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Abstract

Diffusion MRI tractography (fiber tracking) is an exquisite noninvasive technique to investigate

structural brain connectivity and neuronal pathway integrity both in health and disease. In brain

tumor surgery planning, fiber tracking is infrequently used due to multifactorial impediments:

cumbersome workflow, absence of advanced tractography techniques in commercial

neurosurgical navigation software, clinically incompatible medical image processing timelines,

and nontrivial interpretation of fiber tracking results in brains occupied by large lesions

that require urgent surgical attention. Based on identified unmet clinical user requirements,

sophisticated image processing tools available both open-source and in commercial

research were exploited to design and implement a novel software solution that enables

an optimized (accelerated and fully automated) image processing workflow, thereby

facilitating the translation of advanced diffusion MRI tractography to daily clinical practice.

Reconstructions of brain nerve fiber bundles generated by the herein realized application,

FT4Onco, were clinically assessed by medical doctors in a qualitative evaluation, and

quantitatively cross-validated with results obtained from another semi-automated research

software that is routinely utilized in single-center neurosurgery planning. Despite non-

negligible differences in methodology and architecture between the two compared image

processing pipelines, it was possible to achieve comparable performance in a fully automated

fashion. With further refinement and integration into the hospital infrastructure, FT4Onco may

conceivably serve as a useful means of brain tumor resection planning.
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Summary

Diffusion MRI tractography for oncological neurosurgery planning

This dissertation describes design-oriented research that is performed to optimize (accelerate

and automate) diffusion MRI data processing and nerve fiber tracking workflow to aid brain

tumor surgery planning. As introduced in Chapter 1, special attention is paid to the surgical

resection of highly aggressive, fast-growing glial tumors, called glioblastoma, which is

a devastating type of brain cancer that may result in early death in about six months or

less if untreated. Glioblastomas pose miscellaneous treatment challenges because of resistance

to conventional therapy, location in the brain, peritumoral edema, and intracranial hypertension.

Often, patients with these tumors present with acute neurological decompensation and

herniation due to tumor mass effect, which warrants a pressing need for immediate surgery

for tumor resection. Oncological neurosurgery remains the mainstay of treatment for

glioblastomas.

Diffusion magnetic resonance imaging (dMRI) has been imperative in presurgical brain

mapping. Supported by background information in Chapter 2, the main topic of this work

concerns the clinical translation of advanced diffusion-informed nerve fiber tracking techniques

to daily neurosurgical practice in order to reliably localize eloquent white matter (WM) nerve

fibers affected by glioblastomas, thereby assisting neurosurgeons in intervention planning.

For the past 24 years, poor fiber tracking models have remained prevalent in clinical research

and commercial neurosurgical navigation software (Chapter 3), inaccurately and unreliably

detecting the main orientation of nerve fiber architecture based on oncological dMRI data.

Nevertheless, the neurosurgical community has been globally unaccustomed to the use of

advanced tractography methods in preoperative planning due to a user-dependent, time-

consuming MR image processing workflow and challenging interpretation of fiber tracking

results intraoperatively.

To enable faster, more reliable, and fully automated workflow, a clinical research tool,

named FT4Onco (Fiber Tracking for Oncology) was designed and a prototype thereof

was realized. The solution was engineered in accordance with a software development

process outlined by the V-model. Starting from a blank canvas, interviews were held with

the main stakeholders for this piece of software, neurosurgeons and neuroradiologists, to

identify contemporary challenges and collect unmet needs in tractography-guided brain tumor

resection planning (Chapter 4). Besides requirements modeling, this thesis describes design
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considerations, design boundaries, and software architecture (Chapter 5). Moreover, the

integration of various open-source as well as vendor-supplied image processing tools is

explained, and potential limitations of selected functionalities are presented. Given that the

development of FT4Onco was conducted in an industrial environment under the auspices

of Philips Healthcare, the demonstrator comprises solely neuroimage processing tools with

licenses permitting their utilization in commercial research.

In Chapter 6, FT4Onco was first evaluated on routine clinical data with initially

interviewed end-users at Klinikum rechts der Isar der Technischen Universität München

in Germany. This clinical evaluation proved that the utilized software packages facilitate

the optimization of daily presurgical workflow through complete automation and significant

acceleration of the fiber tracking process. Moreover, despite the low spatial and angular

resolution of routinely acquired datasets at this clinical center, advanced tractography with the

constrained spherical deconvolution model succeeded in the reconstruction of three eminently

important eloquent WM tracts affected by large glial tumors. Outcomes of user evaluation

were used for further improvement of the prototype.

The final version of FT4Onco underwent a technical cross-validation (Chapter 7),

conducted in cooperation with the Department of Imaging and Pathology, Translational

MRI, Katholieke Universiteit Leuven (KUL) in Belgium. Owing to the absence of ground truth

in single-subject in vivo tractography and lack of validation consensus, the cross-validation

protocol involved defining silver standards, against which voxel-wise volumetric comparisons

were made. In two sets of pairwise agreement tests, the FT4Onco output of eight reconstructed

WM tracts in glioblastoma patient datasets was compared with tractographical reconstructions

generated with the KUL NeuroImaging Suite (KUL NIS) and anatomical models available

from the HCP842 tractography atlas. As discussed in Chapter 8, the highest achieved average

bundle similarities of 0.59 (FT4Onco vs. KUL NIS) and 0.42 (FT4Onco vs. HCP842),

measured by the weighted Dice coefficient, indicated the future need for more extensive

clinical validation studies and reliability tests as well as the verification of FT4Onco-based

anatomical localization by intraoperative functional direct electrical stimulation.

Assuming clinicians’ awareness of both the limitations in the MR neuroimaging domain

as well as the real capabilities and bottlenecks of advanced fiber tracking methods, significant

enhancement of preoperative planning by FT4Onco is deemed feasible.
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Nomenclature

Symbols and units
∆ time between two diffusion-sensitizing gradient pulses s
δ duration of a diffusion-sensitizing gradient pulse s
ℓmax highest spherical harmonics order
η medium viscosity N · s/m2

λ isotropic Laplacian convolution filter
X reconstructed bundle X in cross-validation comparison
Y reference bundle Y in cross-validation comparison
µ mean
∇ vector differential operator
ρ Pearson product-moment correlation coefficient
σ standard deviation
τ relative fiber-to-bundle coherence threshold
r vector determining particle position
θ angular threshold for fiber tracking ◦

ζ derivative filter for convolution stabilization along a slice profile
b diffusion weighting factor s/mm2

B0 main magnetic field intensity T
B1 radiofrequency field MHz/T
C particle concentration
D diffusion coefficient m2/s
J particle flux
r particle radius µm
T thermodynamic temperature K

Abbreviations
2D, 3D, ... #-Dimensional
5TT five-Tissue-Type image volume for anatomically constrained tractography
ACT Anatomically Constrained Tractography
AD Axial Diffusivity
ADC Apparent Diffusion Coefficient
AF Arcuate Fasciculus
AFD Apparent Fiber Density
AFQ Automatic Fiber Quantification
API Application Programming Interface
ASL Arterial Spin Labeling
BA Bundle Adjacency
BBB Blood-Brain Barrier
BIDS Brain Imaging Data Structure
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BOL Bundle OverLap
BOR Bundle OverReach
C Cingulum
CE Contrast-Enhanced
CFR Code of Federal Regulations
CG Conjugate Gradient
CN Computation Node
CNN Convolutional Neural Network
CNS Central Nervous System
CPU Central Processing Unit
CSD Constrained Spherical Deconvolution
CSF CerebroSpinal Fluid
CST CorticoSpinal Tract
CT Computed Tomography
DBS Deep Brain Stimulation
DCS Direct Cortical Stimulation
DES Direct Electrical Stimulation (electrocorticography)
DG Diffusion-sensitizing Gradient
DICOM Digital Imaging and COmmunications in Medicine
DKT Desikan-Killiany-Tourville atlas
DL Deep Learning
dMRI diffusion Magnetic Resonance Imaging
dODF diffusion Orientation Distribution Function
DSC Sørensen-Dice Similarity Coefficient
DSI Diffusion Spectrum Imaging
DTI Diffusion Tensor Imaging
DWI Diffusion Weighted Imaging
EPI Echo-Planar Imaging
FA Fractional Anisotropy
FACT Fiber Assignment by Continuous Tracking
FBC Fiber-to-Bundle Coherence
FDA Food and Drug Administration
FLAIR FLuid-Attenuated Inversion Recovery (anatomical MR image)
FOD Fiber Orientation Density
fODF fiber Orientation Distribution Function
FRT Funk-Radon Transform
FT Fiber Tracking
FT4Onco Fiber Tracking for Oncology
GBM GlioBlastoma Multiforme
GM Grey Matter
GPU Graphics Processing Unit
HARDI High Angular Resolution Diffusion Imaging
HCP842 Human Connectome Project (population-averaged tractography atlas)
HGG High-Grade Glioma
HTTP HyperText Transfer Protocol
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ICAP Imaging Clinical Applications and Platforms (Philips division)
IDH Isocitrate DeHydrogenase
IFOF Inferior Fronto-Occipital Fasciculus
ILF Inferior Longitudinal Fasciculus
ISD Philips IntelliSpace Discovery research platform
ISO International Organization for Standardization
IST Interpolated Streamline Tractography
KUL NIS Katholieke Universiteit Leuven NeuroImaging Suite
LGG Low-Grade Glioma
MD Mean Diffusivity
MDF Minimum average Direct-Flip (distance metric)
MdLF Middle Longitudinal Fasciculus
MEG MagnetoEncephaloGraphy
MERC Medical Ethics Review Committee
MNI Montreal Neurological Institute and Hospital coordinate system
MRI Magnetic Resonance Imaging
NIfTI Neuroimaging Informatics Technology Initiative
NOS Not Otherwise Specified
OR Optic Radiation
PDF Probability Density Function
PGSE Pulsed Gradient Spin Echo
QSI Q-Sampling Imaging
RA Radial Anisotropy
REST REpresentational State Transfer
RF RadioFrequency
ROI Region of Interest
rs-fMRI resting-state functional MRI
SC SubCortical grey matter
SDF Spin Distribution Function
SDM Signal Decay Metric
SE Spin Echo
SH Spherical Harmonics
SIFT Spherical-Deconvolution Informed Filtering
SLF Superior Longitudinal Fasciculus
SLR StreamLine-based Registration
SNR Signal-to-Noise Ratio
SVD Singular Value Decomposition
T1 anatomical MR image weighted by spin-lattice relaxation times
T1C contrast-enhanced anatomical MR T1-weighted image
T2 anatomical MR image weighted by spin-spin relaxation times
tb-fMRI task-based functional MRI
TDI Track Density Image
TMS Transcranial Magnetic Stimulation
TRF Tissue Response Function
UID Unique Identifier
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URI Uniform Resource Identifier
VOI Volume of Interest
WBT Whole Brain Tractography
WHO World Health Organization
WM White Matter

Physics constants
π the ratio of a circle’s circumference to its diameter 3.14159265359
k Boltzmann constant 1.380649× 10−23 m2 kg s−2 K−1
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1 Introduction

Neurosurgery planning is an indispensable prerequisite for effective brain tumor resection.
Medical image processing platforms with automated software have a high potential to support
neurosurgeons in preoperative decision-making by deriving pivotal information from routine
imaging data. This thesis describes a clinical research software, named FT4Onco (Fiber
Tracking for Oncology), that has been designed to address unmet needs in clinical presurgical
workflow. This introductory chapter presents the primary topical subjects of focus in this work
with its objectives, important thematic constraints, and the design approach. The last two
sections discuss the added value of the prototype to clinical research, outline each chapter, and
summarize all contents.

Clinical neuro-oncology is the study of neoplastic lesions in the central nervous system
(CNS, the brain and spinal cord), many of which demand rapid application of curative
procedures in order for affected individuals to survive. The World Health Organization (WHO)
groups CNS neoplasms according to their histological characteristics into various families,
providing neuro-oncologists with a widely accepted reference for classification [1]. Brain
diseases can be examined by neuroimaging, which encompasses a set of tools to directly or
indirectly draw inference about structural and functional properties of the human CNS. In
neuro-oncology, it provides considerable assistance when performing radiographic evaluation
of brain tumors based on diverse imaging biomarkers [2]. Clinical practice nowadays utilizes
two standardized imaging techniques involving computed tomography (CT), and magnetic
resonance imaging (MRI). Both these imaging modalities are mechanically noninvasive, unless
contrast-enhancing media are administrated to aid tissue type differentiation.

In general, CT imaging is conveniently fast and less sensitive to motion effects than
MRI. From the application perspective, CT is an excellent method for bone imaging and
discovering areas of hemorrhage, while soft-tissue imaging with CT provides limited detail.
Conversely, MRI has the ability to differentiate soft-tissue (e.g. fat, water, muscle) better
than CT without exposing the examined subject to ionizing radiation. Brain MRI utilizes
tissue magnetization properties to localize neuroanatomy and neurovasculature (anatomical
MRI, angiography, venography), detect consumption levels of blood oxygenation to infer
about function (functional MRI), quantify blood volume by sampling blood flow (perfusion
MRI, arterial spin labeling – ASL), measure metabolite concentrations within tissues (MR
spectroscopy), and most eminently for this work, help delineate white matter (WM) nerve
fibers by tracing the orientation of water diffusion (diffusion MRI).

In addition to the diagnostic power of the mentioned neuroimaging modalities, they also
help estimate patient prognosis (lesion progression, neurological deficits, recurrence likelihood,
etc.), and select the most appropriate treatment approach. The choice of brain tumor therapy is
vastly influenced by numerous lesion characteristics, such as size, type, and location as well as
patient’s overall health and preferences. Therapeutic strategies may involve watchful waiting,
supervised medication, chemotherapy, radiation therapy, neurosurgical interventions, or the
combination of radiation and chemotherapy with or without surgery [3]. For many decades, the
three main cornerstones of brain tumor treatment have remained the same: maximum surgical
removal followed by external beam radiation therapy and chemotherapy.
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1.1 Problem statement & objectives
This thesis is entirely focused on clinical workflow in the planning stage of oncological
neurosurgery. Special attention herein is paid to surgery planning for high-grade tumors,
particularly glioblastomas, because of their rapid and aggressive growth, infiltrating adjacent
healthy WM structures, and a very poor prognosis. Aiming for maximized safe lesion
removal, brain tumor surgery planning typically relies on soft-tissue contrast provided by
anatomical MRI scans to localize pathology, and diffusion MRI (dMRI) scans to characterize
relationships between tumor tissue and surrounding structures (nerve fibers) as well as to define
resection margins. Standard clinical dMRI protocols for tumor mapping have used diffusion
tensor imaging (DTI) along 6–32 directions with a diffusion weighting factor (b-value) of
1000 s/mm2. A DTI acquisition is relatively fast (whole brain coverage within ∼ 5 minutes)
and available on most clinical systems [4]. DTI-based tractography methods facilitate
noninvasive reconstruction and visualization of nerve fibers by modeling physiological
water directionality and motion based on dMRI data [5, 6]. Despite the growing usage of
advanced tractography algorithms in clinical research, presurgical fiber tracking applications
predominantly incorporate the deterministic DTI-FACT algorithm (Fiber Assignment by
Continuous Tracking) [7]. This most widespread implementation has yet proven inappropriate
in multiple aspects [8].

The diffusion tensor model inherently assumes a unique orientation of nerve fibers in
each image voxel that can be represented by the tensor’s principal eigenvector [9]. However, it
has been stated that the proportion of WM voxels containing crossing fibers (multiple fiber
populations propagating in various orientations within a brain region) reaches up to 90 % [10].
Besides crossing, WM fibers may bend, fan or diverge at intra-voxel level [11], rendering
the tensor model assumptions on water diffusion invalid. For instance, the most frequently
scrutinized bundle (a set of WM fibers) in neurosurgery, the pyramidal tract, can only be
partially detected because of the improper resolution of fiber propagation in its intersection
with the superior longitudinal fasciculus [12], leading to a surgically evoked loss of motor
function [13]. In addition, DTI-FACT algorithms have shown inability to detect fibers in
edematous zones around brain tumors [14].

Fiber tracking has been infrequently utilized in neurosurgery planning owing to the
prevalence of the DTI-FACT model in clinical neuronavigation software [15]. Maximized
identification of individual WM bundles requires more sophisticated models that estimate
a voxel-wise distribution of fiber orientations. However, the uptake of advanced models by
neurosurgical practice is impeded due to multiple factors [16, 17]: (1) lack of awareness
or misconception of technical nuances that underpin the reconstructed nerve fiber bundles,
(2) unfamiliarity with the real capabilities of advanced techniques; (3) long acquisition or
processing times incompatible with acute neurosurgical scenarios, such as immediate need
for tumor debulk in high-grade glioma cases; and (4) perceiving advanced fiber tracking
approaches as too complex. An approach capable of resolving crossing fibers and even
peritumoral propagation is realized in the constrained spherical deconvolution (CSD) model
[18, 19] that relies on high angular resolution diffusion imaging (HARDI) data (at least 60
diffusion directions weighted at b = 1000–4500 s/mm2) [20]. Higher bundle reconstruction
feasibility with CSD compared to DTI-FACT in the context of tumor resection planning has
been reported in several studies [21, 22, 23].
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In order to fully exploit the benefits of the CSD model to create high-quality bundle
reconstructions, dMRI data need to undergo a sequence of advisable preprocessing steps
(ca. 20–25) to compensate for artifacts such as image noise, geometric distortions, slice/volume
misalignment or motion [24]. Such image corrections demand substantial technical and
image processing knowledge that may be lacked by medically trained clinical staff. Custom-
made data processing pipelines containing a mixture of open-source and, if available, the
clinic’s proprietary algorithms are often assembled to optimize site-specific presurgical
workflow. Nevertheless, these workflows reach beyond clinically applicable timelines, require
a couple of manual data handling and formatting steps, work on data acquired with inflexible
dMRI acquisition protocols, and produce inconsistent results. Moreover, the integration of
tractography output (reconstructed bundles) into intraoperative neuronavigation systems
is often nearly impossible, and final visualizations only give limited surgically relevant
information. Finally, advanced tractography techniques were typically developed by imaging
scientists, mathematicians, or MR physicists with little input from medical experts or
neuroanatomists as well as limited consideration to clinical use.

As reported by neuroradiologists and neurosurgeons, these issues collectively lead to
a suboptimal workflow hampering the preparation for semi-urgent or elective surgeries as well
as reluctance to use advanced tractography methods in acute cases. Hence, there is a clear
need for optimized and user-independent solutions. In this thesis, the overall aim was to design
and develop fully automated clinical research software to assist tumor resection planning,
incorporating the best-performing open-source tools for dMRI data processing and advanced
fiber tracking. Achieving this goal required the following major steps:

▶ Identify unmet needs in the presurgical workflow of oncological neurosurgery by
interviewing neuroradiologists and neurosurgeons.

▶ Optimize (accelerate and automate) the preoperative workflow of diffusion and
anatomical MRI data processing on routine clinical data.

▶ Improve the quality and accuracy of dMRI-based tractography output using the CSD
model, and probabilistic tractography algorithms to overcome DTI-FACT limitations.

▶ Represent fiber tracts and tumors in a more informative three-dimensional
multiparametric fashion via indication of fiber tracking confidence and relationships
between tumor and healthy tissue.

▶ Deploy the finalized application at clinical sites to evaluate and validate its output quality
and performance with potential end-users.
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1.2 V-model design
Envisioning and engineering a software solution demands a well-structured approach to ensure
all user requirements are met. As opposed to semi-automated or user-centered software designs,
FT4Onco (Fiber Tracking for Oncology) was meant to become a data processing application
with a fully automated workflow, for which the design process is best defined by a flow chart
outlining sequential events. Therefore, the so-called V-model (Figure 1.1), a.k.a. V-shaped
model, was selected as the ideal software development process representation [25].

Figure 1.1: V-model diagram in software development. Moving down the left side of the V, top-level requirements are
progressively broken down into more detailed functional and technical requirements. Moving up the right side of the
V after code generation, the quality of conformance and quality of design are validated against defined requirements
(arrows) to ensure that a “good enough” software tool is developed [26]. In this thesis, the descending stages of the
V-model are described in Chapters 4 and 5, and the ascending stages are addressed in Chapters 6 and 7. Section 8.1
discusses acceptance testing based on identified user requirements.

The V-model is a variation of a more generic waterfall model, and its use is considered
advantageous in multiple ways. Consecutive design phases are completed one at a time in
a hierarchical perspective from high-level to low-level design. Such partitioning permits
incremental development at each iteration to predict the impact of intermittent changes.
Finalized steps are retrospectively correlated with assigned requirements, which is a validation
method commonly known as cross-referencing. Also, given the clearly defined and fixed
requirements for this thesis, it is a suitable model focusing on verification and validation
in early stages of the development cycle, thereby increasing the likelihood of building an
error-free and high-quality solution.
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The descending part of the V-model is typically understood as defining problems and
proposing solutions. Requirements identification is followed by architectural system design,
which conveys information on system elements (hardware, software), and relationships among
those elements. Next, individual modules (functionalities) are derived from the system design,
and data handling between these modules (or remote systems) is specified. Eventually, each
module is described with respect to its underlying structure, which is commonly known as
low-level design.

Once the code implementation has been finalized, the ascending phase (a series of
quality assurance actions) of the V-model commences. Debugging operations and solitary
module executions are performed to eliminate errors and inconsistencies at unit level (unit
testing). Thereafter, modules are integrated and tested together to ensure smooth intermodular
compatibility. The last step before presenting the solution to end-users is system testing, which
examines the interdependency and communication among functionalities across the entire
application. Both functional and non-functional requirements (e.g. performance) are verified
at this stage.

In the final phase, the resulting software is delivered to the intended real-world
environment, where user acceptance testing happens. At this point, end-users validate the
developed application for adherence to their requirements and compliance with all criteria.
Essentially, the system undergoes final verification before transformation into a (research)
product. Multiple instances of user acceptance testing may be conducted [26].

1.3 Thesis scope
The presented thesis reports research and design activities conducted within the European
TRABIT consortium (TRAnslational Brain Imaging Training, www.trabit.eu). Oncological
neurosurgeons and neuroradiologists are defined as the main clinical end-users of the herein
developed research application. The goal is to offer this piece of software to clinical researchers
investigating the utilization of advanced dMRI tractography methods in a neurosurgical
workflow.

Initial requirements engineering involved direct communication with customers to
understand their expectations. For this purpose, clinical staff (neuroradiologists, neurosurgeons)
was interviewed at several European institutions, some of which are Philips customers or
TRABIT partners (Table 1.1). Furthermore, conference material and proceedings were screened
for further details about user requirements at other sites.

The development of FT4Onco had numerous intentionally defined boundaries explained
in Chapter 5. These limitations are related to the use of selected presurgical brain MR
imaging contrasts for brain segmentation, tumor localization, and WM bundle reconstruction.
Further restrictions include the exploitation of commercially adoptable image processing
functionalities coming from open-source distributions, and aiming for wide compatibility on
Philips MRI data.

Testing whether the final solution fulfils its intended purpose and meets all identified
requirements was done via in-house verification, clinical evaluation, and cross-validation with
another clinical application used at University Hospital in Leuven (Belgium). A complete
clinical validation study to assess the ultimate impact of FT4Onco-based surgery planning on
intraoperative workflow and postoperative outcomes was out of scope.

https://www.trabit.eu/
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Institution Location

Leuven University Hospital Leuven, Belgium

Elisabeth Tweesteden Ziekenhuis Tilburg, The Netherlands

Erasmus University Medical Center Rotterdam, The Netherlands

Klinikum rechts der Isar Munich, Germany

Amsterdam Universitair Medische Centra Amsterdam, The Netherlands

Carlo Besta Neurological Institute Milan, Italy

Akademiska Sjukhuset Uppsala, Sweden

Haukeland University Hospital Bergen, Norway

Sainte-Anne Hospital Paris, France

Table 1.1: List of European medical centers approached during requirements collection.

1.4 Added value to clinical research
This thesis presents the unmet requirements, user-centered design, clinical evaluation, and
technical cross-validation of a research software application for neurosurgery planning with
advanced dMRI-based fiber tracking. To our knowledge, the developed research prototype
and its architecture do not represent a clone, copy or recipe compilation of any other publicly
available image processing pipeline. The hereinafter presented solution brings an added value
to the clinical research community in multiple aspects.

Firstly, the orchestration and arrangement of all functional components within the pipeline
is unique, and has never been reported in literature as a whole. Clinical workflow is enhanced
through a series of 24 sequentially executed processing tasks with fully automated workflow.
Changing the order of image processing steps within FT4Onco may result in unforeseen
glitches at successive tasks, leading either to hampered inference about tractography output or
obtaining no meaningful results.

Secondly, all processes on anatomical and diffusion MRI data are configured to reliably
analyze two types of clinical patient datasets, which are acquired using standardized MRI
protocols in the routine clinical workflow of two sites: University Hospital in Leuven (Belgium)
and Klinikum rechts der Isar in Munich (Germany). Related optimization of image processing
parameters for these data required extensive empirical testing, literature screening, expert
consultations, and experimental setup.

Thirdly, the vast majority of freely available software packages are published to support
a limited area of application. Usually, these tools were developed ad hoc, and their adoption
as building blocks in a completely new configuration, aiming at addressing unmet user
needs in a new area, demands substantial data adjustments to fit input constraints (format,
encoding, compression, size, etc.) as well as fine-tuning of algorithmic parameters. The output
constructed by these tools thus has to be carefully checked prior to forwarding it as a source
for the next consecutive step in the pipeline. In the pursuit of robustness to new datasets, the
functionally most efficient placement of employed tools in the pipeline was determined by
numerous optimization tests and verification on selected datasets.
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In addition, the concept of FT4Onco attempts to reflect the latest research insights,
and is therefore a product of applied science. The adoption of toolkits that are distributed
under licenses not permitting commercial research use was avoided by design. Consequently,
workaround strategies had to be implemented to account for artifacts in diffusion MRI data,
such as motion correction (Section 5.4.4), susceptibility-induced distortion correction, or the
co-registration of diffusion MRI-derived parametric maps with the T1 image (Section 5.4.6).

Finally, the scientifically most relevant outcomes of this work are presented in Chapters 6
and 7. Chapter 6 presents observations from the qualitative evaluation of image processing
outcomes by clinical experts, investigates the sensitivity of output bundle quality to varying
initialization of tractography parameters, and suggests a suitable parametric setup that enables
reconstructing the most anatomically plausible bundle representations (with respect to atlas
models). This setup is later applied in the cross-validation experiment reported in Chapter 7,
where nerve fiber bundle reconstructions from FT4Onco are quantitatively compared with
outcomes from another regularly utilized software to judge the applicability of FT4Onco in
daily clinical research.

1.5 Thesis outline
Chapter 2 concisely reviews human brain anatomy and explains brain tumor classification
with particular focus on glioblastomas and their typical manifestation in clinical neuroimaging.
Thereafter, an insight into the procedural stages of clinical neurosurgery workflow (pre-, intra-,
and postoperative) is given. The next sections deal with the basic principles of DTI and HARDI
to support the understanding of the design choices presented later. The last part explains the
reconstruction of WM nerve fibers from diffusion MR images using both deterministic and
probabilistic tractography approaches.

Chapter 3 consists of a review of prior art, providing an overview of commercially
available software and open-source freeware for diffusion MRI data processing and
tractography. A comparison of open-source packages is reported to understand the complexity
of available dMRI data processing pipelines, and their maturity to address the main topic of
this thesis.

Chapter 4 summarizes all clinical needs and user requirements in presurgical workflow
as presented by clinicians at visited centers. Further sections present the decomposition
of corresponding user requirements into functional, and non-functional requirements as
prescribed by the descending part of the V-model.

Chapter 5 is dedicated to the design description discussing particular choices in hardware
and software, and the description of system architecture. Apart from these topics, this chapter
deals with the cause and mitigation of artifacts in diffusion MR images, justifying the reasons
for integrating individual software modules.
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Chapter 6 reports relevant software assessment steps to test whether the designed
application meets the initially defined requirements. Following the ascending blocks of the
V-model, the implementation is retrospectively verified by a set of compliance tests at multiple
levels. Eventually, the clinical evaluation of the designed solution at Klinikum rechts der Isar
in Munich (Germany) is reported, where neuroradiologists and neurosurgeons interacted with
FT4Onco and shared their opinions on applicability in clinical practice with comments on
further improvements. The last part delivers results of a sensitivity analysis investigating the
impact of changes in input tractography parameters on a given set of bundle features.

Chapter 7 presents the setup and outcomes of a quantitative technical cross-validation
study performed in collaboration with University Hospital in Leuven (Belgium). In addition,
this chapter shows results obtained from the cross-validation of FT4Onco output with model
bundles from a tractography atlas.

Chapter 8 discusses the entire design, and presents concluding remarks on the future
outlook and suggestions for improvement in terms of code structure, modularity, system
architecture, and the presentation of data processing output to oncological neurosurgeons.
Recommendations for deployment on premise and an optimal image acquisition protocol are
proposed as well, supplemented with future research prospects.
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2 Clinical & technological background

The following sections aim to describe the major central nervous system (CNS) structures and
introduce key anatomical terminology associated with white matter nerve fibers. Functional
importance of white matter pathways for oncological neurosurgery is also explained with
deficits related to tumor-induced effects, and perioperative fiber interruption. Subsequent
sections present the basic principles of diffusion MRI and tractography.

2.1 Neuroanatomy overview
Neurosurgeons’ efforts in the preservation and recuperation of the human brain (cerebrum) are
driven by deep knowledge of neuroanatomy. The first observations about brain anatomy were
already documented by ancient Egyptians [27]. For centuries, the field has been progressively
extended by expertise about the coarse brain structure and its intricate networks. This section
describes the arrangement of cerebral anatomy with commonly used orientation labels. To
help readers pinpoint individual anatomical landmarks, Figure 2.1 illustrates how to navigate
in the brain.

Figure 2.1: (A) Planes of reference with orientation labels for the CNS. Due to its obliquity, the brainstem is an
exception to the overall standard. In some literature, the terms ventral/dorsal are used to refer to the anterior/posterior
aspects with respect to the spinal cord. Similarly, the terms rostral/caudal describe the superior/inferior orientation in
the brain. The blue horizontal line represents the bicommissural plane (AC = anterior commissure, PC = posterior
commissure). In MRI, the horizontal plane is typically called axial plane. (B) Cross-section of the brain in the
bicommissural plane [28].

2.1.1 Cerebral anatomy and function

The CNS is covered by three protective layers: dura mater, arachnoid mater and pia mater. The
brain communicates with the entire body through the spinal cord, to which it is connected via
the brainstem. At the back of the brain in the posterior cranial fossa, the center for coordination
and balance is located, the cerebellum. Both the brain and spinal cord are circulated by the
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cerebrospinal fluid (CSF) flowing in a set of four interconnected cavities called ventricles.
The brain accommodates approximately 86 billion neuronal cells (neurons) transmitting

signals (action potentials) through a complex network of axonal connections (white matter).
Neuronal bodies integrate and evaluate transferred information in different regions of the
cortex (grey matter). Neurons are supported and nourished by 10–50 times more abundant
glial cells (astrocytes, oligodendroglia, ependymal cells, microglia).

Continuous supply of oxygenated blood is essential for the proper functioning of the
brain, and is regulated by exquisitely sophisticated control systems in the medulla oblongata.
The CNS is separated from the blood by the blood-brain barrier (BBB) which is a border
system of endothelial cells serving multiple functions. The BBB selectively modulates both
inward and outward flow of vital metabolic nutrients (e.g. glucose) into the brain’s extracellular
fluid, where neurons reside. Also, the BBB is responsible for sodium-potassium (Na+-K−) ion
exchange, and protection from toxins or pathogens that may cause CNS infections. Especially
in the presence of infiltrative tumors, fluid leakage through a disrupted BBB consequently
causes the development of vasogenic peritumoral edema [29].

The folded appearance of the brain is created by gyri (ridges) and sulci (fissures, grooves)
that cover the two cerebral hemispheres. The sulci patterns vary per individual, yet some are
constant enough for general description. The two deepest sulci (central sulcus or Rolandic
fissure, and lateral sulcus or Sylvian fissure) help divide the brain into four distinct lobes (with
lobules as subunits) and the limbic system, which is also referred to as the fifth lobe (Figure
2.2). In neuroscience, brain gyri are typically assigned descriptive names explaining their
primary cognitive or control function.

The frontal lobe is generally responsible for higher cognitive functions (e.g. concentration
or emotional expression) and is divided into superior, middle and inferior parts. Medially, the
anterior portion of the cingulate gyrus (center for hunger and pain) is found. The inferior frontal
gyrus terminates with the olfactory bulb, which is the center for smell. Posterior segments
of the frontal lobe complete the precentral gyrus, where voluntary movements are initiated.
Although the precise anatomical definition is inconsistent, a part of the inferior frontal gyrus
also represents the Broca’s area responsible for speech production.

The parietal lobe is the center for motion and somatosensory functions (sensation and
proprioception). The anterior lobule is marked by the postcentral gyrus, where somatic
sensations from the body including touch, pressure, temperature, and pain are perceived.
Commonly known as the somatosensory association area (e.g. object recognition according
to weight), the supramarginal and angular gyri can be found in the posterior parietal lobe.
Medially, the precuneus is covered behind the paracentral lobule.

The occipital lobe conducts visual information processing (sight, image recognition and
perception). Its lateral surface is marked by lateral occipital gyri. Medially, the occipital lobe
is bordered by the parieto-occipital sulcus and the calcarine sulcus (the seat of the primary
visual cortex).

The temporal lobe is laterally separated into superior, middle and inferior temporal gyri,
where the primary auditory cortex can be found. Auditory signals as well as short-term memory
and emotions are processed in this area. Depending on the dominant hemisphere, the lateral
superior portion of the temporal lobe embodies the Wernicke’s area known as the center for
written and spoken language comprehension.
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The limbic lobe is concerned with mechanisms of attack and defense, creativity and
feeding. The main constituents of the limbic lobe are the cingulate and parahippocampal gyri.
More often, this area is referred to as the limbic system comprising the hippocampi (memory),
fornix, amygdalae (emotional reactions), and hypothalamus (autonomic system control).

Deep brain anatomy is not described here in detail due to its high complexity, and
less frequent occurrence of aggressive gliomas in deep subcortical regions. Functionally
prominent deep brain structures include the thalamus (attention, alertness), pituitary and pineal
glands (endocrine system and circadian rhythm regulation), basal ganglia (coordination of fine
movements), internal capsule, a part of the limbic system, and the ventricular system.

Figure 2.2: Lateral (A) and midsagittal (B) views of the five brain lobes [28].

2.1.2 White matter fiber tracts

A fiber tract (also called fascicle) is a bundle of nerve fibers carrying a common function.
Cerebral white matter pathways are typically divided according to propagation direction into
three categories: projection fibers propagating from the distant inferior brain areas to the
cortex; association fibers connecting two regions in the same hemisphere; and commissural
fibers bridging the two brain hemispheres. The description of all WM bundles in the brain
is beyond the scope of this work. Instead, attention is paid to selected fiber bundles (listed
in Table 2.1) that can be collectively found in diverse regions of the human brain, and that
simultaneously play a major role in surgical neuro-oncology. Detailed connectional anatomy,
functional relevance, and consequences of bundle damage are summarized in extensive reviews,
e.g. [30].

In neurosurgery, the corticospinal tract (CST) is perceived as the most important
projection bundle of the CNS. Damage to this pathway leads to the impairment of voluntary
movements, either manifested as motor paresis (weakness) or paralysis (loss). Moreover, the
CST is vulnerable to disease given its vast extent along the entire vertical length of the CNS.
The majority of the CST fibers originate from the precentral gyrus (primary motor cortex), the
postcentral gyrus (primary sensorimotor cortex), the parietal association cortex, and descend
via the internal capsule to the spinal cord.
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Fiber tract Location (R-L) Pathway Main function

Arcuate fasciculus (AF)
[31]

From the posterior
temporal region to the
frontal lobe, connects

Broca’s and Wernicke’s
areas

Language

Cingulum (C) [32]
From the cingulate

gyrus to the entorhinal
cortex

Communication among
components of the

limbic system

Corticospinal tract
(CST) [33]

From the primary motor
and sensorimotor

cortices via internal
capsule to spinal cord

Voluntary motion

Inferior fronto-occipital
fasciculus (IFOF) [34]

From frontal to occipital
lobes

Semantic language
processing,

goal-oriented behavior

Inferior longitudinal
fasciculus (ILF) [35]

From temporal
to occipital lobes

Visual processing
and language

comprehension

Middle longitudinal
fasciculus (MdLF) [36]

From the superior
temporal gyrus to the
parietal and occipital

lobe

High-order acoustic
information processing

Superior longitudinal
fasciculus (SLF) [37]

From the parietal
to frontal lobe (dorsal
SLF I, middle SLF II,

ventral SLF III)

Visuo-spatial

Optic radiation (OR)
[38]

From the lateral
geniculate nucleus

to the primary visual
cortex

Vision

Table 2.1: Nomenclature and macroscopic description of WM fiber bundles targeted for tractography in
this thesis. Locations of particular bundles in the right and left hemisphere (R-L) are shown with reference
to the HCP842 tractography atlas in the MNI152 coordinate space [39].

Another projection fiber, the geniculocalcarine tract or optic radiation (OR), links the thalamus
with the calcarine sulcus, and its preservation is important to minimize postoperative visual
deficits.

Short association fibers connect brain gyri within a lobe while long association fibers
link one lobe with another. In neurosurgery, special care is taken when operating around the
arcuate fasciculus (AF, sometimes described as SLF IV) since an interruption to this pathway
leads to the inability to produce an answer to a comprehended language input. Other crucial
association fibers include the superior longitudinal fasciculus (SLF) linking the occipital and
frontal lobes, the inferior fronto-occipital fasciculus (IFOF) linking the frontal lobe with the
occipital lobe, and the cingulum (C) linking the cingulate gyrus with the parahippocampal
gyri.
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The largest commissural fiber bundle is the corpus callosum that consists of about
200–300 mill. axons connecting the two cerebral hemispheres. Damage to callosal fibers may
cause impaired verbal and visual information processing. The next two functionally important
commissural bundles are the anterior and posterior commissures.

