14 research outputs found

    A satellite-based Standardized Antecedent Precipitation Index (SAPI) for mapping extreme rainfall risk in Myanmar

    Get PDF
    In recent decades, substantial efforts have been devoted in flood monitoring, prediction, and risk analysis for aiding flood event preparedness plans and mitigation measures. Introducing an initial framework of spatially probabilistic analysis of flood research, this study highlights an integrated statistical copula and satellite data-based approach to modelling the complex dependence structures between flood event characteristics, i.e., duration (D), volume (V) and peak (Q). The study uses Global daily satellite-based Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) (spatial resolution of ∌5 km) during 1981–2019 to derive a Standardized Antecedence Precipitation Index (SAPI) and its characteristics through a time-dependent reduction function for Myanmar. An advanced vine copula model was applied to model joint distributions between flood characteristics for each grid cell. The southwest (Rakhine, Bago, Yangon, and Ayeyarwady) and south (Kayin, Mon, and Tanintharyi) regions are found to be at high risk, with a probability of up to 40% of flood occurrence in August and September in the south (Kayin, Mon, and Tanintharyi) and southwest regions (Rakhine, Bago, Yangon, and Ayeyarwady). The results indicate a strong correlation among flood characteristics; however, their mean and standard deviation are spatially different. The findings reveal significant differences in the spatial patterns of the joint exceedance probability of flood event characteristics in different combined scenarios. The probability that duration, volume, and peak concurrently exceed 50th-quantile (median) values are about 60–70% in the regions along the administrative borders of Chin, Sagaing, Mandalay, Shan, Nay Pyi Taw, and Keyan. In the worst case and highest risk areas, the probability that duration, volume, and peak exceed the extreme values, i.e., the 90th-quantile, about 10–15% in the southwest of Sagaing, southeast of Chin, Nay Pyi Taw, Mon and areas around these states and up to 30% in the southeast of Dekkhinathiri township (Nay Pyi Taw). The proposed approach could improve the evaluation of exceedance probabilities used for flood early warning and risk assessment and management. The proposed framework is also applicable at larger scales (e.g., regions, continents and globally) and in different hydrological design events and for risk assessments (e.g., insurance)

    Evaluation of GPM IMERG Performance Using Gauge Data over Indonesian Maritime Continent at Different Time Scales

    Get PDF
    Accurate precipitation observations are crucial for water resources management and as inputs for a gamut of hydrometeorological applications. Precipitation data from Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (GPM) (IMERG) have recently been widely used to complement traditional rain gauge systems. However, the satellite precipitation data needs to be validated before being widely used in the applications and this is still missing over the Indonesian maritime continent (IMC). We conducted a validation of the IMERG product version 6 for this region. The evaluation was carried out using gauge data in the period from 2016 to 2020 for three types of IMERG: Early (E), Late (L), and Final (F) from annual, monthly, daily and hourly data. In general, the annual and monthly data from IMERG showed a good correlation with the rain gauge, with the mean correlation coefficient (CC) approximately 0.54–0.78 and 0.62–0.79, respec-tively. About 80% of stations in the IMC area showed a very good correlation between gauge data and IMERG-F estimates (CC = 0.7–0.9). For the daily assessment, the CC value was in the range of 0.39 to 0.44 and about 40% of stations had a correlation of 0.5–0.7. IMERG had a fairly good ability to detect daily rain in which the average probability of detection (POD) for all stations was above 0.8. However, the false alarm ratio (FAR) value is quite high (<0.5). For hourly data, IMERG’s performance was still poor with CC around 0.03–0.28. For all assessments, IMERG generally overesti-mated rainfall in comparison with rain gauge. The accuracy of the three types of IMERG in IMC was also influenced by season and topography. The highest and lowest CC values were observed for June–July–August and December–January–February, respectively. However, categorical statistics (POD, FAR and critical success index) did not show any clear seasonal variation. The CC value decreased with higher altitude, but with slight difference for each IMERG type. For all assessments conducted, IMERG-F generally showed the best rainfall observations in IMC, but with slightly difference from IMERG-E and IMERG-L. Thus, IMERG-E and IMERG-L data that had a faster latency than IMERG-F show potential to be used in rainfall observations in IMC

