
Int. J. Advance Soft Compu. Appl, Vol. 10, No. 1, March 2018 

ISSN 2074-8523 

 

Analytics on Malicious Android Applications 

 

Howida Abubaker2, Siti Mariyam Shamsuddin1, 2, and Aida Ali1, 2 

 

1,2UTM Big Data Centre 

Universiti Teknologi Malaysia 

Skudai 81310 Johor, MALAYSIA 

E-mail: mariyam@utm.my, aida@utm.my 

 
2Faculty of Computing, Universiti Teknologi Malaysia, 

81310 UTM Johor Bahru, Johor, Malaysia; 
E-mail: howida10@gmail.com 

 
Abstract 

     The widespread of mobile applications has led to increase smart-
phone malware. Detecting malware requires extracting features to 
determine the malware apps from non-malware apps. To understand 
malware apps’ features, we need a better understanding of the 
requested permissions in manifest file of apk file. In this paper, we 
present our framework based on extracting apk’s permissions with 
the aims to detect the malware upon granted permissions in mobile 
app. The permissions keywords are extracted from the manifest file 
of apk file using VirusTotal website. These collected applications and 
their permissions keywords will go through pre-data analytics 
process before being trained to various machine learning classifiers. 
We collected around 30 apps from Google play as non-malware apps 
and 30 malicious apps from different sources such as PROGuard, 
Contagio Mobile blog and the Drebin dataset. The permissions 
keywords of the collected apk are extracted and saved to build final 
dataset that contains 50 samples of benign and malignant 
applications with the final collections of permissions keywords. 
Finally, the dataset is fed to machine learning. By utilizing several 
classifiers such as NaiveBayes, sequential minimal optimization 
(SMO), Decision Table, ZeroR and Decision trees (J48 and Random 
Forests, the results show that sequential minimal optimization 
(SMO) classifier achieved high performance in the detection rate of 
the classifier with an acceptable accuracy of 76 %. 

     Keywords: android applications, malware, data collection, permissions 
keywords, Machine Learning classifier 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/328816262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mariyam@utm.my
mailto:aida@utm.my


  

 

 

107                                                                                     Analytics on Malicious 

1      Introduction 

With the development of mobile apps, smartphones platform becomes exposed to 

security and privacy threats [1]. For instance, downloading applications from 

multiple sources has contributed to develop malicious applications [2].  

Many studies have been done to identify malicious applications and discover the 

patterns of malware samples. Consequently, malware detection of Android 

platform becomes topical matters of many researchers. Some identify that there 

are two methods of malware detection: 1) static analysis, by analyzing a compiled 

file and 2) dynamic analysis, by analyzing the runtime behavior, such as battery, 

memory, and network utilization of the device; or hybrid analysis, by combining 

static and dynamic techniques [1][2]. These techniques are similar to techniques 

used on any platform of mobile application. The advantage of Static analysis is 

due to fewer properties needed which is suitable for limited resources of Android 

devices; and that is more efficient than using dynamic analysis since the malware 

is not executed, but only analyzed [3]. 

Some researchers study the behavior of android applications by collecting some of 

feature vectors such as memory utilization and power consumption to characterize 

the app is benign or malicious. They train the known feature vectors using 

machine learning algorithms to predict the classification of unknown feature 

vectors [3]. 

In this paper, we focus on static analysis by proposing a framework for detecting 

malicious android applications based on analyzing requested permissions and 

utilizing machine learning classifiers to classify applications whether  malicious 

or benign. 

The remainder of this paper is structured as follows. Section 2 discusses the 

related work. The method used for the experimental evaluation is presented in 

Section 3. Section 4 shows the results of the experiments carried out on a 

significant dataset of Android malware samples. Conclusions are drawn in Section 

5. 

