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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

The intricate coupling relationship among the used parts make the reuse-oriented redesign process very complex, leading to the incompatible 
optimization between the used parts and used mechanical equipment. To this end, a dynamic information transfer and feedback method is 
proposed. In this method, the structure coupling model is established to characterize the relationship of parts. Remanufacturing cost, energy 
consumption and material consumption are taken as the redesign objectives. In accordance with these objectives and its constraints, a dynamic 
information transfer and feedback model (DITF) is adopted to achieve collaborative optimization between used mechanical equipment and used 
parts. An adaptive Teaching-Learning-Based Optimization (A-TLBO) algorithm is used to solve this model. Finally, a case in point is that a 
used machine tool (model C6132) is adopted to validate feasibility and effectiveness of the proposed method. 
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1. Introduction 

Reuse-oriented redesign is a significant problem of 
implementing remanufacturing waste products. The redesign 
of used products is similar to new products design, which has 
a direct effect on product remanufacturing efficiency, quality, 
cost, resource efficiency and environmental pollution. Reuse-
oriented redesign of used mechanical equipment is an 
innovative design process for new remanufactured product, in 
which used mechanical equipment and used parts are taken as 
the workblanks with an aim of reusing material and added 
value largely [1-3]. Compared to design of new mechanical 
equipment, reuse-oriented redesign is based on the 
remanufacturability of used mechanical equipment and 
considers the effect of the redesign of structure and process on 
quality, performance and second service life of 
remanufactured parts. Reuse-oriented redesign is a basis of 

remanufacturing and it has become a hot research topic of 
academic and industrial communities.  

Currently, plenty of literature is focused on reuse-oriented 
redesign methods. For instance, Du et al. proposed a reuse-
oriented redesign method based on Axiomatic theory and 
Quality Function Deployment (QFD) to normalize and 
optimize redesign process [4]. Zwolinski et al. developed a 
design tool that combines remanufacturing and production to 
facilitate designers implementing the initial product design [5]. 
Song et al. proposed an average life span of parts and multiple 
matching patterns and methods to achieve the optimal 
utilization of parts [6]. Cao et al. proposed a reuse-oriented 
redesign method based on machine tool function and structure 
characteristics for remanufacturing used machine tools [7]. 
The aforementioned literature illustrates that the current 
redesign methods take the maximal reuse of used resource and 
maximal life span of remanufactured product as the objectives 
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1. Introduction 

Reuse-oriented redesign is a significant problem of 
implementing remanufacturing waste products. The redesign 
of used products is similar to new products design, which has 
a direct effect on product remanufacturing efficiency, quality, 
cost, resource efficiency and environmental pollution. Reuse-
oriented redesign of used mechanical equipment is an 
innovative design process for new remanufactured product, in 
which used mechanical equipment and used parts are taken as 
the workblanks with an aim of reusing material and added 
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equipment, reuse-oriented redesign is based on the 
remanufacturability of used mechanical equipment and 
considers the effect of the redesign of structure and process on 
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remanufacturing and it has become a hot research topic of 
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Currently, plenty of literature is focused on reuse-oriented 
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to creatively conduct redesign process based on the structure 
of the used product. While few of them can effectively solve 
the complex coupling problem between the redesign of whole 
equipment and used parts. For instance, when the design of 
parts achieves the optimum, the redesign of the whole 
equipment may not reach the optimum, resulting in that the 
unreliable redesign schemes. On the grounds that, a structure 
coupling model is established to characterize the relationship 
of parts, and a dynamic information transfer and feedback 
model is built to achieve the goal of synthetical redesign from 
equipment level to component level and then to part level.  

Compared to conventional design, reuse-oriented redesign 
is more complex and more factors should be considered due to 
the uncertainties in terms of quality condition of used 
mechanical equipment, remanufacturing process and market 
competition for remanufactured mechanical equipment. On 
top of that, the reuse-oriented redesign of used mechanical 
equipment is based on the existing used product, which is 
restricted by complex spatial structure and more parameters. 
To improve redesign efficiency, a couple of optimization 
algorithms such as genetic algorithm, particle swarm 
optimization and artificial bee colony are used to support 
complex problems solution. In detail, Núñez Cruz et al. 
adopted genetic algorithm to optimize design of humanoid 
robot based on the Limit Cycle Walking stability criterion [8]. 
Liu et al. developed a reliability-based design optimization 
(RBDO) method to tackle the lightweight design of battery 
box, in which particle swarm optimization was used to 
optimize design parameters [9]. While these algorithms are 
limited to the solution quality and speed when dealing with 
large scale complex multi-objective optimization problems. 
Based on this, the A-TLBO method is presented to optimize 
the redesign process. The use of adaptive of teaching factor 
increases the global exploration ability, embodying its 
advantages in solution quality and speed [10, 11]. 