2.2 Neurosurgical oncology
Surgical neuro-oncology is a field specializing in the treatment of brain, spinal cord,
and peripheral nerve lesions, many of which pose life-threatening risks to the patients.
Every pathological finding is reviewed by multidisciplinary teams (typically referred to as
tumor board), consisting of neurological surgeons, neurologists, radiologists, physiatrists,
psychiatrists, endocrinologists, and radiation oncologists. This section aims to give insights into
brain tumor classification and describe essential parts of a standard neurosurgical workflow.

2.2.1 Classification of brain neoplasms

Brain tumors are subcategorized into primary brain tumors and metastatic tumors. According
to their growth speed and aggressiveness to their surrounding tissue, diffuse, nondiffuse,
and mixed-type tumors are recognized. Pathology examination based on medical images
helps determine whether a lesion is benign (noncancerous) or malignant (cancerous).
Lesions are stratified depending on their originating cellular constituents (glia, astrocytes,
ependymal, mesenchymal cells, etc.), anatomical location (e.g. tumors of the pineal region),
and macromolecular biomarkers (e.g. oligodendroglioma IDH-mutant) into several pathologic
grades (WHO grade I – IV) [40].

Cerebral tumors may originate either externally (extra-axial tumors) from structures
surrounding the brain (e.g. skull or meninges), or from the cerebral mass and its cells (intra-
axial tumors) [41, 42]. Intra-axial tumors are further grouped according to their location into
supratentorial (found in the cerebrum and diencephalon) and infratentorial lesions (located in
the cerebellum, fourth ventricle and brainstem). The term “tentorium” refers to a fold of dura
mater separating the cerebrum from the cerebellum and lower brainstem portions.

Diffuse astrocytic and oligodendroglial tumors belong to the most common primary intra-
axial brain tumors. A simplified classification of this tumor group is schematically illustrated
in Figure 2.3. Out of these tumors, gliomas are recognized as low-grade (slowly growing,
median survival rate ranges from as little as 2 up to a dozen years) or high-grade (growing fast).
In its frequent usage, the term “glioma” designates only astrocytic tumors, although it could be
ascribed to other tumors of glial origin (ependymal, microglial lesions, etc.) as well. General
clinical aspects of gliomas include progressive neurologic deficits, such as motor weakness
(45 %), headaches (54 %) or seizures (26 %). Depending on tumor location, focal neurologic
deficits may occur in the frontal lobe (personality changes), temporal lobe (hallucinations,
memory impairment), parietal lobe (contralateral motor or sensory impairment), occipital lobe
(contralateral visual deficits, alexia), and posterior fossa (cranial nerve deficits) [43].
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Figure 2.3: Adapted classification scheme of primary intra-axial diffuse astrocytic and oligodendroglial tumors [43].
Findings from histological examination determine first-stage diagnosis, and further mutation status assigns respective
classification. Molecular genetic signatures and mutation markers (isocitrate dehydrogenase (IDH), chromosome arm
deletion (1p/19q), and TP35 gene mutation) are used to differentiate among various subtypes of these tumors.

2.2.2 Glioblastomas

A glioblastoma (GBM) is not only the most common, malignant and lethal type of astrocytic
tumors, but also frequently recurrent. Three subtypes are typically recognized: IDH-wildtype
(primary GBM), IDH-mutant (secondary GBM) and NOS (not otherwise specified). Examples
of patients with GBM are shown in Figure 2.4. A primary GBM may grow in any part
of the brain, mainly in the temporal and parietal lobes, while a secondary GBM grows
predominantly in the frontal lobe. Standard medication usually fails to treat GBM patients
because of multiple cell types and focal necroses present in these tumors. Individuals with
GBM typically experience the poorest median survival rates of 16–18 months [44, 45]. Similar
to other high-grade gliomas (HGG, type III and IV), the surgical treatment of glioblastomas
aims for cytoreduction to relieve mass effect (compression of adjacent brain tissue leading to
displacement), and to obtain adequate tissue samples for histological analysis.



27

Figure 2.4: Axial glioblastoma T1 (A) and T1C (B) MR scans [43]. Upper row: Primary GBM with molecular
signature IDH-wildtype (95 % of cases). Most often found in the temporal lobe, these tumors are characterized
by extensive edema with a central necrosis (yellow arrowhead) and hyperintensities on the contrast-enhanced T1-
weighted image (right). Lower row: Secondary GBM of type IDH-mutant without dark necrotic area.

2.2.3 Neurosurgical workflow

Prior to surgery, the identification of tumor mass and its nearby environment is done both
visually and through semi-automated image analysis. HGG and particularly glioblastoma MR
imaging techniques utilized in clinical practice over the past two decades are summarized in
comprehensive reviews, e.g. [46, 47]. Preoperative HGG mapping (Figure 2.5) involves the
acquisition of anatomical MR scans to localize the lesion (T1-weighted images), highlight
areas of BBB breakdown and delineate tumor extent (contrast-enhanced T1-weighted images),
find hyperintense areas representing edematous zones (T2-weighted FLAIR scans), and
determine increased vascularization (perfusion weighted MRI). Functional imaging typically
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aims to localize cortical areas involved in motor and language functions (functional MRI,
magnetoencephalography – MEG, transcranial magnetic stimulation – TMS), and delineate
subcortical white matter (diffusion MRI).

Figure 2.5: Preoperative GBM imaging. Axial contrast-enhanced T1 (A), and T2 FLAIR (B) scans show
a heterogeneously enhancing tumor mass in the left parietal lobe with extensive edema. Elevated relative cerebral
blood flow (white arrows) on the perfusion weighted image (C) indicates higher vascular density. Diffusion MRI
maps (D, E) reveal hypercellular areas of restricted water diffusion [48].

There is a myriad of neurosurgical approaches, and selecting the optimal one is determined
by tumor location, size, and urgency (growth speed). Should the path to access the lesion be
too complicated via body cavities (endonasally, transsphenoidally, etc.), open-skull surgery is
needed. The location of presurgically visualized white matter fascicles is validated by direct
cortical (DCS) and deep brain stimulation (DBS). Awake craniotomy with intraoperative
functional mapping has been reported to further improve the localization of functionally
eloquent areas [49]. In highly aggressive tumors causing white matter fiber infiltration,
surgeons are sometimes permitted no other choice than to mechanically invade and remove
parts of healthy fibers. Whenever possible, the main objective is to maximize the extent of
resection with the preservation of eloquent and other critical structures. As confirmed both by
retrospective and prospective studies [50, 51], partial (incomplete) GBM resection poses risks
of postoperative complications (hemorrhage, edema, herniation), and increases the likelihood
of tumor regrowth. Gross total resection is therefore considered to increase the number of
survival benefits [52]. Intraoperatively, neurosurgeons must also cope with the unavoidable
brain shift (deformation ranging from a couple of millimeters up to several centimeters). The
causes of intraoperative brain shift are multifactorial, including CSF loss, gravity or even
medication. The presurgical estimation of this event is difficult, and an intraoperative update
of imaging data on neuronavigation systems (e.g. with intraoperative MRI) helps overcome
the problem [53].

Surgical outcomes are assessed within 48–72 hours after intervention. Resection is
considered the most effective if the entire contrast-enhancing tumor portion has been removed.
Early postoperative MRI scans are acquired to evaluate the extent of resection, quantify the
amount of tumor residual and essentially, distinguish surgically evoked damage (manifested
by hemorrhage) from tumor recurrence on contrast-enhanced structural MRI scans. Recently,
the amount of tumor remnants has been reported to correlate with overall survival in GBM
patients [54]. Follow-up scans are performed every three months to monitor the long-term
surgical consequences, and clarify indications for repeated surgery.
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2.3 Diffusion magnetic resonance imaging (dMRI)
Diffusion MRI is an MR imaging modality trying to infer features of tissue composition and
microstructure without the utilization of exogenous contrast agents. The measured signal
contains contributions from the displacement of water molecules that undergo diffusion in
a complex set of tissue microenvironments. This section introduces the physical underpinnings
of diffusion and its relation to diffusion signal weighting, explains the core physics behind
a diffusion MRI sequence, and presents methods for diffusion modeling via different dMRI
acquisition schemes. The principles of magnetic resonance image acquisition and diffusion
MRI are extensively reviewed in relevant books [55, 56], and therefore not repeated here.

2.3.1 Physics of diffusion in biological tissue

Diffusion is a physical phenomenon manifested by random, spontaneous, microscopic
movement of molecules due to thermal agitation (Brownian motion, Figure 2.6). Dating
back to the mid-19th century, German physicist Adolf Fick showed that diffusion occurs along
a concentration gradient. Fick introduced the diffusion coefficient (D) and defined flux (J) of
a particle with concentration (C) through a surface: J = −D∇C. The negative sign in this
equation embodies the notion that particles move from regions with high concentration to those
with lower concentration. Later in 1905, Albert Einstein presented his “random walk” theorem,
where he incorporated Fick’s laws of diffusion together with George Stokes’ principle of fluid
friction [57]. This foundation yielded the Stokes-Einstein equation:

D =
kT

6πrη
[mm2/s] ,

where T is the thermodynamic temperature, k the Boltzmann constant, r the particle radius,
and η the medium viscosity. For biological tissues at body temperature, the diffusion constant
is equal to approximately 1.0 x 10−3 mm2/s.

Figure 2.6: The diffusion-weighted image contrast (right) reflects the diffusion behavior of free water in a tissue,
which is hindered (blue lines) or completely restricted (green lines) in the inter-/intracellular space (middle) due to the
presence of multiple macromolecules and cytoskeleton. Molecules may also encounter barriers (cell walls), indicated
here with red lines. Left: Demonstration of the incessant Brownian motion at molecular level [58].
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The probability distribution function of such free particle motion p(r, t) (also known as
the diffusion propagator, which is modeled to estimate the principal diffusion orientation along
nerve fibers in tractography applications) starting from an origin and observed at position
r = (x, y, z) after a time t is Gaussian:

p(r, t) =
1√

(4πt)3D
exp

(
− rT r
4tD

)
.

Water molecules diffuse between the intra- and extracellular compartments at various
proportions depending on the organ of interest. In brain tissue, particles can either diffuse freely
in all directions with no motion-restricting materials in their proximity (unhindered isotropic
diffusion, e.g. in ventricular cerebrospinal fluid), encountering some barriers (restricted or
hindered isotropic diffusion, e.g. in peritumoral edema), or move unequally (anisotropic
diffusion, typically seen in crossing fiber compartments). Intravoxel WM fiber arrangement is
an important determinant of diffusion anisotropy.

2.3.2 Diffusion weighted imaging (DWI)

Diffusion weighted MRI (DWI) utilizes an MRI sequence with gradients to detect the diffusion
of water molecules in the human body. DWI output maps are principally measures of diffusive
attenuation. The origin of DWI dates back to the mid-20th century, when Edward Stejskal
and John Tanner showed the diagram of a pulsed gradient spin echo (PGSE) sequence (Figure
2.7). Nuclear spins represent magnetic properties (intrinsic angular momentum) of atomic and
subatomic particles (in DWI, hydrogen protons in water molecules). In accordance with the
spin-echo (SE) technique discovered by Erwin Hahn earlier in 1949, a 90◦ radiofrequency
(RF) spin excitation pulse is triggered, followed by a 180◦ refocusing RF pulse and echo
collection. On either side of the 180◦ pulse, a strong diffusion-sensitizing gradient (DG) is
applied to sensitize signal from diffusing spins that flow into different locations within the
excited volume in between of the two diffusion gradients. Stationary spins remain unaffected
by the DGs.

After the second DG, the image acquisition module is applied, commonly employing the
echo-planar (EPI) sequence. This technique applies rapidly switching phase and frequency
encoding gradients to acquire multiple gradient echoes in one acquisition. In modern
commercial DWI schemes, the core PGSE sequence is retained with enhancements for
chemical shift artifact suppression, fat saturation, or minimizing the effects of eddy currents or
spatial distortions.

The attenuation of the diffusion signal is governed by two principal factors, namely
diffusion orientation, and the degree of diffusion weighting, represented by the b-value
[s/mm2]. The b-value depends on the DG amplitude, duration and time spacing between
paired gradients. In general, the more an imaged structure is aligned with the measured
diffusion orientation, the more signal attenuation is observed. As demonstrated in Figure 2.8,
it generally applies that the higher the b-value, the longer the water molecules dephase, which
results in a decrease in the signal-to-noise ratio (SNR). Although DWI probes diffusion that
occurs on the order of microns, microstructural information is averaged over the relatively
large size of the image voxel.
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Figure 2.7: Left: In the SE method, signal loss due to spin dephasing caused by microscopic magnetic field
inhomogeneities can be reversed by another 180◦ RF pulse. An echo is generated at echo time (TE) equal to twice the
time between two consecutive RF pulses (τ ). Right: Diagram of the Stejskal-Tanner PGSE sequence. ∆ expresses the
time between two gradient pulses that typically varies between 10 and a couple of hundreds of milliseconds. The
gradient pulse duration (δ) may be as short as a few milliseconds and as long as the total ∆ [59].

Figure 2.8: Demonstration of signal attenuation as a function of b-value. From left to right: b = 0, 1000, 2000,
3000 s/mm2. The b-value depends on the strength, duration, and temporal spacing of diffusion gradients. Data were
provided by the Human Connectome Project [60].

During a clinical diffusion MR image acquisition, DWI scans and their derived maps are
obtained in a cascade of steps:

1. The first instance of the DWI pulse sequence incorporates either no DG or one set to a very
low b-value, generating a series of T2-weighted b0 images.

2. The second step involves DGs with varying strength that are run either individually or
combined to sensitize diffusion at multiple diffusion orientations, producing diffusion-
weighted source images.

3. For clinical diagnostic purposes, the DW source images are used to create a trace DW image.
To assess abnormalities on these trace images, the ADC (apparent diffusion coefficient)
map is calculated from the source DW images and the b0 scans.

Local WM fiber orientations are assessed per voxel by measuring the dMRI signal along
a number of different orientations. In the absence of pathology, water molecules are less
hindered in motion along nerve fibers than perpendicularly to fiber propagation. The less
diffusion occurs in a particular brain region, the brighter signal appears on DW images (Figure
2.9). Therefore, free water molecules will appear dark (signal loss caused by unhindered
diffusion), while highly cellular tumorous tissue causes reduction of diffusion times, rendering
abnormal DW image areas bright [61].
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Figure 2.9: Diffusion-sensitizing magnetic field gradients cause water molecule hydrogen atoms to dephase. The
magnitude of dephasing is directly proportional to the displacement occurring during the measurement. The bulk
dephasing effect leads either to a reduction in MRI signal amplitudes (fast diffusion in CSF) or an increase in the MR
signal intensity (slow diffusion in WM fibers) [58].

2.3.3 Diffusion tensor imaging (DTI)

In white matter, diffusion is highly anisotropic due to the parallel orientation of nerve fibers.
While the diffusion coefficient for isotropic tissues can be expressed as a single number,
diffusivity in anisotropic materials is described by a tensor of a particular rank n (number of
basis vectors to fully specify a tensor component) and mn components, where m is a scalar
expressing the dimensional space.

Amongst other representations, an adequate coordinate system for viewing the diffusion
tensor is referred to as diffusion ellipsoid (Figure 2.10) whose principal axis is parallel
to the main intra-voxel white matter fiber propagation. The primary advantage of modeling
diffusion tensor with an ellipsoid instead of Cartesian coordinate system is that the off-diagonal
components disappear. The model thus only consists of three unit vectors (eigenvectors ϵ1, ϵ2,
and ϵ3) with corresponding lengths (eigenvalues λ1, λ2, and λ3).

Figure 2.10: Left: Six unique directional elements of the diffusion tensor in the Cartesian coordinate system describe
diffusion along a set of fiber tracts. Off-diagonal components depend on the frame of reference. Center: In each voxel,
the center of the reference frame is situated tangentially to the fiber orientation. Right: Eigenvectors and eigenvalues
of the diffusion ellipsoid. If diffusion is perfectly isotropic, the ellipsoid becomes a sphere with λ1 = λ2 = λ3 [62].
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A tensor is an object that is invariant under a change of coordinate systems, with
components that change according to certain transformation laws (mathematical formulae).
A 2-rank tensor is a linear map from two vector spaces, and can therefore be represented by
a matrix:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 ,

where diffusion coefficients along the matrix diagonal denote diffusion measured in the
laboratory frame of reference (x, y, z), and the six off-diagonal elements correlate diffusion
between each pair of principal directions. While a matrix is a collection of numbers, the tensor
representation requires a specification of the coordinate system, components, and basis vectors
(̂i, ĵ, k̂) that each of the components corresponds to.

During image reconstruction, each tensor component is mathematically estimated using
multivariate linear regression of signal intensities. The value of each component is strictly
dependent on the frame of reference in which it is measured. Though variations exist, the
clinical MRI frame of reference is often aligned with the orientation of the main magnetic field
(B0) and the patient’s body. To find all six tensor elements, a minimum of seven diffusion-
weighted images are required (one b0 and six high-b-value images).

Several parameters (Figure 2.11) can be extracted from the diffusion tensor, its
eigenvectors and eigenvalues to create quantitative maps of diffusion magnitude in tissues
(apparent diffusion coefficient – ADC), assess the degree of diffusion anisotropy and find areas
with restricted diffusion (fractional anisotropy – FA, radial anisotropy – RA, mean diffusivity –
MD, axial diffusivity – AD), or extract combined diffusion anisotropy with fiber orientation in
one image (directionally encoded FA maps). To avoid confusion, DTI is not synonymous with
DWI as it only represents one of the many local diffusion MRI modeling methods.

Figure 2.11: Axial, coronal and sagittal maps of various tensor-derived metrics, commonly used in literature as well
as the clinical setting. By convention, diffusion is color-coded in FA maps to show directionality from left to right
(red), front to back (green), and top to bottom (blue), and intermediate colors for oblique orientations [20].
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2.3.4 High angular resolution diffusion imaging (HARDI)

As described above, the diffusion tensor model can only represent a single fiber population
per voxel, expressed by the diffusion ellipsoid’s main eigenvector. Subsequent analysis of
the primary diffusion orientation therefore fails to resolve more complex WM architectures.
High angular resolution diffusion imaging (HARDI) was originally developed to mitigate
the well-known crossing fibers problem, improve fiber tracking robustness by estimating
angular distributions, and offer new measures of tissue diffusivity beyond the DTI-derived
FA. Extraction of multiple fiber populations per voxel requires the acquisition of more dMRI
data. HARDI samples significantly more diffusion directions than DTI, and acquires images
with stronger b-values (ranging from b = 1000 to 4500 s/mm2). Also, HARDI is accompanied
by non-DTI reconstruction techniques which are often tailored to particular sampling and
acquisition schemes.

In HARDI, along each gradient direction, a diffusion signal S is measured with discrete
sampling of the unit sphere along N points in each imaging voxel. The HARDI diffusion signal
S is most often mathematically represented via a spherical harmonics (SH) transform [63],
which is equivalent to the in-plane Fourier transform, but on a sphere. A sum of spherical
harmonics coefficients of order l and phase m, Y m

l , can be used to represent a spherical
function (Figure 2.12), just like cosines and sines are used to decompose an image with Fourier
transform. Usually, the HARDI-measured signal is estimated by a series of truncated spherical
harmonics of order lmax, which has R = (lmax+1)(lmax+2)/2 terms. For instance, an order
of lmax = 2, 4, 6 will have 6, 15, and 28 SH coefficients, respectively.

Figure 2.12: Example decomposition of the HARDI signal into the first 15 elements of the spherical harmonics basis.
Figure taken from [20].



35

A Funk-Radon transform is often employed on HARDI-derived data to form diffusion
shapes called Q-balls, which are models of diffusion density at multiple orientations.
To indicate fiber presence, peaks of these Q-balls are interpreted. The Funk-Radon transform
essentially sets each point on a Q-ball proportional to all of the signal values equatorial to
that point. The overall shape of the Q-Ball is then fairly resilient to noise as each point on it
is determined through many individual measurements, however, the same feature causes the
Q-ball to be artificially smooth and inflated.

Creating fiber orientation estimates requires a response function that defines an ideal
representation of the diffusion density when a voxel contains one coherent bundle. Nevertheless,
diffusion signals in brain tissue also originate from extra-cellular water motion besides that
along axons. Each voxel of brain tissue also accommodates other structures, such as glial cell
bodies, which contain water with limited diffusion and may contribute to the net signal. Using
only a single response function, poor fiber orientation density estimates may be made. These
observations can be addressed by exploiting e.g. compartmentalization models.

Intrinsically, it is assumed that every voxel’s orientation diffusion density comprises one
or more fiber tracts at different orientations and scales. Combining the response function in
a variety of angles and fractions yields the diffusion orientation distribution function Ψ (dODF),
defined as the radial integral of the diffusion propagator in spherical coordinates:

Ψ(θ, ϕ) =

∫ ∞

0

p(r, θ, ϕ)r2dr ,

where θ ∈ [0, π], ϕ ∈ [0, 2π], and p is the probability density function of any 3D displacement
r of water molecules during diffusion time t, also noted as p(r, t). The ODF is represented as
an either simple or complex set of spherical functions on a unit sphere, and is most commonly
visualized in the form of glyphs on a spherical mesh. Diffusion ODF profiles are directly
related to the displacement of water molecules, and are therefore model-independent.

Inflated fiber orientation models are inherently poor at distinguishing fiber orientation at
closer angles. Therefore, to improve erroneous situations where two separate fiber tracts are
estimated as a single bundle, one can model the actual fiber orientation density instead of the
diffusion orientation density. The fiber ODF (fODF) typically yields much sharper diffusion
profiles owing to its ability to directly recover underlying fiber orientations. The amplitude
of each fODF lobe can provide useful tract-specific information about the approximate
microstructural diffusion properties of distinct fiber orientations per voxel, such as apparent
fiber density (AFD) [64], angular fiber density, fiber spread [65] or hindrance modulated
orientational anisotropy (HMOA) [66].

Several HARDI acquisition methods exist to obtain the ODF, generally called q-sampling
imaging (QSI) [67]. QSI can be utilized through random sampling; diffusion spectrum imaging
(DSI) [68] that measures diffusion in the entire q-space (a 3D space with coordinates qx, qy
and qz defined by the diffusion-encoding gradients Gx, Gy and Gz) along a Cartesian grid;
and sampling across a shell (a spherical shape in q-space) or a combination thereof, commonly
known as single-shell HARDI or multi-shell HARDI, depending on the number of b-values
[69]. Standard clinical single-shell HARDI acquisition schemes measure diffusion along ∼ 60
directions with a b-value of 1000 s/mm2 at an approximate time of 5–20 minutes.
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Figure 2.13: In an environment with a complex WM architecture, multiple peaks along each fiber population should
be seen in the diffusion propagator. While tensors are flat, angular profiles capturing crossing fibers can be constructed
using an orientation density function and a fiber ODF. Figure adapted from [20].

By only measuring a single b-value, different spin populations can hardly be distinguished,
and it is instead assumed that all spins experience the same type of diffusion, averaging them
homogeneously when calculating the diffusion coefficient. Increasing the b-value shows that
the estimates do not match the actual measurement because they did not account for spin
subpopulations, which ultimately leads to higher signal contributions than what was predicted.
To account for the various spin subpopulations, multiple b-values have to be acquired.

The main benefits of acquiring multi-shell HARDI data for tractography applications
are the improvement of fiber orientation estimation despite partial volume effects, and the
separation of other components unrelated to fiber bundle orientation. In normal white matter,
a single-shell HARDI acquisition can provide a sufficiently accurate estimate of the principal
fiber orientation, such as free water. However, in the presence of edema, it is typically beneficial
to acquire multi-shell data to enable tractography in a complex set of tissue microenvironments.
Besides brain tumor imaging, the relative contributions of these compartments can also be
used as additional measures in the early diagnosis of WM degeneration.

Figure 2.14: Left: Application of the Funk-Radon transform in Q-ball imaging. Integrating over the diffusion signal
circles yields the dODF. Right: Spherical deconvolution applied on a dODF to improve angular resolution (here shown
for 45◦ and 60◦), sharpen the ODF, and better capture the underlying fiber populations. Figures taken from [20].
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2.4 Diffusion MRI-based tractography
Diffusion MRI enables encoding the 3D profile of water molecule displacement, thereby
capturing the orientation of tissue microstructure in space. Tractography (or fiber tracking, FT)
is the process of integrating voxel-wise fiber orientations to infer connection pathways in the
brain. In neuroscience, tractography facilitates the estimation of long-range connectivity as
well as division of grey matter into subregions. This section describes the process of image-
based fiber bundle reconstruction starting from diffusion orientation modeling per voxel via
fiber trajectory integration up to the generation of whole brain tractography maps and bundle
segmentation.

To avoid confusion, readers should note that the expression track refers to the output
of tractography algorithms, while a tract denotes a white matter fiber bundle. Hereinafter,
attention is paid to selected tractography methods only. For further methods, readers are
encouraged to study relevant reviews, e.g. [70].

2.4.1 Deterministic vs. probabilistic tractography

In deterministic tractography [71], the primary assumption is that the first eigenvector of the
diffusion propagator is tangential to the underlying white matter trajectory, thereby providing
the best estimate of axonal fiber existence. Starting from a seed (initial location in a voxel),
the trajectory is reconstructed by propagating a three-dimensional curve representing the
white-matter pathway. Once the tracking process has been initiated, there is a need to control
for the propagation direction, and to include stopping criteria to govern the propagator’s
termination. The most commonly set stopping criteria aim to avoid tracking in regions with the
CSF and GM, or outside of the brain. Ensuring full WM fiber tracking coverage, a structural
WM mask is typically added to the tracking algorithm, and an additional angular (curvature)
threshold is set to intentionally target specific fiber bundles with predicted shapes, and to
restrict the propagator’s turning angle. The angular threshold is nonetheless dependent on the
used algorithm as well as the resolution of the dataset. Another approach is to set an anisotropy
threshold, where the tracking process is terminated if a certain FA value has been exceeded.
Results from deterministic FT do not show all possible connections, and are therefore prone to
a higher false negative rate and lower sensitivity.

Higher-order probabilistic FT models [72] primarily address uncertainty originating from
ambiguous WM fiber arrangements in the data. Uncertainty increases also due to the presence
of noise, motion and distortion artifacts, and the fact that many algorithms assume well-defined
orientations despite an intrinsic orientation dispersion of the underlying WM axons. Hence,
the tracking process is blurry due to limited measurable angular resolution, and all these major
sources of uncertainty are inherently ignored by deterministic tractography algorithms.

Many probabilistic FT approaches have been developed over the past two decades,
employing front evolution strategies [73], path optimization [74], or probabilistic streamlines.
Unlike deterministic FT, probabilistic algorithms start seeding in a complete WM region of
interest (ROI), from where a representative sample of possible fiber orientations is followed
using statistical sampling from a probability density function (PDF) of the nerve fiber
orientation. The majority of algorithms apply WM ROIs either as termination zones (cortical
areas), waypoints (specific white matter regions, through which streamlines are supposed to
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project) or volumetric landmarks (in case of U-shaped fiber bundles) to represent fiber tracts
strictly within a specific WM volume. The selection of representative samples is repeated
at consecutive points in space, which ultimately evolves into a streamline. The streamline
propagation process is then repeated from the initial seeding point, which yields a set of
streamlines carrying a certain confidence interval for tractography. The PDF can be estimated
using heuristic approaches [75], bootstrapping techniques [76], Bayesian Markov chain Monte
Carlo sampling methods [72], or by sampling directly from the fiber ODFs using e.g. spherical
deconvolution methods [18].

Since probabilistic FT samples across all possible orientation estimates, it is essential to
impose an angular constraint to obtain only the most probable candidates. The more pathways
emanate from a seed ROI, the lower the probabilities of particular streamlines. Probabilistic
FT does not quantify probability that a connection exists or how strong connections are; these
methods rather aim to depict a set of streamlines that represent the range of connections
consistent with the data. Results from probabilistic FT approaches typically suffer from a high
false positive rate and lower specificity.

The tradeoff between specificity and sensitivity of tractography algorithms is highly
application-dependent. In presurgical planning for intracranial tumors, higher sensitivity is in
general preferred to ensure that critical pathways are not missed during surgery preparation,
especially in cases with extensive edema.

2.4.2 Diffusion tensor tractography

To date, DTI-based tractography has been the most widely applied methodology both in
clinical and scientific research applications to determine inter-voxel connectivity according to
diffusion anisotropy. As explained earlier, tensor-based tractography assumes the dominant
orientation of axonal pathways to be parallel to the primary eigenvector of the diffusion tensor.
Diffusion fiber trajectories (streamlines) are then reconstructed by following the principal
direction of the diffusion propagator in each image voxel (Figure 2.15).

Since its introduction in 1999, the most widely used deterministic tensor-based algorithm
in clinical practice has been known as fiber assignment by continuous tracking (FACT) [7].
This algorithm initiates streamlines from user-defined seeds (ROIs), and follows the primary
eigenvector in each voxel to reconstruct axonal connections in 3D while changing direction
of the diffusion propagator at a variable step size (length between two consecutive voxels) to
match the primary eigenvector of the consecutive voxel. Additional thresholds can be applied,
such as the maximum turning angle or the highest voxel FA value to constrain fiber tracking
only to brain regions where WM pathways can realistically be found. As observed in Figure
2.15, several initial expert-defined ROIs improve the anatomical specificity of results produced
by FACT, which aids in the delineation of desired fiber bundles. This technique is commonly
known as virtual dissection.

However, FACT cannot cope with abrupt directional changes in inter-voxel primary
diffusivity, which leads to sudden interruptions of the tracking process, manifested by missing
cortical connections in three-dimensional representations. A much smoother representation of
white matter fibers is usually obtained using IST (Interpolated Streamline Tractography) [78],
involving a family of various numerical approaches, e.g. Eurler, Runge-Kutta or Midpoint, to
name some.



39

Figure 2.15: Upper: Schematic explanation of the FACT algorithm. Red lines represent generated streamlines. Black
arrows show the principal eigenvector per voxel [77]. Lower: Multiple user-defined ROIs to isolate only tracks
belonging to the CST bundle. Left: Streamlines (red) are generated from the cerebral peduncle (yellow voxels). Middle:
Fiber trajectories propagate through an ROI drawn in the posterior limb of the internal capsule (green voxels). Right:
The retained set of streamlines passes through the ROI at the centrum semiovale (blue) besides the internal capsule
and cerebral peduncle regions [77].

As opposed to FACT, IST algorithms make use of a fixed, controlled step size that is smaller
than the voxel dimensions of data at hand.

Deterministic tensor tractography is also susceptible to artifacts resulting in uncertainties
in the orientation of the diffusion ellipsoid in each voxel. Probabilistic tensor tractography
algorithms incorporate expected uncertainties, and as explained before, these methods aim
at reconstructing a greater portion of targeted WM bundles through streamline dispersion.
Nevertheless, probabilistic DTI only performs within the fundamental limits of the tensor
model as well as limits posed by the reconstruction of the PDF. The deterministic FACT
has also prevailed in clinical settings due to the relatively higher computational demands of
probabilistic DTI algorithms [77].

2.4.3 Constrained spherical deconvolution

As explained in Section 2.3.4, the process used to combine the response function with the fiber
orientation density (FOD) is referred to as convolution over spherical coordinates. Nevertheless,
scanner measurements first only enable deriving the ODF while the FOD remains unknown.
Spherical deconvolution [18] is the inverse operation that estimates a WM FOD based on an
estimate of the signal expected for a single-fiber white matter population within each voxel.
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However, spherical deconvolution is an ill-posed problem since there are likely several FODs
that can be convolved with the response function to produce the same diffusion orientation
density. Therefore, the term constrained spherical deconvolution (CSD) came to existence
when accounting for the high sensitivity of deconvolution methods to noise effects by imposing
non-negativity and sparsity constraints [19].

A minimum requirement for CSD approaches is that DWI data are sampled shell-wise
since the response function signal is estimated using spherical basis functions, disregarding
radial components. The CSD method has been reported to provide robust estimations of
fiber orientations within clinically acceptable timelines [8], and its superiority over DTI in
tractography applications has been demonstrated in the context of neurosurgery planning.
Figure 2.16 illustrates a clinical example, where the CSD method overperforms DTI-based
tractography in the delineation of anatomically known pathways adjacent to a brain lesion,
thereby enabling the determination of safer resection margins.

Figure 2.16: Fiber bundle reconstructions from DTI-based (blue) and CSD-based (red) tractography algorithms in the
same patient dataset. Bundles are overlaid on coronal T1-weighted images with a right cortical lesion (green). CSD
tractography reveals more lesion-surrounding corticospinal fibers than the DTI-based reconstruction. Figure adapted
from [8].

2.4.4 Whole brain tractography

Groups of streamlines need to be virtually dissected to create ultimate bundle representations
before further qualitative and quantitative analyses. A necessary step preceding such virtual
dissection is to find ROIs for different bundles. In seed-based tractography, the positioning of
seeding ROIs is essential and determines the quality of output bundles. However, regardless
of the tractography algorithm, complex WM architectures may be incompletely captured by
seed-based approaches, which is why it has become more common to first generate global
tractograms with whole brain tractography (WBT, a.k.a. global tractography), where ROIs are
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only reference landmarks and do not fractionate output tractograms.
WBT aims to construct a full-brain fiber configuration that best explains the dMRI data.

This approach builds on the assumption that axons extend in organized fascicles, and accounts
for ambiguous intra-voxel configurations by examining estimated orientations in neighboring
voxels. Seeding most often relies either on complete WM masks or WM-GM interface masks.
The selection of one of these global seeding approaches is a matter of compromise. Using
the whole WM mask may cause excessive seeding from one parcellated subregion of the
mask in the case of long bundles, while seeding from the WM-GM interface may lead to
the omission of certain WM tracts due to the low dMRI data resolution. As opposed to
streamline methods, WBT is more resilient to changes in noise, and the density of the output
tractogram directly corresponds to available data. However, whole brain tracking algorithms
have relatively high computational demands due to whole brain coverage and typically require
sophisticated microstructural models with firmly set parameters that are not adjustable for
other datasets [79]. Mitigating partial volume effects and improving the number of valid
connections for whole brain fiber tracking has been addressed by incorporating a multi-shell
multi-tissue model based on spherical deconvolution into the WBT framework [80].

2.4.5 Anatomically constrained tractography

Efficient use of biologically sound information can further make dMRI streamlines
tractography and virtual bundle dissection more realistic through the provision of relevant
anatomical ROIs commonly known as inclusion (logical and and or) and exclusion (logical
not) criteria [81]. If the inclusion/exclusion ROIs are known for a particular fiber bundle,
they may serve as highly reliable start/end areas for bundle dissection from diffusion data.
Biological plausibility therefore further influences the desired termination of fiber tracking,
and eventually introduces a new acceptance/rejection criterion for tractography-generated
streamlines. This framework is commonly referred to as anatomically constrained tractography
(ACT).

Neuroanatomically, it is well known that neuronal axons never enter the CSF-filled
regions of the brain, and most of their terminations occur in the cortical and subcortical
grey matter or the spinal column. Whether a streamline is accepted or rejected by the ACT
framework is defined as follows (simplified explanation visually represented in Figure 2.17;
for details, see [82]):

1. Streamline is considered to have reached an acceptable termination point once it has
entered the cortical GM.

2. Streamline is rejected if leaving the WM mask and entering a CSF-filled region.
3. Streamline is accepted even if leaving the provided WM brain mask to enable tracking

within the spinal WM column.
4. Streamline can be terminated by an FA threshold (for tensor-based tracking), FOD

amplitude threshold (for spherical-deconvolution based methods), or excessive angular
deviation. However, if, besides these thresholds, a streamline is not terminated according
to criteria (1) and (3), it is deemed unacceptable.

5. Streamlines that enter the subcortical structures, but are terminated by thresholds
described in criterion (4), are accepted.
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6. Streamlines crossing through subcortical structure boundaries (as defined by subcortical
GM masks) are truncated and accepted.

Figure 2.17: Demonstration of the application of anatomical priors in the ACT framework. Streamlines originating out
of the displayed slice are presented by fading shades. Streamline termination points are marked by crosses. Accepted
(green) and rejected streamlines (red) either meet or violate the six assigned criteria [82].

Groups of cortical/subcortical GM parcellations together with WM region
subsegmentations as streamline propagation masks are typically added to the ACT algorithm
to guarantee homogeneous white matter seeding, and utilize expert-defined anatomical priors.
Another approach is to use the WM-GM interface and start unidirectional tracking from seeds
generated in the cortical or WM-GM region or bidirectional tracking from seeds initiated in
subcortical WM-GM areas. In the event of a poor streamline termination, backtracking enables
the truncation of that streamline and retracking to find a more suitable termination endpoint.
Finally, a commonly imposed constraint for ACT tracking is the minimum/maximum fiber
length, which essentially acts as a filter to rule out spurious and under-represented tracks in
the DWI data.

2.4.6 Atlas-based tractography

In the presence of brain lesions, various tissue displacements or distortions may lead to
incomplete or poor WM segmentation, which subsequently hampers bundle reconstruction
using the ACT framework. Besides the use of cortical or subcortical anatomical constraints
to guide fiber tracking algorithms, the location of neuronal pathways and morphological
characteristics of individual bundles can further be captured by the registration of templates
[83] or atlas-based models [84] into the subject space and direct segmentation of bundles based
on these reference shapes. Derived entirely from diffusion MRI data, high-resolution fiber
bundle template maps can augment the performance of virtual bundle dissection, capitalizing
on prior knowledge from neuroanatomists who have labeled each bundle based on previous
experience from cadaveric and comparative tractography studies.
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The biggest advantage of using template-space WM pathway identification with
population-averaged atlases in single-subject analyses lies in the improved taxonomical and
topological precision. However, atlas-based approaches typically rely on thorough registration,
are prone to registration errors, and outcome dissections have to be carefully checked if
anatomically plausible. A population-averaged WM bundle atlas used in this work was
constructed from 842 subjects’ dMRI data in the Human Connectome Project. All MRI
data for the atlas construction were acquired using a multi-shell dMRI sequence (b-values:
1000, 2000, and 3000 s/mm2). The atlas consists of 80 bundles (Figure 2.18) reconstructed
in the MNI space using q-space diffeomorphic reconstruction to obtain the spin distribution
function (SDF, an orientation distribution function that quantifies the density of diffusing
spins) which was averaged across all 842 subjects [39, 85].

Figure 2.18: Illustration of constructing the HCP842 population-averaged structural connectome. (a) The SDFs of
842 subjects’ diffusion volumes were reconstructed in the MNI space. (b) A group average was created from the SDFs
of all subjects. (c) The template was applied in the fiber tracking process to generate 550 000 trajectories. (d) Fiber
bundles were created through automatic track clustering. (e) Neuroanatomists manually labeled each cluster and
identified false trajectories according to their expertise. Checked clusters were grouped to compose the structural
connectome atlas. (f) A connectogram was derived from the atlas to graphically indicate connections among brain
regions. Figure adapted from [39].

