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Abstract. The spread of ransomware has risen exponentially over the past decade, 
causing huge financial damage to multiple organizations. Various anti-
ransomware firms have suggested methods for preventing malware threats. The 
growing pace, scale and sophistication of malware provide the anti-malware 
industry with more challenges. Recent literature indicates that academics and anti-
virus organizations have begun to use artificial learning as well as fundamental 
modeling techniques for the research and identification of malware. Orthodox 
signature-based anti-virus programs struggle to identify unfamiliar malware and 
track new forms of malware. In this study, a malware evaluation framework 
focused on machine learning was adopted that consists of several modules: dataset 
compiling in two separate classes (malicious and benign software), file 
disassembly, data processing, decision making, and updated malware 
identification. The data processing module uses grey images, functions for 
importing and Opcode n-gram to remove malware functionality. The decision 
making module detects malware and recognizes suspected malware. Different 
classifiers were considered in the research methodology for the detection and 
classification of malware. Its effectiveness was validated on the basis of the 
accuracy of the complete process. 

Keywords: artificial intelligence; cyber-attacks; machine learning; malware, 
ransomware. 

1 Introduction 

Malware is defined as intrusive software that penetrates or destroys a system 
without permission of the user. Malware is a common concept that threatens all 
sorts of devices. A basic malware distinction is between file infectors and 
individual malware. According to the specific behavior malware items can be 
classified into adware, viruses, trojans, spyware, rootkits, etc. The process of 
malware detection through traditional signature-based methods (Santos, et al. [1]) 
is very problematic because all older and new malware programs have 
polymorphic layers to avoid detection; the use of lateral mechanisms assists in 
developing new malware versions in a shorter time in order to avoid antivirus 
detection. For malware identification through dynamic file review in a virtual 
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world, the interested reader is referred to Rieck et al. [2]. The classical methods 
for detecting metamorphic viruses are discussed in Konstantinou, et al. [3]. 

Cyber threats become possible when criminals use malware as a primary weapon 
in their operations. Therefore, one information protection issue is to detect 
ransomware in time so that it can be blocked to prevent the attackers from 
accomplishing their goals, or at least delay them long enough to stop 
them.Various detection methods, such as regulatory or signature-based methods, 
enable the analyst to apply rules manually based on specific data to identify and 
automatically describe harmful or sensitive data to the specifications of the 
detection model. The automated generation of signatures is a middle ground 
between these two methods. To date, manual and automated rules and signatures 
have been used in the information security field using machine learning and 
mathematical techniques due to the low false positive rates they can achieve.  

In recent years, however, three advances have strengthened the potential for 
progress in machine-based learning techniques, suggesting that these strategies 
will attain high detection rates at low false positive rates without the pressure of 
producing manual signatures. The first such trend is the rise of commercial threat 
intelligence feeds that offer large quantities of new malware, which means that 
the safety community has access to labeled malware for the first time. The second 
trend is that processing power has become cheaper, so researchers can travel more 
easily around learning models in malware detection systems and fit larger and 
more complex models to the results. Thirdly, machine learning has developed as 
a discipline, which means that researchers have more resources for effective 
detection models that can achieve both accuracy and scalability breakthroughs. 

1.1 Motivation of the Study 

Malware (such as viruses, trojans, ransomware, and bots) pose substantial 
emerging security risks to Internet users. Anti-malware security services from a 
variety of firms, including Comodo, Kaspersky, Kingsoft, and Symantec, offer 
primary protection against malware. To keep up with the growing number of 
malware items, intelligent methods for accurate and reliable malware 
identification from large everyday sample collections are urgently needed. This 
research first provides a brief introduction about malware, types of malware and 
the need for malware detection using machine-learning techniques. In these 
methods, the process of detection is usually divided into two stages: feature 
extraction and classification. The result is subjected to malware detection by five 
different classifiers that are used in the decision making process and among those 
the best output is selected. 
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1.2 Malware 

Malware is software that is used or designed to interrupt network processes, 
capture personal information, or control private computer systems. It can be 
found in JavaScript, scripts, active content, and applications. Malware is 
commonly used as a term to refer to several types of software that is offensive, 
disruptive, or irritating.  

Malware Use:  

1. Many early infectious programs were written as experiments or pranks, 
including the first Internet worm.  

2. Today, malware is mostly used to capture confidential information for the 
benefit of others, including personal, financial and business information.  

3. Malware is often used extensively to capture or destroy secured information 
from government or business websites.  

4. Malware, however, is also used to obtain personal data such as credit card 
numbers, social security numbers, bank accounts etc. 

1.3 Types of Malware 

It is helpful to define malware and provide a clear understanding of the techniques 
and reasoning behind it. Depending on its intent, malware can be classified into 
several groups. The classes are the following:  

1. Bugs – This is the most simple software type. It is a single piece of software 
that starts excepting permission of the user when it is replicated, or other 
software is corrupted/modified (Horton [4]).  

