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Abstract: Integrated Multi-satellite Retrievals for GPM (IMERG) data have been widely used to
analyze extreme precipitation, but the data have never been validated for the Indonesian Maritime
Continent (IMC). This study evaluated the capability of IMERG Early (E), Late (L), and Final (F) data
to observe extreme rain in the IMC using the rain gauge data within five years (2016–2020). The
capability of IMERG in the observation of the extreme rain index was evaluated using Kling–Gupta
efficiency (KGE) matrices. The IMERG well captured climatologic characteristics of the index of
annual total precipitation (PRCPTOT), number of wet days (R85p), number of very wet days (R95p),
number of rainy days (R1mm), number of heavy rain days (R10mm), number of very heavy rain
days (R20mm), consecutive dry days (CDD), and max 5-day precipitation (RX5day), indicated by
KGE value >0.4. Moderate performance (KGE = 0–0.4) was shown in the index of the amount of
very extremely wet days (R99p), the number of extremely heavy precipitation days (R50mm), max
1-day precipitation (RX1day), and Simple Daily Intensity Index (SDII). Furthermore, low performance
of IMERG (KGE < 0) was observed in the consecutive wet days (CWDs) index. Of the 13 extreme
rain indices evaluated, IMERG underestimated and overestimated precipitation of nine and four
indexes, respectively. IMERG tends to overestimate precipitation of indexes related to low rainfall
intensity (e.g., R1mm). The highest overestimation was observed in the CWD index, related to the
overestimation of light rainfall and the high false alarm ratio (FAR) from the daily data. For all
indices of extreme rain, IMERG showed good capability to observe extreme rain variability in the
IMC. Overall, IMERG-L showed a better capability than IMERG-E and -F but with an insignificant
difference. Thus, the data of IMERG-E and IMERG-L, with a more rapid latency than IMERG-F, have
great potential to be used for extreme rain observation and flood modeling in the IMC.

Keywords: rain gauge; GPM IMERG; KGE; extreme precipitation; Indonesian Maritime Continent

1. Introduction

Since the last decades, Earth’s extreme climate events have been exacerbated by the
continuous increase of temperatures [1]. The increasing trend of extreme rain is one aspect
of extreme climate [2] and is expected to continue in all parts of the world for the following
decades as projected by climate models [2,3]. The increase in both the intensity and the
frequency of the extreme rain shows distinctive patterns in different regions around the
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world [4–6]. In general, the increase of the extreme rain intensity is more prevalent in
comparison to the increase of the extreme rain frequency [5], with trends in the increase
of the extreme rain intensity driven by the total amount of precipitation in a given region.
The higher increase tends to occur in regions with an abundance of water resources [7].

Extreme rains are strictly correlated to hydrometeorological disasters such as floods
and landslides [8–11]. These hydrometeorological disasters often bring great social and
economic losses to communities [12–14]. Hence, there is the need for accurate observations
of extreme rainfall. The accurate observation of extreme rainfall is vital to identify the
patterns, changes, and mechanisms of extreme rainfall in a region. This information is also
critical in order to mitigate any hydrometeorological disasters and to plan for sustainable
development.

The Indonesian Maritime Continent (IMC), located between the Indian Ocean and
the Pacific Ocean and stretching along the equator with high intensity of solar radiation
throughout the year, is an area characterized by high annual rainfall [15], with frequent
high-intensity rain events [16–20]. Additionally, the IMC’s vulnerability to hydrometero-
logical hazards means that such extreme rains frequently bring huge economic and human
losses [21–23]. In 2020, the Indonesian National Board for Disaster Management (BNPB)
noted that 55.18% of disasters that occurred in the IMC were hydrometeorology-related
(e.g., floods, landslides, and droughts). As recorded, hydrometeorological disasters have
had an impact on more than 5.4 million people in the IMC, with natural disasters being the
leading cause of death in 2020 [24]. For the Maritime Continent (MC) area, the number of
losses due to hydrometeorological disasters is expected to increase in the future along with
the increasing number of extreme rain events as indicated by climate model projections
of increasing extreme rain intensity (R50mm), maximum daily rainfall intensity (RX1day),
and the number of consecutive dry days (CDDs) [25,26]. The mitigation of the impacts of
hydrometeorological disasters caused by extreme rains in the IMC can be done by adopting
countermeasures based on accurate predictions and supported by the availability of fine
spatio-temporal resolution observations.