2      Related Work 

Several studies have been conducted to detect malware on mobile platform. Most 

researches employ different approaches for malware detection such as Static 

analysis approaches, dynamic and hybrid analysis approaches. Since our study 

focus on analyzing permission, we will focus on static approach for detecting 

android malware. Using permissions analysis for detecting malware has been 

adopted in many studies such as Ryo Sato et al. [4] used some characteristics in 

manifest file such as a permission, intent-filter action and category of intent-



 

 

 

 

 

 

 

Howida A. Al-kaaf et al.                                                                                    108 

priority to detect Android malware. They found that permissions such as 

send_sms, receive_sms, and read_sms, are often requested by malicious samples. 
 

The Stowaway tool developed by A. P. Felt et al. is able to detect if a compiled 
android app requests more permissions than necessary, i.e. over privileged. The 
result of their finding showed that about one-third of app collected was actually 
over privileged [5]. 

  
Frank et al. [6] studied the requested permission patterns of Android apps using 

pattern-mining technique. They tried to relate the requested permission patterns 

with the app’s reputation, which can be served as an indicator of app quality. 

Hamandi et al. [7] conducted a study on some collected apps to determine the 

malware based on analyzing the requested permissions. The application presents 

itself as a regular SMS messaging application and uses its basic permission to 

send/receive short messages. Since many operators worldwide provide services 

that allow users to transfer credits/units through SMS, the application abuses this 

service to transfer credits from users illegally. The granted permissions of an app 

give the app absolute ability to perform threat action. For example, they found 

that the minimum permissions needed to carry out the malicious activities are the 

"receive_sms" and "send_sms" which are requested by SMS applications. Other 

SMS applications also use the "read_sms" and the "write_sms" permissions. As a 

result, the request for these permissions is looked normal and would not warn user 

about specific threat. 

 

Feldman et al. [8] proposed Manilyzer system to extract the information in the 

manifest files of Android application, and produces feature vectors automatically, 

and then uses machine learning algorithms to classify applications whether  

malicious or benign. They collected around 617 applications (307 malicious, 310 

benign) to be tested with Manilyzer. The result was efficiency with accuracy up to 

90%, while the false positives and false negatives are similar with 10%. 

In order to protect data from being sent to advertising servers at the occurrence of 

permission violation in ad networks, Gao et al. [9], proposed PmDroid. They 

implemented 53 sample apps using a single ad network library and analyzed 430 

published market apps. To identify the real violation of permissions, they granted 

all permissions of these apps and recorded the data sent to the Internet and 

compared the permission of data received by these ad networks with their official 

documents. Their findings showed that permissions abuse data sent through ad 

network markets. 

Peiravian & Zhu [10] used permissions as features vectors to detect malware and 

trained machine learning classifier to classify apps as benign or malware. They 

collected 2510 APK files where 1260 are malicious apps and the remaining 1250 

are benign Android APK files. Around 130 features of permission have been 



  

 

 

109                                                                                     Analytics on Malicious 

collected. They used precision and detection rate (Recall), in addition to AUC and 

accuracy, to evaluate their experiments. 

Singh et al. [11] used information in manifest file of Android application to 

characterize malware and determine the risk of Android permission and apps. 

They study the behaviors of Android apps using static and dynamic security 

analysis model. Before doing analysis, they decompiled Android applications 

using apk tool to get AndroidManifest.xml used for permissions filtering stage, 

and Smali files used to apply dynamic monitoring module.  

However, in this study, we collected our own data (fifty samples) from different 

sources as described in the following sections. 

 

3      Methodology 

This section presents the methods used to carry out the experiment. Figure 2 and 

Figure 3 illustrate the process of collecting non-malware and malware 

applications and their permissions keywords. The process contains three phases. 