2. Worms – This form of malware is pretty much like a virus, but a worm will 
spread to other devices across a network (Smith [5]).  

3. Trojans – This term is used to describe types of malware that are meant to 
function as legitimate applications. Moffie, et al. [6] explain that social 
engineering is the general spreading vector used in this field, which implies 
that people believe they are installing a legitimate application. 

4. Adware – The aim of this sort of malware is to display ads on a system. 
Adware is considered as a subset of spyware but is unlikely to lead to 
spectacular outcomes. 

5. Spyware – As the name suggests, this is malware that enables hacking. 
Typical spyware actions include monitoring of the user history to send 
targeted ads and follow behaviors to market them to mediators (Chien, et al. 
[7]).  

6. Rootkit – Its interface allows intruders higher authorization to access data on 
a system than is permissible. This may be used for example to provide illegal 
administrative user permission. Rootkits often mask their presence and are 
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often unnoticeable on the device, rendering the identification and removal 
exceedingly difficult (Chuvakin, et al. [8]).  

7. Backdoor – This is a form of malware that allows attackers to access a device 
in an additional hidden fashion. It is not dangerous on its own but offers more 
room for attackers. As a result, backdoors are seldom used autonomously, 
they typically precede other forms of malware attacks.  

8. Keylogger – This malware is used to record all keys that are pressed by the 
user and store sensitive information such as card numbers and passwords 
(Chumachenk,o et al. [9]).  

9. Malware – This malware is intended to encipher all data on a device and 
force the target to send cash to obtain the decipher key. A ransom 
compromised system is normally ‘frozen’, so the user is unable to access any 
file. A screen image is used to supply data about the requests of the attacker 
(Savage, et al. [10]). 

10. Remote Control Software (RAT) – A RAT helps the intruders to enter a 
device and make changes to it as if they have physical access. It can be built-
in but used with malicious motives, like in the example of TeamViewer. 

 

Figure 1 Top 10 Windows malware [30]. 

2 Methods of Detection 

Malware identification approaches can be categorized into signatures-based and 
behavior-based strategies. It is crucial to consider the fundamentals of two 
malware analysis approaches before moving to the discussion of these methods: 
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place ‘statically’, i.e. without processing any files. In contrast, dynamic file 
processing is carried out on a virtual machine.  

Static research is interpreted as ‘reading’ the source code of malware and 
attempting to deduce behavioral features from the code. Various strategies can be 
used in static analyses (Prasad, Annangi & Pendyala [11]):  

1. File format inspection: The file metadata can be helpful. For example 
Windows PE files contain information about time to compile, imported and 
exported functions, etc.  

2. String extraction: This means program output inspection (for example, status 
or error messages) and the inference of malware process information.  

3. Fingerprinting: This involves the calculation of the cryptographic hash, the 
identification of environmental items, including hard-coded usernames, 
passwords or strings in the registry.  

4. AV scanning: If the examined file is known ransomware, it can possibly be 
found by all anti-virus scanners available. While this identification can seem 
insignificant, AV vendors or sandboxes use this identification tool to 
‘confirm’ their results.  

5. Disassembly: This involves the reverse of the program code to combine the 
language and structure and purpose of applications. This is the most widely 
used and accurate static analysis method.  

6. Dynamic and static analysis: in contrast to static analysis, in dynamic 
analysis the file under investigation is tracked during execution and the 
features and purposes of the file are derived from these details. The file is 
normally run in a simulated environment, such as a sandbox. All behavioral 
characteristics such as opened directories, generated mutexes, etc. can be 
found during this method of analysis. It is also easier compared to static 
analysis. Static analysis only reveals the behavioral situation that is 
applicable to the present device characteristics. If a virtual machine is built 
under Windows 7, then the results may vary from those of Windows 8.1 
malware (Egele, et al. [12]).  

One form of static analysis is called signature-based analysis and is based on 
pre-defined signatures, which may be fingerprints, static strings, SHA1 or 
MD5 hash, or metadata tabs. The identification condition will be the 
following: when a file appears on a device, the anti-virus program analyzes 
it statically. If one of the signatures matches, an alarm is activated such as 
‘This file is suspect’. Most frequently this analysis method is appropriate and 
familiar malware samples are also found based on hash values. 
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2.1 The Need for Machine Learning 

In the past decade, the study and the use of machine-learning tools have expanded 
to solving tasks of malware identification and classification. Fig. 2 depicts the 
machine-learning workflow of malware detection. Without the confluence of 
three recent innovations, the progress and convergence of machine-learning 
methods would not have been possible:  

1. The first change is a spike in malware feeds, which means that for the first 
time branded malware is not only available in the defense area but also in the 
testing area. The size of this feed varies from small top-quality specimens, 
such as those provided by Microsoft [13], to vast quantities of malware, such 
as Zoo [14] and Chu [15].  

