈ [−𝜋, 𝜋]: 

sin(𝜑) =
𝑟

𝑅
𝑠𝑖𝑔𝑛((𝑷𝟏 − 𝑷) ∙ 𝒏) 

cos(𝜑) =
‖𝐶 − 𝑂‖

𝑅
𝑠𝑖𝑔𝑛((𝐶 − 𝑂) ∙ 𝒏). 

(7) 
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Using this formulation of φ, the vertex P can be defined with respect to its neighbors in 

the following manner: 

𝑷(𝜖1, 𝜖2, 𝜑) =  𝜖1𝑷𝟏 +  𝜖2𝑷𝟐 + (1 −  𝜖1 − 𝜖2)𝑷𝟑 + 𝐿(𝜑) ∙ 𝒏, (8) 

𝒏 =  
𝑷𝟏𝑷𝟑  ⋀ 𝑷𝟏𝑷𝟐

‖𝑷𝟏𝑷𝟑  ⋀ 𝑷𝟏𝑷𝟐‖
, (9) 

𝜖1 +  𝜖2 + 𝜖3 = 1, (10) 

𝐿(𝜑) =
(𝑟2 − 𝑑2) tan(𝜑)

𝑟 + 𝜖√𝑟2 + (𝑟2 − 𝑑2) tan2(𝜑)
, 𝑑 ≤ 𝑟 

𝜖 = {
1, if 𝜑 <  |𝜋 2⁄ |

−1, if 𝜑 >  |𝜋 2⁄ |
 

𝑟 = ‖𝐶𝑷𝟏‖, 𝑑 = ‖𝐶𝑷⊥‖. 

(11) 

 

Equation (10) represents the metric parameters 𝜖1, 𝜖2 and 𝜖3. 

Gilles in [33] contends that the simplex angle φ can have ambiguous values in situations 

where  𝑑 ≤ 𝑟 does not hold true, and uses the elevation h of P above 𝑷⊥ as a meaningful 

substitute. The elevation h is more accurately equated as:  

ℎ𝑃 = ℎ𝑆𝑡−1 𝛼⁄ . (12) 

In Equation (12), St refers to the area of the triangle formed by the three neighboring 

vertices P1, P2 and P3, and 𝛼 tunes the scale invariant aspect. The vertex P can be newly defined 

as:  

𝑷(𝜖1, 𝜖2, ℎ𝑃) =  𝜖1𝑷𝟏 +  𝜖2𝑷𝟐 + (1 −  𝜖1 − 𝜖2)𝑷𝟑 + ℎ𝑃𝑆𝑡1 𝛼⁄ 𝒏, (13) 

𝑆𝑡 =
‖𝑷𝟏𝑷𝟑  ⋀ 𝑷𝟏𝑷𝟐‖

2
. (14) 
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2.2.2 Mesh Forces 

The simplex mesh is a mass-spring type of deformable surface model, meaning that the 

position of each vertex is governed by the general Newtonian law of motion, shown in Equation 

(15). 

𝑚𝑖

𝑑2𝑷𝑖

𝑑𝑡2
=  −𝛾

𝑑𝑷𝑖

𝑑𝑡
+  𝑭𝑖𝑛𝑡 +  𝑭𝑒𝑥𝑡. (15) 

In the above equation, 𝑚𝑖 is the mass, and 𝑷𝑖 is the position of a vertex of the mesh. In 

Equation (15), 𝑭𝑖𝑛𝑡 represents all internal forces and 𝑭𝑒𝑥𝑡 represents all the external forces acting 

on 𝑷𝑖.  

Delingette in  [31, 32] defines the internal force 𝑭𝑖𝑛𝑡 as a summation of normal forces 

and tangential forces, as shown in Equation (16).   

𝑭𝑖𝑛𝑡 =  𝑭Tangent +  𝑭Normal. (16) 

The purpose of the tangential internal force is to provide control for the vertex position 

with respect to its three neighbors P1, P2 and P3 in the tangent plane. Fig. 8 shows the 

relationship between 𝑭Tangent and 𝑭Normal with respect to the three neighbors P1, P2 and P3 of 

the vertex Pi.  

The tangential force 𝑭Tangent and the normal force 𝑭Normal are defined as: 

𝑭Tangent = (𝜖1̃ − 𝜖1)𝑷1 + (𝜖2̃ − 𝜖2)𝑷𝟐 + (𝜖3̃ − 𝜖3)𝑷3, (17) 

𝑭Normal = (𝐿(𝑟𝑖, 𝑑𝑖, �̃�𝑖) −  𝐿(𝑟𝑖, 𝑑𝑖, 𝜑𝑖)) 𝒏. (18) 

where 𝜖1̃, 𝜖2̃ and 𝜖3̃ are reference metric parameters corresponding to the prescribed value of the 

metric parameters, and the function 𝐿(𝑟𝑖, 𝑑𝑖, 𝜑𝑖) is as defined in Equation (11).  
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Fig. 8.  Relationship between FNormal and FTangent with respect to the neighbors of point Pi. 

 

Gilles [33] defines additional internal forces based on Laplacian smoothing, shape 

memory and global volume preservation, as follows respectively:  

�̃� =
𝑠1𝑷1 + 𝑠2𝑷2 + 𝑠3𝑷3

𝑠1 + 𝑠2 + 𝑠3

〈ℎ𝑖〉𝜂𝒏, (19) 

�̃� = 𝜖1̃𝑷𝟏 +  𝜖2̃𝑷𝟐 + (1 −  𝜖1̃ − 𝜖2̃)𝑷𝟑 + ℎ�̃�𝑆𝑡1 𝛼⁄ 𝒏, (20) 

�̃� = 𝑷 +
�̃� − 𝑉

𝑆
𝒏. (21) 

Equation (19) represents the barycentric weighted Laplacian smoothing based internal 

force where 𝑠1, 𝑠2, and 𝑠3 represents the surfaces associated with the neighboring vertices 𝑷1, 𝑷2 

and 𝑷3. The operator 〈∙〉𝜂 represents the averaging around the neighborhood 𝜂 of vertex P. 〈ℎ𝑖〉𝜂 

therefore represents the average elevation around the neighborhood of P.  

A reference shape model can be used to represent prior shape information in deformation. 

In Equation (20), 𝜖1̃, 𝜖2̃ and ℎ�̃� represent predefined metric parameters.  
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Volume preservation can be used to exploit the fact that biological tissue is 

incompressible. In Equation (21), �̃� represents the target volume, 𝑉 represents the current 

volume and 𝑆 represents the surface area of the closed mesh.  

In the context of segmentation of anatomical structures, the main criterion by which an 

organ or anatomical structure is identified, without human assistance, is through the use of image 

gradients that delineate the boundaries of the target structure. For the 2-simplex discrete 

deformable mesh, external forces are derived from maximal image gradients. The idea is to 

derive a force function based on the gradient values around the neighborhood of a vertex’s 

position. The neighborhood of a vertex’s position can be defined as a fixed space along the 

bidirectional surface normal of the vertex. For a vertex P, with normal n, and a predefined 

stepsize s, the sample points for the image gradient can be defined as: 

�̃� = 𝑷 + 𝑗𝑠𝒏, (22) 

where j is an integer representing optimal shifts in the surface normal direction. An interpolation 

method such as trilinear interpolation can be used interpolate values between voxels of gradient 

image intensities. The maximal gradient magnitude at 𝑗̃ can be obtained using:   

𝑗̃ = 𝑎𝑟𝑔𝑚𝑖𝑛
−

𝑑
𝑠

<𝑗<
𝑑
𝑠

(‖∇𝑻(𝑷 + 𝑗𝑠𝒏)‖), (23) 

where ∇𝑻 represents the image gradient of the input image T.  

In order to achieve model-to-image registration, the goal is to align a source image S to 

the target T using model deformations. The model, initially aligned to S, and whose initial vertex 

positions are given by P0, is iteratively deformed until each vertex matches the target, where a 

similarity metric ∆  in the vertex neighborhood 𝜂 is maximal:  

𝑗̃ = 𝑎𝑟𝑔𝑚𝑖𝑛
−

𝑑
𝑠

<𝑗<
𝑑
𝑠

 Δ (𝑆(𝜂(𝑷0), 𝑇(𝜂(𝑷 + 𝑗𝑠𝒏))). (24) 
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As mentioned above, the vertex neighborhood 𝜂 is constructed by sampling points using 

Equation (22) along the direction of the surface normal n.  

2.2.3 Mesh Evolution 

As described above, each vertex of a 2-simplex mesh can be considered as a particle with 

a mass m, and obeying the Newtonian law of equilibrium. The internal and external forces act 

upon the vertex, thus altering the shape of the mesh. The Newtonian law of motion can be 

decomposed into the first order differential equation system: 

𝐕 =
𝜕𝐏

𝜕𝑡
, 

M
𝜕𝐕

𝜕𝑡
= 𝐅(𝐏, 𝐕), 

(25) 

where V, P and M represent the velocity, position and mass of the vertex, respectively. The 

function F is the force vector, which depends on the velocity and position. This can also include 

internal and external forces, as well as damping forces which help to reduce oscillations in the 

system.  

Discretizing the first order differential system yields the following: 

𝐏𝑡+𝑑𝑡 − 𝐏𝑡 = 𝐕𝑑𝑡, 

𝐕𝑡+𝑑𝑡 − 𝐕𝑡 =
𝐅(𝐏, 𝐕)

M
𝑑𝑡. 

(26) 

In the manner of [37], a state vector 𝐐𝑡 = [𝐏𝑡, 𝐕𝑡] can be used to rewrite the first order 

differential system as follows: 

𝐐𝑡+𝑑𝑡 − 𝐐𝑡 = 𝐐𝑡+𝛼𝑑𝑡
′ 𝑑𝑡, (27) 

and applying the first order Taylor expansion yields:  

𝐐𝑡+𝑑𝑡 − 𝐐𝑡 = 𝐐𝑡
′ 𝑑𝑡 +  𝛼

𝜕𝐐′

𝜕𝐐
(𝐐𝑡+𝑑𝑡 − 𝐐𝑡)𝑑𝑡, (28) 
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where 𝛼 represents the implicity coefficient. When 𝛼 = 0, the system represents the explicit 

Forward Euler method, which is unstable for larger step sizes. On the other hand, 𝛼 = 1 

represents the implicit Backward Euler method which is stable for any step size. When applied to 

a mechanical system, Equation (28) leads to: 

𝐏𝑡+𝑑𝑡 − 𝐏𝑡 = (𝐕𝑡 + 𝛼(𝐕𝑡+𝑑𝑡 − 𝐕𝑡))𝑑𝑡, 

𝐕𝑡+𝑑𝑡 − 𝐕𝑡 = 𝐇−1𝐘, 

(29) 

𝐇 = 𝐈 − 𝛼M−1
𝜕𝐅

𝜕𝐕
𝑑𝑡 − 𝛼2M−1

𝜕𝐅

𝜕𝐏
𝑑𝑡2, 

𝐘 = M−1𝐅(𝐏𝑡, 𝐕𝑡)𝑑𝑡 + 𝛼M−1
𝜕𝐅

𝜕𝐏
𝐕𝑡𝑑𝑡2. 

(30) 

The resolution of this system depends on the inversion of 𝐇𝐗 = 𝐘 using the conjugate 

gradient method described in [38], and used in [33, 39]. The general algorithm is as follows:  

 𝛽 = 0, 𝑿 = 0, 𝑹 = 𝒀  

𝑤ℎ𝑖𝑙𝑒 𝛽 > 𝜀 

        𝛼 = 𝑹𝐓𝑹  

        𝑖𝑓 (𝛽 ≠ 0) 𝑡ℎ𝑒𝑛   

                𝑻 = 𝑹 + (𝛼 𝛽⁄ )𝑻  

        𝑒𝑙𝑠𝑒  

                𝑻 = 𝑹  

 

𝛽 = 𝑻𝐓𝑯𝑻  

𝑅 = 𝑅 − (𝛼 𝛽⁄ )𝑯𝑻  

𝑿 = 𝑿 + (𝛼 𝛽⁄ )𝑻  

𝛽 = 𝛼  

 

Here, the error factor is 𝛽, and the predefined threshold is 𝜀. The algorithm iterates until 

the error factor becomes less than the threshold.  
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2.2.4 Topological Operators 

Delingette introduces four topological operators for the 2-simplex mesh in [31, 32]: TO1, 

TO2, TO3 and TO4. These operators can be used to improve the topological quality of the simplex 

mesh (uniformity among vertices and cells). Out of these four operators, TO1 and TO2 preserves 

the overall topology of the mesh while TO3 and TO4 alters the topology.  

 

 

Fig. 9.  Topological operators for the 2-simplex mesh.  

 

As can be seen in Fig. 9, a TO2 operation has the effect of splitting a cell into 2 adjacent 

cells, and conversely, a TO1 operation can be used to merge two adjacent cells into one. These 

features can allow a user to potentially use the TO1 and TO2 operators for targeted or localized 

mesh decimation and resolution control while still preserving mesh topology. 

TO1 

TO
2
 

TO
3
 

TO
4
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2.3 Volume Smoothing 

For many applications involving images (and/or volumes), it is sometimes necessary to 

perform some manner of preprocessing on the images in order to simplify them, or enhance 

desirable features, or remove unwanted artifacts and noise. In this section, two methods for 

volume smoothing are described: binary morphology and Gaussian blurring. In this research, 

binary morphology was used to smooth single material or binary images, and Gaussian blurring 

was used to smooth multi-material volumes.  

 

2.3.1 Binary Morphology 

Mathematical morphology is based on set theory, and describes techniques and 

operations that can be applied to an image in order to affect changes to the image. Operations 

such as region filling, closing and opening are performed on the image to enhance or simplify the 

image, whereas operations such as boundary extraction and skeletonization are performed on the 

image in order to generate new information about the image.  

Binary morphology describes morphological operations applied to binary images. The 

two fundamental operations, as described in [40], are erosion and dilation. For an image A and a 

structuring element B, dilation is defined as: 

𝐴 ⊕ 𝐵 = {𝑧|𝐵𝑧  ∩ 𝐴 ≠ ∅}, (31) 

and erosion is defined as: 

𝐴 ⊖ 𝐵 = {𝑧|𝐵𝑧  ∩ 𝐴 ⊆ 𝐴}. (32) 

 

Dilation has the effect of adding pixels or voxels to the image A and erosion has the 

effect of removing pixels or voxels from A, depending on the shape and size of the structuring 
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element. The structuring element is typically a simple geometric shape such as a cube or sphere 

or diamond, though other shapes can be defined and used.  

Based on these two fundamental operators, two other operations, opening and closing, are 

defined, respectively, as:  

𝐴 ∘ 𝐵 = (𝐴 ⊖ 𝐵) ⊕ 𝐵, (33) 

and 

𝐴 ∙ 𝐵 = (𝐴 ⊕ 𝐵) ⊖ 𝐵. (34) 

 In Equation (33) and Equation (34), the set A represents the image of interest and the set 

B is the structuring element. Opening describes an erosion operation on A, followed by a dilation 

operation on the eroded A, using the structuring element B. Opening smooths the image by 

removing thin regions and protrusions. Closing describes a dilation operation on A, followed by 

an erosion operation on the dilated A, using the structuring element B. Closing smooths the 

image by removing holes and filling gaps. Both the opening and closing operations, by 

themselves, are referred to as unidirectional or biased operations, in the sense that each operation 

removes only one type of “noise” [41]. In order to create a bidirectional and unbiased smooth 

image, it is necessary to apply the opening and closing operations in sequence using the same 

structuring element. The sequence of operations can be either closing followed by opening, or 

opening followed by closing. The resulting smoothed images of open-close and close-open 

operations are similar but not identical.  
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Fig. 10.  An example of binary morphology. (a) Original volume, (b) smoothing using close-open 

sequence, (c) smoothing using open-close sequence.  

 

Fig. 10 show an example of using the open-close and close-open sequence for smoothing. 

Fig. 11 shows the surface meshes of the volumes in Fig. 10. All the surface meshes in this figure 

were generated using the proposed Dual Contouring method described in Chapter 3. Fig. 11(a) 

shows the surface mesh of the original unsmoothed volume, Fig. 11(b) shows the surface mesh 

of the volume smoothed by first applying closing followed by opening, and Fig. 11(c) shows the 

surface mesh of the volume smoothed by first applying opening followed by closing. The 

structuring element used is a 3x3x3 cube. The square inset in Fig. 11 shows an example of a 

small feature, in this case a loop-like structure, and the dashed circle shows a sharp protrusion, 

that can appear on the surface mesh if the volume is left unsmoothed. As can be seen in Fig. 11, 

both close-open and open-close smoothing results in volume that is similar, but not identical.  

 

(a)     (b)    (c) 
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Fig. 11.  Surface meshes of a volume smoothed using binary morphology operations. (a) Mesh of 

original unsmoothed volume, (b) mesh of volume smoothed using closing followed by opening, 

(c) mesh of volume smoothed using opening followed by closing.   

 

2.3.2 Multi-Material Volume Smoothing Using Gaussian Blurring 

Although binary morphology offers a powerful set of tools for image smoothing, they can 

only be readily used in conjunction with binary datasets. In the case of multi-label or multi-

material datasets, it is necessary to first isolate each label or material into separate binary 

volumes, apply binary morphology-based smoothing to each of the separated material volumes, 

and then recombine all the separate material volumes into a single, smoothed multi-material 

   (a) 

   (b)       (c) 
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volume. Since binary morphology both removes and adds foreground voxels to the image, it is 

conceivable that empty voxels, or voxels with conflicting material values, may occur during the 

recombination phase for voxels that are adjacent to another material. This problem can be 

somewhat mitigated using a voting algorithm that determines the value of the problematic voxel 

based the values of neighboring voxels. However, it is possible that the new voxels inserted by 

the voting algorithm can lead to undesired features in the resulting image.  

Another approach to smoothing multi-material volumes is through the use of blurring 

kernels, such as a Gaussian kernel which acts as a low-pass filter. The smoothing process begins 

by first generating separate binarized volumes for each material, and then applying a Gaussian 

blurring filter with a specified variance to each material volume. For this research, the 

opensource ITK’s (Insight Segmentation and Registration Toolkit) DiscreteGaussianImageFilter 

was used to achieve Gaussian blurring. The surface of the structures represented in the material 

volumes would now be blurred, having a real-numbered value between 0 and 1, with the values 

decreasing as the edge moves away from the center of the structure. It is therefore necessary to 

apply a threshold in order to reconstruct the smoothed surface. The default threshold value is 0.5, 

but higher or lower values based on user inspection can be used as well. The thresholded 

volumes are then recombined into a single multi-material volume.  

