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Abstract 

We present a novel method of classification and segmentation of melodies in 

symbolic representation. The method is based on filtering pitch as a signal over time 

with the Haar-wavelet, and we evaluate it on two tasks. The filtered signal 

corresponds to a single-scale signal ws from the continuous Haar wavelet transform. 

The melodies are first segmented using local maxima or zero-crossings of ws. The 

segments of ws are then classified using the k–nearest neighbour algorithm with 

Euclidian and city-block distances. The method proves more effective than using 

unfiltered pitch signals and Gestalt-based segmentation when used to recognize the 

parent works of segments from Bach’s Two-Part Inventions (BWV 772–786). When 

used to classify 360 Dutch folk tunes into 26 tune families, the performance of the 

method is comparable to the use of pitch signals, but not as good as that of string-

matching methods based on multiple features.  

Keywords: Music analysis, wavelet analysis, classification, symbolic music, melodic 

analysis, information retrieval, folk song analysis, melodic segmentation 

1 Introduction 

Melodic classification models depend strongly on melodic representation. 

Computational models that work on symbolic data (e.g., MIDI) usually transform the 

data into a suitable representation before applying any machine learning technique. 
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Most computational approaches for melodies use string methods, treating melodies as 

sequences of notes or intervals, and modelling distributions and transitions of note 

properties (Knopke & Jürgensen, 2009; Hillewaere, Manderick, & Conklin, 2009). 

Other approaches use multidimensional feature vectors to represent global properties 

of melodies, assigning coefficients to various musical dimensions (Ponce de Léon & 

Iñesta, 2004; Hillewaere, Manderick, & Conklin, 2012; van Kranenburg, 2010). 

We present below a method for analysing and classifying monophonic 

melodies, which involves filtering symbolic representations of melodies with the Haar 

wavelet. We evaluate it on two classification tasks, each using a different MIDI 

dataset. In the first task, we use the approach to identify the parent works of segments 

from the parts of the fifteen Two-Part Inventions (BWV 772–786) by Johann 

Sebastian Bach (1685-1750)
1
. In the second task, the method is used to classify 360 

Dutch folk songs into 26 tune families (Grijp, 2008). We compare our wavelet-based 

approach to the use of unfiltered pitch signals and a previous Gestalt-based model of 

segmentation (Cambouropoulos, 1997, 2001).  

2 Background 

2.1 The wavelet transform 

The wavelet transform (WT) is a mathematical tool that was born from a 

multidisciplinary effort in mathematics, physics, computer science and engineering. 

Having developed rapidly since the second half of the 1980s, wavelets have been used 

for numerous applications (Daubechies, 1996; Mallat, 2009) and are today a standard 

tool in audio and image processing.  

In the context of time-based one-dimensional (1D) signals, a wavelet is a 

signal that has finite energy concentrated over a short amount of time and that is zero 

or almost zero everywhere else. Mathematically, a wavelet is normally characterized 

by a total energy of 1 and an average of 0, with its energy centred around time 0 

(Mallat, 2009). The WT decomposes a signal into a sum of components based on 

different versions of a so-called mother wavelet and often an additional scaling 

function, also called the father wavelet. We focus here on the mother wavelet and the 

coefficients that are based on shifted and scaled versions of the mother wavelet. 

                                                        
1  We used the Musedata encodings of Bach’s Two-Part Inventions, available at 

http://www.musedata.org. 



  3 

Shifting refers to the position of the wavelet in time, while scaling refers to the degree 

of compression of the wavelet shape on the time axis, along with a normalization 

factor to maintain an energy of 1 (Antoine, 1999; Daubechies, 1996). The scaled and 

shifted versions of the wavelet are weighted by coefficients, determined by the inner 

product with the wavelet, so that they add up to the original signal. The wavelet 

transformation can also be viewed as using a filter-bank, where the coefficients at 

each scale correspond to a different band-pass filter that emphasises a specific scale in 

the signal (see Farge, 1992, pp. 449–450). 

The WT is similar to the Fourier transform, with Fourier frequency 

corresponding to the inverse scale in wavelets. The sine and cosine functions used in 

Fourier analysis are periodic signals, so that the Fourier components are not localized 

in time within the signal being analysed. Wavelets, by contrast, have localized energy 

and use several shifted and scaled versions, so that wavelet coefficients become more 

localized in time when the scale decreases, at the expense of scale resolution. Wavelet 

analysis offers a trade-off between better time resolution for small scales, 

corresponding to high frequencies, and better scale resolution for large scales, 

corresponding to low frequencies (Antoine, 1999; Farge, 1992; Torrence & Compo, 

1998).  

There are different types of wavelets with different properties and the choice 

of wavelet to analyse a signal depends on the type of the signal and the features that 

are relevant to the analysis. There are two main forms of the WT, the continuous 

wavelet transform (CWT) and the discrete wavelet transform (DWT), and the two 

different forms tend to be used for different purposes. The CWT is mostly used for 

signal analysis (i.e., pattern identification or feature detection), while the DWT is used 

for compression and reconstruction (Antoine, 1999; Mallat, 2009). Our method is 

based on the CWT, which will be described below.  

In audio music information retrieval (MIR), both the continuous and discrete 

WT have been applied extensively in tasks such as rhythmic content analysis (Smith 

& Honing, 2008), feature extraction for music genre classification (Andén & Mallat, 

2011; Grimaldi, Cunningham, & Kokaram, 2003; Tsunoo, Ono, & Sagayama, 2009; 

Tzanetakis, Essl, & Cook, 2001), pitch contour extraction and melodic indexing in 

“query-by-humming” systems (Jeon, Ma, & Ming Cheng, 2009; Jeon & Ma, 2011), 

denoising (Berger, Coifman, & Goldberg, 1994; Yu, Mallat, & Bacry, 2008) and 



  4 

audio compression (Dobson, Yang, Whitney, Smart, & Rigstaa, 1996; Srinivasan & 

Jamieson, 1998).  

Wavelets exhibit similarities to many information-processing steps in the 

human brain and have been extensively used in modelling vision (see, e.g., Kay, 

Naselaris, Prenger, & Gallant, 2008; Zhang, Zhang, Huang, & Tian, 2005; Zhang, 

Shan, Qing, Chen, & Gao, 2009). In hearing, auditory perception in the cochlea and 

the auditory pathway has been modelled using bandpass filters based on the CWT and 

other wavelet-based techniques (Daubechies & Maes, 1996; Sinaga, Gunawan & 

Ambikairajah, 2003; Karmakar, Kumar & Patney, 2011). The interesting 

mathematical properties of wavelets and their applicability to modelling neural 

mechanisms motivate us to explore here the applicability of wavelets to the symbolic 

level of music description (i.e., to notes and their properties). 