2. Secondly, computing technology has grown exponentially and has become 
affordable and closer to the budgets of most researchers at the same time. As 
a result, researchers have improved the methods of iterative training and 
applied bigger and more complicated models and results.  

3. Thirdly, the field of machine learning has advanced more quickly over recent 
decades, taking the precision and scalability of a variety of tasks such as 
device perception, natural language processing and speech recognition to 
new levels.  

Signature-based malware detectors can do well with malware that has previously 
been detected by many anti-virus vendors. However, they cannot detect 
polymorphic malware that can modify its signatures or new malware, for which 
no signatures have been created yet. The sensitivity of heuristic detectors is not 
always sufficient to identify these correctly, resulting in numerous false positives 
and false negatives (Baskaran, et al. [16]).  

The high distribution rate of polymorphic viruses dictates the need for modern 
detection methods. One solution to this problem is to focus on heuristic analysis 
combined with machine learning approaches that provide better detection results 
(Figure 2). 

 
Figure 2 Machine learning workflow. 
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When using a heuristic process, there must be a certain level of malware activity, 
which determines the number of heuristics necessary to identify a program as 
malicious. For instance, a variety of suspicious operations such as ‘changed 
registry key’, ‘link created’, ‘changed permit’, etc., may be identified. It would 
also assume that every program that causes at least five of such operations may 
be considered malicious. While this strategy gives some degree of reliability, it 
is not necessarily valid, since there are features that may have extra ‘weight’ 
compared to others, for example, ‘modified allowances’ usually has more drastic 
effects on a device than ‘adjusted registry key’. In comparison, certain 
combinations of features may be more questionable than the features separately 
(Rieck, et al. [17]). 

3 Related Work 

In 2001, Schultz, et al. [18] launched machine learning for finding new, static-
based malware, byte n-grams on program executables, and strings for 
functionality extraction writers. In 2007, Bilar [19] released Opcode, a malware 
finder to investigate the distribution of opcode frequency in non-malicious and 
malicious scripts. In 2007, Elovici, et al. [20] used Feature Range and Decision 
Tree (5 grams, top 300, FS), Bayesian Network (5 grams), Artificial Neural 
Network (5 grams, top 300, FS), Decision Tree (using the PE), BN (using the PE) 
and accuracy of 95.8 percent. In 2008, Moskovitch, et al. [21] used philtres for 
the collection of functions. For the collection and classification of functions and 
Decision Tree (DT), Naïve Bayes (NB), and Adaboost, Neural Support Networks 
(ANN). The assistance of support vector machine (SVM) and M1 (DT and NB 
boosted) using Fisher score and gain ratio (GR) had an accuracy of 94.9%.  

Again, Moskovitch, et al. [22] used the n-gram (2,3,4,5,6 grams) of opcodes as 
standard and used the collection of document frequency (DF), GR and FS features 
in 2008. They used the ANN, DT, Boosted DT, NB and Boosted NB classification 
algorithms, which were outperformed by ANN, DT, BDT in retaining a low false 
positive score.  

Santos, et al. [23] concluded in 2011 that supervised learning includes labeling 
data so that semi-controlled learning was introduced to recognize unknown 
malware. In 2011, the frequency of operating codes was again provided by 
Santos, et al. [24]. They used the function selection approach and various 
classifiers, i.e. DT, K-Closest Neighbors (KNN, Bayesian Network), Support 
Vector Machine (SVM) with an opcode sequence length of 92.92% and an 
opcode sequence length of 95.90%. Shabtai, et al. used n-gram opcode pattern 
features in 2012 to define the best available tool for document frequency (DF), 
G-mean and Fisher ranking. They used several classifiers in their method, with 
Random Forest exceeding 95.146% accuracy (Shabtai, et al. [25]).  
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In 2016, Ashu, et al. [26] proposed a new method for high-precision detection of 
unknown malware. They studied the frequency of opcodes and put them together. 
The authors tested thirteen classifiers, from which FT, J48, NBT, and Random 
Forest were included in the WEKA machine learning stage, and obtained over 
96.28% accuracy for malware. In 2016, Sahay, et al. [27] using the Optimal K 
Means Clustering algorithm, clustered malware executables and these groups 
were used by classifiers to identify unknown malware as promising training 
features (FT, J48, NBT, and Random Forest). They found that the identification 
by the proposed solution of unknown malware had 99.11% accuracy.  

