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ABSTRACT 

 Intensity duration frequency (IDF) curves are important in designing and 
managing urban hydraulic structures for mitigation of floods. The objective of the 
study was to develop IDF curves at ungauged locations with associated uncertainties 
due to climate change. Peninsular Malaysia was considered as the case study area. 
The novelty of the study was to propose a new methodology for reliable estimation 
of IDF curves at any location with consideration of non-stationary behaviour of 
rainfall due to climate change which can be used for robust designing of climate 
change resilient urban hydraulic structures. Hourly observed rainfall data at 80 
locations distributed over Peninsular Malaysia and four remote-sensing rainfall 
datasets namely, GSMaP_NRT, GSMaP_GC, PERSIANN and TRMM_3B42V7 
were used for this purpose. Four widely used probability distribution functions 
(PDFs) and four methods for estimation of PDF parameters were compared to 
determine the most suitable PDF and its parameter estimation method in the study 
area. Subsequently, the estimated parameters of the selected PDF were used to 
generate IDF curves at all the observed locations. The performance of four remote 
sensing rainfall datasets in construction of IDF curves at observed locations was 
compared to find the best product.  The bias in the IDF curve of the best rainfall 
product was corrected to generate the IDF curves at ungauged locations. To update 
the IDF curves for future climate change scenarios, high-resolution rainfall 
projections data were generated through selection of suitable global climate models 
(GCMs) of Coupled Model Intercomparison Project Phase 5 (CMIP5) and their 
downscaling at remote sensing rainfall grid locations. Climate change factor at each 
grid location was estimated through comparison of PDF of historical and future 
simulations of GCMs for different radiative concentration pathways (RCP) scenarios. 
The factors were used to perturb the historical IDF curves to generate IDF curves 
with associated uncertainties for future climate change scenarios. Results revealed 
general extreme value (GEV) as the best-fitted PDF and maximum likelihood as the 
best parameter estimation method at 62% of the stations. Performance assessment of 
remote sensing rainfall datasets revealed all datasets underestimated rainfall 
intensities for different durations and return periods. Comparative performance of the 
products revealed GSMaP_GC as the most suitable product for developing IDF 
curves at ungauged locations with least biases (8% to 27%). BCC-CSM1.1 (M), 
CCSM4, CSIRO-Mk3.6.0 and HadGEM2-ES were found as the most suitable GCMs 
models for the projection of daily rainfall in Peninsular Malaysia. The ensemble 
mean of projected rainfall showed a maximum increase in annual rainfall by 15.72% 
and an increase in variability by 26.15% during 2070-2099 compared to the base 
period (1971-2000) under RCP 8.5. The assessment of IDF curves with uncertainty 
revealed a maximum change in rainfall intensity for different durations under RCP 
8.5 and the minimum for RCP 2.6. The rainfall intensity for different durations was 
found to increase with time. The highest increase was observed up to 96.8% for the 
period 2070-2099. The assessment of uncertainty in rainfall IDF for different RCP 
scenarios revealed higher uncertainty for higher return periods and vice versa. The 
IDF curves generated in this study can suitably be used for designing hydraulic 
structures at locations where observed rainfall data is not available. It can also be 
used for designing hydraulic structure for adaptation to climate change induced 
rainfall extremes and mitigation of urban flood.  
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ABSTRAK 