Overall, the current reuse-oriented redesign method for 
used mechanical equipment is short of the cooperation among 
the whole equipment, components and parts. On the grounds 
that, a multi-objective optimization redesign method based on 
dynamic information transfer and feedback is proposed. The 
novelty of this research lies in: 1) characterization of structural 
coupling of parts. A structural coupling model is established to 
characterize relationship of parts; 2) information transfer and 
feedback among equipment, components and parts. The 
dynamic information transfer and feedback model (DITF) is 
established to support the reuse-oriented redesign of used 
mechanical equipment; 3) adaptive optimization. The A-
TLBO algorithm is presented to solve complex multi-
objective optimization problems during the reuse-oriented 
redesign process. The effectiveness and feasibility are 
demonstrated by a case to provide a theoretical support for 
guaranteeing the quality of remanufactured mechanical 
equipment. The method is to enhance the core competitiveness 
of remanufacturing business. 

2. Methodology 

Reuse-oriented redesign (also called redesign) of used 
mechanical equipment aims to obtain the optimum design 

scheme. Firstly, a structure coupling model is established to 
characterize the relationship of parts. Then, remanufacturing 
cost, energy consumptionand material consumption are taken 
as the redesign objectives. Based on these objectives and its 
constraints, the dynamic information transfer and feedback 
model is presented to achieve the collaborative optimization 
between the whole equipment and parts. Finally, the A-TLBO 
method is used to solve this model. The process model is 
shown in Fig. 1. 

 

Fig. 1. Flow chart of reuse-oriented redesign of used mechanical equipment. 

2.1. Structure coupling model of parts 

There has a mutual relationship among the parts in an 
equipment, and the spatial structure between the adjacent 
parts may not only have an impact on its strength, but impacts 
the strength of other structures. The minimum strength of 
structures that are liable to failure determines the whole 
strength of parts [12]. To characterize the complex coupling 
of spatial structure of parts, simulation is adopted to analyze 
the structural strength with a specific spatial structure of parts. 
The structural coupling model of parts can then be established 
via a matrix, which is shown in Eq. (1). 
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Where ijf  represents the mapping function between 

structural strength and spatial structure between the adjacent 
parts. The row of the matrix represents the spatial structure 
strength influence rules of different parts from the adjacent 
parts. The column represents the structure strength impact 
rules of the certain part from the adjacent parts. Eq. (1) 
reflects the structure coupling relationship of parts, 
characterizing the rules between structural strength and spatial 
structure, which provides a guide for optimizing and designing 
the structure of parts. 

2.2. Mechanism of information transfer and feedback model 

Used mechanical equipment is consisted of many 
components and parts. Due to the restrictions in terms of 
space structure, parameters and function between parts, the 
redesign of components and parts becomes very complex. 
Based on this, the dynamic information transfer and feedback 
model is presented to transfer the redesign objectives from 
equipment level to component level and to part level. Transfer 
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objective and feedback functions are established to achieve a 
dynamic adjustment of redesign objectives. With several time 
iteration, the redesign from whole equipment to components 
and to parts can be implemented, and the method is shown in 
Fig. 2. 
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Fig. 2. Structure of reuse-oriented redesign of used mechanical equipment. 

2.3. Multi-objective optimization model 

To increase redesign efficiency, the multi-objective 
optimization model and its constraints are established. The 
remanufacturing companies focus on economic profits and 
environmental benefits. Therefore, remanufacturing cost, 
energy consumption and material consumption are taken as 
the objectives. The mathematical model and its constraints are 
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Where C and N represent the remanufacturing cost of 
used mechanical equipment and the total number of parts of 
mechanical equipment respectively; *

1PC and *
1TC represent 

the unit labor cost and tool cost for disassembly operations 
respectively; dit and *

NjC represent the mean disassembly 
time for the ith part and the cost of purchasing new parts 
respectively; a  and c represent the total number of new 
parts and parts that need to be remanufactured respectively; 

*
MC and rkt  represent the unit remanufacturing cost and 

mean time to remanufacturing the kth used part respectively; 

