20 research outputs found

    Detection of Android Malware using Feature Selection with a Hybrid Genetic Algorithm and Simulated Annealing (SVM and DBN)

    Get PDF
    Because of the widespread use of the Android operating system and the simplicity with which applications can be created on the Android platform, anyone can easily create malware using pre-made tools. Due to the spread of malware among many helpful applications, Android users are experiencing issues. In this study, we showed how to use permissions gleaned from static analysis to identify Android malware. Utilising support vector machines and deep belief networks, we choose the pertinent features from the set of permissions based on this methodology. The suggested technique increases the effectiveness of Android malware detection

    Analysis of Feature Categories for Malware Visualization

    Get PDF
    It is important to know which features are more effective for certain visualization types. Furthermore, selecting an appropriate visualization tool plays a key role in descriptive, diagnostic, predictive and prescriptive analytics. Moreover, analyzing the activities of malicious scripts or codes is dependent on the extracted features. In this paper, the authors focused on reviewing and classifying the most common extracted features that have been used for malware visualization based on specified categories. This study examines the features categories and its usefulness for effective malware visualization. Additionally, it focuses on the common extracted features that have been used in the malware visualization domain. Therefore, the conducted literature review finding revealed that the features could be categorized into four main categories, namely, static, dynamic, hybrid, and application metadata. The contribution of this research paper is about feature selection for illustrating which features are effective with which visualization tools for malware visualization

    Analytics on malicious android applications

    Get PDF
    The widespread of mobile applications has led to increase smartphone malware. Detecting malware requires extracting features to determine the malware apps from non-malware apps. To understand malware apps' features, we need a better understanding of the requested permissions in manifest file of apk file. In this paper, we present our framework based on extracting apk's permissions with the aims to detect the malware upon granted permissions in mobile app. The permissions keywords are extracted from the manifest file of apk file using VirusTotal website. These collected applications and their permissions keywords will go through pre-data analytics process before being trained to various machine learning classifiers. We collected around 30 apps from Google play as non-malware apps and 30 malicious apps from different sources such as PROGuard, Contagio Mobile blog and the Drebin dataset. The permissions keywords of the collected apk are extracted and saved to build final dataset that contains 50 samples of benign and malignant applications with the final collections of permissions keywords. Finally, the dataset is fed to machine learning. By utilizing several classifiers such as NaiveBayes, sequential minimal optimization (SMO), Decision Table, ZeroR and Decision trees (J48 and Random Forests, the results show that sequential minimal optimization (SMO) classifier achieved high performance in the detection rate of the classifier with an acceptable accuracy of 76 %

    Systematic literature review for malware visualization techniques

    Get PDF
    Analyzing the activities or the behaviors of malicious scripts highly depends on extracted features. It is also significant to know which features are more effective for certain visualization types. Similarly, selecting an appropriate visualization technique plays a key role for analytical descriptive, diagnostic, predictive and prescriptive. Thus, the visualization technique should provide understandable information about the malicious code activities. This paper followed systematic literature review method in order to review the extracted features that are used to identify the malware, different types of visualization techniques and guidelines to select the right visualization techniques. An advanced search has been performed in most relevant digital libraries to obtain potentially relevant articles. The results demonstrate significant resources and types of features that are important to analyze malware activities and common visualization techniques that are currently used and methods to choose the right visualization technique in order to analyze the security events effectively

    Machine-Learning Classifiers for Malware Detection Using Data Features

    Get PDF
    The spread of ransomware has risen exponentially over the past decade, causing huge financial damage to multiple organizations. Various anti-ransomware firms have suggested methods for preventing malware threats. The growing pace, scale and sophistication of malware provide the anti-malware industry with more challenges. Recent literature indicates that academics and anti-virus organizations have begun to use artificial learning as well as fundamental modeling techniques for the research and identification of malware. Orthodox signature-based anti-virus programs struggle to identify unfamiliar malware and track new forms of malware. In this study, a malware evaluation framework focused on machine learning was adopted that consists of several modules: dataset compiling in two separate classes (malicious and benign software), file disassembly, data processing, decision making, and updated malware identification. The data processing module uses grey images, functions for importing and Opcode n-gram to remove malware functionality. The decision making module detects malware and recognizes suspected malware. Different classifiers were considered in the research methodology for the detection and classification of malware. Its effectiveness was validated on the basis of the accuracy of the complete process

    Artificial Intelligence and Machine Learning in Cybersecurity: Applications, Challenges, and Opportunities for MIS Academics

    Get PDF
    The availability of massive amounts of data, fast computers, and superior machine learning (ML) algorithms has spurred interest in artificial intelligence (AI). It is no surprise, then, that we observe an increase in the application of AI in cybersecurity. Our survey of AI applications in cybersecurity shows most of the present applications are in the areas of malware identification and classification, intrusion detection, and cybercrime prevention. We should, however, be aware that AI-enabled cybersecurity is not without its drawbacks. Challenges to AI solutions include a shortage of good quality data to train machine learning models, the potential for exploits via adversarial AI/ML, and limited human expertise in AI. However, the rewards in terms of increased accuracy of cyberattack predictions, faster response to cyberattacks, and improved cybersecurity make it worthwhile to overcome these challenges. We present a summary of the current research on the application of AI and ML to improve cybersecurity, challenges that need to be overcome, and research opportunities for academics in management information systems
    corecore