3,135 research outputs found

    Redesign of rice cooker component by using an integrated boothroyd dewhurst DFA and axiomatic design

    Get PDF
    In the early process for product design, the methodology of Design for Assembly (DFA) and it guidelines are very useful to engineers. Design for Assembly is a set of guidelines developed to ensure that a product is designed so that it can be easily and efficiently manufactured and assembled with a minimum of effort, time and cost. Axiomatic Design, AD is an engineering design theory that provides a framework to decision-making in the designing process. It will consider the customer needs which very important in the product market today. The main objective of the project is to improve the assembly effectiveness by using integration of Boothroyd Dewhurst DFA method and Axiomatic Design techniques. Currently, rice cooker consists of 37 components, where several components are difficult to assemble. So, this project provides the framework to redesign the current product in order to reduce the difficulty of assembly. The stage of project is starting by gathering all information of the product and also determines the customer needs for the current product. After that, the current product is redesign based on the analysis of DFA and Axiomatic Design which is aimed to increase the design efficiency, reduce total assembly time and cost of the product. The result of this project shows the design efficiency is increased from 22.0 % to 33.0 %. From the case studies result, this evaluation system is able to improve the design in term of design efficiency, product time and cost

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    (WP 2014-03) Bounded Rationality and Bounded Individuality

    Get PDF
    This paper argues that since the utility function conception of the individual is derived from standard rationality theory, the view that rationality is bounded suggests that individuality should also be seen as bounded. The meaning of this idea is developed in terms of two ways in which individuality can be said to be bounded, with one bound associated with Kahneman and Tversky’s prospect theory and the ‘new’ behavioral economics and a second bound associated with Simon’s evolutionary thinking and the ‘old’ behavioral economics. The paper then shows how different bounded individuality conceptions operate in nudge economics, agent-based modeling, and social identity theory, explaining these conceptions in terms of how they relate to these two behavioral economics views of bounded rationality. How both the ‘new’ and ‘old’ individuality bounds might then be combined in a single account is briefly explored in connection with Kirman’s Marseille fish market analysis

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically

    A design framework for additive manufacturing based on the integration of axiomatic design approach, inverse problem-solving and an additive manufacturing database

    Get PDF
    Additive manufacturing has emerged as an integral part of modern manufacturing because of its unique capabilities and has already found its application in various domains like aerospace, automotive, medicine and architecture. In order to take the full advantage of this breakthrough manufacturing technology, it is imperative that practical design frameworks or methodologies are developed and consequently, Design for Additive Manufacturing (DfAM) has risen to provide a set of guidelines during the product design process. The existing DfAM methods have certain limitations in that the additive manufacturing process capabilities are not taken into consideration in the early design stage effectively and most of them rely on direct application of existing methods for conventional manufacturing. Furthermore, there is a lack of DfAM methods suitable for additive manufacturing novices. To tackle these issues, this study develops a design framework for additive manufacturing through the integration of axiomatic design approach and theory of inventive problem-solving (TRIZ) with the consideration of additive manufacturing environment. This integrated approach is effective because axiomatic design approach can be used to systematically define and analyze the problem, while the inverse problem-solving approach of TRIZ combined with an additive manufacturing database can be used as an idea generation tool that can generate innovative solutions. Finally, two case studies are presented to validate the proposed design framework

    Assembly line balancing by using axiomatic design principles: An application from cooler manufacturing industry