*
2PC and *

2TC represent the unit labor cost and tool cost for 
reassembly operations respectively; amt and Q represent the 
mean time to reassembly the mth part and the total number of 
parts of the equipment respectively; M , 1 jm and 2km
represent the material consumption for remanufacturing, the 
material weight of the jth new partand the material 
consumption for remanufacturing the kth used part 
respectively. Eq. (3) represents that the total remanufacturing 
cost should be no less than disassembly and reassembly cost 
when the used equipment does not need remanufacturing 
processing operations and should be no more than the cost of 
new components without remanufacturing processing 
operations, and should be no more than the 50% cost of new 
equipment. 0N represents the total number of new 
components for used equipment. Eq. (4) represents that the 
number of components that need to be remanufactured. This 
should be less than the total number of parts of the 
remanufactured equipment. Eq. (5) represents that energy 
consumption during the remanufacturing processing. This 
should be no less than the minimum and should be no more 
than the maximum processing energy consumption of used 
equipment and should be no more than 40% of new product 
energy consumption. Eq. (6) represents that the quality of new 
components and processed components. This should be less 
than the total quality of the whole remanufacturing material. 

0M represents the quality of the type of mechanical 
equipment, and the total material consumption should be no 
more than 30% of total quality of new equipment. 

3. Multi-objective optimization solution 

Currently, many algorithms such as genetical algorithm, 
particle swarm optimization and artificial bee colony are used 
to solve multi-objective optimization problems. While these 
algorithms are limited to solution quality and speed for large 
scale optimization problems. Based on this, the A-TLBO 
method is adopted. This method simulates a process that 
students learn from the teacher through adjusting teaching 
factor, which is used to solve large scale complex multi-
objective optimization problems. The process of this 
algorithm is shown in Fig. 3. 

 

Fig. 3. Flow chart of A-TLBO algorithm. 
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mean time to reassembly the mth part and the total number of 
parts of the equipment respectively; M , 1 jm and 2km
represent the material consumption for remanufacturing, the 
material weight of the jth new partand the material 
consumption for remanufacturing the kth used part 
respectively. Eq. (3) represents that the total remanufacturing 
cost should be no less than disassembly and reassembly cost 
when the used equipment does not need remanufacturing 
processing operations and should be no more than the cost of 
new components without remanufacturing processing 
operations, and should be no more than the 50% cost of new 
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components for used equipment. Eq. (4) represents that the 
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than the total quality of the whole remanufacturing material. 

0M represents the quality of the type of mechanical 
equipment, and the total material consumption should be no 
more than 30% of total quality of new equipment. 

3. Multi-objective optimization solution 

Currently, many algorithms such as genetical algorithm, 
particle swarm optimization and artificial bee colony are used 
to solve multi-objective optimization problems. While these 
algorithms are limited to solution quality and speed for large 
scale optimization problems. Based on this, the A-TLBO 
method is adopted. This method simulates a process that 
students learn from the teacher through adjusting teaching 
factor, which is used to solve large scale complex multi-
objective optimization problems. The process of this 
algorithm is shown in Fig. 3. 

 

Fig. 3. Flow chart of A-TLBO algorithm. 

Tx Mx

* * * * * *
1 1 2 2

1 1 1 1

1

1 2
1 1

min ( ) + + ( )

min

min +

QN a c

P T di Nj M rk P T am
i j k m

c

k
k
a c

j k
j k

C C C t C C t C C t

E E

M m m

   



 


      


 






   



 



18 Han Wang  et al. / Procedia CIRP 80 (2019) 15–20
4 Han Wang/ Procedia CIRP 00 (2019) 000–000 

3.1. Teaching stage 

When conducting the ith iteration, the iM  is set as the 
mean value of the student score and iT  as the teacher. The 
teaching process is in accordance with the following 
difference as showed in Eq. (7). 

 
 i new iDifference r M TF M             (7) 

 
Where ir  represents the random number of [0, 1]; TF

represents the teaching factor and its value is dependent on 
the Eq. (8). 
 

 1 0,1TF round rand              (8) 
 

The value after teaching is determined by the Eq. (9): 
 

,new i iX X Difference             (9) 
 

Where iX  and ,new iX  represent the ith student’s 
knowledge degree before and after teaching respectively.  

If    ,i inewf X f X , then the iX  is replaced by 
,inewX  and the individuals are updated.  