    Remote Sensing of Precipitation: Volume 2

    Get PDF
    Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne

    Seasonal effect on spatial and temporal consistency of the new GPM-based IMERG-v5 and GSMaP-v7 satellite precipitation estimates in Brazil’s Central Plateau Region

    Get PDF
    This study assesses the performance of the new Global Precipitation Measurement (GPM)-based satellite precipitation estimates (SPEs) datasets in the Brazilian Central Plateau and compares it with the previous Tropical Rainfall Measurement Mission (TRMM)-era datasets. To do so, the Integrated Multi-satellitE Retrievals for GPM (IMERG)-v5 and the Global Satellite Mapping of Precipitation (GSMaP)-v7 were evaluated at their original 0.1 spatial resolution and for a 0.25 grid for comparison with TRMM Multi-satellite Precipitation Analysis (TMPA). The assessment was made on an annual, monthly, and daily basis for both wet and dry seasons. Overall, IMERG presents the best annual and monthly results. In both time steps, IMERG’s precipitation estimations present bias with lower magnitudes and smaller root-mean-square error. However, GSMaP performs slightly better for the daily time step based on categorical and quantitative statistical analysis. Both IMERG and GSMaP estimates are seasonally influenced, with the highest difficulty in estimating precipitation occurring during the dry season. Additionally, the study indicates that GPM-based SPEs products are capable of continuing TRMM-based precipitation monitoring with similar or even better accuracy than obtained previously with the widely used TMPA product

    Capability of GPM IMERG Products for Extreme Precipitation Analysis over the Indonesian Maritime Continent

    Get PDF
    Integrated Multi-satellite Retrievals for GPM (IMERG) data have been widely used to analyze extreme precipitation, but the data have never been validated for the Indonesian Maritime Continent (IMC). This study evaluated the capability of IMERG Early (E), Late (L), and Final (F) data to observe extreme rain in the IMC using the rain gauge data within five years (2016–2020). The capability of IMERG in the observation of the extreme rain index was evaluated using Kling–Gupta efficiency (KGE) matrices. The IMERG well captured climatologic characteristics of the index of annual total precipitation (PRCPTOT), number of wet days (R85p), number of very wet days (R95p), number of rainy days (R1mm), number of heavy rain days (R10mm), number of very heavy rain days (R20mm), consecutive dry days (CDD), and max 5-day precipitation (RX5day), indicated by KGE value >0.4. Moderate performance (KGE = 0–0.4) was shown in the index of the amount of very extremely wet days (R99p), the number of extremely heavy precipitation days (R50mm), max 1-day precipitation (RX1day), and Simple Daily Intensity Index (SDII). Furthermore, low performance of IMERG (KGE < 0) was observed in the consecutive wet days (CWDs) index. Of the 13 extreme rain indices evaluated, IMERG underestimated and overestimated precipitation of nine and four indexes, respectively. IMERG tends to overestimate precipitation of indexes related to low rainfall intensity (e.g., R1mm). The highest overestimation was observed in the CWD index, related to the overestimation of light rainfall and the high false alarm ratio (FAR) from the daily data. For all indices of extreme rain, IMERG showed good capability to observe extreme rain variability in the IMC. Overall, IMERG-L showed a better capability than IMERG-E and-F but with an insignificant difference. Thus, the data of IMERG-E and IMERG-L, with a more rapid latency than IMERG-F, have great potential to be used for extreme rain observation and flood modeling in the IMC

    Evaluating intensity-duration-frequency (IDF) curves of satellite-based precipitation datasets in Peninsular Malaysia