Some scholars have recently been working on a new malware dataset for Kaggle 
[28]. In 2016, Ahmadi, et al. [29] collected Microsoft malware data and hex 
dump-based characteristics used (string length, metadata, entropy, n-gram, and 
image depiction) and also characteristics derived from unmounted files and the 
classification algorithms of XGBoost (metadata, icon duration, opcodes, 
registries, etc.). They achieved an accuracy of ~99.8%. For the 2017 classification 
of polymorphic malware, Drew, et al. [30] employed the Super Threaded 
Reference Free Alignment-Free N-sequence Decoder (STRAND) classifier. 
They introduced an ASM sequence model and achieved a precision of more than 
98.59% with a 10-fold cross-validation approach. 

In Souri, et al. [31], a number of malware detection techniques are presented in 
two categories: 

1. signature-based methods, and  
2. behavior-based methods. The survey, however, did not include either a study 

of the current deep learning methods or the types of features used for malware 
detection and classification in data-mining techniques. Ucci, et al. [32] 
categorized the methods according to:  
a. What is the objective problem they are trying to solve? 
b. What are the types of characteristics taken from portable executable files 

(PEs), and  
c. Which machine learning algorithms they use. Although the research 

provides a full overview of the taxonomy of functions, new research 
trends, notably multimodal and deep learning approaches, are not 
outlined.  

Ye, et al. [33] cover common malware-detection machine-learning methods, 
consisting of the discovery, compilation and classification of items. However, 
core features like entropy or structural entropy and certain complex 
characteristics such as network operation, opcodes and API tracks are absent. In 
comparison, deep learning techniques or multimodal malware identification 
techniques are not included. Finally, Razak, et al. [34] have done a malware 
bibliometric study to examine publications related to malware by region, 
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organization, and author. However, the paper does not define the features of 
malware detectors and does not consider the latest technologies in this field. 
Sakhnini, et al. (2019) [44] present a bibliometric survey focusing on the security 
aspects of IoT enabled smart grids. Furthermore, the authors address the problem 
of the different types of cyber attacks that they found related to a particular topic. 
Yazdinejad, et al. (2020) [45] designed a novel RNN model in order to detect 
malware threats in cryptocurrencies. The authors for this particular study 
collected 500 samples of cryptocurrency malware and 200 samples of goodware. 

Table 1 Recent research in machine learning-based Android malware detection. 

Authors Features Algorithm Comment 

Sahs & Khan 
(2012) [46] 

Permissions, 
CFG 

subgraphs 
1-class SVM 

Sahs & Khan’s approach yielded high 
recall with low precision. The vast 
majority of our in-lab classifiers 

yielded both a high recall and a high 
precision. 

 

Amos, et al. 
(2013) [47] 

Profiling 
(dynamic) 

Random 
Forest, 

C4.5, etc. 

Our closest experiment (goodware/ 
malware ratio: 1/2) yielded dozens of 
classifiers with equivalent or better 

performance. 
 

Yerima, 
et al. (2013) 

[48] 

API calls, 
external 

tool execution, 
permissions 

(static) 

Bayesian 

Our closest in-lab experiment 
(goodware/malware ratio: 1) 

yielded 74 classifiers with both 
higher recall and higher precision 

than Yerima, et al.’s best classifier. 
 

Canfora, et al. 
(2013) [49] 

SysCalls, 
permissions 

C4.5, Random 
Forest, etc. 

In our closest experiment by dataset 
size (good ware/malware ratio: 1/2), 
our worst classifier performed better 

than Canfora, et al.’s best classifier. In 
our closest experiment by good 
ware/malware ratio (1), the vast 

majority of our classifiers performed 
better than Canfora, et al.’s best 

classifier. 
 

Wu, et al. 
(2012) [50] 

Permissions, 
API calls, 

etc. 

KNN, Naive 
Bayes 

More than 100 of our in-lab classifiers 
yielded both a higher recall and a 

higher precision than Wu, et al.’s best 
classifier. 

3.1 Research Issues and Challenges 

The following section discusses some of the problems and concerns that security 
scientists face.  
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1. Class imbalance: Collecting successful training data complicates aspects of 
any machine-learning problem. Machine-learning classifiers are as 
successful as the data they are fed to be qualified. Correctly labeling 
information is highly necessary to detect malware and can be a process that 
takes a lot of time.  

2. Open and available benchmarks: The role of identifying and classifying 
malware is not the same as other programs with rich databases in the testing 
community. It includes digit scoring, voice recognition, photo labeling, etc. 
Legal limitations make this problem worse. Although web pages like 
VirusShare and VX Heaven openly distribute malware binaries, benign 
binaries are also protected by copyright laws from sharing. Nevertheless, 
benign and malicious binaries can only be accessed in bulk through providers 
such as VirusTotal for internal use, but subsequent distribution is forbidden.  