Since the volume being smoothed is a multi-material volume, there are two types of 

surfaces encountered: the surface between a material and the background, and the surface 

between two materials. An alternative, therefore, is to use two different threshold values, one for 

voxels between the material and background (mat2bkgnd), and another for voxels between two 

materials (mat2mat).  
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Fig. 12.  An example of multi-material smoothing using Gaussian blurring. (a) Original multi-

material volume, (b) threshold values mat2bkgnd = 0.5, mat2mat = 0.5, (c) threshold values 

mat2bkgnd = 0.5, mat2mat = 0.3.  

 

Fig. 12 shows a demonstration of the implemented multi-material smoothing using a 

Gaussian blurring kernel. Fig. 12(a) shows the original and unaltered volume. Fig. 12(b) shows 

the resulting smoothed volume where the threshold was kept the same at 0.5, and Fig. 12(c) 

shows the resulting smoothed volume where the mat2bkgnd threshold is 0.5 and the mat2mat 

threshold is 0.3. As can be seen, there is a noticeable difference when using a lower value for the 

mat2mat threshold. In Fig. 12(a) the thin region between the green and yellow labels is originally 

labeled red, but in Fig. 12(b) the thin region is completely removed due to the higher mat2mat 

threshold value being used. In Fig. 12(c) the thin region is reconstructed due to the use of a 

smaller mat2mat threshold value.   

(a)     (b)     (c) 
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CHAPTER 3 

2-MANIFOLD DUAL CONTOURING 

Surface meshing is an invaluable tool and one of the most commonly used methods in 

scientific research for visualizing volumetric data. A surface mesh of a real-world object can be 

generated in one of two ways: (1) by using a scanning device such as the NextEngine 3D Laser 

Scanner or Microsoft’s Kinect, or (2) by isosurface extraction from volumetric data such as MRI 

or CT using contouring algorithms such as Marching Cubes (MC) [30], Dual Contouring (DC) 

[29] or Dynamic Particle Systems [42]. In both cases, the resulting polyhedral mesh may contain 

geometric errors such as non-manifold edges and/or vertices, holes, and intersecting polygons, 

especially if the surface being meshed is complex. A survey performed by Ju in [43] discusses 

the wide range of techniques that has been developed for repairing polygonal models.  

Non-manifold geometry is problematic for a variety of situations, such as rendering of 

refractive surfaces, computation of surface normals and curvatures, bounding tetrahedral meshes 

suitable for finite element analysis and fluid simulations, as well as CAD-based manufacturing 

and 3D printing. The repairing of geometric errors in meshes is an active research area and there 

is no one-fits-all algorithm that can fix all the different types of geometric errors. Of course, this 

is not to say that topologically and geometrically correct surface mesh generation is a poorly 

researched field. Reference [44] presents an extensive review of the many variants of the MC 

algorithm that have been developed over the years. Tight cocone [45] is a meshing algorithm that 

guarantees watertight meshes. Marching Tetrahedra [46] is another method similar to MC that 

can produce topologically correct meshes.  

This chapter focuses primarily on Dual Contouring. DC offers the advantage of 

producing meshes with sharp features [29]. In MC, the newly created vertices are constrained to 
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the edges of the grid while in DC, the vertices can be anywhere inside the grid cube. However, 

the standard DC algorithm produces non-manifold edges and vertices in certain situations. 

Presented in this work is a modification to the Dual Contouring algorithm that is capable of 

generating 2-manifold meshes and thereby avoid non-manifold geometric errors in the first 

place.  

 

3.1 Background and Literature Review 

One of the main disadvantages of DC is that it does not guarantee 2-manifold, watertight, 

and intersection-free surfaces. A polygonal mesh is considered as being 2-manifold if each edge 

of the mesh is shared by only two faces, and if the neighborhood of each vertex of the mesh is 

the topological equivalent of a disk. Ju and Udeshi address the issue of intersecting triangles in 

[47] by proposing a hybrid method where dual vertices (inside grid cubes) as well as face 

vertices and edge vertices (inserted on the cube’s face and edges, respectively) are used to create 

polygons according to new polygon generation rules. Zhang et al. in [48] present a topology-

preserving algorithm for surface simplification using vertex clustering and an enhanced cell 

representation, but this method is unable to avoid non-manifold edges and vertices. Varadhan et 

al. [49] suggest an approach that combines edge intersection testing, adaptive subdivision, and 

dual contouring to reconstruct thin features. Schaefer et al. use a vertex clustering method in 

[14], where they present an additional topology criterion that must be satisfied to ensure 

manifoldness.  

Zhang and Qian in [50] take a different approach by first generating a base mesh using 

standard DC, and then analyzing and categorizing the leaves into 31 topology groups. For 

ambiguous cubes, multiple minimizers, as many as three in some instances, are inserted whereby 



31 

 

 

a new topologically correct mesh is created by reconnecting the vertices of the mesh with the 

newly inserted minimizers. Zhang and Qian [51] also use a topology-preserving decomposition 

method to divide ambiguous cubes into twelve tetrahedral cells, each having one minimizer (the 

centroid), and construct a series of tetrahedra and polyhedra to create tetrahedral meshes. This 

method can avoid topological ambiguities in tetrahedral meshes but does not produce surface 

meshes. The chief advantage in using surface meshes is the fact that compared to volumetric 

meshes like tetrahedral and hexahedral meshes, surface meshes are sparser. Surface meshes 

consist only of vertices and cells delineating the surface boundary whereas volumetric meshes 

have vertices and cells describing the internal volume in addition to vertices and cells for the 

surface boundary. This makes surface meshes a more logical choice to reduce computational 

overhead.  

The proposed method uses an approach similar to that in [51] by decomposing an 

ambiguous cube into several tetrahedral cells. Novel polygon generation rules are presented that 

result in 2-manifold and watertight triangular surface meshes. 

 

3.2 2-Manifold Dual Contouring 

The proposed method in this dissertation begins the same way as in standard Dual 

Contouring (DC) by superimposing a uniform virtual grid onto the implicit volume. Depending 

on the isovalue chosen, the corners of each cube of the grid can have 28 or 256 possible 

configurations. By taking rotation and symmetry into account, these configurations can be 

reduced into 14 fundamental cases, as shown in Fig. 13. Cases 0, 1, 2, 5, 8, 9 and 11 are simple 

unambiguous cases, meaning there is only one possible surface intersecting the grid cube (no 

surface for Case 0). Cases 3, 4, 6, 7, 10, 12 and 13 are ambiguous, meaning that there is more 
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than one possible surface that intersects the cube. It is the presence of these ambiguous cubes, as 

well as the fact that standard DC produces only one minimizer for each cube, that causes non-

manifold surfaces to arise. Additionally, the experiments have found that the complement of 

Case 4 (that is, a situation where the two diagonally opposite corners of the cube are in 

background and the rest are in the foreground) is also responsible for the generation of non-

manifold vertices, as shown in Fig. 14. These particular non-manifold vertices occur inside the 

surface mesh. In [52], Sohn shows that a cubic cell can be decomposed into a set of tetrahedral 

cells while preserving the topology of the isosurface inside the cube. However, the number of 

tetrahedral cells created, as well as their shapes and sizes, is dependent on the number of face 

and body saddle points. The tetrahedral decomposition method in [51] is much more 

advantageous because all ambiguous cubes are decomposed into a maximum of 12 tetrahedral 

cells of similar shape and size.  
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Fig. 13.  The 14 fundamental configurations for a grid cube.  

 

The solution presented in this dissertation involves first detecting ambiguous cubes and 

then subdividing the cube into several tetrahedral cells in a manner similar to [51]. The centroid 

of the tetrahedral cells are used as minimizers. This approach allows an ambiguous cube to have 

multiple minimizers, thus overcoming the one minimizer limitation of standard DC. More details 

on the exact mechanism of tetrahedral decomposition is presented in the following section.  

 

Case 0 Case 1 Case 2 Case 3 Case 4 

Case 6 Case 5 Case 7 Case 8 Case 9 

Case 10 Case 11 Case 12 Case 13 Complimentary 

Case 4 
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Fig. 14.  Presence of a non-manifold vertex due to complimentary Case 4. (a) This is an inside 

view of the surface mesh with the non-manifold vertex highlighted by the red dot. (b) This is a 

view from outside the surface mesh (rendered transparent). The highlighted polygons share the 

non-manifold vertex. The two yellow dots represent the two diagonally opposite corners of the 

cube and they lie outside the implicit volume.   

 

3.3 Tetrahedral Decomposition of Ambiguous Cubes 

The volume is first subdivided into a uniform grid of an appropriate size. An octree 

whose nodes represent the grid cubes is then used for fast parsing of the grid cubes and polygon 

generation. Each corner of a grid cube is assigned an inside or outside label based on its location 

within the volume of interest. For each unambiguous cube, one minimizer is computed.  

In the case of ambiguous cubes, the approach followed is similar to that of Zhang and 

Qian in [51] and the ambiguous cube is subdivided into a maximum of twelve tetrahedral cells. 

The center of the cube is a common point for all the newly created tetrahedral cells, as shown in 

Fig. 15(a) and Fig. 15(d). A tetrahedral cell is made up of the center along with three corners of a 

(a)                                                                                             (b) 
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cube face. Each face of the ambiguous cube forms the base of two tetrahedra by joining the 

diagonally opposite corners of the face. Fig. 15(b) and Fig. 15(e) illustrates two ways for creating 

the diagonal, which is further explained below:  

 If the two diagonally opposite corners are contiguous with each other through the interior 

of the volume, then create a diagonal between the two corners, shown in Fig. 15(b). 

 If the two diagonally opposite corners are inside the volume, but not contiguous with 

each other through the interior, then create a diagonal using the other two corners Fig. 

15(e). 

 For all other cases, any appropriate diagonal can be used.  

The choice of creating the diagonal is important because the resulting polygonization can 

lead to topological changes. Fig. 15(c) depicts a situation where the two corners of the bottom 

face of the ambiguous cube are contiguous with each other inside the volume, and the diagonal is 

created as shown in Fig. 15(b). Fig. 15(f) shows a situation where the two corners of the bottom 

face of the ambiguous cube are inside the volume, but not contiguous through the interior, and 

the diagonal for the bottom face is created as in Fig. 15(e). In both examples, the center of the 

chosen face is sampled to determine whether that point lies inside or outside the volume. This 

rule for creating a face diagonal is important because it allows adjacently situated ambiguous 

cubes to have consistent face diagonals.  
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Fig. 15.  Creation of the face diagonal for ambiguous cubes. (a, d) Two ways in which a diagonal 

can be created on the front-most face of an ambiguous cube to generate two tetrahedra. (b) The 

corners of the cube are contiguously inside the volume, (e) the corners of the cube are inside the 

volume, but not contiguously (c, f). Two differing topologies can occur due to different choice of 

diagonals. 

 

It is useful to define a few terms at this point. An interior edge is an edge of a tetrahedron 

that is made up of a corner of the parent cube and the center of the cube. A sign change edge is 

an edge of a tetrahedron or a grid cube whose end points have inside and outside labels. A valid 

Cube center 

(a) 
(b) 

(c) 

(d) 
(e) 

(f) 

Cube center 

Face center  

being sampled 
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tetrahedron is one in which at least one edge is a sign change edge. The proposed strategy in this 

dissertation makes use of only valid tetrahedra for polygon generation.  

During polygon generation, the centroid of each tetrahedron is used as a minimizer. The 

method of Zhang and Qian in [51] presents two general rules that generate 

tetrahedra/polyhedrons using the minimizers of unambiguous grid cubes as well as the 

minimizers of the tetrahedral cells from ambiguous grid cubes. The effect of incorporating these 

rules into the standard DC algorithm results in a mesh comprising of both surface and tetrahedral 

meshes.  

In this strategy are presented novel rules that result in surface meshes, rather than 

tetrahedral meshes. The method is effective in generating 2-manifold meshes and can be easily 

incorporated into the DC algorithm. The details of the rules are presented in the following 

section. 

 

3.4 Polygon Generation 

During the polygon generation phase, the method follows the standard DC approach by 

analyzing minimal edges as well as other sign change edges. Each minimal edge is an edge that 

is characterized by a sign change and that is shared between four grid cubes. If all four grid 

cubes sharing that edge are unambiguous, then we create two triangles using the four minimizers 

of the four grid cubes. On the other hand, if any one of the four incident grid cubes is ambiguous, 

it is necessary to apply the following rules: (1) Minimal Edge Rule, (2) Face Diagonal Rule, and 

(3) Interior Edge Rule.  
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Fig. 16.  An illustration of the Minimal Edge Rule. The two grey cubes are unambiguous cubes 

and the two green cubes are ambiguous cubes. The black square represents one end of the minimal 

edge. The blue and red squares represent the vertices of the tetrahedral cells. The two blue and two 

red circles represent the minimizers of the tetrahedra incident on the minimal edge.   

 

Minimal Edge Rule: Create an n-sided polygon, or n-gon, using the minimizers of all 

the unambiguous cubes and tetrahedral cells that contain the minimal edge.  

This rule follows the same concept as in standard DC: if the minimal edge is a sign-

change edge, then there must be a surface intersecting the minimal edge. The n-sided polygon is 

generated by linking together the minimizers of unambiguous grid cubes and tetrahedral cells 

that share the minimal edge, and then triangulating the n-gon. Each ambiguous grid cube will 

have exactly two valid tetrahedral cells sharing the minimal edge. It should be noted that the 

resulting n-gon does not necessarily have to be convex. It is also worth mentioning that extra 
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care should be taken when using third-party polygon generation algorithms, such as Delaunay 

tessellation, which have a tendency to generate convex polygons. Fig. 16 illustrates the Minimal 

Edge Rule. In this figure, the small black square represents one end of the minimal edge that is 

shared by the four grid cubes. There are two ambiguous grid cubes (colored green) and two 

unambiguous grid cubes (colored grey). The blue and red squares represent the vertices of the 

tetrahedral cells. The blue and red lines represent the four tetrahedral cells of the two ambiguous 

grid cubes. All four tetrahedral cells share the minimal edge. In Fig. 16, a 6-sided polygon is 

created by first linking together the minimizers of the two unambiguous grid cubes, as well as 

the minimizers of the four tetrahedral cells sharing the minimal edge, and then triangulating the 

polygon. 

 

 

Fig. 17.  An illustration of the Face Diagonal Rule. The purple square is the shared face between 

two cubes. Ambiguous cubes are colored green and unambiguous cubes are colored black. (a) The 

case of two ambiguous cubes sharing a face. (b) The case of an ambiguous cube and an 

unambiguous cube sharing a face.  

(a)       (b) 
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Face Diagonal Rule: For any ambiguous cube sharing a face with another cube, if the 

face diagonal of the shared face is a sign change edge, then create a polygon using all the 

minimizers surrounding the face diagonal.  

Ambiguous grid cubes can share a face with another ambiguous or unambiguous grid 

cube. In the case of two ambiguous cubes sharing a face, if the face diagonal is a sign change 

edge, then there are four valid tetrahedral cells that share the face diagonal. The four minimizers 

are used to generate a quadrangle, which equates with two triangles. In the case of an ambiguous 

cube sharing a face with an unambiguous cube, there are two valid tetrahedral cells whose bases 

comprise the shared face. The minimizers of these two tetrahedral cells as well as the minimizer 

of the ambiguous cube are used to generate a triangle. Fig. 17 illustrates the application of this 

rule. In Fig. 17(a), the two green cubes are the ambiguous cubes while the red and blue lines 

represent the four tetrahedral cells sharing the face diagonal. The face diagonal is a sign change 

edge. The black cubes are unambiguous. The purple square represents the shared face between 

the two ambiguous cubes. The red and blue round points represent the four minimizers used to 

generate the two yellow triangles. In Fig. 17(b), the green cube is the sole ambiguous cube and 

the red lines represent the two tetrahedral cells making up the shared face with a neighboring 

unambiguous cube (purple square). The two red round points are the minimizers of the two 

tetrahedral cells and the blue round point is the minimizer of the unambiguous cube in question. 

The three minimizers are used to generate a triangle (yellow).   

Interior Edge Rule: For a sign-change interior edge of a tetrahedral cell which has one 

end point that is also shared with the minimal edge, create a polygon using the minimizers of all 

the tetrahedral cells of the parent cube that share the sign-change interior edge. 
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An interior edge can be shared by multiple tetrahedral cells. If the interior edge is a sign-

change edge, then it follows that there is a surface intersecting the interior edge, and this surface 

can be constructed using the minimizers of the surrounding tetrahedral cells. Fig. 18 depicts the 

Interior Edge Rule. In this figure, there is one ambiguous grid cube (green) and three 

unambiguous grid cubes (grey). The center of the ambiguous cube (yellow square) is a shared 

vertex for all the tetrahedral cells. The small red squares are the vertices of the tetrahedral cells. 

The white and black round points make up the minimal edge. The interior edge with a sign-

change edge in this figure is made of the white round point and the center of the ambiguous 

cube. The red lines represents four tetrahedral cells that share the sign change interior edge. The 

blue round points are the minimizers of the tetrahedral cells. A polygon is created using these 

four minimizers. 

 

3.5 Detection of Non-manifold Edges and Vertices and Boundary Edges 

The proposed method is a modified Dual Contouring algorithm that can produce 2-

manifold and watertight surface meshes. In the course of this work, we did not rely only on 

visual inspection to detect the presence or absence of non-manifold edges and vertices and 

boundary edges. This method used MeshLab [53] to detect the presence or absence of non-

manifold edges and vertices and boundary edges. MeshLab is an open source mesh processing 

tool that makes extensive use of the VCG (Visualization and Computer Graphics) Library. 
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Fig. 18.  An illustration of the Interior Edge Rule. The white and black round points represent the 

minimal edge. The red squares depict the vertices of the four tetrahedral cells incident on the 

minimal edge: the vertices of the minimal edge are also vertices of two tetrahedral cells. The green 

round point and the orange square make up the sign-change interior edge. The red lines represent 

the four tetrahedral cells that share the sign-change edge. The blue round points are the minimizers 

of the tetrahedral cells that are used to create a polygon. 

