4,223 research outputs found

    AI based residential load forecasting

    Get PDF
    The increasing levels of energy consumption worldwide is raising issues with respect to surpassing supply limits, causing severe effects on the environment, and the exhaustion of energy resources. Buildings are one of the most relevant sectors in terms of energy consumption in the world. Many researches have been carried out in the recent years with primary concentration on efficient Home or Building Management Systems. In addition, by increasing renewable energy penetration, modern power grids demand more accurate consumption predictions to provide the optimized power supply which is stochastic in nature. This study will present an analytic comparison of day-ahead load forecasting during a period of two years by applying AI based data driven models. The unit of analysis in this thesis project is based on households smart meter data in England. The collected and collated data for this study includes historical electricity consumption of 75 houses over two years of 2012 to 2014 city of London. Predictive models divided in two main forecasting groups of deterministic and probabilistic forecasting. In deterministic step, Random Forest Regression and MLP Regression employed to make a forecasting models. In the probabilistic phase,DeepAR, FFNN and Gaussian Process Estimator were employed to predict days ahead load forecasting. The models are trained based on subset of various groups of customers with registered diversified load volatility level. Daily weather data are also added as new feature in this study into subset to check model sensitivity to external factors and validate the performance of the model. The results of implemented models are evaluated by well-known error metrics as RMSE,MAE, MSE and CRPS separately for each phase of this study. The findings of this master thesis study shows that the Deep Learning methods of FNN, DeepAR and MLP compared to other utilized methods like Random Forest and Gaussian provide better data prediction reslts in terms of less deviance to real load trend, lower forecasting error and computation time. Considering probabilistic forecasting methods it is observed that DeepAR can provide better results than FFNN and Gaussian Process model. Although the computation time of FFNN was lower than other

    Hybrid artificial intelligence model for prediction of heating energy use

    Get PDF
    Currently, in the building sector there is an increase in energy use due to the increased demand for indoor thermal comfort. Proper energy planning based on a real measurement data is a necessity. In this study we developed and evaluated hybrid artificial intelligence models for the prediction of the daily heating energy use. Building energy use is defined by significant number of influencing factors, while many of them are difficult to adequately quantify. For heating energy use modelling, the complex relationship between the input and output variables is hard to define. The main idea of this paper was to divide the heat demand prediction problem into the linear and the non-linear part (residuals) by using (Afferent statistical methods for the prediction. The expectations were that the joint hybrid model, could outperform the individual predictors. Multiple linear regression was selected for the linear modelling, while the non-linear part was predicted using feedforward and radial basis neural networks. The hybrid model prediction consisted of the sum of the outputs of the linear and the non-linear model. The results showed that both hybrid models achieved better results than each of the individual feedforward and radial basis neural networks and multiple linear regression on the same dataset. It was shown that this hybrid approach improved the accuracy of artificial intelligence models

    Review of Low Voltage Load Forecasting: Methods, Applications, and Recommendations

    Full text link
    The increased digitalisation and monitoring of the energy system opens up numerous opportunities to decarbonise the energy system. Applications on low voltage, local networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known low voltage level open datasets to encourage further research and development.Comment: 37 pages, 6 figures, 2 tables, review pape

    Ensemble of radial basis neural networks with k-means clustering for heating energy consumption prediction

    Get PDF
    U radu je predložen i prikazan ansambl neuronskih mreža za predviđanje potrošnje toplote univerzitetskog kampusa. Za obučavanje i testiranje modela korišćeni su eksperimentalni podaci. Razmatrano je poboljšanje tačnosti predviđanja primenom k-means metode klasterizacije za generisanje obučavajućih podskupova neuronskih mreža zasnovanih na radijalnim bazisnim funkcijama. Korišćen je različit broj klastera, od 2-5. Izlazi članova ansambla su kombinovani primenom aritmetičkog, težinskog i osrednjavanja metodom medijane. Pokazano je da ansambli neuronskih mreža ostvaruju bolje rezultate predviđanja nego svaka pojedinačna mreža članica ansambla. PR Data used for this paper were gathered during study visit to NTNU, as a part of the collaborative project: Sustainable energy and environment in Western Balkans.For the prediction of heating energy consumption of university campus, neural network ensemble is proposed. Actual measured data are used for training and testing the models. Improvement of the prediction accuracy using k-means clustering for creating subsets used to train individual radial basis function neural networks is examined. Number of clusters is varying from 2 to 5. The outputs of ensemble members are aggregated using simple, weighted and median based averaging. It is shown that ensembles achieve better prediction results than the individual network

    Multistage ensemble of feedforward neural networks for prediction of heating energy consumption

    Get PDF
    Feedforward neural network models are created for prediction of heating energy consumption of a university campus. Actual measured data are used for training and testing the models. Multistage neural network ensemble is proposed for the possible improvement of prediction accuracy. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as a member of the ensemble. Three different averaging methods (simple, weighted, and median) for obtaining ensemble output are applied. Besides this conventional approach, single radial basis neural network in the second level is used to aggregate the selected ensemble members. It is shown that heating energy consumption can be predicted with better accuracy by using ensemble of neural networks than using the best trained single neural network, while the best results are achieved with multistage ensemble

    Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants

    Get PDF
    Within the field of soft computing, intelligent optimization modelling techniques include various major techniques in artificial intelligence. These techniques pretend to generate new business knowledge transforming sets of "raw data" into business value. One of the principal applications of these techniques is related to the design of predictive analytics for the improvement of advanced CBM (condition-based maintenance) strategies and energy production forecasting. These advanced techniques can be used to transform control system data, operational data and maintenance event data to failure diagnostic and prognostic knowledge and, ultimately, to derive expected energy generation. One of the systems where these techniques can be applied with massive potential impact are the legacy monitoring systems existing in solar PV energy generation plants. These systems produce a great amount of data over time, while at the same time they demand an important e ort in order to increase their performance through the use of more accurate predictive analytics to reduce production losses having a direct impact on ROI. How to choose the most suitable techniques to apply is one of the problems to address. This paper presents a review and a comparative analysis of six intelligent optimization modelling techniques, which have been applied on a PV plant case study, using the energy production forecast as the decision variable. The methodology proposed not only pretends to elicit the most accurate solution but also validates the results, in comparison with the di erent outputs for the di erent techniques
    corecore