3. Concept drift: The word ‘concept drift’ is used in the machine-learning 
literature to refer to the issue of interaction evolution in knowledge. 
Supervised learning is a function of the computer to transform an input to an 
output based on a series of input output samples. In technical terms, the 
problem is that the mapping function (f) given input data (x) is approximated 
in order to estimate an output (y), y = f(x). Common computer apps such as 
automated sorting, text categorization, or voice recognition presume that the 
data is taken from a population that is stationary. They believe that data 
mapped in the past will remain true in the future and that new data and the 
relations between input and output do not change over time. This does not 
extend to the issue of malware detection and classification.  

4. Adversarial learning: Malware learns to live and function. In other words, 
malicious software must continuously improve in order to resist anti-malware 
detection. As a result, there is a strong incentive for malware authors to 
attempt to evade detection by using obscuring strategies (You, et al., 2010 
[35]; O’Kane, et al., 2011 [36]).  

5. Form interpretability: Understanding the latest available mechanical learning 
techniques is a problem (Shirataki & Yamaguchi, 2017[37]; Gilpin, et al., 
2018 [38]). Many models being used are called a black box. A black box 
comes with an input X, which generates an output Y by a series of operations 
that are difficult for a human being to comprehend. This could pose a 
challenge when a false alert occurs in a cyber security application and 
researchers try to find out why it has occurred. The model’s interpretability 
defines how quickly examiners can handle and analyze the output and correct 
the working of the defined model. 

4 Materials and Method 

We see malware analysis and identification as a binary classification problem, 
where the two types of software to be classified are malware and goodware. 
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Figure 3 shows that the proposed approach is a multi-step process consisting of 
various steps performing several tasks. The system can be divided into three parts: 
clustering, decision making, data processing, and dataset preparation and 
division. 

4.1 System Architecture 

 
Figure 3 Block diagram of research methodology. 

4.2 System Description 

4.2.1 Description of Dataset 

It is important to create a large dataset with several different samples to test the 
effectiveness of classical machine learning and deep learning architectures. 
Because of the privacy-preserving policies of individuals and organizations, 
publicly available databases for potential cyber security research for malware 
detection are extremely limited. Over time, the provision of one source for all 
kinds of malware families has become increasingly difficult as malware has 
evolved. Researchers share their findings, but all the necessary samples have not 
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been collected in one single dataset or repository yet. In this study, the publicly 
accessible dataset Ember was used, with a subset containing 70,140 benign and 
69,860 malicious files. This dataset was randomly divided into 60% training and 
40% testing data using Scikit-learn. The training dataset consisted of 42,140 
benign files and 41,860 malicious files. In the training dataset, 28,000 benign files 
and 28,000 malicious files existed. These samples were derived from VirusTotal, 
VirusShare and privately collected samples of benign and malware samples 
(Kaggle [28]). 

4.2.2 Feature Extraction 

As discussed above, our data kit consisted of 140,000 executable files. We 
disassembled these functions by translating the .exe file into an .asm file. The 
object dump tool that is part of the GNU Binutils package was used. When some 
executable files were disabled or encrypted, these files were deleted from the 
dataset. 

4.2.3 Opcode n-gram 

In order to reverse the malware review, we used IDA Pro. IDA Pro is a versatile 
dynamic disassembler published by Hex-Rays (Tian, et al. [39], Ye, et al. [40]). 
It is necessary to access the malware assembly code and use it to define function 
blocks and explain the process flow map, import methods, etc. 

4.2.4 n-gram 

In this analysis, we used an n-gram model to remove opcode functionality from 
the malware. It is an easy way to remove text functions. The presence of n terms 
is only correlated with the previous n − 1 terms, n being the length of one function 
sequence. If we have a set of L opcodes, then the set will be split into sequences 
of L – n + 1 attributes. This model seeks sequences of functions in a sliding pane. 
A 3-gram model, for example, is used to obtain functional sequences from for 
example, call, push, mov, add, pop, inc and xor. As shown in Figure 4, we take 
out five short strings, and three opcodes are used in each sequence. 

push call add mov xor inc pop 

push call add mov xor inc pop 

push call add mov xor inc pop 

push call add mov xor inc pop 

push call add mov xor inc pop 

Figure 4 Opcode 3-gram model 
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4.2.5 Feature Selection 

Choosing features that can discern malware families is important. The features 
are extracted via the n-gram model as high-dimensional data. A modern approach 
is used to reduce the dimensionality of the data to increase classification accuracy 
and to minimize time usage. We discuss some definitions that aid in the 
definition. Y = {0,1,...} is the malware family, symbol Si refers to a set of 
functions. The given Eq. (1) shows a frequency series: 

 𝑓(𝑠 ) = 𝑠𝑢𝑚(𝑠 |𝑦 )/ ∑ 𝑠𝑢𝑚(𝑠 |𝑦 )               (1) 

where the number of the sequence belonging to family yj is denoted by sum(si) 
and the frequency of the sequence in Y is F(si):  

 𝐹(𝑠 ) =
∑ 𝑠 𝑦

∑  ∑ 𝑠 𝑦
                         (2) 

The data gained by the series is: 

 𝐼 (𝑆; 𝑌) = ∑ ∑ 𝑝(𝑠 𝑦 )𝑙𝑜𝑔 
( )

( ). ( )∈∈        (3) 

p(si, y) is a combined distribution of probability of si and y, and p(si) and p(y) are 
the cumulative distribution of likelihood functions of S and Y respectively. 
Information gain is used to calculate the malware sequence’s ability to 
differentiate. We use a two-step dimension reduction technique.  