The first stage is data collection, in which benign and malicious samples are 

collected and transmitted to the next phase. In the second phase, which is apk files 

extraction, the apk files of benign apps are extracted by using apk downloader tool 

which is online service that comes with Chrome extension and allow user to 

download an apk file for free apps from the Google Play directly to desktop rather 

than to device [17]. The name of package is uploaded to the apk downloader 

website and then apk is downloaded. The apk of malware is collected from 

PROGuard, Contagio Mobile blog and the Drebin dataset [13][14][15]. Finally, 

the requested permissions of apk files are collected for both apps (malware and 

non-malware) using VirusTotal website [12]. VirusTotal is a free online service 

that analyzes files, URLs and mobile applications in order to identify viruses, 

worms, trojans and other kinds of malicious content by using different antivirus 

engines and website scanners [12]. And finally, the dataset of samples’ names and 

their permissions keywords is built. The following sections communicate each 

phase in detail. 

3.1      Pre-Data Analytics on Android Malicious 

Our final dataset is built by collecting first the apk files of benign and malicious 

applications and then extracting their permissions keywords from analyses reports 

that VirusTotal performs. Each phase is described in the following sections. 

3.1.1      Data Collection   

The initial step of collecting our dataset was to collect benign and malicious 

applications and extract their apk files. We collected benign apps from Google 



 

 

 

 

 

 

 

Howida A. Al-kaaf et al.                                                                                    110 

Play with different categories. We did not target any specific apps, or specific 

versions of apps. We collected around 30 apps from Google play and were 

randomly selected. After collecting the applications and extracting their apk files 

using apk downloader, the apk files are uploaded to Virus Total website and the 

permissions keywords of apps are collected. We uploaded the collected apk files 

one by one to VirusTotal website. Every application scanned by Virus Total, and 

passed all virus tests was considered as "clean app " and kept to form the non-

malware applications.  

 

The analysis report that VirusTotal performs give information about apps such as 

MD5, SHA1, SHA256, required permissions and etc. Figure 1 shows permissions 

of one app collected from analysis report of VirusTotal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Example of apk file’s permissions that are collected using Virus Total 
 

We extracted the permissions keywords for every application and save them in 

table with app’s name as displayed in Table1. Also, the file size and category of 

app are collected as well. 

 

Table 1: Some of the collected non-malware apps with their extracted permissions 

keywords 

App  name  File 

size  

Categorize Permission keywords 

"How to Speak Real 

English" 

45.0 

MB 

Education (Internet, write_external_storage, 

read_external_storage, 

access_fine_location 

,read_history_bookmarks,write_histor

y_bookmarks) 

"English listening 

practice" 

2.4 

MB 

Education  (write_external_storage, internet, 

access_network_state) 

 Required permissions 

android.permission.ACCESS_FINE_LOCATION (fine (GPS) location) 
android.permission.INTERNET (full Internet access) 

android.permission.ACCESS_WIFI_STATE (view Wi-Fi status) 

android.permission.ACCESS_COARSE_LOCATION (coarse (network-based) location) 
android.permission.ACCESS_NETWORK_STATE (view network status) 

android.permission.READ_PHONE_STATE (read phone state and identity) 

android.permission.WRITE_EXTERNAL_STORAGE (modify/delete SD card contents) 

android.permission.READ_CONTACTS (read contact data) 



  

 

 

111                                                                                     Analytics on Malicious 

"Drugs Dictionary 

Offline 

FREE_v1.9_apkpure.c

om.apk" 

 2.4 

MB 

Education 

and 

awareness  

(access_network_state, internet ) 

 

For example, the "How to Speak Real English" app under education category has 

four permissions keywords (Internet,write_external_storage, 

read_external_storage,access_fine_location,  

read_history_bookmarks ,write_history_bookmarks) as listed in the Table 1. 

