345 research outputs found

    Managing Large Scale Project Analysis Teams through a Web Accessible Database

    Get PDF
    Large scale space programs analyze thousands of requirements while mitigating safety, performance, schedule, and cost risks. These efforts involve a variety of roles with interdependent use cases and goals. For example, study managers and facilitators identify ground-rules and assumptions for a collection of studies required for a program or project milestone. Task leaders derive product requirements from the ground rules and assumptions and describe activities to produce needed analytical products. Disciplined specialists produce the specified products and load results into a file management system. Organizational and project managers provide the personnel and funds to conduct the tasks. Each role has responsibilities to establish information linkages and provide status reports to management. Projects conduct design and analysis cycles to refine designs to meet the requirements and implement risk mitigation plans. At the program level, integrated design and analysis cycles studies are conducted to eliminate every 'to-be-determined' and develop plans to mitigate every risk. At the agency level, strategic studies analyze different approaches to exploration architectures and campaigns. This paper describes a web-accessible database developed by NASA to coordinate and manage tasks at three organizational levels. Other topics in this paper cover integration technologies and techniques for process modeling and enterprise architectures

    Autonomic Execution of Computational Workflows

    Get PDF
    This paper describes the application of anautonomic paradigm to manage the complexity of softwaresystems such as computational workflows. To demonstrate ourapproach, the workflow and the services comprising it aretreated as managed resources controlled by hierarchicallyorganized autonomic managers. By applying service-orientedsoftware engineering principles, in particular enterpriseintegration patterns, we have developed a scalable, agile, selfhealingenvironment for execution of dynamic, data-drivenworkflows which are capable of assuring scientific fidelitydespite unavoidable faults and without human intervention

    A Classification of BPEL Extensions

    Get PDF
    The Business Process Execution Language (BPEL) has emerged as de-facto standard for business processes implementation. This language is designed to be extensible for including additional valuable features in a standardized manner. There are a number of BPEL extensions available. They are, however, neither classified nor evaluated with respect to their compliance to the BPEL standard. This article fills this gap by providing a framework for classifying BPEL extensions, a classification of existing extensions, and a guideline for designing BPEL extensions

    Runtime Adaptation of Scientific Service Workflows

    Get PDF
    Software landscapes are rather subject to change than being complete after having been built. Changes may be caused by a modified customer behavior, the shift to new hardware resources, or otherwise changed requirements. In such situations, several challenges arise. New architectural models have to be designed and implemented, existing software has to be integrated, and, finally, the new software has to be deployed, monitored, and, where appropriate, optimized during runtime under realistic usage scenarios. All of these situations often demand manual intervention, which causes them to be error-prone. This thesis addresses these types of runtime adaptation. Based on service-oriented architectures, an environment is developed that enables the integration of existing software (i.e., the wrapping of legacy software as web services). A workflow modeling tool that aims at an easy-to-use approach by separating the role of the workflow expert and the role of the domain expert. After the development of workflows, tools that observe the executing infrastructure and perform automatic scale-in and scale-out operations are presented. Infrastructure-as-a-Service providers are used to scale the infrastructure in a transparent and cost-efficient way. The deployment of necessary middleware tools is automatically done. The use of a distributed infrastructure can lead to communication problems. In order to keep workflows robust, these exceptional cases need to treated. But, in this way, the process logic of a workflow gets mixed up and bloated with infrastructural details, which yields an increase in its complexity. In this work, a module is presented that can deal automatically with infrastructural faults and that thereby allows to keep the separation of these two layers. When services or their components are hosted in a distributed environment, some requirements need to be addressed at each service separately. Although techniques as object-oriented programming or the usage of design patterns like the interceptor pattern ease the adaptation of service behavior or structures. Still, these methods require to modify the configuration or the implementation of each individual service. On the other side, aspect-oriented programming allows to weave functionality into existing code even without having its source. Since the functionality needs to be woven into the code, it depends on the specific implementation. In a service-oriented architecture, where the implementation of a service is unknown, this approach clearly has its limitations. The request/response aspects presented in this thesis overcome this obstacle and provide a SOA-compliant and new methods to weave functionality into the communication layer of web services. The main contributions of this thesis are the following: Shifting towards a service-oriented architecture: The generic and extensible Legacy Code Description Language and the corresponding framework allow to wrap existing software, e.g., as web services, which afterwards can be composed into a workflow by SimpleBPEL without overburdening the domain expert with technical details that are indeed handled by a workflow expert. Runtime adaption: Based on the standardized Business Process Execution Language an automatic scheduling approach is presented that monitors all used resources and is able to automatically provision new machines in case a scale-out becomes necessary. If the resource's load drops, e.g., because of less workflow executions, a scale-in is also automatically performed. The scheduling algorithm takes the data transfer between the services into account in order to prevent scheduling allocations that eventually increase the workflow's makespan due to unnecessary or disadvantageous data transfers. Furthermore, a multi-objective scheduling algorithm that is based on a genetic algorithm is able to additionally consider cost, in a way that a user can define her own preferences rising from optimized execution times of a workflow and minimized costs. Possible communication errors are automatically detected and, according to certain constraints, corrected. Adaptation of communication: The presented request/response aspects allow to weave functionality into the communication of web services. By defining a pointcut language that only relies on the exchanged documents, the implementation of services must neither be known nor be available. The weaving process itself is modeled using web services. In this way, the concept of request/response aspects is naturally embedded into a service-oriented architecture