 

3.6 Integration into Dual Contouring 

This section provides information on the integration of the proposed method into the 

standard Dual Contouring algorithm. The first part, identifying ambiguous and unambiguous grid 

cubes can be done during the octree generation phase. For unambiguous cubes, only one 

minimizer is computed. Ambiguous cubes are first decomposed into a maximum of twelve 

tetrahedral cells. The centroid of each tetrahedron is then used as the minimizer. As previously 

mentioned, not all twelve tetrahedral cells of an ambiguous cube are used. Only valid tetrahedral 

cells, i.e. tetrahedral cells having a sign change edge are used.  



43 

 

 

Once the octree is generated in standard DC, three recursive functions, cellProc(), 

faceProc() and edgeProc() are used to locate the minimal edge and the cubes containing the 

minimal edge. In edgeProc(), if the four octree cells are all leaf nodes, then the four minimizers 

of the octree cells are used to generate a quad or two triangles.  

For 2-manifold polygon generation, we insert the proposed polygon generation rules into 

edgeProc() with the following criteria: If all four octree cells are leaf cells and if all four octree 

cells are unambiguous, then use the four minimizers of the four cells to create two triangles. If 

any one of the four octree cells are ambiguous cells, then use the MinimalEdgeRule(), 

FaceDiagonalRule() and InteriorEdgeRule() to generate polygons. The three rules can be called 

in any order. The modified edgeProc() algorithm, in which the 4 octree leaves at the same level 

c1, c2, c3 and c4 is passed as input parameters, is given below: 

edgeProc(c1, c2, c3, c4) { 

 IF (ci are all leaf nodes) { 

  IF (ci are all unambiguous) { 

 Generate a quad or two triangles using the minimizers of the four leaf 

nodes 

  } 

  ELSE IF (Any ci are ambiguous) { 

   MinimalEdgeRule() 

   FaceDiagonalRule() 

   InteriorEdgeRule() 

  } 

 } 

 ELSE { 

  Two calls to edgeProc() 

 } 

} 
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3.7 Results and Discussion 

A modified version of the Dual Contouring algorithm has been presented that is capable 

of overcoming some of the limitations of standard DC. This proposed method uses tetrahedral 

decomposition of ambiguous cubes to generate 2-manifold and watertight surface meshes.  

Fig. 19(a) shows a non-manifold vertex that was created due to complimentary Case 4 

cube configuration. Fig. 19(b) shows the 2-manifold tube-like mesh replacing the non-manifold 

vertex using the proposed method. Fig. 19(c) shows another example of a non-manifold vertex 

caused by Case 4 ambiguity, and Fig. 19(d) shows that it has been replaced by mesh that is 

separate and not tubular. 

 

 

Fig. 19.  Two examples of a non-manifold vertex being replaced by a 2-manifold mesh. (a, c) 

shows two different  non-manifold vertices, (b, d) shows their corresponding 2-manifold solutions.  

 (c)      (d) 

(a)      (b) 
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Fig. 20 shows a few examples of applying the proposed method on synthetic datasets. 

The top row of Fig. 20 shows non-manifold meshes generated using traditional DC (the red dot 

depicts a non-manifold vertex and the red lines depicts non-manifold edges), while the bottom 

row shows 2-manifold meshes generated using the proposed method. Fig. 20(a) shows a situation 

having Case 4 ambiguity. There are two possible 2-manifold solutions for the Case 4 situation, 

and the proposed method is able to generate both solutions, as shown in the bottom row of Fig. 

20(a). Similar to the concept described in the previous section, the inside/outside label for the 

center of the cube is the determining factor for the 2-manifold mesh. If the two diagonally 

opposite corners of the cube as well as the center of the cube are inside the volume, then a tunnel 

like structure is the best representation of the volume, and if the two diagonally opposite corners 

are inside the volume but the center is outside, then the resulting mesh would consist of two 

disjointed parts. Similarly, Fig. 20(b) shows a situation having Case 10 ambiguity. The top part 

of Fig. 20(b) shows the non-manifold mesh generated using standard DC and the bottom part 

shows two of three possible 2-manifold solutions. The top figure of Fig. 20(c) shows a situation 

having Case 7 ambiguity, and the bottom part shows one of seven possible 2-manifold solutions.  

Although Fig. 20 shows only three ambiguous cases, the proposed method is capable of 

generating watertight and 2-manifold meshes for all ambiguous cases. The important point to 

consider here is that the polygon generation rules can be applied to any ambiguous case, and it is 

not necessary to explicitly identify the ambiguous cases.  

The proposed algorithm has been applied to a digital atlas [54] of deep brain structures, 

specifically the basal ganglia and thalamus created using serial histological data. This atlas is in 

MINC 2.0 (Medical Imaging NetCDF) format and contains a total of 92 labeled structures. The 

atlas consists of 334x334x334 voxels with a stepsize of 0.3 mm. Both the standard DC and the 
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proposed method has been used to generate surface meshes of deep brain structures in two 

experiments.  

 

 

 

Fig. 20.  Examples of applying the proposed DC method on synthetic data. The meshes on the top 

row are non-manifold meshes generated using traditional DC, and the meshes on the bottom are 

2-manifold meshes generated using the proposed method. (a) Case 4 ambiguity, (b) Case 10 

ambiguity, (c) Case 7 ambiguity. 

 

 

 

 

 (a)      (b)     (c) 
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3.7.1 Experiment without Preprocessed Data 

In the first experiment, the atlas data were not preprocessed in any way. Fig. 21 shows 

the surface meshes generated using traditional DC (yellow colored meshes). In this figure, the 

red lines depict non-manifold edges that standard DC is unable to avoid. TABLE 1 reports the 

number of triangles and vertices, as well as the number of non-manifold edges and vertices for 

the meshes in Fig. 21. Fig. 22 shows the surface meshes generated using the proposed 2-

manifold DC method (grey colored meshes). In this figure, all the meshes are 2-manifold and 

watertight. TABLE 2 reports the number of triangles and vertices, along with the number of non-

manifold edges and vertices for the meshes in Fig. 22. In both TABLE 1 and TABLE 2, the 

names of the anatomical structures and their corresponding atlas label numbers are given.  

As evidenced in TABLE 1, standard DC produces meshes containing non-manifold 

elements, in the case of large meshes, more than 600 non-manifold edges, while the proposed 

method produces surface meshes completely free of non-manifold elements. The only concern 

here is that the meshes generated using the proposed method have a significantly higher number 

of vertices and triangles. This is because the proposed method inserts multiple minimizers (as 

many as twelve in some cases) in ambiguous cubes through tetrahedral decomposition, thus 

increasing the number of vertices, and the number of triangles.  
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Fig. 21.  Surfaces generated from a digital deep brain atlas using standard DC. The atlas was not 

preprocessed in any way. The red lines depict non-manifold edges. (a) Globus Pallidus (b) Globus 

Pallidus Internal (c) Globus Pallidus External (d) Nucleus lateropolaris thalami (e) Nucleus 

fasciculosus thalami (f) Subthalamic Nucleus. 

(a)     (b)     (c) 

(d)     (e)     (f) 
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Fig. 22.  Surfaces generated from a digital deep brain atlas using the proposed method. The atlas 

was not preprocessed in any way. All the meshes are watertight and 2-manifold. (a) Globus 

Pallidus (b) Globus Pallidus Internal (c) Globus Pallidus External (d) Nucleus lateropolaris thalami 

(e) Nucleus fasciculosus thalami (f) Subthalamic Nucleus. 

  

(a)     (b)     (c) 

(d)     (e)     (f) 
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TABLE 1 

RESULTS OF SURFACES GENERATED USING STANDARD DUAL CONTOURING ON 

UNPREPROCESSED DATA 

 
Atlas 

Label 
Structure Name 

Number of 

Vertices/Tris 

Number of Non-

manifold 

Edges/Vertices 

Fig. 21 

(a) 
05 Globus Pallidus 26068/53460 656/70 

Fig. 21 

(b) 
11 

Globus Pallidus 

Internal 
23396/48088 642/67 

Fig. 21 

(c) 
12 

Globus Pallidus 

External 
26408/53644 453/39 

Fig. 21 

(d) 
26 

Nucleus 

lateropolaris thalami 
13401/27424 333/31 

Fig. 21 

(e) 
27 

Nucleus fasciculosus 

thalami 
4971/10096 82/9 

Fig. 21 

(f) 
39 

Subthalamic 

Nucleus 
9939/20152 148/8 

 

 

TABLE 2  

RESULTS OF SURFACES GENERATED USING THE PROPOSED DUAL CONTOURING 

METHOD ON UNPREPROCESSED DATA 

 
Atlas 

Label 
Structure Name 

Number of 

Vertices/Tris 

Number of Non-

manifold 

Edges/Vertices 

Fig. 22 

(a) 
05 Globus Pallidus 35750/72670 0/0 

Fig. 22 

(b) 
11 

Globus Pallidus 

Internal 
32369/66018 0/0 

Fig. 22 

(c) 
12 

Globus Pallidus 

External 
32707/66226 0/0 

Fig. 22 

(d) 
26 

Nucleus 

lateropolaris thalami 
18123/36806 0/0 

Fig. 22 

(e) 
27 

Nucleus fasciculosus 

thalami 
6231/12490 0/0 

Fig. 22 

(f) 
39 

Subthalamic 

Nucleus 
12006/24276 0/0 
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3.7.2 Experiment with Preprocessed Data 

A second experiment was performed on the same deep brain structures using both 

traditional DC and the proposed method. For this experiment, some preprocessing was 

performed on the atlas data. Each deep brain structure was separated and binarized into a single 

volume. A crude smoothing was performed using the binary morphological operations opening 

and closing. The structuring element was a cube of size 3x3x3. The sequence of morphological 

operations were closing, followed by opening. This preprocessing simplified the topology of the 

volume considerably. Fig. 23 shows the meshes generated using standard DC (yellow colored 

meshes), and Fig. 24 shows the meshes generated using the proposed method (grey colored 

meshes).  

TABLE 3 reports the number of triangles and vertices, as well as the number of non-

manifold edges and vertices for the meshes in Fig. 23. TABLE 4 reports the number of triangles 

and vertices, along with the number of non-manifold edges and vertices for the meshes in Fig. 

24. In both TABLE 3 and TABLE 4, the names of the anatomical structures and their 

corresponding atlas label numbers are given.  

The purpose of this second experiment is to demonstrate the fact that even after 

preprocessing, standard DC is unable to produce 2-manifold meshes in almost all cases, with Fig. 

23(e) being the exception. Preprocessing using binary morphological operations considerably 

simplified the topology of the surface. That is why there are fewer non-manifold edges and 

vertices in the meshes generated using standard DC. The simplified volume also contains fewer 

ambiguous cubes. So the number of vertices and triangles in the meshes generated by the 

proposed method are not significantly higher than the number of vertices and triangles of the 

meshes generated by standard DC. In the case of Fig. 23(e), the preprocessing operation 
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simplified the volume to such an extent that there were no ambiguous cubes present, and 

therefore, the proposed method behaved exactly like standard DC. For the other cases, the 

proposed method generated meshes that are completely 2-manifold and watertight. 

 

 

 

 

Fig. 23.  Surfaces generated using standard DC on preprocessed atlas data. The red lines depict 

non-manifold edges. (a) Globus Pallidus (b) Globus Pallidus Internal (c) Globus Pallidus External 

(d) Nucleus lateropolaris thalami (e) Nucleus fasciculosus thalami (f) Subthalamic Nucleus.  

(a)     (b)     (c) 

(d)     (e)     (f) 
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Fig. 24.  Surfaces generated using the proposed method on preprocessed atlas data. These meshes 

are completely 2-manifold. (a) Globus Pallidus (b) Globus Pallidus Internal (c) Globus Pallidus 

External (d) Nucleus lateropolaris thalami (e) Nucleus fasciculosus thalami (f) Subthalamic 

Nucleus.  

 

 

 

 

 

 

(a)     (b)     (c) 

(d)     (e)     (f) 
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TABLE 3  

RESULTS OF SURFACES GENERATED USING STANDARD DUAL CONTOURING ON 

PREPROCESSED DATA 

 
Atlas 

Label 
Structure Name 

Number of 

Vertices/Tris 

Number of Non-

manifold 

Edges/Vertices 

Fig. 23 

(a) 
05 Globus Pallidus 16858/33712 2/0 

Fig. 23 

(b) 
11 

Globus Pallidus 

Internal 
15736/31480 7/0 

Fig. 23 

(c) 
12 

Globus Pallidus 

External 
20411/40828 7/0 

Fig. 23 

(d) 
26 

Nucleus 

lateropolaris thalami 
9608/19212 3/0 

Fig. 23 

(e) 
27 

Nucleus fasciculosus 

thalami 
3550/7092 0/0 

Fig. 23 

(f) 
39 

Subthalamic 

Nucleus 
8165/16324 1/0 

 

 

TABLE 4 

RESULTS OF SURFACES GENERATED USING THE PROPOSED DUAL CONTOURING 

METHOD ON PREPROCESSED DATA 

 
Atlas 

Label 
Structure Name 

Number of 

Vertices/Tris 

Number of Non-

manifold 

Edges/Vertices 

Fig. 24 

(a) 
05 Globus Pallidus 16890/33776 0/0 

Fig. 24 

(b) 
11 

Globus Pallidus 

Internal 
15847/31698 0/0 

Fig. 24 

(c) 
12 

Globus Pallidus 

External 
20506/41016 0/0 

Fig. 24 

(d) 
26 

Nucleus 

lateropolaris thalami 
9657/19314 0/0 

Fig. 24 

(e) 
27 

Nucleus fasciculosus 

thalami 
3550/7092 0/0 

Fig. 24 

(f) 
39 

Subthalamic 

Nucleus 
8181/16358 0/0 
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Fig. 25.  An illustration of the digital deep brain atlas. (left) The digital atlas superimposed over 

the brain. (right) The anatomical structures of Fig. 22 superimposed over a slice along the XY 

plane (Z = 163) of the digital atlas.  

 

Fig. 25 (left) shows the digital atlas superimposed over a corresponding slice of the T1-

weighted Colin 27 average brain (in hot-metal coloring). Fig. 25 (right) shows all the anatomical 

structures of Fig. 22 superimposed over a magnified XY slice of the digital deep brain atlas. The 

atlas is depicted in gray scale, and the mesh coloring is as follows: Globus Pallidus (blue), 

Globus Pallidus Internal (green), Globus Pallidus External (purple), Nucleus lateropolaris 

thalami (orange), Nucleus fasciculosus thalami (yellow) Subthalamic Nucleus (brown). 

3.7.3 Quality of Triangles 

A commonly used metric to describe the quality of triangles in surface meshes is the 

radius ratio described in [55], as shown in Equation (35).  
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In Equation (35) 𝑟𝑖𝑛 describes the radius of the circle inscribed in the triangle, and 𝑟𝑐𝑖𝑟𝑐 is 

the radius of the circumscribing circle. A value close to 1 indicates a very good quality triangle 

(close to an equilateral triangle) and a value near zero indicates a poor quality triangle (a triangle 

which is collapsing to an edge). The average values for the structures in Fig. 22 and Fig. 24 are 

reported in TABLE 5. Also included in TABLE 5 are the number of triangles whose ratio values 

fall below a threshold (0.2 in this case). As can be seen, there are a number of triangles whose 

radius ratios are less than ideal. Most of these poor quality triangles are created by the Minimal 

Edge Rule. As mentioned before, the n-gon created in this rule does not necessarily have to be 

convex. In our implementation, we use an ad-hoc method to triangulate the n-gon but this 

triangulation method is not configured towards producing high quality triangles as Delaunay-

based methods do. Delaunay-based tessellation methods are avoided because they tend produce 

convex triangulations, and enforcing the n-gon to be always convex can introduce non-manifold 

edges in the resulting surface mesh. 

 

 

 

 

 

 

𝑟𝑎𝑡𝑖𝑜 = 2
𝑟𝑖𝑛

𝑟𝑐𝑖𝑟𝑐
. (35) 
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TABLE 5 

MESH QUALITY FOR MESHES GENERATED BY THE PROPOSED METHOD USING 

UNPREPROCESSED DATA AND PREPROCESSED DATA 

  
Meshes from 

unpreprocessed data 

Meshes from preprocessed 

data 

Atlas 

label 

Structure 

name 

Average 

Radius 

ratio 

No of tris (No of 

tris with radius 

ratio <= 0.2) 

Average 

Radius 

ratio 

No of tris (No of 

tris with radius 

ratio <= 0.2) 

05 
Globus 

Pallidus 0.744 72670 (503) 0.782 33776 (102) 

11 

Globus 

Pallidus 

Internal 
0.741 66018 (482) 0.781 31698 (82) 

12 

Globus 

Pallidus 

External 
0.747 66226 (487) 0.775 41016 (144) 

26 

Nucleus 

lateropolaris 

thalami 
0.745 36806 (271) 0.781 19314 (78) 

27 

Nucleus 

fasciculosus 

thalami 
0.756 12490 (81) 0.784 7092 (29) 

39 
Subthalamic 

Nucleus 0.747 24276 (155) 0.778 16358 (60) 
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3.8 Comparison with Existing Methods 

In this section, the results of the proposed method are compared with the results of the 

opensource implementation of the Intersection-free Contouring algorithm (IC) [47] available 

from GitHub (https://github.com/aewallin/dualcontouring). For input data, the Asian Dragon 

polygonal model was used and is freely available at The Stanford 3D Scanning Repository 

(http://graphics.stanford.edu/data/3Dscanrep).  

For the proposed method, the opensource visualization library VTK’s (Visualization 

ToolKit) vtkPolyDataToImageStencil filter was used to create a volume with appropriate spacing 

from the Dragon model. The volume was then used as input in the proposed method. The octree 

was set to depth 9 also. One single mesh was generated.  

For the IC method, the same basic procedure was followed as described in [47]: The 

Dragon model was converted into Hermite data using the PolyMender software [56], and then 

applied the Hermite data to the IC software. The only difference is was setting the octree depth 

of 9. IC uses adaptive simplification, based on an error threshold to simplify the resulting 

polygonal mesh. Larger threshold values result in smaller number of vertices and triangles. Three 

error threshold values were used for adaptive simplification and generated three polygonal 

meshes. Since [47] does not report any error threshold values, this method used values so that 

number of vertices and triangles of the three meshes would be greater than, close to, and less 

than the number of vertices and triangles of the mesh generated using the proposed method. The 

results are summarized in TABLE 6.  
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TABLE 6 

MESH STATISTICS AND QUALITY 

Mesh 

Generation 

Method 

Number 

of 

vertices 

Number 

of 

triangles 

Number of 

non-manifold 

edges/vertices 

Average 

Radius 

ratio 

No of tris 

with radius 

ratio <= 0.2 

IC, 

threshold = 

0.7 

194778 390550 544/186 0.430 108924 

IC, 

threshold = 

0.5 

226408 453986 536/225 0.452 132929 

IC, 

threshold = 

0.3 

212770 626940 525/259 0.465 197812 

Proposed 

method 
237117 474454 0/0 0.763 4591 

 

 

Fig. 26 shows the four meshes generated using the IC method and the proposed method. 