We observed that most of applications use the "internet" permission to access the 

internet. The whole process of gathering benign applications and their permissions 

keywords are summarized in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2: The process of collecting benign apps and extracting their apk files & 
permissions keywords 

 

 

On the other hand, the malware samples were collected from the PROGuard 

dataset, Contagio Mobile blog and the Drebin dataset [13][14][15]. Thirty apps 

are collected from PROGuard dataset, ten samples from Contagio Mobile blog 

and the remaining samples from Drebin dataset. We collected the apk files of 

malware apps and uploaded them to VirusTotal websites to get their permissions 

keywords. Then the permissions keywords are collected and saved in table with 

their apk names’ as shown in Table 2. The "GPSSMSSpy1.apk" app requires the 

following permissions keywords (access_fine_location, send_sms, receive_sms) 

Benign apps are collected 

from Google play with 

different categories 

Extracted APK files  

 

Apk files are 
uploaded to Virus 

Total website 

 

Permissions 

keywords are 

collected   

Benign apps and their 

permissions keywords 
The benign apk files 

‘names and their 

keywords Permissions are 

saved in Table. 

 

Apk files are extracted using 

apk downloader 

 



 

 

 

 

 

 

 

Howida A. Al-kaaf et al.                                                                                    112 

as presented in the Table 2. For instance, the "send sms" permission allows an app 

to send an SMS on behalf of the mobile user, and similar to the phone call 

permission, it could cost the user money by sending SMS to for-pay numbers. 

 

Table 2: Some of collected malware apps with their extracted permissions 

keywords  

App  Name 

File 

size  

Malware 

type 

        Permission keywords  

"GPSSMSSpy1.apk" 

13.6 

KB Spyware (access_fine_location, send_sms, 

receive_sms) 

"GPSSMSSpy2.apk" 14.4 

KB 

Spyware (access_fine_location, send_sms, 

receive_sms) 

 

"GPSSMSSpy3.apk" 15.3 

KB 

Spyware (access_fine_location, send_sms, read 

contacts , write_sms, receive_sms, 

read_phone_state ) 

 

"GPSSMSSpy4" 

 

15.2 

KB 

 

Spyware 

 

(receive sms, send_sms, 

access_fine_location, read_sms, write_sms, 

read_phone_state, read_contacts) 

 

    

 

The permission "access_fine_location" allows an app to access precise location 

from location sources such as GPS, cell towers, and Wi-Fi. While "receive_sms" 

permission lets an app receives an SMS [16]. The process of collecting malware 

apps with their permissions is carried out similar to the process of collecting 

benign applications except that apk files are already extracted. We just collected 

them from PROGuard, Contagio & drebin dataset and uploaded them to Virus 

Total website to get permissions keywords. Figure 3 summarizes the process of 

collecting malicious applications and their permissions. 
 

 
 

 
 
 
 
 
 
 
                                                                                        

Apk files of malware 

Apps are collected from 

PROGuard, Contagio & 
drebin dataset.                                        

 

Apk files uploaded to 

Virus Total 

 

  

Permissions 

keywords are 

collected   

Malware apps and their 

permissions keywords 

The benign apk files ‘names and 
their keywords permissions are 

saved in Table 

Fig. 3: The process of collecting malicious apps 
 

https://www.virustotal.com/
https://www.virustotal.com/
https://www.virustotal.com/


  

 

 

113                                                                                     Analytics on Malicious 

The PROGuard dataset consists of 10479 samples, obtained by obfuscating the 

MalGenome and the Contagio Minidump datasets with seven different obfuscated 

techniques [13]. The Contagio Mobile blog has a collection of the latest malware 

samples, threats, observations, and analyses [14]. The Drebin dataset contains 

5,560 applications from 179 different malware families [15]. The samples have 

been collected in the period of August 2010 to October 2012. After collecting the 

malware apk files; we uploaded them to VirusTotal for scanning and getting the 

permissions keywords. Finally, the permissions keywords of malware apps were 

saved in table as shown in table 2 and explained in Figure 3. Lastly, all the non- 

malware and malware apps are transferred to next phase. 