A common method applied in many implementations of atlas-based dissection is track
clustering, which employs feature space or distance metrics to infer about WM connections
[86]. Recent research has focused on developing fully automated deep learning (DL) algorithms
for WM dissection [87], aiming to train networks that recover the shape of a bundle based on
an input tractogram.

In conclusion, the presented topics discussed foundations of human brain anatomy, the basics
of neurosurgical oncology, and fundamentals of diffusion magnetic resonance imaging along
with dMRI-based tractography. The background information is intentionally limited to cover
only the most essential concepts and technical nomenclature used hereinafter. Readers of
further chapters are expected to understand associations and relationships across the related
fields. Moving towards the design of FT4Onco, the next chapter offers a comprehensive review
of commercial and open-source dMRI data processing and fiber tracking tools.
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3 Review of the state of the art

The field of diffusion MRI-based tractography for oncological neurosurgery covers a wide
range of technological progress over the past decades. This chapter provides an overview of
prior art in the field, targeting commercial and open-source software tools for neurosurgery
planning with dMRI-based tractography. All hereinafter presented information corresponds to
the best knowledge at the time of thesis completion, based on inspection of company websites,
publications in online databases (PubMed), video tutorials, and user documentation.

3.1 Commercial solutions
Companies developing diffusion MRI-based fiber tracking applications typically incorporate
their image processing software into proprietary server- or cloud-based platforms. As learned
during interviews with neurosurgeons and neuroradiologists, some centers even send raw MR
datasets to companies, where these data are processed, tractographical reconstructions created,
and output delivered in a form tailored to customer needs.

While commercial platforms may support a range of image processing tasks besides fiber
tracking, their architecture may only enable processing a restricted variety of patient datasets,
imposing constraints on image quality and providing semi-automated workflows. Moreover,
commercial neuronavigation systems are known to fall behind research advancement when
it comes to the integration of tractography models that may more accurately replicate the
underlying patient anatomy. An overview of available commercial solutions on the market is
provided in Table 3.1.

3.2 Open-source tools
In recent years, publicly available dMRI processing tools have significantly mushroomed.
Freeware solutions (see Table 3.2) are stored in open-source repositories (GitHub, Bitbucket),
and are typically developed for a specific purpose to support certain research groups or
a community of experts who may adopt them in the attempt to create an automated data
processing framework. The majority of these tools are not intended for clinical or diagnostic
use at all. A software package suitable for oncological neurosurgery planning should ideally
offer tools and algorithms for tumor segmentation, anatomical data processing, diffusion data
processing, fiber tracking, and visualization in a viewer, all in one suite.

Nevertheless, such a rich collection of tools from one distribution is rarely discoverable,
and tools from multiple different software packages need to be combined to construct an
image processing chain complex enough for a dedicated purpose. While open-source pipelines
wrapping up a number of functionalities and dependencies from different software packages
are freely accessible, the level of automation in these pipelines varies enormously. Currently,
none of them provide an image processing chain capable of delivering output that is desired by
oncological neurosurgeons for brain tumor resection planning, i.e. 3D visualization of multi-
compartment tumor segmentation with anatomically informed fiber bundle reconstructions.
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When judging the quality of open-source pipelines, another crucial aspect is their
architecture. Many tools come as collections of scripts (written in Python, Bash or MATLAB,
such as DESIGNER [88], PreQual [89], MRtrix3 connectome or KUL NIS). These script
files are quite easily created, but difficult to maintain, and many hurdles may arise in the event
of unexpected interruptions during image processing. Besides command-line callable scripts,
several pipeline tools exist enabling the orchestration of various functionalities into processing
chains. However, it is often complicated to add and curate software versions in these tools,
e.g. Snakemake [90] or Nipype [91]. Recently, Nextflow [92] and Singularity [93] have been
proposed for higher reproducibility and easier software package maintenance in the Tractoflow
pipeline [24]. Further frameworks have also adopted containerization to fix the versions of
dependencies, e.g. QSIPrep [94].

Several (commercially) available cloud-based solutions, such as Flywheel [95], O8T
[96], BrainLife [97], QuNex or QMENTA, enable the configuration of multiple tools under
a common interface, where datasets are either uploaded to a cloud environment via web
interfaces or processed directly on premise. These approaches aim at providing automated and
reproducible frameworks by reducing data-management overhead.

In the development of FT4Onco, two software packages (MRtrix [98] and DIPY [99])
were utilized for the majority of diffusion MRI processing and fiber tracking steps. As the
most comprehensive state-of-the-art toolkits, MRtrix and DIPY were preferred over other
tools since they address essential tasks in diffusion MRI data processing and analysis, support
flexible integration into image processing pipelines, and are well-suited to commercial research
applications. To determine the adequate ordering of image processing steps, inspiration was
found in the Tractoflow pipeline that usefully fits the design concept of FT4Onco described in
Chapter 5.

The following chapter specifies user needs and defines functional requirements, based on
which further Philips-proprietary and open-source tools were selected and integrated into
FT4Onco.

https://github.com/BIDS-Apps/MRtrix3_connectome
https://github.com/treanus/KUL_NIS
https://qunex.yale.edu/


47

Product name Company Website FT methods Automation

Syngo MR
Tractography

Siemens
Healthineers

www.siemens-
healthineers.com DTI Semi

FiberTrak Philips Healthcare www.philips.com DTI Semi

BRAIN View GE Healthcare www.gehealthcare.com DTI Semi

Sphere Olea Medical
(Canon Group) www.olea-medical.com DTI-FACT Semi

Brain Voyager Brain Innovation www.brainvoyager.com DTI Semi

QMENTA cloud
platform QMENTA www.qmenta.com DTI, CSD Fully

Neuroimaging
Software Solutions Mevis www.mevis.fraunhofer.de DTI Manual

BrainMagix Imagilys www.imagilys.com DTI, CSD Semi

Ziostation2 Ziosoft www.zio.co.jp/en DTI Semi

nordicTRACT NordicImagingLab www.nordicimaginglab.com DTI, CSD Semi

Quicktome Omniscient
Neurotechnology www.o8t.com DTI, CSD Fully

iPlan Fibertracking Brainlab www.brainlab.com DTI Semi

StealthDTI Medtronic www.medtronic.com DTI Semi

BrightMatter Plan Synaptive Medical www.synaptivemedical.com DTI Fully

ImFusion DTI ImFusion www.imfusion.com DTI Fully

Advantis Brain Advantis www.advantis.io DTI Fully

Table 3.1: List of commercial solutions for diffusion MRI tractography. Despite ca. 24 years of algorithmic
advancement, most companies seem to still utilize fiber tracking (FT) methods that are notoriously known for
limitations in resolving complex nerve fiber architecture and in the estimation of principal fiber orientation based on
dMRI data. DTI = Diffusion Tensor Imaging, CSD = Constrained Spherical Deconvolution.

www.siemens-healthineers.com
www.siemens-healthineers.com
www.philips.com
www.gehealthcare.com
www.olea-medical.com
www.brainvoyager.com
www.qmenta.com
www.mevis.fraunhofer.de
www.imagilys.com
www.nordicimaginglab.com
www.o8t.com
www.brainlab.com
www.medtronic.com
www.synaptivemedical.com
www.imfusion.com
www.advantis.io
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4 Requirements specification

Translating advanced nerve fiber tracking methods into clinical practice requires deep
understanding of clinical needs in the neurosurgical workflow. The design of FT4Onco was
governed by clinical user needs for surgery planning, which were collected through direct
interviews with medical doctors specialized in neurosurgery and neuroradiology at several
clinical sites (see Table 1.1 for details). This chapter provides an overview of the current
standard and challenges in the use of fiber tracking in preoperative neurosurgical workflow.
Clinical needs are explained, and unmet user requirements for dMRI-based surgery planning
are presented. Functional and non-functional (performance) requirements are discussed in the
last part of this chapter.

4.1 Clinical perspective
Preoperative planning is clinically considered a vital prerequisite for success in surgical
interventions. The main clinical need in brain tumor surgery is to maximize the extent of
resection while minimizing inadvertent harm to healthy tissue. A reliable surgical plan must
be created through risk identification and the estimation of potential functional deficits. The
selection of neurosurgical approaches, i.e. from where to enter the cranial cavity, which
vascular structures and white matter regions to avoid, and where to apply resection techniques,
determines the amount of risk posed to the patient.

Although maximizing the extent of resection correlates with increased risks of cognitive
impairment, a recent comparative assessment [51] has concluded that gross total resection, i.e.
no visual evidence of contrast-enhancing tumor parts on postoperative MR images, seemed
to be associated with better surgical outcomes and patient lifespan than subtotal resection.
Another aspect in the preparation for tumor resections is adjusting presurgical plans according
to the craniotomy-induced brain tissue displacement (also called brain shift). However,
methods for the presurgical prediction and simulation of intraoperative brain displacement are
out of scope for this work.

4.2 Current challenges and unmet user requirements
In oncological neurosurgery, presurgical brain mapping and intervention planning involve two
groups of stakeholders: neuroradiologists and neurosurgeons. Hereinafter, the core unmet user
needs are formulated concisely, followed by an expanded description of each requirement.
Eventually, all identified user needs are linked to functional requirements for the FT4Onco
software.

Aiming for the delineation of tumor boundaries and the estimation of surgical margins
with diffusion MRI tractography, the MRI data processing workflow is perceived as suboptimal
for several reasons:

▶ Lack of powerful methods for accurate segmentation of brain structures based on
anatomical MRI data with large tumors.
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▶ Complicated diffusion MRI data handling with various formats in the downstream steps
of the fiber tracking analysis

▶ High demand on expertise in performing diffusion tractography and interpreting
computer-generated reconstructions of nerve fiber bundles

▶ Necessity for frequent manual interaction in the currently available semi-automated MRI
data processing pipelines

▶ Difficulties linking tractography results with intraoperative observations

Besides general data processing issues and interpretability in the intraoperative workflow, the
application of vendor-supplied or open-source fiber tracking software solutions in clinical
practice is infrequent due to the following caveats:

▶ Lack of methodological standard for fiber tracking (order of MRI data processing steps,
parametric setup for tractography)

▶ Use of suboptimal fiber tracking methods incapable of disentangling complex subvoxel
nerve fiber architecture

▶ Missing indication of uncertainty for tractography outcome interpretation
▶ Lack of high-resolution 3D visualization of reconstructed bundles with an indication of

risk areas and surgical margins for neurosurgery
▶ Poor compatibility of tractography software with datasets across centers, scanners, and

MR image acquisition protocols

The text below lists all identified unmet needs (UN) with contextual explanations of their
relevance in the preoperative neurosurgery workflow. All UNs are also summarized with
corresponding functional requirements in Table 4.1.

UN1: Localize brain tumor and classify all its microenvironments (compartments)

Accurate preoperative localization of brain tumors helps formulate the complete diagnosis, and
enables tumor characterization according to its shape, dimensions, degree of malignancy [102]
as well as the selection of appropriate neurosurgical approaches. Glioblastomas comprise
multiple lesion compartments (contrast-enhancing portion, necrosis, surrounding edema) that
can be classified based on anatomical T1, T2, FLAIR and contrast-enhanced T1 MR images.
Especially in poorly differentiated tumors, finding precise tumor boundaries after entering
the intracranial cavity can be extremely challenging, which is why image-based compartment
detection provides valuable information to surgery. Moreover, although GBM neurosurgery
aims at maximized resection, preoperative volumetric delineation of tumor compartments
helps determine critical risk areas with closely located nerve fibers that must be treated
conscientiously.



53

UN2: Localize brain anatomy (cortical structures, white matter fibers, subcortical structures)

During surgery, blood vessels and functionally eloquent areas must be minimally affected
to ensure the best possible surgical outcomes and patient survival [103, 104]. While brain
structure segmentation from pathological MRI data with massive tumors causing large-scale
abnormalities in the neuroanatomy architecture remains burdensome, the delineation of nerve
fiber bundles connecting eloquent cortical and subcortical regions is essential to minimize
risks of postoperative neurological deficits.

UN3: Recognize tumor mass effect and edematous infiltration of fiber tracts

Damage to histologically normal nerve fiber tissue around tumors can either be induced due
to a mass effect (surrounding tissue being pushed away or displaced) or tumor-associated
edema (swelling caused by the disruption of the blood-brain barrier, allowing the capillary
fluid to accumulate in the extracellular cerebral space). These secondary pathological effects
significantly contribute to morbidity in patients with primary brain tumors. In neuroradiology,
damage to adjacent fiber bundles is preferably estimated still in the proliferation stage of
tumors [105]. The recognition of these tumor-tract relationships also helps neurosurgeons
determine the least invasive entry zones.

UN4: Mitigate problems with MRI data formatting and conversion

The standard data archiving format for clinical (neuro)imaging datasets is DICOM (digital
imaging and communications in medicine). Once acquired, medical images are usually
stored in a hospital’s picture archiving and communications system (PACS). To perform
fiber tracking, numerous data handling and conversion steps need to be undertaken [106].
Software applications performing neuroimage analysis in clinical research typically rely on
the NIfTI (neuroimaging informatics technology initiative) format. When input data are fed
into a processing chain and converted from DICOM to NIfTI, multiple problems may arise:

▶ Export of incomplete image series from PACS due to more storage locations on the
server

▶ Undesired DICOM header manipulation due to data anonymization or face removal
▶ Unexpected changes of image geometry after DICOM to NIfTI conversion
▶ Coordinate system mismatch caused by the use of inharmonious image manipulation by

different algorithms
▶ Non-NIfTI formatting of diffusion streamlines (MIF, TCK, TRK, VTK, ...)

In recent years, the neuroimaging research community has strived to create an input data
standard to ensure compatibility across all open-source tools and to unify the input data
structure of complex datasets coming from various MRI acquisition protocols. These
convention efforts have given birth to the Brain Imaging Data Structure (BIDS). Besides
correct input data formatting, datasets must conform to international privacy standards and
protection regulations, which requires (pseudo)anonymization or face removal methods to be
applied.
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While image conversion is predominantly a problem in neuroimaging research, daily clinical
products would handle data processing directly in DICOM without additional anonymization
or defacing.

UN5: Create a fully automated and computationally efficient solution

Image analysis with fiber tracking can become very challenging due to long computation
times depending on the number of image processing steps, scheduling (sequential or parallel
processing), hardware configuration, etc. Clinical sites do not always possess the most modern
fast-computing facilities, which may lead to extra internal costs for more computationally
powerful infrastructure. The involvement of multiple manual steps in the preoperative workflow
at the neuroradiology department of University Hospital in Leuven (Belgium) is exemplified in
Figure 4.1. The preparation of tractography output for neurosurgery also faces other problems
with respect to inaccuracies in brain image segmentation, geometrical alignment of overlays,
structural and diffusion image co-registration, etc. Moreover, at times when a processing
tool does not converge at the last step, the source of failure may be almost untraceable
[106]. Tractography output for neurosurgery is typically prepared by medical residents,
neuroradiologists, MR physicists, doctoral students, or laboratory assistants, who are given
specialized training to conduct image analysis at their clinical center. This extra manpower is
often employed to complement the limited technical and MR image processing knowledge
and experience in medical doctors. Anonymized datasets are sometimes sent to partnering
commercial entities who deliver fiber tracking and data analysis reports according to the
contractor’s demands, which implies an expensive logistic burden [107].

UN6: Generate fiber tracking results that can be easily interpreted in the intraoperative
workflow

In operating rooms, neurosurgeons receive real-time updates on the location and tumor distance
through computer-assisted neuronavigation systems. During resections, surgeons prefer to
rely more on their expertise and anatomical knowledge than tractography representations
of nerve fiber bundles since anatomical information provides guidance for where to expect
function. The verification of fiber tract location via (sub)cortical stimulation often results in
different mapping outcomes compared to what is observed on fiber tracking platforms, which
is why tractography mapping alone is perceived as unreliable [108]. Ultimately, it is essential
for neurosurgeons to differentiate between functionally critical and supportive fiber tracts
[109, 110]. Some users have reported tractography to be a useful means to localize where the
core of a fiber bundle has been disrupted, i.e. where to expect risk areas [108, 109, 111]. At
some sites, surgeons instead use intraoperative MRI scans to determine the extent of resection
and remap adjacent white matter. Nevertheless, intraoperative MRI causes the total surgery
time to elongate (patient preparation, check-listing, and MRI scan time) by up to 90 minutes,
which results in higher costs, the need for additional monitoring, repeated anesthesia, and
MR-compatible surgical instruments (clips, etc.) [112].
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Figure 4.1: A diagram demonstrating the complexity of workflow in presurgical planning at University Hospital in
Leuven (Belgium). After image acquisition, obtained MRI DICOM data (anatomical MRI, functional MRI, DTI,
and B0 field maps) are sent to a workstation, where nerve fiber tracks (diffusion streamlines) are semi-automatically
generated via the Philips FiberTrak software. All other imaging data are stored in PACS. Reconstructed fiber bundles
are then sent to the PACS as quick movies on B0 field maps, and also to another workstation, where further image
processing tasks (registration, segmentation) are performed using SPM, FSL and MeVisLab functionalities. Functional
SPM maps are then stored as overlays on anatomical MRI images in PACS, and diffusion streamlines are sent in
the NIfTI format together with DTI and anat. MRI data to the Brainlab’s surgery planning platform called iPlan.
Here, neurosurgeons create their surgical plan based on prepared data in iPlan (contour overlays of binary masks
with streamlines). This workflow was reported to consume up to 12 hours per single subject, posing high demands on
radiologists’ mental skills [106].

Note: This workflow was present during clinical needs analysis in 2018 and it was adopted as inspirational groundwork
for the design of FT4Onco. By now, the entire infrastructure has undergone significant rearrangement, updates and
automation by technical experts at the clinical site.

UN7: Visualize all tissue types and bundles in a 3D fashion with options for selective viewing

Although vendors supply intraoperative neuronavigation systems with integrated fiber tracking
tools, the quality of reconstructed bundles is usually suboptimal, and data export possibilities
are very limited [107]. Neuronavigation systems show poorly informative bundle profiles with
missing indication of tumor-tract distances, resection margins, false positives (non-existent
brain fibers), and dynamic thresholding of individual streamlines is rarely available [109].
Streamlines are desired to be stored in a specific value range on structural T1-weighted or
FLAIR images with the possibility to view them selectively depending on surgeons’ will, and
they should fully substitute the current representation as static low-resolution block-sectioned
lines.
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UN8: Use more advanced fiber tracking methods that can resolve crossing fibers and
propagation through edema

The omission of fiber tracking information in preoperative planning is attributed to the size
mismatch between axon diameters (µm) and voxels (in mm), high (inter-subject) variability in
tractography output (e.g. tract volume), and difficulties related to the determination of seeding
points and termination zones for tracking individual bundles, which makes the selection of
these regions greatly subjective and user-dependent [106]. Despite the wide availability of
advanced fiber tracking models in (clinical) research, most clinically approved applications
still employ the traditional deterministic tensor-based FACT algorithm [106, 107, 109, 112].
Deterministic tensor-based streamlines tractography algorithms cannot cope with complexities
in the subvoxel fiber architecture (crossing, C-shaping, fanning or kissing), which leads to
ambiguous estimates of fiber propagation and the generation of false negatives (missing
true axonal connections) in bundle representations [109, 113]. A study investigating the
prevalence of complex fiber configurations in WM tissue found that fiber crossing occurs in
up to 90 % of brain regions [10]. Losing information about vitally important nerve fibers can
have detrimental impact on surgical outcomes. Moreover, image noise in DTI data causes
imprecise measurements of the diffusion tensor, error accumulation across consecutive data
processing steps, and variance in the estimated fiber orientation.

UN9: Indicate uncertainty in the presence of peritumoral bundles to aid result interpretation

Despite the known limitations of the deterministic FACT algorithm, advanced (probabilistic)
fiber tracking models have rarely been adopted in preoperative planning owing to poor
credibility. Though increased fiber tracking sensitivity can be achieved through the use of
more anatomically plausible diffusion models (such as a sphere), neurosurgeons reported
that visualizations of denser bundle representations increase doubts whether or not to apply
surgical techniques in peritumoral areas [107]. Owing to the probabilistic nature and low
specificity (generation of multiple false positives, i.e. non-existent connections) as well as
low confidence in reconstructed bundles, conclusions derived from advanced tracking may
lead to overinterpretation. This problem becomes even more complex given that there is no
ground-truth reference in single-subject tractography.

UN10: Create a robust solution for datasets from different centers, scanners, and acquisition
protocols

In order to define relationships between a brain tumor and adjacent WM fiber bundles, relevant
information from acquired MRI data can only be extracted after artifact correction, image
segmentation, co-registration, and other steps. In practice, image processing and parameter
setup tends to be optimized through consent paradigms among doctors at some clinical sites,
and custom-made pipelines consisting of open-source or clinic-owned tools are constructed
ad hoc, following little or no standards with inadequate and manually adjustable values (e.g.
tracking step size and angular threshold) which leads to the generation of irreproducible results
[114]. Often, these pipelines can only work on data acquired with specific MRI acquisition
schemes on a “trusted” MR scanner.
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Furthermore, storing image processing output (bundle reconstructions with parametric maps,
reports, and anatomical underlays) into PACS servers for later inspection was claimed to be
wearisome at times [115].

4.3 Functional & non-functional requirements
In order to meet the identified unmet user needs, functional and non-functional requirements
were specified. Preoperative dMRI data processing lacks the speed to meet clinically acceptable
timelines, the automation to substitute user interaction and avoid inadequate parametric setup,
as well as the optimization of the fiber tracking process to create more reproducible bundle
representations out of patient data.

In this work, functional requirements are understood as a set of specific end-user demands
that constitute a great proportion of the basic facilities that an ideal solution should offer.
All these functionalities are mandatory and need to be incorporated into the system to meet
user needs. Collectively, these functionalities are related to the speed and automation of the
image processing and fiber tracking workflow, better image quality enhancement methods, and
outcome visualization with clinically relevant informative features (e.g. uncertainty in fiber
tracking or indication of tumor-tract relationships, etc.). Top-level functional requirements are
summarized in Table 4.1, and further described in detail in Chapter 5.

Apart from the desired functionalities, numerous non-functional requirements have
been mentioned in conversations with stakeholders, referring to performance, portability,
security, reliability, scalability, and flexibility. These requirements are perceived as quality
constraints that are crucial for the final transfer of FT4Onco into clinical practice as a complete
product. In this thesis, FT4Onco is designed as a clinical research prototype, which is why
non-functional requirements are only marginally considered.

In non-functional terms, there is a high demand on rapid computing infrastructure with
interactive viewing not only to achieve acceleration in image processing, but also more user
comfort during outcome inspection. A clinically deployable fiber tracking application should
be equipped with an interactive user interface capable of instantaneous responsiveness to
every user-initiated action (mouse-click reaction speed, data file loading, instant viewing, etc.)
and informative features (fiber bundle encyclopedia, user guide, descriptive pop-up windows,
navigation buttons, etc.). As presented in later sections, a compact auxiliary user interface was
implemented to simplify the in-house FT4Onco development and verification processes.

In addition, the interviewed clinical users unanimously raised the wish to be able to
launch fully automated image processing through a single-button click on any dataset of
choice. Although tumor resection rarely happens on the same day as preoperative mapping,
the majority of interviewed clinical users stated that the total duration of image processing and
fiber tracking should not exceed two hours. The fiber tracking pipeline should be integrable
within the clinic’s or department’s software ecosystem, easily installable on hospital servers,
and it should follow the most recent data security standards.
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UN Definition Functional requirement

UN1 ⋆⋄ Localize brain pathology Whole-tumor segmentation

UN1 ⋄ Classify all lesion compartments Lesion compartment classification

UN2 ⋆⋄ Segment white matter anatomy
Whole brain segmentation
Segmentation of fiber bundles connecting
eloquent areas

UN2 ⋆ Localize all cortical and subcortical regions Cortical parcellation

UN3 ⋆⋄ Recognize tumor-tract relationships (mass effect,
infiltration)

Whole brain white matter tractography
Detection of fiber tract displacement or
edematous infiltration

UN4 ⋆ Mitigate problems with MRI data formatting and
conversion

Fully automated and orchestrated data flow with
optimized conversion among multiple formats
Export of outcomes in common data formats

UN5 ⋆⋄ Create a fully automated and computationally
efficient solution

UN6 ⋄ Generate fiber tracking results that can be easily
interpreted in the intraoperative workflow

Informative multi-parametric, color-coded 3D
visualization of reconstructed bundles with
segmented anatomical underlays
Filtration of false positive streamlinesUN7 ⋄ Visualize all tissue types and bundles in a 3D

fashion with options for selective viewing

UN8 ⋆⋄
Use more advanced fiber tracking methods that
can resolve crossing fibers and propagation
through edema

Advanced probabilistic tracking with more
sophisticated diffusion models beyond tensor

UN9 ⋄ Indicate uncertainty in the presence of
peritumoral bundles to aid result interpretation

Indication of tracking uncertainty along bundle
profiles

UN10 ⋆⋄
Create a robust solution for datasets from
different centers, scanners, and acquisition
protocols

Support for datasets coming from different sites,
MRI scanners and acquisition protocols

Table 4.1: Specification of top-level functional requirements for FT4Onco. Relevance of individual requirements
for particular user groups is indicated with a star (⋆) denoting neuroradiologists, and with a diamond (⋄) referring to
neurosurgeons. Further details on the selected functionalities and technical specification are elaborated in Chapter 5.

As described in the following chapter on the design of FT4Onco, the aim was to avoid
reinventing already available processing pipelines, but to find efficient remedies for the
weaknesses of the current clinical preoperative diffusion MRI-based fiber tracking workflow.
In the design of FT4Onco, careful attention was paid to the choice of image correction and
analysis tools with the intention to integrate well-tested widely-used functionalities that best
match individual user requirements. The development of novel algorithms was not intended in
this work.
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5 Design description

In requirement-driven software development, user needs can be met through a well-elaborated
design plan and the utilization of suitable functionalities. In this chapter, an overview of
conceptual design considerations for FT4Onco is given and the complete implementation is
discussed, providing rationale for the selection of particular anatomical and diffusion MR
image processing as well as fiber tracking tools. Both system and software architectures are
explained as outlined by the V-model. In addition, the integration of the image processing
pipeline into a commercial research platform is presented here.

5.1 Design considerations
As briefly summarized in Section 1.3, several intentional limitations were imposed to
constrain the focus of FT4Onco development. These constraints enabled a significantly faster
development process and early acceptance testing with clinical end-users. Before designing the
software, it was hence essential to define the complete system architecture with all subsystems
and hardware. Two conceptual models of FT4Onco as a clinical research application were
outlined upfront:

1. Philips IntelliSpace Discovery plugin
2. Standalone command-line tool

The following sections describe the structure and behavior of their components in detail.

5.1.1 FT4Onco as a Philips IntelliSpace Discovery plugin

The first concept was governed by the architecture of a commercial research platform called
Philips IntelliSpace Discovery (ISD1). Delivered as an integrated solution for medical research
on a standalone server hosting a Windows operating system, ISD offers a client server
architecture accessible via a web browser. It also comes with research application packages,
such as the Research Oncology Suite (ROS) that provides tools for longitudinal lesion tracking
and characterization as well as an API (Application Programming Interface) for integrating new
algorithms (Figure 5.1). Software developers can utilize ISD for the integration and evaluation
of analysis tools as plugins containing either a complete compiled software executable locally,
or a configuration setup with a network reference to a remote machine where image processing
happens.

Remote computing is facilitated by the so-called Computation Node (CN) framework,
which provides the capability to execute arbitrary scripts or executables stored on distant
servers connected to the same network. Figure 5.2 shows the ISD-based architecture with
a remote CN subsystem. After launching a plugin on ISD, selected imaging datasets are
converted from DICOM to the Philips-internal VSR format, and sent (together with CN
configuration files) to a remote server, where image processing starts after the transfer has
finished.
1Hereinafter, ISD is defined as an ecosystem consisting of the physical system with its control software.
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Figure 5.1: Web interface of the ISD Research Oncology Suite with a glioblastoma case opened for inspection. The
application plugin window with its options is located in the left column. Plugin input data can either be filled out
manually or specified in a configuration file to enable fully automated processing. Image courtesy: Philips ICAP
Aachen, Germany.

To achieve optimal data transfer and processing speed, some minimum hardware
requirements have to be met both on ISD and (remote) computation servers, summarized in
Table 5.1. Besides these system specifications, a stable and fast network connection must be
established to ensure flawless communication between the servers.

System info CN server ISD server

Type virtual or physical machine virtual or physical machine

Operating system Linux 64-bit CentOS 8 Windows Server 2012 64-bit

Processor
8x Intel(R) Xeon(R) CPU

E5-2620 v4, 2.10 GHz
4x Intel(R) Xeon(R) logical CPU

E5-2620 v4, 2.10 GHz

RAM 64 GB 32 GB

Table 5.1: Minimum hardware requirements for the CN and ISD servers in the first conceptual design of FT4Onco.

After all data from a patient case have been transferred to the remote server, the
main functionality, typically an application or a top-level script of a processing pipeline,
is automatically triggered. Image processing automation can be achieved via Docker [116],
which is an open-source platform enabling the combination of the source code, libraries and
dependencies of image processing tools, and packaging them into standardized executable
components under any environment (subsystems), deployed as containers on the computation
server. In the ISD-based architecture, individual MR image processing steps are sequentially
launched in an order prescribed by the top-level FT4Onco script. While the plugin is executed,
ISD waits for completing all core tasks and generating results which are then collected and
sent back to ISD.
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HTTP-REST

copy data
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start tool/script 

wait for completion
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Figure 5.2: ISD-based workflow and system architecture of the first FT4Onco concept. Medical imaging data are
migrated from PACS to ISD. The components of FT4Onco are stored on the remote server’s (CN) host system in
Docker images, which are sequentially instantiated as containers at different image processing stages. The transfer
of imaging data and configuration files from ISD to remote computing servers and reversely happens via a REST
(representational state transfer) interface [117], where external systems with respect to ISD are seen as web resources
identified by URIs (uniform resource identifiers, also abbreviated as UIDs). ISD communicates with external systems
over HTTP (hypertext transfer protocol). Only image processing outcomes specified in the CN configuration files are
sent back to the ISD server and automatically merged with corresponding patient data.

Even though ISD provides an environment for inspection of various image processing
outcomes (Figure 5.3), and inherently also a full-fledged interactive user interface both
for clinical research and practice, its capabilities of visualizing tractography results and
compatibility with fiber tracking datatypes are limited. These observations were collected
during the clinical evaluation of FT4Onco-v0.1, reported in Chapter 6. Moreover, owing to
a substantial need for extensive training, and frequent external support with the integration of
FT4Onco into ISD during clinical deployment, this architectural concept was later solely used
for internal FT4Onco development, which is why further details are not provided.

Figure 5.3: Outcomes from remote image processing returned to ISD over the computation node framework. This
active view shows labels from the segmentation of the lesion and all brain structures, graphs of the diffusion MR
imaging gradients in each HARDI acquisition to check for uniform distribution, and a report of brain region volumes
for this patient case. Image courtesy: Philips ICAP Aachen, Germany.
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5.1.2 FT4Onco as a command-line tool

As demonstrated in the previous system architecture, ISD provides a sophisticated display
service and a channel for communication with externally located image processing tools.
In FT4Onco, a strong emphasis was placed on the design and implementation of FT4Onco’s
data access layer, where image processing is conducted. Hence, the second concept presents
a system design incorporating FT4Onco as a standalone command-line tool deployed on one
server, which enables integrability at multiple sites both on physical servers as well as in
a cloud environment.

Refraining completely from the ISD-driven concept, there are fewer hardware
requirements for the deployment of the processing pipeline. The hardware specification
(summarized in Table 5.2) takes into account the large variability of dMRI acquisition protocols
across different clinical sites, and thus the varying size of diffusion MRI series to ensure the
capability of processing both DTI (few megabytes) and HARDI (few gigabytes) MRI data.
Given the limited availability of high-performance clusters with aggregated power or dedicated
GPUs (Graphics Processing Unit) to optimize computing performance at most visited sites,
the entire FT4Onco was engineered for machines operated by CPUs (Central Processing Unit).

System info CN server

Type virtual or physical machine

Operating system Linux 64-bit CentOS 8

Processor
8x Intel(R) Xeon(R) CPU

E5-2620 v4, 2.10 GHz

RAM 64 GB

Table 5.2: Minimum hardware requirements in the second conceptual design for FT4Onco. The CentOS 8 Linux
operating system was chosen for system security reasons.

Before tractography, several image processing steps need to be taken as a prerequisite
for fiber tracking inference since dMRI data suffer from a range of imaging artifacts that
challenge the analysis of results and their interpretability when inappropriately accounted for.
To date, the number, order and staging of the necessary image processing steps follow little or
no standardization [5, 118], which is why the first complete blueprint of FT4Onco design was
obtained by screening already existing diffusion MR image processing pipelines. The most
comprehensive solution, comprising processing chains for anatomical, diffusion MRI data,
and tractography, appeared to be Tractoflow [24].

Tractoflow (Figure 5.5) leverages two engines: Nextflow (pipelining SW that supports
parallelization, [92]) and Singularity (containerization SW for running tools with restricted
user access [93]). It offers a publicly available, fully automated diffusion MRI processing
pipeline, requires almost no installation and complies with the BIDS standard for neuroimaging
data [91].
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Focusing primarily on coarse structural brain connectivity mapping, Tractoflow lacks
modules for processing patient data with neoplastic lesions. Therefore, the development of
FT4Onco was thoroughly consulted with collaborating neuroradiologists from University
Hospital in Leuven (Belgium), where an automated BIDS-compliant CSD tractography
pipeline [119] was constructed to automate the labor-intensive preoperative fiber tracking
workflow for neurosurgery planning reported in Chapter 4. In agreement with the purpose
of FT4Onco, this BIDS-CSD pipeline (Figure 5.4) utilizes state-of-the-art software tools to
mitigate user bias and the requirement for manual interaction by experienced personnel. The
BIDS-CSD pipeline is fully written in bash (a Unix shell command language). However,
this pipeline lacks automation for brain tumor segmentation, as tumor labels are obtained
by semi-automated annotation of the anatomical MR images in the ITKSnap tool [120]. An
overview of software tools and functional methods for individual image processing steps in
the Tractoflow and BIDS-CSD pipelines is provided in Appendix B Tables 5 and 6.

Figure 5.4: Coarse sketch of the BIDS-compliant CSD fiber tracking pipeline with automatic dMRI and anatomical
MRI data processing designed to address the slow and labor-intensive preoperative workflow at University Hospital in
Leuven (Belgium) [119]. After the conversion from DICOM to BIDS, anatomical data are processed in FreeSurfer
[121] with the recon-all functionality for brain segmentation, and DWI data with image processing methods from
MRtrix [98] and FSL [122]. Eventually, all image processing outcomes are used as input for the MRtrix-driven CSD
tractography using a probabilistic algorithm based on second-order integration over fiber orientation densities (iFOD2)
[123].
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Figure 5.5: Graphical representation of the Tractoflow pipeline. (A – blue) BIDS-conformant input data files required
to run the pipeline. (B – green) Diffusion processes that run on DWI data, the b-values, b-vectors and the blip-up/blip-
down DW images. (C – red) Processes that run on the T1-weighted MR images. Orange elements are optional tasks.
Figure adopted from [24].
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5.2 Workflow optimization
In this section, the software architecture is explained, and a coarse overview of the entire
image processing pipeline is provided. In addition, this section presents a recommended,
minimum-quality input dataset, explains how imaging data are systematically treated along
the pipeline, and defines further constraints imposed on FT4Onco development. Forthcoming
sections then describe the methodological underpinnings of all employed image processing
tools, and explain the importance of integrating each functional element into the pipeline,
clarifying potential caveats. The verification of all functionalities at unit, integration and
system levels is documented in Section 6.1.

5.2.1 Pipeline architecture

FT4Onco contains three core sets of necessary image processing steps for anatomical MRI
data, diffusion MRI data, and fiber tracking analysis, all of which are connected by supervisory
Python scripts. In total, FT4Onco was constructed from 24 functional elements enabling
fully automated image processing. Functionalities were selected exclusively from Philips-
proprietary tools and open-source packages. By design, preference was given to publicly
available neuroimaging research methods distributed under licenses permitting adoption in
commercial research. Consequently, the two most frequently utilized neuroimage analysis
toolsets, FreeSurfer and FSL, were substituted with other functionalities since their licenses
violate the condition of commercial utilization.

As schematically explained in Figure 5.6, initial data selection, and the viewing of
image processing outcomes are not automated and require users to intervene. Although the
importance of automating these steps is unequivocal, integrating automatic data preselection
from external systems as well as the transfer of image processing outcomes to servers with
deployed tools for medical image visualization is strongly affected by access restrictions within
hospital file systems and on-site network configuration. Hence, creating a generic solution to
automate these steps irrespective of premise is rather difficult, and not attempted here.

The goal of this work was not to create novel image processing algorithms. For some
known imaging artifacts, a suitable open-source method was not identified, which is why
these artifacts are not directly addressed in the pipeline. Examples include signal drift [124]
(gradual signal decay across volumes in each series due to temporal MR scanner instabilities)
or gradient nonlinearities (such as eddy current induced misalignments). It is assumed that
initial intensity normalization (explained in Section 5.4.1) across all volumes and b-shells
together with the utilization of rigid/affine slice-to-volume motion correction (see Section
5.4.4) would suffice to suppress these effects. Modern Philips MR scanners produce high-
resolution and non-distorted anatomical MRI data, which is why neither bias field correction
nor noise suppression methods are applied on these scans. While these effects should not
be neglected, the cumulative influence of all disregarded artifacts on diffusion orientation
estimation and fiber tracking inference has not been investigated in this work.
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An optimal orchestration of all image processing steps is essential when aiming for
a fast and fully automated workflow. Adopted from the ISD-based concept, image processing
tools were deployed via Docker. While advanced techniques for parallel computing exist to
simultaneously handle separate subprocesses, and more efficient scheduling could be achieved
through multi-threading or deployment across multiple hosting systems, the FT4Onco pipeline
was chained up as a cascade of Docker containers running in a single (virtual) machine.