    An Adaptive Mediation Framework for Workflow Management in the Internet of Things

    Get PDF
    Tärkavad värkvõrksüsteemid koosnevad arvukast hulgast heterogeensetest füüsilistest seadmetest, mis ühenduvad Internetiga. Need seadmed suudavad pidevalt ümbritseva keskkonnaga suhelda ja osana lõppkasutaja rakendusestest edendada valdkondi nagu tark kodu, e-tervis, logistika jne. Selleks, et integreerida füüsilisi seadmeid värkvõrgu haldussüssteemidega, on töövoo haldussüsteemid kerkinud esile sobiva lahendusena. Ent töövoo haldussüsteemide rakendamine värkvõrku toob kaasa reaalajas teenuste komponeerimise väljakutseid nagu pidev teenusavastus ja -käivitus. Lisaks kerkib küsimus, kuidas piiratud resurssidega värkvõrgu seadmeid töövoo haldussüsteemidega integreerida ning kuidas töövooge värkvõrgu seadmetel käivitada. Tööülesanded (nagu pidev seadmeavastus) võivad värkvõrgus osalevatele piiratud arvutusjõudluse ja akukestvusega seadmetele nagu nutitelefonid koormavaks osutuda. Siinkohal on võimalikuks lahenduseks töö delegeerimine pilve. Käesolev magistritöö esitleb kontekstipõhist raamistikku tööülesannete vahendamiseks värkvõrgurakendustes. Antud raamistikus modelleeritakse ning käitatakse tööülesandeid kasutades töövoogusid. Raamistiku prototüübiga läbi viidud uurimus näitas, et raamistik on võimeline tuvastama, millal seadme avastusülesannete pilve delegeerimine on kuluefektiivsem. Vahel aga pole töövoo käitamistarkvara paigaldamine värkvõrgu seadmetele soovitav, arvestades energiasäästlikkust ning käituskiirust. Käesolev töö võrdles kaht tüüpi töövookäitust: a) töövoo mudeli käitamine käitusmootoriga ning b) töövoo mudelist tõlgitud programmikoodi käitamine. Lähtudes katsetest päris seadmetega, võrreldi nimetatud kahte meetodit silmas pidades süsteemiressursside- ning energiakasutust.Emerging Internet of Things (IoT) systems consist of great numbers of heterogeneous physical entities that are interconnected via the Internet. These devices can continuously interact with the surrounding environment and be used for user applications that benefit human life in domains such as assisted living, e-health, transportation etc. In order to integrate the frontend physical things with IoT management systems, Workflow Management Systems (WfMS) have gained attention as a viable option. However, applying WfMS in IoT faces real-time service composition challenges such as continuous service discovery and invocation. Another question is how to integrate resource-contained IoT devices with the WfMS and execute workflows on the IoT devices. Tasks such as continuous device discovery can be taxing for IoT-involved devices with limited processing power and battery life such as smartphones. In order to overcome this, some tasks can be delegated to a utility Cloud instance. This thesis proposes a context-based framework for task mediation in Internet of Things applications. In the framework, tasks are modelled and executed as workflows. A case study carried out with a prototype of the framework showed that the proposed framework is able to decide when it is more cost-efficient to delegate discovery tasks to the cloud. However, sometimes embedding a workflow engine in an IoT device is not beneficial considering agility and energy conservation. This thesis compared two types of workflow execution: a) execution of workflow models using an embedded workflow engine and b) execution of program code translations based on the workflow models. Based on experiments with real devices, the two methods were compared in terms of system resource and energy usage