2.2 Symbolic music representation and analysis with wavelets 

Although wavelets have been used extensively for analysing music audio, the use of 

the WT is scarce in the symbolic domain. One isolated example is Pinto’s (2009) use 

of the DWT to index melodic sequences with few wavelet coefficients, obtaining 

improved retrieval results compared to the direct use of the melodies.  

A Western staff-notation score depicts a piece of music as a set of notes, 

specifying (amongst other things) the pitch, relative onset time and relative duration 

of each note. In a MIDI file, the pitch of each note is specified by its MIDI note 

number, which represents its chromatic pitch (see Meredith, 2006, pp. 126–129). For 

the purpose of wavelet analysis, a melody can be represented as a 1D signal, called a 

pitch signal, that indicates the chromatic pitch (MIDI note number) of the melody at 

each tatum time-point. The pitch signal can then be transformed into coefficients at 

different scales using the WT. A similar representation using Fourier analysis has 

been shown by Schmuckler (1999) to capture relevant information for melodic 

similarity.  

2.2.1 Melodic segmentation  

Music unfolds over time. This characteristic is the most prominent difference between 

music and visual art, engaging our brains in a prediction-expectation game of events 

occurring over time (Huron, 2006; Levitin, 2006). We do not know how a piece will 

develop or end until it finishes. However, as the music unfolds, we constantly identify 

segments that start somewhere, develop and end. Finding coherent segments, or 
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groups, at various different time scales is a basic, automatic aspect of music cognition 

(Lerdahl & Jackendoff, 1983). 

Most theoretical work in music perception has concentrated on the perceived 

associations of events, based on grouping, adapting visual Gestalt principles of 

similarity and proximity to musical perception. These theories include Tenney and 

Polansky’s (1980) theory of temporal Gestalt-units, Lerdahl and Jackendoff’s (1983) 

grouping structure theory and the Local Boundary Detection Model (LBDM) of 

Cambouropoulos (1997, 2001), which sets local boundaries according to change and 

proximity rules. The rules in these models address both local changes and longer-term 

averages, so that representing melodic movements at different scales with wavelet 

filters, leading to different levels of localization on the time-axis, appears to be an 

appropriate approach for deriving group boundaries. 

2.2.2 Relation to neural mechanisms  

Recent neuroscientific imaging work based on EEG, fMRI and MEG provides 

evidence that musical structure constantly engages the brain in a game of prediction, 

expectation and reward, based on long-term memory and statistical regularities of 

coded features (Trainor & Zatorre, 2009). Moreover, it has been observed that brain 

activity increases transiently at musical movement boundaries, as well as other non-

musical event boundaries, and it has been suggested that segmentation is thus an 

essential perceptual component, occurring simultaneously at multiple time-scales as 

an adaptive mechanism that integrates recent past information to improve predictions 

about the near future (Kurby & Zacks, 2008).  

Perceptual boundary detection has been successfully modelled with wavelets. 

For example, Gabor wavelets have been used to model the early stages of the visual 

pathway (Kay et al., 2008; Nixon & Aguado, 2012; Zhang et al., 2005; Zhang et al., 

2009). It therefore seems reasonable to hypothesise that a similar wavelet-based 

approach might successfully be used to model group boundary perception in 

melodies. 

2.2.3 Melodic theory 

Huron (1996) proposes a reductionist approach to melodic classification, summarizing 

the contour of a folk song by its first and final pitches, along with an average of all the 

pitches in between. He demonstrates that folk songs have arc-like contours, with an 

inverted ‘U’ shape being the most common. In his study, a melody is classified into 
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one of nine types, depending on whether it describes a trajectory that is ascending, 

descending, horizontal or a combination of these basic types.  

In Schenkerian analysis (Brown, 2005; Forte & Gilbert, 1982; Schenker, 

1935), the musical surface or foreground is recursively reduced to a fundamental 

structure (Ursatz) by removing notes of progressively greater structural importance. 

In a wavelet representation, small-scale structures that occur only in the foreground 

(e.g., ornaments) will be represented only in the small-scale coefficients; whereas the 

higher structural levels (corresponding loosely to the background or fundamental 

structure) will be represented by the coefficients at greater time scales. In this way, 

wavelets at different scales can be used to extract structure at what would correspond 

to different transformational levels (Schichten) in the Schenkerian approach. 

It is possible to understand many musical works as having been generated by 

the reverse of this hierarchical reduction process—that is, by the successive 

elaboration of a fundamental structure with less structural notes, until the detailed 

foreground or musical surface emerges. Wavelet filters emphasise different temporal 

scales in a pitch signal, thus providing a tool to focus on and discover musical 

structure at a variety of different temporal scales. 

3 Method 

We investigate the effectiveness of the WT to represent relevant properties of 

melodies in segmentation and classification tasks. Our input data are sequences of 

notes, represented as pitch signals. To these we apply the CWT and obtain a time-

scale representation for structural analysis in classification tasks. Figure 1 a) presents 

the score representation of a melodic fragment, Figure 1 b) is the 1D pitch signal that 

represents it, and Figure 1 c) is its CWT by Haar wavelet, in a scalogram plotting the 

absolute coefficients, using darker colours for smaller values and brighter colours for 

larger values. 
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Figure 1. The opening bars of the upper part of J. S. Bach’s Invention in C major (BWV 772), 

represented as a) a score, b) a pitch signal and c) a scalogram of the CWT (i.e., the absolute values of 

the coefficients). 

3.1 Representation 

We represent melodies as pitch signals or by the wavelet coefficients of the pitch 

signals.  

3.1.1 Pitch signal representation 

A discrete pitch signal v with length L is sampled from MIDI files at a rate r in 

number of samples per quarter note (qn), so that we have a pitch value for every time 

point, expressed as v[t].  We use two different ways of treating rests: they are either 

represented by the value 0, or they are removed from the representation by the 

following procedure: if a rest occurs at the beginning of a sequence, it is replaced by 

the first pitch number that appears in the sequence, otherwise it is replaced with the 

pitch number of the note that immediately precedes it. 
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Normalized pitch signal representation. We normalize pitch signal segments by 

subtracting the average pitch in order to make the representation invariant to 

transposition. The normalization is applied after the segmentation. 

3.1.2 Wavelet representation 

The CWT
2
 transforms a 1D signal into a set of coefficients ws,u using an analysing 

function  !
s,u
(t) , which is derived from the mother wavelet !  by scaling by a factor 

s > 0  and shifting in time by an amount u! ℝ:  

!
s,u
(t) =

1

s

!
t !u

s

"

#
$

%

&
'.                                (1) 

The coefficients ws,u are calculated for real valued wavelets as the inner product of the 

signal v(t) and the analysing function !
s,u
(t) :  

w
s,u
= v,!

s,u
= v(t)!

s,u

!"