3.2. Learning stage 

In this stage, students learn and update according to the 
difference between itself and other students. The learning 
process is presented as follows: 
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Where ir  represents a random number of [0,1], iX  and 

,new iX  represent the knowledge degree of the ith student 
before and after teaching respectively, jX  represents the 
knowledge degree of the jth student before teaching. 

If    ,new i if X f X , then the iX  is replaced by 
,new iX  and the individuals are updated. 

3.3. Teaching factor 

In TLBO algorithm, the teaching factor (TF) determines 
the mean value. In the pre-teaching stage, students and 
teachers are different because the students are strange for the 
knowledge they will learn. Thus, studying efficiency of 
students is high and they can learn a lot quickly. With time 
going by, students have learnt a lot of knowledge and the 
difference between students and teachers decreases gradually. 
The studying efficiency of students decreases and they can 
learn little knowledge slowly. In this algorithm, the smaller of 
TF means the higher exploration ability of the algorithm but 
the lower searching ability; the larger of TF means the lower 
exploration ability of the algorithm but the higher searching 
ability. To solve this problem, this paper improves the 
teaching factor and proposes the A-TLBO algorithm. TF 

value decreases linearly with the increase of iterations and the 
detail is shown as follows: 
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  (11) 
 

Where maxTF and minTF represent the maximum and 
minimum teaching factor respectively, maxt and it  represent 
the maximum iteration and the current iteration respectively. 

4. Case study  

Turning lathe is a very common machine tool applying to 
process axis parts, sleeve parts and other types of rotary 
workpieces, and the demands and inventory of it are very 
large. Used turning-lathe (model C6132) is taken as the 
example to demonstrate the effectiveness of the proposed 
redesign method. This type of lathe is mainly consisted of 
gearbox, feeding box, sliding box, turntable, tool rest, 
tailstock, lathe bed, light bar and screw bar. In accordance 
with the fault feature characterization method in reference 
[13], the failure mode, fault features and its damage volume 
can be obtained. According to the method in reference [14], 
the remaining service life prediction of these used parts can be 
obtained.  

4.1. Redesign model based on dynamic information transfer 
and feedback model 

In accordance with spatial structure analysis in Section 2.1, 
the coupling relationship between parts can be understood. 
Then the used turning-lathe (model C6132) is studied from 
equipment level, component level and part level. A dynamic 
information transfer and feedback model of this lathe are 
established as showed in Fig. 4.  

Fig. 4. Reuse-oriented redesign method for used turning lathe C6132 
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4.2. Multi-objective optimization redesign of used turning 
lathe 

Each experiment has undergone 50 iterations and Table 1 
records 14 iterations of the experiment. According to Figs. 5-6, 
TLBO algorithm converges to 0.251 at 13 iterations, while A-
TLBO algorithm converges to 0.245 at 11 iterations. Table 2 
records the best global minimum, worst global minimum and 
mean global minimum in six experiments of the two 
algorithms. These three indicators reflect the performance of 
stability and result during the solution process.  

 
 
 
 
 
 
 
 

 
 
 

 

Fig. 5. Solution process of TLBO. 

 
 
 
 
 
 
 

 

 

Fig. 6. Solution process of A-TLBO. 

 Table 1.Objectives value of two algorithm. 

Algorithm 
Iteration 

1 2 3 4 5 6 7 

TLBO 84.367 76.139 18.440 7.098 4.948 0.425 0.272 

A-TLBO 67.628 9.974 3.277 1.073 0.386 0.295 0.273 

Algorithm 
Iteration  

8 9 10 11 12 13 14 

TLBO 0.257 0.255 0.254 0.253 0.252 0.251 0.251 

A-TLBO  0.259 0.252 0.249 0.245 0.245 0.245 0.245 

 

 

 

 

Table 2.Experimental result comparisons. 