Select input data, 
set up config files

 Input data format
inspection, and

conversion to BIDS

Glioblastoma
segmentation (GBS)

Hybrid brain
segmentation (HBS)

GBS and HBS label
combination

T1 and T2  
brain extraction

T2  and T1  
image co-registration

DWI data quality
inspection

Denoising

Gibbs ringing correction

Motion correction with
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Figure 5.6: Diagram demonstrating the sequence of 24 fully automated FT4Onco image processing steps (excluding
two user-dependent tasks in blue). Automated MRI data manipulation with the generation of informative features for
visualization are shown in yellow; green rectangles represent anatomical MRI data processes; diffusion processes are
highlighted in red, and tractography processes have purple background.
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5.2.2 Handling data input and output

Despite the fact that routine clinical preoperative brain MRI acquires multiple contrasts and
preoperative imaging protocols significantly vary across sites, only selected anatomical (T1-
weighted, T2-weighted, contrast-enhanced T1-weighted, FLAIR) and diffusion MR images
are used to reconstruct WM fascicles in brains with neoplastic lesions. These imaging series
compose the minimum input requirements for FT4Onco. Aiming for compatibility with
Philips MR data, other vendors’ preoperative MRI datasets were not considered in FT4Onco
development.

Overcoming the drawbacks of tensor-based tractography by employing advanced
probabilistic tracking algorithms, standard DTI acquisitions (b-values of ca. 1000 s/mm2,
6–32 directions) do not contain enough directional information to resolve subvoxel fiber
configurations, let alone in the presence of large tumors. Ideally, a multi-shell HARDI dataset
is used as input with a b-value of 1000–2500 s/mm2 and more than 60 volumes, optionally
containing field maps (diffusion MR images with opposing phase encoding direction) for
susceptibility-induced distortion correction. Figure 5.7 shows an example dataset used in the
description of individual processing tasks in subsequent sections. All datasets from University
Hospital in Leuven (Belgium) were acquired according to a Medical Ethics Review Committee
(MERC)-approved research protocol (S61759) with a corresponding patient informed consent
attached.

For figure consistency, all MRI slices are flipped to match the radiology viewing
convention, where the patient’s left side is located on the right, as opposed to the neurology
perspective. Unlike in literature, where b-values ≤ 50 are often considered to be without
diffusion weighting, and b0 volumes are not referred to as a separate “shell”, the hereinafter
described image processing steps use the term “multi-shell” for DWI series containing at least
one b0 volume regardless of the number of non-b0 shells.
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Figure 5.7: Example patient dataset used to demonstrate individual image processing steps. The case presents a right
frontoparietal glioblastoma (WHO grade IV). This dataset consists of 3D T1-weighted (voxel size: 0.9 mm isotropic,
TE/TR = 4.05/9 ms), contrast-enhanced T1-weighted (T1C), T2-weighted, FLAIR volumes, and two separate EPI-
dMRI series (258 volumes in total with b-values = 0/1200/2500 s/mm2, TE/TR = 85/4500 ms). Courtesy: University
Hospital in Leuven (Belgium).

Neuroimage processing may generate complicated data structures, for which no official
data arrangement consensus exists. Its lack results in irreconcilable opinions across researchers
as to how the data should be organized on file systems. At the beginning of the FT4Onco
pipeline, input datasets are converted into the brain imaging data structure [91] using
the dcm2bids conversion tool encapsulated in a Docker image (Figure 5.9). Dcm2bids is
a community-centered project provided under the GNU General Public License v3.0, and
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maintained at UNF Montreal (Unité de neuroimagerie fonctionnelle). The project aims at
facilitating an effortless BIDS conversion through automated and modifiable scripts, and
actively reflects new features in the BIDS specification. Figure 5.8 shows a simplistic overview
of the main data formats used in FT4Onco.

Processing and reconstruction

PACS

DICOM
NIfTI,  
JSON 

Anatomical 
MRI

Diffusion 
MRI Tractography

NIfTI, MIF,
JSON, TXT 

NIFTI, MIF,
TRK, TCK 

Visualization

VTK

Reporting

DICOM, XLSX, PNG 

Figure 5.8: Input and output formats used in the processing pipeline. DICOM – standard format for storing medical
imaging data in hospital systems; NIfTI – common neuroimaging data format; JSON – text-based structured format for
storing DICOM header information; TXT – text files for storing values such as transformation matrices, b-values and
b-vectors; MIF – MRtrix-specific image format; TRK – DIPY-specific tractography format; TCK – MRtrix-specific
tractography format; VTK – visualization format both for tractography and segmentation output; XLSX – Microsoft
Excel table; PNG – picture format for statistical output.

Apart from reconstructed bundles, parametric visualization features (tracking uncertainty,
tumor-tract relationships), and co-registered anatomical underlays, FT4Onco produces an
Excel sheet with an image processing report. Recorded are the duration of each subprocess,
information about input data (number of dMRI series, volumes, b-values, image dimensions,
voxel size), and parametric setup for tractography. Moreover, the report contains qualitative
information about reconstructed bundles, such as fiber count, and average streamline length.

Figure 5.9: Example patient dataset converted from defaced DICOM data to the BIDS-NIfTI format. “Sub” – subject,
“PT-002” – anonymized patient name, “run-XX” – image acquisition run. Structural JSON files contain information on
b-vectors, b-values, and other DICOM-extracted metadata. Every name of an executed and finished process in the
FT4Onco pipeline is attached to the end of the filename string in front of the file extension.

In the following explanation of the image processing pipeline, the technical specification
of all pipeline blocks is presented with scientific background and rationale explaining why
particular functionalities should be present in clinical research tractography trials. Details on
the distribution and licensing of individual processing tools can be found in Appendix A.
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5.3 Anatomical MRI data processing chain
Tractography outcomes are typically inspected by overlaying them on T1-weighted images.
To find the location of WM fiber bundles, including fascicles affected by a tumor or edema,
tractography uses output from segmentation algorithms capable of 3D identification of WM
regions and cortical/subcortical areas as well as from tools for brain tumor delineation. Brain
(mask) extraction methods are typically applied to aid the later co-registration of anatomical
underlays with produced tractograms. Hereinafter, a summary of the main anatomical image
processing steps is provided. More information on utilized algorithms and software packages
can be found in Appendix A Table 2.

5.3.1 Brain segmentation and cortical parcellation

Accurate 3D segmentation of brain tissue along with parcellation of the cortex (lobes, gyri)
is especially relevant for anatomically informed connectivity analysis. Standard open-source
toolboxes, such as FreeSurfer, demand multiple hours to perform brain segmentation on
a single T1-weighted MRI scan. FT4Onco makes use of the Philips-developed hybrid full
brain segmentation (HBS, Figure 5.10) that combines deep learning classification and shape-
constrained modeling. Cortical segmentation and WM tissue classification are achieved through
a fully convolutional 3D neural network (F-Net CNN), while the identification of subcortical
structures and hemispheres exploits shape-constrained deformable models [125]. HBS enables
a fully automated brain tissue segmentation that needs ca. 2 minutes to converge on GPUs and
ca. 10 minutes on CPUs.

Figure 5.10: Illustration of the HBS processing pipeline (left) and the architecture of the F-Net CNN (right). Shape-
constrained models are used for brain extraction and subcortical structure segmentation. Intensity normalization and
volume reorientation are done before deep learning based voxel-wise cortical and white matter tissue classification.
The F-Net consists of several blocks: a convolutional layer followed by batch normalization and the rectified linear
activation transfer function (CBR), a CBR block with upsampling (CBRU), and a convolutional layer with a channel-
wise softmax layer (CS). Arrow shapes represent data tensors with given voxels flowing through the network, and
k indicates the convolution kernel size in some blocks. Whole 3D images are segmented by successively segmenting
smaller nonoverlapping subvolumes, indicated by the red rectangle. For each of these subvolumes, larger overlapping
patches at different scales (green, blue, purple, and brown rectangle) are used as input to the network. Using larger but
fewer subregions leads to significantly reduced processing times at the cost of higher memory consumption, which is
compensated by the reduced number of simultaneously processed voxels. In an experiment processing 101 T1 images,
the HBS tool achieved the following average DSC (Dice Similarity Coefficient) scores: 0.80 (cortical regions), 0.92
(WM), 0.83 (GM), 0.81 (CSF), 0.95 (SC).
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HBS takes a 3D NIfTI T1-weighted MRI scan of the brain as input, and performs brain
extraction (isolation from non-brain structures) by employing a shape-constrained model of
the hemispheres. Next, the extracted brain volume is normalized (shifting and scaling so that
all pixels have a zero mean and unit variance) and reoriented, followed by deep learning
based voxel-wise classification of cortical and WM areas, the cerebellum and the ventricular
system. Finally, another shape-constrained model is applied to segment subcortical structures.
Bihemispheric segmentation is achieved by deforming the Desikan-Killiany-Tourville (DKT)
atlas divided into 62 regions. Eventually, the HBS tool yields a 3D NIfTI image with 63 brain
labels (including a 0 for background). These labels are then automatically separated into four
label masks to serve as input for anatomically informed whole brain tractography (Figure
5.11). Most importantly, the WM mask is added as input to the tracking algorithm to constrain
tractography solely to cerebral areas with nerve fibers.

Figure 5.11: Output of the hybrid brain segmentation algorithm on the selected patient T1 volume. The label volume
is separated into masks (WM, GM, CSF with background, SC) for tractography.

5.3.2 Tumor segmentation

In neurosurgery, the identification of tumor core and the boundaries of edema is needed
for lesion characterization. The quality and behavior of tractography algorithms has been
reported to improve with the use of masks representing different tumor compartments [126].
The above-described whole brain segmentation tool is not designed for multi-scale tissue
segmentation on diseased brains with neoplastic lesions. Brain regions affected by tumors
are erroneously classified by the HBS approach, which is why an additional solution for
tumor segmentation is required. In FT4Onco, a Philips-developed method was integrated,
comprising image preprocessing through the Statistical Parametric Mapping software package
(SPM), followed by automatic glioblastoma segmentation (GBS) using a deep learning model
based on DeepMedic, and postprocessing of the output volumes of interest (VOIs) [127].
The DeepMedic implementation consists of a multi-layer 3D CNN for the detection and
segmentation of tumor compartments [128], and a 3D fully connected network to remove false
positives.
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The tumor segmentation workflow is illustrated in Figure 5.12. GBS requires four series
(T1, T2, FLAIR, and T1C MR images) as input. Preprocessing involves bias field correction (to
remove a very smooth signal caused by B1-field inhomogeneities), co-registration of the T1,
T2 and FLAIR images with the T1C volume, brain extraction, normalization, and resampling
(changing the resolution and dimensions of the image). Automatic tumor segmentation
generates up to four output VOIs, representing the contrast-enhancing portion, necrosis,
non-enhancing part and edema, depending on which compartments are detected. All segments
are resampled to the original resolution of the T1C volume as the last step in the pipeline.
In addition, all compartment labels are unified into a whole-tumor mask.
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Figure 5.12: Overall workflow of the automatic brain tumor segmentation pipeline. After SPM preprocessing, the
four co-registered imaging contrasts and the extracted brain mask are fed into an independently trained model based
on DeepMedic. Output labels are classified 3D masks of whole tumor (red) as well as separate masks for edema (blue)
and contrast-enhancing portion (yellow). The model was ranked as best performing in the BRATS 2015 challenge,
and was trained on 220 GBM datasets with expert manual annotations. Details of the network architecture are not
provided as they are well reported in [128].

To mitigate the lack of a joint segmentation strategy for simultaneous tumor and brain
tissue segmentation, the output brain masks constructed by HBS are corrected by overwriting
voxels, where the lesion is located, with voxels from the whole-tumor mask generated by
GBS. As shown later, the WM segmentation mask is combined with the whole-tumor mask
for WBT in order to detect fiber bundle propagation through tumors. The tumor segmentation
tool is deployed in two separate containers, one containing the SPM tools and another with the
DeepMedic software.
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5.3.3 T1 and T2 brain extraction

Removing non-brain tissue parts of the entire volume later enables improving the registration
accuracy between diffusion and anatomical data. Brain extraction (a.k.a. skull stripping) is an
additional step in FT4Onco enabling fast and automatic brain tissue isolation. Using the affine
registration algorithm from the ANTs (Advanced Normalization Tools) package [129], the
T1 and T2 volumes are co-registered with the MNI152 T1 and T2 brain templates [130] as
illustrated in Figure 5.13.
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Figure 5.13: Demonstration of the brain extraction process both for T1 and T2 images using the MNI152 template
volumes and the MNI brain mask. Firstly, each MRI volume is registered on the corresponding MNI template. Then,
the affine-registered MRI data are thresholded with the MNI mask so that all voxels outside of the template mask
(valued less than 0.5) are discarded. Finally, the registered and thresholded image volume is mapped back to the native
space using the computed affine transforms from the initial registration.
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5.4 Diffusion MRI data processing chain
Numerous MR imaging artifacts result in difficulties during fiber tracking, thereby hampering
direct off-scanner diffusion analysis. Hence, a number of artifact compensation methods need
to be applied on dMRI data before supplying them to tractography algorithms. The majority
of these processes utilize compiled command-line tools from the MRtrix distribution [98],
medical imaging libraries from ANTs [129], and generic methods from DIPY (Diffusion
Imaging in Python) [99], see Appendix A Table 3 for more details. As input, these processing
tools require a gradient table (a text file containing diffusion gradient vectors and b-values
for each diffusion volume) with respective imaging series (4D NIfTI files), and optionally
also diffusion B0 field maps acquired with opposing phase encoding direction. The following
sections describe the core diffusion image processing tasks in the FT4Onco pipeline.

5.4.1 Diffusion data quality inspection

The first step comprises several qualitative checks of the diffusion imaging series in terms of
dimensional congruence across all volumes, intensity rescaling, presence of negative values,
and concatenation when a dataset consists of multiple diffusion series.

Intensity correction accounts for differences in intensity scaling between two individually
acquired series from one scanning session. Scaling correction is performed by first calculating
the global mean intensity value of all b0 volumes through all series. Then, the mean b0
volume from each series is divided by the global mean value, and each diffusion series is
multiplied by the outcome of this division. Essentially, intensity rescaling has to precede series
concatenation.

Moreover, in the event of imperfectly converted gradient axis directions in the diffusion
gradient table, some axes must be flipped. An MRtrix tool used in FT4Onco for the evaluation
of the diffusion gradient b-matrix performs a short whole brain tracking experiment on the
uncorrected diffusion series, and computes the average streamline length under various axis
flips and permutations of the gradient table. Looping through all possible combinations, the
tool checks whether the flips and permutations occur in scanner coordinate system (negating
values in the first column of the gradient table) or in image coordinate system (negating values
in the first row of the gradient table). If the header information is stored correctly, the tool will
show that the gradient direction coordinate frame was in scanner space, which is by convention
expected in MRtrix-based image processing.

Axis flipping may originate from improper header extraction when writing DICOM
header information into gradient table files, however, extreme care needs to be taken when
forcing axis flips. As shown in Figure 5.14, wrong axis orientation in the gradient table
typically leads to false fiber orientation distribution estimates, and consequently incorrect
bundle reconstructions.

In order to exploit the full potential of the CSD algorithm, and to estimate signal
contributions per tissue type via spherical basis functions, the data must be acquired with
shell-wise sampled, uniformly distributed diffusion weighting gradients.
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Figure 5.14: Left: Demonstration of the effect of flipped diffusion gradient axis on the FOD lobe orientation overlaid
on a b0 diffusion volume. The correct orientation of FOD lobes follows the anatomical curvature of the genu and
splenium of the corpus callosum, while flipping the x-axis of the gradient vectors causes the FOD lobes to shift away
from the nerve fiber orientation. Color-coding of FOD lobes: blue – inferior-superior, red – medial-lateral, green –
anterior-posterior. Right: Example DWI data acquisition scheme with uniform distribution of diffusion gradients on
half a sphere. Abbreviations: A = anterior, P = posterior.

5.4.2 Denoising

Diffusion MR images suffer from SNR decrease due to MR signal attenuation associated with
motion of water molecules or thermal scanner fluctuations. Accumulated noise components
may cause tractography algorithms to generate more spurious streamlines and visual clutter in
reconstructed bundles.

Novel image acquisition schemes introduce new noise sources, such as acceleration
factor-dependent noise in compressed sensing MRI, which are difficult to model and remove.
Multiple techniques have been implemented for noise removal as extensions of 2D methods,
e.g. non-local means, empirical Bayes or correlation-based joint filtering [131, 132, 133].
Other methods utilize the quality of 4D series that the same exact 3D volume is acquired
multiple times at varying b-values and gradient directions, such as the Marchenko-Pastur
Principal Component Analysis (MP-PCA) method based on random matrix theory [134]. All
of these methods however require a well-calibrated noise model as they make assumptions
about the signal (e.g. its distribution). In addition, noise removal with these methods must be
performed in the beginning of the image processing pipeline since interpolation or smoothing
applied in subsequent downstream tasks may change the noise characteristics, thereby violating
signal assumptions in the underlying algorithms.

A recently proposed self-supervised denoising algorithm, integrated in the DIPY package
and called Patch2Self [135], abandons the requirement for noise modeling, while assuming
that noise aggregated at consecutive image acquisitions is statistically independent. Patch2Self
can efficiently separate anatomical structures from noise components by learning a full-rank
locally linear denoiser at each volume, while only relying on the randomness of noise in the
acquired signal.
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Patch2Self can be applied at any stage of an image processing pipeline, and it has shown to
outperform the MP-PCA method in suppressing more noise components (even non-Gaussian)
from images while preserving anatomical structures unaltered (Figure 5.15).
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Figure 5.15: Left: Demonstration of the working principles of Patch2Self [135]. This method incorporates a two-step
process: (A) self-supervised training, and (B) prediction. Firstly, 3D patches (p × p × p neighborhood of voxel k)
are extracted from n volumes of an input 4D dataset X (l × w × h × n), and one volume is held out for denoising
(target volume). Each patch (p-neighborhood of each voxel) from the n-1 volumes is flattened and concatenated into
a feature vector of length p3 × n. Feature vectors are stacked into a matrix of size m × (p3 × n), which is used for
the prediction of the center voxel in the corresponding patch of the target volume. This way, a linear regressor (Φ̂) for
denoising one 3D volume of the 4D diffusion series is trained. Next, the n-1 volumes are fed into the regressor, and the
prediction represents a denoised version of the target volume. Right: Effect of Patch2Self denoising on both diffusion
series of the selected patient dataset. Removing stochastic noisy signal, the underlying brain tissue is well-preserved.

5.4.3 Gibbs ringing correction

In MR image reconstruction, inverse Fourier transformation (FT) is used to convert the
k-space signal in the frequency domain into the spatial domain. Theoretically, an infinite
number of sine waves with varying frequencies, amplitudes and phases would be required for
Fourier series to represent discontinuity. However, images are acquired with a finite number
of k-space samples, and approximated by using relatively few harmonics in their Fourier
representation. Consequently, diffusion-weighted images may exhibit Gibbs ringing (a.k.a.
truncation or spectral leakage) artifacts manifested by multiple fine lines parallel to sharp
tissue interfaces. These ripple-like patterns are most conspicuous on non-diffusion weighted
b0 volumes. Provided that the signal intensity of an image object gradually changes across
multiple voxels, truncation errors are minimal. Conversely, high-contrast interfaces with
directly adjacent structures may be obscured by edge enhancement, widening or checkerboard-
like patterns (see Figure 5.16). Intensity oscillations have been reported to tremendously affect
the quantitative analysis of dMRI data and the quality of derived parametric maps (e.g. radial
diffusivity) [136].

Besides k-space prefiltering prior to image reconstruction, the most widely adopted
postprocessing suppression method for Gibbs oscillations has been spatial smoothing with an
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Figure 5.16: Example of Gibbs ringing (left) on a b0 image manifested by rapid intensity fluctuations in the
periventricular areas (arrows), and the effect of suppression (right) in the selected patient dataset.

isotropic smoothing kernel. Nevertheless, spatial smoothing increases blurring in the images,
and magnifies partial volume effects that may hinder fiber tracking. In FT4Onco, truncation
artifacts are removed by a method of local subvoxel shifts implemented in the MRtrix toolbox
[137]. Gibbs ringing correction through subvoxel shifting exploits the idea that using a finite
number of k-space samples leads to image reconstruction on a discrete MRI sampling grid,
where the Gibbs ringing intensity depends on the precise location of high-contrast edges
relative to that grid. In reconstructed MR images, local determination of optimal subvoxel
shifts for neighboring pixels at sharp edges can thus suppress these oscillations. This method is
designed to run on images acquired with full k-space coverage without additional prefiltering,
and should be strictly applied before any interpolation by other processing steps.

As a design choice, the integration of Gibbs ringing correction into FT4Onco assumes
that there are always some intensity oscillations present in dMRI data. While ringing artifacts
are not detectable automatically and require visual inspection in advance, strict use of this
method may cause some image blurring. Nevertheless, the cumulative effect of blurring on
fiber tracking performance was not investigated in this work.

5.4.4 Motion correction with outlier detection

Common DTI acquisition schemes based on single-shot echo planar imaging (SSH-EPI)
enable recording DWI data in 5–10 minutes, depending on resolution and employment of
acceleration techniques (e.g. simultaneous multi-slice imaging). HARDI datasets are generally
collected in several acquisitions within ca. 20 minutes. These durations are relatively long
compared to anatomical scanning, and brain MRI data corruption with subject motion (from
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fidgety movements to short head displacement as a result of normal breathing) is typically
inevitable, particularly in case of less MRI compliant pediatric or neonatal cohorts.

The first approaches addressing volume-level motion artifacts aimed at defining a rigid
transformation for each volume that best approximates head motion during an MR scan. As
a solution, volumes were interpolated into the subject reference frame. However, diffusion
MRI data are typically collected in stacks of slices, and subject motion may therefore not only
occur between different volumes, but also between slices of individual volumes across series.

The effects of subject motion can be differentiated according to when they appear during
the SSH-EPI sequence: inter-shot2 motion yields undersampled image regions due to slice
scattering, while intra-shot3 motion gives rise to slice dropouts through linear shifts, and these
slices must be treated as outliers in further realignment steps. Moreover, subject motion also
induces rotation of diffusion gradient directions spanning the scattered slices, which demands
a q-space data representation to be fitted to all diffusion encoding b-shells and directions.

FT4Onco incorporates a model-free slice-to-volume motion correction framework
representing the diffusion signal based on spherical harmonics and radial decomposition
(SHARD) to realign scattered slices both within and across b-shells [138]. Owing to the
orientation dependence of the dMRI contrast, SHARD is a suitable data-driven diffusion
signal representation as a linear combination of orthogonal components linking the spherical
harmonics in each b-shell with a radial singular value decomposition (SVD). Given a SHARD
basis rank r, the image to be reconstructed is linearly represented as a 4D image of SHARD
coefficients, which are encoded in a vector x⃗. A forward model then enables the prediction
of the expected diffusion contrast across scattered slices, and the inverse problem lies in
optimizing the target vector x⃗ to maximize similarity between acquired dMRI data and the
prediction.

Briefly summarized in Figure 5.17, the SHARD motion correction algorithm integrates
a relatively complex iterative process, where each epoch (iteration) consists of a reconstruction
(optimizing SHARD representation according to the latest motion estimate), rank reduction
(low-rank approximation via SVD), slice registration (updating motion parameters for a given
vector x⃗), and outlier reweighting (removing damaged slices from reconstruction). The process
of motion correction is initialized with all parameters set to 0 (no motion) and equal weights
for all slices. The entire motion correction process typically consists of six epochs, two of
which perform volume-level registration, the next three slice-to-volume registration, and the
last one is a refinement of the reconstruction output with final motion parameters. Eventually,
the SH coefficients from a 5D image of multi-shell spherical harmonics functions are mapped
to the corresponding dMRI shells along specified directions based on the gradient table to
create a 4D amplitude image (final series).

Configuring parameters for the SHARD-based motion correction, the SH basis order per
shell for reconstruction (ℓmax), reduced SHARD basis rank for registration (rℓmax), and two
regularization parameters for reconstruction (λ – isotropic Laplacian convolution filter, and
ζ – a derivative filter for stabilizing convolution along the slice profile) are defined (see Table
5.3). Regularization serves to stabilize noise amplification and interpolation when solving
the inverse problem, and to minimize computational costs. Given that the SHARD method is
relatively novel, all parameters for the selected multi-shell patient dataset were optimized by

2occurring between two readout gradients that fill k-space with frequency-encoded data
3occurring while a readout gradient is turned on



78

empirical testing. An optimal setup of parameters for SHARD reconstruction also facilitates
motion correction in DTI data with few b-values and a low number of volumes.

As another input to the SHARD motion correction algorithm, the multiband acquisition
factor needs to be specified to correct for intra-shot motion. The term “multiband” refers to
the simultaneous excitation of multiple slices during image acquisition, often denoted as MB2,
MB3, MB4, etc., which results in acquired signal as a combination of signals from all slices.
Separate images are calculated using SENSE (parallel imaging with sensitivity encoding)
unfolding algorithms, enabling scan time reduction with minimal loss in SNR. The use of no
multiband acquisition is designated as MB1.

Variable Multi-shell DTI
(Klinikum rdI Munich)

Multi-shell HARDI
(UH Leuven)

dHCP neonatal
(KC London)

b-shells 0/1000 s/mm2 0/1200/2500 s/mm2 0/400/1000/2600 s/mm2

volumes 1/32 5/128/125 20/64/88/128

MB 2 3 4

ℓmax 0, 4 0, 2, 6 0, 4, 6, 8

rℓmax 2, 0 4, 2, 0 4, 2, 0

λ 0.001 0.005 0.003

ζ 0.01 0.001 0.003

Table 5.3: Parametric setup for slice-to-volume motion correction on different diffusion MRI series. Default values
were defined on the motion correction of multi-shell HARDI dHCP (developing Human Connectome Project) neonatal
MRI series, for which the SHARD method was originally designed. Abbreviations: rdI = rechts der Isar, UH =
University Hospital, KC = King’s College.

To perform efficient motion correction, the SHARD framework is also designed to
suppress static EPI distortions, for which a B0 field map and a PE (phase encoding) table
need to be available in a dataset. However, the SHARD method assumes that EPI distortion is
invariant in the subject reference frame. Moreover, an automatic estimation of the B0 field
maps is not integrated, and these slices may not always be acquired in scanning sessions.
Although these distortion field maps can be generated by FSL topup or the Synb0-DISCO
tool [139], a registration-based approach (described later in this section) is adopted for EPI
distortion correction of dMRI data in FT4Onco.

Besides subject motion and static EPI distortion correction, the SHARD framework
also performs slice outlier detection, where slices with intensity dropout or other artifacts
are rejected based on a log-normal mixture model (outlier classification by a two-class
Gaussian mixture model of the log-root-mean-squared error). SHARD-based outlier detection
is designed to suppress slices with complete or partial signal dropout. However, spin-induced
and physiological pulsation effects may introduce outliers more locally, and are not considered
in this framework.

The SHARD motion correction algorithm is implemented in the MRtrix toolset with
individually compiled libraries for reconstruction, registration, and outlier reweighting. Despite
the SHARD method being primarily designed for robust motion correction in severely motion-
corrupted multi-shell dMRI scans in neonatal imaging, it can be applied on adult dMRI data
with comparable efficiency.
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Figure 5.17: Left: Schematic overview of a single iteration in the motion correction framework. Before the conjugate
gradient (CG, a fast iterative numerical method for solving linear systems of equations) updates the reconstruction,
and outputs residuals between data and prediction, the multi-shell SHARD basis, motion parameters, and slice outlier
weights are updated based on residuals from the previous reconstruction. Right: Effect of SHARD motion correction
in the selected patient dMRI series. This subject was rather compliant, which is why significant motion traces are hard
to find in the dataset.

5.4.5 B1 inhomogeneity correction

The analysis of diffusion MRI data is often confounded by the presence of intensity
nonuniformities referred to as bias, B1 (radiofrequency) inhomogeneity or gain field. Bias
field typically arises from the image acquisition process itself or due to specific dielectric
properties of the imaged object. These artifacts are hardly noticeable to human observers, and
are manifested by a smooth spatial variation of intensities across slices, which may highly
degrade the performance of automated techniques, such as registration of diffusion data with
anatomical underlays or diffusion metric estimation for tractography.

Numerous suppression methods for intensity inhomogeneity correction have been
proposed and are well summarized in existing reviews [140]. As such, bias field correction
methods are classified into two groups, namely prospective and retrospective methods.
Prospective approaches deal with imperfections in the image acquisition process, while
retrospective methods can deal both with scanner-induced and anatomy-related bias field
artifacts, and focus on the physical properties of the imaged anatomy (magnetic permeability,
position, shape, etc.). Retrospective methods are further divided into filtering based, surface
fitting based, segmentation based, and histogram based methods.

For brain dMRI data, FT4Onco exploits the well-known implementation of histogram
based nonparametric nonuniform normalization (N3), specifically its enhanced version named
N4 with B-spline approximation and multi-resolution optimization [141]. Figure 5.18 shows
an example of applying the N4 bias field correction on multi-shell data. Each iteration of the
N4 algorithm maximizes the high frequency content of the intensity distribution of a given
slice to calculate the bias field. Corrected images are computed successively by using the
results of the preceding iteration. The N4 method is provided by ANTs through the Insight
Toolkit (N4ITK), and is integrated in the MRtrix toolset.
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Figure 5.18: Suppression of intensity inhomogeneities on the selected patient dataset. From left to right: a slice of the
motion-corrected b0 volume without bias field correction; corrected image with removed shading in the lower left
image portion; intensity difference between the original and corrected images; estimated bias field map showing an
intensity dropout (dark segments) in the corresponding image areas.

5.4.6 DMRI-T1 co-registration, brain extraction, distortion correction

The registration of dMRI series with T1-weighted data is a challenging endeavor owing to
large image contrast differences, and the susceptibility of DWI data both to affine/linear eddy
current misalignments and non-linear EPI field distortions. Eddy current artifacts are caused
by gradient-intensive isotropic diffusion waveforms during image acquisition, and realignment
can be conducted by a constrained affine registration as part of motion correction. However,
FT4Onco does not provide any correction for eddy current artifacts as these misalignments are
assumed to be corrected by image reconstruction algorithms at Philips scanners.

Spatially nonlinear geometric distortions caused by EPI sensitivity to static magnetic field
inhomogeneities along the phase encoding direction can be spotted at air-tissue interfaces and
are clearly evident in ventral portions of the frontal and temporal lobes including areas near the
sphenoid sinus and brainstem. The severity of these effects increases at higher main magnetic
field strengths. The most common approaches to mitigate these issues include distortion
correction of all DWI volumes before co-registration or using nonlinear registration transforms
to warp anatomical images to the DWI space, both of which possess some drawbacks.
Correcting individual dMRI volumes in a series via affine registration of individual DWIs to
a non-diffusion weighted image (b0) does not account for nonlinear geometric distortions, and
is computationally expensive in case of HARDI data containing hundreds of volumes. Direct
affine registration of anatomical images into the diffusion image space may result in poor or
highly variable overlaps [142].

In general, EPI distortion correction strategies can be broadly categorized into two classes:
image registration or B0 field mapping (requires estimated B0-inhomogeneity maps from two
scans with opposite phase encoding direction). These field maps are also referred to as “blip-up”
(primary phase encoding) and “blip-down” (reverse phase encoding) image pairs. The majority
of the diffusion-weighted volumes are acquired with the primary phase encoding direction.
An MRI acquisition with the reverse phase encoding direction yields an image that is applied
to unwarp any distortions present in the primary phase-encoded data. Investigations of best
DWI-T1 registration practices have proposed that EPI distortion correction with field mapping
should be performed prior to co-registration. However, an accurate estimation of these B0

maps may be arduous, and regions of severe signal pile-up cannot be properly corrected for.
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As a result of omitting FSL neuroimage analysis tools in FT4Onco, another framework
had to be designed to account for susceptibility-induced geometric distortions, and to align
diffusion and anatomical MR images in the same space. The following registration scheme was
designed (Figure 5.19), making use of a combination of algorithms provided by the MRtrix
and ANTs(Py) packages:

1. Registration of the T2 volume to the T1 image space using rigid alignment (rotation and
translation) with linear interpolation, and mutual information as optimization metric

2. Registration of the mean b0 volume to the T2-weighted volume (in T1 space) using
symmetric normalization with rigid and affine transformation (SyNRA) with mutual
information as similarity metric, and linear interpolation

3. Extraction of a T1 image mask and application of transforms from step (2) to this
T1 image mask with multi-label interpolation and the registered mean b0 volume as
reference

Registration-based EPI distortion correction enables the alignment of DWIs with the T1 space,
which is a necessary step to generate anatomically plausible fiber tracking output. Although
areas outside of the intracranial cavity exert very low intensities on DW volumes, mask-aided
skull stripping ensures that diffusion orientation distribution maps are computed only within
the brain itself up to cortical regions. As described in the next section, only tensor-derived
metric maps and FOD maps for CSD tractography are co-registered, capitalizing on the b0-T2
transformation and the T1 image mask in the DWI space. Importantly, the mapping of diffusion
parametric maps to the T1 space also involves the reorientation of the original b-matrix in the
gradient table [143].

The proposed strategy for b0-T2 registration-based EPI distortion correction and DWI-
T1 co-registration leads to a significant acceleration of the processing pipeline given that
skull stripping, realignment, and geometric distortion correction of the entire DWI series is
avoided. As an inherent limitation, it should be considered that registration-based EPI distortion
correction does not perfectly account for nonlinear magnetic susceptibility distortions in distant
brain regions.
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Figure 5.19: Framework for registration-based EPI distortion correction using T2 and average b0 DWI volumes.
Available transforms from the DWI-T1 registration are later applied for mapping diffusion FODs and other diffusion-
derived metric volumes to the T1 image space.

5.5 Tractography chain
The previous two sections gave a methodological overview of the main downstream tasks
performed on anatomical and diffusion MRI data as a preparation for fiber tracking inference.
Employing probabilistic streamlines tractography with the CSD algorithm, the pipeline
continues by computing the diffusion orientation density function from the DWI series,
followed by voxel-wise principal fiber orientation estimation via WM FOD mapping. This
section also explains how fiber bundles are reconstructed using recently published virtual
dissection algorithms for streamlines segmentation in whole brain tractograms. Moreover, an
adopted filtering approach to suppress false positives in final bundle reconstructions prior to
visualization is presented. All algorithms are distributed in open-source packages (MRtrix,
DIPY), and their specification can be found in Appendix A Table 4.

5.5.1 Response function estimation

In order to perform spherical deconvolution (SD) on DWI data (see Sections 2.3.4 and 2.4.3
for more background information), deriving the so-called tissue response function (TRF, a.k.a.
basis function) is a compulsory step. A TRF models the expected signal in a voxel containing
a single, coherently oriented fascicle, and serves as a kernel for the deconvolution algorithm.
In case of multi-tissue spherical deconvolution, the TRF is computed for the GM and CSF
signals as well. To improve anatomical contrast and the computation of TRFs as well as fiber
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orientation distribution, it is recommended that bias field corrected dMRI data be upsampled
to an isotropic voxel size of 1.3mm unless the data resolution was higher during acquisition.
In FT4Onco, changing the resolution of DW images is skipped as upsampling causes image
processing times to elongate due to a significant increase of data size and required RAM
allocation.

To estimate TRFs, FT4Onco incorporates an unsupervised approach fortified by MRtrix
contributors, where the diffusion signal is averaged from a set of empirically determined
single-fiber (SF) voxels. It should be noted that data-driven TRF estimation is nontrivial, and
while multiple algorithms for different scenarios exist in MRtrix, only one algorithm, known
as dhollander [144, 145], was selected for this pipeline intending to perform a multi-tissue
CSD analysis on multi-b-value data.

The dhollander algorithm was implemented to compute TRFs for single-fiber white
matter (SFWM), GM, and CSF signals based solely on the DWI data as input. An additional
advantage lies in its ability to deal with TRF estimation in the presence of large hyperintense
WM lesions [146]. Originally called tournier, this method was first designed only for the
single-shell single-tissue scenario using only the highest b-value in a dataset [147]. Later,
this approach was extended into the dhollander form, the working principle of which is
exemplified in Figure 5.20. Here, the algorithm optimizes the segmented WM voxels across
the entire angular domain in all b-shells. This optimization leads to an improved 3-tissue CSD
fit to most datasets. Once a single fiber mask (an optimal voxel set) for all tissue types has
been determined, a DTI or CSD fit is used to estimate the direction of underlying fibers per
voxel. Rotating the diffusion gradient b-matrix, the algorithm then determines which fiber
orientations are rotationally symmetric with the z-axis, and combines all signals to produce
a single TRF per tissue.

5.5.2 Estimation of fiber orientation distribution

In streamlines tractography, CSD has been superior to tensor-based fiber orientation estimation
from dMRI data by virtue of the ability to overcome crossing fiber limitations (resolving
principal fiber orientation in voxels containing partial volume fractions from two or more
distinct fiber populations) inherent in the diffusion tensor model. Using the estimated basis
functions as a kernel, CSD performs a deconvolution operation (explained in Figure 2.14) to
extract fiber orientation density functions (fODF) from the dMRI signal measured within each
voxel.