As reported in TABLE 6, the mesh generated using the proposed method is completely 2-

manifold whereas the meshes generated using the IC method contain large numbers of non-

manifold edges and vertices. Furthermore, the quality of the triangles of the mesh generated 

using the proposed method is superior to the meshes generated by the IC method. However, the 

downside of having such high-quality triangles is that the mesh generated by the proposed 

method has a blocky appearance (explained in the next section), as shown in the right inset in 

Fig. 26. In contrast, the meshes generated using the IC method have much smoother appearance, 

at the cost of having lower quality triangles. 
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Fig. 26.  A comparison of meshes of the Asian Dragon model. (a) IC method, threshold = 0.3, (b) 

IC method, threshold = 0.5, (c) IC method, threshold = 0.7, (d) proposed method. The two insets 

near the bottom show a close-up of the mesh generated using the proposed method and one 

generated using the IC method. 

 

3.9 Mesh Smoothing 

The meshes generated using the proposed method, as shown in Fig. 22, Fig. 24, and Fig. 

26(d), all show a staircase-like appearance, even though they are 2-manifold and watertight. This 

section will elaborate on the reason for the staircase-like appearance, and offer a solution.  

(a)        (b) 

(c)             (d) 
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One of the limitations of the proposed solution is that it assumes that minimizers are 

always inside their respective grid cubes. This is not an issue in the case of tetrahedral cells 

(within ambiguous cubes) because we use their centroids as minimizers, and the centroid will 

always lie within the tetrahedron and its parent cube. In the case of unambiguous cubes, the 

minimizers are computed using Quadratic Error Functions, and the method used to solve these 

QEFs is an important factor to consider. In certain situations, the computation of minimizers may 

result in the minimizer being placed outside its respective cube. This allows the resulting mesh to 

have a smoother appearance, as shown in Fig. 27 (right), but at the cost of containing intersecting 

triangles (inset in Fig. 27) and/or cracks. Facilities in MeshLab were used to detect the presence 

of intersecting triangles in the meshes. Schmitz et al. uses an iterative particle-based method to 

compute minimizers in [57] which results in good approximation of the isosurface, but does not 

guarantee a solution.  

In order to obtain watertight surfaces in our solution, we constrain the minimizers of 

unambiguous cubes to remain within their respective cubes. While this gives the resulting 

meshes their staircase-like appearance, the meshes are watertight and do not contain any 

intersecting triangles and/or cracks as shown in Fig. 27 (left).  

One solution to rectify the staircase-like appearance of the meshes generated by the 

proposed method is to use some form of mesh smoothing technique as a post-processing step. 

Laplacian smoothing is a simple and basic smoothing algorithm that changes the position of all 

vertices by computing a new position based on neighboring vertices and triangles/faces. Fig. 28 

shows two example of using the Laplacian smoothing technique as a post-processing stage on a 

surface mesh of the Nucleus lateropolaris thalami (atlas label 26) generated by the proposed 

method.  
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Fig. 27.  Two meshes of the Nucleus lateropolaris thalami (atlas label 26) generated using the 

proposed method. (left) Minimizers were constrained to remain within their respective grid cube, 

resulting in the blocky appearance of the mesh. (right) Minimizers were allowed to be positioned 

outside their respective grid cubes, resulting in a smoother appearing mesh, but containing 

intersecting triangles (inset). 

 

In the case of using Laplacian-based smoothing, the amount of smoothing depends on the 

number of iterations used in the smoothing process. More iterations result in a much smoother 

surface. One problem with using a basic Laplacian smoothing is that it can cause shrinkage, as 

well as requiring a high number of iterations in order to be effective. A better alternative for 

post-processing smoothing is to use the Taubin filter, which can avoid shrinkage and requires 

fewer iterations.  
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Fig. 28.  The results of applying Laplacian smoothing on a surface mesh of the Nucleus 

lateropolaris thalami (atlas label 26). (left) The number of iterations was set to 100, (right) the 

number of iterations was set to 200.  

 

In any case, the biggest drawback of using any post-processing smoothing is that since 

vertex positions are being changed, the quality of triangles may also adversely change: triangles 

may be stretched into thin slivers, and intersecting triangles may occur near thin structures.  

 

3.10 Tetrahedral Mesh Generation 

One type of mesh that is commonly used in engineering and biomedical research is the 

tetrahedral mesh. Tetrahedral mesh generation can be classified [58] into the following four 

categories: (1) Octree-based, (2) Delaunay, (3) Advancing Front and (4) Optimization-based. 

Among these categories, Delaunay based techniques are the most frequently used. In many 

applications, an initial surface mesh, known as a piecewise linear complex (PLC) that coincides 



64 

 

 

with the boundary of the problem domain is used as an initial starting point for the 

tetrahedralization process. In such cases, the user has to ensure (either manually or by using 

mesh editing software) that the input surface mesh does not contain geometric errors such as 

holes, slivers, intersecting triangles and non-manifold elements.  

Software such as TetGen [59] and the opensource library CGAL (Computational 

Geometry Algorithms Library) [60] are able to generate tetrahedral meshes from an input PLC 

using Delaunay-based methods. Fig. 29 shows two cross-sections of tetrahedral meshes 

generated using TetGen, using the surface mesh of the Nucleus lateropolaris thalami (Fig. 22(d)) 

as input. The purple colored triangles represent the tetrahedral elements and the blue colored 

triangles represent the input surface mesh. Fig. 29 (Bottom left) shows a coarse tetrahedralization 

(when the edge-radius ratio is set to 1.5) and Fig. 29 (bottom right) shows a finer 

tetrahedralization (when the edge-radius ratio is set to 1.0). Although TetGen and CGAL both 

provide facilities for mesh refinement and optimal tetrahedralization, none of those facilities 

were utilized during the generation of the meshes in Fig. 29. The main purpose of this section is 

to emphasize the fact that the surface meshes generated using the proposed methodology are 

error free (2-manifold, watertight and intersection free) and can be readily used in the generation 

of tetrahedral meshes. 
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Fig. 29.  Tetrahedral meshes created using the surface mesh of the Nucleus lateropolaris thalami 

(atlas label 26) as the input PLC. (Top) Surface mesh, with cutting plane, (Bottom left) coarse 

tetrahedralization (Bottom right) Finer tetrahedralization.  

 

3.11 Conclusions 

The standard Dual Contouring (DC) algorithm can be made to use adaptive as well as 

non-adaptive octrees. In the adaptive approach, the grid cubes can be of different sizes (different 

levels of the octree) whereas in the non-adaptive approach, all the grid cubes are of the same size 

(lowest level of the octree). One of the limitations of our proposed solution is that it is only 
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applicable in non-adaptive octrees where a minimal edge will always have four grid cubes 

sharing the edge.  

The proposed method generates watertight and 2-manifold surface meshes that have an 

overall unsmoothed and staircase-like appearance because of limitations placed on the computed 

minimizers’ positions. This can be circumvented by using post-processing mesh smoothing 

techniques, but caution must be exercised when using such techniques.  

For the results presented thus far, we have not included the runtime for any of the 

meshes. This is because some parts of the proposed method have not yet been 

optimally/efficiently implemented. In general, total runtime is between 3 minutes (for the meshes 

shown in Fig. 22 and Fig. 24) to around 13 minutes (for the Asian Dragon mesh in Fig. 26 (d)), 

with most of the runtime spent reading the volume. Optimizing all aspects of the implementation 

of the proposed method would reduce the runtime.  

A modified Dual Contouring algorithm is presented that is capable of generating 2-

manifold surface meshes. Since non-manifoldness occurs due to the presence of ambiguous grid 

cubes, we proposed a method to subdivide an ambiguous cube into tetrahedral cells. The 

centroids of these tetrahedral cells are used as minimizers, and allow an ambiguous cube to have 

multiple minimizers. Novel polygon generation rules that result in 2-manifold surfaces have also 

been provided.  

Two sets of results were presented using unpreprocessed and preprocessed data. For both 

sets of data, standard DC and the proposed method to generate surface meshes were applied. 

MeshLab facilities were used, instead of relying on visual inspection, to confirm the presence or 

absence of boundary edges and non-manifold edges and vertices. In both cases, the proposed 

method produced meshes that were 2-manifold and watertight, while traditional DC produced 
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meshes with non-manifold edges and vertices. Our proposed strategy is simple and effective, and 

can be easily integrated into the traditional Dual Contouring algorithm. Furthermore, the 

resulting surface meshes are error free, and can easily be used for the generation of tetrahedral 

meshes. 
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CHAPTER 4 

MULTI-MATERIAL AND 2-MANIFOLD DUAL CONTOURING 

Chapter 3 presented a modified Dual Contouring algorithm that is capable of producing 

watertight and 2-manifold surface meshes. The surface meshes, as well as the accompanying 

literature review presented thus far deal solely with single material surface meshes. In this 

chapter, the 2-manifold DC algorithm is extended to produce multi-material surface meshes.  

 

4.1 Literature Review 

So far, the algorithms discussed previously deal mostly with Dual Contouring for single 

material mesh generation, with the exception of [51]. Multi-material surface meshing is the next 

evolution in surface mesh generation. For a multi-labeled data, Bloomenthal and Ferguson [61] 

decompose a cube into six tetrahedral cells. For each tetrahedron that intersects the surface, the 

edges, faces and interior of each tetrahedron is examined for vertices, and polygons are 

produced. Hege et al. [62] present a variation of the MC algorithm that can produce meshes for 

non-binary volumes. This involves subdividing a cube into a number of sub-cells whose probable 

material indices are established using trilinear interpolation. In [63] Bonnell et al. use volume 

fraction information on a dual grid constructed from regular hexahedral grids, which are then 

split into six tetrahedral cells to generate non-manifold multi-material boundary surfaces. Wu 

and Sullivan [64] extend the classical Marching Cubes algorithm to produce 2D and 3D multi-

material meshes where every faceted surface separates two materials. Reitinger et al. [65] present 

a modified MC-based method that can produce consistent non-manifold meshes from multi-

labeled datasets. A cube whose corners have more than one material label is subdivided into 

eight smaller cubes, and faces of the cube whose corners have more than one material label are 
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subdivided into four sub-cells. A constrained Laplacian filter is used on the output mesh to 

reduce staircase-like artifacts. Bertram et al. [66] use a method similar to [62] but relies on a dual 

grid. In [67] Bischoff and Kobbelt simplify topological ambiguities by subdividing voxels that 

contain critical edges or vertices before extracting the material interface. Boissonnat and Oudot 

in [68] present a Delaunay-based surface mesh generator that produces provably good meshes, 

and Oudot et al. extend this to volumetric meshing in [69]. Pons et al. [70] further extend these 

Delaunay-based methods to produce surface and volumetric meshes from multi-labeled medical 

datasets. Zhang and Qian [51] use a modified Dual Contouring algorithm where ambiguous grid 

cubes are decomposed into tetrahedral cells to generate tetrahedrons and polyhedrons for multi-

material datasets. Dillard et al. [71] present an interpolation method using a simple physical 

model to find likely region boundaries between image slices, and then apply Marching 

Tetrahedra [46] to produce a surface mesh. Smoothing and simplification methods are also 

presented to reduce the number of triangles. Meyers presents a variation of the Dynamic Particle 

Systems [72] to produce multi-material surface and tetrahedral meshes.   

The standard Dual Contouring algorithm is unable to produce 2-manifold and watertight 

surface meshes due to the presence of ambiguous cubes. Chapter 3 presented a modified Dual 

Contouring algorithm that is capable of overcoming the limitations of standard DC. Ambiguous 

cubes were subdivided into a number of tetrahedral cells having regular size and shape. The 

centroids of these tetrahedral cells were used as minimizers, and novel polygon generation rules 

were used to produce single material surface meshes that were 2-manifold and watertight.  

The work presented here is an extension of the algorithm presented in Chapter 3. The 

main contribution is the generation of geometrically correct multi-material surface meshes which 

contain non-manifold elements at the junctions where materials meet. The sub-meshes of each 
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individual material are 2-manifold and watertight on their own. The presented method is capable 

of producing multi-material interfaces or shared boundaries that are consistent between sub-

meshes. It is also demonstrated that these multi-material surface meshes can be used to easily 

initialize multi-material tetrahedral meshes. 

 

4.2 Multi-material vs. 2-Manifold 

A mesh is defined as being 2-manifold if every edge of the mesh is shared by exactly two 

faces, and if the neighborhood of each vertex is the topological equivalent of a disk. A closed 2-

manifold mesh S satisfies the Euler‐Poincaré condition 𝑛 + 𝑡 − 𝑘 = 2. The closed surface mesh 

is also watertight if it does not contain any holes or cracks.  

Since a multi-material surface will inherently contain non-manifold elements along 

material interfaces due to its multi-material nature, it is important to present a formal description 

of a mesh being multi-material, watertight and 2-manifold. A triangular mesh can be described as 

a set 𝐒 = {𝐕, 𝐄, 𝐅} where V is a set of n vertices {𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛−1} with each 𝑣𝑖 ∈ ℝ3, E is a 

set of k edges {𝑒0, 𝑒1, 𝑒2, … , 𝑒𝑘−1} where each tuple 𝑒𝑖 is an edge made up of two vertices, and F 

is a set of t triangular faces {𝑓0, 𝑓1, 𝑓2, … , 𝑓𝑡−1} where each tuple 𝑓𝑖 describe a triangle made up of 

three vertices.  

In a regular, single-material, grid-based surface meshing algorithms like Marching Cubes 

[30] or Dual Contouring [29], the input data is a binary volume or implicit function which 

describes a point as being either greater than or less than a given isovalue. A uniform grid is 

superimposed on the input data, and the corners of the grid cubes are designated as inside or 

outside the volume.  
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Fig. 30.  A 2D example of a uniform grid superimposed on a multi-material domain. The four 

corners of the square occupy three different material domains as well as the background.  

 

Multi-label or multi-material input data have material indices describing the different 

material subdomains of the input data. The material indices are typically implemented in the 

form of integer values with 0 indicating background and the positive integers describing different 

materials/labels. The corners of grid cubes are assigned these integer material indices, indicating 

that the cube’s corner resides inside that material region of the input data. Fig. 30 shows an 

example of a 2D uniform grid superimposed on a multi-material domain. There are three 

materials in this example, red with material index 1, blue with material index 2 and green with 

material index 3, along with the background whose material index is 0. The four corners of the 

square are within each of these regions and are assigned their respective regions’ material 

indices. 

A multi-material mesh would have additional material information associated with its 

vertices and/or faces. In our implementation of a multi-material and 2-manifold Dual Contouring 

algorithm, we assign pairwise integer values to faces only, with the mechanism of the assignment 

explained in the next section. The triangular faces of a multi-material mesh SM of M materials 

can be described by the set 𝐹 = {𝑓𝑖
𝑝,𝑞}, where p and q are the assigned pairwise material indices 

0 

2 1 

3 
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for a triangular face, and 𝑝, 𝑞 ∈ 𝑴 and 𝑝 ≠ 𝑞. For example, 𝑓0
0,1

 denotes the first triangle of the 

mesh with material indices 0 and 1. This means that the first triangle forms a plane between the 

background and Material 1. As another example, the face 𝑓80
2,3

 describes the triangle with index 

80 forming a plane between materials 2 and 3. Fig. 31 depicts a more complete example. Fig. 

31(a) shows a simple mesh comprising two materials with material indices 1 and 2, in red and 

blue colors, respectively. This is the actual, whole and complete mesh. Fig. 31(b) shows a cutout 

of the mesh. The green colored part of the mesh is the interface or shared boundary that lies 

between the two materials. In this example, all the faces of Material 1 (red) are of the form 𝑓𝑖
0,1

, 

all faces of Material 2 (blue) are of the form 𝑓0
0,2

 and all faces of the shared boundary (green) are 

of the form 𝑓0
1,2

. Fig. 31(c) and (d) shows what the sub-meshes of each individual material and 

the shared boundary would look like if they were viewed separately. 

 

 

 

Fig. 31.  A synthetic example of a multi-material mesh of two materials, with a shared boundary. 

(a) The whole and complete multi-material mesh, (b) a cutout of the mesh showing the green 

colored shared boundary, (c) the sub-mesh for Material 1, (d) the sub-mesh for Material 2. 

(a)     (b)    (c)    (d) 
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One aspect of a multi-material mesh having shared boundaries is that non-manifold 

elements will occur at the junction where two or more materials meet. In Fig. 31(a) and (b), the 

junction where Materials 1 and 2 meet is outlined in yellow, and these edges are non-manifold, 

i.e., they are shared by more than two faces. While the multi-material mesh (Fig. 31(a)), as a 

whole, is not purely 2-manifold due to the presence of these non-manifold elements, the sub-

meshes (Fig. 31(c) and (d)) of individual materials along with the shared boundary themselves 

are completely 2-manifold and watertight. 

Fig. 32 shows another synthetic example of a multi-material mesh containing non-

manifold elements, with sub-meshes for Material 1, 2 and 3 colored in red, blue and purple, 

respectively. In this figure, there is an additional non-manifold vertex, as shown in Fig. 32(a) and 

Fig. 32(b), which is shared between the sub-meshes of Material 1 and Material 2, along with 

non-manifold edges (demarcated in yellow). Fig. 32(b) shows a cutout of the mesh, and the 

shared boundary between the sub-meshes for Material 1 and Material 3 is colored green. Fig. 

32(d), (e) and (f) shows the separated sub-meshes for each of the individual materials. Again, 

although the whole and complete multi-material mesh is not purely 2-manifold, the three sub-

meshes, by themselves, are 2-manifold and watertight. 

 

 



74 

 

 

 

Fig. 32.  A synthetic example of a multi-material mesh with three materials, having non-manifold 

edges and vertex. (a) The whole and complete multi-material mesh, (b) a cutout of the mesh to 

show the shared boundary between the red and purple meshes, (c) sub-mesh for material 1, (d) 

sub-mesh for Material 2, (e) sub-mesh for Material 3. All three sub-meshes are 2-manifold and 

watertight.  