Algorith
m TLBO A-TLBO 

Experim
ent 

Best 
global 
minimu
m 

Worst 
global 
minimu
m 

Mean 
global 
minimu
m 

Best 
global 
minimu
m 

Worst 
global 
minimu
m 

Mean 
global 
minimu
m 

1 0.2512 69.725
5 4.8056 0.2451 0.2491 0.2452 

2 0.2512 69.725
5 4.7043 0.2451 0.2491 0.2452 

3 0.2512 69.725
5 4.6075 0.2451 0.2491 0.2452 

4 0.2512 69.725
5 4.5148 0.2451 0.2491 0.2452 

5 0.2512 69.725
5 4.4259 0.2451 0.2491 0.2452 

6 0.2512 69.725
5 4.5116 0.2451 0.2491 0.2452 

 
Through a comparison of the best global minimum and 

worst global minimum in Table 2, the two algorithms keep the 
stability of solutions, while the best global minimum of 
TLBO algorithm is distinctly different from other values. The 
mean global minimum of TLBO algorithm tends to decrease, 
while A-TLBO algorithm always keep stable and its solutions 
are better than TLBO algorithm. This is because the 
utilization of adaptive adjustment strategy speeds up the 
solution process and improves solution performance during 
the learning stage. Table 3 shows a comparison of redesign 
schemes and the corresponding results through two algorithms. 

Table 3. Comparisons of redesign schemes and its results. 

Algorith
m 

Redesign schemes of used parts Cost/R
MB 

Energ
y/kJ 

Material
/kg 

Slidin
g box 

Tool 
rest 

Ligh
t bar 

Screw 
bar 

TLBO U R U R 7756 13530 95.13 
A-TLBO U U R R 7240 12705 82.68 

Note: U represents upgrade; R represents remanufacturing. 
In accordance with Table 3, compared to TLBO algorithm, 

A-TLBO algorithm can reduce cost up to 6.65%, energy 
consumption up to 6.10% and save material up to 13.1%. The 
proposed results show that A-TLBO algorithm is better than 
TLBO with respect to solution speed and quality.  

5. Conclusion 

A redesign method for used mechanical equipment is 
presented. Firstly, the complex coupling relationship between 
the whole equipment and components and parts is analyzed. 
The dynamic information transfer and feedback method is 
applied to cooperate and control the equipment redesign, 
components and parts objectives synergistically. Then, the 
multi-objective optimization model is established and A-
TLBO algorithm is proposed to solve this model and obtain 
the optimal redesign scheme of used mechanical equipment. 
Finally, the used turning-lathe (model C6132) is taken as the 
example to demonstrate the effectiveness of the proposed 
method. Comparisons of the results demonstrate that the 
proposed redesign method could improve the solution speed, 
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3.1. Teaching stage 

When conducting the ith iteration, the iM  is set as the 
mean value of the student score and iT  as the teacher. The 
teaching process is in accordance with the following 
difference as showed in Eq. (7). 
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Where ir  represents the random number of [0, 1]; TF

represents the teaching factor and its value is dependent on 
the Eq. (8). 
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The value after teaching is determined by the Eq. (9): 
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Where iX  and ,new iX  represent the ith student’s 
knowledge degree before and after teaching respectively.  

If    ,i inewf X f X , then the iX  is replaced by 
,inewX  and the individuals are updated.  
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In this stage, students learn and update according to the 
difference between itself and other students. The learning 
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before and after teaching respectively, jX  represents the 
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In TLBO algorithm, the teaching factor (TF) determines 
the mean value. In the pre-teaching stage, students and 
teachers are different because the students are strange for the 
knowledge they will learn. Thus, studying efficiency of 
students is high and they can learn a lot quickly. With time 
going by, students have learnt a lot of knowledge and the 
difference between students and teachers decreases gradually. 
The studying efficiency of students decreases and they can 
learn little knowledge slowly. In this algorithm, the smaller of 
TF means the higher exploration ability of the algorithm but 
the lower searching ability; the larger of TF means the lower 
exploration ability of the algorithm but the higher searching 
ability. To solve this problem, this paper improves the 
teaching factor and proposes the A-TLBO algorithm. TF 

value decreases linearly with the increase of iterations and the 
detail is shown as follows: 

 

     
2

max max
max min max min min

max max

1
2

i it t t tTF t TF TF TF TF TF
t t

     
          
     

  (11) 
 

Where maxTF and minTF represent the maximum and 
minimum teaching factor respectively, maxt and it  represent 
the maximum iteration and the current iteration respectively. 

4. Case study  

Turning lathe is a very common machine tool applying to 
process axis parts, sleeve parts and other types of rotary 
workpieces, and the demands and inventory of it are very 
large. Used turning-lathe (model C6132) is taken as the 
example to demonstrate the effectiveness of the proposed 
redesign method. This type of lathe is mainly consisted of 
gearbox, feeding box, sliding box, turntable, tool rest, 
tailstock, lathe bed, light bar and screw bar. In accordance 
with the fault feature characterization method in reference 
[13], the failure mode, fault features and its damage volume 
can be obtained. According to the method in reference [14], 
the remaining service life prediction of these used parts can be 
obtained.  