+"

# (t)dt.                (2) 

To avoid edge effects due to finite-length sequences (Torrence & Compo, 

1998), we pad on both ends with a mirror image of the pitch signal (Woody & Brown, 

2007). Once the coefficients are obtained, the segment that corresponds to the padding 

is removed, so that the signal maintains its original length.  

We can treat coefficients on one scale as a function of the shift parameter with 

ws(u) = ws,u . Then the CWT acts as a filter, equivalent to the convolution of v with the 

scaled and flipped real-valued wavelet. The CWT calculates the wavelet coefficients 

at all points u, so that the complete information of the pitch signal is still retained in 

the coefficients at one scale and it can be recovered using deconvolution, given a 

suitable wavelet. 

For implementation on a computer, we can write equation (2) in a discretized 

version, where we compute the convolution for each translation u and scale s: 

w
s
[u]= !

s,u
[l]v l[ ]

l=1

L

! .                               (3)  

                                                        
2 We follow the presentation by Antoine (1999). Signals processed by digital computers have to be 

discretized. The term “continuous” refers to the fact that all sample positions are used as shift values, as 

opposed to the discrete wavelet transform where shift values are much sparser. 
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The summation index only needs to run over the support of ! , i.e., between the 

maximum and minimum time-points for which !  is not zero, which is typically 

considerably shorter than the signal v.  

3.2 Wavelet choice 

The selection of wavelet or analysing function depends on the kind of information 

that we want to extract from the signal, considering that the transform’s coefficients 

combine information about the signal and the wavelet (Farge, 1992). The wavelet 

should give a compact representation of the variation in the signal that we are 

interested in. We use the Haar wavelet, which is defined by 

                   (4) 

 

and has a shape as shown in Figure 2.
3
 

 

Figure 2. The shape of the Haar wavelet. 

We selected the Haar wavelet because it matches the discontinuous, step-wise 

nature of the pitch signal. A continuous wavelet would require a combination of 

many small-scale components to represent the step transitions between pitches, 

obscuring the representation of pitch changes. On the other hand, the Haar wavelet is 

not suitable for continuous pitch data, which could represent vibrato, glissando, 

melismatic ornamentation, etc.  

                                                        
3 The Haar function was introduced by Haar in 1910 (Haar, 1910). Equation (4) uses Mallat’s (2009) 

notation. 
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The Haar wavelet has support on the time interval [0,s), and the inner product 

with the Haar wavelet calculates the difference between the averages of pitch in the 

first and second halves of that interval. In other words, the coefficient ws,u gives a 

measure of whether the melody is moving upwards or downwards over the scale 

period starting at position u. 

Figure 3 illustrates the Haar wavelet shifted and scaled. In each of the three 

rows of sub-figures, different wavelet shifts can be seen (first vs. second column). 

The scale is 0.5 in the first row and 0.25 in the second and third rows. 
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Figure 3. The Haar wavelet shifted and scaled. 

3.3 Segmentation 

We use the wavelet coefficients to determine melodic segments in two different ways, 

setting segmentation points either at local maxima or at zero crossings of the wavelet 

coefficients. Default segmentation points are set at the beginning and at the end of 

signals.  
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3.3.1 Zero crossing segmentation 

Zero crossings occur when the inner product between the melody and the Haar 

wavelet is zero. This means that the average pitch in the first half of the scale period is 

equal to the average pitch in the second half of the scale period. See Figure 4 for 

illustration. 

 

Figure 4. Wavelet coefficient signal at the scale of 4 for the first 16 qns of the sixth Invention in E 

major (BWV 777). Locations of zero-crossings are indicated by dotted vertical lines. 

3.3.2 Local maxima segmentation  

Local maxima in the wavelet representation occur when the shapes of the melody and 

the Haar wavelet correlate most. The inner product with the Haar wavelet of length s 

can also be described as the difference of the average pitch during the first half of the 

wavelet minus the average pitch over the second half of the wavelet times s. Local 

maxima occur, therefore, where there is a locally maximal fall in average pitch 

content at the scale of the wavelet used. See Figure 5 for illustration. 
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Figure 5. Wavelet coefficient signal at the scale of 4 for the first 16 qns of the sixth Invention in E 

major (BWV 777). Local maxima are indicated by dotted vertical lines. 

3.3.3 Segment length normalization 

In the evaluation tasks described below, the segments identified need to be classified, 

for which we introduce similarity measures on segments. We use the Euclidean and 

city-block distances, which entails that the segments need to be represented as vectors 

of equal length. However, segments are not generally of the same length when using 

the segmentation approaches described here. In order to obtain segments of equal 

length, we use two different procedures: we normalize the length of segments to the 

maximal segment length, or we define a maximal length for all segments and pad 

shorter segments as necessary with zeros at the end. 

For comparison, we also segment using Eerola and Toiviainen’s (2004) 

implementation of Cambouropoulos’ (1997, 2001) LBDM (see above). The LBDM 

calculates a normalized boundary strength between 0 and 1 for the interval between 

each pair of consecutive notes in a melody (Cambouropoulos, 2001). In order to 

generate a specific segmentation, it therefore requires a threshold value between 0 and 

1 to be defined.  

3.4 Scale selection  

In this study, we use the wavelet coefficients at only one scale, as we focus only on a 

single level of segmentation. By representing melodies by their wavelet coefficients at 

only one scale, we emphasise information on that time-scale in the signal, as 

discussed above. Small scales focus on short-term movements, while large scales 

emphasise the longer-term trend of the melody. We have tested dyadic multiples of 

quarter notes as scale values and selected those that yield the best classification 

results.    
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3.5 Classification 

We use the wavelet representation and segmentation to perform classification of 

melodies with a k-Nearest-Neighbour (kNN) classifier. A kNN classifier is defined by 

a set of labelled items and a distance measure. It then assigns labels to a new item x 

by finding the k items that are closest to x according to the distance measure and 

choosing the label that occurs most often among these k items. 

We use two different distance measures, city-block distance and Euclidean 

distance. The Euclidean distance between two segments, st and sc, is given by 

dstsc
E
= (st[ j]! sc[ j])2

j=1

n

" . 

The city-block distance is given by 

dstsc
C
= st[ j]! sc[ j]

j=1

n

" . 