If the condition of the function is satisfied, it is deleted. This indicates that the 
characteristics are not found in the malware categories. Then, a new value of the 
data is determined: 

 𝐼 (𝑆; 𝑌) =
( )

∑ ∑ 𝑝(𝑠 𝑦 )𝑙𝑜𝑔 
( )

( ). ( )∈∈       (4) 

The phrase has a weight definition. This concept seeks to increase the value of 
certain low frequencies and high discrimination characteristics. We maintain 500 
settings with greater values when measuring the information gain. 

4.3 Decision Making System 

This paper proposes a decision making method to catch malicious applications 
that could be part of a common family or a new malware program. It defines the 
product labels by combining several findings. A weight vector is built for each 
grouping in accordance with previous ensemble schemes (Hu, et al. [41], Tao, et 
al. [42]). The vector weight includes n weight quantities, where n represents the 
sample family number. In Figure 5, N graders and N weight vectors are available. 
The Bootstrap sample of a training kit classifier is programmed. Test range T1 is 
used to evaluate each classifier’s ability. The ability reaches a specific increased 
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amount and then correctly categorizes the individual unit. Different classifiers 
can influence different families. Each classifier is therefore able to provide 
classification outcomes with a greater degree of trust. 

 
Figure 5 Decision making system. 

Table 2 Similarities of the samples. 

Sample A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

P1 1 1 0 0 0 0 0 0 0 0 

P2 0 0 0 0 0 0 0 0 1 1 

P3 0 0 0 0 1 1 1 1 1 1 

D(P1, P2) = 2, D(P2, P3) = 2, and D(P1, P3) = 6 are determined. There are two 
conclusions:  

1. P1 and P3 have the same relation to P2, i.e. they have the same distance to 
P2. 

2. P1 and P3 are similar to P2; P1 is also similar to P3.  

Suppose the abovementioned three examples are instances of malware. Suppose 
further that these samples contain the value of a variable that is not zero. Table 1 
reveals P1 and P2 have no similar characteristics while P2 and P3 have two 
similar characteristics. That is why the Euclidean distance does not necessarily 
demonstrate the resemblance of samples in a wide space.  
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Given the problems described above we followed the SNN approach, which 
works well in high-dimensional spaces. Jarvis & Patrick [43] first proposed this 
method. The similarity between two points is featured by the fact that they share 
a major quarter C with at least k points. This approach has the advantage that it 
can cluster points of varying densities. As shown in Figure 6, the clustering of 
varying densities represents circles of different sizes.  

In each row of the matrix of similarities the relation of position M between two 
points is stored. M(A, B) = 1 means that B is nearest to A. In-row saves only k 
minimum values, and all values are set to 0. The matrix is used to create the 
nearest K (K-NN) line. From Fig. 10, the points O and P are noise or outliers, but 
graphs are not used to differentiate them. The extent of the relationship is 
calculated by: 

 𝑠𝑡𝑟(𝑂, 𝑃) =  ∑(𝑘 + 1 − 𝑚). (𝑘 + 1 − 𝑛)               (5) 

If a point’s value is smaller than a unique threshold it looses all edges. In Fig. 10, 
O and P points are listed as outliers. Ertoz, et al. have focused on the link strength 
to choose the main points of each cluster with a higher connection capacity. In 
each cluster, a point is either one of the core points or linked to the core points. 

 
Figure 6 (a) Near neighbor graph and (b) weighted shared near neighbor graph. 