    Web service composition: A survey of techniques and tools

    Get PDF
    Web services are a consolidated reality of the modern Web with tremendous, increasing impact on everyday computing tasks. They turned the Web into the largest, most accepted, and most vivid distributed computing platform ever. Yet, the use and integration of Web services into composite services or applications, which is a highly sensible and conceptually non-trivial task, is still not unleashing its full magnitude of power. A consolidated analysis framework that advances the fundamental understanding of Web service composition building blocks in terms of concepts, models, languages, productivity support techniques, and tools is required. This framework is necessary to enable effective exploration, understanding, assessing, comparing, and selecting service composition models, languages, techniques, platforms, and tools. This article establishes such a framework and reviews the state of the art in service composition from an unprecedented, holistic perspective

    Data provisioning in simulation workflows

    Get PDF
    Computer-based simulations become more and more important, e.g., to imitate real-world experiments such as crash tests, which would otherwise be too expensive or not feasible at all. Thereby, simulation workflows may be used to control the interaction with simulation tools performing necessary numerical calculations. The input data needed by these tools often come from diverse data sources that manage their data in a multiplicity of proprietary formats. Hence, simulation workflows additionally have to carry out many complex data provisioning tasks. These tasks filter and transform heterogeneous input data in such a way that underlying simulation tools can properly ingest them. Furthermore, some simulations use different tools that need to exchange data between each other. Here, even more complex data transformations are needed to cope with the differences in data formats and data granularity as they are expected by involved tools. Nowadays, scientists conducting simulations typically have to design their simulation workflows on their own. So, they have to implement many low-level data transformations that realize the data provisioning for and the data exchange between simulation tools. In doing so, they waste time for workflow design, which hinders them to concentrate on their core issue, i.e., the simulation itself. This thesis introduces several novel concepts and methods that significantly alleviate the design of the complex data provisioning in simulation workflows. Firstly, it addresses the issue that most existing workflow systems offer multiple and diverse data provisioning techniques. So, scientists are frequently overwhelmed with selecting certain techniques that are appropriate for their workflows. This thesis discusses how to conquer the multiplicity and diversity of available techniques by their systematic classification. The resulting classes of techniques are then compared with each other considering relevant functional and non-functional requirements for data provisioning in simulation workflows. The major outcome of this classification and comparison is a set of guidelines that assist scientists in choosing proper data provisioning techniques. Another problem with existing workflow systems is that they often do not support all kinds of data resources or data management operations required by concrete computer-based simulations. So, this thesis proposes extensions of conventional workflow languages that offer a generic solution to data provisioning in arbitrary simulation workflows. These extensions allow for specifying any data management operation that may be described via the query or command languages of involved data resources, e.g., arbitrary SQL statements or shell commands. The proposed extensions of workflow languages still do not remove the burden from scientists to specify many complex data management operations using low-level query and command languages. Hence, this thesis introduces a novel pattern-based approach that even further enhances the abstraction support for simulation workflow design. Instead of specifying many workflow tasks, scientists only need to select a small number of abstract patterns to describe the high-level simulation process they have in mind. Furthermore, scientists are familiar with the parameters to be specified for the patterns, because these parameters correspond to terms or concepts that are related to their domain-specific simulation methodology. A rule-based transformation approach offers flexible means to finally map high-level patterns onto executable simulation workflows. Another major contribution is a pattern hierarchy arranging different kinds of patterns according to clearly distinguished abstraction levels. This facilitates a holistic separation of concerns and provides a systematic framework to incorporate different kinds of persons and their various skills into workflow design, e.g., not only scientists, but also data engineers. Altogether, the pattern-based approach conquers the data complexity associated with simulation workflows, which allows scientists to concentrate on their core issue again, namely on the simulation itself. The last contribution is a complementary optimization method to increase the performance of local data processing in simulation workflows. This method introduces various techniques that partition relevant local data processing tasks between the components of a workflow system in a smart way. Thereby, such tasks are either assigned to the workflow execution engine or to a tightly integrated local database system. Corresponding experiments revealed that, even for a moderate data size of about 0.5 MB, this method is able to reduce workflow duration by nearly a factor of 9