3.6 Example 

For illustration, Figure 6 presents an example of similarity measurements between a 

target segment (row 2) from a melody represented as pitch signal (row 1) and four test 

segments (rows 3 to 6).  Test segment 3 has the smallest distance to the target 

segment when segment length normalization by zero padding is applied. On the other 

hand, if segment length normalization by interpolation is applied, the segment that has 

the smallest distance to the target segment is test segment 1. 
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Figure 6. Illustration of a melodic segment (row 1) and similarity measurements between a target 

segment (row 2) and four test segments (rows 3 to 6). Segment length normalization by zero padding 

(left column) vs. segment length normalization by interpolation (right column). The black square in 

row 1 denotes the target segment. 
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4 Classification experiments 

In this section, we present two experiments on different data sets
4
. One experiment is 

on recognizing the parent works of segments from Bach’s Two-Part Inventions (BWV 

772–786). The second experiment is on recognizing the tune families to which Dutch 

folk songs belong, using the Dutch Song Database (Grijp 2008; The Meertens 

Institute, 2012).  

4.1 Experiment 1: Classification of segments from J. S. Bach’s Two-Part 

Inventions 

Music theorists describe J. S. Bach’s Inventions as being coherently developed from a 

theme, the subject, that dominates each piece (see, e.g., Dreyfus, 1996). The 

Invention’s subject is presented in the exposition, and it is contrapuntally treated 

across the (usually three) other sections (Stein, 1979). From this point of view, we 

hypothesize that the parent work of one of the later sections of an Invention can be 

successfully identified by finding the Invention with the exposition that the section 

resembles most closely in terms of melodic segments used. 

For the 15 Two-Part Inventions, the classifier set C is built from segments sci,j 

from the expositions of all Inventions, where each segment can stem from either the 

upper or the lower part. sci,j  is the j
th 

segment in Invention i. We define the length of 

the exposition as 16 qn, which is, of course, not accurate in all cases, but rather 

corresponds to the longest exposition in order to avoid including exposition material 

in the test sets possibly however, including material of the following section in the 

classifier. After the first 16 qn, each invention is divided into 3 sections of equal length to 

build the test sets. Each test set T is built from segments st, where each st can stem 

from either the upper or the lower part. We denote the j
th

 segment in Invention i by 

sti,j.   To classify a segment st to one of the 15 classes, we apply 1-NN classification. 

That is, we compute the distances between st and all sc in C, and classify st to the 

class i of the sci,j that has the smallest distance to st. The section is assigned the class 

most frequently predicted by its segments. In both cases we use the next nearest point 

to break ties. 

                                                        
4 The algorithms are implemented in MATLAB (R2012b, The Mathworks, Inc) using the Wavelet 

Toolbox and the MIDI Toolbox (Eerola & Toiviainen, 2004). We use the LBDM implementation of the 

MIDI Toolbox, and an update of Christine Smit’s read_midi function 

(http://www.ee.columbia.edu/~csmit/matlab_midi.html, accessed 4 October 2012). 
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We test the classification accuracy of classifiers built from the first 4, 8 or 16 

qn, on three, equally-divided sections after the exposition (see Figure 7), to study the 

development of the method’s performance over the course of the Invention. We 

expect the classification rates to first decrease, reflecting the increasing degrees of 

variation of the original material and to increase towards the end, where the original 

material typically returns. We also compare different representations, segmentations 

and distance measures, as the performance can inform us about the suitability of these 

measures for representing the motivic coherence that music theorists describe in the 

Inventions. 

We also test the effect of including contrapuntal variations in the classifier, 

because music theorists claim that these techniques are used for variation in the 

Inventions (and generally in imitative styles of music) (see, e.g., Dreyfus, 1996). 

Specifically, we considered inversion (reflection in a constant-pitch axis), retrograde 

(reflection in a constant-time axis) and retrograde inversion (rotation through a half 

turn) (see Figure 8). Contrapuntal variations are added as classes to the kNN classifier 

and we therefore have 4 times the number of classes. 

We compare the wavelet representation with the normalized pitch signal 

representation, as described above. We evaluate the case when classifier and test sets 

contain one segment for each part and section, i.e. “without segmentation”, and the 

case of applying a segmentation algorithm to create several segments from each part 

and section, which we call “with segmentation”. We compare the results of zero 

crossing wavelet segmentation with two other segmentation methods: segmentation 

into segments of constant length, as a simplistic baseline segmentation, and 

segmentation with Cambouropoulos’ LBDM as mentioned above. Local maxima 

wavelet segmentation was not used in this experiment as preliminary tests showed 

that segmenting at zero crossings produced better results in general for this dataset. 

Figure 9 shows, as an example, the first 16 qn of the upper voice of the first Invention 

(BWV 772) in the different combinations used for the experiments.  
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Figure 7. Scheme of classifier and test construction based on signal vi. 

        (a)                            (b)                           (c)                            (d) 

 

Figure 8. Contrapuntal variations: (a) prime form, (b) inversion, (c) retrograde and (d) retrograde 

inversion. 
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Figure 9.  The first 16 qn of the upper voice of Invention 1 (BWV 772) in different combinations of 

representation and segmentation (the segmentation points are shown as vertical dotted lines): 

Normalized pitch signal representation (odd rows) and wavelet representation at scale of 4 qn (even 

rows), without segmentation (rows 1 and 2), wavelet segmentation at scale of 4 qn (rows 3 and 4), 

constant segmentation at 4 qn (rows 5 and 6), and LBDM with a threshold of 0.4 (rows 7 and 8). Pitch 

signal normalization takes places after segmentation, leading to pitch shifts between the original 

melody and the segments. 

 

 When the segments’ lengths are normalized by zero padding, the length of 

segments is set to the maximal segment length, and shorter segments are padded as 

necessary with zeros at the end, even if they are segmented by constant length 

segmentation. In this case the sampling rate is not affected. When the segments’ 

lengths are normalized by interpolation, the lengths of segments are resized to the 
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maximal segment length by nearest neighbour interpolation (de Boor, 1978). This, of 

course, changes the sampling rate in most cases.  

We used pitch signals initially sampled at 8 samples per quarter note (qn) and 

varied the following parameters to optimize classification performance:  

• two melodic representations: normalized pitch signal representation (vr) and 

wavelet representation at scale of 1 qn (wr), 

• without segmentation and with three segmentation methods: constant 

segmentation (cs) at 1 and 4 qn, LBDM with thresholds of 0.2 and 0.4 and 

zero crossing wavelet segmentation (ws) at scale 1 and 4 qn, 

• segment length normalization by zero padding and by interpolation and 

• Euclidean and city-block distance. 

The optimal values of these parameters and the effect of representation, segmentation 

and contrapuntal variations will be presented in the results section. 

4.2 Experiment 2: Classification of Dutch Folk Tunes 

Folk tunes are a cultural heritage and interesting to study in the context of melodic 

classification because: 

1) they present variation due to the process of oral transmission between 

generations; 

2) understanding variations can help us understand cultural developments in 

music; and  

3) there is a substantial body of research and data to support experiments and 

comparisons. 