The analysis of the extreme rain can be done through several types of observational
data and weather model outputs. Rain can be measured directly and indirectly using
rain gauges and remote sensing techniques. The two most commonly used ground-based
instruments are the rain gauge and the weather radar. Rain gauges are easy to operate
and maintain, so this instrument is widely used for quantitative observations of rainfall
made by weather services [27]. Rain gauge observations have been reprocessed with
consistent correction procedures for a very long time and made available for climatological
applications, including for observations of extreme rain [28,29]. Several studies have
estimated the index of extreme rain in the IMC using rain gauge data [17,30]. However, rain
gauge observations are limited to a given location, and most rain gauge data from weather
services are stored on a daily scale. Extreme precipitation often takes place over short space
(e.g., sub-kilometer) and time (e.g., sub-hourly) scales that are rarely resolved by daily
precipitation observations from rain gauge networks, and such extreme precipitation can be
observed by weather radars [31]. While the best accuracy of extreme rain observation can be
obtained from a rain gauge, for areas with low rain gauge densities, such as in the IMC, rain-
gauge-based observations of extreme rain at high spatial resolution are very limited [32].
Ground-based radars, which estimate precipitation based on electromagnetic waves energy
reflected by precipitation particles in the atmosphere, provide areal precipitation estimates
at high spatial (e.g., 1–2 km) and temporal resolutions (e.g., 5–10 min) [33]. Therefore, radar
can offer an interesting alternative to rain gauge observation. In the IMC, comprehensive
weather radar observations have only started in the last few years and have not covered
all areas, especially the oceans [34]. Therefore, observations of extreme rain in IMC using
weather radar are limited to certain cases [e.g., [35]], and studies on the climatology of
extreme precipitation in IMC based on weather radar data are not available. Another
ground-based remote sensing instrument that can be used to estimate precipitation is
lidar. Lidar uses laser energy to observe atmospheric backscattering as a function of range.
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Although lidar is designed to measure a specific atmospheric variable, including particles
(aerosols), clouds, smoke, wind speed, and even the densities of oxygen or nitrogen, it is
possible to estimate rainfall using lidar. The reliability of lidar to estimate rainfall depends
on the intensity of the precipitation, and there have been several techniques to estimate
rainfall from lidar data [36–38]. However, the use of lidar for rain observations, including
extreme rain, is still very limited because of the sparseness of instrument observations. In
the IMC, there were several lidar observations, but they were limited to a specific time
period and location [e.g., [39]]. Due to ground-based remote sensing observation limitations,
data from earth-observing satellites are often used to provide precipitation data at a global
scale, including in the IMC. Precipitation data from the satellite are beneficial for filling in
data gaps that exist between rain gauge and ground-based remote sensing sites. Rainfall
data from satellites have high spatial and temporal resolutions and can potentially be used
for model validation and extreme rainfall observations at large scales. These data have been
used extensively, including for extreme rain observations in the IMC [40–42]. However,
such satellite observations still have several shortcomings in terms of the accuracy of the
rainfall values obtained, particularly for extreme rain [43]. In addition to using observation
data, extreme rain can also be studied using weather model results. Several studies have
investigated extreme rainfall in the IMC using weather model outputs [25,26]. Model
projections can provide predictions of extreme rain for the next few decades, but they
require very high computational costs, especially for high spatial and temporal resolution
runs [44], whose accuracy must be assessed using fine spatial and temporal resolution
observation data [45].

The use of satellite rainfall data with high spatio-temporal resolution is commonly
exploited in the validation of extreme rainfall analysis of regional weather models. Climate
Hazards Group InfraRed Precipitation with Station data (CHIRPS) and TRMM (Tropical
Rainfall Measuring Mission) Multi-satellite Precipitation Analysis (TMPA) data have been
used for the Southeast Asia region [21,23]. The use of CHIRPS and TMPA was based
upon their performance in extreme rain observations [43,46]. TMPA has also been used in
the validation of rainfall simulation models in other regions [47–49]. The TRMM satellite
stopped operating in 2015 and has been replaced by the Global Precipitation Measurement
(GPM) satellite; correspondingly the TMPA product has been replaced by the Integrated
Multi-satellite Retrievals for GPM (IMERG) product. A number of studies showed bet-
ter performances of IMERG, particularly in the Maritime Continent (MC) [46,50,51]. In
addition, the IMERG has a half-hourly temporal resolution and a spatial resolution of
0.1 degrees compared to the 3 hour temporal resolution and the 0.25 degree spatial reso-
lution of TMPA [52]. In terms of spatial coverage, IMERG also shows a wider coverage,
i.e., 60 S–60 N, while TMPA only covers 50 S–50 N. This highlights that IMERG data have
great potential in observing the characteristics of extreme rain and acting as a validator for
weather models in IMC. However, the quality of IMERG products in extreme rain must
first be thoroughly assessed.

The validation of the IMERG’s ability in observing extreme rain has been carried out
in several climate areas [43,53–59]. All of these studies showed that IMERG is very effective
in extreme rain observations, but each study showed diverse performances. IMERG
underestimated the extreme rainfall in Mexico [57] but overestimated it in Austria [59].
In addition, several regions also showed that the accuracy of IMERG in extreme rain
observation has huge spatial variability [43,53–56]. In the Maritime Continent (MC) area,
the validation of extreme rain has been carried out for Malaysia and Philippines [58]. The
study found that IMERG overestimated the rainfall above the 95th percentile in Malaysia
and the Philippines. Because of the different performances of the IMERG product in
observing extreme rain in various regions, there is a need for more evaluations in other
areas, including the IMC.