 

4.3 Ambiguous vs. Unambiguous 

The surface meshing process begins by superimposing a uniform grid over the multi-

labeled volume in question. As stated earlier, the corners of the grid cubes are assigned material 

indices to indicate which material domain they occupy. An octree is used to represent the 

(a)      (b) 

Non-manifold 

vertex 
Non-manifold 

vertex 

(d)     (e)     (f) 
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uniform grid. The corner configuration of the grid cubes can be of two types: (1) all the corners 

have the same material index, and (2) at least one corner has a material index that is different 

from the rest. The cubes whose corners all have the same material index are completely inside a 

particular material and are therefore discarded from the octree. Quadratic Error Functions (QEF), 

as shown in Equation (1) are used to generate a single minimizer for each grid cube.  

In standard DC, the presence of ambiguous cubes, along with its single minimizer, is the 

reason non-manifold elements occur in the resulting surface mesh. Once the octree is generated, 

it is therefore necessary to identify ambiguous and unambiguous grid cubes. A grid cube is called 

ambiguous because there are more than one possible surface intersecting the cube. Ambiguous 

cubes have either a face ambiguity or an interior ambiguity. Face ambiguity occur when the 

material index of two diagonal corners of a face are the same while the other two corners have 

different material indices. Interior ambiguity occur when the material index of two diagonally 

opposite corners of the cube have the same value. Fig. 33(a) and Fig. 33(b) show an example of 

face and interior ambiguities, respectively. 
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Fig. 33.  Examples of ambiguous cubes. (a) Face ambiguity, and the two possible surfaces (b) 

Interior ambiguity and the two possible surfaces. 

 

In the single material case each grid cube can have 28 or 256 possible configurations, 

however these can be reduced to 14 fundamental cases when rotation and symmetry are taken 

into account, as shown in Fig. 13. Out of these 14 configurations, Cases 0, 1, 2, 5, 8, 9 and 11 are 

simple cases for which there is only a single surface that intersects the grid cube (no surface for 

Case 0). Reference [50] presents a comprehensive list of 31 possible cases and their surface 

intersections when face and interior ambiguity are taken into consideration.  

It may be possible, though costly, to identify each ambiguous case in the single material 

case. However, in the multi-material case where a cube can have a total of 88 permutations, it is 

simply not feasible to identify ambiguity for each grid cube. Indicator variables can be used, as 

demonstrated in [51], to reduce a multi-labeled cube into a series of binary labeled cubes for 

each material, and then determine ambiguity for each material.  

 

(a)      (b) 
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Fig. 34.  Identifying ambiguity for multi-material domains. (Top row) Face ambiguity, (a) One 

possible configuration for single material contouring, (b-c) two possible configurations for multi-

material contouring. (Bottom row) Interior ambiguity. (d-e) two possible configurations for single 

material contouring, (f-h) three possible configurations for multi-material contouring.  

 

To determine ambiguity, we note that every ambiguous cube (Cases 3, 6, 7, 10, 12, and 

13), with the exception of Case 4, show at least one instance of face ambiguity. One face of the 

cube consisting of four points can have a total of 24 and 44 permutations, for single material and 

multi-material situations, respectively. After taking symmetry and rotation into account, the 

number of permutations for a single face exhibiting face ambiguity can be reduced to 1 and 2, for 

single material and multi-material situations, respectively, as shown in Fig. 34 (top row).  

The situation is slightly more complex for Case 4 ambiguity. In the single material case, 

standard DC produces a non-manifold vertex when (1) only two diagonally opposite corners of 

the cube are inside the volume and the remaining corners are outside the volume, as shown in 

Fig. 34(d), or (2) when only two diagonally opposite corners are outside the volume and the 

remaining corners are inside the volume, as shown in Fig. 34(e). This concept holds true in the 

 (a)   (b)   (c) 

(d)  (e)   (f)       (g)   (h) 
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multi-material case involving two materials, three materials, or more than three materials in the 

most extreme circumstance, as shown in Fig. 34(f-h). 

In the proposed multi-material and 2-manifold Dual Contouring method, a cube is 

identified as either ambiguous or unambiguous, by determining face or interior ambiguity. The 

exact nature of the ambiguity (i.e. Case 3 or Case 4 or Case 10 or Case 12) is not necessary. This 

allows the proposed method to be extremely generalized in its approach.  

 

4.4 Tetrahedral Decomposition of Ambiguous Cubes 

Once grid cubes have been classified into ambiguous and unambiguous cubes, the next 

stage is to compute minimizers for each cubes. In standard DC, one minimizer is computed for 

every cube. This single minimizer in ambiguous cubes is insufficient to adequately represent the 

different topologies that are possible in ambiguous cubes. Hence, when used in conjunction with 

the minimizers of neighboring cubes to generate surfaces, non-manifold edges and vertices 

appear in the resulting surface mesh.  

Volume smoothing is one method that can be used to reduce the chances of generating 

non-manifold edges and vertices. Volume smoothing methods like binary or grayscale 

morphology, or blurring kernels such as a Gaussian kernel, can simplify the topology of the data 

in question, thus reducing the number of ambiguous cubes. However, such approaches do not 

address the underlying issue of what to do when ambiguous cubes are inevitably encountered. 

Since the presence of a single minimizer in ambiguous cubes is the main reason for the creation 

of non-manifold elements, the obvious solution is to introduce multiple minimizers into 

ambiguous cubes. In [50], based on the intersections between the isosurface and the cube, 
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multiple minimizers are introduced into the cube and new polygons are created by reconnecting 

vertices of the mesh to the newly inserted minimizers.  

Sohn [52] shows that a cube can be decomposed into a number of tetrahedrons while 

preserving the topology. The manner of the tetrahedral decomposition is dependent on the 

number of face and body saddle points of the cube. This concept was exploited by Zhang and 

Qian in [51] by decomposing a cube into twelve tetrahedral cells of similar size and shape. Our 

proposed method decomposes an ambiguous cube into a maximum of twelve tetrahedral cells in 

the same manner as [51]. The center of the cube acts as a common point for all tetrahedrons. The 

center, along with three corners of a face make up the four vertices of a single tetrahedron. Each 

face of the cube forms the base for two tetrahedrons. Fig. 35 (left) shows an example of two 

tetrahedrons created from the front face of a cube.  

The choice of the face diagonal is important because it can cause a potential change in the 

local topology. The basic rules for creating the diagonal are as follows:  

 If the two diagonally opposite corners are contiguous with each other through the interior 

of the volume, then create a face diagonal between the two corners. 

 If the two diagonally opposite corners are inside the volume, but not contiguous with each 

other through the interior, then create a face diagonal using the other two corners. 

 For all other cases, any appropriate face diagonal can be used.  
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Fig. 35.  An illustration of the decomposition of ambiguous cubes. (left) A partially decomposed 

ambiguous cube having two tetrahedrons. The front face is the base of two tetrahedrons (red lines), 

and the center of the cube is a common point for all tetrahedra. (right) Two adjacently placed 

ambiguous cubes sharing a face (purple square). The face diagonal (purple dashed line) across the 

shared face is consistent for both cubes.  

 

This rule also allows two adjacently placed ambiguous cubes sharing a face to have 

consistent face diagonals. The consistency of the diagonal of shared faces between two 

ambiguous cubes is particularly important during polygon generation. Fig. 35 (right) shows an 

example of two ambiguous cubes with a shared face (colored purple). The red and blue dashed 

lines represent two tetrahedrons for the red and blue cubes, respectively, and the shared face 

serves as the base for all four tetrahedrons. Notice that the face diagonal (purple dashed line) is 

the same for both cubes. 

An interior edge is an edge of a tetrahedron that is made up of a corner of the parent cube 

and the center of the cube. A sign change edge is an edge of a tetrahedron or a grid cube whose 

end points have different material indices. A valid tetrahedron is one in which at least one edge is 

a sign change edge. Although an ambiguous cube is decomposed into a total of twelve 
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tetrahedrons, our proposed strategy makes use of only valid tetrahedra for polygon generation. 

For each valid tetrahedron, the centroid is computed and used as its minimizer.  

As mentioned above, in the case of single material surfacing, a cube can have 31 unique 

configurations when face and interior ambiguity are taken into consideration. The number of 

configurations drastically increase when dealing with multi-material surfacing. Each cube 

configuration is representative of a different surface and/or topology, and establishing polygon 

generation rules for each configuration is difficult at best for single material surfacing, and near 

impossible when dealing with multi-material surfacing. In order to be effective and feasible, 

polygon generation rules need to be generalized enough to handle unambiguous cubes, as well as 

any ambiguous case, for both single and multi-material surfacing. 

The next section details a set of polygon generation rules which are applied to 

unambiguous cubes as well as any ambiguous cubes that have been subdivided into a number of 

tetrahedral cells. These rules are capable of producing multi-material, 2-manifold and watertight 

surfaces irrespective of whether the cubes are ambiguous or not. The rules also work 

independent of the number of tetrahedral cells of an ambiguous cube. 

 

4.5 Polygon Generation 

In standard DC, polygon generation is based on analyzing minimal edges: for each 

minimal edge, create a polygon using the minimizers of all cubes that contain the minimal edge. 

For DC using non-adaptive octrees, a minimal edge will be contained by 4 cubes, and the cubes’ 

four minimizers are used to create a quad or two triangles. The proposed method to generate 

multi-material surfaces also relies on analyzing minimal edges contained by four cubes. 

Additionally, since ambiguous cubes will contain a number of interior edges due to their 
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decomposition into a set of tetrahedral cells, it is necessary to analyze these interior edges and 

face diagonals as well. Zhang and Qian follow a similar approach in [51] to generate tetrahedral 

meshes.  

The proposed method to generate multi-material and 2-manifold surface meshes is only 

applicable to non-adaptive octrees. Minimal edges will always be shared by four cubes. If all 

four cubes are unambiguous, then we create two triangles using the minimizers of the four cubes. 

On the other hand, if any of the four cubes exhibit ambiguity, then the following rules are 

applied: (1) Minimal Edge Rule, (2) Face Diagonal Rule, and (3) Interior Edge Rule. These three 

rules are similar as the ones presented in Chapter 3, except that these rules can now be used to 

produce multi-material meshes.  

 

4.6 Verifying 2-Manifoldness in Multi-material Meshes 

Multi-material meshes are inherently non-manifold due to their multi-material nature. 

Specifically, the junctions where two or more materials meet will contain non-manifold edges 

and/or vertices. The proposed algorithm is capable of generating multi-material surface meshes 

where each material’s sub-mesh is a watertight and 2-manifold mesh. In order to verify this, the 

whole multi-material mesh is split into each material’s sub-meshes, as shown in Fig. 31 and Fig. 

32. For each sub-mesh, the opensource software MeshLab [53] is used, instead of relying on 

visual inspection, to detect the presence of non-manifold edges and vertices and boundary edges. 

MeshLab is an open source mesh processing tool that makes extensive use of the VCG 

(Visualization and Computer Graphics) Library. Our experiments show that even though the 

whole multi-material mesh can have non-manifold elements, the individual material’s sub-mesh 

is always watertight and 2-manifold. 
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4.7 Mesh Smoothing 

As discussed in Chapter 3, one limitation of the proposed method is that the surface of 

the resulting multi-material meshes exhibit a staircase-like effect. The reason for this is because 

the polygon generation rules always assume that minimizers will always be inside their 

respective cubes. This is not an issue for minimizers of tetrahedral cells because these 

minimizers are the centroids of their respective tetrahedrons. In the case of unambiguous cubes, 

the QR decomposition method used to compute minimizers can, in some situations, result in the 

minimizer being placed outside its respective cube. When minimizers are computed to be outside 

their respective cubes the surface mesh has an overall smoother look while containing cracks and 

intersecting triangles, as shown in Fig. 27 (right). On the other hand, when minimizers are 

constrained to remain within their respective cubes, the surface mesh is crack-free and has no 

intersecting triangles, but exhibits a staircase effect, as shown in Fig. 27 (left). 

Mesh smoothing can be performed as either a pre-processing stage or a post-processing 

stage. In a pre-processing stage, the input volume can be smoothed using such as grayscale or 

binary morphological operations, or blurring with a Gaussian kernel. Extra care needs to be taken 

for multi-material volumes so that material interfaces are not corrupted. In a post-processing 

stage, mesh smoothing techniques such as Laplacian or Taubin smoothing can be used. Both 

Laplacian and Taubin smoothing are algorithms that changes the position of all vertices by 

computing a new position based on neighboring vertices and triangles/faces. Laplacian 

smoothing can produce shrinkage whereas Taubin smoothing can avoid shrinkage. We used the 

vtkWindowedSincPolyDataFilter class (which is an implementation of a Taubin filter) available 

in VTK (Visualization Toolkit) to smooth our multi-material surface meshes as a post-processing 

stage. Another advantage of using Taubin filters over Laplacian filters is that it takes relatively 
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fewer number of iterations to have discernable effects. The results of the smoothing process are 

shown in Fig. 36. Of course, care must be taken when using any sort of smoothing filters. Too 

many iterations can potentially lead to undesirable changes, such as triangles becoming slivers.   

 

4.8 Results and Discussion 

Fig. 31 and Fig. 32 shows two examples of multi-material and 2-manifold surface meshes 

generated with the proposed method. The proposed method has also been applied on a digital 

atlas [54]of the basal ganglia and thalamus to produce multi-material surface meshes of 

anatomical structures. The atlas is in MINC 2.0 format (Medical Imaging NetCDF) and contains 

a total of 92 labeled structures. The atlas consists of 334x334x334 voxels with a stepsize of 0.3 

mm.  

 

 

 

Fig. 36. Taubin smoothing. (left) Unsmoothed mesh. (right) Mesh smoothed using Taubin 

smoothing, with 10 iterations. 
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A multi-material mesh of five anatomical structures in close proximity to each other has 

been generated using the proposed method. Fig. 37 shows a multi-material mesh of the striatum 

(purple), interior capsule (yellow), Globus Pallidus (green), Globus Pallidus External (red) and 

Globus Pallidus Internal (blue). The upper figure shows both (left and right) parts of the mesh, 

and the lower figure shows a close-up of the right side of the mesh. Typically the striatum and 

the internal capsule almost completely surrounds the Globus Pallidus, so the striatum and 

internal capsule are rendered transparent in this figure. The white lines denote the non-manifold 

edges along the material interfaces. For the sake of simplicity, the shared boundaries between 

materials have not been differentiated in Fig. 37, even though they do exist. The shared 

boundaries are shown in Fig. 38. Fig. 39 shows a cross-section of the multi-material mesh in Fig. 

37 and Fig. 38. TABLE 7 shows the quality of the triangles of the meshes. The overall quality of 

the meshes of the triangles of the meshes is roughly 0.74 on average. The poor quality triangles 

of the mesh are a result of the implementation of the Minimal Edge Rule. In the current 

implementation of the proposed method, Delaunay-based triangulation schemes have not been 

used due to their tendency to enforce convex polygonization.  
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Fig. 37.  A multi-material representation of the striatum (purple), internal capsule (yellow), Globus 

Pallidus (green), Globus Pallidus External (red) and Globus Pallidus Internal (blue). The striatum 

and internal capsule are rendered transparent. The white lines represent the non-manifold edges 

where two materials meet. Each structure has a single color. The shared boundaries are not 

depicted here.  
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Fig. 38.  An illustration of the complexity of the shared boundaries between the (a) striatum, (b) 

internal capsule, (c) Globus Pallidus, (d) Globus Pallidus Internal and (e) Globus Pallidus External. 

The different colors represent the parts of the mesh that are shared between the structures.  
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Fig. 39.  A coronal slice of the multi-material mesh of the Striatum (s), Internal Capsule (ic), 

Globus Pallidus (GP), Globus Pallidus Internal (GPI) and Globus Pallidus External (GPE). The 

different colors represent the different shared boundaries between two structures.  
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TABLE 7  

MESH QUALITY REPORT FOR STRIATUM, INTERNAL CAPSULE, AND GLOBUS 

PALLIDUS GROUP 

 
Atlas 

Label 
Structure Name 

Number 

of 

triangles 

Number 

of 

vertices 

Average Radius 

Ratio  

(worst value) 

Fig. 37  Whole mesh 1600205 777287 
0.742725 

(0.0000349219) 

Fig. 38 (a) 1 Striatum 843580 420016 
0.741234 

(0.0000349219) 

Fig. 38 (b) 4 Internal Capsule 1024134 509799 
0.743144 

(0.0000349219) 

Fig. 38 (c) 5 Globus Pallidus 76966 38083 
0.73666 

(0.00165458) 

Fig. 38 (d) 11 
Globus Pallidus 

Internal 
73816 36456 

0.733899 

(0.00126407) 

Fig. 38 (e) 12 
Globus Pallidus 

External 
74998 37249 

0.733607 

(0.000459615) 

 

 

The triangulation in the Minimal Edge Rule is a very basic and naïve approach, and is not 

configured towards producing well-shaped triangles, and sometimes can result in poor quality 

triangles.  

Another multi-material surface mesh has been generated using the proposed method. This 

mesh, shown in Fig. 40, represents the thalamus. This mesh consists of 34 separate labels. In Fig. 

40 the different colors represent the different parts of the thalamus, and the white lines represent 

the non-manifold edge of material interfaces. Fig. 41 shows a cross-section of the mesh of the 

thalamus.  
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Fig. 40. A multi-material representation of the thalamus. 
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Fig. 41.  A cross section slice of the multi-material mesh of the thalamus. The different colors 

represent the different constituent components of the thalamus.  
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TABLE 8  

MESH QUALITY REPORT FOR COMPONENTS OF THE THALAMUS 

Atlas 

Label 
Structure Name 

Number 

of 

Triangles 

Number 

of 

vertices 

Average 

Radius Ratio 

(Worst value) 

 Whole Mesh 661493 307493 
0.735966 

(0.000063037) 

22 Stria medullaris thalami (st. m) 6050 3033 
0.76577 

(0.00395043) 

26 
Nucleus lateropolaris thalami 

(Lpo) 
39504 19680 

0.741478 

(0.00113207) 

27 
Nucleus fasciculosus thalami 

(Fa) 
13204 6564 

0.746772 

(0.000264277) 

28 
Nucleus Anterior Principalis 

(Apr) 
22454 11183 

0.748473 

(0.00318234) 

37 Nucleus Medialis (M) 82294 40793 
0.739118 

(0.0017311) 

40 
Lamella medialis thalami (La. 

M.) 
68054 33337 

0.726119 

(0.000307618) 

48 Ruber (Ru) 14874 7351 
0.743886 

(0.00555594) 

49 Nucleus Centralis (Ce.) 42170 20705 
0.723844 

(0.000759698) 

51 Nucleus Parafasiculairs (Pf.) 22088 10828 
0.709835 

(0.000788477) 

60 Fasciculus gracillis Goll (G) 24244 12002 
0.727113 

(0.00374679) 

68 
Corpus geniculatum mediale 

(G.m/G.Md) 
41594 20573 

0.737691 

(0.000436662) 

70 Nucleus Limitans (Li) 20700 10286 
0.736441 

(0.000451716) 

71 
Ventro-caudalis parvocell 

(V.c.pc) 
9742 4831 

0.744686 

(0.000759698) 

81 Ventro-oralis medialis (V.o.m.) 7670 3835 
0.734398 

(0.00333334) 

86 Ventro-oralis internus (V.o.i.) 22588 11204 
0.735069 

(0.00108321) 

87 Ventro-oralis anterior (V.o.a) 26420 13034 
0.721205 

(0.000506435) 
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TABLE 8 (cont.) 