    Self-managed Workflows for Cyber-physical Systems

    Get PDF
    Workflows are a well-established concept for describing business logics and processes in web-based applications and enterprise application integration scenarios on an abstract implementation-agnostic level. Applying Business Process Management (BPM) technologies to increase autonomy and automate sequences of activities in Cyber-physical Systems (CPS) promises various advantages including a higher flexibility and simplified programming, a more efficient resource usage, and an easier integration and orchestration of CPS devices. However, traditional BPM notations and engines have not been designed to be used in the context of CPS, which raises new research questions occurring with the close coupling of the virtual and physical worlds. Among these challenges are the interaction with complex compounds of heterogeneous sensors, actuators, things and humans; the detection and handling of errors in the physical world; and the synchronization of the cyber-physical process execution models. Novel factors related to the interaction with the physical world including real world obstacles, inconsistencies and inaccuracies may jeopardize the successful execution of workflows in CPS and may lead to unanticipated situations. This thesis investigates properties and requirements of CPS relevant for the introduction of BPM technologies into cyber-physical domains. We discuss existing BPM systems and related work regarding the integration of sensors and actuators into workflows, the development of a Workflow Management System (WfMS) for CPS, and the synchronization of the virtual and physical process execution as part of self-* capabilities for WfMSes. Based on the identified research gap, we present concepts and prototypes regarding the development of a CPS WFMS w.r.t. all phases of the BPM lifecycle. First, we introduce a CPS workflow notation that supports the modelling of the interaction of complex sensors, actuators, humans, dynamic services and WfMSes on the business process level. In addition, the effects of the workflow execution can be specified in the form of goals defining success and error criteria for the execution of individual process steps. Along with that, we introduce the notion of Cyber-physical Consistency. Following, we present a system architecture for a corresponding WfMS (PROtEUS) to execute the modelled processes-also in distributed execution settings and with a focus on interactive process management. Subsequently, the integration of a cyber-physical feedback loop to increase resilience of the process execution at runtime is discussed. Within this MAPE-K loop, sensor and context data are related to the effects of the process execution, deviations from expected behaviour are detected, and compensations are planned and executed. The execution of this feedback loop can be scaled depending on the required level of precision and consistency. Our implementation of the MAPE-K loop proves to be a general framework for adding self-* capabilities to WfMSes. The evaluation of our concepts within a smart home case study shows expected behaviour, reasonable execution times, reduced error rates and high coverage of the identified requirements, which makes our CPS~WfMS a suitable system for introducing workflows on top of systems, devices, things and applications of CPS.:1. Introduction 15 1.1. Motivation 15 1.2. Research Issues 17 1.3. Scope & Contributions 19 1.4. Structure of the Thesis 20 2. Workflows and Cyber-physical Systems 21 2.1. Introduction 21 2.2. Two Motivating Examples 21 2.3. Business Process Management and Workflow Technologies 23 2.4. Cyber-physical Systems 31 2.5. Workflows in CPS 38 2.6. Requirements 42 3. Related Work 45 3.1. Introduction 45 3.2. Existing BPM Systems in Industry and Academia 45 3.3. Modelling of CPS Workflows 49 3.4. CPS Workflow Systems 53 3.5. Cyber-physical Synchronization 58 3.6. Self-* for BPM Systems 63 3.7. Retrofitting Frameworks for WfMSes 69 3.8. Conclusion & Deficits 71 4. Modelling of Cyber-physical Workflows with Consistency Style Sheets 75 4.1. Introduction 75 4.2. Workflow Metamodel 76 4.3. Knowledge Base 87 4.4. Dynamic Services 92 4.5. CPS-related Workflow Effects 94 4.6. Cyber-physical Consistency 100 4.7. Consistency Style Sheets 105 4.8. Tools for Modelling of CPS Workflows 106 4.9. Compatibility with Existing Business Process Notations 111 5. Architecture of a WfMS for Distributed CPS Workflows 115 5.1. Introduction 115 5.2. PROtEUS Process Execution System 116 5.3. Internet of Things Middleware 124 5.4. Dynamic Service Selection via Semantic Access Layer 125 5.5. Process Distribution 126 5.6. Ubiquitous Human Interaction 130 5.7. Towards a CPS WfMS Reference Architecture for Other Domains 137 6. Scalable Execution of Self-managed CPS Workflows 141 6.1. Introduction 141 6.2. MAPE-K Control Loops for Autonomous Workflows 141 6.3. Feedback Loop for Cyber-physical Consistency 148 6.4. Feedback Loop for Distributed Workflows 152 6.5. Consistency Levels, Scalability and Scalable Consistency 157 6.6. Self-managed Workflows 158 6.7. Adaptations and Meta-adaptations 159 6.8. Multiple Feedback Loops and Process Instances 160 6.9. Transactions and ACID for CPS Workflows 161 6.10. Runtime View on Cyber-physical Synchronization for Workflows 162 6.11. Applicability of Workflow Feedback Loops to other CPS Domains 164 6.12. A Retrofitting Framework for Self-managed CPS WfMSes 165 7. Evaluation 171 7.1. Introduction 171 7.2. Hardware and Software 171 7.3. PROtEUS Base System 174 7.4. PROtEUS with Feedback Service 182 7.5. Feedback Service with Legacy WfMSes 213 7.6. Qualitative Discussion of Requirements and Additional CPS Aspects 217 7.7. Comparison with Related Work 232 7.8. Conclusion 234 8. Summary and Future Work 237 8.1. Summary and Conclusion 237 8.2. Advances of this Thesis 240 8.3. Contributions to the Research Area 242 8.4. Relevance 243 8.5. Open Questions 245 8.6. Future Work 247 Bibliography 249 Acronyms 277 List of Figures 281 List of Tables 285 List of Listings 287 Appendices 28