The Meertens Institute in Amsterdam hosts a collection of Dutch folk songs 

that has been digitized and classified into tune families according to similarity 

assessments done by experts (van Kranenburg, 2010). The Dutch Song Database we 

use contains 360 folk songs in 26 tune families, and is a subset of the collection 

known as “Onder de groene linde” (Grijp, 2008; The Meertens Institute, 2012). 

Automatic classification methods based on global features and string matching have 

been extensively tested by van Kranenburg (2010), and he concluded that recurrence 

of common motives is the most important musical factor in defining tune families. 

For the Dutch tune family classification task, we designed two experiments, 

testing, among other parameters, the effect of segmentation. We use complete 

melodies or segments of melodies for classification.  
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4.2.1 Experiment 2-1: Classification without segmentation 

In this experiment, we use complete melodies without segmentation. The songs of the 

Dutch Song Database are sampled to pitch signals of length 2
10

. We evaluate rest 

representation
5
 and pitch normalization, as described in section 3.1. Moreover, we 

evaluate melodies as pitch signals or as wavelet coefficients. When melodies are 

represented as wavelet coefficients, we apply the CWT with Haar wavelet at a single 

scale. We evaluate classification accuracy with 1NN using city-block and Euclidean 

distances in leave-one-out cross validation on the corpus of 360 folk songs. 

4.2.2 Experiment 2-2: Classification with segmentation 

We build the classifier set C from all segments scj of the whole corpus minus one—

that is 359 labeled songs. The remaining song is used for testing. We use kNN 

classification, where k=1 to 5. We thus compute the distances between a test segment 

stj and all segments in C, and assign the segment to the most frequent class of the k 

segments with the smallest distances and the tune to the most frequent class of its 

segments. We calculate the classifiers’ accuracies using all segments of all songs 

belonging to a tune family with 1 to 5 nearest neighbours and with two distance 

measures (Euclidean and city-block) in leave-one-out cross validation on the corpus 

of 360 folk songs. 

In this second experiment with segmentation, we use once again the two types 

of melodic representations (normalized pitch signal and wavelet coefficients at one 

scale) but only two segmentation models: LBDM and local maxima of wavelet 

coefficients. Zero crossings were not used in this experiment as preliminary tests 

showed that segmenting at local maxima produced better results in general for this 

dataset
6
. The MIDI files of this collection are initially sampled at 8 samples per qn. 

We apply the CWT with the Haar wavelet using a dyadic set of 8 scales. Melodies are 

represented as normalized pitch signals (vr) or as the resulting wavelet coefficients 

(wr). Signals are segmented by the wavelet coefficients’ local maxima (ws), or by the 

local boundary detection model LBDM using thresholds from 0.1 to 0.8 in steps of 

0.1. We explore the parameter space with a grid search, testing all combinations of 

                                                        
5  We also tested the way that rests are represented in normalized pitch signals by assigning the value 

zero to rests, subtracting the average pitch (excluding rests) and assigning the value zero to rests again 

after normalization. This practice produced worse results than the way that rests are represented in the 

normalized pitch signal representation described in section 3.1.  
6
 We ran some tests with segmentation points at local extrema (i.e., local minima and maxima), but, in 

general, results with local maxima were better. 
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representations and segmentations: wavelet representation (wr), normalized pitch 

signal representation (vr), wavelet segmentation (ws), LBDM (LBDM) segmentation. 

Segment length normalization is done by zero padding and by interpolation. 

5 Results and discussion 

5.1 Results of experiment 1: Classification of segments from J. S. Bach’s 

Two-Part Inventions 

5.1.1 Experiment 1-1. Classification without segmentation 

Table 1 shows the best accuracies with a corpus of the 15 Two-Part Inventions by J. 

S. Bach (BWV 772–786) without segmentation. The parameters used to achieve the 

values shown in Table 1 are: 

• pitch signals sampled at 8 samples per qn, 

• normalized pitch signal representation, 

• wavelet representation at the scale of 1 qn, 

• 1-nearest neighbour classifier with city-block or Euclidean distance, and 

• length normalization by zero padding or by interpolation. 

 

 

City-block Euclidean 

 

(wr) (vr) (wr) (vr) 

Mean NC 0.1778 0.0889 0.1333 0.0889 

Std-Dev. NC 0.0385 0.0770 0.0667 0.1018 

Mean CP 0.1333 0.1556 0.0667 0.1333 

Std-Dev. CP 0.0667 0.1388 0.0000 0.1155 

Table 1. Experiment without segmentation. Summary of the best classification accuracies over three 

sections of the inventions, mean and standard deviation (Std-Dev.) of the classifiers build from the first 

16 qn. Classifier built from the exposition (NC), and the classifier built from the exposition and its 

contrapuntal variations (CP). Combinations: wavelet representation (wr), normalized pitch signal 

representation (vr)..Appendix A, Table A3 shows the results of all combinations tested in the 

experiment. 

 

This approach is a baseline experiment, which does not use segment information or 

alignment, and the observed accuracies are above chance level (6.66%) but very low 

as expected.  
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5.1.2 Experiment 1-2. Classification with segmentation 

For this corpus and experiment, segmentation improves the classification rates 

substantially. Figures 10 and 11 show the classification performance on each section, 

the effect of segmentation and representation (rows vs. columns), the effect of 

including contrapuntal techniques (Figure 10 vs. Figure 11) and the number of quarter 

notes used for the classifiers (red, green and blue lines). The remaining fixed 

parameter values were chosen such that the best results were achieved in the majority 

of the cases shown (Appendix A, Tables A1 and A2 summarize the results of all other 

parameterisations). The used parameter values are: 

• normalized pitch signal representation, 

• wavelet representation at the scale of 1 qn, 

• zero crossing wavelet segmentation at the scale of 1 qn, 

• LBDM segmentation at a threshold of 0.2, 

• constant segmentation at 1 qn, 

• 1-nearest neighbour classifier with city-block distance, and 

• segment length normalization by zero padding. 

The classification results vary widely, with segmentation method having a 

stronger effect than representation type. Wavelet segmentation combined with 

wavelet representation produces the best classification results when using 16 quarter 

notes of the exposition. 

Including contrapuntal variations is clearly detrimental when using wavelet 

segmentation and to some degree when using LBDM, but improves performance with 

constant segmentation. This result was unexpected, as a common view in musicology 

is that inversion, retrograde and retrograde inversion are important principles of 

variation in J. S. Bach’s inventions (e.g. Stein, 1979) and would therefore help in 

recognising the inventions. However, the lower-than-expected recognition rates 

achieved with our contrapuntal variation classifier may be due to the fact that we use 

chromatic pitch representations rather than ones based on diatonic (or “morphetic”) 

pitch (see Meredith, 2006, pp. 126–9).   

