2,390 research outputs found

    Wavelet-based density estimation for noise reduction in plasma simulations using particles

    Full text link
    For given computational resources, the accuracy of plasma simulations using particles is mainly held back by the noise due to limited statistical sampling in the reconstruction of the particle distribution function. A method based on wavelet analysis is proposed and tested to reduce this noise. The method, known as wavelet based density estimation (WBDE), was previously introduced in the statistical literature to estimate probability densities given a finite number of independent measurements. Its novel application to plasma simulations can be viewed as a natural extension of the finite size particles (FSP) approach, with the advantage of estimating more accurately distribution functions that have localized sharp features. The proposed method preserves the moments of the particle distribution function to a good level of accuracy, has no constraints on the dimensionality of the system, does not require an a priori selection of a global smoothing scale, and its able to adapt locally to the smoothness of the density based on the given discrete particle data. Most importantly, the computational cost of the denoising stage is of the same order as one time step of a FSP simulation. The method is compared with a recently proposed proper orthogonal decomposition based method, and it is tested with three particle data sets that involve different levels of collisionality and interaction with external and self-consistent fields

    Convolutional Methods for Music Analysis

    Get PDF

    Wavelet Transform Applied to Internal Defect Detection by Means of Laser Ultrasound

    Get PDF
    Laser-generated ultrasound represents an interesting nondestructive testing technique that is being investigated in the last years as performative alternative to classical ultrasonic-based approaches. The greatest difficulty in analyzing the acoustic emission response is that an in-depth knowledge of how acoustic waves propagate through the tested composite is required. In this regard, different signal processing approaches are being applied in order to assess the significance of features extracted from the resulting analysis. In this study, the detection capabilities of internal defects in a metallic sample are proposed to be studied by means of the time-frequency analysis of the ultrasonic waves resulting from laser-induced thermal mechanism. In the proposed study, the use of the wavelet transform considering different wavelet variants is considered due to its multi-resolution time-frequency characteristics. Also, a significant time-frequency technique widely applied in other fields of research is applied, the synchrosqueezed transform

    Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129

    Get PDF
    We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently-commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1 deg x 1 deg centered on the radio source 3C 129. We modeled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster center. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of t_syn = 267 +/- 26 Myrs. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M=v_gal/c_s=1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70% in the faintest region of the source where the magnetic field is aligned with the direction of the tail.Comment: 19 pages, 17 figures, accepted for publication in MNRA
    • …
    corecore