    Full text link
    [EN] The philosophy of production without waste is the fundamental belief behind lean manufacturing that should be adopted by enterprises. One of the waste elimination methods is assembly line balancing for lean manufacturing, i.e. Yamazumi. The assembly line balancing is to assign tasks to the workstations by minimizing the number of workstations to the required values. There should be no workstation with the excessively high or low workload, and all workstations must ideally work with balanced workloads. Accordingly, in this study, the axiomatic design method is applied for assembly line balancing in order to achieve maximum output with the installed capacity. In order to achieve this aim, all improvement opportunities are defined and utilized as an output of the study. Computational results indicate that the proposed method is effective to reduce operators’ idle time by 12%, imbalance workload between workstations by 38%, and the total number of workers by 12%. As a result of these improYilmaz, ÖF.; Demirel, ÖF.; Zaim, S.; Sevim, S. (2020). Assembly line balancing by using axiomatic design principles: An application from cooler manufacturing industry. International Journal of Production Management and Engineering. 8(1):31-43. https://doi.org/10.4995/ijpme.2020.11953OJS314381Ağpak, K , Gökçen, H , Saray, N , Özel, S . (2013). Stokastik Görev Zamanlı Tek Modelli U Tipi Montaj Hattı Dengeleme Problemleri İçin Bir Sezgisel. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi , 17 (4). Retrieved from https://dergipark.org.tr/en/pub/gazimmfd/issue/6654/89311Alcorta, L. (1999). Flexible automation and location of production in developing countries. The European Journal of Development Research, 11(1), 147-175. https://doi.org/10.1080/09578819908426731Babic, B. (1999). Axiomatic design of flexible manufacturing systems. International Journal of Production Research, 37(5), 1159-1173. https://doi.org/10.1080/002075499191454Black, J. T., Schroer, B. J. (1988). Decouplers in integrated cellular manufacturing systems. Journal of Engineering for Industry, 110(1), 77-85. https://doi.org/10.1115/1.3187846Cakir, B. (2006). A simulation Annealing Algoirthm for Stochastic Process Time based Assembly Line Balancing, M.S. Thesis, Gazi University.Celek, O. E., Yurdakul, M., Ic, T. (2019). Axiomatic Design of a Reconfigurable Assembly System for Aircraft Fuselages (No. 2019-01-1359). SAE Technical Paper. https://doi.org/10.4271/2019-01-1359Cevikcan, E., Durmusoglu, M. B. (2011). Minimising utility work and utility worker transfers for a mixed-model assembly line. International Journal of Production Research, 49(24), 7293-7314. https://doi.org/10.1080/00207543.2010.537385Chen, S. J. G., Chen, L. C., Lin, L. (2001). Knowledge-based support for simulation analysis of manufacturing cells. Computers in Industry, 44(1), 33-49. https://doi.org/10.1016/S0166-3615(00)00071-3Chakraborty, K., Mondal, S., Mukherjee, K. (2017). Analysis of product design characteristics for remanufacturing using Fuzzy AHP and Axiomatic Design. Journal of Engineering Design, 28(5), 338-368. https://doi.org/10.1080/09544828.2017.1316014Cochran, D. S., Eversheim, W., Kubin, G., Sesterhenn, M. L. (2000). The application of axiomatic design and lean management principles in the scope of production system segmentation. International Journal of Production Research,38(6), 1377-1396. https://doi.org/10.1080/002075400188906Dolgui, A., Ihnatsenka, I. (2009). Branch and bound algorithm for a transfer line design problem: Stations with sequentially activated multi-spindle heads.European Journal of Operational Research, 197(3), 1119-1132. https://doi.org/10.1016/j.ejor.2008.03.028Durmusoglu, M. B., Satoglu, S. I. (2011). Axiomatic design of hybrid manufacturing systems in erratic demand conditions. International Journal of Production Research, 49(17), 5231-5261. https://doi.org/10.1080/00207543.2010.510487Ertay, T., Satoğlu, S. I. (2012). System parameter selection with information axiom for the new product introduction to the hybrid manufacturing systems under dual-resource constraint. International Journal of Production Research, 50(7), 1825-1839. https://doi.org/10.1080/00207543.2011.560205Ghosh, S., Gagnon, R. J. (1989). A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems. The International Journal of Production Research, 27(4), 637-670. https://doi.org/10.1080/00207548908942574Graves, S. C., Lamar, B. W. (1983). An integer programming procedure for assembly system design problems. Operations Research, 31(3), 522-545. https://doi.org/10.1287/opre.31.3.522Gunasekera, J. S., Ali, A. F. (1995). A three-step approach to designing a metal-forming process. JOM, 47(6), 22-25. https://doi.org/10.1007/BF03221198Guschinskaya, O., Dolgui, A., Guschinsky, N., Levin, G. (2008). A heuristic multi-start decomposition approach for optimal design of serial machining lines. European Journal of Operational Research, 189(3), 902-913. https://doi.org/10.1016/j.ejor.2006.03.072Hager, T., Wafik, H., Faouzi, M. (2017). Manufacturing system design based on axiomatic design: Case of assembly line. Journal of Industrial Engineering and Management, 10(1), 111-139. https://doi.org/10.3926/jiem.728Han, W. M., Zhao, J. L., Chen, Y. (2013). A Virtual Cellular Manufacturing System Design Model Based on Axiomatic Design Theory. In Applied Mechanics and Materials (Vol. 271, pp. 1478-1484). Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMM.271-272.1478Holzner, P., Rauch, E., Spena, P. R., Matt, D. T. (2015). Systematic Design of SME Manufacturing and Assembly Systems Based on Axiomatic Design.Procedia CIRP, 34, 81-86. https://doi.org/10.1016/j.procir.2015.07.010Houshmand, M., Jamshidnezhad, B. (2002). Conceptual design of lean production systems through an axiomatic approach. In Proceedings of ICAD2002 Second International Conference on Axiomatic Design.Houshmand, M., Jamshidnezhad, B. (2004). A lean manufacturing roadmap for an automotive body assembly line within axiomatic design framework. International Journal of Engineering Transactions, 17(1), 51-72.Houshmand, M., Jamshidnezhad, B. (2006). An extended model of design process of lean production systems by means of process variables. Robotics and Computer-Integrated Manufacturing, 22(1), 1-16. https://doi.org/10.1016/j.rcim.2005.01.004Khandekar, A. V., Chakraborty, S. (2016). Application of fuzzy axiomatic design principles for selection of non-traditional machining processes. The International Journal of Advanced Manufacturing Technology, 83(1-4), 529-543.Kulak, O., Durmusoglu, M. B., Tufekci, S. (2005). A complete cellular manufacturing system design methodology based on axiomatic design principles. Computers & Industrial Engineering, 48(4), 765-787. https://doi.org/10.1016/j.cie.2004.12.006Lipson, H., Suh, N. P. (2000). Towards a universal knowledge database for design automation. In Proceeding of ICAD2000, First International Conference on Axiomatic Design, pg (Vol. 250258, pp. 21-23).Matt, D. T. (2008). Template based production system design. Journal of Manufacturing Technology Management, 19(7), 783-797. https://doi.org/10.1108/17410380810898741Matt, D. T. (2012). Application of Axiomatic Design principles to control complexity dynamics in a mixed-model assembly system: a case analysis.International Journal of Production Research, 50(7), 1850-1861. https://doi.org/10.1080/00207543.2011.565086Matt, D. T. (2013). Design of a scalable assembly system for product variety: a case study. Assembly Automation, 33(2), 117-126. https://doi.org/10.1108/01445151311306627McMullen, P. R., Frazier, G. V. (1998). Using simulated annealing to solve a multiobjective assembly line balancing problem with parallel workstations. International Journal of Production Research, 36(10), 2717-2741. https://doi.org/10.1080/002075498192454Nakao, M., Kobayashi, N., Hamada, K., Totsuka, T., Yamada, S. (2007). Decoupling executions in navigating manufacturing processes for shortening lead time and its implementation to an unmanned machine shop. CIRP Annals-Manufacturing Technology, 56(1), 171-174. https://doi.org/10.1016/j.cirp.2007.05.041Nordlund, M., Tate, D., Suh, N. P. (1996). Growth of axiomatic design through industrial practice. In 3rd CIRP Workshop on Design and the Implementation of Intelligent Manufacturing Systems, Tokyo, Japan (Vol. 6, pp. 77-84).Rauch, E., Spena, P. R., Matt, D. T. (2019). Axiomatic design guidelines for the design of flexible and agile manufacturing and assembly systems for SMEs. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(1), 1-22. https://doi.org/10.1007/s12008-018-0460-1Reynal, V. A., Cochran, D. S. (1996). Understanding lean manufacturing according to axiomatic design principles.Suh, N. P. (1990). The principles of design (Vol. 990). New York: Oxford University Press.Suh, N. P. (1995). Designing-in of quality through axiomatic design. IEEE Transactions on Reliability, 44(2), 256-264. https://doi.org/10.1109/24.387380Suh, N. P. (1997). Design of systems. CIRP Annals-Manufacturing Technology,46(1), 75-80. https://doi.org/10.1016/S0007-8506(07)60779-3Suh, N. P. (2001). Axiomatic Design: Advances and Applications (The Oxford Series on Advanced Manufacturing).Vinodh, S., Aravindraj, S. (2012). Axiomatic modeling of lean manufacturing system. Journal of Engineering, Design and Technology, 10(2), 199-216. https://doi.org/10.1108/17260531211241185Yilmaz, O. F., Cevikcan, E., Durmusoglu, M. B. (2016). Scheduling batches in multi hybrid cell manufacturing system considering worker resources: A case study from pipeline industry. Advances in Production Engineering & Management, 11(3). https://doi.org/10.14743/apem2016.3.22