Remote Sens. 2022, 14, 412 4 of 20

This study aimed to evaluate the ability of the GPM IMERG product in observing
extreme rain in the IMC by using rain gauge data for a 5-year observation period (2016–
2020). Validation was carried out on the latest version of IMERG (V06) for IMERG data
types (Early, Late, and Final), whereas previous research in MC was only focused on the
data of IMERG Final [58,60,61]. The main difference of the three data types is related to the
delay in data availability, where Early data and Late data have a delay of 4 and 12 hours
respectively, while Final data has a delay of 2.5–3.5 months [52]. The short delay in data
availability from the data of IMERG Early and Late can be used as an early detection of
disasters caused by extreme rain. This information about the accuracy of IMERG’s extreme
rain observation is expected to be used as feedback to improve the performance of the
IMERG algorithm in observing extreme rain, especially in the IMC.

2. Materials and Methods
2.1. Study Area and Rain Gauge Data

The validation of extreme rain observation from IMERG observation was conducted
for the IMC area located between 92 to 141 east longitude and 10 south latitude to 10 north
longitude (Figure 1). IMC is the largest archipelagic country in the world, consisting of
more than 17,000 islands, most of which are uninhabited, so that many of them are not
equipped with surface rain gauges. The topography of the IMC varies with the elevation of
0 to 4884 m above sea level (ASL) (Figure 1). The variability of this topographical condition
has made the rainfall pattern in the IMC greatly varied in each island [62].

IMERG’s validation in IMC was conducted using rain gauge (RG) data for 5 years
from January 2016 to December 2020. The rain gauge used was a semi-automatic rain
gauge installed in weather observation stations belonging to the Indonesia Agency for
Meteorology, Climatology, and Geophysics (BMKG). The semi-automatic rain gauge used
was the rain gauge of Hellman, which mechanically measures the rain using a pen and
ink [63]. The temporal resolution of the RG was 1 hour with a threshold of 0.2 mm h−1.
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The evaluation of the IMERG’s ability in observing the extreme rain in the IMC used
the daily rainfall data, obtained from the summation of hourly rainfall from totally complete
RG data for each day. A rigorous quality control procedure was carried out. All days with
missing data or outliers were not included as IMERG validation data. The hourly rainfall
was also carefully checked, excluding outliers. If necessary, we consulted with the BMKG
staff directly to ascertain whether there were errors in data entry by the operator. At some
stations, RG data were transferred manually to the BMKG online database, so there is the
potential for entry errors. In addition, we also evaluated the quality of data from annual
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rainfall. West (NTB) and East Nusa Tenggara (NTT) regions have the smallest annual
rainfall compared to other areas in Indonesia, around 500–1000 mm year−1. Some areas
in Papua have very high rainfall, reaching more than 5000 mm year−1. This can be seen
from the climatological rain map developed by BMKG using rain gauge data from 1981
to 2010 [65]. The rainfall interval from RG data [65] is similar to that obtained by TRMM
3G68/PR [66]. Therefore, we only used annual rainfall data within that interval. Based
upon the quality of data control, finding 100% complete observation data for one year is
very rare. Therefore, to evaluate the ability of IMERG’s GPM, we used RG data with annual
observational data above 90%. In all, 63 RG stations met these criteria with the distribution
as shown in Figure 1. The RG stations are scattered in almost all parts of the IMC, both in
large and small islands in the IMC. The elevation of the RG varies from 0 to 787 m above
sea level (ASL). The number of RGs located in the highlands (>300 m) is six stations.

2.2. GPM IMERG Precipitation Products

The GPM core observatory was launched on 27 February 2014 as a result of the
collaboration of National Aeronautics Space Administration (NASA) and Japan Aerospace
Exploration Agency (JAXA). GPM brings two core observations, i.e., dual-frequency radar
(DPR) and multi-channel GPM microwave imager (GMI). The DPR operates on two radar
frequency bands, i.e., the Ka-band precipitation radar with a frequency of 35.5 GHz and the
Ku-band precipitation radar at a frequency of 13.6 GHz. On the other hand, the GMI brings
13 channels of microwave signal sensors operating in the range of 10 to 183 GHz. The
number of these channels is higher than that in TRMM, which only has nine microwave
sensor channels. The results of the analysis of the GPM core satellite observations are
then combined with the observations from the GPM constellation of passive microwave
radiometers [67] and from infrared geostationary sensors to produce the Integrated Multi-
Satellite Retrievals for GPM (IMERG) Precipitation Product [52].