Lengkung frekuensi tempoh keamatan (IDF) penting dalam perancangan  dan 
menguruskan sebarang struktur hidraulik bandar untuk tebatan banjir. Objektif kajian 
ini adalah untuk membangunkan lengkung IDF di lokasi tanpa tolok dengan ketidak 
pastian yang dipengaruhi oleh faktor perubahan iklim. Semenanjung Malaysia dipilih 
sebagai kawasan kajian kes. Sesuatu yang baru dari kajian ini adalah cadangan satu 
metodologi dalam menganggarkan lengkung IDF yang dapat dipercayai di mana-
mana lokasi dengan mempertimbangkan tingkah laku hujan pegun kesan dari 
perubahan iklim yang dapat digunakan dalam rekabentuk struktur hidraulik bandar 
yang berdaya tahan serta sesuai dengan pengaruh perubahan iklim. Hujan jangka 
panjang berskala jam yang direkodkan di 80 lokasi di Semenanjung Malaysia dan 
empat set data hujan “remote sensing” iaitu, GSMaP_NRT, GSMaP_GC, 
PERSIANN dan TRMM_3B42V7 digunakan untuk tujuan ini. Empat fungsi taburan 
kebarangkalian (PDFs) pilihan yang kerap digunakan dan empat kaedah anggaran 
parameter PDF dibandingkan untuk memperolehi PDF dan kaedah anggaran 
parameter di kawasan kajian. Selepas itu, parameter anggaran PDF yang terpilih 
digunakan untuk menghasilkan lengkung IDF di semua lokasi tolok. Prestasi empat 
set data hujan penderiaan jauh dalam pembinaan lengkung IDF di lokasi tolok 
dibandingkan untuk mencari produk terbaik. Kepincangan dalam lengkung IDF dari 
produk hujan terbaik diperbetulkan untuk menghasilkan lengkung IDF di lokasi yang 
tidak bertolok. Untuk mengemaskini lengkung IDF bagi senario perubahan iklim 
masa depan, data unjuran hujan beresolusi tinggi dihasilkan melalui pemilihan Model 
Edaran Umum (GCMs) yang sesuai daripada “Coupled Model Intercomparison 
Project Phase 5 (CMIP5)” dan pengunjurannya di lokasi grid hujan penderiaan jauh. 
Faktor perubahan iklim di setiap lokasi grid dianggarkan melalui perbandingan 
simulasi PDF sejarah dan GCMs masa depan untuk senario jalur kepekatan radiatif 
(RCP) yang berbeza. Faktor-faktor tersebut digunakan untuk penghasilan lengkung 
sejarah IDF bagi senario perubahan iklim masa depan yang berkaitan dengan faktor 
ketidak pastian. Hasilnya menunjukkan nilai ekstrem umum (GEV) sebagai PDF 
yang paling sesuai dan kebarangkalian maksimum sebagai kaedah anggaran 
parameter terbaik di 62% stesen. Penilaian prestasi set data hujan penderiaan jauh 
menunjukkan keamatan yang dihasilkan dari semua set data hujan adalah di bawah 
jangkaan  bagi tempoh hujan dan kala kembali yang berbeza. Perbandingan prestasi 
menunjukkan GSMaP_GC adalah produk penderiaan jauh yang paling sesuai untuk 
menghasilkan  lengkung IDF di lokasi yang tidak ditolok dengan kepincangan paling 
rendah (8% -27%). BCC-CSM1.1 (M), CCSM4, CSIRO-Mk3.6.0 dan HadGEM2-ES 
pula didapati GCM yang paling sesuai untuk unjuran hujan harian di Semenanjung 
Malaysia. Purata hujan yang diunjur menunjukkan peningkatan maksimum dalam 
hujan tahunan sebanyak 15.72% dan peningkatan kebolehubahan sebanyak 26.15% 
bagi tempoh 2070-2099 berbanding tempoh asas (1971 – 2000) di bawah RCP 8.5. 
Penilaian lengkung IDF dengan ketidak pastian menunjukkan perubahan maksimum 
bagi keamatan hujan untuk jangka masa yang berbeza di bawah RCP 8.5 dan 
minimum untuk RCP 2.6. Keamatan  hujan untuk jangka masa yang berlainan 
didapati meningkat seiring dengan masa. Kenaikan tertinggi sehingga 96.8% 
dihasilkan untuk tempoh 2070-2099. Penilaian ketidakpastian IDF hujan untuk 
senario RCP yang berbeza menunjukkan ketidak pastian yang lebih tinggi untuk 
tempoh kala kembali bagi keamatan hujan yang lebih tinggi dan sebaliknya. 
Lengkung IDF yang dihasilkan dalam kajian ini dapat digunakan bagi rekabentuk 
struktur hidraulik dan sistem saliran untuk lokasi yang tidak merekodkan data hujan. 
Ia juga dapat digunakan untuk merekabentuk struktur hidraulik dengan adaptasi 
kepada perubahan iklim yang terdorong dari hujan ekstrem dan struktur tebatan 
banjir di kawasan bandar.  
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INTRODUCTION 

1.1 Background of the Study 

Rainfall intensity-duration-frequency (IDF) curves are globally used to 

incorporate rainfall information into water infrastructure design (Watt and Marsalek, 

2013, Koutsoyiannis et al., 1998). The IDF curves are developed based on the 

mathematical relationship of frequency, intensity and, duration of rainfall data 

(Koutsoyiannis et al., 1998) through the use of probability distribution function 

(PDF) of maximum rainfall depth for a specific duration (Chow et al., 1988). These 

curves can be used for estimating probable extreme rainfall amounts of different 

durations and intensities to address climate extremes. Such information can be used 

for designing hydraulic structures for the protection of floods from probable 

maximum rainfall extremes for a particular return period (Koutsoyiannis, et al., 

1998; Noor et al., 2018). 