4.1. Redesign model based on dynamic information transfer 
and feedback model 

In accordance with spatial structure analysis in Section 2.1, 
the coupling relationship between parts can be understood. 
Then the used turning-lathe (model C6132) is studied from 
equipment level, component level and part level. A dynamic 
information transfer and feedback model of this lathe are 
established as showed in Fig. 4.  
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4.2. Multi-objective optimization redesign of used turning 
lathe 

Each experiment has undergone 50 iterations and Table 1 
records 14 iterations of the experiment. According to Figs. 5-6, 
TLBO algorithm converges to 0.251 at 13 iterations, while A-
TLBO algorithm converges to 0.245 at 11 iterations. Table 2 
records the best global minimum, worst global minimum and 
mean global minimum in six experiments of the two 
algorithms. These three indicators reflect the performance of 
stability and result during the solution process.  
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 Table 1.Objectives value of two algorithm. 

Algorithm 
Iteration 

1 2 3 4 5 6 7 

TLBO 84.367 76.139 18.440 7.098 4.948 0.425 0.272 

A-TLBO 67.628 9.974 3.277 1.073 0.386 0.295 0.273 

Algorithm 
Iteration  

8 9 10 11 12 13 14 

TLBO 0.257 0.255 0.254 0.253 0.252 0.251 0.251 

A-TLBO  0.259 0.252 0.249 0.245 0.245 0.245 0.245 

 

 

 

 

Table 2.Experimental result comparisons. 

Algorith
m TLBO A-TLBO 

Experim
ent 

Best 
global 
minimu
m 

Worst 
global 
minimu
m 

Mean 
global 
minimu
m 

Best 
global 
minimu
m 

Worst 
global 
minimu
m 

Mean 
global 
minimu
m 

1 0.2512 69.725
5 4.8056 0.2451 0.2491 0.2452 

2 0.2512 69.725
5 4.7043 0.2451 0.2491 0.2452 

3 0.2512 69.725
5 4.6075 0.2451 0.2491 0.2452 

4 0.2512 69.725
5 4.5148 0.2451 0.2491 0.2452 

5 0.2512 69.725
5 4.4259 0.2451 0.2491 0.2452 

6 0.2512 69.725
5 4.5116 0.2451 0.2491 0.2452 

 
Through a comparison of the best global minimum and 

worst global minimum in Table 2, the two algorithms keep the 
stability of solutions, while the best global minimum of 
TLBO algorithm is distinctly different from other values. The 
mean global minimum of TLBO algorithm tends to decrease, 
while A-TLBO algorithm always keep stable and its solutions 
are better than TLBO algorithm. This is because the 
utilization of adaptive adjustment strategy speeds up the 
solution process and improves solution performance during 
the learning stage. Table 3 shows a comparison of redesign 
schemes and the corresponding results through two algorithms. 
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Algorith
m 
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TLBO U R U R 7756 13530 95.13 
A-TLBO U U R R 7240 12705 82.68 

Note: U represents upgrade; R represents remanufacturing. 
In accordance with Table 3, compared to TLBO algorithm, 

A-TLBO algorithm can reduce cost up to 6.65%, energy 
consumption up to 6.10% and save material up to 13.1%. The 
proposed results show that A-TLBO algorithm is better than 
TLBO with respect to solution speed and quality.  

5. Conclusion 

A redesign method for used mechanical equipment is 
presented. Firstly, the complex coupling relationship between 
the whole equipment and components and parts is analyzed. 
The dynamic information transfer and feedback method is 
applied to cooperate and control the equipment redesign, 
components and parts objectives synergistically. Then, the 
multi-objective optimization model is established and A-
TLBO algorithm is proposed to solve this model and obtain 
the optimal redesign scheme of used mechanical equipment. 
Finally, the used turning-lathe (model C6132) is taken as the 
example to demonstrate the effectiveness of the proposed 
method. Comparisons of the results demonstrate that the 
proposed redesign method could improve the solution speed, 
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stability and the quality, whilst could reduce remanufacturing 
cost, energy consumption and material consumption of used 
mechanical equipment. This research fails to consider some 
factors such as the whole life cycle carbon emission and 
government policy about remanufacturing used mechanical 
equipment. Taking these factors into consideration can be the 
future research direction. 
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