This study evaluated the ability of IMERG version 06 of Early, Late, and Final types in
the period from 2016 to 2020 in the IMC. The algorithms of the three versions are described
in detail by Huffman et al. [68]. IMERG version 06 is the latest version released on 13 March
2019 [68]. Previous research showed that IMERG version 06 is better than the previous
version (Pradhan et al., 2021). IMERG version 06 provides PrecipitationCal, Precipita-
tionUnCal, HQprecipitation, and IRprecipitation rainfall data [68]. PrecipitationCal data
refer to multi-satellite observation data after calibration with surface rainfall data from
the Global Precipitation Climatology Center (GPCC), while PrecipitationUnCal is only
from multi-satellite observation (IRprecipitation and HQprecipitation) [69,70]. In this study,
PrecipitationCal was selected for its better ability to measure surface precipitation [71]. The
data evaluation was carried out using the point-to-pixel approach that could work well
under the conditions of low rain gauge density [46,72,73], as also found in the IMC. Since
the lowest rainfall observed by RG was 0.2 mm h−1, the lowest value considered as rain
for the IMERG product was 0.2 mm h−1. Figure 2 shows an example of a flood event as
recorded by RG and IMERG in Padang City, West Sumatra, on 26 September 2018. The RG
station is located at 0.996◦S, 100.372◦E, around the coast of Padang. The National Agency
for Disaster Countermeasures (BNPB) reported flooding in Padang on that date [74]. RG
and IMERG captured the daily precipitation’s temporal trend, which is consistent with
another validation in West Sumatra [61,75]. Thus, the RG data can be used to validate
extreme rain observations from IMERG.
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2.3. Validation Metrics Assessment

Extreme weather and climate events have a low probability of occurring within a
certain observation period. This requires the use of specific indicators to monitor such
events. In the early 21st century, the World Meteorological Organization (WMO) and the
Climate Research Program (WCRP) formed a team called the Expert Team on Climate
Change Detection and Indices (ETCCDI) that defined 27 indicators for extreme weather
observation [76]. Of the 27 main indices, 11 are the indices for extreme rain.

In this study, the ability of IMERG in observing extreme rain in the IMC was tested
based upon the extreme indicators from the ETCCDI. Extreme indicators from the ETCCDI
have been commonly used as a reference in observing and modeling extreme weather
events in a given area [25,77–79]. To the 11 extreme rain indicators from the ETCCDI (see
Table 1), we added the R85p indicator and the R1mm index to assess IMERG’s ability in
quantifying extreme rain and the number of wet days, respectively [58,80]. Based on the
characteristics of each index, we divided the index into four index categories: amount-
based indices, duration-based indices, frequency-based indices, and intensity-based indices.
Table 1 presents the details of each category, name, definition, and unit of each index used.

The validation matrix used to evaluate the IMERG’s ability in observing extreme
indicators in the IMC was the Kling–Gupta efficiency (KGE) matrix [81]. The KGE test is
widely used in evaluating the ability of grid rainfall data [48,82,83]. The KGE equation can
be written as follows:

KGE = 1 −
√
(1 − R)2 + (1 − β)2 + (1 − γ)2; (1)

R =
1
N ∑N

i=1(Si − µs)(Oi − µo)

σsσo
; (2)

β =
µs

µo
; (3)

γ =
σs/µs

σo/µo
, (4)

where N refers to the number of observed samples, Si (Oi) is the extreme rain index value
from IMERG (rain gauge) for the i-th data, σs (σo) is the standard deviation of the extreme
rain index from IMERG (rain gauge), and µs (µo) is the average value of the extreme rain
index from IMERG (rain gauge). The KGE value ranges from −∞ to 1 with a perfect value
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of 1. R refers to the Pearson correlation coefficient describing the level of linear correlation
between extreme index observation between IMERG and rain gauge with the values in the
range of −1 and 1. An R value of −1 or 1 indicates perfect negative or positive correlation,
while an R value equal to 0 indicates no correlation. Furthermore, β is the bias ratio, in
which values greater than 1 indicate an overestimation, whereas β values lower than 1
indicate an underestimation of the value of the extreme rain index obtained by IMERG.
Furthermore, the γ value or variance ratio indicates the ability of IMERG to observe the
variability of the extreme index measurement compared to the rain gauge with a perfect
value of 1. A γ value greater than 1 indicates an overestimation, while a value of lower than
1 indicates an underestimation of the measurement of the index variability of the extreme
rain by IMERG.

Table 1. List of the selected 13 extreme indices from ETCCDI used in this study.

Category Name Definition Unit

Precipitation-amount-
based

indices

PRCPTOT Annual total precipitation in wet days
(RR ≥ 1 mm) mm

R85p Annual total precipitation when RR ≥
85th percentile of wet days mm

R95p Annual total precipitation when RR ≥
95th percentile of wet days mm

R99p Annual total precipitation when RR ≥
99th percentile of wet days mm

Precipitation-
duration-based

indices

CDD Maximum number of consecutive
days with precipitation ≤1 mm days

CWD Maximum number of consecutive
days with precipitation ≥1 mm days

Precipitation-
frequency-based

indices

R1mm Annual count of days when
precipitation ≥1 mm days

R10mm Annual count of days when
precipitation ≥10 mm days

R20mm Annual count of days when
precipitation ≥20 mm days

R50mm Annual count of days when
precipitation ≥50 mm days

Precipitation-
intensity-based

indices

RX1day Annual maximum 1-day precipitation mm day−1

RX5day Annual maximum consecutive 5-days
precipitation amount mm 5 day−1

SDII Annual total precipitation divided by
the number of wet days in the year mm day−1