Development of IDF curves requires long-term observed hourly or sub-hourly 

rainfall records which are not available in many regions of the globe. In such a case, 

hydraulic structures are designed based on IDF curves developed using rainfall data 

of nearby gauge locations. The nature of IDF curves varies widely over space due to 

variations in rainfall intensity and durations (Kidd et al., 2017, Sorooshian et al., 

2011). Therefore, nearby station data is usually employed in generating IDF often 

not reliable for designing water infrastructures. Besides, the accuracy of IDF curves 

decreases significantly with distance from rain gauge locations (Marra et al., 2017). 

Therefore, the lack of sufficiently long good quality rainfall records can lead to error 

in IDF and improper designs of urban drainages and stormwater infrastructure 

systems. To overcome the difficulty associated with sparse observational records and 



2 

scarcity of long-term record, alternative data source at the location of interest is 

suggested (Courty et al., 2019). A range of gridded precipitation products are now 

available globally which may be categorized as gauge-based, remote sensing-based, 

reanalysis or combination of these three (Belo‐Pereira et al., 2011, Herrera et al., 

2012, Schiemann et al., 2010, Yatagai et al., 2009, Nashwan and Shahid, 2019b, Faiz 

et al., 2018, Laiti et al., 2018, Huang et al., 2018, Yao et al., 2020, Palomino-Ángel 

et al., 2019, Almazroui and Saeed, 2020). Such data are recently used for developing 

IDF curves at ungauged or data scarce locations (Noor et al., 2018). 

IDF curves are generally developed based on historical rainfall data 

considering a stationary climate where changes in mean and variability of rainfall 

over time are considered insignificant. However, the changing nature of the earth’s 

climate is now widely recognised. One result of this climate change is that the water 

holding capacity of the atmosphere is likely to increase (Trenberth, 2011). This has 

serious implications for the distribution of global precipitation (IPCC, 2014). 

Changes in extreme rainfall events will occur due to increased evaporation and 

atmospheric moisture content (Wang and Chen, 2014, Abbaspour et al., 2015, Pour 

et al., 2020b). Since rainfall is the major element of the hydrological cycle, any 

additional change in its distribution and volume may result in large scale flooding 

(Hajani et al., 2017, Pour et al., 2020a, Pour et al., 2014). The urban stormwater 

management infrastructure based on IDF curves developed using the observed data 

can become insufficient to deal with the unexpected increase in runoff  (Tfwala et al., 

2017, Willems, 2013, Watt and Marsalek, 2013; Shahid et al., 2017a, Almazroui et 

al., 2019). 

Estimation of adaption investment proportional to climate-related risks is one 

of the vital challenges in infrastructure planning and management (Hall et al., 2015). 

Development of an optimized and secure water resources management system is 

even more significant (Giuliani et al., 2015). Analysis of cost and adaption 

investment due to impacts of climate change is of prime importance in the planning 

of water management infrastructure system (Hughes et al., 2010). Significant cost-

effective steps should be taken for identification of water resources investments that 

can reduce the risks (Borgomeo et al., 2018, Shahid et al., 2017b). For such analysis, 
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it is very important to quantify the impacts of climate change on urban water 

management infrastructure. 

To minimize the losses due to the plausible extreme events, the designs for 

urban infrastructures need to be revised and updated by considering the effects of 

changing climate. A complete analysis of climate events requires an analysis of both 

their spatial and temporal extent (Shahid, 2010, Shahid, 2009). Global climate 

models (GCMs) are the main tools used by the scientific community to reproduce the 

current climate and project future changes of extreme precipitation events. 

Utilization of GCM projections to review and update the current procedures of 

designing and construction of water management infrastructure for the adaptation 

and mitigation to climate change is important (Batisani and Yarnal, 2010, Wang et 

al., 2016a). 

1.2 Statement of Problem 

The use of the best PDF and its parameter estimation technique is vital for the 

development of IDF curves (Rahman et al., 2013). Selection of most suitable PDF 

from a large number of PDFs and the selection of the most suitable method for the 

estimation of PDF parameters is important for the development of reliable IDF 

curves  (Srivastav et al., 2014). However, the best-fit PDF and suitable parameter 

estimation method vary widely in space and time. It is a major challenge to identify 

the most suitable PDF and parameter estimation method for a large area covered by 

many stations. 