3.1.2      Preprocessing Dataset  

In this phase, we built our final dataset by combining the benign and malicious 

applications with their collected permissions. We collected 23 non- malware apps 

and 27 malware apps. We chose combination of permissions that occur in both 

apps (benign and malicious) but mostly occur in malware apps as done in 

previous study of Ryo Sato et al. [4].They collected around 11 permissions 

keywords for analysis. We gathered around 26 permissions as listed in Figure 4 

and present them as binary numbers. The permission feature has two values either 

1’s or 0’s representing the presence or absence of permissions for the 

corresponding column feature of app’s name respectively. The features were 

stored as CSV file then converted to arff file. Table 3 displays some examples 

from final dataset of Android permissions saved as CSV file. The class of benign 

app is labeled by "non-malware" and the class of malware apps is categorized by 

"malware". The final step was using Weka software to perform the classification 

and analysis dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@attribute send_sms numeric 
@attribute receive_sms numeric 

@attribute 'read sms' numeric 
@attribute 'write sms' numeric 

@attribute read_phone_state numeric 

@attribute read_logs numeric 
@attribute read_history_bookmarks numeric 

@attribute write_history_bookmarks numeric 

@attribute delete_packages numeric 

@attribute process_outgoing_calls numeric 

@attribute mount_unmount_filesystems numeric 

@attribute write_external_storage numeric 
@attribute read_external_storage numeric 

@attribute 'write conacts' numeric 

@attribute 'read conatcts' numeric 
@attribute 'acess fine location' numeric 

@attribute 'call phone' numeric 

@attribute 'wake lock' numeric 
@attribute change_wifi_state numeric 

@attribute access_wifi_state numeric 

@attribute 'acess network state' numeric 
@attribute receive_boot_completed numeric 

@attribute access_coarse_location numeric 

@attribute record_audio numeric 
@attribute 'Get account' numeric 

@attribute 'Modify audio state 

Fig.4: Final permissions keywords collected for analysis  



 

 

 

 

 

 

 

Howida A. Al-kaaf et al.                                                                                    114 

Table 3: Some examples from final dataset of 50 samples (23 non- malware apps 

and 27 malware apps) 

apk name 

Send 

sms  

receive

_sms 

read 

phone 

state read_log 

read_extern

al_storage 

write 

conacts 

class 

How to Speak Real 
english 0 0 0 0 1 0 

non 
malware 

English listening practice 0 0 0 0 0 0 

non 

malware 

instagram.android 0 0 0 0 0 0 

non 

malware 

com.grabtaxi.passenger 0 1 1 0 0 0 
non 

malware 

com.gamma.scan 0 0 0 0 0 0 

non 

malware 

com.socialnmobile.dictap

ps.notepad.color.note. 0 0 0 0 0 0 

non 

malware 

GPSSMSSpy2 1 1 0 0 0 0 
malware 

 
 
3.1.3     Machine Learning Classifier 

 

In this phase, we apply Machine learning classifier and evaluate the 

performance of the classifiers used. We use the Waikato Environment for 

Knowledge Analysis (WEKA) machine learning tool to carry out our experiment. 

The selected classifiers functioned in a default setting. The process of using 

machine learning classifiers is illustrated in the Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Using machine learning classifiers  

 

The steps of carrying out the experiment are explained as follows:  

 

 Input Preprocessing: the features listed in Figure 4, were preprocessed 

into a matrix of input vectors for training the machine learning algorithms. 

For example, the column of the matrix represented the name of application 

while the rows represented the collected permissions of apps. The 

permission feature has two values either 1’s or 0’s representing the 

presence or absence of permissions for the corresponding column feature 

 

Input  
Output 

 

Permission features 

vectors 

Training 

dataset   

6 typed 

classifiers 

used  

 

Final 

dataset of 

benign and 
malware 

samples 

with their 

permissions 



  

 

 

115                                                                                     Analytics on Malicious 

of app’s name respectively. A total of 26 permissions features were 

collected as listed in Figure 4. 

 

 Training: we used supervised learning to train dataset  of 50 applications; 

27 malicious apps and 23 non-malicious apps that are labeled in one of 

two classes; malware or non- malware as shown in Table3.  
 