In FT4Onco, tissue-specific ODF maps are generated by the multi-shell multi-tissue CSD
(MSMT-CSD) algorithm from MRtrix that makes use of the unique b-value dependency of
each tissue compartment (WM/GM/CSF) to obtain more precise fiber orientation information
extracted from the TRFs. Unlike in SSFT-CSD (single-shell, single-tissue CSD), MSMT-
CSD not only greatly improves the fODF estimates, but it can also better suppress spurious
FOD peaks, which positively affects the coherence of fODFs in adjacent voxels, both in
terms of peak amplitude and fiber orientation. Consequently, tractography benefits from the
improved fODF estimates in less noisy tractograms near the WM-GM interfaces, and in
a better recognition of tissue boundaries using fODF amplitudes as a stopping criterion to
avoid tracking in the CSF or isotropic GM regions [148]. The MSMT-CSD algorithm uses
the DWI series corrected for artifacts and bias field, the individual tissue TRFs, and yields
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Figure 5.20: Left: A simplified schematic showing the process of response function estimation for three tissue types.
In the beginning, a brain mask is extracted (not shown), and an averaged image for each b-shell is composed. For
every b-value, a crude, fully automated data-driven segmentation of WM (blue), GM (green) and CSF (red) voxels
is performed using two metrics: fractional anisotropy (FA), and a signal decay metric (SDM). The WM is initially
separated from the rest by a low FA threshold (0.2), and other voxels belonging to GM and CSF regions are split
using optimal SDM thresholds [144]. Next, all segmentations are refined by discarding multi-tissue partial volume
voxels and removing SDM outliers. The final set of WM voxels is estimated via an artificially defined “extreme”
WM response function (eWM) in zonal spherical harmonics (ZSH) – see [145] for details. In this process, a 2-tissue
CSD using the eWM response and the CSF response from the data is conducted, which yields an eWM FOD map.
Normalizing the resulting FODs by the sum of WM and CSF responses yields the WM tissue signal fraction ODFs.
The eWM metric is obtained from the maximum peak amplitude of each ODF, and is computed with ZSH ℓmax = 2.
Eventually, only the best 1% of all SFWM voxels are selected to compute the eWM response in these voxels with
ZSH ℓmax = 6, and 0.5% of this subselection are accepted. GM voxels closest to the median SDM, and CSF voxels
with the highest SDM values are selected in the final voxel set for GM and CSF respectively. Right: Relationship
(signal decay) between the amplitude of the average response function per tissue type and the b-value, and spherical
harmonics surface plots of the anisotropic SFWM TRF reflecting the preferential direction of diffusion along the WM
tracts in the voxels.

the ODFs for each tissue compartment, typically full FODs for anisotropic WM, and single
scalars for isotropic GM and CSF.

To utilize the full potential of the MSMT-CSD approach, it should be applied on HARDI
data with b-values ranging between 2500 – 3000 s/mm2 with minimally three unique b-
values to estimate the ODFs in three tissue compartments. However, if a dataset contains
only two unique b-values, MSMT-CSD will instead estimate two tissue compartments, e.g.
WM and GM, where GM and CSF TRFs are very similar. The output WM FODs then
undergo distortion correction through a nonlinear registration into the T1 image space (using
inverse transformations obtained from the b0-T2 co-registration), and a corresponding FOD
reorientation (Figure 5.21).

Finally, the undistorted WM FOD image is corrected for bias field and global intensity
differences using the multi-tissue informed log-domain intensity normalization [149]. Intensity
normalization is performed by optimizing the voxel-wise sum of all tissue compartments
towards a constant value, under constraints of spatial smoothness. This algorithm also accounts
for outliers by rejecting tissue areas with extremely high or low combined signal contributions
(deep in the brain and along edges).
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Diffusion bias field correction lasted 0:00:22.977174 
Registration-based EPI distortion correction of FODs lasted 0:00:31.594614 
Calculation of response function, FOD maps, and tensor metrics lasted 
0:00:49.005345 
Transformation and skull stripping of diffusion-derived parametric maps 
lasted 0:00:57.556297 
Whole brain tractography of 1000000 streamlines lasted 0:23:19.099887 
Tractogram downsampling lasted 0:00:04.271018 
Bundle recognition of 16 user-selected bundles lasted 0:45:10.847153 
FBC filtering of 16 user-selected bundles lasted 0:08:54.266179 
Detection of infiltration zones for 16 bundles lasted 0:03:09.837533 
Data processing report generation lasted 0:00:10.471169 
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Figure 5.21: Visual comparison of generated FOD maps (full axial slice, sagittal view of the corpus callosum, and
a zoomed coronal aspect of the WM-GM interface in a cortical area). Left: before registration-based susceptibility
distortion correction and FOD reorientation; right: after applying EPI distortion correction with FOD reorientation.
Color-coding represents the estimated fiber orientations as defined by convention (red – left-right; green – anterior-
posterior; blue – superior-inferior). Note the improvement in fiber orientation density in the zoomed cortical termination
area. The correction for residual intensity inhomogeneities is crucial for the later quantitative analysis of fiber densities.

5.5.3 Whole brain tractography

Having estimated the orientation distribution of WM fibers from the subject DWI data,
the FT4Onco pipeline continues with probabilistic multi-fiber tractography restricted to the
segmented WM mask based on the anatomical T1 image. Probabilistic algorithms take into
consideration data noisiness, and crossing fiber regions, thereby overpowering deterministic
streamlines fiber tracking methods. For details on the differences between deterministic and
probabilistic streamlines tractography approaches, readers are referred to Section 2.4.

Streamlines tracking in FT4Onco is conducted using the iFOD2 method in the tckgen
algorithm (MRtrix), which reconstructs streamlines based on second-order integration over the
WM FODs represented in the SH basis [123]. This algorithm steps along streamline paths in
short curved arcs of a fixed length (step size), tangential to the current direction of tracking at
a particular point in space. Sampling a probability density function (PDF), the most probable
candidate path is determined by the highest joint probability of all shortest steps leading to
that path. A streamline is more likely to follow a path whenever the FOD amplitudes, sampled
using linear interpolation from the eight nearest neighbors, along that path are large. This
strategy reduces the overshoot (veering off course) of highly curved bundles and improves
tracking through crossing fiber regions. It is recommended that a step size similar to the voxel
size be set in order to minimize the delineation of unrealistic tracks.

As an input, tckgen seeds from the normalized WM FOD image within the provided
anatomical tracking mask in DWI space. Several inclusion and exclusion criteria are defined.
Streamline tracking is restricted to WM areas including the edematous zone obtained from
brain tumor segmentation to ensure that pathological fiber infiltration is detected. Other tumor
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segmentation labels are combined into one mask, which is used as an exclusive ROI together
with the CSF-filled ventricles. The output whole brain tractogram is visualized in Figure 5.22.

To determine appropriate seed points, the algorithm needs to be provided with an explicit
seeding mechanism and a source ROI, be it a set of image coordinates, a tissue boundary
mask or an FOD image. In FT4Onco, the dynamic seeding approach is employed enabling
the selection of seed points from the WM FOD image using the SIFT2 model (spherical
deconvolution informed filtering of tractograms) that dynamically compensates for the seeding-
related bias by preferentially selecting seeding areas with a low streamline density [150]. While
it is impossible to guarantee that all voxels within the inclusive WM mask will be used for
seeding, dynamic seeding gradually compares the tractogram to the image data throughout
the reconstruction process to identify appropriate seeds and maintain a homogeneous seeding
frequency.

Both the whole brain tractogram density and subsequently derived bundle representations
are heavily dependent on the parametric setup of tracking algorithms. The parametric setup
for WBT in multi-shell dMRI data is summarized in Table 5.4. The analysis of reconstructed
bundle sensitivity to varying parameter values in whole brain tractography is reported in
Section 6.3.

Parameter Definition Multi-shell HARDI Default

lmin minimum track length [mm] 20 5× voxel size

lmax maximum track length [mm] 280 100× voxel size

angle θ
change in underlying fiber orientation between
the start and end points of each tracking step 45 45

cutoff FOD amplitude for terminating tracks 0.1 0.1

nsamples number of FOD samples to take per step 4 4

power
raising the FOD by the inverse of the nsamples

to mitigate the dependency of path segment
probability on nsamples

1.0 / nsamples 1.0 / nsamples

step size length of each track increment [mm] 0.5× voxel size 0.5× voxel size

seeds number of seeds that the algorithm will attempt
to track from 1000× select 1000× select

select
number of streamlines to be selected by tckgen,
after all selection criteria have been applied (i.e.

inclusion/exclusion ROIs, lmin, lmax, etc.)
10 000 000 5 000

Table 5.4: An overview of the most crucial whole brain fiber tracking parameters that affect the quality of reconstructed
bundles. Included is the parametric setup for multi-shell dMRI data (selected dataset for the demonstration of image
processing output in this chapter) with default values from the MRtrix documentation. Default values are applied for
each parameter when not otherwise specified in the FT4Onco configuration file.
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Diffusion bias field correction lasted 0:00:22.977174 
Registration-based EPI distortion correction of FODs lasted 0:00:31.594614 
Calculation of response function, FOD maps, and tensor metrics lasted 
0:00:49.005345 
Transformation and skull stripping of diffusion-derived parametric maps 
lasted 0:00:57.556297 
Whole brain tractography of 1000000 streamlines lasted 0:23:19.099887 
Tractogram downsampling lasted 0:00:04.271018 
Bundle recognition of 16 user-selected bundles lasted 0:45:10.847153 
FBC filtering of 16 user-selected bundles lasted 0:08:54.266179 
Detection of infiltration zones for 16 bundles lasted 0:03:09.837533 
Data processing report generation lasted 0:00:10.471169 
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Figure 5.22: Three-plane view of the generated whole brain tractogram with the tckgen algorithm. Streamlines
propagating close to the excluded ROI with contrast-enhancing tumor area, visible on the axial and coronal slices,
prove the capability of the probabilistic iFOD2 method to reveal fiber propagation through edema (AF), and in areas
with crossing fibers (e.g. in the internal capsule). Color-coding represents the estimated fiber orientations as defined
by convention (red – left-right; green – anterior-posterior; blue – superior-inferior). The schematic shows the working
principle of iFOD2. The FOD at one point is sketched at the bottom with a number of FODs at the next candidate
points. Out of the charted curves, the path with the highest joint probability represents the most likely track direction.

5.5.4 Bundle recognition

Once a whole brain tractogram has been produced, the next step involves streamline
segmentation (virtual dissection) to segment WM fascicles of interest, and remove
all streamlines disagreeing with bundles’ anatomical definition. State-of-the-art bundle
segmentation methods are typically guided by rigorous anatomical priors in bundle
reconstruction. The two most widely adopted types of bundle dissection approaches include
methods using cortical region labels (typically obtained from brain segmentation) as
inclusion/exclusion ROIs (connectivity-based methods), and fiber bundle recognition with
bundle-specific shape models averaged from large-scale white matter connectome atlases
(streamlines-based methods). In FT4Onco-v0.1, the anatomically constrained framework (ACT,
MRtrix) was used in the initial stage of pipeline development, and was collectively evaluated
as suboptimal in reports from clinical users (details in Section 6.2). Hence, in FT4Onco-final,
the virtual dissection of targeted nerve fiber bundles from whole brain tractograms relies on
bundle models available from the HCP842 tractography atlas [39] that are provided to the
algorithm as shape priors with additional distance measures and thresholds.

Automatic bundle reconstruction in FT4Onco is realized via the RecoBundles (stands
for recognition of bundles) algorithm implemented in DIPY [151]. The main advantage of
RecoBundles over ACT is the robustness to pathological brains with neoplastic lesions and
the ability to recognize bundle deformation or reduction in size along the entire bundle profile.
This method first performs a global streamline-based registration (SLR) of the whole brain
tractogram into a model atlas space (MNI space here). To further accelerate the global SLR
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and bundle recognition processes, the subject’s whole brain tractogram is 5× downsampled4.
In the segmentation process, RecoBundles uses the QuickBundles method for streamline
clustering and simplification of complex tractograms [86]. Instead of analyzing individual
streamlines, the computation is accelerated by calculating centroids of individual bundles and
working with distance metrics. The extent of the dissected bundle can be regulated by several
key parameters and distance metrics explained in Table 5.5. Local and far pruning operations
are performed on the tractogram to deprive the recognized bundle of irrelevant streamlines.
After bundle recognition has been finished, dissected streamlines are registered back to the
subject space. The entire RecoBundles process operates with multiple data formats: TCK
(MRtrix), TRK (DIPY format with geometry information contained in its own header), and
VTK (streamline visualization format).

Parameter Multi-shell HARDI Recommendation

model clustering threshold 0.5 0.01 – 3.0

reduction threshold 20 15 – 30

reduction distance MDF MDF

pruning threshold 10 8 – 12

pruning distance MDF MDF (default)

local SLR True True

SLR metric asymmetric asymmetric (default)

Table 5.5: Overview of bundle recognition parameters used to segment targeted bundles. All values are in millimeters.
All thresholds were empirically tested and determined as optimal for this particular multi-shell patient dataset. The
larger the value of the model clustering threshold, the fewer centroids of the model bundle are calculated. Reduction
threshold enables reducing the search space for finding suitable candidate streamlines in the neighboring region
of the model bundle (registered to the centroid-determined subject bundle with local SLR). The search distance is
calculated with the MDF (minimum average direct-flip) distance function. A pruning threshold is applied together
with a pruning distance metric to discard streamlines that are further from the model bundle than this threshold.
If local SLR is executed, asymmetric registration is done to align the model bundle with the neighboring area. In
FT4Onco, RecoBundles subsequently also performs a refinement step, where the reduction and pruning thresholds
are reduced by 5 and 4 mm, respectively, yielding the final reconstructed bundle.

5.5.5 Spurious fiber filtering

Spurious streamlines, often seen in bundle reconstructions produced by probabilistic tracking
methods, cause both recognized and refined bundles to look overly noisy. Determining
which particular fibers in resulting reconstructions do not correspond to the underlying
neuroanatomical configuration in the subject’s data is ultimately impossible unless one
compares individual streamlines with fascicles obtained from a post-mortem brain dissection.
Therefore, an automated approach has to be established to at least remove streamlines that are
obviously isolated or poorly aligned with the bundle core.

In FT4Onco, pathway alignment with its neighboring environment is measured with
fiber-to-bundle coherence (FBC, included in DIPY), which is a quantitative measure of fiber
spuriousness suitable for further pruning of bundles generated with RecoBundles [152]. In this
method, bundles are regarded as a set of oriented points with a tangent adjacent to each of them.

4Downsampling factor was selected by empirical performance and memory consumption testing.
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Figure 5.23: A simplified diagram of the underlying bundle recognition process in RecoBundles. The first step
is to perform a global affine co-registration of the subject’s whole brain tractogram with the HCP842 tractogram,
roughly aligned with the MNI T1 template. Next, streamline centroids are computed, anatomical models are locally
co-registered with centroids, and distance metrics with specified parameters are applied to recognize bundles in the
common space. Following a shape refinement step, output bundles are transformed back to the native (subject) space.

Every tangent is thought to contribute to the track density, and is considered to follow a Dirac
δ-distribution (unit impulse). Bundle “clean-up” is achieved by first estimating the density
of a contour enhancement kernel (see Table 5.6 for parametric setup) along each element of
a pathway after lifting the bundle into the non-flat 5D domain (3D space with position and
orientation). To obtain local FBC (LFBC), the kernel density estimator (sum over all locally
aligned kernels) is convolved with the δ-distribution. A global fiber measure, the relative FBC
(RFBC), is then calculated as the minimum of the moving average LFBC along a given fiber.
Mathematical techniques for the kernel computation and estimation of LFBC are explained in
[153].

When interpreting refined and FBC thresholded bundles, it is essential to understand that
the RecoBundles-driven refinement step, where groups of streamlines within the search space
are removed from the bundle tractograms after applying more stringent pruning and reduction
thresholds, should not be perceived as an optimal method for filtering incoherent fibers. In
this regard, the mathematical foundation of FBC provides a much more sophisticated and less
abrupt way to remove spurious fibers while preserving the initial shape definition. The effect
of varying FBC parameters on the quality of output bundles was not investigated in this work.

The removal of spurious fibers from reconstructed WM bundles is the last step in the
fully automated virtual dissection process on the whole brain connectome. The next section
describes how all neurosurgically relevant outputs of the FT4Onco pipeline are visualized, and
how informative features (tumor-tract relationships, fiber tracking uncertainty) are derived.
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 Figure 5.24: Visualization of bundle reconstructions produced with RecoBundles in both hemispheres, and
a comparison of the final refined bundles with the model atlas bundles (white) provided by the HCP842 tractography
atlas. Note that these fascicle representations are generated as a result of the WM dissection parameter setup described
above. Abbreviations of these selected tracts are explained in Table 2.1.

Parameter Definition Multi-shell HARDI

D33
D33 > 0; coefficient for the spatial diffusion of the contour

enhancement kernel along the principal axis, determines the kernel width 1.0

D44
D44 > 0; coefficient for the angular diffusion of the contour
enhancement kernel; the quotient D44

D33
models fiber bending

0.02

t t ≥ 0; diffusion time of the contour enhancement process (similar to
a Brownian motion process) 1

τ
RFBC threshold representing how many streamlines

are classified as spurious
0.2

Table 5.6: An overview of the parametric setup for the contour enhancement kernel, and the number of fibers to be
removed after FBC thresholding. If τ = 0.2, then 20% of fibers with low coherence are removed from the bundle.
The coefficient values were set according to exemplary experiments in [153].



91

 

AF 

 

 

C 

 

 

 

CST 

 

 

IFOF 

 

 

 

ILF 

 

 

MdLF 

 

 

 

SLF 

 

 

OR 

 

 

 

Figure 5.25: Top: A figure demonstrating the propagation of the contour enhancement kernel. On the left side, the
contribution of two pathway elements to the overall kernel density estimator are shown. On the right, the local FBC,
color-coded for each fiber, is obtained by evaluating the kernel density estimator along the fibers. In this case, one
spurious fiber was detected as it deviates from the orientation and position of other fibers. As a result, this fiber has
a low LFBC value. Figure adopted from [153]. Bottom: Bundle representations in both hemispheres after spurious
fiber removal by FBC (τ = 0.2). Note that these output bundles originate from filtering spurious streamlines in the
recognized (not refined) bundles generated with the previous tractography step.
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5.6 Visualization & viewing
Equivalent with UNs 3, 6, 7, and 9 in Table 4.1, the visualization of fiber tracking output should
enable selective viewing of reconstructed bundles with geometrically aligned anatomical
underlays, and provide informative features to reveal tumor mass effect (bundle displacement)
or edematous infiltration zones, through which fibers may propagate. To aid interpretation,
bundles should be deprived of spurious fibers generated as a result of using probabilistic
methods, and fiber tracking uncertainty should be indicated along bundle profiles. This section
explains how these features have been computed and their visualization implemented.

5.6.1 Formatting image processing output

FT4Onco produces various types of image processing output, however, only selected data files
are presented to the users. For the inspection of WM bundles on anatomical overlays, the T1
and FLAIR images are used in common space. While the anatomical underlays remain in the
NIfTI format along the entire pipeline, reconstructed bundles and segmented tumor labels are
by design converted to VTK polydata to create 3D representations [154]. Bundle conversion
from TCK to VTK demands a geometrical rotation and flipping to match the coordinate system
of the reference underlays. Besides affine matching, individual streamlines are formatted as
directionally encoded VTK polylines. The following VTK functionalities (available from the
VTK library in Python) are used:

▶ vtkPolyDataReader() – reads the unaligned tractogram with VTK polylines (converted
to VTK using MRtrix’s tckconvert functionality)

▶ vtkUnsignedCharArray() – sets RGB values into tuples of three elements to assign color
to mesh points

▶ vtkTransform() – gets NIfTI image affine transform
▶ vtkTransformPolyDataFilter() – sets NIfTI image affine transform
▶ vtkPolyDataWriter() – saves the reoriented output

Akin to the modification of bundle geometry, the tumor labels need to be first converted from
NIfTI to VTK meshes, and rotated to match the geometry of the T1 image space. Tumor meshes
are colored in light blue (edema), yellow (contrast-enhancing portion), purple (necrosis), and
brown (non-enhancing tumor). The following VTK functionalities are used:

▶ vtkNIFTIImageReader() – reads tumor segmentation labels in NIfTI
▶ vtkDiscreteMarchingCubes() – generates 3D mesh models representing the boundaries

between adjacent voxels
▶ vtkUnsignedCharArray() – sets RGB values and opacity into tuples of four elements to

assign color to mesh points
▶ vtkWindowedSincPolyDataFilter() – smooths each 3D surface model, and provides

further features for surface editing
▶ vtkTransformPolyDataFilter() – sets NIfTI image affine transform
▶ vtkPolyDataWriter() – saves the reoriented output mesh
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5.6.2 Tumor-tract relationships

In medical visualization, the conjunction between fibers and tumors is indicative of
lesion-induced displacement, edematous infiltration or fiber destruction, see Figure 5.26.
Nevertheless, to prevent overinterpretation, it is crucial to understand the influence of individual
image processing steps that affect the degree of alignment precision with real underlying
neuroanatomy. Using simple matrix multiplication and the target algorithm integrated in
DIPY, tumor-tract relationships are shown as regions with the common cross-section of bundle
polylines and tumor meshes.
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Figure 5.26: Various aspects of the right CST and AF (both FBC thresholded). Streamlines affected by edematous
infiltration are shown in the top row and are colored in red. The bottom row highlights the extent of the infiltrated area
in red. These pathological findings were confirmed by neurosurgeons during tumor resection. No further infiltration
of other reconstructed bundles was detected in this patient case.
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5.6.3 Visualization of fiber tracking uncertainty

As described in the upper sections, probabilistic streamlines tractography generates a number
of spurious fiber bundles that can be classified as false positives when comparing bundle
reconstructions to intraoperative observations. By definition, fiber tracking uncertainty arises
from ignoring the true fiber tracking outcome, i.e. the difference between reconstructed
bundles and the underlying WM anatomy, and has miscellaneous sources. Probabilistic
tracking algorithms derive a voxel-wise distribution of fiber orientations based on noise
estimation. Besides noise, examples of uncertainty sources include MR scanner settings,
magnetic distortions, partial volume effects, diffusion modeling errors or elements of fiber
tracking algorithms (numerical integration, interpolation, stopping criteria, seeding strategies,
etc.).

Apart from estimating the fiber orientation distribution, CSD has been widely used to
obtain apparent fiber density (AFD) [64], which can essentially infer the intra-axonal signal
fraction along multiple fiber pathways, thereby providing information on microstructural
axonal integrity, and indicating areas with a higher number of crossing fibers. AFD maps are
obtained with MRtrix tools by first segmenting continuous FODs on the WM FOD maps to
produce fixels. A fixel represents a single fiber population in a voxel, i.e. the smallest discrete
element of a fiber bundle. Then, the fixel-based sparse-data image is converted to scalar data
by computing the mean value across all fixels within each voxel.

The quantification of fiber tracking uncertainty in FT4Onco is facilitated by computing
the AFD and FA evolution along bundle profiles [155] to provide insights into bundle integrity
and support the possible visual revelation of edematous infiltration or bundle displacement.
For demonstration, the infiltrated right arcuate fasciculus in the selected patient dataset is
used as an example in Figure 5.27. A decrease in AFD may indicate to the users that the
specific bundle segment is affected by edema, hence increasing the uncertainty of bundle
propagation across this area. Similarly, lower FA values may be indicative of areas with
complex fiber architectures and crossing fibers, thereby decreasing the degree of certainty
about bundle presence in this particular brain area. Though not implemented in this work,
the calculated AFD/FA bundle profiles can be overlaid on individual reconstructed bundles
to simplify the localization of uncertainty along all bundle segments. Note that this way of
indicating tractography uncertainty does not account for the inherent inaccuracy of the actual
tracking algorithm (probabilistic CSD).

FT4Onco uses MRtrix tools to compute DTI/HARDI metrics, and DIPY’s Python libraries
for bundle tractometry. To demonstrate fiber tracking uncertainty by showing AFD/FA values
along each fascicle, the automated fiber quantification (AFQ) framework was applied [156].
AFQ firstly computes bundle centroids using the MDF metric [86], and then subsamples these
centroids to an arbitrarily chosen number of equidistant points N. Secondly, every streamline
of the processed bundle is assigned to its closest centroid point. Since some bundle streamlines
may still diverge significantly from other streamlines (even after FBC thresholding), the
contribution of each streamline to the bundle profile is determined by the distance of each
streamline from the mean bundle trajectory at each point. Moreover, streamlines are reoriented
so that each streamline of the bundle points in the same direction. Correct orientation is
achieved by creating standard streamlines from centroids of bundle atlas models. Thirdly,
N averaged values along the pathway are extracted from the volumetric image data (AFD/FA
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maps), which are projected to the subsampled bundle. Finally, each voxel is Gaussian-weighted
by its relative geodesic distance to the closest centroid point, and these weights are subsequently
used for the calculation of the bundle profile of interest.

Figure 5.27: Visualization of fiber tracking uncertainty using bundle feature (AFD, FA) profiles. Each feature is
resampled to 100 points representing 100 segments of the whole bundle. This graph reveals the evolution of bundle
measures along the right arcuate fasciculus, which is affected by GBM-induced infiltration. Both bundle measures
range between 0 and 1, zero indicating the highest uncertainty, and 1 representing the lowest uncertainty of fiber
presence.
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5.6.4 Selective viewing

Designing FT4Onco as a command-line tool for clinical research, a graphical user interface
(GUI) was identified as a non-functional requirement. Without a GUI, the entire pipeline would
merely consist of a set of image processing steps without possibilities for selective viewing
of individual results in an interactive environment. While UI development was unnecessary
in the first conceptual architecture with ISD, the existence of a user interface later became
somewhat logical as there is no particular means how physicians view the outcomes once
image processing has terminated. There is a plethora of open-source medical visualization
tools: from compiled libraries such as mrview in MRtrix, horizon in DIPY, up to standalone
software tools like TrackVis, DSI Studio, or 3D Slicer. Nevertheless, it may be preferred by
users to avoid the tedious installation and configuration of bulky software from third-party
distributions, let alone outcome reformatting to match the geometry in these tools.

Moreover, FT4Onco itself does not support a fully automated data preselection and
pipeline configuration. Specific configuration files need to be adjusted before the pipeline
is launched. For these reasons, a novel multi-feature GUI (Figure 5.28) with an interactive
layout was designed. This user interface was written entirely in Python using the tkinter
Python library that interfaces the Tk GUI programming toolkit. The GUI is equipped with the
following features:

▶ option menus for parametric setup, pipeline configuration, and the modular selection of
image processing steps

▶ user hints in hover-over mode at every button
▶ drop-down lists for the selection of desired fiber bundles to be reconstructed
▶ an integrated Linux terminal with file explorer capabilities
▶ picture viewer for the visualization of various file formats (PNG, JPEG, TIFF, etc.)
▶ VTK-based Philips Omniview fiber tracking viewer for selective 3D viewing of

reconstructed bundles with anatomical images
▶ third-party Aliza Medical Imaging DICOM viewer for the inspection of DICOM data

and NIfTI volumes; this tool can be connected to patient archiving systems

This chapter provided a comprehensive overview of both system, and software architectures,
including explanations of the fundamental principles for all functional constituents of the
FT4Onco pipeline. The next chapter reports FT4Onco verification, clinical evaluation of
FT4Onco-v0.1 (the first ISD-integrated release) and presents observations collected from
a bundle reconstruction sensitivity analysis.
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Figure 5.28: Screenshots of the FT4Onco GUI layout (top) with the interactive VTK-based Philips Omniview (middle
left), picture viewer (middle right), and the Aliza Medical Imaging software for DICOM and NIfTI inspection
(bottom). It should be noted that the layout of the FT4Onco GUI serves two main purposes, namely the pipeline
configuration and data inspection in clinical research, and it does not intend to provide a single button to automate the
entire workflow.
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6 Verification, evaluation & sensitivity analysis

This chapter reports software verification to confirm whether the developed demonstrator
conforms to defined functional requirements, and qualitative clinical evaluation to assess fiber
tracking performance on selected patient datasets. The experimental design and outcomes of
evaluation are described, where medical doctors visually inspected fiber tracking output and
judged the feasibility of neurosurgery planning based on observed representations of bundles
and pathology. The last section demonstrates bundle reconstruction sensitivity to the varying
initialization of fiber tracking parameters.

6.1 Software verification
Standard verification guidelines for software as a medical device (regulated by FDA 21 CFR
820.30 and ISO 13485) define verification as confirmation that the design output meets the
design input requirements. Software verification aims at determining whether the developed
solution conforms to its functional requirements and related specifications. Depending on
the preferred feature to be verified, the verification process may comprise memory leak tests,
stress tests, exploratory tests, code reviews or usability tests, amongst others. The verification
of FT4Onco was performed by scrutinizing the output of individual image processing steps at
three levels:

▶ Unit testing to verify the design implementation for a single software element (i.e. image
processing step) or a subgroup of processing steps in the pipeline

▶ Integration testing to verify if sets of image processing steps (for anatomical MRI data,
diffusion MRI data, and fiber tracking) perform correctly when separated from the rest
of the system

▶ System testing to verify the entire integration of all sets of image processing steps and
whether they meet specified requirements

Unit testing involved a set of automated unit tests on clinical datasets from two centers (Table
6.1) in a test environment that was configured in accordance with the minimum hardware
requirements for FT4Onco, see Table 5.2.

Data Klinikum rdI Munich UH Leuven

Diffusion MRI
multi-shell DTI, 33 volumes
b = 0/1000 s/mm3 (2 iso)

multi-shell HARDI, 258 volumes
b = 0/1200/2500 s/mm3 (2 iso)

Anatomical MRI

T1 (0.75 iso)
T2 (0.35 x 0.35 x 4.4)

T1C (0.75 iso)
FLAIR (0.71 iso)

T1 (0.9 iso)
T2 (0.5 iso)

T1C (0.9 iso)
FLAIR (1 iso)

Table 6.1: Datasets used in the verification process. Brackets contain voxel size of each volume/series in millimeters;
iso = isotropic voxel size. A patient informed consent was signed, and MERC (Medical Ethics Review Committee)
approval granted prior to obtaining these data. Abbreviations: rDI = rechts der Isar, UH = University Hospital.
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For each functional requirement, multiple tests were launched and, where needed, image
processing parameters systematically optimized (value ranges were found in literature) to reach
desired outcomes. The acceptability of image processing output was determined according to
defined acceptance criteria in the form of unambiguous statements, each with a clear pass/fail
result. In the event of suboptimal performance of an image processing step, a substitution of
the underlying functionality was found and unit testing was repeated. Verification outcomes
are summarized in Table 6.2. Unit testing was followed by integration testing, where datasets
were applied on a subgroup of concatenated image processing steps. Finally, the entire
processing chain underwent system testing to optimize the order of image processing steps,
troubleshoot glitches along the pipeline, and mitigate them by bug fixing or code rewriting.
System testing also helped verify the compatibility of image processing output between pairs
of consecutive image processing steps. Outcomes of all tests helped arrive at conclusions
whether all functional requirements have been fulfilled or if substitutions had to be found for
functionalities where verification had failed.

FT4Onco verification revealed several limitations, listed in Tab 6.2. These known
anomalies nevertheless do not hamper the primary goal of fully automated image processing,
and repeatable outcome generation across all verified levels. It can therefore be concluded that
all functional requirements have been satisfied, and FT4Onco was built in the correct way.

6.2 Clinical evaluation
During development, the FT4Onco pipeline was evaluated in-house through unit testing
on clinical datasets from collaborating clinical centers (University Hospital in Leuven,
Klinikum rechts der Isar in Munich). The first architectural concept of FT4Onco (a fully
automated plugin embedded in ISD, details in Section 5.1.1) underwent clinical evaluation
with end-users (medical physicians) at Klinikum rechts der Isar in Munich (Germany). Invited
neuroradiologists and neurosurgeons were trained to understand the architecture of FT4Onco,
and assess the quality of image processing output as well as the overall usability of FT4Onco in
their daily presurgical workflow. Spreadsheets were filled out by six users, who were asked to
manually interact with the application interface on ISD, and evaluate data analysis outcomes.

Collected observations from this user evaluation were subsequently applied to
significantly refactor the entire image processing pipeline, which eventually gave birth to the
existing concept described in Section 5.1.2. Instead of performing a second evaluation, the
enhanced version, reflecting this user evaluation, was applied in the final cross-validation
experiment described in Chapter 7. This section summarizes the evaluation setup, explains
relevant considerations, and reports both quantitative and qualitative results. A version number,
namely v0.1, is attached to FT4Onco to differentiate between the evaluated demonstrator
(FT4Onco-v0.1) and final software (FT4Onco-final)1.

1Version differentiation is solely applicable to the thesis section describing clinical evaluation. In all other chapters,
“FT4Onco” designates the final version.
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Functional requirement Verified functionalities Acceptance criteria Known limitations

Whole-tumor segmentation Glioblastoma segmentation Lesion(s) are detected and labels are
created

If the imaging field of view is too
large, extracerebral regions may be
identified as edema.

Lesion compartment classification Glioblastoma segmentation All tumor compartments (necrosis,
edema, CE, non-CE) are detected N/A

Whole brain segmentation Hybrid brain segmentation
Hemispheres, subcortical structures,
ventricles and CSF areas are
segmented

WM structures in lesion-affected
areas are wrongly classified.

Cortical parcellation Hybrid brain segmentation Cortical areas are parcellated into
lobes and gyri

GM structures in lesion-affected
areas are wrongly classified.

Whole brain white matter
tractography

Diffusion data quality inspection
Denoising
Gibbs ringing correction
Motion correction with outlier
detection
B1 inhomogeneity correction
TRF estimation
FOD estimation
Streamlines WBT

Whole brain tractogram with defined
number of streamlines

Gibbs ringing correction and motion
correction may introduce some
blurring to the data. Average
duration of whole brain tractography
for tested HARDI datasets on
CPU-driven systems amounts to
several hours due to the tckgen
algorithm.

Advanced probabilistic tracking with
more sophisticated diffusion models
beyond tensor

Probabilistic multi-shell multi-tissue
CSD

Tracking through edema and
crossing fiber regions yields
anatomically plausible results

Low angular resolution data are not
suitable for probabilistic CSD
tracking.

Segmentation of fiber bundles
connecting eloquent areas
Filtration of false positive
streamlines

Bundle recognition and refinement,
spurious fiber filtering

Selected bundles are segmented from
whole brain tractograms

In dMRI data with a single non-b0
series and low number of volumes,
some bundles may fail to be
reconstructed.

Detection of fiber tract displacement
or edematous infiltration

T1 and T2 brain extraction
T2 and T1 co-registration
b0 and T2 co-registration
EPI distortion correction
Detection of tumor-tract
relationships

Labels representing overlaps
between tracts and tumors in
distortion-corrected image space

N/A

Indication of tracking uncertainty
along bundle profiles Automatic bundle quantification

Calculated FA, ADC and AFD
profiles along each reconstructed
bundle

N/A

Fully automated and orchestrated
data flow with optimized conversion
among multiple formats
Export of outcomes in common data
formats

Input data format inspection
DICOM to BIDS conversion
GBS and HBS label combination
Tumor label and bundle conversion
into VTK
Output file reorganization to BIDS

Tractography output is converted to
VTK with correct geometry of all
tumor labels and underlays

Input data selection and output
viewing need to be done manually by
users.

Informative color-coded 3D
visualization of reconstructed
bundles with tumor labels and
segmented anatomical underlays

VTK visualization scripts
Philips Omniview viewer

3D tumor labels, color-coded fiber
bundles according to fiber
orientation, tracking uncertainty
(graphically shown bundle profiles)

Information on tracking uncertainty
is not integrated in visualization and
is stored in separate PNG files.

Support for datasets coming from
different sites, MRI scanners, and
acquisition protocols

Entire pipeline New datasets are processed with
expected outcomes

The current pipeline only enables
processing of clinically acquired data
with two distinct imaging protocols.

Table 6.2: Verification table summarizing acceptance criteria (expected output) and known limitations of individual functionalities for
functional requirements defined earlier in Table 4.1. Technical specifications of each functionality are defined in Appendix A and not
repeated here. Acceptance criteria were visually evaluated by two observers, and compared with outcomes in literature. For visual
evidence that all functional requirements have been fulfilled, see outputs from all image processing steps in Sections 5.3, 5.4, and 5.5.

6.2.1 Assumptions for successful evaluation

The evaluation of FT4Onco-v0.1 consisted of its on-site installation, pre-evaluation testing,
collection of pertinent data, appraisal of collected data according to specified acceptance
criteria, image processing, and construction of a clinical evaluation report. Various (sometimes
unpredictable) technical issues typically occur on premise despite having successfully verified
a software application in an in-house development environment. Possible violations to the
fully automated nature of the presented workflow were anticipated owing to access restrictions
to the computation servers, slow network connectivity, or other unforeseeable IT problems.
Moreover, the viewing of data processing outcomes had to be performed separately on another
device since no permission was granted to install the interactive fiber tracking viewer (Philips
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Omniview, see Section 5.6.4) on the hospital’s PACS computers. Based on these assumptions,
an evaluation plan was outlined as follows:

1. On premise, the Philips IntelliSpace Discovery research platform, the computation node
service, and a remote computing Linux server are set up and configured.

2. On the neuroradiology PACS server, a total of ten suitable LGG/HGG MRI patient
datasets, acquired with the latest glioma MR imaging protocol, are collected.

3. All ten patient datasets are processed with FT4Onco-v0.1 to reconstruct bundles of
interest (AF, CST, OR).

4. At least 5 medical doctors specialized in neurosurgery or neuroradiology evaluate the
overall software design, image processing speed, and output quality.

5. Suggestions for further improvement of the clinical research application are documented.

6.2.2 MRI data selection

Diffusion and anatomical MRI data were collected in line with the department’s research
study protocol (Neuroonkologisches Register, approved by the MERC act No. 340/16 S), and
a patient informed consent (Aufklärung für Studienteilnehmer und Einwilligungserklärung)
was obtained from all patients. A total of 42 patient datasets were exported from the hospital’s
PACS server and transferred to ISD via the clinic’s experimentally developed DICOM data
transfer mechanism (Teleradiologie). During data migration, no anonymization was performed
because the receiving ISD platform was located on the same network of the same hospital.
Anonymization was applied prior to image processing, where both anatomical and diffusion
volumes were skull-stripped and converted to the BIDS NIfTI format.

All MRI data were acquired using a standard MR scanning protocol for neuro-
oncological imaging. To achieve faster image acquisition, nonuniform distribution of diffusion
gradients is often employed (see Section 5.4.1). Uniform distribution is essential to avoid
the underestimation of diffusion orientations in datasets, which enables more accurate
determination of principal voxel-wise nerve fiber propagation. Switching off the Philips-
proprietary scan-accelerating feature gradient overplus enabled the acquisition of diffusion
series with evenly distributed gradient orientations. Each diffusion series was inspected for
diffusion gradient distribution using an auxiliary ISD plugin to discard unsuitable datasets.

Out of the 42 collected datasets, ten patient cases (Table 6.3) were selected by local
neuroradiologists according to the following selection criteria:

▶ Patient diagnosis must be one of the following: LGG or HGG tumors, ideally with
surrounding edema.

▶ Datasets must comprise an EPI-dMRI series, a T1, T2, T1C, and a FLAIR volume.
▶ All diffusion series must be acquired shell-wise with uniformly distributed diffusion

gradient directions.
▶ Tumors must be located in diverse brain regions and multi-focal lesions are accepted.
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Appraised datasets included diffusion MRI scans (33 volumes, b = 0/1000 s/mm3, isotropic
voxel size of 2 mm), and four 3D anatomical contrasts. Information on tumor characteristics
(type and location) was extracted from the PACS system. Lesion sizes and shapes significantly
vary across patients, and are not tracked in the diagnostic patient register. Tumor grading
followed the latest official WHO recommendations for brain tumor classification.