3. Results and Discussion
3.1. Precipitation-Amount-Based Indices’ Assessment

Precipitation-amount-based indices were observed using the indices of PRCPTOT,
R85p, R95p, and R99p. From the overall observational data for RG stations in IMC,
the average values of PRCPTOT, R85p, R95p, and R99p were 2220.8, 1110.5, 536.7, and
155.4 mm year−1, respectively. Figure 3 shows the distribution of the overall average value-
based indices for each station in the IMC. RG observation showed that a large PRCPTOT of
4500 mm year−1 was observed in the western Sumatra and Kalimantan and a low PRCP-
TOT was observed in Bali and Nusa Tenggara (Figure 3a). The high PRCPTOT in western
Sumatra and Kalimantan was consistent with the rain map developed by BMKG using rain
gauge data from 1981 to 2010 [65] and the pattern of annual rainfall distribution from the
TRMM-PR satellite observations, 1998–2000 [66]. This condition was most likely influenced
by the Inter-Tropical Convergence Zone (ITCZ), while on the mainland of Kalimantan it
was determined by the South Pacific Convergence Zone (SPCZ). In addition to ITCZ and
SPCZ, topography has a significant role in the high PRCPTOT value in the region [62,66,84].
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Lower PRCPTOT values were also observed in southern IMC and small islands in the IMC,
and it was consistent with previous observations [84,85]. The distribution pattern of R85p,
R95p, and R99p (Figure 3b–d) resembled to that of PRCPTOT. The R95p and R99p indices
are commonly related to the extreme and very extreme rain events in a region [86]. The
high values of R95p and R99p as observed in the western Sumatra had an impact on the
high annual flood cases that occurred in the region [18,87].
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Figure 3. The mean value of precipitation-amount-based indices including PRCPTOT (a), R85p (b),
R95p (c), and R99p (d), for 63 of BMKG stations in the IMC during 2016 to 2020.

Figure 4 shows the distribution of the amount-based indices’ values of the three types
of IMERG data for each RG point observation. Some significant differences were observed
in the R values of each index. A good correlation was observed in the PRCPTOT values
(Figure 4a,e,i) and it was consistent with the good annual correlation values from the
IMERG observations in the MC [46,50,51]. Overall, the correlation of the amount-based
indices observed by IMERG was found to decrease with the increasing rainfall percentiles
used (percentile 85, 95, and 99). The R values of R85p and R95p showed a moderate
correlation (0.5–0.7) with the insignificant difference of the values in each station (Figure 4).
A low correlation was observed on the R99p index with an R value < 0.5, because IMERG
underestimated the extreme rainfall rate [53], as can be seen from the value of β. This can
also be seen from Figure 2.

The observations of precipitation-amount-based indices by IMERG relative to RG
showed varying β values (Figure 4). β values > 1 were obtained on the PRCPTOT index,
while β values < 1 were found on the indices of R85p, R95p, and R99p. This showed
that all IMERG products tend to overestimate annual rainfall but underestimate extreme
event precipitation. Similarly, all products tend to underestimate the spread of the rainfall
distribution, i.e., the γ parameters have values < 1. Although the difference in the β value
and γ value was found to be insignificant, the KGE parameter values showed very different
values for each amount-based index, mainly driven by the significant difference of the
R parameter for each index. The best to the worst values were obtained for PRCPTOT,
R85p, R95p, and R99p, respectively. Although the value of KGE R95p was found to be still
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lower than that of R85p, the KGE value of R95p obtained was still quite good (>0.5). This
condition shows that the R95p value is still recommended in the use of extreme rainfall
thresholds in the IMC. R95p was also recommended for other MC regions such as Malaysia
and Philippines [58].
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Figure 4. Scatter plot of precipitation-amount-based indices from IMERG and RG observation,
namely PRCPTOT (a,e,i), R85p (b,f,j), R95p (c,g,k), and R99p (d,h,l), for IMERG-E (top), L (middle)
and F (bottom). The color indicates the number of data counts.

The difference in the accuracy of the observation of precipitation-amount-based indices
was shown by the three types of IMERG data (Early, Late, and Final). Overall, IMERG-L
showed the best performance in the observation of amount-based indices indicated by
a higher KGE value (Figure 4). Meanwhile, the best observation of R99p was shown by
IMERG-E (KGE = 0.42). Such a high KGE value for IMERG-E is caused by the tendency
of IMERG-E to overestimate precipitation compared to IMERG-L and IMERG-F [88]. In
addition, the low density of rain gauges in the IMC for GPCC data can also cause less
perfect correction for IMERG-F data [32].