Lack of long-term hourly or sub-hourly rainfall record and the spatial 

sparseness of weather stations are major barriers in generating IDF curves at any 

point of interest (Nashwan and Shahid, 2019a, Prein and Gobiet, 2017, Nashwan et 

al., 2018). Moreover, still no reliable method is available for development of IDF 

curves at ungauged locations. Therefore, the establishment of a justifiable 
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mechanism for developing IDF curves at ungauged locations is indispensable. 

Remote sensing precipitation data can assimilate variability and dynamics of extreme 

rainfall events at ungauged locations and thus, has potential to be used for the 

development of IDF curves (Chen et al., 2013, Marra et al., 2016, Panziera et al., 

2016). However, the performance of remote sensing precipitation varies widely with 

time and space. Selection of suitable remote sensing precipitation product based on 

its ability to generate IDF curve is a major challenge in generating reliable IDF 

curves. 

GCMs are generally used for the projection of future climate. Several 

assumptions are made in GCM development due to lack of complete information 

about atmospheric processes, which cause a large uncertainty in GCM simulations. A 

suitable set of GCMs is generally selected to reduce the uncertainty in climate 

projections Samadi et al. (2010). Besides, the projections of GCMs are required to 

downscale to a fine resolution for impact assessment at the local scale (Pour et al., 

2014, Ahmed et al., 2015a, Khan et al., 2018). Selection of a suitable set of GCMs 

and appropriate downscaling method are the most challenging tasks in reliable 

climate projections (Ahmed et al., 2015b, Nourani et al., 2018, Sachindra and Perera, 

2016).  

The expected increase in precipitation intensity and frequency due to climate 

change would certainly alter the existing IDF curves (Rodríguez et al., 2014, Mailhot 

and Duchesne, 2009). This emphasizes the need of revising the urban standards of 

civil engineering designing practices based IDF curves that are estimated from the 

projected intensity and frequency of extreme rainfall under climate change scenarios 

to develop climate-resilient urban infrastructures (He et al., 2006, Grum et al., 2006, 

Papa et al., 2004). Incorporation of climate uncertainty in IDF curves can help better 

decision making in urban hydraulic infrastructure planning and management (Papa et 

al., 2004, He et al., 2006, Grum et al., 2006, Shrestha et al., 2017). However, 

deriving robust technique for the development of IDF curves with uncertainties due 

to climate change remain a challenge for hydrologists.  
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1.3 Objectives of the Study 

The major objective of the proposed research is the estimation of IDF curves 

at ungauged locations with associated uncertainties due to climate change to aid in 

climate-resilient hydraulic infrastructure designing. The specific objectives are: 

 

i. To develop a framework for the generation of rainfall IDF curves through the 

selection of best probability distribution function and parameter estimation 

method.  

ii. To estimate IDF curves at ungauged locations using bias correction of high-

resolution gridded remote sensing-based rainfall data. 

iii. To generate high-resolution rainfall projections for climate change scenarios 

through the selection of a suitable set of GCMs and robust statistical 

downscaling method. 

iv. To develop rainfall IDF curves at ungauged locations with associated 

uncertainties for different climate change scenarios. 

1.4 Scope of the Study 

Development of IDF curves at ungauged locations under climate change 

scenarios is the main focus of this study. Peninsular Malaysia was considered as the 

case study area for the study. Therefore, data collection and analysis were limited to 

Peninsular Malaysia only. The IDF curves were developed by fitting PDFs to the 

annual maximum rainfall series. Performance of four PDFs and four methods for 

parameter estimation was evaluated to select the best-fit PDF and most suitable 

parameter estimation method.  

For developing IDF curves at ungauged locations, the performance of four 

remote sensing-based rainfall data namely, GSMaP_GC, GSMaP_NRT, PERSIANN 

and TRMM were evaluated. Although several remote sensing data products are 
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available for use in hydrological studies, the temporal resolution and short period of 

availability have restricted their application. The hourly rainfall data for longer 

periods were available only for these four products. Therefore, only the performance 

of these products in developing of IDF curve was assessed in this study. 

Several GCMs are available in CMIP5 suit used in the latest projection of 

climate change by IPCC (2013). Based on APHRODITE rainfall data past 

performance approach was used for the selection of the most suitable set of CIMP5 

GCMs under four representative concentration pathways (RCPs) scenarios. The IDF 

curves under changing climate were developed using downscaled outputs of selected 

GCMs.  