 

88 Ventro-oralis posterior (V.o.p.) 18284 9034 
0.730065 

(0.00126571) 

89 Dorso-oralis internus (D.o.i) 19044 9410 
0.73692 

(0.0058984) 

90 Zentrolateralis oralis (Z.o.) 4346 2137 
0.716008 

(0.00813926) 

91 
Ventro-intermedius internus 

(V.im.i) 
20438 10077 

0.728127 

(0.000991324) 

92 
Zentro-lateralis externus 

(Z.im.e) 
12276 6026 

0.724353 

(0.000265455) 

94 
Ventro-intermedius externus 

(V.im.e) 
23398 11567 

0.727223 

(0.00260416) 

95 Ventro-caudalis internus (V.c.i) 23586 11651 
0.730712 

(0.00644611) 

96 
Ventro-caudalis anterior 

internus (V.c.a.e) 
12306 6117 

0.737476 

(0.00371692) 

97 Zentro caudalis externis (Z.c.e) 15456 7684 
0.733257 

(0.00440189) 

98 Zentro caudalis internis (Z.c.i) 8906 4439 
0.736896 

(0.00606832) 

99 Dorso-caudalis (D.c.) 3890 1933 
0.740567 

(0.00468903) 

100 
Nucleus pulvinaris orolateralis 

(Pu.o.l.) 
34284 16996 

0.737573 

(0.00468903) 

101 
Nucleus pulvinaris oromedialis 

(Pu.o.m.) 
26474 13139 

0.736356 

(0.000479491) 

102 
Ventro-caudalis portae 

(V.c.por) 
25712 12764 

0.749486 

(0.00212645) 

104 
Nucleus ventroimtermedius 

internus (V.im.i) 
4148 2056 

0.725728 

(0.00270778) 

105 
Nucleus pulvianris 

intergeniculatus (Pu.ig) 
35828 17580 

0.721556 

(0.000063037) 

106 Nucleus pulvianris (Pu.m) 86460 43066 
0.746412 

(0.000191482) 

107 Pulvinar laterale (Pu.l) 37484 18458 
0.724573 

(0.000888158) 

 

 

 

 



94 

 

 

4.9 Multi-Material Tetrahedral Mesh Generation  

As discussed in Chapter 3, among the various techniques [58] available for generating 

tetrahedral meshes, Delaunay-based methods are the most popular. An initial surface mesh, 

known as a Piecewise Linear Complex (PLC), is used to define the boundary of the domain to be 

meshed. The difficulty here is the need to ensure that the surface mesh is 2-manifold, and 

watertight. This difficulty is further compounded in a multi-material scenario where, in addition 

to 2-manifoldness and watertightness requirements, the user must also ensure that the material 

interface (or shared boundary) is consistent.  

The proposed DC algorithm can produce multi-material 2-manifold surface meshes 

where the shared boundary or material interface is consistent, and each sub-mesh is watertight 

and 2-manifold. Such multi-material meshes can be readily used as the input PLC in the 

generation of multi-material tetrahedral meshes.  

Fig. 42 shows an example of a multi-material tetrahedral mesh. Fig. 42(a) shows a multi-

material surface mesh of the subthalamic nucleus and substantia nigra that has been generated 

using the proposed DC algorithm, and is used in TetGen [59] to generate a multi-material 

tetrahedral mesh. Fig. 42(b) shows a cutout of the generated multi-material tetrahedral mesh, 

with the internal tetrahedra colored purple. Fig. 42(c) shows a cutout of the tetrahedral mesh with 

the internal tetrahedra rendered transparent in order to show the material interface (colored blue).  
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Fig. 42.  An example of a multi-material tetrahedral mesh. (Top left) The multi-material 2-

manifold surface mesh, (top right) cutout of the tetrahedral mesh, where the purple color indicates 

internal tetrahedra, (lower left) cutout of the tetrahedral mesh, with the internal tetrahedra rendered 

transparent to show the shared boundary.  
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4.10 Conclusions 

In this chapter, the 2-manifold Dual Contouring method from Chapter 3 has been 

extended to produce multi-material surface meshes. These meshes are multi-material as well as 

2-manifold in the sense that the sub-meshes of individual materials are, by themselves, 

watertight and 2-manifold, even though the whole mesh can contain non-manifold elements 

along material interfaces. The sub-meshes have consistent shared boundaries. Each triangle of 

the mesh is identified using pairwise material indices. The proposed method is effective in 

generating geometrically correct, as well as accurate representation of anatomical structures.  

The proposed method exhibits some of the same limitations as the single material 2-

manifold DC method, namely that the mesh has a staircase-like effect. This limitation can be 

somewhat mitigated through careful use of a post-processing smoothing filter.  
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CHAPTER 5 

MULTI-MATERIAL 2-SIMPLEX DEFORMABLE MESH 

Printed and digital atlases are important tools for medical interventions. While these 

atlases are able to provide reasonable guidance in identifying anatomical structures, they do not 

take into account the large variations in the shape and size of anatomical structures that occur 

from patient to patient. An accurate depiction of the anatomy is especially important for surgical 

interventions like deep brain stimulation, where even small inaccuracies can result in potentially 

dangerous complications. In these situations, a patient-specific representation of the anatomical 

structures of interest is preferred, rather than a generic printed or digital atlas. Deformable 

surface meshes are one way to achieve such patient-specific representations. An initial mesh 

model of the structures of interest can be generated using the digital atlas, and then deformed 

using patient-specific CT or MR data. Not only does the deformed surface mesh accurately 

represent the structures of interest, the model, being a surface mesh, is sparser than volumetric 

representations, such as tetrahedral or hexahedral meshes, and thus reduces computational 

overhead.  

This chapter presents an extension of the discrete deformable 2-simplex mesh. The 

innovation here is a multi-material implementation of deformable meshes which can be 

initialized with relative ease, and deformed using MR data to accurately represent anatomical 

structures of the deep brain region.  

 

5.1 Background 

Segmentation, in the context of medical imaging, is the process where an image or 

volume is partitioned into non-overlapping connected regions using some characteristics intrinsic 
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to the image or volume. Segmentation is important in medical imaging because it provides a 

considerable amount of non-invasive information about the structures of the human body, as well 

as aid in studying anatomical structures and track the progression of diseases. 

Atlas based segmentation is a paradigm where anatomical atlases are used as a guide for 

the segmentation of new images, which effectively transforms a segmentation problem into a 

non-rigid registration problem. This category of segmentation can be divided into two parts: 

single atlas-based and multiple atlas-based. In single atlas-based segmentation, an atlas is 

constructed from one or more labeled images, and then registered to the target image. The 

accuracy of the segmentation depends on the registration process. Examples of single atlas-based 

segmentation can be found in [73-76]. In multi atlas-based segmentation, many independently 

built atlases are registered to the target image, and the resulting segmentation labels are 

combined. The advantage of multiple atlas-based segmentation over the single atlas-based 

approach is that more information is available due to the use of many independent atlases, and 

the drawback is the number of registration steps required to produce the final segmentation. 

Examples of multiple atlas-based segmentation are [77-79].  

Deformable models were first presented in 1986 by Sederberg and Parry in [80]. 

Terzopoulos in [81] coined the term deformable models and applied physical properties to 

objects. The basic idea behind the use of deformable models for segmentation is that the model 

will evolve using internal and external forces, eventually coincide with the anatomical boundary, 

and the interior of this boundary is considered the tissue or organ of interest. The internal force 

will ensure a smooth surface, and the external force will move the surface of the model towards 

the object boundary. To date, there are various categories of deformable models based on 
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deformable splines, mass-spring models, tensor-mass models, finite element models, etc. Meier 

provides a thorough survey of the various deformable models in [82].  

Snakes [83] is the first deformable model to be used for segmentation using spline-based 

internal and image-features-based external forces. In order to be effective, the Snakes model 

needed to be positioned close to the boundary of the object in order to be effective. Cootes et al. 

[84] introduced the notion of using statistical shape information (called active shape models) to 

aid in the segmentation process. This process is dependent upon having landmarks for a number 

of training images, and one-to-one point correspondence between the boundaries of the objects in 

the training dataset. 

Delingette formulated a specific type of deformable models: the k-simplex mesh [31, 32], 

for 3D shape reconstruction and segmentation. A k-simplex mesh is defined as a k-manifold 

discrete mesh where each vertex is linked to exactly k + 1 neighboring vertices. Delingette 

specifies a simplex angle and metric parameters, which can be used to represent the position of 

any vertex with respect to its neighbors. Fig. 7 shows an illustration of the vertex P, along with 

its three neighbors P1, P2 and P3. In Fig. 7, the simplex angle φ, defined by Equation (7), 

represents the angle between the segments that that join P to the projection of the circle C. Gilles 

in [33] computes the simplex angle as the height h of P above the plane made by its three 

neighbors P1, P2 and P3. 2-Simplex meshes are dual to triangular meshes, as shown in Fig. 6. 

Resolution control can also be achieved through the use of topology operators, as illustrated in 

Fig. 9. Simplex forces (where internal forces are based on mesh geometry, and external forces 

are based on input image gradients), together with enhancements such as shape constraints [85], 

smoothing parameters, shape memory and internal and external constraints [33, 39] and 

statistical shape information [86-88] have allowed simplex meshes to be used for accurate 
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segmentation of anatomical structures. Montagnat extended the simplex mesh for segmentation 

of the liver from CT scans, ventricles from MRI brain data and the myocardium from SPECT 

images [85, 89-91]. Gilles introduce a multi-surface 2-simplex model with collision detection 

and handling to segment muscles and bone from MR data [33, 39]. Tejos extended the 2D 

Diffusion Snakes process [92-94] and combined it with simplex meshes and statistical shape 

information for segmenting the patellar and femoral cartilage. Recently, Haq et al. [95-97] used a 

shape-aware based multi-surface simplex model to segment the lumbar spine, along with healthy 

and pathological intervertebral discs. Sultana et al. [98-100] used an implementation of the 1-

simplex active contour incorporating shape statistics-aware deformation forces to segment the 

intracranial portion of ten pairs of cranial nerves attached to the brainstem, and build a patient-

specific atlas of cranial nerves.  

Registration is the process for determining the correspondence of features between 

images collected at different times or using different imaging modalities. Registration can be 

performed with images/volumes as well as discrete models (like surface and tetrahedral meshes). 

Therefore registration can be categorized into (1) image-to-image, (2) model-to-image and (3) 

model-to-model registration. The main goal of registration in the medical field is to find 

corresponding anatomical or functional locations in those images and models. Registration can 

be applied to images of the same subject but of different modalities. This is called multimodal 

registration. Registration can also be applied to images of the same subject but acquired over 

different time periods. This is called serial image registration. Another application of registration 

is to align images acquired from different subjects. The typical registration process consists of a 

transformation model which defines the transformation between images, a similarity metric 

which measures the degree of alignment between images, and an optimization method which 
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maximizes the similarity metric over the space of admissible transformations. Audette et al. 

[101] present a survey of registration methods based on the choice of transformation, similarity 

criterion and optimization method.  

The transformation or deformation model could be physics-based [102-106], 

interpolation-based, knowledge-based or have task-specific constraints. The most common 

interpolation-based deformation models are use Radial Basis Functions [107-111] and Elastic 

Body Splines, as well as Free-Form Deformation. Holden [112] provides a review of different 

geometric transformation techniques used for non-rigid registration. 

The choice of the similarity metric depends on the modality of the images to be 

registered. Images can be mono-modal, meaning that the images were produced by the same 

device. Simple metrics such as Sum of Squared Differences or Sum of Absolute Differences can 

be used, or more sophisticated methods such as Correlation Coefficient and Cross Correlation 

[113-115] can be used. In the case of multi-modal registration where the images can be of 

different modalities (like MR and CT images) the similarity metric is often based on 

information-theoretic approaches. Methods like Mutual Information [116-119], and its variations 

are the most common similarity metrics used. Other methods include landmark matching [120-

122]for images and Iterative Closest Point (ICP) method [123] for surfaces and contours.  

Optimization methods can be broadly categorized as continuous, discrete a heuristics-

based approach. Continuous methods uses real valued variables, and the most commonly used 

methods are the Gradient Descent method, the Conjugate Gradient Descent method, Newton-

type methods, Levenberg-Marquardt and Stochastic gradient descent. Discrete optimization 

methods uses a discrete set of values, and common techniques are graph-based or linear 

programming-based. 
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Fluck et al. [124] surveys a variety of GPU-accelerated registration approaches, and 

including different programming models and interfaces for developing software on a GPU. A 

similar discussion on image registration using multicore systems (high performance computing 

architecture, symmetric multiprocessing, massively multiprocessing, architectures with 

distributed memory and non-uniform memory access) is provided by Shams et al. in [125]. Liu et 

al. in [126] present a cooperative parallel architecture and a method to parallelize non-rigid 

registration algorithms using this architecture. 

Archip et al. in [127] implement a non-rigid registration method as well as a system for 

visualizing multimodal data (augmented reality visualization with fMRI and DT-MRI) during 

neurosurgery. Intra-operative data was transferred to a super computing facility, processed, and 

then transferred back and displayed in the operating room (OR) during neurosurgery. A mean 

residual displacement of 1.82 mm after non-rigid registration is reported. 

Wittek et al. [128] applied non-rigid registration methods for determining craniotomy-

induced brain shift. Their procedure used hexahedral and tetrahedral meshes to represent the 

brain. The deformation field was predicted using specialized non-linear finite element algorithms 

for six cases, which exploits shape function precomputations based on a Lagrangian formulation. 

For each of the six cases, computation of the deformation field is reported to have taken less than 

4 seconds using GPU implementation. The 95th percentile Hausdorff distance (previously used 

in [127, 129, 130]) between the registered surface of the ventricles of the preoperative 

segmentation and the intraoperative surface of the ventricles determined from intraoperative 

image segmentation was considered as the registration error measure. The average 95th 

percentile error for all six cases was reported as 1.733 mm, and the 75th percentile error was 0.9 

mm. 
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Liu et al. [131] present a feature point-based non-rigid registration method to compensate 

for brain shift during tumor resection. Their method claims to be 16 times more accurate than 

rigid registration methods. However, they do not provide calculation times, and even though they 

used intraoperative MRI data for their evaluations, they are unclear as to whether the non-rigid 

registration process can be applied for real-time visualization of brain shift. 

Oguro et al. [132] use a B-spline-based non-rigid registration algorithm for MRI-guided 

prostate brachytherapy. The registration was guided by image similarity based on Mutual 

Information. The processing time is reported as less than 5 minutes, and though the authors 

imply that this is feasible for clinical intervention, they admit that further validation is required 

before their procedure can be applied to clinical interventions. 

 

5.2 Initializing a Multi-Material 2-Simplex Mesh 

A 2-simplex mesh is 2-manifold discrete mesh where every vertex is connected to three 

neighboring vertices. A 2-simplex mesh undergoes deformations based on geometry-based 

internal forces and image-based external forces. The dynamics of each vertex can be modeled 

using the Newtonian law of motion shown in Equation (36).  

𝑚𝑖

𝑑2𝑷𝑖

𝑑𝑡2
=  −𝛾

𝑑𝑷𝑖

𝑑𝑡
+ 𝑭𝑖𝑛𝑡 +  𝑭𝑒𝑥𝑡 (36) 

where 𝑚𝑖 is the mass, and 𝑷𝑖 is the position of a vertex of the mesh. 𝑭𝑖𝑛𝑡 represents all internal 

forces and 𝑭𝑒𝑥𝑡 represents all the external forces acting on 𝑷𝑖 and 𝛾 represents a damping 

coefficient. 

A 2-simplex mesh is the topological dual of a triangular mesh [32]. This geometric 

duality can be exploited to generate 2-simplex meshes from triangular surface meshes. Fig. 43 

shows an illustration of the duality.  
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Fig. 43.  Converting a triangular mesh into a simplex mesh using duality.  

 

The centroids of triangles in the triangular mesh coincide with the vertices of the simplex 

mesh, and edges of the simplex mesh are created by linking these simplex vertices. The general 

algorithm of the conversion process can be summarized as follows: 

 Step 1: Compute the centroids of each triangle of the triangular mesh.  

 Step 2: For each ith vertex of the triangular mesh,  

o Step 2.1: Locate all the triangles incident on the ith vertex 

o Step 2.2: Use the centroids of these triangles to create one simplex cell.  

Fig. 43 shows illustrates the process. In this figure, the red dots on the triangular mesh 

represents the centroids that eventually become vertices of the 2-simplex mesh. There are two 

assumptions typically made when converting a triangular mesh into a corresponding simplex 

mesh using the above process:  

1. The triangular mesh is assumed to be watertight (no holes or gaps), 

Triangular mesh 
2-simplex mesh 
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2. The triangular mesh is assumed to be 2-manifold. 

A closed 2-simplex mesh is a watertight 2-manifold mesh with no gaps and/or boundary 

edges. On the other hand, a multi-material 2-simplex (MM2S) mesh will contain non-manifold 

edges and/or vertices. This situation is analogous to the multi-material triangular surface meshes 

discussed in the previous section. The Multi-material and 2-manifold Dual Contouring method 

described in the previous section were used to generate multi-material triangular surface meshes, 

and use these to initialize MM2S meshes. 