Patient Lesion type Location

PT01 LGG with high-grade
portions (II-III) Left insular to temporopolar regions

PT02 HGG WHO IV Right frontal lobe, cingulate gyrus

PT03 Bifrontal GBM with
massive edema Frontal lobe, ischemia at the genu of corpus callosum

PT04 GBM, IDH wild type Right occipital lobe

PT05 Multi-focal GBM Primary portion of the parietal lobe, also temporally in both
hemispheres

PT06 GBM with massive
edema Left frontal anterior part of precentral gyrus

PT07 Multi-focal glioma Right frontal lobe

PT08 GBM Right and left temporopolar region

PT09 Glioma Right hippocampal region

PT10 GBM Left insular region

Table 6.3: Selected datasets for clinical evaluation.

6.2.3 Hardware setup and pipeline configuration

All ten patient datasets were processed with FT4Onco-v0.1, which was installed on the
hospital’s hardware (Table 6.4). This software version already incorporated the majority of
processes for diffusion and anatomical MRI data which are also integrated in the final release
(see Chapter 5). Clinical evaluation was conducted midway through the development time,
which is why FT4Onco-v0.1 was composed of a number of functionalities that were later
either removed or substituted in FT4Onco-final.

System info CN server ISD server

Type desktop computer virtual machine

Operating system Ubuntu 20.04.1 LTS 64-bit Windows Server 2016 64-bit

Processor 8x Intel Xeon W-2223 CPU, 3.60 GHz 2x Intel Xeon CPU E5-2643 v3, 3.40 GHz

RAM 32 GB 32 GB

Table 6.4: Hardware configuration at the hospital department during evaluation.

Compared to FT4Onco-final, the first major difference in FT4Onco-v0.1 was the use
of a dMRI noise correction method, which is based on the MP-PCA algorithm available
from MRtrix. Moreover, FT4Onco-v0.1 tractography employed anatomically constrained fiber
tracking (ACT) based on MRtrix. A methodological explanation of ACT is provided in Section
2.4.5, and not repeated here. Akin to the RecoBundles approach used in FT4Onco-final, brain
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tissue segmentation, diffusion image distortion correction, and the dMRI-T1 co-registration are
prerequisites for a successful application of the ACT framework. In fact, image co-registration
is the most crucial step since the output bundle quality is highly determined by the accuracy of
alignment between provided anatomical ROIs and FOD maps.

When integrating the ACT framework to FT4Onco-v0.1 prior to the clinical evaluation,
the ACT approach was tested on other datasets from Klinikum rechts der Isar in Munich
(Germany) with unsatisfactory results, where streamlines did not terminate in the cortex,
and were incompletely tracked. Therefore, in FT4Onco-v0.1, the ACT setup was modified
such that anatomical ROIs were used for virtual dissection from a prefiltered whole brain
tractogram, thereby driving bundle reconstruction strictly by inclusive criteria (bundle-specific
ROIs). The following two paragraphs explain the FT4Onco-v0.1 tractography framework.

Applying the described modifications to the ACT approach, whole brain tractography
was first performed with the iFOD2 algorithm and the MSMT-CSD tracking model (Table 6.5).
Generated whole brain tractograms were refined by spherical-deconvolution informed filtering
of tractograms (SIFT2) to improve the quantitative nature of streamlines reconstruction [150].
SIFT essentially compensates for bias reduction (underfitting and overfitting) in reconstructed
bundles, and improves their biological plausibility. Tractogram filtering is achieved by mapping
streamline densities back to the underlying diffusion signal (FOD lobe integrals), which
exploits the SD property that the FOD magnitude is proportional to the DW signal in
a particular orientation, which is conversely proportional to the tissue volume in each voxel.
To counterbalance streamline over-representation in bundles, the SIFT2 algorithm calculates
voxel-wise weights in fixel (fiber bundle element) space. Additionally, a 4D five-tissue-type
(5TT) image was created, where the fourth dimension comprises five masks: cortical GM,
subcortical GM, bihemispheric WM, CSF, and pathological tissue. The 5TT series is composed
by concatenating the 3D brain segmentation output masks, and added to the SIFT2 algorithm
to constrain the fixel-streamlines comparison model. After counting the weighting factors
for each streamline, the tractogram was corrected by assigning a weight to each streamline
such that the weighted contribution of all streamlines to the spherical deconvolution diffusion
model matches the FOD lobe integrals of the diffusion data as accurately as possible.

Whole brain tractogram filtering was followed by selective bihemispheric anatomically
constrained dissection of three bundles of fibers: AF, CST, and OR. Bundle reconstruction was
achieved by the tckedit algorithm from MRtrix, where an empirically determined minimum
streamline weight was specified, and inclusive/exclusive ROIs were given as constraints. Table
6.5 lists the dissection parameters and ROIs for each bundle of interest. Given that whole brain
tractography was performed by dynamic seeding from the normalized WM FOD image, and
not restrained to the WM areas, dissected bundles contained many spurious streamlines. To
suppress false positives in output bundles, a filtering strategy developed by [119] was adopted.
In this approach, each bundle of interest is first mapped to a high-resolution 3D track density
image (TDI) based on a co-registered T1 template mask. The median value of the produced
TDI volume is then multiplied by an empirically set constant, and the resulting value is used to
threshold the TDI intensity. In addition, the TDI is filtered with a connected-component filter
and dilated. Next, the ANTsX toolkit is applied to flatten the filtered TDI volume by 10 % of
its maximum value, and threshold it with a 3D K-means clustering algorithm at a distance
of 10. The final TDI volume is then thresholded once again at a minimum value of 2, and
multiplied by the sum of all inclusive ROI masks for each bundle.
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WBT parameters

lmin 40mm

lmax 280mm

angle θ 22.5

cutoff 0.1

nsamples 4

power 1.0 / nsamples

step size 0.5× voxel
size

seeds 1000× select

select 1 000 000

seeding dynamic from
WM FOD map

exclusive
ROIs

tumor without
edema,

ventricles

Bundle Inclusive ROIs Exclusive ROIs

AF
pars opercularis, pars

triangularis, superior temporal
g., supramarginal g.

putamens, paracentral g.,
postcentral g., precentral g.,

middle temporal g.,
parahippocampal g., insulae,
superior frontal g., transverse
temporal g., superior parietal
g., lateral occipital g., thalami,
corpus callosum, brainstem,

pons

CST paracentral g., postcentral g.,
precentral g., brainstem, pons

amygdalae, corpus callosum,
contralateral cerebral WM

OR pericalcarine cortex, lateral
occipital g., thalamus

isthmus of cingulate g.,
contralateral thalamus,

bilateral nn. caudatus and
accumbens, ventricles,

contralateral cerebral and
cerebellar WM, corpus

callosum, brainstem, pons

Table 6.5: Left table: Fiber tracking setup for whole brain tractography in FT4Onco-v0.1. Right table: Inclusive and
exclusive ROIs for bundle dissection. Abbreviations: gyrus (g.), nuclei (nn.). All anatomical ROIs were segmented
with the Philips-proprietary hybrid brain segmentation tool.

Eventually, the MRtrix tckedit algorithm applies this refined TDI volume together with all
inclusive and exclusive ROIs to remove spurious fibers from bundle tractograms.

6.2.4 Experimental design

Reconstructed bundles were visualized and viewed for inspection as 3D T1 image overlays
in Philips Omniview. A total of five neuroradiologists and one neurosurgeon participated
in the clinical evaluation (it was impossible to recruit more participants due to COVID-19
pandemic-related staff shortages, and a tight clinical schedule). During approximately 45-
minute meetings in person, clinicians were introduced to the TRABIT project, and presented
with a demo of FT4Onco-v0.1 as well as the fiber tracking viewer (Figure 6.1).

Next, a training document with step-by-step instructions was given to the participants,
while they took control over the application and experienced its use. Patient cases were
selected randomly for inspection to prove robustness of the application on the department’s
data. Eventually, physicians were asked to do a visual quality assessment by answering
a questionnaire consisting of sections shown in Appendix C Table 7. The main goal of the
evaluation sheet was to collect information in the following areas of interest:

▶ Clinicians’ background, prior experience with fiber tracking, and use of clinical research
applications for tractography

▶ ISD plugin user interface (intuitiveness, data selection from databases, plugin execution,
missing features)
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Figure 6.1: Experimental setup for evaluation. The image shows a PACS workstation at the neuroradiology department
with remotely controlled FT4Onco-v0.1. From left to right: introductory presentation about TRABIT, evaluation
spreadsheet, instructions for use, ISD user interface.

▶ Performance of both ISD and FT4Onco-v0.1 (interaction speed, data loading speed,
bundle/brain tissue segmentation accuracy, viewing speed, data processing duration)

▶ Visualization and viewing of data processing results (output informativeness,
representativeness of underlying neuroanatomy, artifacts, geometrical alignment of
overlays, viewer interactivity, missing functionalities in viewer, tumor-tract relationships,
feasibility to plan surgery)

▶ Overall impression (suggestions for improvement, adoption in clinical research/practice,
clinical value)

The evaluation questionnaire contained mixed types of questions: dichotomous questions
(answered yes or no), single-select multiple-choice questions, ordinal-scale rating questions
(excellent–5, good–4, moderate–3, fair–2, poor–1), and one open-ended question to enable
sharing elaborated suggestions for improvement. Clinicians’ background was evaluated by
self-assessment of their skill proficiency levels (beginner, elementary, intermediate, advanced,
proficient).

6.2.5 Evaluation outcomes

Image processing was successful in all ten patient cases (see Figure 6.2). Participants’
education background and their self-assessment of experience in diffusion MRI tractography
are reported in Table 6.6. Average scores from the visual qualitative assessment of FT4Onco-
v0.1 are listed in Table 6.7.
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Figure 6.2: Bundle reconstructions (AF–green, CST–blue, and OR–red) produced by FT4Onco-v0.1. In patient case
PT01, tracking of the right OR failed and is therefore unavailable for viewing. All tumors contain a necrosis except
for cases PT01 and PT09, where only large edema with small contrast-enhancing portions are present.

Clinicians’ self-assessment

Educational background medicine (6)

Specialty functional and oncological neurosurgery (1),
neuroradiology (5)

Surgical planning platform Brainlab iPlan (6)

Involvement in surgery planning yes (1), no (5)

Knowledge of dMRI data analysis intermediate (4), advanced (2)

Knowledge of dMRI-based tractography elementary (1), intermediate (2), advanced (3)

Table 6.6: Self-assessment of the interviewed clinical personnel with respect to their background and experience with
tractography.

In the last section of the questionnaire, clinicians shared their overall impression of the
fiber tracking application and complementary comments to substantiate their chosen rankings.
All participants reported to be willing to start using FT4Onco-final once made available,
and they also mentioned recognizing high clinical value of the tool, especially for diagnosis
determination in tumor board meetings or the selection of adequate neurosurgical treatment
approaches. Clinicians mostly appreciated the use of advanced fiber tracking models to enable
tracking through crossing fiber regions, and to reveal tumor-tract relationships.
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Group Features Scores µft µgroup

Data selection from database 4-3-5-3-5-5 4.17
ISD plugin UI

Plugin layout clarity 4-3-5-5-3-5 4.17
4.17

Responsiveness 3-4-5-2-3-4 3.5

Data loading speed 4-3-2-1-2-1 2.17

Segmentation accuracy 4-4-3-5-4-4 4.0
Performance

Viewing speed 4-4-5-3-2-5 3.83

3.38

Amount of informative content 4-4-5-4-4-4 4.17

Bundle-neuroanatomy similarity
(compared to DICOM images) 3-0-5-5-4-4 3.5

Geometrical alignment of overlays 4-4-5-4-4-4 4.17

Viewer interactivity 3-4-4-3-3-3 3.33

Visualization
Viewing

Feasibility to plan neurosurgery 3-4-5-4-4-4 4.0

3.83

Table 6.7: Average scores obtained from the qualitative evaluation of FT4Onco-v0.1 as an ISD plugin. µft denotes
the mean score for a particular feature, and µgroup for the entire set. Based on the group averages, performance and
visualization were assessed as slightly better than moderate.

Referring to the presented system architecture, software version, and its data processing
outcomes, various ideas for improvement were suggested in the following areas:

▶ Workflow: The ISD plugin UI was easy to understand. The need for manual dragging
and dropping of imaging series into active view was confusing. An automatic data
preselection, configuration of the active view in the ISD platform’s ROS as well as
automatic input parameter filling for the plugin was desired. Physicians unanimously
agreed that the FT4Onco-v0.1 plugin should be integrated into the PACS system. Though
suggested, integration into the MR scanner console would only be acceptable if more
automated, ideally with a dictionary for the preselection of appropriate MR sequences.

▶ Data processing speed: The average data processing duration amounted to 1 h 55 min,
which was considered fast enough for daily clinical workflow. However, since planning is
often only performed shortly before surgery, neurosurgeons would have to plan more in
advance. The ISD platform’s responsiveness was rated as slow, especially when loading
imaging data into active view in ROS. FT4Onco-v0.1 should ideally support GPU-driven
image processing.

▶ Visualization: In the viewer, produced fascicles should be modifiable (e.g. by sliders to
adjust the threshold for spurious fiber filtering). It was stated that while neuroscientists
are interested in fiber connections to the cortex, surgeons want to see thin fibers with
minimum false positives. Reconstructed bundles contained thick, densely intertwined
fibers, which is why possible artifacts or misalignments could not be assessed. Visual
clutter led to difficulties in determining tumor-tract relationships.

▶ Viewing UI: Ideally, the viewer would offer buttons for switching among viewing
planes (axial, coronal, sagittal) and selective overlays. Fiber bundles should be more
transparent and surface fibers should be removed to reveal tumor infiltration and its
depth. Interactive tools for closer tumor-tract distance measurements would be preferred.
Available anatomical underlays should offer to choose between FLAIR and T1 volumes.
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▶ Multimodality fusion – a site-specific requirement: Fiber tracking outcomes should
be integrable into the intraoperative workflow, e.g. by loading them into Brainlab’s
neuronavigation platforms. Potentially, other sources of functional information (TMS,
fMRI) should be available for viewing to increase the anatomical plausibility and
confidence of observed results. In the operating room, preoperative and intraoperative
MR images should be fused to provide real-time updates on the extent of resection.

Figures 6.3 and 6.4 show barplots of bundle features (number of streamlines and average
streamline length) for all reconstructed fascicles. Although FT4Onco-v0.1 tractography
succeeded in all patient cases except for the optic radiation in patient PT01, visual inspection
of the reconstructed bundles shows striking evidence that bundles contain intercepted fibers,
which tend to be very short despite the use of spherical deconvolution informed filtering that
is supposed to remove them. Moreover, anatomical constraints in the form of inclusive and
exclusive ROIs provided to the ACT-based fiber filtering approach do not seem to sufficiently
restrict the track integration process, and cortical terminations are missing. Hence, many false
positive bundles are still present in the tractograms, which leads to a visual clutter.

In view of these observations, development continued after the clinical evaluation with
the aim to exploit acquired findings with user feedback in further improvement of the designed
software. The major differences in functionalities between FT4Onco-v0.1 and FT4Onco-
final are summarized in Table 6.8. The majority of suggestions for improvements from the
clinical evaluation of the first version (FT4Onco-v0.1) matched with initially identified, but
not yet fully realized user requirements. Therefore, the development of the second version
(FT4Onco-final) focused on implementing these still needed improvements.

6.2.6 Clinical implications

Results obtained from the user assessment of FT4Onco-v0.1 confirmed the feasibility to
perform multi-tissue CSD tractography in multi-shell datasets with low resolution and
inadequate SNR (b-values: 0/1000 s/mm2, 33 volumes), where the benefits of applying
the CSD model cannot be fully reaped due to the limited orientational information along a low
number of diffusion gradient directions. Distinguishing multiple tissue types using MSMT-
CSD in single-shell data with a single b0 volume (like in this evaluation) has been proven
valid by MRtrix contributors [157], rendering this approach highly suitable for FT4Onco.

The average scores from the qualitative evaluation of FT4Onco-v0.1 (4.17/5 for plugin
user interface; 3.38/5 for overall performance, and 3.83/5 for visualization and viewing)
emphasized that there was a high potential for the adoption of this tool in clinical research
once improved and released, which was congruent with clinicians’ statements.

Quantitative bundle analysis across all six reconstructed tracts by calculating the average
fiber length (Figure 6.3) in each dataset indicated a consistent length of streamlines for
the left and right AF, namely 52.91 ± 5.07mm and 53.61 ± 3.97mm. Higher variability
was observed in bundles representing the left and right CST (107.65± 27.34mm, 101.59±
25.39mm) and OR (61.79±27.25mm, 63.04±24.44mm) bundles respectively. Track density
quantification (Figure 6.4) using number of streamlines per bundle as a measure revealed dense
representations of bundles for the left and right AF (559.1 ± 56.57, 586 ± 60.57) and CST
(336.6±109.79, 277.8±108.28), and a low fiber density of the optic radiations (181±103.61,
187± 103.4). High variability in average streamline length across the CST and OR bundles,
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and reduced bundle density of the OR could be explained by three major factors: tumor effects
(in many cases shown in Figure 6.2, lesions caused large tract displacements due to massive
edema), sparsely populated whole brain tractograms, and the under-representation of WM
fibers in the underlying datasets with low spatial and angular resolution.

Although dedicated primarily to glioblastoma segmentation, this evaluation further
demonstrates that the brain and multi-compartment tumor segmentation functionalities in
FT4Onco can be applied to tractography in data with a broader spectrum of neoplastic lesions
(LGGs, HGGs, multi-focal tumors, mixed-type gliomas).

FT4Onco-final was eventually technically cross-validated in Chapter 7 by quantitative
comparisons of its fiber bundle reconstructions in oncological datasets with outputs generated
by another image processing chain, regularly used at University Hospital in Leuven (Belgium),
and with the HCP842 tractography atlas models.

Functionality FT4Onco-v0.1 FT4Onco-final

Anatomical processes

Tumor segmentation Philips tool (DeepMedic+SPM) Philips tool (DeepMedic+SPM)

Brain segmentation Philips tool (HBS) Philips tool (HBS)

Diffusion processes

Denoising MRtrix (MP-PCA) DIPY (Patch2Self)

Gibbs ringing correction MRtrix (local subvoxel shifts) MRtrix (local subvoxel shifts)

Motion correction with outlier
detection MRtrix (SHARD-recon) MRtrix (SHARD-recon)

Eddy current correction MRtrix (SHARD-recon) MRtrix (SHARD-recon)

EPI distortion correction
MRtrix, ANTsPy, ANTsX

(registration-based EPI distortion
correction with T2 MRI)

MRtrix, ANTsPy, ANTsX
(registration-based EPI distortion

correction with T2 MRI)

B1 inhomogeneity correction MRtrix, ANTsPy (N4ITK) MRtrix, ANTsPy (N4ITK)

Tractography processes

TRF estimation MRtrix (dhollander) MRtrix (dhollander)

FOD estimation MRtrix (MSMT-CSD) MRtrix (MSMT-CSD)

Whole brain tractography
seeding from a whole brain WM
mask (MRtrix) with probabilistic

iFOD2

dynamic seeding from WM FOD
map, probabilistic iFOD2

Bundle dissection

region-informed with brain
segmentation labels and cortical
parcellations (ACT framework,

MRtrix)

recognition of bundles with HCP842
atlas bundle priors (RecoBundles,

DIPY)

Spurious fiber filtering SIFT2 and TDI thresholding
(MRtrix) FBC thresholding (DIPY)

Table 6.8: Core differences (in yellow) between the FT4Onco-v0.1 and FT4Onco-final image processing pipelines.
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6.3 Sensitivity analysis
Diffusion MRI tractography algorithms are typically configurable with a broad spectrum
of tracking parameters to constrain whole brain connectome reproduction to anatomically
plausible ranges. Owing to the absence of ground truth in single-subject tractography, an
optimal combination of tracking parameters that would produce an “ideal tractogram” simply
cannot be found. In every tractography pipeline, there is a consistent sensitivity and specificity
tradeoff (higher sensitivity meaning lower specificity and vice versa) through all models
and parameters, which are often specified based on previous experience or empirical testing,
thereby inducing user bias. According to the collected clinical user statements [107, 108, 111],
little or no effort is typically put into measuring the effect of varying thresholds on bundle-
specific features, leading to the under- or overestimation of tractography results. Visual insights
into bundle reconstruction quality across a range of threshold combinations were collected in
previous work [158].

FT4Onco’s whole brain tractograms are generated with the integrated MRtrix tckgen
tool that can be tuned with an array of attributes (see Table 5.4). To quantitatively investigate
the differences in bundle reconstructions as a function of varying input criteria for whole
brain tractography, a sensitivity analysis was performed. Some tracking parameters have an
easily conceivable impact on the appearance of output tractograms, such as the minimum
streamline length or number of selected streamlines. On the contrary, there are tracking criteria
that may significantly affect bundle features at subvoxel level, especially those located near
infiltrating tumors due to complex fiber crossing. The two most commonly used stopping
criteria in tensor-based algorithms are the anisotropy threshold (tracking terminates if the FA
value of a tensor field drops below a given value) and angular threshold (change in underlying
fiber orientation between the start and end points of each tracking step). In CSD tractography,
tracking termination is usually governed by an FOD amplitude threshold, where a candidate
path is given a probability of zero if the amplitude along the FOD lobe’s tangent falls below
a certain value.

In FT4Onco sensitivity analysis, varying initialization of the angular threshold, FOD
amplitude, and step size (length of each tracking increment in mm) was analyzed to observe
the change effects on three features of the arcuate fasciculus bundle: mean streamline
length, number of fibers in bundle, and bundle volume. The setup of RecoBundles and FBC
thresholding were kept the same as presented in Section 5.5, and reconstructions were created
bihemispherically. For each changing parameter threshold, all other parameter values remained
unchanged. Sensitivity analysis was performed on the example multi-shell dataset (described
in Figure 5.7) with a tractogram density of 2 mill. streamlines. Sensitivity was calculated by
dividing the percentage change in examined parameter thresholds by the percentage change in
the output of associated features. Percentage changes in mean streamline length, number of
fibers in bundle, and bundle volume are summarized in Table 6.9.
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AF right (GBM-affected)

Parameter Value Feature
Mean streamline

length [%]
Number of

streamlines [%] Bundle volume [%]

30 (↓ 33 %) ↓ 6.16 ↑ 70.39 ↓ 20.94

45 164.44 mm 233 2979.13 mm3Angular threshold

60 (↑ 33 %) ↓ 8.08 ↓ 67.38 ↓ 49.34

0.05 (↓ 50 %) ↑ 8.19 ↑ 65.55 ↑ 172.39

0.1 153.05 mm 238 1751.01 mm3FOD amplitude

0.2 (↑ 100 %) ↓ 6.67 ↑ 372.29 ↓ 13.17

0.3 (↓ 40 %) ↑ 2.97 ↓ 65.81 ↓ 53.17

0.5 150.08 mm 620 2458.44 mm3Step size coeff.

0.7 (↑ 40 %) ↑ 1.20 ↑ 46.29 ↑ 19.93

AF left

Parameter Value Feature
Mean streamline

length [%]
Number of

streamlines [%] Bundle volume [%]

30 (↓ 33 %) ↓ 1.57 ↑ 22.01 ↑ 16.97

45 153.9 mm 2989 6472.36 mm3Angular threshold

60 (↑ 33 %) ↓ 1.66 ↓ 12.41 ↓ 26.44

0.05 (↓ 50 %) ↑ 1.42 ↓ 31.25 ↑ 3.93

0.1 154 mm 2752 5929.7 mm3FOD amplitude

0.2 (↑ 100 %) ↓ 3.42 ↑ 81.36 ↓ 1.82

0.3 (↓ 40 %) ↑ 1.68 ↓ 55.69 ↓ 22.86

0.5 152.03 mm 2986 6342.74 mm3Step size coeff.

0.7 (↑ 40 %) ↑ 1.32 ↑ 63.36 ↓ 3.05

Table 6.9: Upper: Outcomes of sensitivity analysis for the selected features of the right tumor-affected arcuate
fasciculus. Note the almost quadruple increase in number of streamlines after raising the FOD amplitude threshold
twice. Lower: Outcomes of sensitivity analysis for selected features of the left normal arcuate fasciculus. Parameter
value ranges were selected by empirical testing. Step size is obtained by the multiplication of unidimensional voxel
size by a coefficient. Reference values for the computation of feature change are highlighted in yellow. ↓ = percentage
decrease, ↑ = percentage increase. Outcomes in this table prove that determining the optimal parametric setup is not
trivial, and would require a more extensive sensitivity analysis.

It is essential to note that in this sensitivity analysis, the presented final bundle
representations are influenced by the overall effects of all steps after bundle recognition,
i.e. including FBC thresholding, which further change individual bundle features due to the
removal of spurious trajectories (fibers ranked as incoherent with the bundle core in the FBC
output). Given the fully automated nature of FT4Onco-based processing, the inspection of
quantitative features in bundles directly after dissection and before FBC thresholding would
be insufficient as users only see output bundles after the convergence of all processing steps.

The visual illustration of bundle reconstruction sensitivity to changes in input parameter
thresholds is demonstrated in Figures 6.5, 6.6, and 6.7. The representation of both reconstructed
bundles in this sensitivity analysis, the right and left arcuate fasciculi, shows large volumetric
differences, which are expected due to various lesion effects. In the processed GBM patient
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case, the right AF was neurosurgically confirmed to be infiltrated by the adjacent GBM-
induced vasogenic edema that may additionally cause axonal loss or fiber disruptions. These
lesion-WM effects introduce inaccuracies in WM orientation estimates based on the diffusion-
weighted signal due to a local decrease in anisotropy, thereby ensuing premature tracking
terminations and false negative (missed) pathways [159].

Decreasing the angular threshold by 33% led to a significant increase of the number of
streamlines (↑ 70.39 % and ↑ 22.01 %), and raising the FOD amplitude generated notably
more streamlines in the tumor-affected bundle (↑ 372.39 %). Both of these observations are
mathematically explicable since decreasing the angular threshold and increasing the FOD
amplitude causes the fiber tracking algorithm to follow more spurious traces. Bundle volume
was mostly affected by lowering the FOD amplitude (↑ 172.39 %). Varying step size seems to
only have a marginal impact on all bundle features.
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Figure 6.5: Demonstration of bundle feature sensitivity to varying angular threshold. Upper: Bar charts reporting
changes in assessed bundle features. Lower: Left and right AF bundles color-coded according to fiber orientation
(red – left-right; green – anterior-posterior; blue – superior-inferior) with edema (opaque blue) and the contrast-
enhancing tumor portion (yellow) overlaid on T1 images.
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Figure 6.6: Demonstration of bundle feature sensitivity to varying FOD amplitude. Upper: Bar charts reporting
changes in assessed bundle features. Lower: Left and right AF bundles color-coded according to fiber orientation
(red – left-right; green – anterior-posterior; blue – superior-inferior) with edema (opaque blue) and the contrast-
enhancing tumor portion (yellow) overlaid on T1 images.
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Figure 6.7: Demonstration of bundle feature sensitivity to varying step size. Upper: Bar charts reporting changes in
assessed bundle features. Lower: Left and right AF bundles color-coded according to fiber orientation (red – left-right;
green – anterior-posterior; blue – superior-inferior) with edema (opaque blue) and the contrast-enhancing tumor portion
(yellow) overlaid on T1 images.
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7 Technical cross-validation

In this chapter, the purpose is to assess the neuroanatomical plausibility of FT4Onco-derived
nerve fiber bundle representations. Such assessment cannot be accomplished by in vivo
validation owing to the lack of ground-truth reference and validation standards. Because
of these limitations, the anatomical fidelity of FT4Onco-reconstructed fascicles was judged
through a technical cross-validation with another clinically utilized software and tractography
atlas models, which enabled the identification of the strengths and limitations of FT4Onco,
and gauged its suitability for clinical (research) practice. Cross-validation was performed on
the final release (FT4Onco-final, for simplicity hereinafter called FT4Onco).

7.1 Hurdles in tractography validation
Human brain anatomy is extremely complicated and consists of various richly intertwined
networks. It has been proven that tractography can reconstruct known WM anatomy by
showing valid pathways, shapes and positions, and it may serve as a predictor of the presence
or absence of axonal connections. However, from data acquisition through various stages of
image processing, bundle reconstructions are created under numerous assumptions carrying
uncertainties that may decrease the feasibility of tractography to faithfully represent the true
axonal pathways in the brain. For humanly and ethical reasons, brain nerve fiber dissection
(as a potentially ideal ground truth) is typically impossible. Moreover, there is no optimal
combination of image acquisition, processing or tractography parameters [160], which means
that a “sufficient quality” of tractography output is determined on an ad hoc basis. Ultimately,
there are a number of confounding biases and obstacles that need to be overcome: path-length
biases, issues with fibers propagating to the cortex, regions with crossing fibers or correction
for free extracellular water in edema.

Every step in the diffusion image acquisition, image processing and tractography pipeline
accumulates variability and/or ambiguity, which have to be carefully considered when judging
final results. The most prominent affecting factors are enumerated in Table 7.1. Tractography
outcomes should ideally be validated at the following levels:

▶ axonal level: volume fractions of tissue microstructure, location and trajectory of
individual streamlines

▶ axon distribution level: estimation of fiber orientation distributions representing the
geometry of axons in each voxel

▶ fiber bundle level: location, existence and connections of streamline bundles
▶ whole brain coverage: derived properties of the human connectome

To illustrate the complexity of finding the most suitable preoperative fiber tracking validation
approach, validation methods can be divided into four different groups [114]: numerical
simulations, physical phantoms, anatomical model systems, and empirical validation methods.
Besides differences in their areas of use, these validation methods have their advantages
and drawbacks. Numerical simulations together with physical phantoms share the asset of
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DWI acquisition Local reconstructions Fiber tracking Interpretation
Image resolution Image processing steps Seeding strategy Atlas choice
Scanner quality b-value Stopping criteria Thresholding

SNR Number of diffusion
directions in data Step size Dissection approach

Distortions & artifacts Intravoxel fiber geometry Spatial priors Bundle definition
Motion effects Reconstruction algorithm Fiber filtering Quantification

Number of streamlines Subject inference
Propagation method

Table 7.1: Major contributors to ambiguity and variability in dMRI tractography. Moving across columns from left
to right, fiber tracking variability is cumulatively induced along the data processing pipeline. Eventual inference is
therefore subject to the validation of all preceding steps including image acquisition, reconstruction strategies, fiber
tracking, and interpretation metrics.

being well-characterized and largely modifiable, but these approaches oversimplify the tissue
microstructure. Anatomical model systems achieve high performance in representing the
true complexity of tissue microstructure, but they are cumbersome to characterize. Finally,
empirical validation helps establish reproducibility and assess variation differences across
repeated runs, scanners, sites, etc. However, this approach is ultimately problematic due to its
observational nature, and lack of gold standards.

Further existing tractography validation techniques include histological myelin-stained
postmortem dissections [161], which cannot be adopted in vivo as their name suggests, or
axonal tracing with manganese-enhanced MR imaging [162], which is only used in animal
studies due to toxicity concerns. Overall, there is no unified consensus on how to validate the
output of dMRI-based fiber tracking in clinical research (regardless of custom site-specific
agreement protocols). Intraoperatively, the by far most widely used method to validate the
anatomical location of tracked fiber bundles is electrophysiological direct electrical stimulation
(DES) [163], where neurosurgeons can perturb the function of WM tracts.

The most important question in tractography validation is how to quantify agreement that
observed fiber orientation [164], bundle reconstructions [165], or connectome networks [166]
represent the true anatomical structures in a subject’s brain. There are miscellaneous measures
used for agreement quantification, yet each of them bears some limitations.

7.2 Experimental setup
FT4Onco validation addressed performance in the reconstruction of 8 selected fiber tracts
(introduced in Table 2.1). It was conducted in the form of a quantitative cross-validation
between (1) FT4Onco-generated bundles and output produced by the BIDS-CSD pipeline
integrated into the KUL NeuroImaging Suite (KUL NIS), and (2) FT4Onco-generated bundles
and HCP842 atlas models, which were used as anatomical priors in RecoBundles dissection
(Section 5.5.4). In both cross-validation experiments, outcomes of the reference source were
considered a “silver standard”, against which comparisons of FT4Onco bundle dissections
were made.

The reasons for choosing particularly the BIDS-CSD pipeline from the KUL NIS
software package as a reference in cross-validation are manifold. Firstly, in parallel with
FT4Onco development, the BIDS-CSD pipeline (Figure 5.4) that had initially laid the
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foundation for FT4Onco was restructured and optimized to become a well-established image
processing tool in brain tumor resection planning at the Department of Imaging and Pathology,
Translational MRI, University Hospital in Leuven (Belgium). Secondly, KUL NIS exemplified
the most comprehensive, freely available toolkit for oncological neurosurgery planning, and
was composed of state-of-the-art open-source neuroimaging packages. Finally, the cross-
validation setup and outcomes were consulted with the developers of KUL NIS, who also
created reference bundle reconstructions according to a mutually agreed cross-validation
protocol (Table 7.2).

The primary cross-validation aim was to investigate similarities between bundle
reconstructions obtained with the two pipelines (KUL NIS and FT4Onco). Bundle dissection
similarity and dissimilarity can be quantitatively assessed either voxel-wise or streamline-
wise. The latter is more applicable when directly comparing different dissection methods,
where bundles are segmented from the same set of underlying streamlines. This condition was
violated in FT4Onco cross-validation since each pipeline dissected bundles from different
whole brain tractograms. Hence, only the following voxel-wise measures of spatial overlap
were employed:

▶ Weighted Dice similarity coefficient [155]: a measure of spatial similarity between two
WM fascicles (reconstructed bundle X and reference bundle Y), ranging between 0 and
1, with 0 meaning no similarity and 1 meaning full agreement:

DSC =

∑
v′ Xv′ +

∑
v′ Yv′∑

v Xv +
∑

v Yv
{DSC ∈ R | 0 < DSC < 1} ,

where v designates the index of a voxel containing a fraction of streamlines from any
of the two bundles, and v′ stands for voxels located within the intersection of X and
Y . As opposed to the standard Dice coefficient [167] that greatly penalizes for spurious
streamlines far from the bundle core, the weighted Dice metric is weighted by streamline
density, accounting for the number of streamlines in each voxel. As bundles typically
contain more streamlines at their core than in the periphery, the weighted DSC gives
more significance to densely populated areas. Note that there is no explicit weighting
factor in the formula.

▶ Bundle overlap [118]: a volumetric measure of voxels that contain the reference volume
and are traversed by at least one streamline; determines how well tractography is able to
describe the volume occupied by the reference bundle:

BOL =
|X ∩ Y|
|Y|

,

▶ Bundle overreach [118]: a volumetric measure of voxels containing streamlines that
are outside of the reference volume divided by the total number of voxels within the
reference bundle:

BOR =
|X \ Y|
|Y|

,

where \ denotes the relative complement operator.
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▶ Bundle adjacency [86]: a measure of the average distance of disagreement between two
bundles in voxel coordinates:

BA =
BOR(X ,Y) + BOR(Y,X )

2
[mm]

These metrics were chosen because FT4Onco’s tracking approach in fact represents
a segmentation task in 3D space. The same metrics were used to quantitatively assess the
correspondence of FT4Onco bundles with the HCP atlas models. For each set of comparisons,
validation hypotheses were formulated, and confirmed or rejected with reference to the
following statements:

▶ H1: There is at least a 90% similarity between bundle reconstructions from FT4Onco
and KUL NIS as measured by the average weighted DSC. The average volumetric BOL
across all bundles is not smaller than 90%, the mean BOR is not greater than 50%, and
bundles are in a maximum disagreement of 1 mm as measured by BA.

▶ H2: There is at least a 90% similarity between bundle reconstructions from FT4Onco and
HCP842 atlas model bundles as measured by the average weighted DSC. The average
volumetric BOL across all bundles is not smaller than 90%, the mean BOR is not greater
than 50%, and bundles are in a maximum disagreement of 1 mm as measured by BA.

Patient datasets (Table 7.3) used in the cross-validation setup were different from data
applied to pipeline development and optimization. The image processing parameter setup
was consistent in both pipelines (whole brain tractograms were created with the probabilistic
iFOD2 algorithm, min./max. streamline length of 20/280 mm, and 10 mill. selected streamlines.
Details on the values of other tracking parameters are listed in Table 5.4 and not repeated here.

Item Realization

Image data
Four HGG multi-shell dMRI datasets, each with 258 volumes,

b = 0/1200/2500 s/mm3 (2 mm iso), and four anatomical scans: T1
(0.9 mm iso), T2 (0.5 mm iso), T1C (0.9 mm iso), and FLAIR (1 mm iso)

Reference outcome Reconstructed bundles from KUL NIS and model bundles from the HCP842
tractography atlas

Desired outcome Reconstructions of 8 bundles (AF, C, CST, MdLF, ILF, IFOF, SLF, OR)
bihemispherically

Persons involved 1 clinical neuroradiologist, 1 study leader

Performance measures Graphical comparison of bundle profiles, and volumetric quantification of
bundle similarity

Results analysis Bundle profiles for FA and AFD; weighted Dice coefficient, bundle overreach,
bundle overlap, bundle adjacency

Table 7.2: Experimental setup in cross-validation.

Patient Tumor type Location

PT01 GBM WHO grade IV right frontoparietal region

PT02 GBM WHO grade IV right frontal lobe

PT03 GBM WHO grade IV right frontoparietal region

PT04 GBM WHO grade IV left temporoparietal region

Table 7.3: Selected datasets in cross-validation.
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7.3 Non-negligible pipeline differences
As stated above, tractography uncertainty and outcome variability increases with differences
between consecutive image processing steps along the pipeline. Hence, the correspondence
between outputs from two conceptually and methodologically differing image processing
chains underlies multiple assumptions, e.g. comparable performance in imaging artifact
suppression, distortion correction or spatial alignment of overlays. Table 7.4 lists the most
crucial image processing steps and their functionalities across both pipelines.