The four bias corrections methods were used for developing MOS 

downscaling model are power transformation (PT), Generalized Quantile Mapping, 

(Gen QM), Gamma Quantile Mapping (Gamma QM) and Linear Scaling (LS) 

method. The performance of four bias correction methods was compared to select the 

best downscaling method for Peninsular Malaysia. The most suitable downscaling 

method was finally used for downscaling of selected GCMs at the spatial resolution 

of remote sensing data.  

An ensemble of the downscaled outputs of the selected GCMs was used for 

assessment of the spatial and temporal variation of rainfall and rainfall extreme 

indices.  A climate change factor (CCF) was used for updating the existing IDF 

curves (at ungauged locations) with associated uncertainties under four climate 

changes scenarios namely, RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 for two future 

periods, 2020-2059 and 2060-2099. The CCF was developed by estimating the 

difference between the PDF parameters of GCMs’ projected future and historical 

annual maximum rainfall distributions.   
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1.5 Significance of the Research 

A novel approach is proposed for developing rainfall IDF curves with 

associated uncertainties at ungauged locations by using remote sensing rainfall data, 

gauged rainfall data and GCMs projections. The approaches used for developing IDF 

curves at ungauged sites and incorporating the impacts of climate change in rainfall 

IDF curves is a novel contribution to the knowledge of the design of urban water 

management infrastructure. The proposed study will help in the improvement of 

knowledge in the use of PDFs for development of IDF curves, development of IDF 

curves at ungauged locations and incorporation the impacts of changing climate in 

rainfall IDF curves. IDF curves for ungauged sites under future climate change 

scenario is essential in the development of climate-resilient urban hydraulic 

infrastructures in Peninsular Malaysia. This study will help in analysing and 

evaluation of remote sensing rainfall products for development rainfall IDF curves 

and other hydrological studies in ungauged or data-scarce regions. It will help in 

understanding the impacts of changing climate on rainfall IDF curves, future changes 

in rainfall extremes and changes in precipitation pattern in Peninsular Malaysia.  

The study proposes a novel procedure for selection of a suitable set of GCMs 

out of a larger pool of GCMs for use in any hydrological and climatological study. It 

will help in downscaling and projection of rainfall under various climate change 

scenarios. The study provides a novel method for developing an ensemble projection 

of future climate. It can also be useful for other impact assessment studies.  

Information on possible changes in IDF curves will help different urban 

stakeholders and decision-makers to improve their knowledge on changes in 

precipitation pattern and the nature of IDF, which in turn will help in long-term 

climate change adaptation and mitigation planning. The study will help engineers 

and practitioners to incorporate climate change information for efficient designing 

and planning of urban stormwater management infrastructure and other hydraulic 

structures. The research framework developed in this study can be used for 

replication of the method in other regions for reliable estimation of IDF curves for 
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development of climate-resilient urban structures, in the absence of long-term 

observe rainfall record. 

1.6 Thesis Outline 

This thesis consists of five chapters. Descriptions of the chapters are given 

below in brief. 

Chapter 1 provides a general background of the study, problem statement, 

hypothesis, objectives, scope, and significance of the study.  

Chapter 2 describes a general review of the literature. It covers a review of 

the methods used for the development of IDF curves, development of IDF curves at 

ungauged locations, remote sensing rainfall data, climate change, impacts of climate 

change on rainfall extremes and rainfall IDF curves, use of GCMs for the projection 

of future climate, selection of GCMs, downscaling and projection of rainfall under 

climate change scenarios and development of IDF curves for ungauged locations 

under climate change scenarios.  

Chapter 3 explains the data and methodology used in the present study. It 

broadly discusses data and their sources, geography and climate of the study area, 

selection of PDF and distribution parameter estimation methods for the development 

of IDF curves, methods for the development of IDF curves at ungauged locations 

through the selection of suitable remote sensing rainfall data set, selection of GCMs, 

development of downscaling models, downscaling and projection of rainfall and 

rainfall extremes and rainfall IDF curves under climate change scenarios.  

Chapter 4 presents the results obtained in the study. Best fit probability 

distribution, development of IDF curves, evaluation of remote sensing rainfall 
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products, development of IDF curves at ungauged locations, selection of a suitable 

set of GCMs, downscaling and projection of rainfall, projection of rainfall extreme 

indices and updating existing IDF curves at ungauged locations with uncertainty 

levels are presented in this chapter. 

Chapter 5 provides the conclusions made from the results presented in 

Chapter 4. Future research recommendations related to current research work are 

also provided at the end of this chapter. 
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