    Get PDF
    In recent years the use of remotely sensed precipitation products in hydrological studies has become increasingly common. The capability of the products in producing rainfall intensity-duration-frequency (IDF) relationships, however, has not been examined in any great detail. The performance of four remote-sensing-based gridded rainfall data processing algorithms (GSMaP_NRT, GSMaP_GC, PERSIANN and TRMM_3B42V7) was evaluated to determine the ability to generate reliable IDF curves. The work was undertaken in Peninsular Malaysia. The best-fitted probability distribution functions (PDFs) of rainfall totals for different durations were used to generate the IDF curves. The accuracy of the gridded IDF curves was evaluated by comparing observed versus estimated IDF curves at 80 locations. The results revealed that a generalized extreme value (GEV) distribution had the best fit to the rainfall intensity for different durations at 62% of the stations, and this was then used to develop the IDF curves. A comparison of these remote sensing derived IDF curves with the observed IDF data revealed that the GSMaP_GC product performed best. In general, the satellite-based precipitation products tended to underestimate the IDF curves. The GSMaP_GC IDF curves were found to be the least biased (8%–27%) compared to the TRMM_3B42V7 IDF curves (65%–67%). The biases in rainfall intensity of different return periods for GSMaP_GC for all grid points were estimated. These results can be used in designing hydraulic structures where gauged data are unavailable

    Remote Sensing of Precipitation: Part II

    Get PDF
    Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products

    Rainfall intensity-duration-frequency curves at ungauged locations with uncertainties due to climate change

    Get PDF
    Intensity duration frequency (IDF) curves are important in designing and managing urban hydraulic structures for mitigation of floods. The objective of the study was to develop IDF curves at ungauged locations with associated uncertainties due to climate change. Peninsular Malaysia was considered as the case study area. The novelty of the study was to propose a new methodology for reliable estimation of IDF curves at any location with consideration of non-stationary behaviour of rainfall due to climate change which can be used for robust designing of climate change resilient urban hydraulic structures. Hourly observed rainfall data at 80 locations distributed over Peninsular Malaysia and four remote-sensing rainfall datasets namely, GSMaP_NRT, GSMaP_GC, PERSIANN and TRMM_3B42V7 were used for this purpose. Four widely used probability distribution functions (PDFs) and four methods for estimation of PDF parameters were compared to determine the most suitable PDF and its parameter estimation method in the study area. Subsequently, the estimated parameters of the selected PDF were used to generate IDF curves at all the observed locations. The performance of four remote sensing rainfall datasets in construction of IDF curves at observed locations was compared to find the best product. The bias in the IDF curve of the best rainfall product was corrected to generate the IDF curves at ungauged locations. To update the IDF curves for future climate change scenarios, high-resolution rainfall projections data were generated through selection of suitable global climate models (GCMs) of Coupled Model Intercomparison Project Phase 5 (CMIP5) and their downscaling at remote sensing rainfall grid locations. Climate change factor at each grid location was estimated through comparison of PDF of historical and future simulations of GCMs for different radiative concentration pathways (RCP) scenarios. The factors were used to perturb the historical IDF curves to generate IDF curves with associated uncertainties for future climate change scenarios. Results revealed general extreme value (GEV) as the best-fitted PDF and maximum likelihood as the best parameter estimation method at 62% of the stations. Performance assessment of remote sensing rainfall datasets revealed all datasets underestimated rainfall intensities for different durations and return periods. Comparative performance of the products revealed GSMaP_GC as the most suitable product for developing IDF curves at ungauged locations with least biases (8% to 27%). BCC-CSM1.1 (M), CCSM4, CSIRO-Mk3.6.0 and HadGEM2-ES were found as the most suitable GCMs models for the projection of daily rainfall in Peninsular Malaysia. The ensemble mean of projected rainfall showed a maximum increase in annual rainfall by 15.72% and an increase in variability by 26.15% during 2070-2099 compared to the base period (1971-2000) under RCP 8.5. The assessment of IDF curves with uncertainty revealed a maximum change in rainfall intensity for different durations under RCP 8.5 and the minimum for RCP 2.6. The rainfall intensity for different durations was found to increase with time. The highest increase was observed up to 96.8% for the period 2070-2099. The assessment of uncertainty in rainfall IDF for different RCP scenarios revealed higher uncertainty for higher return periods and vice versa. The IDF curves generated in this study can suitably be used for designing hydraulic structures at locations where observed rainfall data is not available. It can also be used for designing hydraulic structure for adaptation to climate change induced rainfall extremes and mitigation of urban flood

    Laboratory for Atmospheres 2010 Technical Highlights

    Get PDF
    The 2010 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report
    corecore