Although the three types of IMERG data showed the different accuracies of precipitation-
amount-based indices in the IMC, the difference was insignificant. The good accuracy
values of IMERG-E and IMERG-L in the observation of amount-based indices in IMC
indicated that they are very promising in observing the amount of annual extreme rainfall
in the IMC. This is supported by the faster IMERG-E and IMERG-L latency compared
to that of IMERG-F. However, considerable biases exist in the IMERG data, as discussed
above, and bias adjustment [89] needs to be done before the data are used for the hydrolog-
ical applications.
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3.2. Precipitation-Duration-Based Indices’ Assessment

The duration of consecutive dry days (CDDs) and the duration of consecutive wet
days (CWDs) were used as precipitation-duration-based indices. Figure 5 illustrates the
distribution of the mean CDD and CWD values from the RG observations in the IMC.
Overall, the mean CDD and CWD values in the IMC were 37 and 10 days. The high CDD
value in the IMC is predicted to continue to increase in the next few decades [25,26]. More
contrasting spatial patterns were observed in the CDD index compared to that in the CWD.
The highest CDD values were observed in the southern part of the IMC, i.e., in Java, Bali,
and Nusa Tenggara. This was due to the very dominant impact of the monsoon in the south
of the IMC compared to other areas in the IMC [65,84]. The movement of the monsoon
wind from the Australian continent to Asia has caused the regions of Java, Bali, and Nusa
Tenggara to be frequently drier so that the number of consecutive dry days increases [40,90].
In addition, the low influence of the MJO in the Java region has also caused the minimal
increase of rainfall in Java during the active phase of the MJO [42]. On the other hand, the
varying CWD values for each region in the IMC were also the dominant local factors in the
IMC [62,66,91].
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for 63 of BMKG stations in the IMC during 2016 to 2020.

Figure 6 shows the distribution of CDD and CWD values for the three types of
IMERG data. The validation matrices of the two duration-based indices showed very
different values. The correlation of CDD values of IMERG and RG showed a better value
than the correlation of CWD values. CDD for the three types of IMERG data in IMC
showed a moderate correlation (0.5 ≤ R ≤ 0.7) whereas CWD showed a low correlation
(0.3 ≤ R ≤ 0.5). The highest (lowest) R value of CDD was observed in IMERG-E (IMERG-F)
observations. A better correlation of CDD compared to that of CWD was also observed
in other regions [92,93]. One of the reasons why CDD correlation was better than that of
CWD was the tendency to overestimate IMERG at low rainfall [50,55]. Additionally, the
high daily false alarm ratio (FAR) value of IMERG in the MC region also caused errors in
the identification of wet days [46,50,51].

The tendency of overestimation of low rainfall and fairly high daily FAR values from
IMERG also resulted in the underestimation of CDD observations and overestimation
of CWD observations. This was indicated by the parameter value of β < 1 for the CDD
index and β > 1 for the CWD index (Figure 6). The β value of duration-based indices
was also found to vary for the three types of IMERG data. In the CDD index, the lowest
underestimated value was observed in IMERG-F, while the highest one was observed in
IMERG-L but with marginal differences (Figure 6a,c,e). A larger difference in the β value
was observed in the CWD index observations (Figure 6b,d,f), with the highest value of
β observed in IMERG-E (2.09) and the lowest one in IMERG-F (1.77). This showed that
IMERG-F had a lower overestimation value than the other two IMERG data types. In
addition to the varying values of β, the value of γ did not show any significant difference
for each type of IMERG data and all duration-based indices (Figure 6). The γ value showed
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a very good value (~1) indicating that the spatial variability of duration-based indices from
RG was almost the same as IMERG.

The variation in the values of R and β for each type of IMERG data and all duration-
based indices also caused the variations in the KGE values obtained. The best KGE value
was observed in CDD index, particularly for the data of IMERG-L (0.58). Low KGE values
were also found in the CWD index for the three types of IMERG data (KGE < 0). This shows
the need to improve the IMERG data, especially with regard to significantly overestimating
very low rainfall [50,55] and the high daily FAR [46,50,51]. The use of a half-hourly rainfall
of IMERG with the appropriate rainfall threshold value can also reduce the FAR from the
satellite [94].
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3.3. Precipitation-Frequency-Based Indices’ Assessment

The observations of precipitation-frequency-based indices were carried out using four
rainfall thresholds, i.e., 1, 10, 20, and 50 mm day−1, abbreviated as R1mm, R10mm, R20mm,
and R50mm, respectively. Each threshold represents a classification of daily rainfall, i.e.,
rainy day (1 mm day−1), heavy rain (10 mm day−1), very heavy rain (20 mm day−1), and
extreme rain (50 mm day−1). The threshold of 50 mm day−1 was used as a percentile of
extreme rainfall at IMC, as done in previous studies [17]. The mean values of the R1mm,
R10mm, R20mm, and R50mm index observations in the IMC were 138, 64, 37, and 9 days,
respectively. Figure 7 shows the distribution of the average value of frequency-based
indices from each station in the IMC. Overall, the distribution of the average values of
R1mm and R10mm in IMC (Figure 7a,b) showed a similar pattern to the PRCPTOT pattern
(Figure 3a) indicating that the annual rainfall distribution pattern in the IMC was dominated
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by low rainfall. In addition, the distribution of R20mm values (Figure 7b) followed the
distribution pattern of R85p, while R50mm (Figure 7d) followed the distribution pattern
of R99p (Figure 3b–d). This similarity was correlated to the percentile values (R85p, R95p,
and R99p) obtained, such that the value was close to the threshold value used in frequency-
based indices.
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Figure 7. The mean value of precipitation-frequency-based indices including R1mm (a), R10mm (b),
R20mm (c) and R50mm (d), for 63 of BMKG stations in the IMC during 2016 to 2020.