Functionality FT4Onco KUL NIS

T1 processes

Denoising × adaptive non-local means (FS,
ANTsX)

B1 inhomogeneity correction × N4ITK (FS recon-all)

Brain segmentation & parcellation HBS (Philips) VBG [168] (FastSurfer [169], FS),
MSBP [170]

Tumor segmentation GBS (Philips)
semi-automated image

classification workflow with CNN
(ITK-SNAP) [120]

Resampling mrresample (MRtrix) mrresample (MRtrix)

Brain extraction MNI template-based (ANTsX) neural network enabled
(HD-BET) [171]

Registration on DWI SyNRA (ANTsPy) Affine and SyN (ANTsX)

DWI processes

Denoising Patch2Self (DIPY) MP-PCA (MRtrix)

Gibbs ringing correction dwidegibbs (MRtrix) dwidegibbs (MRtrix)

EPI distortion correction registration-based EPI distortion
correction with T2 and b0

FSL topup with B0 field maps,
Synb0-DISCO [172]

Eddy current correction SHARD-recon (MRtrix) FSL eddy

b-matrix reorientation MRtrix, ANTsX FSL topup

Motion correction SHARD-recon (MRtrix) FSL eddy

b0 image extraction dwiextract (MRtrix) dwiextract (MRtrix)

Brain extraction T1 mask based (MRtrix, ANTsX) BET (ANTsX)

B1 inhomogeneity correction N4ITK (MRtrix) N4ITK (MRtrix)

Tractography

TRF estimation dhollander (MRtrix) dhollander (MRtrix)

FOD estimation MSMT-CSD (MRtrix) MSMT-CSD (MRtrix)

Whole brain tractography iFOD2 (MRtrix) iFOD2 (MRtrix)

Bundle dissection RecoBundles (DIPY) with
HCP842 atlas models

FastSurfer, FS, MSBP, and
anatomical atlas VOIs [173]

Spurious fiber filtering FBC thresholding (DIPY) SIFT2 (MRtrix), SCILpy, DIPY

Table 7.4: Differences (highlighted in yellow) in functionalities between the KUL NIS and FT4Onco pipelines
employed in cross-validation. These differences must be considered when interpreting cross-validation outcomes. The
table contains bibliographical references to software tools previously unreferenced in this work. Abbreviations and
version numbers in FT4Onco: HBS = Hybrid Brain Segmentation, GBS = Glioblastoma Segmentation (DeepMedic
0.7.3, SPM 12), MRtrix (v3.0.1 for SHARD-recon, otherwise v3.0.2), DIPY = Diffusion Imaging in Python
(v1.4.1), SCILpy = Sherbrooke Connectivity Imaging Lab Python tools (v1.1.0), ANTsX (v0.2.0), ANTsPy (v2.3.1).
Abbreviations and version numbers in KUL NIS: ITK-SNAP (v3.8.0), VBG = Virtual Brain Grafting, FS = FreeSurfer
(v6.0), FastSurfer (v1.1.1), MSBP = MultiScale Brain Parcellator (v1.1.1), FSL (v6.0) Synb0-DISCO = Synthesized
b0 for diffusion distortion correction (v3.0), DIPY (v1.3.0), MRtrix (v3.0.2), ANTsX (v2.4.1), HD-BET = Heidelberg
Brain Extraction Tool, SCILpy (v1.1.0).
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7.4 Bundle comparison and analysis
Technical cross-validation aimed to compare the reconstructions of selected brain fascicles,
introduced earlier in Table 2.1. All bundle metrics were calculated with SCILpy tools [174].
Among many functions, these tractography analysis scripts enable quantifying various bundle
features and generating pairwise agreement statistics between bundles of different origin in
the same image space.

Between-bundle profile comparisons for FA (Figure 7.1) and AFD (Figure 7.2) were
calculated and visualized via the AFQ (automated fiber quantification) framework available
from DIPY, where each bundle is subsampled to 100 equidistant parts along its centroid
streamline. Details on bundle profile computation are explained in Section 5.6.3. To enable
shape and volume comparisons among bundles from heterogeneous sources, model bundles
were registered from MNI space to subject space using SLR [151], while KUL NIS
reconstructions were kept aligned to the T1 volume processed with the KUL NIS pipeline.

Computed values for weighted Dice scores, bundle overreach, overlap and adjacency are
tabulated in Appendix D. Voxel-wise bundle comparisons between FT4Onco/KUL NIS, and
FT4Onco/HCP842 atlas are graphically reported in Figure 7.3, and a visual demonstration of
the comparison among all four patient reconstructions of the arcuate fasciculus is illustrated in
Figure 7.4. The magnitude of bundle similarity to silver standards was assessed by weighted
Dice scores.

Addressing FT4Onco’s bundle reconstruction accuracy, the relationship between bundle
overreach and overlap can be translated into the quantification of sensitivity and specificity.
With respect to silver standards, high overlap (= high sensitivity) indicates that tractography
succeeded in recovering true positive connections, while high overreach (= low specificity)
shows that tractography reconstructed many false positive connections. To assess the link
between the BOL and BOR per compared bundle pairs, the Pearson product-moment
correlation coefficient was computed [175]. In this cross-validation experiment, the Pearson
correlation coefficient (ρ) enables finding direct association between the probability of
reconstructing a greater portion of the silver-standard bundle (BOL), and producing artifactual
trajectories (BOR) [5]. Its values are interpreted as follows:

+1 = complete positive correlation

+0.8 = strong positive correlation

+0.6 = moderate positive correlation

0 = no correlation whatsoever

−0.6 = moderate negative correlation

−0.8 = strong negative correlation

−1 = complete negative correlation

In the sensitivity-specificity correlation analysis, bundle overreach and overlap are
expressed in percentages instead of cubic millimeters. This analysis of cross-validation
outcomes also involved computing the mean (µ) and standard deviation (σ) for all voxel-
wise comparison measures. These results can be found in Table 7.5 along with Pearson
correlation coefficients (ρ{BOL, BOR}) for each compared set of bundle reconstructions.
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7.5 Cross-validation outcomes
The spatial overlap comparison between bundles obtained from two methodologically distinct
image processing pipelines must be interpreted with care. Different algorithms process imaging
data in different ways, increasing the cumulative influence on fiber tracking output beyond
uncertainties already present in each pipeline. As visually presented in Figure 7.4, these
differences are, amongst others, attributed to the impossibility to capture and select the exact
same streamlines in the tractography processes, different approaches to the correction of
susceptibility-induced distortions, and geometrical misalignments originating from divergent
dMRI-T1 co-registration methods.

Qualitative comparisons between FT4Onco and KUL NIS using bundle profiles of FA
and AFD convey significant global similarities in the majority of pairwise comparisons. Closer
inspection of compared FA and AFD bundle profiles (Figures 7.1 and 7.2) reveals the highest
joint correspondence in the left cingulum of PT01, the left inferior longitudinal fasciculus
of PT02, the right inferior longitudinal fasciculus of PT03, and the right corticospinal tract
of PT04. Absence of graphs for the right arcuate and right superior longitudinal fasciculi of
PT02 was explained by a neuroradiologist to possibly stem from left-hemispheric language
dominance in this patient.

Addressing the initially defined hypotheses for each set of comparisons, quantitative cross-
validation outcomes (listed in Table 7.5 and visualized in Figure 7.3) enable the formulation
of the following conclusive statements:

▶ Ad H1: The highest similarity between bundle reconstructions from FT4Onco and
KUL NIS reached 0.59 (±0.21) as measured by the average weighted DSC. The highest
average volumetric BOL was 24.13% (±8.67), the lowest average BOR was 200.5%
(±144.84), and bundles were in a minimum disagreement of 2.78mm (±1.28) as
measured by BA.

▶ Ad H2: The highest similarity between bundle reconstructions from FT4Onco and
HCP842 atlas model bundles reached 0.42 (±0.17) as measured by the average weighted
DSC. The highest average volumetric BOL was 14.73% (±6.27), the lowest average
BOR was 380.2% (±244.28), and bundles were in a minimum disagreement of 2.68mm
(±1.00) as measured by BA.

Although the average weighted DSC similarity between FT4Onco and KUL NIS reached more
than 50 %, other conditions for all of the voxel-wise volumetric correspondence measures
were not satisfied, which is why both formulated hypotheses have to be rejected. While it
would be challenging to increase bundle similarity between FT4Onco and KUL NIS given
the vast differences in the processing pipelines, the similarity between FT4Onco output and
HCP842 atlas models can be improved by iterative refinement and optimization of dissection
thresholds for bundle reduction and pruning in the RecoBundles algorithm.
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Metric PT01 PT02 PT03 PT04

FT4Onco vs. KUL NIS (µ± σ)

DSC 0.52± 0.23 0.52± 0.23 0.59± 0.21 0.41± 0.25

BOL [%] 21.13± 9.89 20± 9.42 24.13± 8.67 16.75± 11.74

BOR [%] 746.38± 2103.81 233.54± 181.14 200.5± 144.84 376.67± 366.75

BA [mm] 3.31± 2.37 3.58± 2.51 2.78± 1.28 3.55± 3.35

ρ{BOL, BOR} −0.59 −0.84 −0.86 −0.68

FT4Onco vs. HCP842 (µ± σ)

DSC 0.36± 0.16 0.37± 0.16 0.35± 0.19 0.42± 0.17

BOL [%] 13.94± 6.82 14.56± 6.22 14.06± 8.00 14.73± 6.27

BOR [%] 614.69± 1132.03 361.38± 189.01 468.69± 372.71 380.2± 244.28

BA [mm] 3.39± 1.68 2.78± 0.75 3.33± 1.63 2.68± 1.00

ρ{BOL, BOR} −0.6 −0.93 −0.86 −0.93

Table 7.5: Mean and standard deviation for all volumetric comparison measures across all patient datasets. The
highest DSC, highest BOL, lowest BOR and lowest BA are highlighted in green. The representation by these particular
statistical measures corresponds to comparable reports in literature [5].

The correlation analysis clearly indicated a moderate to complete negative correlation
(ranging between ρ = −0.59 and ρ = −0.93), which means there is no direct link between
the probability of reconstructing a greater portion of the silver-standard bundle (BOL) and
generating false positive fibers (BOR) in any of the computed pairwise comparisons.

Outcomes of this cross-validation substantiate the difficulties in developing optimal
tractography validation strategies, identification of high-quality gold standards, and missing
consensus how to interpret quantitative metrics. The following and last chapter of this thesis
discusses whether all identified unmet user requirements have been met through the designed
software, describes possible improvements in terms of architecture, outcome reproducibility
and future development, and summarizes the relevance of FT4Onco in clinical research.



127

Figure 7.1: Comparison of bundle profiles for the evolution of fractional anisotropy (values on the y-axes) along each
bundle subsampled to 100 segments (x-axes). For patient PT02, the right arcuate fasciculus and the right superior
longitudinal fasciculus are missing from the datasets since these bundles were not reconstructed by the KUL NIS
pipeline. Details on bundle profile computation are explained in Section 5.6.3.



128

Figure 7.2: Comparison of bundle profiles for the evolution of apparent fiber density (values on the y-axes) along
each bundle subsampled to 100 segments (x-axes). For patient PT02, the right arcuate fasciculus and the right superior
longitudinal fasciculus are missing from the datasets since these bundles were not reconstructed by the KUL NIS
pipeline. Details on bundle profile computation are explained in Section 5.6.3.
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Figure 7.3: Boxplots showing the distribution of values (DSC, BOL, BOR, BA) for voxel-wise comparisons of
FT4Onco output with KUL NIS bundles (blue-framed image), and the HCP842 atlas models (orange-framed image)
in all four patient datasets. Mean values are represented by yellow diamonds, median is shown with orange lines, and
outliers are indicated with purple circles. Comparison intervals for individual measures are supported by blue boxes
notched around the median values.
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Patient Comparison AF left DSC BA [mm] AF right DSC BA [mm] 

PT01 

FT4Onco vs. 

KUL_NIS 

 

0.64 2.28 

 

0.0 9.84 

FT4Onco vs. 

HCP842 

 

0.39 2.22 

 

0.3 2.53 

PT02 

FT4Onco vs. 

KUL_NIS 

 

0.15 5.14 N/A N/A N/A 

FT4Onco vs. 

HCP842 

 

0.65 1.6 

 

0.27 2.82 

PT03 

FT4Onco vs. 

KUL_NIS 

 

0.11 4.51 

 

0.16 5.72 

FT4Onco vs. 

HCP842 

 

0.61 1.21 

 

0.56 1.53 

PT04 

FT4Onco vs. 

KUL_NIS 

 

0.34 3.79 

 

0.51 2.44 

FT4Onco vs. 

HCP842 

 

0.54 1.93 

 

0.52 1.67 

Figure 7.4: Visual demonstration of the cross-validation experiment showing the final weighted Dice coefficients and
bundle adjacency values for the reconstructions of arcuate fasciculi across all four patient datasets in the T1 image
space. For all cases, the AF bundle was affected by the GBM mass in one hemisphere. These pathological findings
and location of the GBM lesion were neurosurgically confirmed. Green-blue-colored bundles represent FT4Onco
reconstructions, compared to outputs of KUL NIS and atlas model bundles, which are colored in white. Grey meshes
represent the whole tumor volume.
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8 Discussion, recommendations & conclusions

This dissertation presented the conceptualization, requirement-driven design, implementation,
integration, clinical evaluation, and technical cross-validation of a novel fiber tracking software
for brain tumor resection planning in clinical research. In the beginning, five overarching aims
were defined:

▶ Identify unmet needs in the presurgical workflow of oncological neurosurgery by
interviewing neuroradiologists and neurosurgeons.

▶ Optimize (accelerate and automate) the preoperative workflow of diffusion and
anatomical MRI data processing on routine clinical data.

▶ Improve the quality and accuracy of dMRI-based tractography output using the CSD
model, and probabilistic tractography algorithms to overcome DTI-FACT limitations.

▶ Represent fiber tracts and tumors in a more informative three-dimensional
multiparametric fashion via indication of fiber tracking confidence and relationships
between tumor and healthy tissue.

▶ Deploy the finalized application at clinical sites to evaluate and validate its output quality
and performance with potential end-users.

The discussion below focuses on the accomplishment of individual thesis aims by
retrospectively considering design outcomes and suggesting improvements in terms of
architecture, workflow as well as further evaluation and validation. The forthcoming sections
also describe future outlooks as the field of diffusion MRI-based tractography evolves, and
possibilities to utilize FT4Onco as an extensible piece of software in other clinical areas
beyond oncological neurosurgery.

8.1 User needs fulfillment
In the preceding seven chapters, all stages of both the descending and ascending parts of the
V-model were addressed, which now enables drawing conclusions whether all identified unmet
user needs have been satisfied through the explained design choices. This section discusses the
last ascending block of the V-model, namely acceptance testing, where arguments are given if
user needs were or were not fulfilled by the FT4Onco design.

UN1: Localize brain tumor and classify all its microenvironments (compartments)

Brain tumor classification is performed with the Philips-proprietary GBS tool (Section 5.3.2),
which is capable of determining all lesion compartments (contrast-enhancing portion, necrosis,
surrounding edema) based on anatomical T1, T2, FLAIR and contrast-enhanced T1-weighted
images. As demonstrated in Section 6.2, this tool can be applied seamlessly to segment both
low-grade and high-grade gliomas, although it is primarily dedicated to the multi-compartment
segmentation of GBMs.
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UN2: Localize brain anatomy (cortical structures, white matter fibers, subcortical structures)

The Philips-proprietary HBS tool (Section 5.3.1) enables the localization of cortical GM
areas through deep learning classification with the DKT atlas, and identification of WM, CSF,
and SC regions through model-based segmentation. The delineation of surgically relevant
nerve fiber bundles connecting eloquent cortical and subcortical regions is possible through
atlas-aided bundle dissection via RecoBundles (Section 5.5.4).

UN3: Recognize tumor mass effect and edematous infiltration of fiber tracts

The visualization of safe resection margins by means of the DIPY-enabled detection of
cross-section areas of streamlines with tumor masks in the common T1 image space yields
information on tumor-induced bundle displacement, zones of edematous infiltration or
destruction due to necrosis. Users should nonetheless note that the integrated method for
detecting tumor-tract relationships is solely indicative of possible relationships between the
pathology and surrounding tissue, and needs to be validated intraoperatively.

UN4: Mitigate problems with MRI data formatting and conversion

Data formatting and conversion is fully automated throughout the entire pipeline, enriched by
diffusion MR image quality control, and organized to conform to the BIDS format. Between
pairs of image processing steps, the output of the first step is adequately converted to meet
the input format requirements for the next consecutive process in the pipeline. In the pursuit
of robustness, an additional future step would be to integrate the so-called BIDS Validator to
check whether the structure of image processing files adheres to BIDS.

UN5: Create a fully automated and computationally efficient solution

FT4Onco constitutes a sequential chain of image processing and analysis steps, all of which
are automated and tested on datasets from the two mentioned clinical sites. There is no need
for active data manipulation or recruitment of tech-savvy assistants to supervise the pipeline.
As explained earlier in Figure 5.6, FT4Onco by design does not support automated data
pre-selection, parameter configuration, and transfer of processing outcomes to a viewing
platform. When run on a previously untested dataset (acquired with different MRI acquisition
protocols), configuration files need to be modified and optimal parameters have to be found.
Parametric adjustments are especially required for the diffusion MRI motion correction step,
whole brain tractography, thresholds in RecoBundles, and FBC thresholding. Viewing needs
to be performed manually either with the presented Philips-proprietary VTK-based viewer, or
any viewer of choice supporting VTK-formatted data.

The computational efficiency of the pipeline is globally dependent on two major factors:
the available hardware configuration of the system, on which FT4Onco is running, and the
parametric setup including the number of bundles in reconstruction. In the clinical evaluation
of FT4Onco-v0.1 with medical doctors, data processing duration was considered of secondary
importance because surgery planning was rarely performed on the same day as MR imaging.
Because of these factors, there are no firm claims reported on the speed of FT4Onco-based
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image processing, and the impact of parametric setup on the overall image processing duration
was not investigated in this work.

A qualitative inspection of the tractography output during development nevertheless
suggested that the image processing duration be directly proportional to the changing
initialization of tracking parameters in the pipeline. The most significant factors determining
image processing duration seem to be the number of selected streamlines in whole brain
tractography, and the RecoBundles dissection being performed on the whole brain tractogram
instead of a streamline subset. Provided that the minimum hardware requirements are met,
Table 8.1 lists the duration of all major processing steps for datasets from the two partner
clinics.

Processing step Multi-shell HARDI Multi-shell DTI

Hybrid brain segmentation 00:03:06 00:05:18

Brain tumor segmentation 00:09:06 00:11:14

Anatomical segmentation label rearrangement 00:01:04 00:02:07

T1 and T2 brain extraction 00:00:47 00:00:33

Diffusion data quality check 00:01:29 00:00:12

Denoising 00:35:31 00:00:55

Gibbs ringing correction 00:00:21 00:00:03

Motion correction with outlier detection 00:12:58 00:02:46

B1 inhomogeneity correction 00:01:07 00:00:24

Registration-based EPI distortion correction 00:00:35 00:00:38

Response function and FOD estimation 00:00:45 00:00:57

Whole brain tractography 09:02:02 00:19:07

Bundle recognition (AF, CST, OR) 03:57:01 00:19:12

Spurious fiber filtering (AF, CST, OR) 01:56:40 00:09:17

Detection of tumor-tract relationships 00:00:53 00:00:21

Calculation of bundle profiles for tracking uncertainty 00:04:58 00:01:06

Total duration 16:08:23 01:14:10

Table 8.1: Comparison of CPU-based pipeline duration (formatted as HH:MM:SS) on clinical multi-shell data.
Related data conversion and formatting times are included in each duration. Clinically less acceptable durations
are highlighted in red. Tractography in HARDI and DTI datasets was performed at 10 mill. and 1 mill. selected
streamlines, respectively. Selected bundles (AF, CST, OR) were reconstructed bihemispherically.

UN6: Generate fiber tracking results that can be easily interpreted in the intraoperative
workflow

The transfer of bundle reconstructions into the intraoperative workflow, and their interpretation
during neurosurgery remains a nontrivial topic. The current solution is strictly provided as
a means for planning tumor resection preoperatively, and its integration into neuronavigation
systems was out of scope. Segmented and co-registered representations of brain anatomy
and pathology offer anatomical guidance to determine where functionally crucial neuronal
networks can be expected during surgery. Lesion-induced functional deficits and brain network
disruptions may already be anticipated to some extent by scrutinizing tumor-tract relationships
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in visualizations. To support data handling in the operating room, FT4Onco tractography
outcomes are formatted as VTK polylines, and are independent of any specific viewing
platform. Hence, bundle reconstructions may serve as a useful input for multi-modal image
fusion, e.g. with intraoperative MRI or ultrasound data if a suitable functional module is added
to FT4Onco.

UN7: Visualize all tissue types and bundles in a 3D fashion with options for selective viewing

FT4Onco facilitates the visualization of anatomical underlays with geometrically aligned 3D
fiber bundles in any VTK-compatible viewer of choice. By default, bundles are color-coded
by convention according to the spatial orientation of their fibers. Brain tumors are stored as
VTK meshes with opaque shades to unveil tumor compartments otherwise obscured by the
outermost edema. Bundle displacement or infiltration are indicated with highlighted areas of
cross-sections in the T1 image space. Reconstructed bundles, tumor meshes, and anatomical
underlays can be viewed selectively.

UN8: Use more advanced fiber tracking methods that can resolve crossing fibers and
propagation through edema

The application of the probabilistic CSD algorithm enables the reconstruction of bundles in
regions densely populated with crossing fibers. For instance, the CSD model is capable of
determining the primary fiber orientation in the centrum semiovale area, where fibers from
the CST, SLF, and interhemispheric callosal fibers are known to meet and cross. Moreover,
bundle dissection using RecoBundles with HCP842 anatomical models and FBC thresholding
enables the reconstruction of bundles in a shape-directed manner, and capturing the predicted
core of each fascicle after removing short or incoherent fibers from the tractograms. The
CSD algorithm seems to also be capable of detecting fibers that propagate through edema
around tumors, which helps identify infiltration effects. Users should however keep in
mind that tracking with the probabilistic CSD algorithm available from MRtrix does not
directly compensate for extracellular free water diffusion in peritumoral areas. Therefore,
the tracing of WM pathways through edematous zones is still limited, leading to possible
under-representation of eloquent fibers. On the contrary, as reported in initial interviews,
denser bundle representations around tumors make it more difficult for neurosurgeons to
decide whether or not to apply resection techniques in these areas [107].

UN9: Indicate uncertainty in the presence of peritumoral bundles to aid result interpretation

Fiber tracking uncertainty is estimated by computing bundle profiles for FA and AFD,
explained in Section 5.6.3. A decrease in AFD may indicate to the users that the specific
bundle segment is affected by edema, hence increasing the uncertainty of bundle propagation
across this area. Similarly, lower FA values may be indicative of areas with complex fiber
architectures and crossing fibers, thereby decreasing the degree of certainty that a bundle is
present in this particular location.
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UN10: Create a robust solution for datasets from different centers, scanners, and acquisition
protocols

Designing a dMRI tractography pipeline capable of processing MRI data from various sources
is by no means straightforward. Creating a robust fiber tracking application entails numerous
hurdles that need to be overcome: adjusting to varying data representations and data structures,
fine-tuning of image processing parameters, ensuring robustness against previously unknown
MRI data acquisition protocols, and extensive verification on new datasets. FT4Onco addressed
the automation and acceleration of the image processing workflow for surgery planning in
two partner clinics. Therefore, the pipeline was tailored to accept MRI data acquired with
two distinct image acquisition protocols. Extending the input data portfolio for FT4Onco is
a matter of future development.

8.2 Architecture and site-specific workflow optimization
The software architecture of FT4Onco as a standalone command-line application was
particularly governed by the aim to optimize (automate and accelerate) MRI data processing,
and address the labor-intensive workflow in daily clinical practice.

Firstly, while a fully automated application was designed and realized, there is large
room for improvement in the orchestration of functional elements and pipeline composition.
Currently, functionalities are distributed across several Docker images, which are sequentially
instantiated as image processing continues. Higher technical efficiency of the pipeline is
achievable, amongst others, by integrating the whole chain into one virtual machine (e.g.
a single Docker/Singularity image) or the orchestration of containers via multi-threading or
parallel image processing. Significant performance enhancement could also be achieved by
deploying FT4Onco in a high-performance computing environment or a cloud service. These
improvements could eventually simplify the on-premise installation of FT4Onco and users
may benefit from such optimizations when aiming for simultaneous multi-subject tractography.

Secondly, FT4Onco currently supports the automatic conversion of DICOM input to
BIDS-NIfTI, which is the most demanded conversion method for clinical research purposes. In
order to prospectively adhere to the BIDS format and fulfil its specification, the aforementioned
BIDS Validator should be added to the pipeline. Moreover, DICOM images should be
accessible by FT4Onco through a DICOM data sharing mechanism coupled to the hospital
patient archiving systems (e.g. PACS). Tractography outcomes can be visualized with any
viewer of preference provided that the tool supports the visualization of VTK- and NIfTI-
formatted data. The viewer presented in Figure 5.28 is constrained in functionality and intended
solely for research and development. For utilization in clinical practice, FT4Onco output would
have to be stored as DICOM and merged with original patient data in the hospital archiving
systems. Should a dedicated viewer be utilized within the internal hospital network, then more
interactive features would have to be added, some of which were mentioned by medical experts
during the clinical evaluation of FT4Onco-v0.1: sliders for bundle thresholding, windowing,
transparency adjustments, etc. The visualization of reconstructed bundles in 3D space should
offer more quantitative features, such as overlays of bundle profiles (FA, AFD).

Thirdly, from the product transformation viewpoint, there are many non-functional
requirements, the fulfillment of which was not targeted in this thesis. To attain the properties
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of a full-fledged workflow-enhancing application, FT4Onco should be tested more thoroughly
on usability requirements (ease of use, internationalization, etc.); performance requirements
(runtime, reliability, etc.); maintainability and support requirements; and finally, security and
compliance requirements to ensure safe installation and use within the hospital network. For
quality assurance reasons, FT4Onco should be marketed together with a recommended MR
examination protocol, e.g. a 10–15-minute acquisition scheme including techniques (parallel
MRI, simultaneous multi-slice, multi-band or partial Fourier) for faster acquisition of isotropic
anatomical images, multi-b-value dMRI with 60+ directions (to ensure robustness to crossing
fibers), and potentially also resting-state blood-oxygen level dependent (BOLD) fMRI data.
Furthermore, an example configuration file should be packaged together with the software,
mentioning acceptable interval ranges for all parameters that affect the quality of fiber tracking
results.

Eventually, FT4Onco should be extended to enable integrating functional information
from rs-fMRI or TMS. Neuronavigation system vendors should incorporate a HARDI
tractography suite by default, and enable advanced visualization with automatic data fusion
from various modalities. Intraoperative visualization should also provide options to closely
scrutinize edema-obscured tracks, peritumoral safety zones, and cortical/subcortical bundle
terminations.

In general, the translation of advanced fiber tracking tools to clinical practice, including
FT4Onco, can be supported by educated tractographers (personnel specialized in fiber tracking)
who spread awareness of the capabilities of these solutions. To persuade medical experts,
tractographers need to learn neuroanatomy, focus on the validation of (novel) techniques, work
with neurosurgeons to educate them on methodological limitations, and prepare lightweight
online tutorials.

Despite their notoriously known busy schedule, neurosurgeons should be more
encouraged to integrate fiber tracking technology in their routine, and actively supply
tractographers and vendors with qualitative feedback to drive standardization in the field.
Neurosurgeons should ideally supervise tractographers and enrich the fiber tracking process
by their anatomical knowledge. Most importantly, to avoid the underuse of tractography in
surgery planning, surgeons must understand that bundle reconstructions cannot be thought of
as a precise in vivo representation of WM bundles, but as a modeled estimation of large tracts
in the brain.

8.3 Repeatability, replicability, reproducibility, reliability &
robustness

Successive computational trials conducted with a piece of software can be compared via
descriptive terminology that defines the degree of trustworthiness and ambiguity in produced
output based on involved operators, study setup, measurement conditions, applied methods,
and input data. This lexicon comprises three sometimes confused terms, namely “repeatability”,
“replicability”, and “reproducibility” [176]. Whether an image processing pipeline must be
repeatable, replicable or reproducible depends on what is acceptable in clinical practice.
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As a minimum non-functional requirement, repeatability of FT4Onco-based fiber tracking
is achieved when the same team arrives at similar results and conclusions by running the
pipeline under exactly the same conditions in several experiments. Replicability of a processing
pipeline means that if launched twice by an independent team with the same input data,
parameters, and experimental setup, it will produce concordant outcomes that do not vary
beyond an agreed limit. Assuming flexible precision requirements in this work, the final
version of FT4Onco enables generating repeatable and replicable output.

Tractography reproducibility has been broadly investigated both qualitatively and
quantitatively in numerous studies [5, 24, 81, 114, 177], and remains an open problem.
A processing pipeline is reproducible if it can be run in multiple trials by independent teams
in a different experimental setup including data from different MR scanners and produce
comparable outcomes. The most critical image processing steps decreasing the level of
reproducibility in tractography are brain extraction, the dMRI-T1 co-registration, and random
seeding. Reproducibility also entails guaranteeing no change in pipeline output quality as
a result of changing software packages, dependencies, seeding strategies or algorithmic
parameters.

The next characteristic of a fiber tracking software refers to reliability, that is how accurate
the anatomical representation is and how well it describes a brain’s WM organization. Fiber
tracking reliability is strongly dependent on how dMRI data are acquired and processed since
bundle dissections are impacted by different vendors and MR scanners, different choices
of image resolution, diffusion directions and gradient sensitizations [178]. As summarized
in Chapter 7, numerous uncertainties (imaging artifacts, chosen diffusion model, tracking
parameters, etc.) cumulatively penalize the fiber tracking process. The reliability of FT4Onco
can be assessed in algorithmic, biological and clinical terms.

Algorithmically reliable tractography methods (e.g. tensor-based deterministic approach)
may not necessarily be biologically reliable, albeit highly reproducible. Based on the technical
cross-validation outcomes, FT4Onco is algorithmically reliable in a sense that selected bundles
can be reconstructed in the majority of cases. Nevertheless, their biological reliability (or
plausibility) cannot be assessed through indirect validation methods. Eventually, the clinical
applicability of FT4Onco needs yet to be addressed by employing postsurgical functional
measures, where the reliability of performing surgery based on FT4Onco bundle segmentations
is evaluated with respect to e.g. functional loss [179]. Although FT4Onco facilitates the
selection of adequate neurosurgical approaches, intraoperative brain shift decreases the
estimated localization of segmented bundles. Future investigation of FT4Onco reliability
should consider the quantification of tracking variability through clinical datasets from various
centers world-wide, and conduct studies that validate bundle reconstructions functionally with
intraoperative DES.

Finally, as already described above, the next FT4Onco improvement should focus on
robustness, i.e. the ability of the pipeline to continue performing sufficiently well despite
abnormalities in the input imaging series. In the pursuit of robustness to new data, the pipeline
should be adjusted to the latest dMRI acquisition schemes. Consequently, there is currently
no guarantee that FT4Onco will reliably process a dataset acquired with a novel, previously
unknown MR imaging protocol or image acquisition schemes from other vendors than Philips
(e.g. Siemens or GE).
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8.4 Future development of FT4Onco
There is a plethora of software features that were not addressed in this work due to intentionally
imposed restrictions on the design extent. Future development of FT4Onco should focus on
several critical topics mentioned in this section.

Firstly, there is absolutely no consensus on what an optimal dMRI processing pipeline
should look like. Due to the increasing variety of clinical datasets, the combination of
tools from different software packages into an optimized pipeline becomes tremendously
challenging. Each and every package commonly reads, interprets and writes different data
in inconsistent ways, which has a huge impact on the estimation of spherical harmonics
components, handling coordinate spaces, scaling factors, etc. FT4Onco should become
a flexible neuroimage analysis tool for tractography in oncological data, continuously reflecting
and incorporating the latest scientific updates in available open-source frameworks. Though
the current version of FT4Onco comprises state-of-the-art neuroimage processing tools, this
release will have most likely become outdated within a year’s time, which is why version
control should be introduced in subsequent development.

Secondly, automatic quality control should be implemented to monitor and report data
formats and metadata (e.g. acquisition parameters), the unprocessed data (e.g. SNR) and
processed data (e.g. noise estimates). This tractography software feature is crucial but very
often neglected because it can be time-consuming and not straightforward. An improved
integration of dMRI acquisition, reconstruction, processing, and fiber tracking may affect the
current order of steps in the pipeline, and even make some steps redundant in the future.

Thirdly, the refactoring of FT4Onco should concentrate on the sensitivity-specificity
tradeoff, which closely relates to further parametric optimization of the whole pipeline. Model-
driven bundle dissection should be enhanced by utilizing information from a combination of
sources, such as other tractography atlases, involving microstructural information, or adding
machine-learning models that are able to better replicate the bundle structure. Cortical track
terminations should be refined by combining model-based bundle dissection with start/end
ROIs, again subsegmented from various cortical parcellation and white matter atlases. Next,
the single-subject processing pipeline should incorporate algorithms to suppress currently
unaddressed imaging artifacts, which were considered small culprits in FT4Onco, but should
be corrected when aiming for microstructural and statistical (group) analyses:

▶ signal drift [180] (gradual signal intensity fluctuations within a single dMRI acquisition
over time)

▶ noise distribution bias [181] (signal bias propagating in all diffusion-derived measures)
▶ EPI Nyquist ghosts [182] (aliasing artifact occurring in EPI sequences using zig-zag

k-space trajectory, caused by eddy current induced phase shifts between alternate k-space
lines)

▶ gradient deviations [183] (gradient nonlinearities and gradient gain miscalibration)
▶ signal dropouts [184] (strong diffusion gradients causing patient table vibrations and

consequential MR echo shifts in k-space)

In addition, more attention should be paid to fiber tracking in peritumoral areas, especially in
the presence of lesion-induced edema. In FT4Onco, diffusion modeling in peritumoral areas
remains a limitation as there is currently no compensation for extracellular water diffusion
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confounding the estimation of principal fiber orientation in edematous zones. Besides fiber
propagation through edema, FT4Onco should also be able to detect fibers propagating through
parts of the tumor core.

The quality of FT4Onco output can further be advanced by incorporating machine
learning algorithms along the entire image collection and processing workflow. In particular,
DL methods may (1) enable faster HARDI data acquisition and reconstruction at the scanner,
(2) generate super-resolution datasets, (3) further accelerate image processing, (4) significantly
improve the accuracy of segmentation and registration tasks in the pipeline, or (5) increase
performance in image restoration (artifact detection, artifact removal, image synthesis,
distortion correction and quality monitoring). Nevertheless, caution should be exercised when
drawing inference based on DL-driven fiber tracking results due to the prohibitive black-box
nature of DL methods [100].

Finally, the FT4Onco pipeline may also be extended in functionality to facilitate
population-based neuroimaging studies, tractography in healthy subject datasets, or it can be
branched to support microstructural analysis in other clinical contexts, such as investigating
WM fiber integrity in neurodegenerative diseases.

8.5 Concluding remarks
Summarizing the clinical relevance, advanced dMRI-based tractography enables inspecting
the relationships between lesions and adjacent structures, and visualizing macroscopic bundle
displacement or discontinuities in WM tracts near tumors. It may also help neurosurgeons
find the best surgical route, select a surgical approach, and detect terminal boundaries of
resection. Accurate preoperative planning facilitates greater safe resection and less functional
deterioration due to damage to peritumoral WM fascicles. Considering all technical limitations
of advanced tractography techniques, the spatial concordance between anatomy and function
needs to be confirmed intraoperatively, pairing fiber tracking outcomes with functional
mapping by awake DES. This combination leads to faster intraoperative identification of
eloquent WM fibers, greater extent of lesion resection, and eventually higher ability to
objectivize postoperative functional deficits.

This dissertation addressed the topic of the clinical translation of advanced dMRI-based
tractography to optimize preoperative workflow for the resection of primary glial brain tumors
that are particularly hard to resect due to their aggressive, infiltrative and recurrent nature.
The majority of commercial tractography software tools are dominated by the use of the
tensor model and the outdated DTI-FACT algorithm, originally introduced approximately
24 years ago. Owing to the known limitations of this methodology and the missing integration
of advanced techniques in vendor solutions, there remains a pressing need for moving
beyond tensor-based tractography. The herein designed clinical research prototype, FT4Onco,
simplifies neurosurgery planning by:

▶ fully automating and accelerating MRI data processing and fiber tracking analysis
▶ optimizing parametric setup for tractography in routinely acquired MRI data
▶ utilizing advanced probabilistic algorithms with the CSD model to overcome the crossing

fibers problem
▶ providing 3D visualizations that indicate surgical risk areas and fiber tracking uncertainty
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In general, to adopt advanced dMRI tractography techniques in brain tumor surgery workflow,
both clinicians, researchers, and vendors must collaboratively bridge the gap between
research and practice. Expert consortia involving neuroanatomists and tractographers should
be established to pursue the goal of tractography standardization. The performance of
different in-house fiber tracking pipelines used in neurosurgery departments should be
quantitatively analyzed and compared e.g. through already existent international tractography
challenges. Similarly, there remains a future need for improvements in the technical efficiency
and usability of FT4Onco to encourage clinicians to apply it in their surgery planning
routines. Further FT4Onco evaluation on heterogeneous patient data as well as validation
of tractographical reconstructions against expert bundle delineations or outcomes from
intraoperative functional mapping may herald great potential for this prototype to be widely
accepted in the neurosurgical realm.
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Appendices

The following sections provide supplementary material for related chapters.