The SNN model may be defined as follows: 

1. calculate the matrix of similarities; 
2. build the K-NN graph; 
3. calculate the relation intensity and set the threshold to find low-strength noise 

and outliers. 
4. select the high-strength core points; 
5. assign, or mark as an outlier, a new point to the clustering. 
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5 Result and Analysis 

In the analysis of the research methodology presented in the current work a 
dataset with 1,40,000 different samples was considered, from which 60% of the 
data were considered for the purpose of training and the remaining 40% were 
considered for the testing process. The complete dataset is a collection of benign 
and malicious files with 70,140 benign files and 69,860 malicious files. Different 
known classifiers, i.e. Decision Tree, K-Nearest Neighbor, Naïve Bayes, Support 
Vector Machine, Random Forest, and J48 Decision Tree, were used in the 
decision making process. The performance of all of the classifiers was evaluated 
based on the accuracy of the process, which is the percentage of correctly 
identified instances. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
 (   )

 (  )
               (6) 

5.1 K-Nearest Neighbor 

Figure 7 below shows the outcome of the K-Nearest Neighbor method, as can 
seen in Table 3. The results are shown in terms of the accuracy of each class of 
malware. Here, the maximum accuracy was 100%, achieved by CyberGate, and 
the minimum accuracy was 79.2%, achieved by CTB- Locker.  

 
Figure 7 Classification of different classes of malware using k-Nearest 
Neighbor. 

Table 3 shows the classification of files as goodware or malware using K-Nearest 
Neighbor. As the results show, around 82.3% accuracy was seen for benign files 
and around 98% accuracy for the malware considered in the dataset. Table 4 
below shows the exact accuracy for the classification/ identification of benign 
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files and malware detected, where the accuracy of the classification of malicious 
files was about 98%. 

Table 3 Detection evaluation using K-Nearest Neighbor. 

S.N. Family of Sample Correctly Classified Incorrectly Classified Accuracy 
1. Benign 3499 834 82.3% 
2. Dridex 1880 340 84.2% 
3. Locky 1340 280 83.4% 
4. TeslaCrypt 2600 40 98% 
5. Vawtrak 920 160 84.5% 
6. Zeus 1820 580 78% 
7. DarkComet 2840 100 96% 
8. CyberGate 2300 0 100% 
9. Xtreme 1880 160 93% 

10. CTB-Locker 1040 280 79.2% 

Table 4 Benign and malicious file accuracy using K-Nearest Neighbor. 

Class Correctly Classified Incorrectly Classified Accuracy 
Benign 3499 834 82.3% 

Malicious 16620 1940 98% 

5.2 Support Vector Machine 

Support Vector Machine was the next algorithm that was tested. In Table 5 and 
Figure 8, the outcome of the predictions can be seen. The overall accuracy 
obtained for multi-class classification was 87.6% and for binary classification 
94.6%. The maximum accuracy was 100%, achieved by CTB-Locker, and the 
minimum accuracy was 59.3%, achieved by Vawtrak. Table 6 shows the 
classification of files as goodware or malware using Support Vector Machine. As 
the results show, around 83.8% accuracy was seen for benign files and around 
89.3% accuracy in the case of malware. 

Table 5 Detection evaluation using Support Vector Machine. 

S.N. Family of Sample Correctly Classified Incorrectly Classified Accuracy 
1. Benign 3996 335 93% 
2. Dridex 1940 280 87.3% 
3. Locky 1280 340 78.7% 
4. TeslaCrypt 2240 400 85.1% 
5. Vawtrak 620 460 59.3% 
6. Zeus 1880 520 79.1% 
7. DarkComet 2900 40 98.2% 
8. CyberGate 2240 40 98% 
9. Xtreme 1880 160 92.1% 

10. CTB-Locker 1320 0 100% 
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Figure 8 Classification of the different classes of malware using Support Vector 
Machine. 

Table 6 Accuracy of benign and malicious files using Support Vector Machine. 

Class  Correctly Classified Incorrectly Classified Accuracy 
Benign 3996 8335 83.8% 
Malicious 16300 2240 89.37% 

5.3 J48 Decision Tree 

J48 Decision Tree was the third algorithm studied (Table 7 and Figure 9). The 
benefit of the decision tree method is that it works in a ‘white box’ approach and 
we can see which decisions resulted from our prediction. Here, maximum 
accuracy was 100% (Drdex, TeslaCrypt and CyberGateis) and the minimum 
accuracy was 83.7% (Zeus). 

Table 7 Detection evaluation using J48 Decision Tree. 

S.N. Family of Sample Correctly Classified Incorrectly Classified Accuracy 
1. Benign 3854 477 89.7% 
2. Dridex 2240 0 100% 
3. Locky 1460 160 90.1% 
4. TeslaCrypt 2240 0 100% 
5. Vawtrak 980 100 91.3% 
6. Zeus 2000 400 83.7% 
7. DarkComet 2840 100 96.3% 
8. CyberGate 2240 0 100% 
9. Xtreme 1940 100 95.6% 

10. CTB-Locker 1280 40 96.3% 
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Table 8 shows the classification of files as goodware or malware using J48 
decision tree. As the results show, around 83.8% accuracy was seen for benign 
files and around 99.5% accuracy in the case of malware. 

 
Figure 9 Classification of the different classes of malware using J48 Decision 
Tree. 

Table 8 Accuracy of benign and malicious files using J48 Decision Tree. 