Figure 8 presents the distribution of frequency-based indices’ values for all types of
IMERG data. The observed R value of R1mm (Figure 8a) was found to be slightly better
than that of PRCPTOT (Figure 4a) because the PRCPTOT measurement comprised all daily
rainfall data, including rainfall below 1 mm day−1. This also became the reason for the
use of a threshold of 1 mm day−1 in the validation of daily rainfall in several previous
studies [82,95]. A good correlation (R > 0.7) was obtained for the observation of R1mm
and a moderate correlation (0.5 ≤ R < 0.7) was obtained for R10mm, R20mm, and R50mm
(Figure 8). The observed R values of all IMERG products showed insignificant differences
for each frequency-based index. This indicated that the observation of frequency-based
indices using IMERG data generally had a fairly good correlation with the RGs installed in
the IMC.

A significant difference was observed in the value of the β parameter for each frequency-
based index. The lower rainfall thresholds (R1mm and R10mm) tended toward overesti-
mation as indicated by the β parameter value of >1 (Figure 8a,b,e,f,i,j), where the β value
of for R1mm was found to be the highest. This overestimation tendency was consistent
with the performances of IMERG found in other areas. Overestimation for rainfall between
1 to 20 mm day−1 and 1 to 50 mm day−1 were found in Singapore [50] and Malaysia [51],
respectively. The overestimated IMERG capability in observing light to heavy rainfall was
also observed in other areas [96–98]. In heavy rain (R20mm), the β value showed a very
good value (~1) with a slight underestimation (Figure 8c,g,k). This was consistent with
a study in Iran, where IMERG showed the best ability to observe daily rainfall with a
threshold of 15 mm day−1 [59]. In the observation of very heavy rainfall (R50mm), IMERG
observation tended toward underestimation (Figure 8d,h,l). The underestimation was
highly significant with a value of ~0.52. The tendency of IMERG to underestimate rainfall
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above 50 mm day−1 was already reported in MC [50,51]. In contrast, the γ parameters of
R20mm and R50mm indices, which tended to overestimate precipitation variability in the
IMC, γ parameters of R1mm and R10mm indices tended to underestimate it (Figure 8).
Thus, the spatial variability of IMERG was higher (lower) for the rainfall > 20 mm day−1

(<20 mm day−1), in comparison to RGs. This indicates that extreme rain comes from
convective clouds, which tend to have a large spatial variability and short correlation
distances [99]. Although there was a difference in the γ value from the observation of
frequency-based indices by IMERG, the difference was insignificant and was close to the
perfect value (~1), as also observed for all duration-based indices (Figure 6). These values
indicated that IMERG could well observe the spatial variability of frequency-based indices
in the IMC.
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Figure 8. Scatter plot of precipitation-frequency-based indices from IMERG and RG observation,
namely, R1mm (a,e,i), R10mm (b,f,j), R20mm (c,g,k), and R50mm (d,h,l), for IMERG-E (top), L
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The variation of the parameter values of R, β, and γ in the observation of each
precipitation-frequency-based index of each type of IMERG also resulted in the variation of
the KGE values. The best KGE value was observed in the R10mm and R20mm indices and
the lowest one was observed in the R50mm index. This value showed that the observation
of frequency-based indices using IMERG was found to be at its best in the observation of
the threshold of 10 and 20 mm day−1. While the observation of frequency-based indices by
IMERG showed the poor results for the rain with a threshold of 50 mm day−1, in which
it was also followed by the observations of R99p (Figure 4). In the observation of R1mm,
the KGE value was found to be lower than that of R10mm and R20mm though the R
value obtained was better. The low KGE value was determined by the high value of in
the R1mm observation. This indicated a systematic error by IMERG in the observation of
rainfall below 10 mm h−1. Meanwhile, the value of the validation matrices of frequency-
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based indices also did not show a significant difference from the three types of IMERG
observations (Figure 8) indicating that all types of IMERG data had the similar capability
in observing frequency-based indices.

3.4. Precipitation-Intensity-Based Indices’ Assessment

The observation of precipitation-intensity-based indices was conducted for the max-
imum daily precipitation index (RX1day), maximum 5-day precipitation (RX5day), and
the Simple Daily Intensity Index (SDII). The average value of RX1day, RX5day, and SDII
from the RG stations in the IMC included 118.55 mm day−1, 148.15 mm 5 day−1, and
16.21 mm day−1, respectively. Figure 9 shows the distribution of the average values of
RX1day, RX5day, and SDII from all RG stations. The distribution did not indicate any
specific localization or zoning pattern of all intensity-based indices’ values in IMC. This
was related to the dominant local convective system in the IMC area causing the peak
of rainfall intensity to vary in each location [91]. The very high values of RX1day and
RX5day were observed in West Sumatra, followed by a high R50mm, which resulted in
high SDII values in the western region of Sumatra Island. The high frequency and intensity
of extreme rain events in western Sumatra brought an impact on the high potential for
floods and landslides in the area [18,87].
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Figure 9. The mean value of precipitation-intensity-based indices including RX1day (a), RX5day (b)
and SDII (c), for 63 of BMKG stations in the IMC during 2016 to 2020.