The classification performance generally decreases from the 1st to the 2nd 

sections and it rises from the 2nd to the 3rd sections, to some degree conforming to 

the expectation of increased similarity between the final section and the exposition. 
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Figure 10.  Performance for each section with the classifier based on the exposition. 

 

Figure 11. Performance for each section with the classifier based on the exposition and its contrapuntal 

variations. 

5.2 Results of experiment 2: Classification of Dutch Folk Tunes  

5.2.1 Classification without segmentation 

Table 2.1 shows the classification rates obtained in the experiment on the corpus of 

360 Dutch Folk songs without segmentation, using complete melodies. The parameter 

values are: 

• pitch signals of length 2
10

, 

• normalized pitch signal representation, 

• wavelet representations at a single scale and 

• classification in leave-one-out cross validation with 1 nearest neighbours using 

Euclidean and city-block distances. 
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 City-block  Euclidean  City-block  Euclidean  

 Rests removed  Rests represented by zeros 

(vr) 
0.8806 0.8694 0.7944 0.7056 

(wr) 0.8556 0.8306 0.7472 0.7222 
Table 2. Classification accuracy observed for different methods. Pitch signal representation (vr) and 

wavelet representation (wr) combined with different distance measures and rest treatment. 

 

For this experiment, removing rests from the representation produced better 

classification accuracies. We therefore removed rests from the representation for the 

experiment with segmentation. The use of complete melodies represented as pitch 

signals without filtering produces the best results. 

5.2.2 Classification with segmentation 

Contrary to the effect seen in experiment 1, segmentation did not produce a 

significant change in the classification rates, even varying several parameters. Figure 

12 shows the classification rates obtained with segmentation, where brighter colours 

indicate higher rates. The parameter values are: 

• pitch signals initially sampled at 8 samples per qn, 

• normalized pitch signal representation, 

• wavelet representations using a dyadic set of 8 scales, 

• local maxima wavelet segmentation using a dyadic set of 8 scales, 

• LBDM segmentation using thresholds from 0.1 to 0.8 in steps of 0.1, 

• classification with 1 to 5 nearest neighbours using city-block distances, and 

• segment length normalization by zero padding. 

Table 3 summarizes the best and worst classification rates with the parameters 

mentioned above. The effect of using segment length normalization by interpolation 

produces slightly lower results than segment length normalization by zero padding 

(see Table 4).  

The results show that wavelet filtering of the melodic segments can improve 

classification performance compared to using the pitch signal directly. When 

segmentation is used, wavelet representation proves to be more discriminative than 

pitch signals independently of the segmentation method. The classification 

performance varies, obtaining best results at small representation scales and poor 

results at large scales, with the exception of the largest scale, which recovers its 

performance to some extent (see Figure 12).  
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In terms of segmentation, we observe that shorter segments produce better 

results when used with wavelet representation. This is contrary to the results of the 

LBDM applied to pitch signals, where shorter segments produce worse results than 

larger ones. We observe an improvement towards threshold 0.4 and a gradual 

improvement towards the threshold of 0.8, which corresponds to larger segments, 

meaning that using the complete melodic sequences or a combination of complete 

melodies and melodic segments can lead to better classification results. Indeed, as 

shown in the first part of this second experiment using the Dutch Song Database, the 

classification rates improve when using complete melodies represented as pitch 

signals. 

In general, the city-block distance performs slightly better than Euclidean 

distance and the wavelet representation works better than the normalized pitch signal 

representation. In addition, we studied the effect of using more than one nearest 

neighbour. It can be observed that using one and two nearest neighbours produced the 

best results. Different effects are seen when using values greater than 2 for k in the 

kNN, but in general the performance decreases as k increases.  

The best classification rates are achieved by using the wavelet representation 

and segmentation using 1 or 2 nearest neighbours at small scales. This suggests that 

the melodies in this corpus contain typically several similar segments that are typical 

for that family. This agrees with van Kranenburg’s (2010) claim that recurrent 

motives are important for determining the family of a folk song in the Dutch Song 

Database. On the other hand, the results of van Kranenburg et al. (2013) using string-

matching are considerably better, suggesting that information on the order of the 

segments also plays an important role. 

 

 



  27 

 

 

Table 3. Summary of the accuracies for the combinations: wavelet representation and wavelet 

segmentation (wr-ws), wavelet representation and local boundary detection model (wr-LBDM), pitch 

signal representation and wavelet segmentation (vr-ws), pitch signal representation and local boundary 

detection model (vr-LBDM), segment length normalization by zero padding. 
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Table 4. Summary of the accuracies for the combinations: wavelet representation and wavelet 

segmentation (wr-ws), wavelet representation and local boundary detection model (wr-LBDM), pitch 

signal representation and wavelet segmentation (vr-ws), pitch signal representation and local boundary 

detection model (vr-LBDM), segment length normalization by interpolation. 
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a) b) 

   
c) d) 

Figure 12. Accuracies for the combinations: a) wavelet representation (wr) and wavelet segmentation 

(ws), b) wavelet representation (wr) and local boundary detection model (LBDM), c) pitch signal 

representation (vr) and wavelet segmentation (ws), pitch signal representation (vr) and local boundary 

detection model (LBDM), segment length normalization by zero padding. 
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5.3 Discussion 

We have presented two experiments, in which continuous Haar-wavelet filtering was 

applied in two musicologically motivated classification tasks. The results of the first 

experiment support the view that there are strong, intra-opus, motivic relations within 

Bach’s Two-Part Inventions that allow for the parent works of sections from these 

pieces to be identified, depending on the amount of material used from the exposition, 

along with the approaches used to segment and represent the music. The negative 

effect of adding contrapuntal variations in the classifiers in connection with wavelet 

segmentation is interesting and may suggest that the similarities captured by wavelets 

are different to and in some way incompatible with contrapuntal variations we have 

used in the experiment. On the other hand, this effect could also be an artefact of the 

specific type of pitch representation used—we intend to explore this further in future 

work. 

When the wavelet-based approach was used to identify the tune families of 

songs in a database of Dutch folk songs, it proved to work slightly better than using 

the LBDM with direct melody comparison and slightly worse than using complete 

melodies without filtering. However, results with string-matching methods reported 

by van Kranenburg et al. (2013) are considerably better. This indicates that the overall 

sequential structure of the melody is relevant for this task, which is ignored in the 

segmentation approach. This is supported by the observation that the wavelet-based 

classifier performs similarly at small and large scales, with different k values and for 

different distance metrics, indicating that the relevant information may not be just in 

the segments.   