While the duality between 2-simplex meshes and triangular meshes remains true even for 

multi-material meshes, the above algorithm needs to be adjusted slightly to account for the multi-

material nature of the meshes. The multi-material triangular meshes contain material information 

associated with triangles, and this information can be exploited to produce MM2S meshes in the 

following manner: 

 Step 1: Compute the centroids of each triangle of the triangular mesh.  

 Step 2: For each material index 

o Step 2.1: For each ith vertex of the triangular mesh,  

 Step 2.1.1: Locate all the triangles with the current material index that contain 

the ith vertex 

 Step 2.1.2: Use the centroids of these triangles to create one simplex cell.  

Since simplex vertices and cells are being created for each material index, care must be 

taken to avoid duplicate and overlapping cells along the shared boundaries. Fig. 44 illustrates the 

conversion process for a multi-material triangular mesh. Fig. 44(a) shows a synthetic box 

comprising two materials, Fig. 44(b) shows a wireframe rendering of the box. In this figure, the 

red colored part of the mesh represents one material while the blue colored part represents the 
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second material. The green colored part of the mesh represents the shared boundary. In Fig. 44(c) 

the dots represent the centroids of triangles, and Fig. 44(d) shows the duality of triangles to 2-

simplex cells. Fig. 44 (e) and (f) show the multi-material 2-simplex and its wireframe 

representation, respectively.  

 

 

 

Fig. 44.  Conversion of a multi-material triangular mesh of two boxes, colored red and blue and 

having a shared boundary, shown in green, into a multi-material 2-simplex mesh.  

 

5.3 Description of Multi-Material 2-Simplex Meshes 

In the previous section, the multi-material nature of the triangular surface meshes were 

described by assigning pairwise material indices to triangles. Since the vertices of 2-simplex 

(a)      (b)      (c) 

(d)      (e)      (f) 
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meshes are dual to triangles in triangular meshes, it is reasonable to assign the triangles’ pairwise 

material indices to their corresponding dual vertices in the 2-simplex mesh. This procedure 

ensures the preservation of material information in the conversion process. The number of 

vertices of the 2-simplex mesh will be the same as the number of triangles in the triangular mesh. 

Furthermore, as mentioned previously, a MM2S mesh will have shared boundaries as well as 

non-manifold edges and vertices. Because of its multi-material nature, this type of a k-simplex 

mesh is not a true 2-simplex mesh in the sense that vertices along the non-manifold edges of the 

shared boundary can have more than 3 neighboring vertices. Fig. 45 shows such an example. The 

vertex represented by the yellow dot is a vertex on the non-manifold edge of the shared boundary 

and is connected to five vertices. The two red colored dots represent two vertices belonging to 

the red material group, while the blue colored dot represents two vertices belonging to the blue 

material group. The lone green dot represents a vertex belonging to the shared boundary. 

A MM2S mesh can be described as the set 𝐒𝑀 = {𝐕, 𝐄} where V is the set of n vertices 

{𝑣𝑖
𝑝,𝑞}, {𝑖 = 0, … , 𝑛}, 𝑣𝑖 ∈ ℝ3, {𝑝, 𝑞 ∈  𝐌}, 𝑝 ≠ 𝑞 where 𝐌 ∈ ℕ+ is the set of positive integers 

describing material indices, and p and q are the pairwise material indices assigned to each vertex. 

E is the set of m edges{{𝑣𝑖 , 𝑣𝑗}
𝑚

} , ∀𝑣𝑖 ∈ 𝐕, ∀𝑣𝑗 ∈ 𝐕, 𝑖 ≠ 𝑗. In the previous section, multi-

material triangular surface meshes (which contain non-manifold edges and vertices) were 

described as being 2-manifold in the sense that the sub-mesh of each material was purely 2-

manifold and watertight. Fig. 46 (left) shows an example of the whole multi-material 2-simplex 

mesh and Fig. 46 (right) shows the material sub-meshes that are pure 2-simplex. The same 

analogy can be applied to the case of MM2S meshes: each material sub-mesh of a multi-material 

simplex mesh is a pure 2-simplex mesh in the sense that all vertices of the sub-mesh have exactly 
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3 neighboring vertices. This aspect of the MM2S mesh can be effectively utilized when 

performing deformation of the mesh. 

 

 

 

Fig. 45.  An example of a multi-material 2-simplex mesh. The highlighted vertex on the non-

manifold edge has more than 3 neighboring vertices.  

 

 

 

Fig. 46. An example of sub-meshes in a multi-material 2-simplex. (left) The whole multi-material 

2-simplex mesh. (right) the constituent pure 2-simplex sub-meshes. 

 

Vertex 18 
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5.4 Overview of Deformable Multi-material 2-Simplex Meshes 

Once the initial MM2S mesh is generated from the triangular mesh, it is split into its 

constituent sub-meshes. Both the MM2S mesh and its sub-meshes are kept in memory. As 

mentioned above, each sub-mesh is a pure 2-simplex mesh where every vertex is connected to 

exactly three neighboring vertices.  

For every iteration of deformation, internal and external forces are computed. Internal 

forces are based on mesh geometry, and external forces are based on an input image or volume. 

The input image or volume is not used directly in the deformation process. Instead, edge-

preserving anisotropic diffusion smoothing filter (implemented in VTK’s 

vtkImageAnisotropicDiffusion3D filter) is applied, and then the gradient of the volume is 

computed. This gradient image is used to determine external forces for each vertex. Both internal 

and external forces are computed independent of each sub-mesh. The forces are then used to 

separately deform each sub-mesh sequentially using the mesh evolution process described in 

Chapter 2. 

Since forces are computed independently of sub-meshes, the corresponding vertices 

making up the shared boundary may not necessarily remain consistent after deformation. It is 

therefore necessary, after each deformation iteration, to ensure that all corresponding vertices of 

the sub-meshes making up the shared boundary are aligned and consistent. This is done by 

averaging the positions of each corresponding shared boundary vertex, and then updating the 

shared boundary vertices in the MM2S mesh as well as the sub-meshes with these newly 

computed vertex positions. Fig. 47 shows a flowchart of the deformation process.  
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Fig. 47.  A flowchart of the multi-material 2-simplex deformation process.   
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This process for deforming a multi-material 2-simplex mesh offers two advantages: (1) 

the proven single surface 2-simplex mesh deformation framework of [31, 32] can be easily 

utilized, (2) the shared boundary between the sub-meshes will always remain consistent, and (3) 

there is no need to worry about the non-manifold edges of the shared boundaries since the 

deformation occurs only on sub-meshes. The only disadvantage to this process is that it may be 

slightly time consuming, especially for large meshes, due to the need to separately update the 

vertices of the shared boundaries for every deformation iteration. 

 

5.5 Multi-material Deformation Using a Synthetic Example 

As an example, consider a synthetic multi-material box, consisting of two materials 

which will be deformed using MM2S deformation procedure described above. The input mesh is 

a multi-material triangular surface mesh, which is converted into a multi-material 2-simplex 

mesh, as seen in Fig. 48 (top row).  

The input volume is a simple cube where half of the voxels are of one value, and the 

remaining voxels are of a different value. This volume is anisotropically smoothed [133] to 

perverse edges and remove noise, and the gradient image is computed. The MM2S mesh 

undergoes an affine or rigid transformation such that it lies within the gradient image, as shown 

in Fig. 48 (bottom row). 

Fig. 49 (top row) shows a slice of the gradient image, as well as the slice of the initial 

MM2S mesh, along a specific axis. Fig. 49 (bottom row) shows a series of slices of the MM2S 

mesh undergoing deformation with respect to the gradient image. As can be seen, the initial 

MM2S mesh is contained by the boundary coinciding with the image gradient. Subsequent 
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deformations enlarge the MM2S mesh until it coincides with a location of strong image gradient 

magnitude at the 200th iteration.  

A useful method for tracking the state of the deformation process is by computing the 

sum of absolute vertex displacement for all vertices of the current iteration’s mesh, with respect 

to the previous iteration. While this metric can be a potential indicator as to state of the 

deformation, it is not completely reliable as a terminating condition. Fig. 50 shows the graph of 

absolute vertex displacement for the deformation of the synthetic multi-material box. It can be 

seen that after approximately 50 iterations, the overall displacement per iteration of the mesh 

very small. Fig. 49 shows that the deformation is much better after 200 deformation iterations, 

instead of 60 iterations. 
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Fig. 48.  Initialization of the multi-material 2-simplex deformation. 
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Fig. 49.  State of the mesh deformation of the synthetic box example with respect to the image 

gradient. 

 

 

Fig. 50.  Graph of absolute displacement for the deformation of the synthetic box example. 
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5.6 Segmentation of the Subthalamic Nucleus and Substantia Nigra 

The proposed multi-material 2-simplex deformable system has been also used on realistic 

data to achieve meaningful segmentation of anatomical structures. The subthalamic nucleus 

(STN) and the substantia nigra (SN) are two deep brain structures that are difficult to detect and 

segment from MRI. The proposed system has also been used to segment the globus pallidus 

(GP), the image gradient of which is better defined. T1-weighted and T2-weighted MR data was 

used. O’Gorman [134] studies the visibility of the STN and GP internal segment using eight 

different MR protocols, and concludes that different iron levels present in the basal ganglia 

structures can affect the contrast-to-noise ratio.  

The MR data used in this section are freely available from Neuroimaging Informatics 

Tools and Resources Clearinghouse (https://www.nitrc.org/projects/deepbrain7t), and was 

produced as a part of the research in [135]. In [135], T1 and T2-weighted MR images of 12 

healthy control subjects were acquired using a 7T MR scanner, and an unbiased average template 

with T1w and T2w contrast was generated using groupwise registration. Both images have a 

dimensions of 267x367x260 voxels, and 0.6 mm isotropic spacing. A labeled volume (shown in 

Fig. 51) is also provided (referred to as the Wang atlas), containing segmentations of the left and 

right globus pallidus, mammillary body, red nucleus, substantia nigra and subthalamic nucleus. 

This labeled volume, recently made public, serves as ground truth for validating our multi-

surface atlas-to-image registration approach. 

An initial watertight and 2-manifold multi-material triangular mesh of the left SN-STN 

was constructed from Chakravarty’s atlas [54] using the multi-material Dual Contouring 

algorithm described in Chapter 4. This atlas has a step size of 0.3 mm, and a triangular mesh 

generated from this resolution is simply too large (approximately 410k triangles and 20k 
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vertices) to be practical. Therefore, the atlas was downsampled to an appropriate size, and a 

much coarser multi-material triangular mesh was generated (2.5k triangles and 1.2k vertices). 

Fig. 52(a) shows a mesh representation of the SN and STN from the Wang atlas, Fig. 52(b) and 

(c) shows the surface mesh and wireframe mesh, respectively, of the SN and STN constructed 

using Chakravarty’s atlas. 

 

 

Fig. 51.  A rendering of the labels in the Wang atlas. 

 

For the deformation process, the T2-weighted MR image was used because the SN and 

STN are more visible than in T1-weighted MR images [136], as shown in Fig. 53. The image 

was anisotropically, and then the gradient image was computed. The external forces for the 

deformation were computed using the gradient image. Laplacian-based internal forces were used 

to achieve a smooth mesh. Fig. 54 shows the deformation of the SN and STN mesh for several 

iterations. Fig. 55 shows a graph of the absolute mesh displacement. As can be seen, the 
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deformation reaches a steady-state after 150 iterations. Fig. 56 shows the final deformed mesh of 

the SN and STN, at 160 iterations. 

 

 

 

Fig. 52.  Meshes of the SN and STN. (a) A mesh representation of the SN (blue) and STN (pink) 

from Wang atlas, (b) the multi-material triangular surface mesh of the SN (yellow) and STN (blue) 

after clipping, (c) the wireframe representation of the mesh, where the red part represents the 

shared boundary. 

 

  (a)     (b)     (c)  
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Fig. 53.  Coronal slice of the T2-weighted 7T MRI. (Inset) The subthalamic nucleus and substantia 

nigra. 
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Fig. 54.  State of the deformation of the SN and STN. The red outline represents the outline of the 

STN and the blue outline represents the outline of the SN. The green outline represents the shared 

boundary.  
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Fig. 55.  Graph of absolute displacement for the deformation of the SN and STN.  

 

 

Fig. 56.  Final surface mesh (left) and wireframe (right) of the SN (blue) and STN (red).  

 

5.7 Segmentation of the Globus Pallidus and Striatum 

In this section, a series of three experiments will be attempted to segment the striatum 

(comprising the putamen and the caudate nucleus) and the globus pallidus (GP) using high 

resolution 7 Tesla MR data from [135]. In a T1-weighted MR image, both the striatum and GP 
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distinct, as shown in Fig. 57. In the three experiments an initial multi-material 2-simplex mesh 

representation of the striatum and GP will be deformed using: 

1) only T1-weighted MRI 

2) only T2-weighted MRI, and 

3) both T1 and T2-weighted images. Here, the T1-weighted MR image will be used to 

mainly drive the deformation of the striatum, and the T2-weighted MR image will be 

used to segment the GP. The shared boundary between the striatum and GP will therefore 

be influenced by both the T1 and T2-weighted images. 

The main purpose of the third experiment is to demonstrate that the proposed multi-

material 2-simplex framework can incorporate multi-modal data for deformation. 

 

 

Fig. 57.  The differing contrasts of the globus pallidus and striatum in T1-weighted MRI (left) and 

T2-weighted MRI (right).  
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5.8.1 Initializing the Multi-material 2-Simplex Mesh 

In the Wang atlas, the GP is represented as one single structure, as shown in Fig. 58 (top) 

whereas in Chakravarty’s atlas the GP is represented as three distinct parts: Globus Pallidus 

(label 5), Globus Pallidus Internal (label 11) and Globus Pallidus External (label 12), as shown in 

Fig. 58 (bottom). For this experiment, the three parts of the GP in Chakravarty’s atlas were 

combined into a single structure. A new volume was created consisting of only the combined GP 

as well as the striatum. 

 

 

Fig. 58.  The surface mesh representation of the GP. (Top) Wang atlas, (bottom) the three parts of 

the GP in Chakravarty’s atlas. (Green) Globus Pallidus, (Yellow) Globus Pallidus External, (Blue) 

Globus Pallidus Internal. 

 

In order to produce a coarse mesh, the volume was downsampled to an appropriate size 

and smoothed using the Gaussian blurring-based smoothing process described in Chapter 2. The 

multi-material DC method was then used to create a watertight multi-material triangular surface 
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mesh, which in turn was used to create the initial multi-material 2-simplex mesh. In Fig. 59, the 

upper row illustrates the multi-material triangular mesh created by the DC algorithm, and the 

bottom shows the converted multi-material 2-simplex mesh models of the striatum and GP. This 

MM2S mesh was used for all three deformations. 

 

 

Fig. 59.  Simplex mesh generation for the Striatum and GP. (Top) The multi-material triangular 

mesh of the Striatum and combined Globus Pallidus. (Bottom) The multi-material 2-simplex mesh 

initialized from the triangular mesh. The red part of the mesh depicts the shared boundary between 

the GP and St.  

 

For the deformation, the MR image was anisotropically smoothed, and then the gradient 

image was computed. The external forces for the deformation were computed using the gradient 

image. For the first experiment, only the T1-weighted MR image was used. For the second 
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experiment, only the T2-weighted MR image was used. For the third experiment, both gradient 

images for both T1 and T2-weighted images were computed. Laplacian-based internal forces 

were used to achieve a smooth mesh.  

 

5.8.2 Segmentation Using Only T1-weighted MRI 

Fig. 60 shows the state of the deformation using only T1-weighted MRI over several 

iterations. In this figure, the blue outline represents the outline of the striatum, the yellow outline 

represents the outline of the GP, and the red outline shows the shared boundary between the GP 

and striatum. As shown in Fig. 61, the deformation achieves a steady-state after about 250 

iterations. Fig. 62 shows the meshes of the striatum and GP after 250 deformation iterations.  
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Fig. 60.  Cross-sections of the striatum and globus pallidus during deformation using T1-weighted 

MRI. The blue outline represents the striatum, the yellow outline represents the GP, and the red 

outline represents the shared boundary.  
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Fig. 61.  Graph of absolute displacement for the deformation of the GP and striatum using only 

T1-weighted MRI.  

 

 

Fig. 62.  The final surface mesh (left) of the striatum and GP after deformation using only T1-

weighted MRI. (Middle and right) A wireframe rendering of the striatum and GP.  
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5.8.3 Segmentation Using Only T2-weighted MRI 

Fig. 63 shows the state of the deformation using only T2-weighted MRI over several 

iterations. In this figure, the blue outline represents the outline of the striatum, the yellow outline 

represents the outline of the GP, and the red outline shows the shared boundary between the GP 

and striatum. As shown in Fig. 64 the deformation achieves a steady-state after about 350 

iterations. Fig. 65 shows the meshes of the striatum and GP after 350 deformation iterations.  
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Fig. 63.  Cross-sections of the striatum and globus pallidus during deformation using T2-weighted 

MRI. The blue outline represents the striatum, the yellow outline represents the GP, and the red 

outline represents the shared boundary.  
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Fig. 64.  Graph of absolute displacement for the deformation of the GP and striatum using only 

T2-weighted MRI.  

 

 

Fig. 65.  The final surface mesh (left) of the striatum and GP after deformation using only T2-

weighted MRI. (Middle and right) A wireframe rendering of the striatum and GP.  
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5.8.4 Segmentation Using Both T1 and T2-weighted MRI 

Fig. 66 shows the state of the deformation using both T1 and T2-weighted MRI over 

several iterations. In this figure, the blue outline represents the outline of the striatum, the yellow 

outline represents the outline of the GP, and the red outline shows the shared boundary between 

the GP and striatum. As shown in Fig. 67 the deformation achieves a steady-state after about 350 

iterations. Fig. 68 shows the meshes of the striatum and GP after 350 deformation iterations. 
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Fig. 66.  Cross-sections of the striatum and globus pallidus during deformation using both T1 and 

T2-weighted MRI. The blue outline represents the striatum, the yellow outline represents the GP, 

and the red outline represents the shared boundary.  
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Fig. 67.  Graph of absolute displacement for the deformation of the GP and striatum using both T1 

and T2-weighted MRI. 

 

 

Fig. 68.  The final surface mesh (left) of the striatum and GP after deformation using both T1 and 

T2-weighted MRI. (Middle and right) A wireframe rendering of the striatum and GP.  
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5.8 Validation  

For validation, surface mesh representations of the SN, STN and GP were made from the 

labeled volume that is a part of the data from [135], and this was used as the ground truth. The 

opensource VTK libraries implementation of the Marching Cubes algorithm was used to 

generate the surface meshes. Unfortunately a segmentation of the striatum is not available in the 

data from [135], and so a quantitative analysis of the striatum is not possible. 