Figure 10 shows the distribution of the values of the intensity-based indices of IMERG
and RG. A very low correlation (R < 0.3) was observed on RX1day, while RX5day showed a
moderate correlation (0.5 < R < 0.7). This was consistent with a previous study in Bali [46].
Liu et al. [46] showed that IMERG had a much better correlation for 5-day data compared
to daily data. This was related to the better ability of IMERG to observe the rainfall for
longer temporal spans [100–102]. The correlation for SDII observations also showed a low
value (R~0.47), which is consistent with the weak ability of IMERG in observing the R95p
and R50mm indices. The higher the R95p and R50mm values, the higher the contribution
of the two indices in SDII observations in IMC. Noted here, the SDII value refers to the
ratio of the total annual rainfall to the total wet days.

All intensity-based indices showed an underestimated value, as seen from the value of
β < 1 (Figure 10). The best value of β (~1) was observed in the RX5day index with a tendency
of low underestimation. Though the value of RX5day was found to be better, the difference
in the underestimated value of the overall intensity-based indices was insignificant. In
addition, the observations of spatial variability intensity–based indices showed a good value
(γ ~ 1) with a tendency to underestimate all indices for the IMERG products (E, L, and F).
The underestimated value of intensity-based indices was related to the IMERG performance,
which was less able to observe the extreme rainfall [53,58,103]. This was consistent with the
observations of other extreme rain parameters such as R95p, R99p, and R50mm.
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Several significant differences were observed in KGE parameters for all intensity-
based indices due to the high difference in the R values of each index. The best KGE value
was observed on the RX5day index (KGE > 0.5) and the lowest one was observed on the
RX1day index (KGE < 0.2). This followed the distribution pattern as observed for the R
values of RX5day and RX1day of IMERG (Figure 9). Overall, the observation of extreme
rainfall intensity in 5 days was found to be much better than the daily one. Thus, the use of
IMERG data with a 5-day timescale for observing extreme rain intensity at the IMC is more
recommended than the daily timescale. Furthermore, the KGE value from SDII showed a
fairly good value with a KGE value > 0.35. The observations of the three IMERG data types
also did not show any significant differences for all intensity-based indices. Thus, the three
IMERG data types had good capabilities in observing intensity-based indices.

4. Conclusions

IMERG showed differing capabilities in observing extreme rain in the IMC. Overall,
IMERG was found to have good performances both for precipitation-amount-based and
precipitation-frequency-based indices. A very good capability was found in the extreme
rain index, with results worsening when moving from the R85p to the R95p, the R1mm,
the R10mm, and the R20mm index, whereas worse skills were observed for the extreme
rain index with high rainfall intensity (R99p, R50mm, RX1day). This was indicated by
high KGE values (>0.4) for the PRCPTOT, R85p, R95p, R1mm, R10mm, R20mm, CDD, and
RX5day indices with a tendency toward overestimation (β > 1). Furthermore, moderate
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KGE values (0–0.4) corresponded to the R99p, R50mm, RX1day, and SDII indices with an
underestimation tendency (β < 1). Moreover, the observed low KGE values (<0) followed
by a high overestimation (β ~ 1.9) were observed in the CWD index, caused by an overesti-
mation of light rainfall and high FAR from IMERG daily rainfall data. IMERG was able to
describe the spatial variability of extreme rain in the IMC, as seen from the variance ratio
showing a very good value (γ ~ 1) for all extreme rain indices. From all the assessments
carried out, IMERG-L showed the best capability in describing extreme rain in the IMC,
but the difference with IMERG-E and IMERG-F was found to be insignificant. Thus, the
data of IMERG-E and IMERG-L that have a much shorter latency than that of IMERG-F
have the potential to be used in extreme rain observations and for flood modeling in the
IMC. However, it can be seen that considerable biases exist in the IMERG data, so bias
adjustment needs to be done before the data are used for the hydrological applications.
Furthermore, the use of IMERG data to analyze extreme rain in IMC is highly dependent
on the extreme index applied. For instance, because of the high FAR of the daily IMERG
data, caution should be used when using and interpreting the CWD index based on IMERG
data. In this work, we only validated the PrecipitationCal product, and a comparison of the
current result with other IMERG products such as PrecipitationUnCal, HQprecipitation,
and IRprecipitation rainfall as well as other satellite-based products will strengthen and
complement the results of this study. In addition, a detailed analysis of several cases of
extreme rain that caused natural disasters in the IMC will also provide a better insight in
the value of IMERG products for early warning applications.
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