    Supporting Quality of Service in Scientific Workflows

    Get PDF
    While workflow management systems have been utilized in enterprises to support businesses for almost two decades, the use of workflows in scientific environments was fairly uncommon until recently. Nowadays, scientists use workflow systems to conduct scientific experiments, simulations, and distributed computations. However, most scientific workflow management systems have not been built using existing workflow technology; rather they have been designed and developed from scratch. Due to the lack of generality of early scientific workflow systems, many domain-specific workflow systems have been developed. Generally speaking, those domain-specific approaches lack common acceptance and tool support and offer lower robustness compared to business workflow systems. In this thesis, the use of the industry standard BPEL, a workflow language for modeling business processes, is proposed for the modeling and the execution of scientific workflows. Due to the widespread use of BPEL in enterprises, a number of stable and mature software products exist. The language is expressive (Turingcomplete) and not restricted to specific applications. BPEL is well suited for the modeling of scientific workflows, but existing implementations of the standard lack important features that are necessary for the execution of scientific workflows. This work presents components that extend an existing implementation of the BPEL standard and eliminate the identified weaknesses. The components thus provide the technical basis for use of BPEL in academia. The particular focus is on so-called non-functional (Quality of Service) requirements. These requirements include scalability, reliability (fault tolerance), data security, and cost (of executing a workflow). From a technical perspective, the workflow system must be able to interface with the middleware systems that are commonly used by the scientific workflow community to allow access to heterogeneous, distributed resources (especially Grid and Cloud resources). The major components cover exactly these requirements: Cloud Resource Provisioner Scalability of the workflow system is achieved by automatically adding additional (Cloud) resources to the workflow system’s resource pool when the workflow system is heavily loaded. Fault Tolerance Module High reliability is achieved via continuous monitoring of workflow execution and corrective interventions, such as re-execution of a failed workflow step or replacement of the faulty resource. Cost Aware Data Flow Aware Scheduler The majority of scientific workflow systems only take the performance and utilization of resources for the execution of workflow steps into account when making scheduling decisions. The presented workflow system goes beyond that. By defining preference values for the weighting of costs and the anticipated workflow execution time, workflow users may influence the resource selection process. The developed multiobjective scheduling algorithm respects the defined weighting and makes both efficient and advantageous decisions using a heuristic approach. Security Extensions Because it supports various encryption, signature and authentication mechanisms (e.g., Grid Security Infrastructure), the workflow system guarantees data security in the transfer of workflow data. Furthermore, this work identifies the need to equip workflow developers with workflow modeling tools that can be used intuitively. This dissertation presents two modeling tools that support users with different needs. The first tool, DAVO (domain-adaptable, Visual BPEL Orchestrator), operates at a low level of abstraction and allows users with knowledge of BPEL to use the full extent of the language. DAVO is a software that offers extensibility and customizability for different application domains. These features are used in the implementation of the second tool, SimpleBPEL Composer. SimpleBPEL is aimed at users with little or no background in computer science and allows for quick and intuitive development of BPEL workflows based on predefined components
    corecore