A Technical specification of FT4Onco

Hybrid brain segmentation

Distribution Philips proprietary

Version N/A

Algorithm voxel-wise 3D F-Net based full brain segmentation and shape-constrained model-based
subcortical segmentation

Data formats NIfTI

License Philips Research Hamburg, Germany

Brain tumor segmentation

Distribution Philips proprietary

Version DeepMedic 0.7.3, SPM 12

Algorithm 3D U-Net based GBM classification with bias field correction, mask extraction,
co-registration, normalization, and resampling

Data formats NIfTI

License Philips ICAP Aachen, Germany

T1 and T2 brain extraction

Distribution ANTsPy

Version 0.2.0

Algorithm ants.registration, ants.apply transforms

Data formats NIfTI

License Apache License 2.0

Table 2: Software packages, algorithms, versions, and licenses used in FT4Onco anatomical data processing.
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Diffusion data quality inspection

Distribution MRtrix

Version 3.0.2

Algorithm dwigradcheck

Data formats NIfTI, MIF

License Mozilla Public License 2.0

Denoising

Distribution DIPY

Version 1.4.1

Algorithm Patch2Self

Data formats NIfTI

License BSD License

Gibbs ringing correction

Distribution MRtrix

Version 3.0.2

Algorithm mrdegibbs

Data formats NIfTI, MIF

License Mozilla Public License 2.0

Motion correction with outlier detection

Distribution MRtrix

Version 3.0.1

Algorithm SHARD (dwimotioncorrect, mssh2amp)

Data formats NIfTI, MIF

License Mozilla Public License 2.0

B1 inhomogeneity correction

Distribution MRtrix

Version 3.0.2

Algorithm N4ITK

Data formats NIfTI, MIF

License Mozilla Public License 2.0

DMRI-T1 co-registration, brain extraction, distortion correction

Distribution MRtrix, ANTsPy, ANTsX

Version 3.0.2 (MRtrix), 0.2.0 (ANTsPy), 2.3.1 (ANTsX)

Algorithm
SyNRA (ANTsPy), ConvertTransformFile (ANTsX), warpinit (MRtrix),
antsApplyTransforms (ANTsX), warpcorrect (MRtrix), mrtransform (MRtrix), dwiextract
(MRtrix)

Data formats NIfTI, MIF

License Apache License 2.0 (ANTs), Mozilla Public License 2.0 (MRtrix)

Table 3: Software packages, algorithms, versions, and licenses used in FT4Onco diffusion data processing.
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Response function estimation

Distribution MRtrix

Version 3.0.2

Algorithm dwi2response dhollander

Data formats NIfTI, MIF

License Mozilla Public License 2.0

Estimation of fiber orientation distribution

Distribution MRtrix

Version 3.0.2

Algorithm dwi2fod msmt csd

Data formats NIfTI, MIF

License Mozilla Public License 2.0

Normalization of FODs

Distribution MRtrix

Version 3.0.2

Algorithm mtnormalise

Data formats NIfTI, MIF

License Mozilla Public License 2.0

Whole brain tractography

Distribution MRtrix

Version 3.0.2

Algorithm tckgen, tckresample

Data formats NIfTI, MIF

License Mozilla Public License 2.0

Bundle recognition

Distribution DIPY

Version 1.4.1

Algorithm RecoBundles

Data formats NIfTI, TCK, TRK

License BSD License

Spurious fiber filtering

Distribution DIPY

Version 1.4.1

Algorithm FBC thresholding

Data formats NIfTI, TCK, TRK

License BSD License

Uncertainty and tumor-tract relationships computation

Distribution SCILpy, DIPY

Version 1.1.0 (SCILpy), 1.4.1 (DIPY)

Algorithm scil evaluate bundles pairwise agreement.py, AFQ, QuickBundles

Data formats NIfTI, TCK, TRK

License BSD License

Table 4: Software packages, algorithms, versions, and licenses used in the FT4Onco tractography chain.
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B Functionality comparison across pipelines

Functionality Tractoflow BIDS-CSD Leuven

T1 processes

Denoising DIPY FreeSurfer (for T1)
ANTsX (for VBG)

B1 inhomogeneity correction ANTsX FreeSurfer

Brain segmentation & parcellation FSL FreeSurfer

Tumor segmentation × ITKSnap

Resampling SCILpy MRtrix

Brain extraction ANTsX FreeSurfer

Registration on DWI ANTsX ANTsX

DWI processes

Denoising MRtrix MRtrix

Gibbs ringing correction MRtrix MRtrix

EPI distortion correction FSL FSL

Eddy current correction FSL MRtrix, FSL

Motion correction FSL FSL

b0 image extraction DIPY MRtrix

Brain extraction FSL ANTsX

B1 inhomogeneity correction ANTsX ANTsX

Tractography

TRF estimation DIPY MRtrix

FOD estimation DIPY MRtrix

Whole brain tractography DIPY MRtrix

Bundle dissection DIPY MRtrix

Spurious fiber filtering DIPY MRtrix

Table 5: Comparison of clinical research software packages integrated in the Tractoflow and BIDS-CSD pipelines.
Crosses represent unavailable functionalities.
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Functionality Tractoflow BIDS-CSD Leuven

T1 processes

Denoising non-local means with
Rician correction adaptive non-local means

B1 inhomogeneity correction N4ITK recon-all (N4ITK)

Brain segmentation & parcellation FAST ASEG

Tumor segmentation ×
semi-automated image
classification workflow

with CNN

Resampling reslicing method mrresample

Brain extraction T1 template-based ANTsX

Registration on DWI SyN Affine and SyN

DWI processes

Denoising MP-PCA MP-PCA

Gibbs ringing correction local subvoxel shifts local subvoxel shifts

EPI distortion correction topup with field maps topup with field maps

Eddy current correction eddy eddy

Motion correction eddy eddy

b0 image extraction SCILpy dwiextract

Brain extraction FSL BET ANTsX BET

B1 inhomogeneity correction N4ITK N4ITK

Tractography

TRF estimation SCILpy dhollander

FOD estimation SCILpy MSMT-CSD

Whole brain tractography SCILpy iFOD2

Bundle dissection SCILpy ACT

Spurious fiber filtering SCILpy
SIFT2 with voxel-wise

filtering of bundles based
on TDI

Table 6: Comparison of methods from respective software packages listed in Table 5. Crosses represent unavailable
functionalities.
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C Clinical evaluation questionnaire
Table 7 lists questions with rating scales that were answered by neurosurgeons and
neuroradiologists during evaluation sessions.

ISD plugin user interface

Is it easy to understand the layout? If not, why? yes, no

How do you rate the button reaction speed? poor, fair, moderate, good, excellent

How do you rate data selection from the patient database for viewing? poor, fair, moderate, good, excellent

Is it easy to find the desired plugin? If not, why? yes, no

Is the plugin description (after hovering over input parameter names) clear? If not, what is missing/unclear? yes, no

Which features are you missing in the plugin UI? Please describe.

all images in drop-down list, automatic
adjustment of plugin window length,
automatic input parameter filling, all
anatomical images in view by default,

other–please specify

Performance

How do you rate the overall performance of interaction? poor, fair, moderate, good, excellent

Is the number of pop-up notifications sufficient (if anything fails)? yes, no

How do you rate the data loading speed after opening the Research Oncology Suite? poor, fair, moderate, good, excellent

How do you rate data selection from the patient database? poor, fair, moderate, good, excellent

How do you rate the accuracy of the lesion segmentation? poor, fair, moderate, good, excellent

How do you assess the representativeness of shown fiber tracts compared with what you observe in the original DICOM MR images? poor, fair, moderate, good, excellent

How do you rate the time efficiency of viewing results? poor, fair, moderate, good, excellent

Data processing has taken 1 h 55 min per case on average. Is it a clinically acceptable duration? If not, what would be the ideal
duration? yes, no

Visualization and viewing

Do you have experience with clinical decision-making based on 3D tractography visualization as produced by FT4Onco-v0.1? yes, no

How do you rate the informativeness of the overall visualization? poor, fair, moderate, good, excellent

How do you rate the interactivity of the viewer? poor, fair, moderate, good, excellent

Which interactive controls are you missing in the viewer?

sliders for viewing planes, sliders for
transparency of objects, buttons for

selective overlays, switch on/off values,
probing window, other–please specify

Do you see any artifacts in the shown visualizations? yes, no

How do you rate the geometrical alignment of tracts and lesion labels with the T1 underlay? poor, fair, moderate, good, excellent

How would you rate the relatability of visualized fiber tracts with respect to commonly perceived subject’s neuroanatomy? poor, fair, moderate, good, excellent

Which tumor-tract relationships can you derive from what you see? bundle displacement, edematous
infiltration, fiber destruction

How would you rate the feasibility to plan surgery based on shown visualizations? poor, fair, moderate, good, excellent

Overall impression

What is the main (set of) improvement(s) needed for you to use this tool, i.e. where do you perceive the largest area for improvement?
visualization, ISD plugin user interface,

data processing speed, workflow,
other–please specify

Would you start using the FT4Onco-final plugin once widely available? If not, why? yes, no

Would you recommend this tool to your clinical peers once widely available? If not, why? yes, no

Do you recognize clinical value in this prototype application for your center? If yes, please clarify in which aspect(s). yes, no

Do you have any suggestions for further improvement (other than already mentioned)? yes, no

Final comments or remarks? open statement

Table 7: Evaluation questionnaire.
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D Technical cross-validation results
Tables 8 and 9 provide an overview of values generated during technical cross-validation.
Bundle overlap and overreach are expressed volumetrically in voxel coordinates.

PT01 PT02

Bundle Weighted DSC BOL [mm3] BOR [mm3] BA [mm] Weighted DSC BOL [mm3] BOR [mm3] BA [mm]

AF L 0.64 15154.9 53694.67 2.28 0.15 2783.6 44300.3 5.14

AF R 0 169.17 29134.41 9.84 N/A N/A N/A N/A

CST L 0.83 26137.71 47275.04 1.77 0.82 23964.87 46897.16 2.05

CST R 0.71 25439.06 45143.95 1.38 0.76 23347.52 46602.76 2.39

C L 0.65 12481.16 28670.85 1.26 0.63 6393.27 29578.21 2.77

C R 0.73 7687.3 24516.32 1.88 0 0 25814.75 10.94

IFOF L 0.51 9051.64 41099.28 3 0.57 13577.46 52470.95 3.76

IFOF R 0.42 9260.35 51409.8 4.51 0.55 9943.62 45851.39 6.46

ILF L 0.64 26476.04 68074.04 1.4 0.68 21994.16 68577.15 1.5

ILF R 0.06 4712.56 74849.59 8.2 0.51 15097.78 59231.11 1.85

MdLF L 0.24 10156.73 61142.5 4.24 0.74 17004.78 46007.37 2.15

MdLF R 0.53 16743.34 60276.89 2.34 0.46 16679.62 55168.86 1.92

OR L 0.54 8902.24 34747.75 2.33 0.36 4413.77 27009.92 2.69

OR R 0.51 7370.93 37410.51 3.26 0.71 8961.56 24654.73 1.59

SLF L 0.51 24243.89 113934.21 3.49 0.35 8188.22 47639.74 4.9

SLF R 0.73 24586.62 53268.46 1.84 N/A N/A N/A N/A

PT03 PT04

Bundle Weighted DSC BOL [mm3] BOR [mm3] BA [mm] Weighted DSC BOL [mm3] BOR [mm3] BA [mm]

AF L 0.11 5575.99 57069.27 4.51 0.34 3576.72 30061.55 3.79

AF R 0.16 4202.86 50287.13 5.72 0.51 7283.05 33572.35 2.44

CST L 0.9 25726.87 33223.03 1.15 0.88 22079.85 28062.28 1.01

CST R 0.76 21928.25 46057.9 1.97 0.84 26702.34 39888.73 1.45

C L 0.74 10380.82 41472.77 2.23 0.59 6285.62 24615.19 1.91

C R 0.73 9534.98 22752.13 1.29 0.67 6659.11 22600.54 1.43

IFOF L 0.66 12553.66 42588.84 4.52 0.3 4308.32 28194.1 1.34

IFOF R 0.81 18533.89 48167.02 3.17 0.53 9141.72 42685.51 1.61

ILF L 0.77 30322.99 70075.51 1.42 0.22 3620.66 54454.84 2.7

ILF R 0.43 18878.82 58277.62 1.73 0.19 5160.75 48637.18 7.22

MdLF L 0.55 14372.77 52244.65 3.27 0 8.79 25979.52 15

MdLF R 0.5 10484.08 37353.39 2.45 0.1 1729.04 53532.1 3.18

OR L 0.61 10187.49 32041.04 1.94 0.48 5079.46 19008.44 1.29

OR R 0.51 10255.6 37869.69 3.14 0.16 6351.53 43674.16 4.54

SLF L 0.52 18331.77 80601.33 3.81 0.23 8935.2 66705.31 4.31

SLF R 0.71 37091.95 87122.03 2.11 0.48 10659.84 55324.85 3.57

Table 8: Comparison values between bundle reconstructions from FT4Onco and KUL NIS.
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PT01 PT02

Bundle Weighted DSC BOL [mm3] BOR [mm3] BA [mm] Weighted DSC BOL [mm3] BOR [mm3] BA [mm]

AF L 0.39 10587.34 56087.21 2.22 0.65 10156.73 30580.04 1.6

AF R 0.3 3354.82 19893.83 2.53 0.27 3139.51 21183.47 2.82

CST L 0.31 7094.11 63651.48 5.46 0.27 9363.61 50974.79 2.96

CST R 0.39 10218.25 57673.44 3.61 0.35 8425.49 50005.91 3.74

C L 0.54 8943.99 29312.37 1.46 0.57 7926.78 30290.04 1.87

C R 0.69 9352.63 22629.1 1.31 0.58 7276.46 23578.2 2.33

IFOF L 0.57 7366.54 30487.77 2.02 0.53 7522.53 29391.46 1.57

IFOF R 0.57 11466.14 43135.89 3.04 0.61 5896.75 24753.6 2.38

ILF L 0.33 8625.42 78685.55 2.56 0.13 6577.82 81787.71 4.13

ILF R 0.18 7322.6 64800.51 3.74 0.19 7080.93 73228.2 3.62

MdLF L 0.28 4174.3 52224.88 3.7 0.21 3045.04 48839.31 2.68

MdLF R 0.3 8284.89 64886.19 2.91 0.27 6052.73 59059.75 3.06

OR L 0.23 3660.2 39605.32 3.99 0.39 3409.74 27003.32 2.38

OR R 0.01 424.02 40934.5 8.07 0.26 2748.45 28389.63 2.32

SLF L 0.39 17903.35 101795.79 2.25 0.41 9991.96 39143.95 3.31

SLF R 0.35 9269.14 54698.7 5.33 0.24 4578.54 39394.4 3.63

PT03 PT04

Bundle Weighted DSC BOL [mm3] BOR [mm3] BA [mm] Weighted DSC BOL [mm3] BOR [mm3] BA [mm]

AF L 0.61 14864.9 37665.36 1.21 0.54 6768.96 28099.63 1.93

AF R 0.56 8669.36 30351.55 1.53 0.52 7595.03 29989.05 1.67

CST L 0.55 14750.66 43966.36 2.3 0.2 3260.35 37860.9 3.8

CST R 0.18 4514.83 56069.63 7.43 0.35 8186.02 48452.63 3.26

C L 0.52 9636.04 43456.66 1.73 0.61 7403.89 25625.81 1.81

C R 0.56 6019.78 29191.54 2.53 0.7 7050.17 23499.11 1.56

IFOF L 0.58 6593.2 22692.81 1.78 0.57 6533.88 28536.83 1.91

IFOF R 0.38 7722.45 36786.56 3.17 0.65 11534.25 43140.29 1.68

ILF L 0.11 5173.93 91520.42 5.63 0.25 5044.31 56085.01 4.31

ILF R 0.12 4760.9 68977.01 4.58 Failed Failed Failed Failed

MdLF L 0.07 1612.6 48254.9 4.55 0.25 1788.36 20959.38 2.33

MdLF R 0.3 3310.88 34908.13 2.76 0.29 3816.19 51576.77 3.16

OR L 0.19 2985.72 37436.88 3.34 0.31 2616.63 21800.83 2.89

OR R 0.1 2370.56 36678.91 4.35 0.2 2258.52 44436.52 4.8

SLF L 0.39 14968.16 72000.08 4.03 0.31 12184.56 56746.31 1.98

SLF R 0.37 16292.95 90103.36 2.41 0.62 11125.61 49784.02 3.04

Table 9: Comparison values between bundle reconstructions from FT4Onco and the HCP842 atlas.



149

List of publications

[1] Daniel Krahulec, Ahmed Radwan, Jan Kirschke, Stefan Sunaert, Kim van de Ven, Maarten Versluis,
and Marcel Breeuwer. Tumor-Tract Relationships Detected by Novel Clinical Research Application
with Tractography for Neurosurgical Planning. Abstract from 59th ASNR Virtual Annual Meeting
(May 22–26, 2021). ASNR21 Proceedings, p. 696–697.

[2] Daniel Krahulec, Ahmed Radwan, Stefan Sunaert, Maarten Versluis, Kim van de Ven, and Marcel
Breeuwer. Minimizing false streamlines in anatomically constrained tractography for neurosurgery
guidance in patients with brain neoplasms. Abstract and poster from ISMRM and SMRT Virtual
Conference and Exhibition (August 8–14, 2020). Proceedings No. 1738.

[3] Andrey Zhylka, Nico Sollmann, Alberto De Luca, Daniel Krahulec, Marcel Breeuwer, Alexander
Leemans, and Josien Pluim. Multi-level fiber tracking: evaluation on clinical data. Abstract and poster
from ISMRM and SMRT Virtual Conference and Exhibition (August 8–14, 2020). Proceedings No.
1746.

[4] Daniel Krahulec, Frank Thiele, Ahmed Radwan, Fabian Wenzel, Stefan Sunaert, Maarten Versluis,
Kim van de Ven, and Marcel Breeuwer. A clinical research software prototype with diffusion MRI
tractography for glioma surgery planning. Abstract and software demonstration from 26th OHBM
Annual Virtual Meeting (June 23 – July 3, 2020).

[5] Daniel Krahulec, Ahmed Radwan, Stefan Sunaert, Maarten Versluis, Kim van de Ven, and Marcel
Breeuwer. A clinical research demonstrator with diffusion MRI-based tractography and minimization
of false positives for brain tumor surgery. Abstract and poster from 12th ISMRM Benelux Chapter
Meeting (January 24, 2020) in Koninklijke Burgers’ Zoo, Arnhem, The Netherlands.

[6] Daniel Krahulec, Frank Thiele, Fabian Wenzel, Maarten Versluis, Kim van de Ven, and Marcel
Breeuwer. Platform for Enhanced Diffusion MRI Data Processing Pipeline to Guide Tumor
Neurosurgery. Software exhibit from 36th Annual Scientific Meeting Congress of the European
Society for Magnetic Resonance in Medicine and Biology (October 3–5, 2019) in Rotterdam, The
Netherlands.



150



151

Acknowledgements

This dissertation reports clinical research-oriented design activities between 2018 and 2022, conducted
at Philips Healthcare, Dept. of MR R&D Clinical Science, Philips Research, and scientific learnings
collected from Eindhoven University of Technology, Dept. of Biomedical Engineering, Medical Image
Analysis group. The outcome, FT4Onco, was eventually adopted by Philips Research to be transformed
into a modular clinical research application and applied for the demonstration of image quality on
innovative Philips MR scanners. Hopefully, FT4Onco will one day become an indispensable tool in the
workflow of neurosurgery planning.

Hereby, I would like to collectively express my sincere gratitude to all members of the Philips Healthcare
and Philips Research teams who actively participated in countless sessions organized to steer my design
thinking, provided me with comfortable work conditions, invaluable training, and encouraged me to
bring this work to a successful end. I am extremely thankful for the opportunity to explore multiple
areas: project management, applied research, workflow optimization, software design and development,
efficient programming, prototyping, customer needs analysis, and foundations of hospital IT.

My biggest thanks belong to my supervisors, Marcel Breeuwer and Josien Pluim, namely for your
thorough supervision, brisk and smart brainstorming throughout all our sessions, and immense help
whenever seemingly insurmountable problems arose. I was always in awe of your extensive experience.
But for you two, I would have never succeeded in finalization, and you literally lit up the darkness every
time I would begin to succumb to it or my persistence would start to wither away. Marcel, thank you for
spending all lunch breaks with me and for all the enjoyable conversations off work.

Liesbeth Geerts and Paul Folkers, thank you for negotiating project-related financial issues with the higher
management, allowing me to travel to various conferences, educational courses and congress meetings,
speeding up internal processes to arrange necessary equipment, for thought-provoking meetings, and for
your informative bird’s-eye view that always helped me avoid doing what was meaningless.

Kim van de Ven and Maarten Versluis, without your everlasting smile, grin, and jokes whenever we
bumped into each other in the corridors, the work environment at Philips Best would be lame. Not only
once did you make my day, perhaps without realizing it. Practicing my Dutch with you was always an
honor. Your good mood, insightful contributions, assistance in customer meetings, and positive attitude
helped boost my motivation.

My enthusiastic external collaborators, Ahmed Radwan and Willem Huijbers, you two have shown me
how to navigate in the field of diffusion MRI, and neuroimage processing. You were and will stay an
inspiration to me, for your hard-working demeanor influenced me in pursuing this endeavor. Moreover,
I want to show my appreciation to Jan Kirschke, without whom my evaluation experiments in Munich
would have failed.

Frank Thiele and Alexander Fischer, thank you both for your unfailing forbearance whenever I demanded
prompt responses from you due to time constraints. I really appreciated your time to listen when I first
presented the coarse and vaguely outlined concept of my solution to you as a complete newbie in
industrial design. I am grateful to you for including me in your tight schedule at your premise in Aachen
as a trainee on the Philips IntelliSpace Discovery research platform.



152

Fabian Wenzel and Arne Ewald, amongst many things, I am particularly appreciative of you
accompanying me in our visualization and viewing hackathon, where I was able to gain incredible
amounts of experience. Without your assistance and fruitful ideas, no user interface would have been
created.

Finally, I want to thank my dearest family in the Czech Republic and my great friends, who would
always raise my spirits when my motivation levels dropped. The challenges along my PhD journey were
intensified by the COVID-19 pandemic that caused unforeseen delays, extensions, and uncertainties
that veiled my mind. Throughout all ups and downs, I was lucky to share my emotions and receive
moral support from the closest ones to my heart: my mother, my grandparents, Lukáš, Honza, Toni,
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VŠB – Technical University of Ostrava, where he focused on
methods for artifact suppression in clinical MRI. In 2014, he
joined an Erasmus exchange program at Tampere University
of Technology in Finland. Inspired by Finland’s outstanding
education system, Daniel continued to pursue a Master’s
degree in Human Neuroscience and -technology at Aalto
University in Espoo, where he graduated Cum Laude. His

Master thesis dealt with the optimization of proprioceptive stimulation during routine and ultra-fast
functional MRI. This project aimed at developing a rehabilitation protocol for patients with cerebral
palsy, and was carried out under the supervision of Prof. Harri Piitulainen in cooperation with Prof.
Fa-Hsuan Lin from National Taiwan University.

Upon an unexpectedly received invitation from Prof. Lauri Parkkonen in December 2017, Daniel
applied for the position of an Early Stage Researcher within the TRABIT network. In February 2018, he
was admitted as a PhD candidate at Eindhoven University of Technology and hired as a Marie Curie
Fellow at Philips Healthcare in Best, The Netherlands, financed via the EU’s Horizon 2020 grant. His
main research consisted of the design and realization of a novel clinical research software prototype for
diffusion MRI tractography in neurosurgery planning, the results of which are reported in this design
thesis. In this project, Daniel closely collaborated with clinicians during externships at Klinikum rechts
der Isar in Munich (Germany), and University Hospital in Leuven (Belgium).

In July 2022, Daniel was employed as an Advanced R&D Project Engineer in the SnkeOS GmbH
division of Brainlab AG in Munich, Germany, where he is now engaged in the entire development
lifecycle for medical image processing algorithms to drive the digital transformation in healthcare.



154



155

Bibliography

[1] David N. Louis, Arie Perry, Guido Reifenberger, et al. The 2016
World Health Organization Classification of Tumors of the Central
Nervous System: a summary. Acta Neuropathologica, 131(6):803–
820, June 2016. ISSN 1432-0533. doi: 10.1007/s00401-016-1545-1.

[2] Michael Iv, Byung C. Yoon, Jeremy J. Heit, et al. Current Clinical
State of Advanced Magnetic Resonance Imaging for Brain Tumor
Diagnosis and Follow Up. Seminars in Roentgenology, 53(1):45–61,
January 2018. ISSN 1558-4658. doi: 10.1053/j.ro.2017.11.005.

[3] Nancy Ann Oberheim Bush, Susan M. Chang, and Mitchel S. Berger.
Current and future strategies for treatment of glioma. Neurosur-
gical Review, 40(1):1–14, January 2017. ISSN 1437-2320. doi:
10.1007/s10143-016-0709-8.

[4] Woo Suk Tae, Byung Joo Ham, Sung Bom Pyun, et al. Current
Clinical Applications of Diffusion-Tensor Imaging in Neurological
Disorders. Journal of Clinical Neurology (Seoul, Korea), 14(2):129–
140, April 2018. ISSN 1738-6586. doi: 10.3988/jcn.2018.14.2.129.

[5] Klaus H. Maier-Hein, Peter F. Neher, Jean-Christophe Houde, et al.
The challenge of mapping the human connectome based on diffusion
tractography. Nature Communications, 8(1):1349, November 2017.
ISSN 2041-1723. doi: 10.1038/s41467-017-01285-x.

[6] Ben Jeurissen, Maxime Descoteaux, Susumu Mori, and Alexander
Leemans. Diffusion MRI fiber tractography of the brain. NMR
in biomedicine, 32(4):e3785, April 2019. ISSN 1099-1492. doi:
10.1002/nbm.3785.

[7] S. Mori, B. J. Crain, V. P. Chacko, and P. C. van Zijl. Three-
dimensional tracking of axonal projections in the brain by magnetic
resonance imaging. Annals of Neurology, 45(2):265–269, February
1999. ISSN 0364-5134. doi: 10.1002/1531-8249(199902)45:2⟨265::
aid-ana21⟩3.0.co;2-3.

[8] Shawna Farquharson, J.-Donald Tournier, Fernando Calamante, et al.
White matter fiber tractography: why we need to move beyond DTI.
Journal of Neurosurgery, 118(6):1367–1377, June 2013. ISSN 1933-
0693. doi: 10.3171/2013.2.JNS121294.

[9] Jacques-Donald Tournier, Susumu Mori, and Alexander Leemans.
Diffusion tensor imaging and beyond. Magnetic Resonance in
Medicine, 65(6):1532–1556, June 2011. ISSN 1522-2594. doi:
10.1002/mrm.22924.

[10] Ben Jeurissen, Alexander Leemans, Jacques-Donald Tournier, et al.
Investigating the prevalence of complex fiber configurations in white
matter tissue with diffusion magnetic resonance imaging. Hum
Brain Mapp, 34(11):2747–2766, May 2012. ISSN 1065-9471.
doi: 10.1002/hbm.22099. URL https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC6870534/.

[11] Stamatios N. Sotiropoulos and Andrew Zalesky. Building connec-
tomes using diffusion MRI: why, how and but. NMR in biomedicine,
32(4):e3752, April 2019. ISSN 1099-1492. doi: 10.1002/nbm.3752.

[12] Dong-Hoon Lee, Ji Won Park, Sung-Hee Park, and Cheolpyo Hong.
Have You Ever Seen the Impact of Crossing Fiber in DTI?: Demon-
stration of the Corticospinal Tract Pathway. PloS One, 10(7):
e0112045, 2015. ISSN 1932-6203. doi: 10.1371/journal.pone.
0112045.

[13] Manabu Kinoshita, Kei Yamada, Naoya Hashimoto, et al. Fiber-
tracking does not accurately estimate size of fiber bundle in patholog-
ical condition: initial neurosurgical experience using neuronavigation
and subcortical white matter stimulation. NeuroImage, 25(2):424–
429, April 2005. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2004.
07.076.

[14] Walid I. Essayed, Fan Zhang, Prashin Unadkat, et al. White matter
tractography for neurosurgical planning: A topography-based review
of the current state of the art. NeuroImage. Clinical, 15:659–672,
2017. ISSN 2213-1582. doi: 10.1016/j.nicl.2017.06.011.

[15] Joseph Yuan-Mou Yang, Chun-Hung Yeh, Cyril Poupon, and Fer-
nando Calamante. Diffusion MRI tractography for neurosurgery: the
basics, current state, technical reliability and challenges. Phys Med
Biol, 66(15), July 2021. ISSN 1361-6560. doi: 10.1088/1361-6560/
ac0d90.

[16] Masashi KINOSHITA, Katsuyoshi MIYASHITA, Taishi TSUTSUI,
et al. Critical Neural Networks in Awake Surgery for Gliomas.
Neurol Med Chir (Tokyo), 56(11):674–686, November 2016. ISSN
0470-8105. doi: 10.2176/nmc.ra.2016-0069. URL https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC5221778/.

[17] Sebastian M. Toescu, Patrick W. Hales, Martin M. Tisdall, et al.
Neurosurgical applications of tractography in the UK. Br J Neu-
rosurg, 35(4):424–429, August 2021. ISSN 1360-046X. doi:
10.1080/02688697.2020.1849542.

[18] J.-Donald Tournier, Fernando Calamante, David G. Gadian, and Alan
Connelly. Direct estimation of the fiber orientation density function
from diffusion-weighted MRI data using spherical deconvolution.
NeuroImage, 23(3):1176–1185, November 2004. ISSN 1053-8119.
doi: 10.1016/j.neuroimage.2004.07.037.

[19] J.-Donald Tournier, Fernando Calamante, and Alan Connelly. Robust
determination of the fibre orientation distribution in diffusion MRI:
non-negativity constrained super-resolved spherical deconvolution.
NeuroImage, 35(4):1459–1472, May 2007. ISSN 1053-8119. doi:
10.1016/j.neuroimage.2007.02.016.

[20] Maxime Descoteaux. High Angular Resolution Diffusion Imag-
ing (HARDI). In Wiley Encyclopedia of Electrical and Electronics
Engineering, pages 1–25. American Cancer Society, 2015. ISBN
978-0-471-34608-1. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/047134608X.W8258.

[21] E. Mormina, M. Longo, A. Arrigo, et al. MRI Tractography of
Corticospinal Tract and Arcuate Fasciculus in High-Grade Gliomas
Performed by Constrained Spherical Deconvolution: Qualitative and
Quantitative Analysis. AJNR. American journal of neuroradiol-
ogy, 36(10):1853–1858, October 2015. ISSN 1936-959X. doi:
10.3174/ajnr.A4368.

[22] Jeremy C. Lim, Pramit M. Phal, Patricia M. Desmond, et al. Prob-
abilistic MRI tractography of the optic radiation using constrained
spherical deconvolution: a feasibility study. PloS One, 10(3):
e0118948, 2015. ISSN 1932-6203. doi: 10.1371/journal.pone.
0118948.

[23] Enricomaria Mormina, Alessandro Arrigo, Alessandro Calamuneri,
et al. Optic radiations evaluation in patients affected by high-
grade gliomas: a side-by-side constrained spherical deconvolu-
tion and diffusion tensor imaging study. Neuroradiology, 58(11):
1067–1075, November 2016. ISSN 1432-1920. doi: 10.1007/
s00234-016-1732-8.

[24] Guillaume Theaud, Jean-Christophe Houde, Arnaud Boré,
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Knösche. Beyond fractional anisotropy: extraction of bundle-specific
structural metrics from crossing fiber models. NeuroImage, 100:176–
191, October 2014. ISSN 1095-9572. doi: 10.1016/j.neuroimage.
2014.06.015.

[66] Flavio Dell’Acqua, Andrew Simmons, Steven C.R. Williams, and
Marco Catani. Can spherical deconvolution provide more infor-
mation than fiber orientations? Hindrance modulated orientational
anisotropy, a true-tract specific index to characterize white matter
diffusion. Human Brain Mapping, 34(10):2464–2483, April 2012.
ISSN 1065-9471. doi: 10.1002/hbm.22080. URL https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC6870506/.

[67] M. D. King, J. Houseman, S. A. Roussel, et al. q-Space imaging of
the brain. Magnetic Resonance in Medicine, 32(6):707–713, Decem-
ber 1994. ISSN 0740-3194. doi: 10.1002/mrm.1910320605.

[68] Lin Tian, Hao Yan, and Dai Zhang. [Diffusion spectrum magnetic
resonance imaging]. Beijing Da Xue Xue Bao. Yi Xue Ban = Journal
of Peking University. Health Sciences, 41(6):716–720, December
2009. ISSN 1671-167X.

[69] David S. Tuch, Timothy G. Reese, Mette R. Wiegell, et al. High angu-
lar resolution diffusion imaging reveals intravoxel white matter fiber
heterogeneity. Magnetic Resonance in Medicine, 48(4):577–582,
October 2002. ISSN 0740-3194. doi: 10.1002/mrm.10268.

[70] Tax, CMW, Viergever, Max A., Leemans, Alexander, and University
Utrecht. Less Confusion in Diffusion MRI. PhD Thesis, Utrecht
University, September 2016. URL https://dspace.library.
uu.nl/handle/1874/337377.

[71] P. J. Basser, S. Pajevic, C. Pierpaoli, et al. In vivo fiber trac-
tography using DT-MRI data. Magnetic Resonance in Medicine,
44(4):625–632, October 2000. ISSN 0740-3194. doi: 10.1002/
1522-2594(200010)44:4⟨625::aid-mrm17⟩3.0.co;2-o.

[72] T. E. J. Behrens, M. W. Woolrich, M. Jenkinson, et al. Characteriza-
tion and propagation of uncertainty in diffusion-weighted MR imag-
ing. Magnetic Resonance in Medicine, 50(5):1077–1088, November
2003. ISSN 0740-3194. doi: 10.1002/mrm.10609.

[73] J.-Donald Tournier, Fernando Calamante, David G. Gadian, and
Alan Connelly. Diffusion-weighted magnetic resonance imag-
ing fibre tracking using a front evolution algorithm. NeuroIm-
age, 20(1):276–288, September 2003. ISSN 1053-8119. doi:
10.1016/s1053-8119(03)00236-2.

[74] S. Jbabdi, M. W. Woolrich, J. L. R. Andersson, and T. E. J. Behrens.
A Bayesian framework for global tractography. NeuroImage, 37(1):
116–129, August 2007. ISSN 1053-8119. doi: 10.1016/j.neuroimage.
2007.04.039. URL https://www.sciencedirect.com/
science/article/pii/S1053811907003503.

[75] Geoffrey J. M. Parker, Hamied A. Haroon, and Claudia A. M.
Wheeler-Kingshott. A framework for a streamline-based proba-
bilistic index of connectivity (PICo) using a structural interpretation
of MRI diffusion measurements. Journal of magnetic resonance
imaging: JMRI, 18(2):242–254, August 2003. ISSN 1053-1807. doi:
10.1002/jmri.10350.

[76] Mariana Lazar and Andrew L. Alexander. Bootstrap white matter
tractography (BOOT-TRAC). NeuroImage, 24(2):524–532, January
2005. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2004.08.050.

[77] P. Mukherjee, J. I. Berman, S. W. Chung, et al. Diffusion tensor
MR imaging and fiber tractography: theoretic underpinnings. AJNR.
American journal of neuroradiology, 29(4):632–641, April 2008.
ISSN 1936-959X. doi: 10.3174/ajnr.A1051.

[78] Susumu Mori and Peter C. M. van Zijl. Fiber tracking: princi-
ples and strategies – a technical review. NMR in Biomedicine,
15(7-8):468–480, 2002. ISSN 1099-1492. doi: 10.1002/nbm.
781. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/nbm.781.

[79] J.-F. Mangin, P. Fillard, Y. Cointepas, et al. Toward global tractogra-
phy. NeuroImage, 80:290–296, October 2013. ISSN 1095-9572. doi:
10.1016/j.neuroimage.2013.04.009.

[80] Daan Christiaens, Marco Reisert, Thijs Dhollander, et al. Global
tractography of multi-shell diffusion-weighted imaging data using
a multi-tissue model. NeuroImage, 123:89–101, December 2015.
ISSN 1095-9572. doi: 10.1016/j.neuroimage.2015.08.008.

[81] Setsu Wakana, Arvind Caprihan, Martina M. Panzenboeck, et al.
Reproducibility of quantitative tractography methods applied to cere-
bral white matter. NeuroImage, 36(3):630–644, July 2007. ISSN
1053-8119. doi: 10.1016/j.neuroimage.2007.02.049.

[82] Robert E. Smith, Jacques-Donald Tournier, Fernando Calamante, and
Alan Connelly. Anatomically-constrained tractography: improved
diffusion MRI streamlines tractography through effective use of
anatomical information. NeuroImage, 62(3):1924–1938, September
2012. ISSN 1095-9572. doi: 10.1016/j.neuroimage.2012.06.005.

[83] Gaolang Gong, Yong He, Luis Concha, et al. Mapping anatom-
ical connectivity patterns of human cerebral cortex using in vivo
diffusion tensor imaging tractography. Cerebral Cortex (New York,
N.Y.: 1991), 19(3):524–536, March 2009. ISSN 1460-2199. doi:
10.1093/cercor/bhn102.

[84] Yajing Zhang, Jiangyang Zhang, Kenichi Oishi, et al. Atlas-
Guided Tract Reconstruction for Automated and Comprehensive
Examination of the White Matter Anatomy. NeuroImage, 52(4):
1289–1301, October 2010. ISSN 1053-8119. doi: 10.1016/j.
neuroimage.2010.05.049. URL https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC2910162/.

[85] Fang-Cheng Yeh and Wen-Yih Isaac Tseng. NTU-90: a high an-
gular resolution brain atlas constructed by q-space diffeomorphic
reconstruction. NeuroImage, 58(1):91–99, September 2011. ISSN
1095-9572. doi: 10.1016/j.neuroimage.2011.06.021.

[86] Eleftherios Garyfallidis, Matthew Brett, Marta Morgado Correia,
et al. QuickBundles, a Method for Tractography Simplification.
Frontiers in Neuroscience, 6:175, December 2012. ISSN 1662-4548.
doi: 10.3389/fnins.2012.00175. URL https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC3518823/.

[87] Jakob Wasserthal, Peter F. Neher, Dusan Hirjak, and Klaus H. Maier-
Hein. Combined tract segmentation and orientation mapping for
bundle-specific tractography. Medical Image Analysis, 58:101559,
December 2019. ISSN 1361-8423. doi: 10.1016/j.media.2019.
101559.

[88] Benjamin Ades-Aron, Jelle Veraart, Peter Kochunov, et al. Eval-
uation of the accuracy and precision of the Diffusion parame-
ter EStImation with Gibbs and NoisE Removal pipeline. Neu-
roimage, 183:532–543, December 2018. ISSN 1053-8119. doi:
10.1016/j.neuroimage.2018.07.066. URL https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC6371781/.

[89] Leon Y. Cai, Qi Yang, Colin B. Hansen, et al. PreQual: An auto-
mated pipeline for integrated preprocessing and quality assurance of
diffusion weighted MRI images. Magn Reson Med, 86(1):456–470,
July 2021. ISSN 1522-2594. doi: 10.1002/mrm.28678.
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