 Evaluation: we applied 10-fold cross validation technique to evaluate the 

performance of the classifier model. We used precision and recall metrics 

to evaluate our classifiers algorithms. Classified samples can be true 

positive (TP –samples correctly labeled as belonging to the class), false 

positive (FP – samples incorrectly labeled as belonging to a certain class), 

false negative (FN - samples incorrectly labeled as not belonging to a 

certain class), and true negative (TN - samples correctly labeled as not 

belonging to a certain class). Given the number of true positives and false 

negatives, recall is calculated using the following formula 1: 

 

                                                                                           (1) 

Where True Positive (TP) represented the number of correctly identified non- 

malware apps. And False Negative (FN) is the number of incorrectly identified 

non- malware apps. 

Precision is calculated as in the following formula: 

                                                                                                   (2) 

False Positive (FP) in this equation is number of incorrectly identified malware 

apps. 

 

4      Experiment Result 

This section represents the results of experiment and performance evaluation of 

malware detection based on analyzing requested permissions. We used 10-fold 

cross validation for evaluating the classifiers on the testing set. Table 4 reveals 

that sequential minimal optimization (SMO) has the highest classification rate 

than other tested classifiers. NaiveBayes correctly classifies 70 % of feature 

vectors, while ZeroR classifier correctly classifies 54 % of feature vectors. 

 

 

 

 

 



 

 

 

 

 

 

 

Howida A. Al-kaaf et al.                                                                                    116 

Table 4: Comparison of different algorithm classifiers  
 

Algorithm 

Classifier 
Correctly 

Classified 

Incorrectly 

Classified 

Precision 

for non-

malware 

class 

Precision 

for 

malware 

class 

Recall for 

non-

malware 

class 

Recall for 

malware 

class 

Naïve 

Bayes 

70 % 30%  0.643  0.773  0.783 0.630 

SMO 76  % 24 %  0.720  0.800  0.783 0.741 

Decision 

Table 

70  % 30%  0.643  0.773  0.783 0.630 

ZeroR 54  % 46%  0.000  0.540  0.000 

 

1.000 

 J48 

Random 

forest 

64 % 

72 % 

36 %  

28  %              

 

 0.586 

  

 0.696 

 

 0.714 

 

 0.741 

 

 0.739   

 

 0.696 

 

0.556 

 

0.741 

 

5      Conclusion 

This study presents mobile malware characterization by extracting requested 

permissions of apps, as well as to determine the ideal classifier based on correctly 

classified feature vectors. In this research, we evaluated various machine learning 

classifiers to enhance the malware detection outcome for different categories 

collection of file samples and obtain the optimum classifier that is able to detect 

mobile malware. The selected classifiers were NaiveBayes, sequential minimal 

optimization (SMO), Decision Table, ZeroR and Decision trees (J48 and Random 

Forests). 

The malware samples were collected from PROGuard dataset, which contains 

10479 samples, and the Contagio Minidump datasets with seven different 

obfuscated techniques. Next, we collected some apps from Contagio Mobile blog 

that has a collection of the latest malware samples. Some applications are 

gathered from Drebin dataset that contains 5,560 applications from 179 different 

malware families. 

Our final dataset contains 50 samples (23 benign apps and 27 malicious apps) 

with the final collections of permissions keywords. 



  

 

 

117                                                                                     Analytics on Malicious 

The experiment contains three phases. Data collection phase in which apps are 

collected. The second phase is apk extractions and permissions collection phase 

where apk files are collected and the permissions keywords of every app are 

extracted and final collections of permissions for both apps (benign apps and 

malicious apps) are selected and gathered for training and analysis. The last phase 

is applying the machine learning classifier. The experimental results indicate that 

sequential minimal optimization (SMO) achieved good result by classifying 

features vectors correctly with 76 %. This study approved that requested 

permission of Android app can be used to determine the mobile malware. As 

future work, we will apply reduction process and features filtering for better 

performance of detection. Also, collecting more samples and permissions 

keywords will be good for getting better evaluation of experiments. 