Segment length normalization by zero padding produces slightly better results 

than normalization by interpolation. This suggests that the structure of segments is 

related to their length and the effect of zero padding does not negatively influence the 

reliability of similarity measurement. 

Melodic segmentation has a different effect between the two experiments 

possibly due to musical differences between the Dutch folk tunes and Bach’s 

Inventions or due to different principles determining whether two tunes should be in 

the same tune family or whether two melodic excerpts belong in the same piece. 
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6 Conclusion 

In this paper, we have presented a method for using wavelets to represent and 

segment melodies for classification and we have evaluated it on two different 

musicological classification tasks. Our main contribution has been to introduce and 

demonstrate the potential of a novel, wavelet-based approach to modelling melodic 

structure. 

The results of the experiments reported here suggest that a method employing 

a wavelet-based approach to representing and segmenting the data can out-perform 

one that uses a direct pitch-time representation and Gestalt-based or constant-duration 

segmentation in the task of predicting which work in a collection contains a given 

query segment. When the task was to identify the musicologically defined tune family 

to which a given folk song belongs, our wavelet-based approach worked only slightly 

better than one based on Gestalt principles and slightly worse than one without 

segmentation using pitch melodies. However, it was clearly out-performed by string-

matching methods, which is probably due to the fact that, in this task, the overall 

structure of the compared melodies contains relevant information that our 

classification method is not using, regardless of whether or not wavelets are used. 

We propose that the positive results of wavelet representation and 

segmentation can be understood by viewing the wavelets in terms of the pitch trend 

over the scale duration. Focusing on an appropriate time-scale, giving less weight to 

short-term movement as well as the average pitch (i.e., transposition), can make 

relevant parts of the melodic contour more prominent in the distance measure. 

7 Future work 

There are several further aspects of modelling melodic perception with wavelets that 

have not been explored in this study, including the problem of automatic scale 

determination, and the relation between musical style and features in wavelet 

coefficient representations. 

Understanding the wavelet analysis better in terms of musical properties may 

help improve the results for melodic similarity. Multiple scales could be used for 

hierarchical segmentation. Using a selective combination of scales and exploring 

metrical information derived from songs’ periodicities could be used to develop a 

method for scale selection. Applying machine learning to develop more complex 
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wavelet-based feature extraction from melodies could also be a very interesting way 

to use the wavelet representation on symbolic music data. 

We also aim to identify the cognitive mechanisms that underlie the 

effectiveness of the wavelet-filtering approach and to explain why coefficient zero-

crossings work better in some classification tasks while coefficient local maxima 

work better in others. 

We generally aim in future research to gain a deeper understanding of the 

musical meaning and perceptual relevance of wavelet-based music representation and 

segmentation. 
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Appendix A 

 

      Wavelet rep. (wr)                   Pitch signal rep. (vr)     

      (ws) (LBDM) (cs) (ws) (LBDM) (cs) 

A 

Rests 

represented 

Mean NC 0.8444 0.4444 0.5333 0.5333 0.6667 0.5556 

Std-Dev. NC 
0.0770 0.0385 0.2906 0.1764 0.1333 0.2694 

Mean CP 0.7111 0.5111 0.5111 0.4000 0.5556 0.4889 

Std-Dev. CP 
0.1018 0.1018 0.2341 0.0000 0.0385 0.2143 

Rests 

removed 

Mean NC 0.7556 0.6000 0.5333 0.4000 0.6222 0.4889 

Std-Dev. NC 
0.0770 0.0667 0.2309 0.1333 0.0770 0.2776 

Mean CP 0.5778 0.6000 0.5556 0.2667 0.4889 0.4000 

Std-Dev. CP 
0.2037 0.0667 0.2694 0.1155 0.0385 0.2309 

B 

Rests 

represented 

Mean NC 0.4889 0.4889 0.3556 0.5556 0.3556 0.3556 

Std-Dev. NC 
0.1018 0.0770 0.2694 0.0385 0.1018 0.2776 

Mean CP 0.3556 0.4000 0.3556 0.4222 0.3333 0.4000 

Std-Dev. CP 
0.1018 0.0667 0.2694 0.1018 0.0667 0.2000 

Rests 

removed 

Mean NC 0.4000 0.6000 0.3556 0.3111 0.3778 0.4222 

Std-Dev. NC 
0.0000 0.0000 0.3289 0.0770 0.1018 0.3289 

Mean CP 0.4000 0.5111 0.3778 0.3778 0.4000 0.3778 

Std-Dev. CP 
0.0667 0.1678 0.3791 0.1388 0.1155 0.1925 

LN-Zero padding 

      Wavelet rep. (wr)                   Pitch signal rep. (vr)     

      (ws) (LBDM) (cs) (ws) (LBDM) (cs) 

A 

Rests 

represented 

Mean NC 0.8000 0.4444 0.5778 0.6444 0.4444 0.5778 

Std-Dev. NC 
0.0667 0.0385 0.3151 0.0385 0.1678 0.3079 

Mean CP 0.6889 0.3778 0.5778 0.3556 0.4667 0.5111 

Std-Dev. CP 
0.0385 0.0385 0.2524 0.1018 0.0667 0.2694 

Rests 

removed 

Mean NC 0.8000 0.5333 0.5556 0.3556 0.4667 0.4667 

Std-Dev. NC 
0.0667 0.0000 0.3421 0.1678 0.1333 0.2906 

Mean CP 0.6444 0.4444 0.5778 0.2222 0.4667 0.4000 

Std-Dev. CP 
0.1018 0.0385 0.2694 0.1388 0.0667 0.2906 

B 
Rests 

represented 

Mean NC 0.3556 0.1778 0.3556 0.4444 0.1778 0.3778 

Std-Dev. NC 
0.1018 0.1388 0.2694 0.0770 0.1540 0.2037 

Mean CP 0.3778 0.2000 0.3778 0.4889 0.1778 0.4222 



  38 

Std-Dev. CP 
0.0385 0.1333 0.1925 0.0385 0.0385 0.2037 

Rests 

removed 

Mean NC 0.4000 0.2667 0.3333 0.2889 0.2222 0.4000 

Std-Dev. NC 
0.1333 0.1764 0.2906 0.1018 0.1018 0.2000 

Mean CP 0.3111 0.1778 0.4222 0.3111 0.2222 0.3333 

Std-Dev. CP 
0.1388 0.1018 0.2694 0.1018 0.1018 0.2309 

LN-Interpolation 
Table A1. Classification accuracies over three sections of the inventions, mean and standard deviation 

(Std-Dev.) values of the classifiers build from the first 16 qn, using only the exposition (NC) and the 

exposition and its contrapuntal variations (CP) for wavelet representation at the scale of 1 qn and 

normalized pitch signal representation using city-block distance and 1NN. (A) corresponds to 

segmentation: (ws) at 1 qn, (LBDM) at threshold 0.2 and (cs) at 1 qn. (B) corresponds to segmentation 

(ws) at 4 qn, (LBDM) at threshold 0.4 and (cs) at 4 qn.  