    Development Of Design Evaluation System For Assembly

    Get PDF
    Pemasangan merupakan satu peringkat yang terpenting dalam pembangunan produk. Rekabentuk untuk pemasangan (DF A) adalah salah satu pendekatan yang utama yang digunakan untuk meningkatkan rekabentuk produk supaya produk yang dihasilkan mudah dipasang, kos pemasangan yang murah disamping nilai produk yang tinggi. Objektif kajian ini adalah untuk membangunkan sistem penilaian rekabentuk untuk pemasangan (DF A). Sistem yang dibangunkan bertujuan menyokong teknik baru dalam DF A dan memberi peluang kepada pengguna untuk menilai dan mengurangkan jumlah kos masa dan pemasangan serta meningkatkan nilai produk pada peringkat awal proses rekabentuk. Sistem ini juga dijangkakan berupaya membantu perekabentuk dalam merekabentuk semula produk dengan menggunakan prinsip dan peraturan DF A. Kaedah Lucas DF A dan Kejuruteraan Nilai (VE) telah dipertimbangkan untuk menghasilkan rangka kerja untuk analisis DF A. Skop kajian termasuklah membangunkan analisis kebolehpasangan sesuatu produk yang sistematik dengan menggunakan aktiviti asas rekabentuk yang berturutan. Assembly is one of the most important stages of product development. Design for Assembly (DF A) is one of the approaches to improve the product designs for easier and less assembly cost with high functionality of the products. The main objective of the research work is to develop an improved DF A system. The developed system is aimed at supporting new techniques for DF A and to provide users opportunity to assess and reduce the total assembly time and cost of the product and improve the product value at the early stage of the design process. The system is also expected to assist the designer in product redesign based on the general DF A rules and principles. In order to achieve this task, Lucas DF A and Value Engineering are reviewed in the current research work towards developing a framework for DF A analysis. The scope of the work includes systematizing the assemblability analysis for a product through generic sequence of design activities with rational basis

    Business Process Redesign of a Service Cell with the Synthesis Approach of Heuristic approach, Axiomatic Design, Simulation and Quality Control Tools

    Get PDF
    This thesis project “Business Process Redesign of a Service Cell with Synthesis Approach of Heuristic Approach, Axiomatic Design, Simulation and Quality Control Tools” presents the research activities conducted by the author as a part of the Task Force of Accessories Business Redesign at Standard Aero BV (SABV). The main object of the research is production system of a service company. However, the research is a cross-functional thinking within the context of operations management. It is the author’s belief that research in this field will become more intensified in the next coming decades. In the future, as the economy improving, it is naturally expected to have more service business following trend to become the largest portion of the whole business activities. This thesis research is conducted within the boundary of accessories cell as part of Accessories Business Redesign Project at SABV. However, the result is more general that can be reflected to any business process design of a service cell. Accessories cell of SABV is used as a model of any cellular production system in a service company. This research proposes a new approach for business process redesign (BPR) of a service cell. According to the author’s opinion, a BPR approach is specific based on the nature where the BPR project is conducted. This research proposes synthesis approach that is expected can yield faster and more practical solution. The proposed approach is a synthesis of Heuristic Approach, Axiomatic Design, Simulation Method, and Quality Control tools. Heuristic approach is employed to derive basic elements of BPR which are used to construct BPR framework. From a number of structured design methods, AD is selected as the design method for this research. Because AD is limited on conceptual level, simulation method and quality control tool are combined to fill in the gap between conceptual and shop floor level. To a certain level, the proposed approach is proven to be an efficient and effective approach for BPR. A simple model of service system architecture is developed herein. However, because of the limited decomposition level, the model is not a full representation of service system. Still, to a certain extent, any service system will have similarities with this model. Comprehensive architecture will need further decomposition. The design object and data used in this research are proprietary of SABV. The data is confidential. During the research, the author conducts field observation to gather the required data. In addition, the company’s databases are utilized. The data is specific according the nature of SABV. However, the statements, analysis, conclusions expressed in this research are solely of the author who is responsible for any shortcoming and error. This research outcome does not represent the work of SABV
    corecore