The surface-to-surface distance between the deformed mesh and the ground truth mesh of 

the SN, STN and GP was computed using uniform sampling. The metrics calculated are:  

Hausdorff Distance (HD), Mean Absolute Distance (MAD), Mean Square Distance (MSD) and 

Dice’s Coefficient (DC), reported in TABLE 9. The Hausdorff distance is the largest error 

between the deformed mesh and its corresponding ground truth mesh. The Dice’s Coefficient 

measures the amount of similarity between the deformed mesh and the ground truth mesh. The 

Mean Square Distance reports the average squared difference between the sampled points on the 

deformed mesh and the ground truth mesh, and the Mean Absolute Distance reports the mean of 

the absolute difference between the sampled points of the deformed mesh and the ground truth 

mesh.  

Fig. 69 shows the deformed meshes of the SN and STN. The color scheme is as follows: 

for the deformed meshes, red indicates over-segmentation, and blue represents under-

segmentation, and green indicates correct segmentation, with respect to the groundtruth. For the 

deformation of the SN and STN, the maximum over-segmentation, as shown in Fig. 69, the 

highest over-segmentation error is approximately 1.55 mm and 1.97 mm for the STN and SN, 

respectively. The highest under-segmentation error is -0.898 mm and -1.63 mm for the STN and 

SN, respectively. TABLE 9 shows the HD, MSD, MAD and DC values for the deformed STN 



134 

 

 

and SN. In both cases, the HD value is smaller compared to the HD of the GP because both the 

SN and STN are smaller structures, relative to the GP. The MSD and MAD values of the SN and 

STN are smaller because, along the main body of both structures, the segmentation is fairly 

accurate (as shown by the green coloring in Fig. 69), with over and/or under-segmentation 

occurring at the lateral ends of both structures, coinciding with lesser gradient values. The DC 

values show that there is an approximately 77% and 80% similarity, for the STN and SN 

respectively, with their corresponding ground truth meshes. Fig. 70 and Fig. 71 shows the 

distribution of segmentation errors of the STN and SN, respectively, with respect to sample 

points. 

The HD for the STN and SN are 2.10 and 2.5 mm, respectively. The DC value for the 

STN and SN are 77% and 79%, respectively. The HD, DC, MSD and MAD values for all three 

experiments of the GP are reported in TABLE 9. 
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Fig. 69.  (Top row) mesh of the STN, (bottom row) mesh of the SN. 

 

 

Fig. 70.  Histogram of segmentation errors for the STN.  
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Fig. 71.  Histogram of segmentation errors for the SN.  

 

Fig. 72 shows the deformed meshes of the GP from the three experiments. The same 

color scheme applies: red indicates over-segmentation, blue indicates under-segmentation and 

green indicates correct segmentation, with respect to the ground truth. Amongst these three 

results, the mesh obtained from using only T1-weighted MRI shows the worst result with the 

maximum under-segmentation being approximately -6.23 mm and over-segmentation being 

approximately 7.1 mm. The deformed meshes from using only T2-weighted MRI and both T1 

and T2-weighted MRI show similar segmentation results, with the maximum over-segmentation 

value being approximately 2.4 mm and the under-segmentation value being -2.1 mm.  
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the GP boundary is not highly visible in T1-weighted MRI, which can account for the 

segmentation errors. Correspondingly, the MSD and MAD values are the largest for this 

deformation. The DC value shows only an approximately 70% similarity with the ground truth. 

Fig. 73 shows the distribution of the segmentation errors for the deformed mesh using only T1-

weighted MRI.  

In contrast, the DC value is significantly better at 92% similarity for the deformations of 

the GP using only T2-weighted MRI and combined T1 and T2-weighted MRI. This improvement 

is the result of the GP’s better visibility on the T2-weighted MRI. The HD, MSD and MAD 

values for these two deformations are similar and also better than the values of the deformation 

with only T1-weighted MRI. Again, the HD is larger, compared to the SN and STN because the 

GP is a relatively larger structure. Fig. 74 and Fig. 75 shows the distribution of the segmentation 

errors for the deformed meshes using only T2 weighted MRI, and both multimodal T1 and T2-

weighted MRI, respectively. 
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Fig. 72.  Final deformation of the GP using: (left) only T1-weighted MRI, (Middle) only T2-

weighted MRI, and (right) T1 and T2-weighted MRI.  

 

 

Fig. 73.  Histogram of segmentation errors for the GP using only T1-weighted MRI. 
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Fig. 74.  Histogram of segmentation errors for the GP using only T2-weighted MRI. 

 

 

Fig. 75.  Histogram of segmentation errors for the GP using both T1 and T2-weighted MRI. 
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TABLE 9 

SUMMARY OF DEFORMATION ERRORS 

Anatomical 

Structures 

Hausdorff 

Distance 

Mean Square 

Distance 

(MSD) 

Mean 

Absolute 

Distance 

(MAD) 

Dice’s 

Coefficient 

Subthalamic 

nucleus 

2.10539 0.30867 0.35002 0.773219 

Substantia nigra 2.54666 0.357749 0.455244 0.799318 

Globus pallidus 

(T1w only) 

7.09671 3.9322 1.26715 0.697706 

(Globus pallidus 

(T2w only) 

2.39267 0.233799 0.315259 0.924629 

(Globus pallidus 

(T1w & T2w) 

2.42717 0.216618 0.307724 0.927084 

 

 

5.9 Conclusion 

Accurate representations of anatomical structures in the deep brain regions is very 

important for medical modelling and simulation purposes. This chapter presented a deformable 

multi-material 2-simplex (MM2S) mesh framework. The meshes are multi-material in the sense 

that they can have consistent shared boundaries with each other.  

MM2S meshes can be generated with relative ease because 2-simplex meshes are 

topologically dual to triangular meshes. It has been shown that this topological duality can be 

adapted for converting a multi-material triangular mesh into a multi-material 2-simplex mesh 

such that the mesh’s material information is preserved. The MM2S mesh is not a pure 2-simplex 

mesh in the sense that vertices along the non-manifold edge of the shared boundary may not have 

exactly 3 neighboring vertices. On the other hand, each material sub-meshes are pure 2-simplex 

meshes. This feature of the MM2S mesh gives rise to a practical approach for achieving 

deformation: each sub-mesh is deformed separately, using separately computed internal and 
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external forces, and then the vertices of the shared boundary are merged, resulting in a consistent 

multi-material mesh.  

Synthetic and realistic examples of MM2S mesh deformations have been presented. In 

the realistic example, deep brain structures such as the subthalamic nucleus (STN), substantia 

nigra (SN) and globus pallidus (GP) have been segmented using 7T MRI data. In the case of the 

SN and STN, the initial multi-material triangular mesh was not very representative of the 

structures in the 7T MR data, resulting in slight modifications. Even then, Fig. 52 shows that the 

STN and SN in the ground truth meshes are of different proportions, whereas the initial STN and 

SN meshes were of similar size. This rather large difference between the initial mesh and the 

ground truth may account for the low accuracy of the segmentation. Furthermore, the SN and 

STN are comparatively difficult to detect and segment from standard T2-weighted MRI. On the 

other hand, the initial mesh of the GP was representative of the ground truth GP. Furthermore, 

the GP is more visible in T2-weighted MRI than in T1-weighted MRI. The three deformations of 

the GP showed that the deformation with T1-weighted MRI produced poor results, and 

deformations of the GP with T2-weighted MRI produced superior results.  

Modern medical procedures should be able to utilize multiple sources of information to 

produce the best possible results. The deformation using both T1 and T2-weighted MRI 

demonstrated that the multi-material 2-simplex mesh deformation framework is capable of using 

multi-modal data in order to achieve accurate deformations. In this chapter, only T1 and T2-

weighted MR data was utilized, however there are specialized MR protocols, such as the 

multicontrast, multiecho MR imaging method of [137], or susceptibility-weighted imaging [134], 

that may be used for more accurate segmentation results.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

This section will discuss the limitations of the work presented in this thesis, and discuss 

possible ways to extend and improve the methods. 

 

6.1 Multi-Material and 2-Manifold Dual Contouring 

The standard Dual Contouring (DC) algorithm can generate surface meshes with sharp 

features. However, a limiting factor of the standard DC algorithm is that it does not guarantee 

geometrically correct 2-manifold surface meshes. This limitation is because the standard DC 

algorithm does not examine and handle the situations that gives rise to non-manifold edges and 

vertices, namely cube ambiguity. The modified DC algorithm presented in Chapter 3 addresses 

this limitation. Grid cubes are identified as either ambiguous or unambiguous. Ambiguous cubes 

are divided into tetrahedral cells whose centroids act as minimizers. Three novel polygon 

generation rules are presented by which the modified DC algorithm is able to produce watertight 

and 2-manifold surface meshes.  

Chapter 4 extends the modified DC algorithm to generate multi-material and 2-manifold 

surface meshes from labeled volumetric data. By their very nature, these multi-material meshes 

can have non-manifold edges and vertices. In Chapter 4, a multi-material mesh is defined as 

being 2-manifold in the sense that each material sub-mesh, if separated, is completely watertight 

and 2-manifold on their own. Grid cubes are identified as either ambiguous or unambiguous, and 

the method by which ambiguous cubes are sub-divided into tetrahedral cells ensures that the 

shared boundaries remain consistent for each sub-mesh. The ambiguity identification method, as 

well as subsequent polygon generation rules are extremely generalized such that it is not 
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necessary to handle each ambiguity case separately. Only one set of polygon generalization rules 

are presented, and these rules are able to produce geometrically correct meshes for any 

ambiguous cases, and for any combination of ambiguous and unambiguous cubes.  

Although the proposed DC algorithm can generate multi-material and 2-manifold surface 

meshes, there still exists a few limitation in the current implementation, and these limitations and 

possible solutions are discussed in the following section.  

 

6.1.1 Mesh Smoothness 

As can be seem Fig. 22, Fig. 38 and Fig. 40, the surface meshes generated by the 

proposed method exhibits a staircase-like effect. While this effect can be mitigated by the 

application of post-processing smoothing filters (like Laplacian or Taubin), the current 

implementation does not address the underlying cause. The staircase-like effect is mainly due to 

the fact that the minimizers of unambiguous cubes are constrained to remain within their 

respective cubes. The method used to compute minimizers can result in some minimizers being 

positioned outside their respective cube. Fig. 27 shows that when minimizers are allowed to be 

placed outside their respective cubes, the resulting mesh can have a smoother appearance but 

contain cracks and/or gaps and intersecting polygons. One solution to address this limitation is to 

use a different method for computing minimizers. Another approach may to incorporate into the 

polygon generation process the adjacent grid cube where the minimizer moves to.  

A second cause for the staircase-like effects are the centroids of tetrahedral cells being 

used as minimizers: specifically, these minimizers are static and are not able to move around 

within their respective tetrahedral cells in the same way that minimizers of unambiguous cubes 

can. This further exacerbates the staircase-like effects exhibited in the surface meshes. A 
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mechanism for adjusting the positions of these minimizers based on the corner values of the 

tetrahedral cells may result in smoother meshes.  

 

6.1.2 Triangle Quality 

The proposed multi-material and 2-manifold DC algorithm is able to generate triangles of 

good quality for the most part. However, some poor quality triangles are being produced, as 

evidenced in TABLE 5, TABLE 7 and TABLE 8. The reason for these poor quality triangles is 

that the current implementation of the Minimal Edge Rule is not configured towards producing 

quality triangles. The Minimal Edge Rule produces an n-gon by linking all the minimizers of all 

cubic or tetrahedral cells sharing the minimal edge, and then triangulating the n-gon. Ideally, 2D 

Delaunay-based tessellation methods would be used to produce good-quality triangles, but 

Delaunay-based methods tend to produce convex polygons. Enforcing convexity on the n-gon 

generated by the Minimal Edge Rule can result in non-manifold edges in the output mesh. One 

solution to this limitation is to use constrained Delaunay methods to produce good quality 

triangles while maintaining the non-convex aspect of the n-gon. Another solution might be to 

partition the non-convex n-gon into a two or more convex polygons, and then applying 2D 

Delaunay-based tessellation to produce good quality triangulations.  

 

6.1.3 Adaptive Octree 

The current implementation of the proposed DC algorithm only works on non-adaptive 

octrees. Incorporating an adaptive octree allows the standard DC algorithm to be more flexible in 

terms of creating producing triangles of differing sizes (larger triangles for flat surfaces). 

However, the current implementation of the proposed multi-material and 2-manifold DC 
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algorithm assumes that all grid cubes are of the same size (lowest level of the octree), and each 

minimal edge shares four cubes. Incorporating an adaptive octree may prove to be difficult in the 

sense that new cube decomposition methods and polygon generation methods need to be 

formulated.  

 

6.2 Multi-Material 2-Simplex Deformable Meshes 

A multi-material 2-simplex (MM2S) deformable mesh framework has been presented in 

Chapter 5, along with results using synthetic and realistic data. While the reported results show 

promise, the current deformation framework is somewhat limited. This section will discuss some 

of these limitations and present improvements to the multi-material 2-simplex mesh.  

 

6.2.1 Creation of the Initial Mesh 

In Chapter 5, a process for converting a multi-material triangular mesh into a multi-

material 2-simplex mesh has been presented. One limitation with this method is that the 

initialized MM2S mesh may not in fact be very representative of the target structure, as 

evidenced in Fig. 52. Since the initial MM2S mesh plays a significant role in the accuracy of the 

deformation, it makes sense to incorporate more structural information when generating the 

initial MM2S mesh. The initial MM2S mesh will undergo deformation in order to represent a 

specific shape. Therefore, one approach is to utilize statistical shape information in generating 

the initial MM2S mesh so that the resulting mesh would be a generalization of the specific shape. 
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6.2.2 Dependency on Image Gradients 

The MM2S deformation process uses internal forces which are based on mesh geometry, 

and external forces which are based on image gradients. The accuracy of the deformation 

depends significantly on the external force, and therefore it can be said that the deformation 

process is dependent on image gradients. If the gradients are clear and crisp, as is the case in 

Section 5.6, the deformation will likely result in a good approximation of the target structure. On 

the other hand, if the gradients are not very clear, or if there are competing gradients within the 

search space, then the deformation is likely to result in a poor segmentation, as demonstrated in 

Section 5.8. When the globus pallidus (GP) is segmented using only T1-weighted MRI, the 

resulting mesh shows a significantly large error. This is because the GP is not well delineated in 

T1-weighted MRI, and therefore the gradient of the GP was not well defined. The segmentation 

of the GP using T2-weighted and multimodal MRI produced superior results, owing to the fact 

that the GP has stronger gradients in T2-weighted MRI.  

One way to alleviate this dependency on image gradients is to utilize specialized data. 

For example, the subthalamic nucleus (STN) is difficult to detect in standard T1 and T2-

weighted MRI. Specialized MR acquisition protocols, such as the multicontrast, multiecho MR 

imaging method introduced in [137], which can directly delineate the STN and other basal 

ganglia structures, can be used to produce superior segmentation results.  

Another approach is to use a priori statistical information to guide the deformation. The 

idea is to represent statistical shape information as another force in the deformation process. This 

statistical and shape-aware approach was successfully utilized in [95-97] in the segmentation of 

lumber vertebrae and intervertebral discs.  
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6.2.3 Multi-Resolution Approach to Deformation 

Multi-resolution registration, in terms of discrete deformable meshes, implies an ability 

of the deformable mesh to take on several levels of resolutions, coarser levels for algorithmic 

robustness, finer levels in order to capture small and fine features of the target. Finer resolution 

meshes have a larger number of cells and vertices, and thus incur increased processing time. 

Moreover, if the deformation starts off with a very high resolution mesh, not only will the overall 

processing time increase, the mesh may be susceptible to being trapped in false minima. The 

solution is to start the deformation with a coarse mesh, and then after a suitable number of 

deformation iterations, switch to a higher resolution mesh that is based on the previous deformed 

coarse mesh. The coarse mesh will deform at a much faster pace since it has fewer cells and 

vertices.   

The current MM2S deformable mesh is only able to deform at a fixed mesh resolution. 

The results presented in Chapter 5 all use a medium-level mesh throughout their respective 

deformations. Due to their relatively coarse nature, some of the cells/polygons in the meshes 

used thus far are rather large, and these meshes are unable to accurately represent small features, 

or surfaces with high curvature. A multi-resolution approach to the MM2S mesh can potentially 

result in more robust and accurate segmentation results. 

 

6.2.4 Mesh Decimation and Mesh Uniformity 

For 2-simplex meshes, there exists several topology operators that can be used to alter the 

mesh, as discussed in Chapter 2. Amongst these, the TO1 and TO2 operators are topology 

preserving. The TO1 operator splits one cell into two adjacent cells, thereby increasing the 

number of points by two and the number of cells by one. On the other hand, the TO2 operator 
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merges two adjacent cells into one cells, thereby decreasing the number of cells and points by 

one and two, respectively.  

It is theoretically possible to achieve mesh decimation by applying a series of TO2 

operators to a 2-simplex mesh. The advantage in this approach to decimation is that, as 

mentioned above, the TO2 operator is topology preserving. Small cells can be merged into larger 

cells, or all the cells within a specific region of the mesh can be merged into a few large cells.  

Another application of topological operators is towards producing meshes with uniform 

cells. The current method of initializing MM2S meshes from triangular meshes is prone to 

producing non-uniform cells. Some cells are made up of as few as three points while other cells 

comprise of more than ten points. TO1 operators can be applied to larger cells in order to break 

them down into smaller cells, and TO2 operators can be applied to small cells in order to merge 

them into larger cells. This would result in a mesh with uniform cell sizes.  

One point of concern is that these topology operators assume that the mesh is a pure 2-

simplex mesh, in other words, very vertex is connected to exactly three neighboring vertices. 

This is not the case with a multi-material 2-simplex mesh where vertices on the non-manifold 

edge of the shared boundary can have more than three neighboring vertices. One approach to 

overcoming this issue is to apply topology operators on material sub-meshes only, in such a 

manner that the shared boundary remains consistent. In other words, operations on shared 

boundaries should be duplicated across the respective sub-meshes. Another approach is to 

selectively apply the topology operators only on parts of the MM2S mesh that satisfy the 

connectivity criteria of a 2-simplex mesh. Whichever approach is used, topology operators can 

be a very useful feature for multi-material 2-simplex meshes.  
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