Class Correctly Classified Incorrectly Classified Accuracy 
Benign 3996 8335 83.8% 

Malicious 16300 2240 99.5% 

5.4 Naïve Bayes 

Naïve Bayes was the next algorithm that was evaluated. Table 9 lists the results 
of the predictions. Here, the maximum accuracy was 100%, achieved by Dark 
Comet and CTB-Locker, and the minimum accuracy was of 3.5%, achieved by 
Dridex (Figure 10). 

Table 9 Detection evaluation using Naïve Bayes. 

S.N. Family of Sample Correctly Classified Incorrectly Classified Accuracy 
1. Benign 2434 1897 60% 
2. Dridex 80 2140 3.5% 
3. Locky 1520 100 93% 
4. TeslaCrypt 2000 640 93.6% 
5. Vawtrak 500 580 50% 
6. Zeus 1700 700 72% 
7. DarkComet 2940 0 100% 
8. CyberGate 2240 40 98.1% 
9. Xtreme 1880 160 92.8% 

10. CTB-Locker 1320 0 100% 
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Table 10 the classification of files as goodware or malware using J48 Decision 
Ttree. As the results show, around 100% accuracy was seen for benign files and 
around 68.3% accuracy in the case of malware in the dataset. 

 
Figure 10  Classification of the different classes of malwares using naïve Bayes. 

Table 10 Accuracy of benign and malicious files using naïve Bayes. 

Class Correctly Classified Incorrectly Classified Accuracy 
Benign 4331 0 100% 

Malicious 13180 4360 68.3% 

5.5 Random Forest 

Random Forest was the last algorithm that was tested. The algorithm resulted in 
good prediction accuracy. Table 4 presents the results of its predictions. Here, the 
maximum accuracy was 100%, achieved by DarkComet, CyberGate, Xtreme, and 
CTB- Locker (Figure 11). 

Table 11 Detection evaluation using Random Forest. 

S.N. Family of Sample Correctly Classified Incorrectly Classified Accuracy 
1. Benign 4138 193 96.1% 
2. Dridex 2120 100 95.7% 
3. Locky 1520 100 93.3% 
4. TeslaCrypt 2640 0 100% 
5. Vawtrak 920 160 84.7% 
6. Zeus 2120 280 88.7% 
7. DarkComet 2940 0 100% 
8. CyberGate 2280 0 100% 
9. Xtreme 2040 0 100% 

10. CTB-Locker 1320 0 100% 
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Table 11 shows the classification of files as goodware or malware using Random 
Forest. The results show that around 87.2% accuracy was seen for benign files 
and around 99.2% accuracy in the case of malwares class in the dataset. 

 
Figure 11  Classification of the different classes of malware using Random Forest. 

Table 12 Accuracy of benign and malicious files using Random Forest. 

Class Correctly Classified Incorrectly Classified Accuracy 
Benign 4138 193 87.2% 

Malicious 16580 640 99.2% 

Figure 12 shows that the different models provided different results in 
classification. Naive Bayes had the lowest accuracy (100% and 68.3%), followed 
by K-Nearest Neighbor and Support Vector Machine (82.3%, 98% and 83.8%, 
89.37% respectively). The highest precision was achieved with J48 and Random 
Forest (83.8%, 99.5%, and 87.2%, 99.5% respectively).  
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Figure 12 Comparison graph for the accuracy of the different classifiers. 

6 Conclusion 

Because of the ever growing number of malware variants and the variety of 
malware activities there is renewed interest in and need for effective malware 
detectors to protect against zero-day attacks. Anti-virus firms typically collect 
millions of malicious samples, which are obtained and analyzed in the usual 
manner, delaying the identification of any unusual samples that harm users. Our 
primary aim was to create a machine-learning system that commonly detects as 
many malware samples as possible, with the tough constraint of having a zero 
false positive rate. We came quite close to our goal, but still have a non-zero false 
positive rate. For this method to become part of a highly competitive commercial 
product, a number of deterministic exemption mechanisms must be added. In the 
proposed work, the Random Forest and Naïve Bayes classifiers showed the best 
results.  

The system was validated using a sample of 140,000 files consisting of malware 
and benign files. The malware was further divided into 9 different classes on the 
basis of their properties. The complete sample list was categorized into groups at 
a 60% and 40% ratio for further processing of system training and decision 
making as training dataset and testing dataset respectively. Given that most anti-
virus products achieve a detection rate of more than 90% there was a very 
significant increase in the overall detection rate of 3 to 4% produced by our 
algorithms. 
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7 Future Scope 

In the future more features will be considered to develop a better model that will 
use a more robust deep learning technique for the detection of cyber attacks. It 
will also be capable of detecting all types of different malware attacks and 
automatically deal with all types of cyber attacks. 
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