 

 

      Wavelet rep. (wr)                   Pitch signal rep. (vr)     

      (ws) (LBDM) (cs) (ws) (LBDM) (cs) 

A 

Rests 

represented 

Mean NC 0.8667 0.4667 0.5333 0.5111 0.6222 0.6444 

Std-Dev. NC 0.0667 0.1333 0.2906 0.1678 0.0385 0.2524 

Mean CP 0.7111 0.4444 0.5111 0.3778 0.6000 0.5333 

Std-Dev. CP 0.0385 0.0770 0.1678 0.0385 0.0000 0.2404 

Rests 

removed 

Mean NC 0.7333 0.5333 0.5111 0.4000 0.6000 0.5556 
Std-Dev. 

NC 0.0667 0.0000 0.2524 0.1333 0.0667 0.2341 

Mean CP 0.6000 0.5778 0.5778 0.2444 0.4444 0.4444 
Std-Dev. 

CP 0.2000 0.0385 0.2341 0.1018 0.0385 0.2524 

B 

Rests 

represented 

Mean NC 0.4667 0.4444 0.3333 0.3556 0.3778 0.4222 
Std-Dev. 

NC 0.1155 0.1388 0.2309 0.1018 0.1018 0.2341 

Mean CP 0.3778 0.3333 0.4444 0.3778 0.3556 0.4222 
Std-Dev. 

CP 0.1678 0.0000 0.3079 0.1678 0.0385 0.2143 

Rests 

removed 

Mean NC 0.3778 0.4222 0.3333 0.3333 0.4000 0.3556 
Std-Dev. 

NC 0.1018 0.1388 0.3528 0.2000 0.1333 0.3289 

Mean CP 0.3778 0.4000 0.3333 0.2667 0.3778 0.3556 
Std-Dev. 

CP 0.1388 0.1155 0.3528 0.1764 0.0770 0.2694 

LN-Zero padding 

      Wavelet rep. (wr)                   Pitch signal rep. (vr)     

      (ws) (LBDM) (cs) (ws) (LBDM) (cs) 

A 

Rests 

represented 

Mean NC 0.7778 0.4667 0.4889 0.6000 0.4444 0.6222 

Std-Dev. NC 0.1018 0.0667 0.3289 0.0667 0.1018 0.2776 

Mean CP 0.7111 0.3778 0.5778 0.3556 0.4444 0.4889 

Std-Dev. CP 0.0385 0.0385 0.2037 0.0770 0.0770 0.2143 

Rests 

removed 

Mean NC 0.8000 0.4667 0.4889 0.3778 0.4667 0.5778 
Std-Dev. 

NC 0.0667 0.1155 0.3421 0.1018 0.1333 0.3079 

Mean CP 0.6667 0.4000 0.5333 0.2222 0.4000 0.4000 
Std-Dev. 

CP 0.1155 0.0667 0.3055 0.1388 0.1155 0.2906 
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B 

Rests 

represented 

Mean NC 0.3333 0.2222 0.4667 0.4222 0.2222 0.3556 
Std-Dev. 

NC 0.0667 0.1018 0.2667 0.0385 0.0770 0.2143 

Mean CP 0.3333 0.2889 0.4222 0.3778 0.2000 0.4444 
Std-Dev. 

CP 0.0000 0.1540 0.2776 0.0770 0.0667 0.1388 

Rests 

removed 

Mean NC 0.3778 0.2222 0.3556 0.3111 0.3111 0.3333 
Std-Dev. 

NC 0.1018 0.1678 0.3906 0.1388 0.0770 0.2404 

Mean CP 0.3333 0.1778 0.2889 0.2000 0.2667 0.3778 
Std-Dev. 

CP 0.0667 0.0770 0.3289 0.1333 0.1764 0.2037 

LN-Interpolation 
Table A2. Classification accuracies over three sections of the inventions, mean and standard deviation 

(Std-Dev.) values of the classifiers build from the first 16 qn, using only the exposition (NC) and the 

exposition and its contrapuntal variations (CP) for wavelet representation at the scale of 1 qn and 

normalized pitch signal representation using Euclidean distance and 1NN. (A) corresponds to 

segmentation: (ws) at 1 qn, (LBDM) at threshold 0.2 and (cs) at 1 qn. (B) corresponds to segmentation 

(ws) at 4 qn, (LBDM) at threshold 0.4 and (cs) at 4 qn.  

 

 

   

City-block Euclidean 

   

(wr) (vr) (wr) (vr) 

P 

Rests 

represented 

Mean NC 0.1778 0.0889 0.1333 0.0889 
Std-Dev. NC 0.0385 0.0770 0.0667 0.1018 

Mean CP 0.1333 0.1556 0.0667 0.1333 

Std-Dev. CP 0.0667 0.1388 0.0000 0.1155 

Rests removed 

Mean NC 0.1333 0.0667 0.0667 0.1111 

Std-Dev. NC 0.1155 0.0000 0.0000 0.0385 

Mean CP 0.1556 0.1111 0.1333 0.0667 

Std-Dev. CP 0.0385 0.1388 0.0000 0.0667 

I 

Rests 

represented 

Mean NC 0.0667 0.0889 0.0889 0.0444 

Std-Dev. NC 0.0667 0.0385 0.0770 0.0385 

Mean CP 0.0889 0.1333 0.1111 0.0667 
Std-Dev. CP 0.0770 0.0667 0.1018 0.0667 

Rests removed 

Mean NC 0.0222 0.0667 0.0222 0.0667 
Std-Dev. NC 0.0385 0.0000 0.0385 0.0000 

Mean CP 0.0222 0.1556 0.0444 0.0889 

Std-Dev. CP 0.0385 0.1018 0.0385 0.0385 

Table A3. Classification accuracies without segmentation over three sections of the inventions, mean 

and standard deviation (Std-Dev.) values of the classifiers build from the first 16 qn, using only the 

exposition (NC) and the exposition and its contrapuntal variations (CP) for wavelet representation at 

the scale of 1 qn (wr) and normalized pitch signal representation (vr) using city-block and Euclidean 

distances and 1nn. (P) corresponds to length normalization by zero padding. (I) corresponds to 

interpolation length normalization by interpolation. 

 

 

 

 