 

Acknowledgment 

The authors would like to thank the Universiti Teknologi Malaysia (UTM) for 

their support in Research and Development,  UTM Big Data Centre and the Soft 

Computing Research Group (SCRG) for the inspiration in making this study a 

success. This work is supported by Ministry of Higher Education (MOHE) under 

Fundamental Research Grant Scheme (4F802 and 4F786) and Research 

University Grant (03G91). 

 

References 

 

[1] Y. Zhou and X. Jiang. (2012). Dissecting Android Malware: Characterization 

and Evolution. Security and Privacy (SP), IEEE Symposium on, May 2012, 

pp. 95 –109. IEEE. 

[2] Baskaran, B., & Ralescu, A. (2016). A Study of Android Malware Detection 

Techniques and Machine Learning. Proceedings of the 27th Modern 

Artificial Intelligence and Cognitive Science Conference 2016, Dayton, OH, 

USA, April 22-23, 2016., 15–23.  

[3] Amos, B., Turner, H., & White, J. (2013). Applying machine learning 

classifiers to dynamic android malware detection at scale. 9th International 

Wireless Communications and Mobile Computing Conference, IWCMC 

2013, 1666–1671. IEEE. 



 

 

 

 

 

 

 

Howida A. Al-kaaf et al.                                                                                    118 

[4] Sato, R., Chiba, D., & Goto, S. (2013). Detecting Android Malware by 

Analyzing Manifest Files. Proceedings of the Asia-Pacific Advanced 

Network, 36, 23.  

[5] Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. (2011). Android 

permissions demystified. Proceedings of the 18th ACM Conference on 

Computer and Communications Security - CCS ’11, 627. ACM. 

[6] Frank, M., Dong, B., Felt, A. P., & Song, D. (2012). Mining permission 

request patterns from Android and Facebook applications. Proceedings - 

IEEE International Conference on Data Mining, ICDM, 870–875. IEEE. 

[7] Hamandi, K., Chehab, A., Elhajj, I. H., & Kayssi, A. (2013). Android SMS 

malware: Vulnerability and mitigation. Proceedings - 27th International 

Conference on Advanced Information Networking and Applications 

Workshops, WAINA 2013, 1004–1009. IEEE. 

[8] Feldman, S., Stadther, D., & Wang, B. (2015). Manilyzer: Automated Android 

malware detection through manifest analysis. Proceedings - 11th IEEE 

International Conference on Mobile Ad Hoc and Sensor Systems, MASS 

2014, 767–772. IEEE. 

[9] Gao, X., Liu, D., Wang, H., & Sun, K. (2016). PmDroid: Permission 

Supervision for Android Advertising. Proceedings of the IEEE Symposium 

on Reliable Distributed Systems, 2016-Janua, 120–129. IEEE. 

[10] Peiravian, N., & Zhu, X. (2013). Machine learning for Android malware 

detection using permission and API calls. Proceedings - International 

Conference on Tools with Artificial Intelligence, ICTAI. IEEE. 

[11] Singh, P., Tiwari, P., & Singh, S. (2016). Analysis of Malicious Behavior of 

Android Apps. Procedia Computer Science, 79, 215–220. Elsevier. 

[12] “VirusTotal Malware Intelligence Services,” URL https://secure.vt-mis. 

com/vtmis/.  

 
[13] http://pralab.diee.unica.it/en/AndroidPRAGuardDataset 
 
[14] http://contagiominidump.blogspot.my/ 
 
[15] https://www.sec.cs.tu-bs.de/~danarp/drebin/ 

[16] Li, Q., & Li, X. (2010). Android Malware Detection Based on Static 

Analysis of Characteristic Tree, 2015 International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery, 84–91. IEEE. 

[17] https://apps.evozi.com/apk-downloader/ 

https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://apps.evozi.com/apk-downloader/

